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PRE-DECODED INSTRUCTION CACHE AND 
METHOD THEREFOR PARTICULARLY 

SUITABLE FORWARIABLE BYTE-LENGTH 
INSTRUCTIONS 

This application is a continuation of application Ser. No. 
08/145,905, filed Oct. 29, 1993, now U.S. Pat. No. 5,689, 
672. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention relates to Super-Scalar processors as 

would typically be implemented on a Single integrated 
circuit, and more specifically relates to instruction cache 
arrangements for Super-Scalar processors incorporating a 
variable byte-length instruction format. 

2. Description of Related Art 
The term SuperScalar describes a computer implementa 

tion that improves performance by a concurrent execution of 
Scalar instructions-the type of instructions typically found 
in general-purpose microprocessors. Because the majority of 
existing microprocessor applications are targeted toward 
Scalar computation, SuperScalar microprocessors are the next 
logical Step in the evolution of microprocessors. Using 
today's Semiconductor processing technology, a Single pro 
ceSSor chip can incorporate high performance techniques 
that were once applicable only to large-scale Scientific 
processors. However, many of the techniques applied to 
large Scale processors are either inappropriate for Scalar 
computation or too expensive to be applied to microproces 
SOS. 

Microprocessors by definition must be implemented on 
one or a very Small number of Semiconductor chips. Semi 
conductor technology provides ever increasing circuit den 
Sities and Speeds for implementing a microprocessor, but the 
interconnection with the microprocessor's memory is quite 
constrained by packaging technology. Though on-chip inter 
connections are extremely cheap, off-chip connections are 
very expensive; often the processor's package and pins are 
more expensive than the processor chip itself. Any technique 
intended to improve microprocessor performance must take 
advantage of increasing circuit densities and Speeds while 
remaining within the constraints of packaging, technology 
and the physical Separation between the processor and its 
memory. At the same time, though increasing circuit densi 
ties provide a path to ever more complex designs, the 
operation of the microprocessor must remain Simple and 
clear enough that users can understand how to use it. 
An application program comprises a group of instruc 

tions. The processor fetches and executes instructions in 
Some Sequence. There are Several Steps involved in the 
execution of a Single instruction, including fetching the 
instruction, decoding it, assembling its operands, performing 
the operations Specified by the instruction, and writing the 
results of the instruction to Storage. The execution of instruc 
tions is controlled by a periodic clock signal. The period of 
the clock signal is the processor cycle time. 

The time taken by a processor to complete a program is 
determined by three factors: (1) the number of instructions 
required to execute the program; (2) the average number of 
processor cycles required to execute an instruction; and (3) 
the processor cycle time. Processor performance is 
improved by reducing the time taken, which dictates reduc 
ing one or more of these factors. 
An obvious way to increase performance is by Overlap 

ping the Steps of different instructions, using a technique 
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2 
called pipelining. To pipeline instructions, the various Steps 
of instruction execution are performed by independent units 
called pipeline Stages. Pipeline Stages are separated by 
clocked registers (or latches). The Steps of different instruc 
tions are executed independently in different pipeline Stages. 
The result of each pipeline Stage is communicated to the next 
pipeline Stage via the register between the Stages. Pipelining 
reduces the average number of cycles required to execute an 
instruction, though not the total amount of time required to 
execute an instruction, by permitting the processor to handle 
more than one instruction at a time. This is done without 
increasing the processor cycle time appreciably. Pipelining 
typically reduces the average number of cycles per instruc 
tion by as much as a factor of three. However, when 
executing a branch instruction, the pipeline may Sometimes 
stall until the result of the branch operation is known and the 
correct instruction is fetched for execution. This delay is 
known as the branch-delay penalty. Increasing the number of 
pipeline Stages also typically increases the branch-delay 
penalty relative to the average number of cycles per instruc 
tion. 

During the development of early microprocessors, 
instructions took a long time to fetch compared to the 
execution time. This motivated the development of complex 
instruction, or CISC, processors. (The acronym CISC stands 
for “Complex Instruction Set Computer”) CISC processors 
were based on the observation that given the available 
technology the number of cycles per instruction was deter 
mined mostly by the number of cycles taken to fetch the 
instruction. To improve performance, the two principal goals 
of the CISC architecture were to reduce the number of 
instructions needed for a given task and to encode these 
instructions densely. It was acceptable to accomplish these 
goals by increasing the average number of cycles taken to 
decode and execute an instruction because using pipelining, 
the decode and execution cycles could be mostly overlapped 
with a relatively lengthy instruction fetch. With this set of 
assumptions, CISC processors evolved densely encoded 
instructions at the expense of decode and execution time 
inside the processor. Multiple-cycle instructions reduced the 
overall number of instructions and thus reduced the overall 
execution time because they reduced the instruction fetch 
time. 

But in the late 1970s and early 1980s, memory and 
packaging technology changed rapidly. High pin count 
packages made possible the design of advanced memory 
interfaces that no longer had quite the same fetch limitations 
as applied when CISC processors evolved. Memory densi 
ties and Speeds increased to the point where high Speed local 
memories called caches could be implemented near the 
processor. When instructions are fetched more quickly using 
caches, the performance is limited by the decode and execu 
tion time that was previously hidden within the instruction 
fetch time. The number of instructions does not affect 
performance as much as the average number of cycles taken 
to execute an instruction. 
The improvement in memory and packaging technology, 

to the point where instruction fetching did not take much 
longer than instruction execution, motivated the develop 
ment of reduced instruction, or RISC, processors. (The 
acronym RISC stands for “Reduced Instruction Set 
Computer) To improve performance, the principal goal of 
a RISC architecture is to reduce the number of cycles taken 
to execute an instruction, allowing Some increase in the total 
number of instructions. The trade-off between cycles per 
instruction and the number of instructions is not one to one. 
Compared to CISC processors, RISC processors typically 
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reduce the number of cycles per instruction by factors of 
roughly three to five, while they typically increase the 
number of instructions by thirty to fifty percent. 
RISC processors have been characterized by Some as a 

return to the basic rudimentary architectures that were 
developed very early in the evolution of computers. 
However, early processors were Simple because technology 
was relatively primitive. RISC processors are simple 
because Simplicity yields better performance. Relative to 
CISC processors, RISC processors depend heavily on 
advanced memory technology, advanced packaging technol 
ogy and advanced compiler technology. Furthermore, RISC 
processors typically rely very much on auxiliary features 
Such as a large number of general purpose registers, instruc 
tion and data caches, and others, that help the compiler 
reduce the Overall instruction count or that reduce the 
number of cycles per instruction. 
A typical RISC processor executes one instruction on 

every processor cycle and, at first glance, no more improve 
ment Seems possible. A SuperScalar processor reduces the 
average number of cycles per instruction beyond what is 
possible in a pipelined Scalar RISC processor by allowing 
concurrent execution of instructions in the same pipeline 
Stage as well as concurrent execution of instructions in 
different pipeline Stages. The term SuperScalar emphasizes 
multiple concurrent operations on Scalar quantities as dis 
tinguished from multiple concurrent operations on vectors or 
arrays as is common in Scientific computing. 

SuperScalar processors are conceptually Simple but there 
is much more to achieving performance than widening a 
processor's pipeline. Widening the pipeline makes it poS 
Sible to execute more than one instruction per cycle but there 
is no guarantee that any given Sequence of instructions can 
take advantage of this capability. Instructions are not inde 
pendent of one another but are interrelated; these interrela 
tionships prevent Some instructions from occupying the 
Same pipeline Stage. Furthermore, the processor's mecha 
nisms for decoding and executing instructions can make a 
big difference in its ability to discover instructions that can 
be executed at the Same time. 

SuperScalar techniques largely concern the processor 
organization independent of the instruction Set and other 
architectural features. Thus, one of the attractions of Super 
Scalar techniques is the possibility of developing a processor 
that is code compatible with an existing architecture. Many 
SuperScalar techniques apply equally well to either RISC or 
CISC architectures. However, because of the regularity of 
many of the RISC architectures, SuperScalar techniques have 
initially been applied to RISC processor designs. 

The attributes of the instruction set of a RISC processor 
that lend themselves to Single cycle decoding also lend 
themselves well to decoding multiple RISC instructions in 
the same clock cycle. These include a general three operand 
load/store architecture, instructions having only a few 
instruction lengths, instructions utilizing only a few address 
ing modes, instructions which operate on fixed-width 
registers, and register identifiers in only a few places within 
the instruction format. Techniques for designing a SuperSca 
lar RISC processor are described in SuperScalar Micropro 
cessor Design, by William Michael Johnson, (C) 1991 by 
Prentice-Hall, Inc. (a division of Simon & Schuster), Engle 
wood Cliffs, N.J. 

In contrast to RISC architectures, CISC architectures 
were defined at a time when the principal implementation 
technique was microcode interpretation of the instruction Set 
and when pipelining was considered to be an exotic tech 
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4 
nique. Design goals were oriented more toward deciding 
which operations should be combined into instructions than 
designing operations So that they could be overlapped. 
Because of microcode interpretation, almost anything could 
be done with the definition of the instruction set-and 
generally just about everything was done. It is difficult to 
implement a pipelined version of Such an architecture, and 
extremely difficult to implement a SuperScalar version. 
Most CISC processors use a large number of different 

instruction formats. AS an example, Several of the various 
instruction formats of the X86 architecture are shown in 
FIGS. 1A and 1B. This architecture, first introduced in the 
i386TM microprocessor, is also the basic architecture of both 
the i486 TM microprocessor and the Pentium TM 
microprocessor, all available from the Intel Corporation of 
Santa Clara, Calif. There are many instruction format 
variations, and individual instructions vary from 1 to 15 
bytes long. 

Referring to FIG. 1A, the minimum instruction of the X86 
architecture consists of a single byte, which usually contains 
an 8-bit opcode (for example, field 2). For certain 
instructions, the opcode field can be up to 16 bits long, while 
for other instructions, the byte containing the opcode field 
(the “opcode” byte) also contains a register field (see format 
(b) in FIG. 1A). Operations can be register-to-register, 
register-to-memory, or memory-to-register (but not 
memory-to-memory). An optional MODRM field (for 
example, field 3 in instruction format (d)), which follows the 
opcode field, contains the register Specifier and indicates 
how the memory addressing should be performed. In Some 
instructions, the MODRM field is also used (in a slightly 
different format) to Select condition flags. Finally, an instruc 
tion optionally contains up to a four-byte immediate data 
field (for example, field 4 in instruction format (h)). 
As illustrated in FIG. 1B, the MODRM field itself has a 

variety of possible formats. The first byte of the MODRM 
field always contains a ModR/M field (for example, field 5) 
that Specifies which register and addressing mode to use. In 
the more complex memory-addressing modes, an 8-bit S-I-B 
field (for example, field 6) Specifies how address computa 
tion is to be done. Finally, the MODRM field contains an 
optional displacement or offset field (for example, field 7), 
for address computation. 
The length of the displacement and immediate fields 

depends on the data-width mode of the instruction, because 
an instruction can operate on 8-bit, 16-bit, or 32-bit data. The 
data width is determined primarily by a Segment descriptor 
in the memory management architecture, but the default for 
the segment can be overridden by a bit in the instruction (the 
w-bit) or by a prefix byte which toggles the effect of the 
w-bit. 

Prefix bytes can appear before any instruction. A prefix 
byte changes the interpretation of the instruction: it can, for 
example, change the memory address or operand size of the 
instruction, change the default Segment used in memory 
addressing, or indicate that the instruction should be 
executed with the external bus locked. More than one prefix 
may be included before an instruction, as each type of prefix 
byte is independent of the others, which gives rise to the 
maximum instruction length of 15 bytes (that is, for non 
redundant prefixes). 

During execution, a processor executing the X86 instruc 
tion set must deal with instructions that can be from 8 to 120 
bits long. The actual length of the instruction is a complex 
function of the opcode and other instruction fields, because 
many fields Specify whether or not other fields are present. 
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For example, the ModR/M and S-I-B fields both indicate the 
presence and length of the displacement (DISP) field, and 
this can be further modified by a prefix byte which can 
change the address size. A similar situation exists for the 
length of the immediate (IMMED) field. 

It is hard to see how an X86 processor might be able to 
quickly locate more than one instruction per cycle. At a 
minimum, it would seem that an additional pipeline Stage 
would be required to locate these instructions before any 
decoding could be done, adding to the branch-delay penalty 
because this extra Stage must be flushed on a branch. 
Marking the instruction bytes to aid in Subsequent decoding 
is not itself a solution to reduce this difficulty because, for 
example, the processor executing X86 instructions must be 
able to execute Self-modifying code. Furthermore, the same 
X86 instruction byte stream can be executed with different 
alignments. For example, a programmer could write a 
Sequence of instructions that branches to a given instruction 
opcode at certain times, and branches to a prefix byte 
immediately ahead of the opcode byte of the given instruc 
tion at other times. The beginning byte of an instruction is 
not necessarily fixed, depending on the execution flow. 

It has been observed that, in the 8086 processor, many 
commercial programs execute a limited Subset of available 
8086 instructions. It is also likely that an X86 processor 
executes a relatively Small portion of its instruction reper 
toire most of the time. This is the very realization that 
motivated RISC architectures in the first place. This phe 
nomenon should hold true in the future, even as new 
applications are developed, because new applications prob 
ably are going to be written in high-level languages. Com 
pilers typically generate instructions in a stylized fashion, 
using a subset of the instructions available in a CISC 
architecture, because code generators often cannot recognize 
cases where complex instructions can be used. 

The vast majority of X86 instructions that are typically 
utilized are very simple, Such as move, jump, add, and shift. 
Others are almost inordinately complex. It has been Sug 
gested that a SuperScalar X86 processor would probably 
have two modes of execution: a slow, Serial mode for the 
very complex instructions and a faster, SuperScalar mode for 
the simpler instructions. The slow, serial mode would likely 
take advantage of Some form of microcode, while the faster 
mode would likely execute in hardware. 

The Pentium TM processor achieves some degree of Super 
Scalar operation by utilizing two fairly traditional integer 
pipelines, called the U pipeline and the V pipeline, to 
Support execution of up to two simultaneous instructions. 
The processor decodes in hardware as many of the most 
frequently occurring instructions as possible. If two Such 
instructions have no resource conflicts, one instruction may 
execute within the U pipeline under hardwired control while 
the other executes within the V pipeline, again under hard 
wired control. More complex instructions require a micro 
code routine, which controls both pipelines in attempt to 
optimize the execution of the complex instruction. Since 
microcoded routines take over all the execution resources, it 
is not possible for the Pentium processor to pair microin 
Structions with regular, X86 instructions. Instruction fetch 
ing and dispatch are Stalled during the execution of a 
complex, microcoded instruction. In general, the U and V 
pipelines Simultaneously execute Separate instructions only 
if the instructions they contain are independent. Otherwise, 
the instruction execution is Serialized. Additionally, if the U 
pipeline contains any kind of branch instruction, the V 
pipeline is idle. 

The Pentium TM processor utilizes separate instruction and 
data caches. The instruction cache (I-cache) is an 8K two 
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6 
way Set-associative cache using a 32-byte line size. A 
dedicated ITLB (Instruction Table-Lookaside-Buffer) 
allows the instruction cache to be physically tagged. The 
array containing these physical tags are triple-ported: one 
port is for bus Snooping (for Supporting cache coherency 
between multiple processors) while the other two are used 
for a split fetch capability, which gives the processor the 
ability to fetch a contiguous block of instruction bytes when 
the block straddles the boundary between two half-cache 
lines. Instruction bytes read from the cache are Stored within 
one of four 32-byte prefetch buffers. 

Alternatively, it has also been Suggested that a SuperScalar 
X86 processor would have a faster, RISC-like SuperScalar 
mode for the Simpler instructions and would likely execute 
in hardware which follows recent advances in RISC pro 
ceSSor design. This technique is based on defining a “RISC 
core' of instructions that are able to take advantage of even 
more powerful SuperScalar techniques, Such as register 
renaming, wider SuperScalar dispatch, out-of-order instruc 
tion issue, and out-of-order instruction completion. 

However, fetching and decoding instructions is still a 
critical bottleneck. It is hard enough to find the instruction 
boundary of a single X86 instruction and to decode its 
various fields, but it is all the more difficult to do so for up 
to four X86 instructions, all within a Single clock cycle. 

SUMMARY OF THE INVENTION 

It is an object of the present invention to provide a 
SuperScalar processor incorporating a variable byte-length 
instruction format. 

It is a further object of the present invention to provide a 
processor which uses SuperScalar techniques to fetch and 
dispatch up to four X86 instructions per clock cycle. 

It is yet a further object of the present invention to provide 
a processor which uses an instruction cache to achieve 
bandwidth necessary to fetch and dispatch up to four X86 
instructions per clock cycle. 

Accordingly, in one embodiment, an instruction cache for 
a processor of the type having a variable byte-length instruc 
tion format includes an array for Storing a plurality of 
instruction blocks, where each of the instruction blockS 
includes a plurality of instruction bytes and a corresponding 
plurality of predecode bits for each of the instruction bytes. 
A first means provides for prefetching a plurality of instruc 
tion bytes from an instruction Source, and a Second means 
provides for predecoding each of the prefetched instruction 
bytes to determine each of the corresponding plurality of 
predecode bits for each prefetched instruction byte. A third 
means provides for Storing the plurality of prefetched 
instruction bytes and corresponding plurality of predecode 
bits for each prefetched instruction byte into an instruction 
block within the array, while a fourth means is provided for 
delivering a requested Stream of instruction bytes and cor 
responding predecode bits from an instruction block within 
the array to an instruction decoder of the processor. 

Other advantages of the present invention will become 
more clearly apparent upon a careful reading of the detailed 
description contained herein. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1A is a diagram illustrating a Sampling of various 
X86 instruction formats. 

FIG. 1B is a diagram illustrating a variety of X86 
MODRM formats as shown in FIG. 1A. 

FIG. 2 is a block diagram of a SuperScalar X86 processor 
incorporating multiple functional units. 
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FIG. 3 is a block diagram of the instruction cache illus 
trated in FIG. 3. 

FIG. 4 is a block diagram of the cache array illustrated 
within the instruction cache of FIG. 3. 

FIG. 5 is a diagram illustrating the various fields of an 
entry in the instruction store array illustrated in FIG. 4. 

FIG. 6 is a diagram illustrating the various fields of an 
entry in the tag array illustrated in FIG. 4. 

FIG. 7 is a diagram illustrating the various fields of an 
entry in the successor array illustrated in FIG. 4. 

FIG. 8 is a block diagram of the byte queue illustrated 
within the instruction cache of FIG. 3. 

FIG. 9 is a diagram illustrating the conceptual operation 
of the byte queue illustrated in FIG. 8. 

FIG. 10 is a diagram illustrating the operation, for a 
Specific example of instruction bytes, of the byteq queue 
illustrated in FIG. 8. 

FIG. 11 is a block diagram of a portion of the byte queue 
control logic within the cache control block illustrated in 
FIG. 3. 

FIG. 12 is a block diagram of the predecode block 
illustrated within the instruction cache of FIG. 3. 

FIG. 13 is a block diagram of the address block illustrated 
within the instruction cache of FIG. 3. 

FIGS. 14A-14L illustrate, for an example sequence of 
instructions, the operation through Several clock cycles, of 
the byte queue illustrated in the instruction cache of FIG. 3. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

An instruction cache in accordance with the current 
invention can be best understood in the context of a Super 
scalar X86 processor, as illustrated in FIG. 2. An instruction 
cache (ICACHE 10) provides a stream of predicted 
executed X86 instructions to an instruction decoder 
(IDECODE 12) using a bus 48. The IDECODE 12 maps 
each X86 instruction into 1 or more RISC-like operations 
(ROPs) which are then dispatched, up to four ROPs per 
clock cycle, to an optimized SuperScalar RISC core com 
posed of a variety of functional units including, for example, 
a shift unit (SHF 18), two arithmetic logic units (ALU020 
and ALU1 22), a special register block (SRB 24), a load/ 
store section (LSSEC 26), a branch section (BRNSEC 28), 
and a floating point unit (FPU 30). The IDECODE 12 
provides dispatch status on bus 50 back to the ICACHE 10 
and generates pointers for the operands required by the 
various ROPs to a register file (REGF 14) and a reorder 
buffer (ROB 16), which provide the operands to the func 
tional units. The processor further includes a data cache 
(DCACHE 32), a second level cache (L2CACHE 36) for 
both instructions and data, a memory management unit 
(MMU38) for both instructions and data, and a bus interface 
unit (BIU 34). Four sets of ROP dispatch busses 40, A and 
B pointer busses 42, A and B operand busses 44, and result 
busses 46 enable the SuperScalar RISC core to execute up to 
4ROPs within the same clock cycle. 

The ROB 16 provides a means for implementing register 
renaming and is managed as a FIFO. When an instruction is 
decoded by the IDECODE 12, a corresponding entry is 
allocated in the ROB 16. The result value computed by the 
instruction is then written into the allocated entry when the 
execution of the instruction is completed. The result value is 
Subsequently written into the REGF 14 and the instruction 
retired if there are no exceptions associated with the instruc 
tion and if no speculative branch is pending which affects the 
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8 
instruction. If the instruction is not complete when its 
associated entry reaches the head of the ROB 16, the 
advancement of the ROB 16 is halted until the instruction is 
completed. Additional entries, however, can continue to be 
allocated. If there is an exception or branch misprediction, 
the contents of the ROB 16 allocated subsequent to the 
mispredicted branch instruction are discarded. 
The vast majority of X86 instructions that are typically 

utilized by most compilers are very simple (RISC-like), such 
as move, jump, add, and shift. In the processor of FIG. 2, 
many of these X86 instructions are mapped into a sequence 
of 1, 2, or 3 RISC-like three-operand instructions (ROPs) by 
the IDECODE 12 and are dispatched into the optimized 
SuperScalar RISC core. Reservation stations within each of 
the functional units afford out-of-order issue and, together 
with the ROB 16, out-of-order completion. These techniques 
are known in the art of SuperScalar RISC processor design. 

Other X86 instructions are almost inordinately complex. 
These more complicated instructions are mapped into a 
routine of 4 or more ROPs (a microcode routine or MROM 
routine) by the IDECODE 12, and which ROPs are likewise 
dispatched into the SuperScalar RISC core, thereby leverag 
ing the same hardware already present in the SuperScalar 
RISC core. 

Referring to FIG. 3, the ICACHE 10 includes a cache 
control 108, which provides control signals to orchestrate 
the various operations of the ICACHE 10, an address block 
110 which generally maintains a fetch program counter (the 
“Fetch PC”) communicated on bus 106 for sequential and 
non-Sequential accesses to the cache array 100, and provides 
address generation and X86 protection checking associated 
with pre-fetching instructions from either a secondary cache 
or external memory, a predecode block 112 which receives 
prefetched X86 instruction bytes via an internal address/data 
bus 52, assigns predecode bits for each X86 instruction byte, 
and writes the predecoded X86 instruction bytes using a 
group of 4 busses 104 into a cache array 100, and a queue 
of predicted-executed instruction bytes (a “byte queue', or 
BYTEQ 114), which buffers predicted-executed instructions 
from the cache array 100 and presents up to 16 valid 
predecoded X86 instruction bytes to the IDECODE 12 on a 
group of 16 busses 48. The Fetch PC is preferably main 
tained as an X86 linear address, which is discussed more 
fully in co-pending, commonly-assigned U.S. patent appli 
cation Ser. No. 08/146,381, now abandoned, filed on even 
date herewith, entitled “Linearly Addressable Microproces 
sor Cache', naming David B. Witt as inventor, now issued 
as U.S. Pat. No. 5,623,619, issued Apr. 22, 1997, which is 
incorporated herein by reference in its entirety. 

In operation, the ICACHE 10 pre-decodes the X86 
instruction bytes when initially prefetched to facilitate the 
parallel decoding and mapping of up to four X86 instruc 
tions into ROPs, and the parallel dispatch of up to 4 ROPs 
by the IDECODE 12, all within the same clock cycle. A 
variety of advantageous configurations are possible for the 
predecode bits. For example, a group of 5 predecode bits 
may describe an associated X86 instruction byte as indicated 
in Table 1, which shows an organization for a 13-bit “pre 
decoded byte”. 

TABLE 1. 

bit12 Indicates start byte of X86 instruction. 
bit11 Indicates end byte of X86 instruction. 
bit 10:8 Indicates the “byte type: 

000- X86 opcode byte; maps to MROM routine. 
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TABLE 1-continued 

OO1 
O1O 
O11 
100 
101 

X86 opcode byte; maps to 1 ROP. 
X86 opcode byte; maps to 2 ROPs. 
X86 opcode byte; maps to 3 ROPs. 
X86 ModR/M byte. 
X86 S-I-B byte. 

110- X86 DISP/IMM byte. 
111- X86 PREFIX byte. 

bit 7:0 “raw X86 instruction byte. 

Storing an additional 5 predecode bits for each 8-bit X86 
instruction byte represents about 60% overhead in the 
ICACHE compared to the X86 instruction bytes. However, 
because the X86 instructions are densely encoded and make 
efficient use of memory (which is, in fact, a large factor in 
why the X86 instruction format is so complicated) the 
predecoded instructions bytes are Stored reasonably effi 
ciently compared to a traditional 32-bit RISC architecture. 
On average, an X86 instruction is 3 bytes in length and maps 
into 1.3 ROPs for the optimized RISC core illustrated in 
FIG. 2. Therefore, each ROP (which is a RISC-like instruc 
tion similar to other traditional RISC processors) requires 30 
bits of ICACHE memory, as given by Eq. 1, and which 
compares favorably to other RISC processors. 

X86 bytes bits ROPs (Eq. 1) 
1 ROP = 3 : 13- /13 

X86 instr byte X86 instr 

= 30 bits 

Referring now to FIG.4, the cache array 100 is preferably 
organized into 3 main arrayS: an instruction Store array 200, 
an address tag array 202, and a Successor array 204. Each of 
these three arrays are addressed by the Fetch PC address 
conveyed on bus 106. As is well known in the art of cache 
memory design, middle-order bits of the Fetch PC address 
form a cache indeX which is used to address these arrays and 
retrieve an entry from each array, upper-order bits form an 
address tag which is compared to the tag Stored within the 
retrieved entry from the address tag array 202 for detecting 
a cache hit, and lowest order bits form an offset into the 
retrieved entry from the instruction store array 200 to find 
the byte addressed by the Fetch PC. 

In the preferred embodiment, the cache array 100 is 
organized as a 16K byte 4-way Set-associative cache. The 
instruction store array 200 is organized as 1024 blocks of 16 
predecoded X86 instruction bytes. The address tag array 202 
is dual-ported and contains 1024 entries, each composed of 
a 20-bit linear address tag, a Single valid bit for the entire 
block, and 16 individual byte-valid bits, one for each of the 
16 corresponding instruction bytes within the instruction 
store array 200. The successor array 204 is dual-ported and 
contains 1024 entries, each composed of a 14-bit Successor 
index, a successor valid bit (NSEQ) which indicates when 
Set that the Successor indeX Stored in the Successor array 204 
should be used to access the instruction array 200, and 
indicates when cleared that no branch is predicted taken 
within the instruction block, and a block branch index (BBI) 
which indicates, when the NSEQ is set, the byte location 
within the current instruction block of the last instruction 
byte predicted to be executed. The 14-bit successor index is 
composed of an 8-bit field used as the address index into the 
cache, a 2-bit field to indicate which column of the 4-way 
Set-associative array contains the Successor block of instruc 
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tion bytes (thus avoiding the time otherwise required to 
determine which column “hits” at this address), and a 4-bit 
field which indicates the particular byte within the Successor 
block which is predicted to be the next byte executed. 

FIG. 5 illustrates a preferred organization of an entry in 
the instruction store array 200. Each entry contains sixteen 
“predecoded bytes' 220-235, each including an X86 
instruction byte (8 bits) and an associated field of 5 prede 
code bits describing the respective X86 instruction byte. The 
asSociated predecode field preferably includes a Sub-field for 
indicating the Starting and ending bytes of an X86 
instruction, a Sub-field for indicating the opcode byte (or a 
Specific one of the opcode bytes if a two-byte opcode) within 
the various bytes of an X86 instruction, and a subfield 
indicating the number of ROPs that an X86 instruction maps 
into, all of which are cached with the respective X86 
instruction byte in the instruction store array 200. 
A preferred organization for a 13-bit “predecoded byte” is 

described in Table 2. 

TABLE 2 

bit 12 Indicates start byte of an X86 instruction. 
bit 11 Indicates end byte of an X86 instruction. 
bit 10 Indicates the X86 opcode byte. 
bit 9:8 Indicates # of ROPs instruction maps into: 

00- X86 instruction maps to MROM routine. 
01-X86 instruction maps to 1 ROP. 
10- X86 instruction maps to 2 ROPs. 
11- X86 instruction maps to 3 ROPs. 

bit 7:0 “raw X86 instruction byte. 

FIG. 6 illustrates a preferred organization of an entry in 
the address tag array 202. Each entry preferably contains a 
20-bit address tag 238 for the block (being the upper 20 bits 
of the Fetch PC address used to address the cache), a tag 
valid bit 239, and sixteen “byte-valid” bits 240-255, one 
respectively for each of the predecoded X86 instruction 
bytes 220-235 contained in the instruction store array 200. 
The arrangement for each entry of the address tag array 202 
is, of course, dependent upon the size, Set associativity, and 
block size of the cache, as well as the size of the address 
used. For example, in this preferred embodiment, each 
column (being a 4-way Set associative cache) must have 4K 
bytes, for a total cache size of 16K bytes. Since the block 
size is 16 bytes, there must be 256 blocks within each 
column (to equal 4K bytes). Therefore, the lower 4 bits (bits 
3:0) of the address are used to select which byte within a 
block is the addressed byte, the next 8 bits (bits 11:4) are 
used to indeX into each of the 4 columns and to Select a block 
within each column, and the remaining 20 bits (bits 31:12) 
are used as the address tag 238 and are stored within the 
address tag array 202 itself to Select whether a given column 
contains the address in question (a cache "hit'). 
The tag valid bit 239, when asserted, indicates a valid 

address tag 238. The individual byte-valid bits 240–255, 
when asserted, each indicate that the corresponding prede 
coded X86 instruction byte contains a valid X86 instruction 
byte and valid predecode bits. After a cache miss an entry is 
allocated at the indeX location within the address tag array 
202 by writing the upper 20 bits of the Fetch PC conveyed 
on bus 106 into the address tag 238, setting the tag valid bit 
239 to indicate a valid address tag, and clearing the 16 
byte-valid bits 240-255 to invalidate any instruction bytes 
remaining in the corresponding entry within the instruction 
store array 200 from previous activity. As predecoded 
instruction bytes are written into a previously allocated entry 
within the instruction store array 200, the respective byte 
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valid bits are likewise Set in the corresponding entry within 
the address tag array 202. 
The successor array 204 is used to support branch 

prediction, which is vitally important in a SuperScalar pro 
ceSSor to avoid otherwise Severe branch delay penalties. A 5 
similar branch prediction method is discussed in U.S. Pat. 
No. 5,136,697 entitled “System for Reducing Delay for 
Execution Subsequent to Correctly Predicted Branch 
Instruction Using Fetch Information Stored With Each 
Block of Instructions in Cache', naming William M. 
Johnson as inventor. 

FIG. 7 illustrates a preferred organization of an entry in 
the Successor array 204. Each entry preferably contains a 
non-sequential bit (NSEQ 260) which, when asserted, indi 
cates a predicted-taken branch within the current block of 
instructions, a 4-bit block branch index 261 (BBI261) which 
indicates, when the NSEQ 260 is asserted, the byte offset 
within the current block of the last predicted-executed 
instruction byte, and a 14-bit successor index 262 (SUCC 
262) which indicates, when the NSEQ 260 is asserted, the 
index (8-bits) and the column (2-bits) of the subsequent 
cache block to be accessed, as well as the byte offset (4-bits) 
within that block of the next instruction predicted to be 
executed (the next predicted-executed instruction). The spe 
cific size of each entry of the Successor array 204 is, of 
course, dependent upon the size, Set associativity, and block 
Size of the cache, as well as the size of the address used. For 
example, in this preferred embodiment, the 14-bit Successor 
index (SUCC 262) requires 8 bits to select one of 256 
blocks, 2-bits to select one of the 4 columns (since 4-way 
Set-associative), and 4-bits to select one byte from a block 
size of 16 bytes. 
The BBI 261 indicates, in other words, the last byte of the 

predicted-taken branch instruction within the current block, 
while the SUCC 262 indicates where the next predicted 
executed byte of the instruction is located within the cache 
(the instruction starting at the target address of the specu 
lative branch). 
When a branch instruction is initially executed, it is 

predicted as not-taken and instruction fetching continues 
Sequentially. The location of the branch instruction, 
nonetheless, is marked in the BYTEO 114, and if the branch 
is later determined by the functional unit (BRNSEC 28) to 
be a taken branch, a branch mis-predict is generated. Specu 
lative instructions logically occurring after the branch 
instruction (in the not-taken path) are flushed and the 
ICACHE 10 is redirected by the branch section (BRNSEC 
28), which passes the correct target address back to the 
ICACHE 10 using bus 54, along with a branch MIS 
PREDICT signal and a BRANCH TAKEN signal. 

The ICACHE 10 then flushes any remaining instructions 
in the BYTEQ 114, accesses the instruction stream starting 
at the target address supplied by the BRNSEC 28 
(prefetching from external memory Sources, if need be), and 
starts re-filling the BYTEQ 114. The cache line containing 
the branch instruction just mis-predicted is also modified to 
indicate a predicted branch by asserting the NSEQ 260 bit, 
by setting the BBI 261 field to point to the last byte of the 
branch instruction, and by setting the SUCC 262 field to 
indicate the location within the ICACHE 10 of the target 
instruction. The complete address is not stored within the 
SUCC field, but only the index, column, and offset of the 
target instruction. The Fetch PC is reconstructed by access 
ing the cache block using the indeX and column given by the 
SUCC 262 field, and by concatenating the address tag (bits 
31:12) stored within that block to the index (bits 11:4) and 
offset (bits 3:0) from the previous SUCC 262 field. 
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This reconstructed Fetch PC is provided to the IDECODE 

12 to enable the IDECODE 12 to maintain a Dispatch PC as 
instructions are dispatched to the functional units. The 
IDECODE 12 then matches the branch target address thus 
Supplied with the location of the branch instruction itself, as 
indicated by a marker bit within the BYTEQ 114 and a 
corresponding field indicating which cache column holds the 
branch instruction. The IDECODE 12 then increments bytes 
off the current decode PC as instruction bytes are dispatched 
to the functional units, and loads the new branch target PC 
when the first byte of the branch instruction is loaded into 
the IDECODE 12 from the BYTEO 114. This information is 
also provided to the branch section BRNSEC 28 for actual 
execution of the branch instruction, and for determining 
Subsequently if the prediction was correct. If So, execution 
proceeds, but if mis-predicted, the BRNSEC 28 provides the 
correct target PC resulting from the branch to the ICACHE 
10 as previously noted above. 

Both the address tag array 202 and the successor array 204 
are dual-ported So that updating the branch prediction infor 
mation in the previous cache block proceeds in parallel with 
accessing the new cache block. Thus, any time penalty for 
updating a mis-predicted branch is avoided. 
When a predicted-taken branch is mis-predicted, the 

NSEQ field in the previous cache block (containing the 
mis-predicted branch) is reset. The other fields, BBI 261 and 
SUCC 262 are ignored whenever NSEQ 260 is reset, thus 
indicating a sequential access (in other words, a predicted 
not-taken branch). A predicted-taken branch which refer 
ences a negative offset target address, and which is mis 
predicted (in other words, is not actually taken) is not 
updated, but is maintained as a predicted-taken branch. Such 
is the case of a typical programming loop which indeed 
“loops' back in the code many times, but only “falls 
through the loop once for each execution pass. 

Referring again to FIG. 3, the BYTEQ 114 provides a 
flexible instruction buffer for the IDECODE 12 and con 
tributes to successfully dealing with many of the difficult 
cache implications arising from a variable byte-length 
instruction format, Such as, for example, the variable byte 
length of the X86 instructions, X86 instructions which cross 
the cache block boundaries, X86 instructions which are 
partially cached, and X86 instructions which are cached but 
not predicted executed. The BYTEQ 114 is discussed more 
fully in co-pending, commonly-assigned U.S. patent appli 
cation Ser. No. 08/145,902, now abandoned, filed on even 
date herewith, entitled “Speculative Instruction Queue and 
Method Therefore Particularly Suitable for Variable Byte 
Length Instructions”, naming David B. Witt as inventor, 
currently pending as continuation application Ser. No. 
08/311,286 filed on Sep. 23, 1994, and which is incorporated 
herein by reference in its entirety. 
The BYTEQ 114 functions as a specialized FIFO in that 

the predecoded instruction bytes, received as a block of 
Sixteen predecoded instruction bytes from the cache array 
100 on bus 102, are always maintained as oldest to newest. 
However, the BYTEQ 114 always starts on an X86 instruc 
tion boundary, as determined by the predecode bits assigned 
when initially prefetched, and shifts on complete X86 
instruction boundaries. Load/shift signals conveyed from the 
cache control 108 to the BYTEO 114 on bus 116 are 
determined in response to the dispatch Status provided by the 
IDECODE 12 to the cache control 108 on bus 50. 

At any given clock cycle, up to Sixteen valid predecoded 
X86 instruction bytes are provided via a group of Sixteen 
multiple-bit busses 48 to the IDECODE 12, which uses the 
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predecode bits to quickly find up to 4 individual X86 
instructions (using a START bit and an END bit fields), 
decode each X86 instruction (using an OPCODE bit field 
and an ROPLENGTH field), and map the X86 instructions 
into corresponding ROPs. Up to 4ROPs are simultaneously 
dispatched per clock cycle, representing potentially up to 4 
X86 instructions. More specific details of IDECODE 12 are 
discussed in co-pending, commonly-assigned U.S. patent 
application Ser. No. 08/146,383, now abandoned, filed on 
even date here with, entitled “Superscalar Instruction 
Decoder” naming inventors David B. Witt and Michael D. 
Goddard, currently pending as continuation application Ser. 
No. 08/628,389 filed on Apr. 5, 1996. 
At a minimum, the BYTEQ 114 must be at least as long 

as the longest X86 instruction (15 bytes, assuming no 
redundant prefixes) So as to present at least one entire X86 
instruction to the IDECODE 12, and is preferably 16 bytes 
long. This is Somewhat chosen for convenience, being an 
integer power of 2 and which is the same size as the cache 
block size, but it does provide a size that, on average, 
provides enough room to buffer Several instructions Simul 
taneously in the BYTEQ 114. Of course, the length could be 
chosen to be larger for potentially higher performance at the 
expense of circuit complexity. An X86 instruction is shifted 
out of the BYTEO 114 whenever all the ROPS associated 
with that X86 instruction are dispatched into the RISC core. 
Dispatch information is conveyed by the IDECODE 12 to 
the cache control 108 on bus 50, which controls the shifting 
of the BYTEQ 114 by Load/store signals conveyed on bus 
116. If only a portion of the ROPs associated with a given 
X86 instruction are dispatched in a given cycle, the X86 
instruction is not shifted out of the BYTEO 114. In Such a 
case, if another X86 instruction present in the BYTEQ 114 
is fully dispatched, the BYTEQ 114 will shift the partially 
dispatched X86 instruction to the head of the BYTEQ 114 so 
that the IDECODE 12 may dispatch the remaining ROPs 
during the next clock cycle. 

Referring now to FIG. 8, the BYTEQ 114 includes a cache 
latch 300 which receives sixteen predecoded X86 instruction 
bytes conveyed on bus 102A from the instruction store array 
200, sixteen corresponding “clipped' byte-valid bits con 
veyed on bus 102B from the address tag array 202, sixteen 
corresponding branch marker bits conveyed on bus 314 from 
the cache control 108, and a 2-bit cache column indicator, 
conveyed on bus 313 from cache control 108, which indi 
cates the column (of the 4-way set-associative cache) which 
the corresponding instruction bytes are Stored within. The 
cache column indicator is replicated into each of the 16 
output positions of the cache latch 300. The “clipped' 
byte-valid bits are set for only those valid bytes which are 
predicted executed within a cache block (or cache line), as 
will be discussed herein. A rotate block 302 receives the 
outputs from cache latch 300 and, responsive to an array 
rotate signal conveyed from the cache control 108 on bus 
303, rotates the byte positions by an amount to align an 
indicated byte position into the first position. All 16 byte 
positions are rotated by the same amount in a recirculating 
manner. A mask block 304 receives the outputs of each byte 
position of the rotate block 302 and selectively drives certain 
byte positions of a bus 312, responsive to an array mask 
signal conveyed from the cache control 108 on bus 305. 

The state of bus 312 is latched by a byteq latch 310, which 
then provides the predecoded X86 instruction bytes to 
IDECODE 12 via the sixteen-"predecoded byte” wide bus 
48 (For example, a bus 48 conveying 16 bytes of 13 bits 
each). The byteq 114 further includes a rotate block 308 
which also receives the sixteen predecoded X86 instruction 

15 

25 

35 

40 

45 

50 

55 

60 

65 

14 
bytes conveyed on bus 48 from the byteq latch 310 and, 
responsive to a byteq rotate Signal conveyed from the cache 
control 108 on bus 309, rotates the byte positions by an 
amount to align an indicated byte position into the first 
position. All 16 byte positions are rotated by the same 
amount in a recirculating manner. A mask block 306 receives 
the outputs of each byte position of the rotate block 308 and 
Selectively drives certain byte positions of bus 312, respon 
Sive to a byteq mask Signal conveyed from the cache control 
108 on bus 307. 

Each bit position (of each byte position) of bus 312 is 
precharged into, for example, a high State by precharge 
circuitry not shown. Subsequently, when the mask blockS 
304 and 306 are enabled to drive their respective outputs, 
each bit position of bus 312 is discharged, for example, into 
a low state by either mask block 304 or mask block 306. The 
cache control 108 ensures that the array mask on bus 305 
and the byteq mask on bus 307 provides for each byte 
position of bus 312 being driven by either of the mask blocks 
304 or 306, but not both. Thus, bus 312 functions as a 
“wired-or bus and is used to merge data from two different 
Sources, which is then loaded into the byteq latch 310 during 
the next clock cycle. Such a technique utilizing a rotate 
function to shift instruction bytes is possible whenever the 
block size of the cache is identical to the length of the 
BYTEO. 

FIG. 9 illustrates a simplified 8-position example of the 
operation of such a byteq as illustrated in FIG.8. For clarity, 
only 8 byte-positions are shown, although the byteq is easily 
extended to any width. Cache Latch, (state 330) illustrates 
the contents of the cache latch 300 during a given clock 
cycle, and ShowS bytes A-H loaded in respective byte 
positions 0–7. Each Such byte A, B, C, etc., represents a 
predecoded X86 instruction byte as would be present in each 
of the byte positions of cache latch 300. A start byte pointer 
(STBYTE) is shown as indicating that byte positions 4, 5, 6, 
and 7 remain to be shifted into the byteq latch 310. 

ByteC), (state 332) illustrates the contents of the byteq 
latch 310 during the same clock cycle, and shows bytes S-Z 
loaded in respective byte positions 0–7. Each such byte S, T, 
U, etc., represents a predecoded X86 instruction byte as 
might be present in each of the byte positions of byted latch 
310. A fill byte pointer (FLBYTE) is shown as indicating 
that byte position 6 is the next available byte position. Also 
shown in state 332 is a shift amount (SHIFT) corresponding 
to, for example, instruction bytes for X86 instructions that 
are completely dispatched during the current clock cycle and 
which are to be shifted out of the byteq latch 310, resulting 
in byte W resident at byte position 0. 

ByteC) (state 334) illustrates the contents of the byteq 
latch 310 during the following clock cycle and shows byte 
W and X shifted into byte positions 0 and 1, respectively, 
and bytes E, F, G, and H from the cache latch 300 shifted 
into byte positions 2, 3, 4, and 5, respectively. Byte positions 
6 and 7, in this example, are invalid because the available 
byte positions in the byteq latch 310 exceed the remaining 
bytes in the cache latch 300. While it appears (for a fixed 
width of 8 byte positions) that the shift operation of the 
byteq latch 310 must take place before the new bytes from 
the cache latch 300 are loaded into the byteq latch 310 (as 
made apparent by the dotted-line byte positions “8” and “9” 
in State 332), in fact both operations occur simultaneously. 

FIG. 10 shows the outputs of each of the blocks illustrated 
in FIG. 8 for the example (8-byte) operation shown in FIG. 
9, and shows the rotate and mask controls derived from the 
STBYTE and FLBYTE pointers in this example. As before, 
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bytes A-H are shown resident in respective byte positions 
0-7 of the cache latch 300. With the array rotate signal set 
to “0010 0000", the byte residing in byte position 2 
(currently the “C” byte) is rotated into byte position 0, with 
the other bytes rotated accordingly. The outputs of the rotate 
block 302 are then provided to the mask block 304. With the 
array mask signal set to "0011 1100', only byte positions 
2-5 (bytes E-H) are driven onto respective byte positions of 
bus 312. Again as before, bytes S-Z are shown resident in 
respective byte positions 0–7 of the byteq latch 310. With 
the byteq rotate signal set to "0000 1000”, the byte residing 
in byte position 4 (currently the “W” byte) is rotated into 
byte position 0, with the other bytes rotated accordingly. The 
outputs of the rotate block 308 are then provided to the mask 
block 306. With the byteq mask signal set to “1100 0000", 
only byte positions 0-1 (bytes W-X) are driven onto respec 
tive byte positions of bus 312. Thus, bytes W, X, E, F, G, and 
H are latched into byte positions 0-5, respectively, of the 
byted latch 310 on the next clock cycle, all in a Single load 
operation. Bytes 6 and 7, indicated by an “-” on the 
combined input to the byteq latch 310, are not driven in this 
example by either mask block. The polarity of the byte-valid 
bits is preferably chosen Such that the precharged State 
remaining on the byte-valid bit in these two byte positions 
indicates to the IDECODE 12 an invalid instruction byte in 
these byte positions. 

FIG. 11 shows a portion of the cache control 108 which 
includes five different byteq control generation circuits 
(BQGEN360-364), each driven by common STBYTE and 
FLBYTE pointers conveyed on busses 366 and 368, respec 
tively. Generally, five versions of each of the four signals 
necessary to shift/load the byted 114 are generated in 
parallel during instruction decode, each corresponding to the 
respective anticipated dispatch of 0, 1, 2, 3, or 4ROPs by the 
IDECODE 12 during a given clock cycle. When the actual 
number of dispatched ROPs is known, a dispatch signal 
enables one of five buffers which drives one Such version of 
these four signals onto respective busses 303, 305, 307, and 
309. 

For example, BQGEN 364 receives a D4SHIFT signal 
conveyed on bus 50A from the IDECODE 12 which 
indicates, for the anticipated case of all 4 ROPs being 
dispatched by the IDECODE 12, how many bytes the byteq 
114 should be shifted for the next cycle. The IDECODE 12 
generates this D4SHIFT based upon the mapping of each 
ROP back into the corresponding X86 instruction, and the 
byte-length of each X86 instruction in the byteq 114 (based 
upon the start byte and end byte fields in the predecoded 
bits). Consequently, the D4SHIFT generated by the IDE 
CODE 12 indicates, in the case that all 4 ROPs are 
dispatched, the number of bytes the BYTEQ 114 should shift 
to completely shift out of the BYTEQ 114 all X86 instruc 
tions whose ROPs are fully dispatched. In response to the 
D4SHIFT signal conveyed on bus 50A, the STBYTE pointer 
conveyed on bus 366, and the FLBYTE pointer conveyed on 
bus 368, the BQGEN 364 generates four control signals, 
AR4, AM4, BR4, and BM4, which are then driven, respon 
sive to a DISPATCH4 signal conveyed on bus 50B from the 
IDECODE 12, by a buffer 374 (having three-state outputs) 
to become the respective signals ARRAY ROTATE, ARRAY 
MASK, BYTEQ ROTATE, and BYTEQ MASK conveyed 
on respective busses 303,305,309, and 307 to the BYTEQ 
114. 

In a similar fashion, BOGEN360, BOGEN361, BOGEN 
362, and BQGEN 363 receive a respective signal “0”, 
D1SHIFT, D2SHIFT, and D3SHIFT corresponding to the 
respective anticipated dispatch of 0, 1, 2, and 3 ROPs by the 
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IDECODE 12 during the current clock cycle, and generate 
appropriate rotate and mask Signals, one Set of which is 
gated by respective buffers 370, 371, 372, and 373 onto 
busses 303, 305, 309, and 307 in response to respective 
signals DISPATCH0, DISPATCH1, DISPATCH2, AND 
DISPATCH3 received from the IDECODE 12 when the 
actual number of dispatched ROPs is known. The BQGEN 
360 generates all four BYTEQ 114 control signals because, 
even in the case of no ROPs being dispatched (DISPATCH0 
asserted) and consequently when the BYTEQ 114 is not 
shifted, additional predecoded instruction bytes from the 
cache array 100 may continue to fill into any available byte 
positions in the BYTEQ 114, as indicated by the STBYTE 
and FLBYTE pointers. 

Referring now to FIG. 12, the PREDECODE 112 includes 
registers 400, 402, and 404 for receiving prefetched instruc 
tion bytes conveyed on internal address/data bus 52 from an 
instruction Source (which may include a secondary cache or 
external memory). A request to pre-fetch instructions is 
received from the cache control 108 upon a cache miss in the 
cache array 100. A register control 401 receives a prefetch 
latch (PFLATCH) signal conveyed on bus 403 from the 
cache control 108. This PFLATCH signal is asserted to 
indicate that the next available register 400, 402, or 404 
should latch the instruction bytes present on the internal 
address/data bus 52. The register control 401 generates 
control signals for registers 400, 402, and 404 accordingly, 
and also asserts a FULL signal conveyed on bus 405 back to 
the cache control 108 when all three registers are full. 
As many as 32 bytes are conveyed on busses 406 and 408 

to an assign block 410 which scans the instruction bytes 
starting at the byte indicated by the STBYTE pointer con 
veyed on bus 366 from the cache control 108 and which 
corresponds to either the prefetch address or to the byte 
immediately following the last complete instruction 
prefetched. This first byte must be either a prefix byte or an 
opcode byte, and is marked as a Starting byte. If one or more 
prefix bytes are encountered before the opcode byte, each 
prefix byte encountered is preferably recoded and also 
includes any prefix information from previously encoun 
tered prefix bytes. Thus, the last prefix byte before the 
opcode byte becomes a consolidated prefix byte containing 
prefix information from all previous prefix bytes encoun 
tered in the “raw' X86 instruction. The preferred encoding 
for the consolidated prefix byte (as well as recoded prefix 
bytes) is presented in Table 3. Specific descriptions of the 
various prefixes for the X86 instruction set are found in the 
i486TM Microprocessor Programmer's Reference Manual, 
available from the Intel Corporation of Santa Clara, Calif. 

TABLE 3 

7:5 OOO no segment prefix 
OO1 CS segment override prefix 
O10 DS segment override prefix 
O11 ES segment override prefix 
1OO FS segment override prefix 
101 GS segment override prefix 
110 SS segment override prefix 
111 reserved 

4:3 OO no repeat or lock prefix 
O1 LOCK prefix 
1O REPNE prefix 
11 REP/REPE prefix 

2 O no operand size prefix 
1. operand size prefix 

1. O no address size prefix 
1. address size prefix 

O O no two-byte opcode prefix 
1. two byte-opcode prefix 

The opcode byte is marked, for example, by setting bit 10 
in the field of predecode bits, according to the configuration 
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described in Table 2. The consolidated prefix byte is the byte 
immediately preceding the opcode byte, unless the opcode 
byte is also marked as the Starting byte, which implies no 
prefix is present. The byte immediately following the opcode 
byte is tentatively assumed to be an X86 ModR/M byte, with 
the next byte tentatively assumed to be an X86 S-I-B byte. 
The four instruction fields PREFIX (being the consolidated 
prefix byte), OPCODE, ModR/M, and S-I-B are then con 
veyed on respective busses 414, 416, 418, and 420 to a 
lookup table 412, which is preferably implemented as a 
PLA. Mode control information is conveyed on bus 430 to 
the lookup table 412, which returns values for MAP, 
LOCK OK, OPCODE OK, ILENGTH, and INSTR 
PRES conveyed on respective busses 422, 424, 426, 428, 
and 429 back to the assign block 410. 
The MAP value indicates the number of ROPs the current 

instruction maps into, which is a function of the Specific 
operands as specified by any ModR/M and/or S-I-B byte, the 
mode of the processor, and the presence of any prefix bytes, 
among others. The P0 and P1 bits (bits 8 and 9 of Table 2) 
within the predecode field for the bytes of this instruction are 
set appropriately for the number of ROPs specified by the 
MAP value. The value LOCK OK indicates whether a lock 
prefix is valid for the particular instruction. An illegal 
instruction trap is generated when a invalid lock prefix 
precedes an opcode by asserting the TRAP Signal conveyed 
on bus 452 to the cache control 108. The value OPCODE 
OK indicates the validity of the opcode field, which is also 
used to generate an illegal instruction trap when an illegal 
opcode is encountered. The value INSTR PRES conveyed 
on bus 429 indicates the presence of enough instruction 
bytes to make proper determination of the other values 
communicated by lookup table 412. The value ILENGTH 
indicates the byte-length of the instruction, and is used to Set 
the ending byte bit in the predecode field accordingly. With 
the end of the instruction found and all predecode bits 
assigned, the predecoded instruction bytes are conveyed, up 
to 4 bytes at a time, on bus 104 to the cache array 100. A 
WRBYTE signal is conveyed on bus 454 to the cache 
control 108 and indicates which respective predecoded bytes 
conveyed on bus 104 are valid and should be written into the 
cache array 100. 

In a variable byte-length instruction format Such as the 
X86 format, a Single instruction may frequently croSS cache 
line boundaries when written into the cache array 100. In 
other words, the first portion of the instruction is stored 
within a given cache line (or cache block) when initially 
cached and the remaining portion of the instruction is Stored 
within the following cache line. Subsequent memory refer 
ences may cause the cache line containing the remaining 
portion of the instruction to be allocated to a different 
memory location and written with unrelated instruction 
bytes. When the processor executes the given instruction 
again, the cache acceSS will "miss” when attempting to 
access the Second cache line. Such a partially cached instruc 
tion is detected by the cache control 108, which allocates a 
new cache line for the trailing bytes of the instruction and 
issues a prefetch of the instruction bytes, which are brought 
into the PREDECODE block 112 as before. 

Rather than prefetching the cache line containing the 
beginning bytes of the partially cached instruction (which 
are already present in the cache array 100 and in the byteq 
114), the beginning bytes of the instruction are instead 
loaded, upon the assertion of a PREDLATBQ signal con 
veyed on bus 433, from the byteq 114 directly into a latch 
432 via bus 312. These sixteen instruction bytes are con 
veyed on bus 431 to a scan and parse block 434 which 
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locates the incomplete instruction within the 16 bytes from 
the byteq 114. Up to four byte fields within the partial 
instruction and two values generated from the partial 
instruction are conveyed to the assign block 410 to provide 
a starting basis for the assignment of the predecode bits for 
the remainder of the instruction bytes. A BOILENGTH 
value, conveyed on bus 436, indicates the number of instruc 
tion bytes, beginning with the opcode byte, resident in the 
earlier cache line. A BOPLENGTH value, conveyed on bus 
438, indicates the number of prefix bytes within the cache 
line occurring before the opcode byte. The consolidated 
prefix byte (BQPREFIX), the opcode byte (BQOPCODE), 
the ModR/M byte (BQMODR/M), and the S-I-B byte 
(BQSIB), if found within the current cache line, are con 
veyed on respective busses 440, 442, 444, and 446 to the 
assign block 410, which assigns predecode bits to the 
remaining bytes prefetched from memory and writes the 
remaining bytes into the cache array 100 as before. A 
CLEAR signal conveyed on bus 435 from the assign block 
410 clears the latch 432 upon the successful writing of all 
instruction bytes for the instruction. 
A CLREXT signal conveyed from the cache control 108 

on bus 448 indicates a new prefetch address is forthcoming, 
and to clear the registers 400, 402, and 404 and discontinue 
predecoding of the former prefetch instruction Stream. 

FIG. 13 illustrates portions of each of the address block 
110, the cache control 108, and the cache array 100 which 
together generally maintain and redirect the Fetch PC con 
veyed on bus 106. Because this processor utilizes branch 
prediction to accomplish Speculative eXecution of 
instructions, the Fetch PC value is a speculative fetch PC 
value and is not necessarily representative of the architec 
tural State of the processor. Similar branch prediction meth 
ods are discussed in U. S. Pat. No. 5,136,697 entitled 
“System for Reducing Delay for Execution Subsequent to 
Correctly Predicted Branch Instruction Using Fetch Infor 
mation Stored With Each Block of Instructions in Cache', 
naming William M. Johnson as inventor. Address block 110 
includes a refresh latch 462 which is loaded with the current 
Fetch PC value on bus 106 and which value is driven back 
onto bus 106 by buffer 466 when the Fetch PC value is to be 
maintained into the next clock cycle. An incrementer 460 
preferably receives the upper 28 bits of the Fetch PC (bits 
31:4) from the bus 106 and increments the Fetch PC value 
to address the next cache line by adding a “1” into the fourth 
bit position. The incremented value is driven back onto bus 
106 by buffer 464 when the Fetch PC value is to be 
incremented for the next clock cycle while the lower 4 bits 
of bus 106 are forced to a “0” state by buffer 476 within the 
cache control 108. Thus, an arbitrary address (not quad 
word aligned) initially used to prefetch an instruction Stream 
(e.g., the target address of a branch instruction), is aligned to 
the next quad-word (16 byte) boundary when first 
incremented, and then incremented by 16 thereafter. The 
target address for Such a branch is received from the 
BRNSEC 28 on bus 54. A buffer 472 drives the Target PC 
value onto the bus 106 when an TARGFPC signal is 
received from the cache control 108, as would be the case for 
a mispredicted branch. Abuffer 474 receives the lower 4 bits 
of the Fetch PC conveyed on bus 106 and drives a block 
index which is initially loaded into the STBYTE pointer 
discussed earlier with respect to FIG. 9. Thus, the STBYTE 
pointer is Set to address the first byte predicted-executed 
within a particular block. 
A buffer 468 within the address block 110 drives the bus 

106 with an address value residing on the internal address/ 
data buS 52, as might be used to invalidate a cache block at 
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Such an address because of a Subsequent write at that address 
(by either the same processor, as would occur in Self 
modifying code, or by another processor, as would be 
detected by bus-Snooping), while a buffer 470 drives the 
Fetch PC value on bus 106 onto the internal address/data bus 
106 for prefetching instructions into the ICACHE 10 from 
an external source. Buffers 478 and 480 drive the address tag 
value and the Successor indeX from the cache array onto 
respective bits 31:12 and 11:0) of the bus 106, and are 
useful for branch prediction, and which is discussed more 
fully herewithin. 
A more complete understanding of the operation of the 

ICACHE 10 may be appreciated in reference to FIGS. 
14A-14L, which illustrate the contents of the BYTEO 114, 
for an example Sequence of X86 instructions and instruction 
alignments, through a Series of processor clock cycles. 

Referring to FIG. 14A, example instruction bytes are 
shown for both the cache latch 300 and the byteq latch 310. 
Each of the byte positions 0 through 15 of the cache latch 
300 are shown and indicate the instruction byte, the prede 
code bits, and the byte-valid bit for each of the byte 
positions. Instruction byte A is the first byte of an X86 
instruction and is stored in position 6 of cache latch 300. 
Subsequent bytes of this same instruction are noted as a A 
through A which are loaded respectively into positions 7 
through 10. Instruction byte A is the starting byte of an X86 
instruction and was predecoded with the Starting bit Set 
appropriately as is shown in FIG. 14A. Similarly, instruction 
byte A in position 10 of ICACHE 200 is an ending byte of 
the A instruction and is shown as having been predecoded 
and Stored with the end bit Set appropriately as shown. 
Similarly, instruction B is indicated as a three byte X86 
instruction and is loaded into positions 11, 12, and 13 of 
cache latch 300. The first byte Co of instruction C is loaded 
into position 14 while the second byte C is loaded in 
position 15. It is clear from this FIG. 14A that instruction C 
is not fully present in cache latch 300 as there is no end bit 
present within the instruction. 

The valid bits are appropriately set for all of the positions 
6 through 15, inclusive, indicating that these bytes have been 
read out of the cache array 100 and are valid for forwarding 
into the BYTEQ 114 and subsequently into the IDECODE 
12. ASTBYTE pointer indicates the next byte to be shifted 
into the BYTEQ 114. The STBYTE pointer is currently set 
to position 6 as would be the case, for example, if a branch 
initially targeted this position within the cache block. Posi 
tion 0 through 5 of cache latch 300 are shown as don't-cares, 
indicated by an “X.” Since these byte positions fall ahead of 
the STBYTE pointer, they are not shifted into the BYTEQ. 

Further, in FIG. 14A is shown the byteq latch 310 for the 
Same clock cycle that the various instruction bytes are 
loaded into the cache latch 300. A fill byte pointer (FLBYTE 
pointer) indicates the next available position in the byteq 
latch 310. Some or all of the bytes loaded into the cache 
latch 300 are also simultaneously loaded into the byteq latch 
310. As shown in FIG. 14A, the A instruction is simulta 
neously loaded into the byteq latch 310 starting at byte 
position 0, as directed by the FLBYTE pointer. Instruction 
bytes from the cache latch 300 initially indicated by the 
STBYTE pointer are loaded into the byteq latch 310 in the 
position indicated by the FLBYTE pointer. Subsequent 
bytes of the cache latch 300 are likewise loaded into the 
corresponding byte positions in the byteq latch 310. AS Such, 
instruction A occupies byteq latch 310, positions 0 through 
4 while instruction B, as shown, is loaded into byte positions 
5 through 7 and the first two bytes of instruction Care loaded 
as indicated in byte positions 8 and 9. The predecode bits 

15 

25 

35 

40 

45 

50 

55 

60 

65 

20 
and the byte-valid bits corresponding to each of these 
instruction bytes are similarly loaded into the respective byte 
positions of byteq latch 310 which are provided to the 
IDECODE 12 for instruction decoding. 

In this example it is assumed that instruction A will fully 
dispatch upon instruction decode whereas instruction B will 
partially dispatch. That is, the ROPs into which the X86 
instruction B is mapped are not all dispatched by the decoder 
to the core of the processor. One or more, but not all of the 
mapped ROPs for instruction B are dispatched during this 
cycle. The processing of instruction C at this point by the 
IDECODE would stall because no end bit is found. That is, 
upon Seeing the Start bit for instruction C in byte position 8 
of byteq latch 310, the decoder scans the valid bytes and 
upon scanning byte position 10 of byteq latch 310, the byte 
is indicated as not valid and Since an ending byte was not 
found, the decoder delays decoding of this instruction until 
the entire instruction is contained in the byte queue. 

Referring now to FIG. 14B, as all of the previous contents 
of cache latch 300 have been transferred to the byteq latch 
310, the CACHE has accessed the next instruction block and 
has loaded that instruction block into cache latch 300. The 
STBYTE pointer is reset to position 0, as all previous bytes 
were transferred successfully from the former contents of 
cache latch 300. As can be seen, the next instruction byte of 
instruction C, namely instruction byte C is loaded in byte 
position 0 of the cache latch 300 and subsequent byte 
positions contain instruction bytes for instruction byte D 
(loaded into byte positions 3 through 12), and a partial 
instruction E, loaded into byte positions 13 through 15. The 
valid bit is appropriately set for all 16 byte positions. The 
Start byte and ending byte indicators are set appropriately as 
shown, being predecoded before storing into the cache when 
this particular cache line was fetched from external memory. 
For this example the non-sequential bit (NSEQ) is assumed 
to be 0, indicating no predicted taken branch within this 
instruction block and consequently the block branch index, 
as indicated by an “X,” is a don’t-care. 

Referring to the byteq latch 310 as shown in FIG. 14B, 
instruction B has been shifted to the beginning of the byteq 
latch 310. Instruction byte Bo is the first byte of the B 
instruction and is shifted into byte position 0 of the byteq 
latch 310. Co and C are shifted respectively into byte 
positions 3 and 4 having been previously loaded into the 
byteq latch 310 during an earlier cycle. Consequently, the 
FLBYTE pointer is set to position 5 indicating the first 
available byte position not containing data from a previous 
fill operation. Since the STBYTE pointer is set to position 0 
of the cache latch 300 and the FLBYTE pointer is set to 
position 5 of the byteq latch 310, the remainder of the byteq 
latch 310 will be loaded with instruction bytes C through 
D, from the cache latch 300. The respective PREDECODE 
bits and VALID bits are likewise also set as is the case 
whenever an instruction byte is loaded from the cache latch 
300 to the byteq latch 310. The decoder is then presented 
with 16 instruction bytes, in this case representing the 
entirety of instruction B, the entirety of instruction C, and a 
portion of instruction D. All 16 instruction bytes are indi 
cated as being valid. AS before, the decoder will Scan the 
byte positions and will determine that instructions B and C 
are complete whereas instruction D, lacking an end bit 
indicator, is incomplete. For this example assume that 
instruction B will completely dispatch upon decode and that 
instruction C will likewise fully dispatch. D as stated 
previously, can not decode because there is no end bit. In 
other words, the entire instruction D is not present in the 
BYTEO 114, therefore the decoder must wait. 
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Referring now to FIG. 14C, the STBYTE pointer is set to 
position 11 of the cache latch 300 indicating the next byte 
position ready to shift into the byteq latch 310. The contents 
of cache latch 300 are identical to that in the previous cycle, 
as shown in FIG. 14B, because not all of the instruction 
bytes have been fully transferred into the byteq latch 310. 
Again, assuming from the previous cycle that instructions B 
and C decoded and fulled dispatched, instruction D is now 
shown as being shifted to byte position 0, or the head of the 
byteq latch 310. The FLBYTE pointer is now set to position 
8 which steers the instruction bytes starting from the 
STBYTE pointer location into the byteq latch 310 at the 
FLBYTE pointer location. The remainder of instruction D is 
shown as transferred into byte positions 8 and 9, 
respectively, of byteq latch 310 while the first three bytes of 
instruction E are shown as having been transferred into byte 
positions 10 through 12 of the byteq latch 310. Byte posi 
tions 13 through 15 of byteq latch 310 are set to be non-valid 
as there are no additional bytes left in the cache latch 300 
which can be loaded into the byteq latch 310. Clearing the 
valid bit for these byte positions (shown as NV in these 
figures) indicates to the IDECODE that the instruction bytes 
are not valid and that decoding should not proceed. For this 
example, assume instruction D, which is fully available to 
the IDECODE during this cycle, maps into an MROM 
routine and will hold at this position until all of the ROPs 
from the MROM routine are dispatched. 

Referring now to FIG. 14D, instruction D is shown still 
loaded into byte positions 0 through 9 of the byteq latch 310. 
However, because the previous contents of the cache latch 
300 had been fully transferred after the last cycle, a new 
cache acceSS has occurred and which has loaded new infor 
mation into the cache latch 300. The STBYTE pointer is 
reset to position 0 while the FLBYTE pointer is currently set 
to byte position 13 of the byteq latch 310. In this example 
the cache line loaded into cache latch 300 is assumed to 
contain a predicted branch which is indicated by the NSEQ 
bit being asserted. Instruction F, loaded into byte positions 
2 through 6 of the cache latch 300, is the branch instruction 
that is predicted taken. Consequently, the Block Branch 
Index (BBI) is set to position 6 which marks the last byte of 
the branch instruction So predicted as being taken. The 
instruction bytes within the cache line that fall beyond the 
end of the branch instruction, in this example, those instruc 
tion bytes loaded into byte positions 7 through 15 of the 
cache latch 300 are all marked as non-valid so as to not load 
into the byteq latch 310. Thus, the byte-valid bits actually 
loaded into the byteq 114 are “clipped” by the BBI when 
NSEQ=1. Only the instruction bytes and related PREDE 
CODE bits and VALID bits for those instructions starting 
with the byte position indicated by the STBYTE pointer and 
including the valid instruction bytes from that point within 
the cache latch 300 are transferred into the byteq latch 310 
(In this example, the E and E instruction bytes and the Fo 
through F. instruction bytes). Byte positions 7 through 15, 
falling beyond the branch instruction predicted taken are not 
predicted to be executed and consequently are not loaded 
into the byteq latch 310. The FLBYTE pointer is set to byte 
position 13 of byteq latch 310, which during this cycle 
allows the transfer of instruction bytes E, E, and Fo into the 
byteq latch 310. It is assumed that instruction D finishes the 
microcode (MROM) routine and will shift out of the 
BYTEQ after this cycle, which will shift instruction byte E, 
currently in byte position 10, to the head of the byteq latch 
310 in byte position 0. 

Referring now to FIG. 14E, the contents of the cache latch 
300 are unchanged from the previous cycle, but the 
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STBYTE pointer is now set to position 3 indicating the next 
byte position to shift into the byteq latch 310. Instruction E 
is shown as being shifted to the head of the byteq latch 310. 
The remainder of instruction F has been shifted into the 
byteq latch 310 as the FLBYTE pointer is set to position 6. 
The entire F instruction is now contained within the byteq 
latch 310 and Subsequent byte positions are all marked as 
being non-valid. The decoder scans the byteq latch 310 and 
upon detecting both Start byte and end byte indications for 
two complete instructions will attempt a simultaneous 
decode of both the Einstruction and the Finstruction. In this 
example assume that E will fully dispatch and that the 
branch instruction, instruction F, will partially dispatch 
(although most branch instructions except CALLs are typi 
cally single-ROP instructions). 

Referring now to FIG. 14F, a new cache line is loaded and 
is shown in cache latch 300. The branch instruction F was 
predicted taken and the STBYTE pointer is set to the lower 
portion of the Successor indeX and indicates the instruction 
byte within the cache line that the branch instruction is 
predicted to branch to. In this example instruction J is shown 
loaded into byte positions 8 through 12 of the cache latch 
300. Bytes previous to byte position 8 are don't-cares. The 
FLBYTE pointer is set to position 5 of the byteq latch 310 
to indicate the next available byte position for shifting 
instruction bytes into. Consequently, the valid instruction 
bytes Jo through L and which are located in byte positions 
8 through 15 of the cache latch 300 are loaded into byte 
positions 5 through 12 of the byteq latch 310. Byte positions 
13 through 15 of the byteq latch 310 are not loaded during 
this transfer and are marked as not valid, thus preventing the 
decoder from attempting to decode any instruction bytes 
remaining in these byte positions. In this example assume 
that instructions F, J, and K (which is a one byte instruction) 
will fully dispatch. Instruction L cannot decode because 
there is no end byte within the valid instruction bytes. 

Referring now to FIG. 14G, instruction byte Lo is shown 
at the head of the byteq latch 310 in byte position 0, and 
instruction byte L in byte position 1. The remainder of the 
byte positions 2 through 15 are marked as not valid and the 
FLBYTE pointer is set byte position 2. In this example, the 
Linstruction is a partially cached instruction. The remainder 
of the L instruction bytes have been replaced by a different 
cache block overriding the remainder of these instructions 
bytes. Consequently, the Sequential cache access attempting 
to load the remainder of the L instruction fails (a cache 
“miss”) which is loaded into the cache latch 300 by indi 
cating all 16 byte positions as not being valid. The STBYTE 
pointer is reset to byte position 0, but there are no valid 
instruction bytes currently in the cache latch 300. 
Consequently, no effective transfer take place during this 
cycle. The cache control 108 initiates a series of actions 
including a prefetch of the remainder of the L instruction. 
The 16 bytes of the appropriate cache block are loaded 
through the predecode block 112 for assignment of prede 
code bits and are written one instruction at a time, up to four 
bytes per clock cycle, into both the cache array 100 and into 
the cache latch 300. 

Referring now to FIG. 14H, during this cycle the remain 
der of the Linstruction is shown loaded into byte position 0 
through 2 of cache latch 300. These three byte positions are 
Set to valid positions while the remainder, byte positions 3 
through 15 are still not valid. Because the STBYTE pointer 
is now Set to a byte position which contains valid instruction 
bytes, these bytes are transferred into the byteq latch 310 as 
directed by the FLBYTE pointer, which in this case loads 
instruction bytes L., L, and L into byte positions 2, 3, 4, 



5,970,235 
23 

respectively, of byteq latch 310. In this example, assume that 
L will fully dispatch after this cycle and will shift out of the 
byteq latch 310. 

Referring now to FIG. 14I, the cache line continues to 
refill as shown in this example and which indicates an M 
instruction now loaded into byte positions 3 and 4 of cache 
latch 300. The previous L instruction bytes are still loaded 
into byte positions 0 through 2 of cache latch 300. The M 
instruction is transferred to byte position 0 of the byteq latch 
310 as directed by the FLBYTE pointer being set to position 
0. The byteq latch 310 now contains a complete instruction 
(all instruction bytes of the Minstruction indicating both a 
start byte and an end byte being valid bytes) and will 
therefore decode. In this example assume that the Minstruc 
tion will fully dispatch and will consequently shift out of the 
byte queue. 

Referring now to FIG. 14J, the cache line continues to 
refill. The STBYTE pointer is set to position 5 while the 
FLBYTE pointer is again reset to byte position 0 of the 
byteq latch 310. In this example, instruction N is shown four 
bytes of which have been loaded into byte positions 5 
through 8 of the cache latch 300 which byte positions have 
been set to indicated valid instruction bytes and which bytes 
have likewise been loaded into byte positions 0 through 3 of 
the byteq latch 310. However, the decoder cannot proceed to 
decode this instruction because there is no end byte as yet. 
Instruction N is longer than four bytes long and will take 
more than one cycle to fill into the cache line and into the 
byteq 114. Note that writing only up to 4 bytes/clock cycle 
is merely an implementation choice which may be optimized 
to increase performance at the expense of increased hard 
WC. 

FIG. 14K shows the next four instruction bytes N. 
through N7, loaded into byte positions 9 through 12, 
respectively, of the cache latch 300. The FLBYTE pointer is 
set to byte position 4 of the byteq latch 310 to indicate the 
position where these additional bytes are to be loaded. AS 
before, however, the entire N instruction is not contained in 
the byteq latch 310, and will therefore not decode. 

Referring now to FIG. 14L, the STBYTE pointer is set to 
byte position 13 at which byte position instruction byte Ns 
is loaded and the last byte, No is loaded into byte position 14 
of cache latch 300. Only two bytes are loaded into the cache 
latch 300 during this cycle because only bytes from a single 
instruction are loaded during a single cycle. The FLBYTE 
pointer is set to position 8 of the byteq latch 310 which 
directs the transfer of instruction bytes N and No into byte 
positions 8 and 9, respectively, of the byteq latch 310. At this 
point, the complete N byteq latch 310 and will the byteq 
latch 310 and will decode. The cache line lacks one byte 
from being completely refilled. That will continue on the 
next cycle. AS discussed previously for other instructions, 
The N instruction will shift out of the byte queue if fully 
dispatched and will remain at the head of the byte queue if 
partially dispatched. 
As indicated by this example from FIG. 14A-14L, a 

partially-present instruction will not erroneously decode 
because the decoder checks for an end byte present within 
the BYTEQ before decoding an instruction. Such a partial 
instruction Situation is a frequent occurrence when filling the 
BYTEQ from a cache line, especially during instruction 
prefetch, and is quite normal. However, Several related but 
more potentially Severe cache anomalies are also detected 
from the predecode bits within the BYTEQ. For example, a 
Start byte following another start byte, with no interleaving 
end byte therebetween, is a predecode anomoly which 
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should never occur in a normal instruction Stream. Its 
presence may be a result of a code Stream executing into a 
given block of instruction memory from two different 
Sequential paths, resulting in predecode bit assignments for 
instruction bytes within the cache which is appropriate for 
one instruction Stream and incorrect for the other. Consecu 
tive Start bytes are detected and corrected by flushing the 
cache and forcing a refill, which re-assigns the predecode 
bits according to the instruction Sequence at hand. Similarly, 
consecutive end bytes are likewise detected and corrected. 
The first time a branch is executed to a given target 

address, the predecode bits are assigned as the instruction 
bytes Starting at the target address are initially cached, and 
the instruction byte at the target address itself is assigned to 
be a Start byte, as would be expected. Decoding of the 
instruction bytes beginning at the target address proceeds as 
Such. Upon Subsequently executing a predicted branch to the 
Same target address which has been previously cached, the 
instruction byte at the target address of the branch is 
expected to be the Start byte for the next instruction, as 
would have been previously assigned during the first execu 
tion of the code at the address. If the instruction byte at a 
target address of a previously cached instruction is ever 
found to be other than a start byte, then the predecode bits 
in the cache are inconsistent with the instructions being 
executed, and the cache is consequently flushed and refilled. 
While a particular embodiment of the present invention 

has been shown and described, modifications may be made, 
and it is therefore intended to cover in the appended claims 
all Such changes and modifications which fall within the true 
Spirit and Scope of the invention. 
What is claimed is: 
1. An instruction cache for a processor of the type having 

a variable byte-length instruction format, comprising: 
an array for Storing a plurality of instruction blocks, each 

of the instruction blocks comprising a plurality of 
instruction bytes and a corresponding at least one 
predecode bit for each of the instruction bytes; 

first means for prefetching a plurality of instruction bytes 
from an instruction Source; 

Second means for predecoding each of the prefetched 
instruction bytes to determine each of the correspond 
ing at least one predecode bit for each prefetched 
instruction byte; 

third means for Storing the plurality of prefetched instruc 
tion bytes and corresponding at least one predecode bit 
for each prefetched instruction byte into an instruction 
block within the array; and 

fourth means for delivering a requested Stream of instruc 
tion bytes and corresponding at least one predecode bit 
from an instruction block within the array to an instruc 
tion decoder of the processor. 

2. An instruction cache for a processor of the type having 
a variable byte-length instruction format, comprising: 

an array for Storing a plurality of instruction blocks, each 
of the instruction blocks comprising a plurality of 
instruction bytes and a corresponding at least one 
predecode bit for each of the instruction bytes; 

first means for prefetching a plurality of instruction bytes 
from an instruction Source; 

Second means for predecoding each of the prefetched 
instruction bytes to determine each of the correspond 
ing at least one predecode bit for each prefetched 
instruction byte; 

third means for Storing the plurality of prefetched instruc 
tion bytes and corresponding at least one predecode bit 
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for each prefetched instruction byte into an instruction 
block within the array; 

fourth means for delivering a requested Stream of instruc 
tion bytes and corresponding at least one predecode bit 
from an instruction block within the array to an instruc 
tion decoder of the processor, and 

wherein the at least one predecode bit corresponding to 
each of the instruction bytes includes a first bit for 
indicating, when asserted, that the corresponding 
instruction byte, as prefetched and predecoded, is a 
Starting byte of an instruction. 

3. An instruction cache for a processor of the type having 
a variable byte-length instruction format, comprising: 

an array for Storing a plurality of instruction blocks, each 
of the instruction blocks comprising a plurality of 
instruction bytes and a corresponding at least one 
predecode bit for each of the instruction bytes; 

first means for prefetching a plurality of instruction bytes 
from an instruction Source; 

Second means for predecoding each of the prefetched 
instruction bytes to determine each of the correspond 
ing at least one predecode bit for each prefetched 
instruction byte; 

third means for Storing the plurality of prefetched instruc 
tion bytes and corresponding at least one predecode bit 
for each prefetched instruction byte into an instruction 
block within the array; 

fourth means for delivering a requested Stream of instruc 
tion bytes and corresponding predecode bits from an 
instruction block within the array to an instruction 
decoder of the processor, and 

wherein the at least one predecode bit corresponding to 
each of the instruction bytes includes a Second bit for 
indicating, when asserted, that the corresponding 
instruction byte, as prefetched and predecoded, is an 
ending byte of an instruction. 

4. An instruction cache for a processor of the type having 
a variable byte-length instruction format, comprising: 

an array for Storing a plurality of instruction blocks, each 
of the instruction blocks comprising a plurality of 
instruction bytes and a corresponding at least one 
predecode bit for each of the instruction bytes; 

first means for prefetching a plurality of instruction bytes 
from an instruction Source; 

Second means for predecoding each of the prefetched 
instruction bytes to determine each of the correspond 
ing at least one predecode bit for each prefetched 
instruction byte; 

third means for Storing the plurality of prefetched instruc 
tion bytes and corresponding at least one predecode bit 
for each prefetched instruction byte into an instruction 
block within the array; 

fourth means for delivering a requested Stream of instruc 
tion bytes and corresponding predecode bits from an 
instruction block within the array to an instruction 
decoder of the processor, and 

wherein the at least one predecode bit corresponding to 
each of the instruction bytes includes a bit for 
indicating, when asserted, that the corresponding 
instruction byte, as prefetched and predecoded, is an 
opcode byte of an instruction. 

5. An instruction cache for a processor of the type having 
a variable byte-length instruction format, comprising: 

an array for Storing a plurality of instruction blocks, each 
of the instruction blocks comprising a plurality of 
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instruction bytes and a corresponding at least one 
predecode bit for each of the instruction bytes; 

first means for prefetching a plurality of instruction bytes 
from an instruction Source; 

Second means for predecoding each of the prefetched 
instruction bytes to determine each of the correspond 
ing at least one predecode bit for each prefetched 
instruction byte; 

third means for Storing the plurality of prefetched instruc 
tion bytes and corresponding at least one predecode bit 
for each prefetched instruction byte into an instruction 
block within the array; 

fourth means for delivering a requested Stream of instruc 
tion bytes and corresponding predecode bits from an 
instruction block within the array to an instruction 
decoder of the processor; and 

wherein the at least one predecode bit corresponding to 
each of the instruction bytes includes a group of bits for 
identifying an instruction byte according to which 
instruction fields, as prefetched and predecoded, are 
provided by the corresponding instruction byte. 

6. In a Super-Scalar CISC processor of the type having a 
variable byte-length instruction format wherein each CISC 
instruction is mapped to a corresponding Sequence of one or 
more internal RISC-type instructions for execution within a 
SuperScalar RISC-type core processor, an instruction cache 
comprising: 

an array for Storing a plurality of instruction blocks, each 
of the instruction blocks comprising a plurality of CISC 
instruction bytes and a corresponding at least one 
predecode bit for each of the CISC instruction bytes; 

first means for prefetching a plurality of CISC instruction 
bytes from an instruction Source; 

Second means for predecoding each of the prefetched 
CISC instruction bytes to determine each of the corre 
sponding at least one predecode bit for each prefetched 
CISC instruction byte; 

third means for storing the plurality of prefetched CISC 
instruction bytes and corresponding at least one prede 
code bit for each prefetched CISC instruction byte into 
an instruction block within the array; and 

fourth means for delivering a requested stream of CISC 
instruction bytes and corresponding predecode bits 
from an instruction block within the array to an instruc 
tion decoder of the processor. 

7. A method for an instruction cache for a processor of the 
type having a variable byte-length instruction format, the 
method comprising: 

Storing a plurality of instruction blocks in an array, each 
of the instruction blocks comprising a plurality of 
instruction bytes and a corresponding at least one 
predecode bit for each of the instruction bytes; 

prefetching a plurality of instruction bytes from an 
instruction Source; 

predecoding each of the prefetched instruction bytes to 
determine each of the corresponding at least one pre 
decode bit for each prefetched instruction byte; 

Storing the plurality of prefetched instruction bytes and 
corresponding at least one predecode bit for each 
prefetched instruction byte into an instruction block 
within the array; and 

delivering a requested Stream of instruction bytes and 
corresponding predecode bits from an instruction block 
within the array to an instruction decoder of the pro 
CCSSO. 
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8. In a Super-Scalar CISC processor of the type having a 
variable byte-length instruction format wherein each CISC 
instruction is mapped to a corresponding Sequence of one or 
more internal RISC-type instructions for execution within a 
SuperScalar RISC-type core processor, a method for an 
instruction cache, the method comprising: 

Storing a plurality of instruction blocks in an array, each 
of the instruction blocks comprising a plurality of CISC 
instruction bytes and a corresponding at least one 
predecode bit for each of the CISC instruction bytes; 

prefetching a plurality of CISC instruction bytes from an 
instruction Source; 

predecoding each of the prefetched CISC instruction 
bytes to determine each of the corresponding at least 
one predecode bit for each prefetched CISC instruction 
byte; 

storing the plurality of prefetched CISC instruction bytes 
and corresponding at least one predecode bit for each 
prefetched CISC instruction byte into an instruction 
block within the array; and 

delivering a requested stream of CISC instruction bytes 
and corresponding predecode bits from an instruction 
block within the array to an instruction decoder of the 
processor. 

9. An instruction cache for a processor of the type having 
a variable byte-length instruction format, comprising: 

an array for Storing a plurality of instruction blocks, each 
of the instruction blocks comprising a plurality of 
instruction bytes and a corresponding at least one 
predecode bit for each of the instruction bytes; 

an interface unit that prefetches a plurality of instruction 
bytes from an instruction Source; 

a predecoder that predecodes each of the prefetched 
instruction bytes to determine each of the correspond 
ing at least one predecode bit for each prefetched 
instruction byte; 
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a cache that Stores the plurality of prefetched instruction 

bytes and the corresponding at least one predecode bit 
for each prefetched instruction byte into an instruction 
block within the array; and 

a queue that delivers a requested Stream of instruction 
bytes and the corresponding at least one predecode bit 
from an instruction block within the array to an instruc 
tion decoder of the processor. 

10. In a Super-scalar CISC processor of the type having a 
variable byte-length instruction format wherein each CISC 
instruction is mapped to a corresponding Sequence of one or 
more internal RISC-type instructions for execution within a 
SuperScalar RISC-type core processor, an instruction cache 
comprising: 

an array for Storing a plurality of instruction blocks, each 
of the instruction blocks comprising a plurality of CISC 
instruction bytes and a corresponding least one prede 
code bit for each of the CISC instruction bytes; 

an interface means for prefetching a plurality of CISC 
instruction bytes from an instruction Source; 

a predecoder that predecodes each of the prefetched CISC 
instruction bytes to determine each of the correspond 
ing at least one predecode bit for each prefetched CISC 
instruction byte; 

a cache that stores the plurality of prefetched CISC 
instruction bytes and corresponding at least one prede 
code bit for each prefetched CISC instruction byte into 
an instruction block within the array; and 

a queue that delivers a requested Stream of CISC instruc 
tion bytes and corresponding predecode bits from an 
instruction block within the array to an instruction 
decoder of the processor. 


