United States Patent [19]

Getson, Jr. et al.

[54] FIFO LOOK-AHEAD SYSTEM

- [75] Inventors: Edward F. Getson, Jr., Lynn, Mass.; John H. Kelley, Nashua; Albert T. McLaughlin, Hudson, both of N.H.; Donald J. Rathbun, Andover, Mass.
- [73] Assignee: Honeywell Information Systems Inc., Waltham, Mass.
- [21] Appl. No.: 821,931
- [22] Filed: Aug. 4, 1977
- [51] Int. Cl.² G06F 13/00
- [58] Field of Search ... 364/200 MS File, 900 MS File; 365/78

[56] References Cited

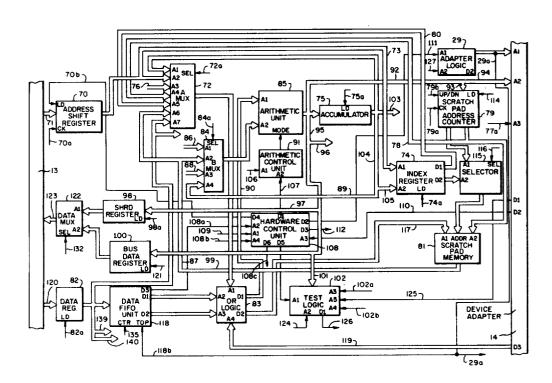
U.S. PATENT DOCUMENTS

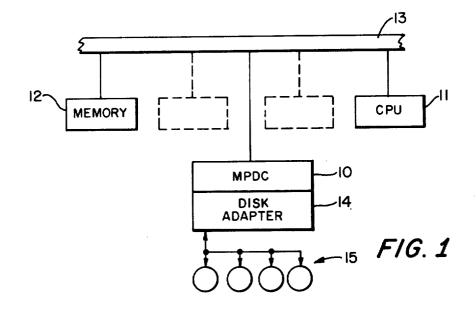
3,417,377	12/1968	Vietor et al
		Beecham 364/900

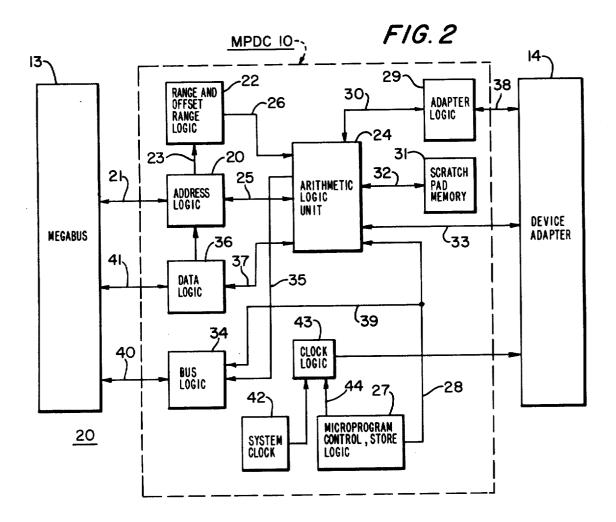
Primary Examiner-Mark E. Nusbaum

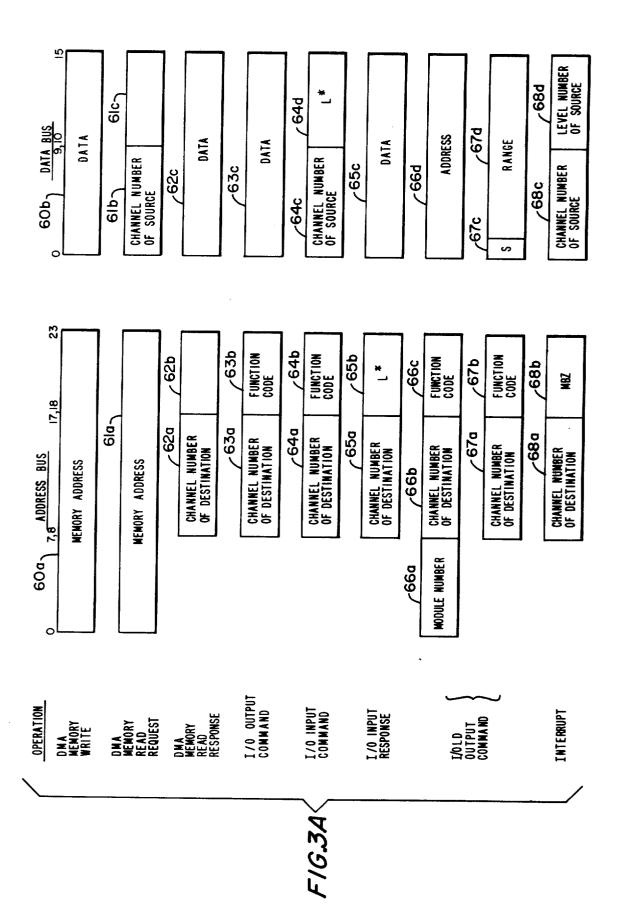
Assistant Examiner—Thomas M. Heckler Attorney, Agent, or Firm—Gerald E. Lester; Nicholas Prasinos; Ronald T. Reiling

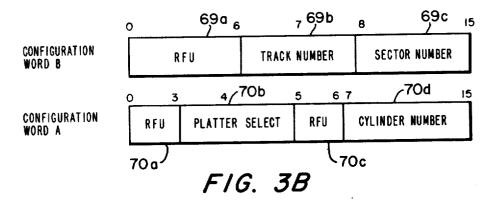
[11] **4,159,532**

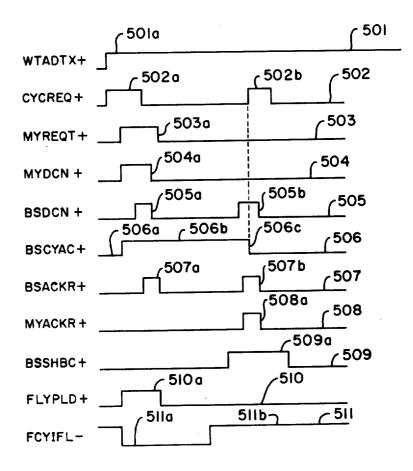
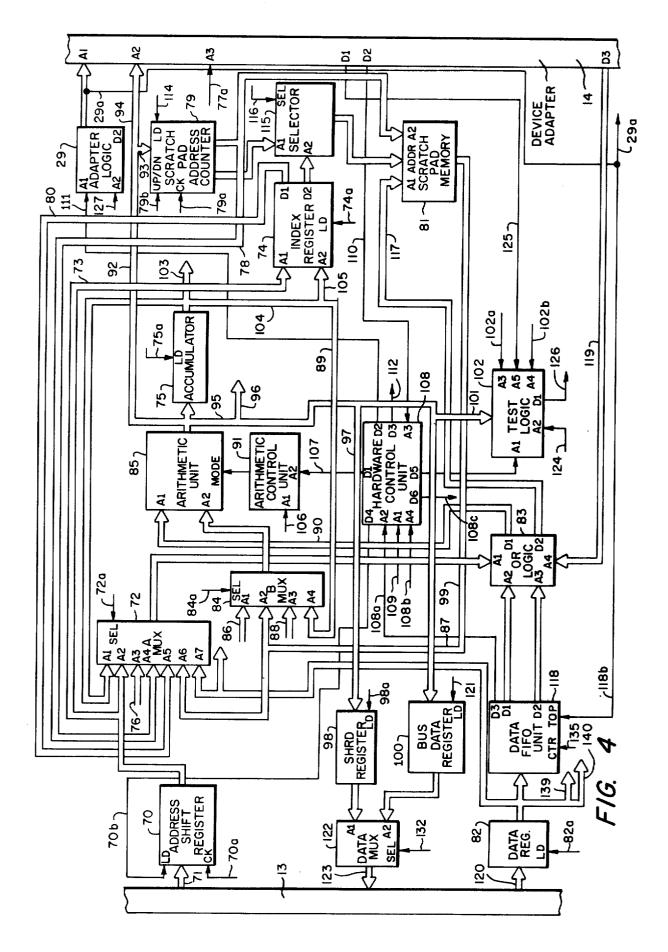
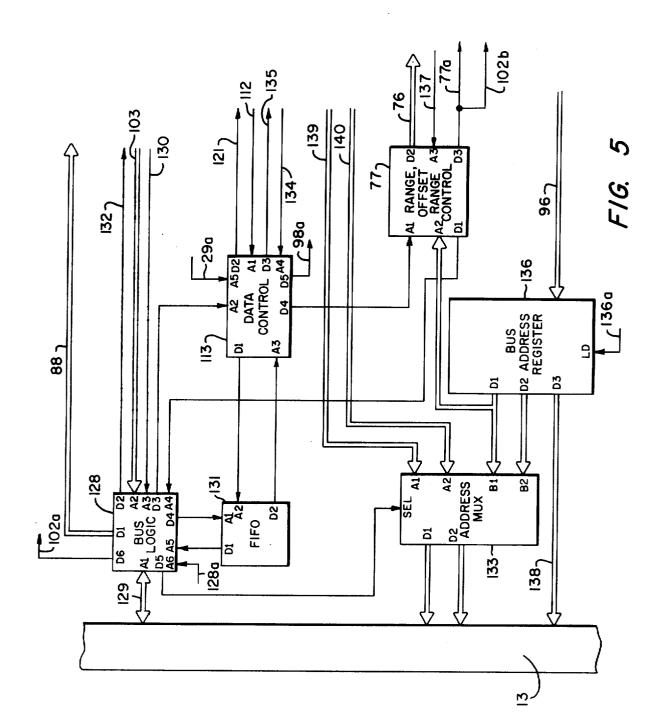
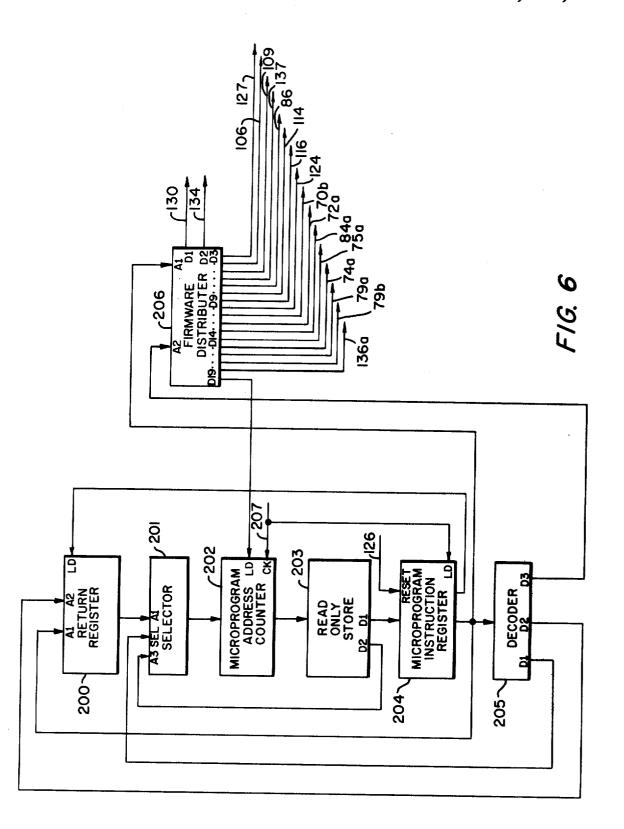

[45] Jun. 26, 1979

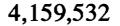

ABSTRACT

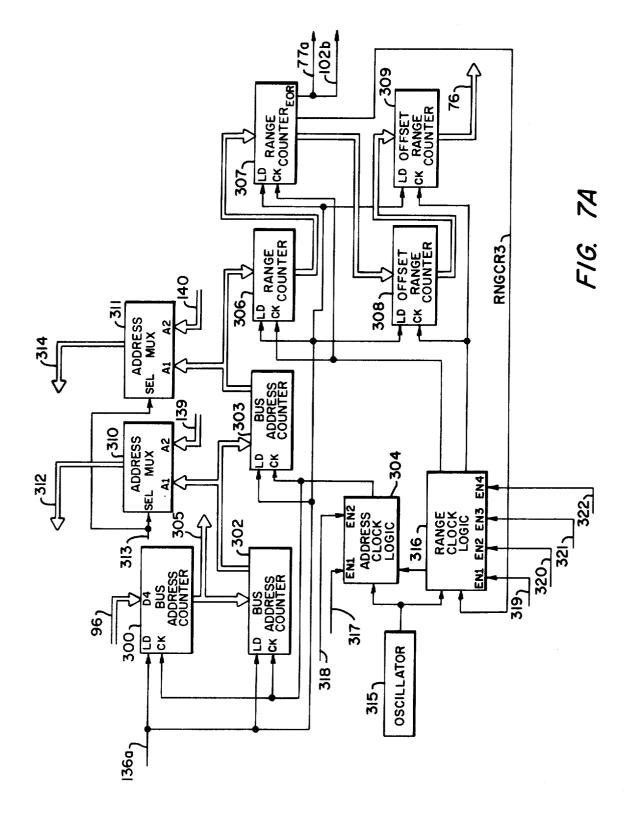

[57]

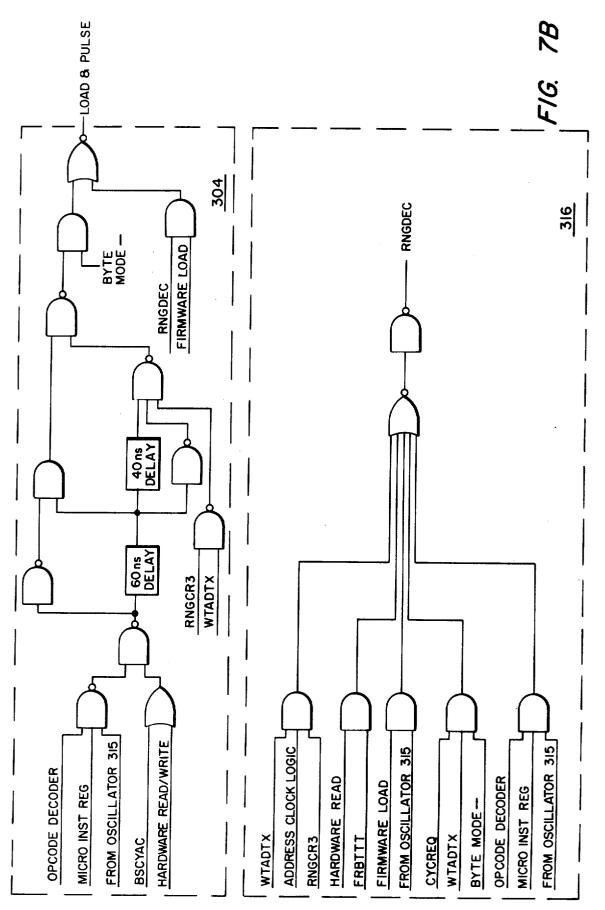

A logic data control system including a first-in-first-out (FIFO) buffer predictor is provided for the transfer of data between a main memory unit and a peripheral control unit of a data processing system. Data from main memory is stored into the input registers of the peripheral unit, and thereafter loaded into an array of data FIFOs for transfer to a peripheral storage device. A predictor FIFO operates in parallel with the data FIFOs, and is loaded with a dummy or flag byte each time a data request is made to main memory. When a data word is loaded into the data FIFOs, the input register of the predictor FIFO is sensed. If the flag byte in the predictor FIFO has dropped from the input register into the FIFO stack, a request is issued to main memory for an additional data word. When the data FIFOs are filled, the predictor FIFO also is filled and cannot generate an additional data request until a data byte has been unloaded from the data FIFOs to a peripheral storage device. The input register to the predictor FIFO thereupon is emptied, and another data request may be made to main memory.

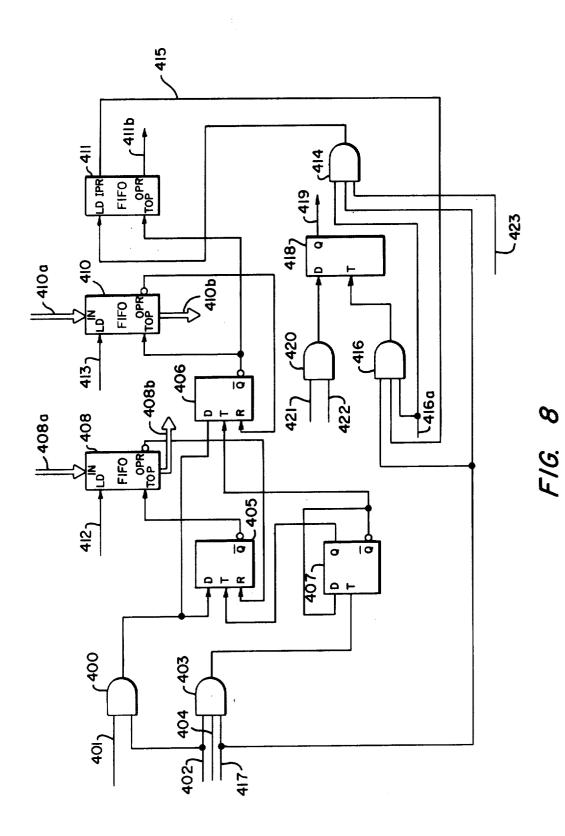

4 Claims, 13 Drawing Figures

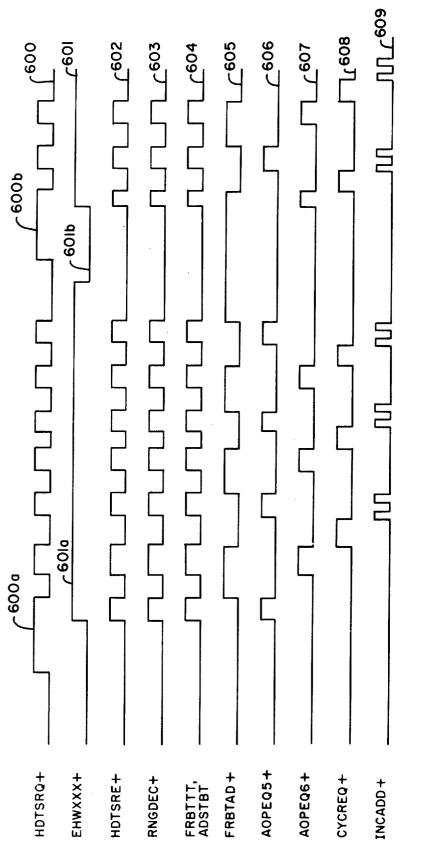





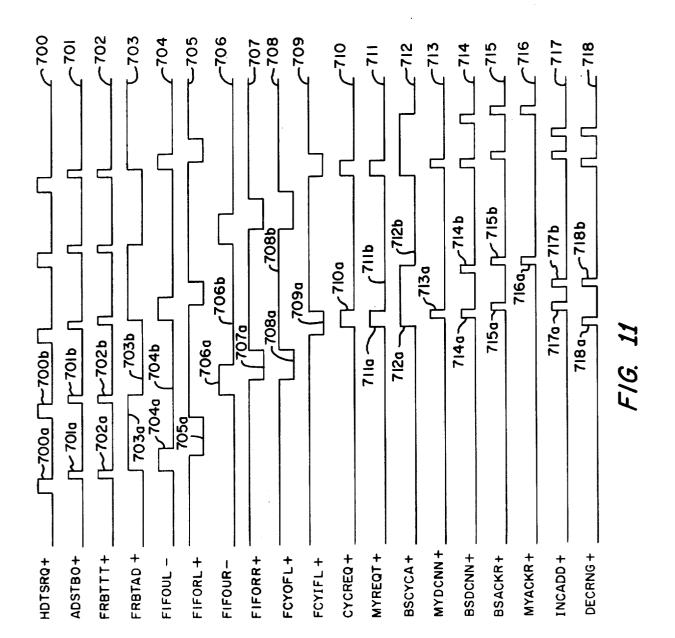

FIG. 9








4,159,532



F1G. 10

U.S. Patent

FIFO LOOK-AHEAD SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to the data transfer control systems, and more particularly to a method and system for maintaining a data transfer rate through a peripheral controller to a peripheral storage device without the loss of data.

2. Prior Art

Data processing systems having a plurality of system units electrically coupled to a common communication bus for the asynchronous transfer of information therebetween are disclosed in U.S. Pat. No. 3,993,981 and in 15 U.S. application Ser. No. 643,439 filed Dec. 22, 1975, each assigned to the assignee of the present invention.

In the transfer of data from a main memory unit of such a data processing system to a peripheral storage device, two problems may occur which cause a degen- 20 eration of the data transfer rate. If the peripheral controller does not request an additional data word from main memory immediately upon receiving a data word in response to a previous request, the communication bus may be captured by another system unit. Further, if 25 the peripheral controller requests data at a rate exceeding the transfer rate to the peripheral storage device, data may be lost.

In prior systems, the data transfer rate has been decreased below a safety threshold to avoid the above- 30 mentioned problems, or data requests have been issued immediately upon receipt of a data word in response to a previous request without regard to the availability of storage locations. In operating environments where the data transfer rates approach the marginal areas of 35 safety, neither of these approaches have proven satisfactory.

The present invention provides a method and system for predicting the storage capacity of a peripheral controller before a data word request is issued. Access to 40 the common communication bus thereby is maintained as required to accommodate the data transfer rate, and no data is lost.

SUMMARY OF THE INVENTION

In a data processing system having plural system units electrically coupled to a common communication bus for asynchronous transfer of information therebetween, a logic data transfer control system is provided for controlling the transfer of data words from a main 50 memory to a peripheral controller.

More particularly, the logic control system includes an array of data first-in-first-out (FIFO) buffers and a predictor FIFO operating in parallel. When a data request is made to main memory, the predictor FIFO is 55 loaded with a dummy or flag byte. When the data byte is received from main memory and loaded into the data FIFOs, a next data request to main memory is issued if the input register of the predictor register is not filled. If ever, no additional data request is made until the data in the input register falls into the FIFO stack.

When the data FIFOs are filled, the predictor FIFO also is filled, and no further data request to main memory may be made until a data byte is transferred to a 65 peripheral storage device. In that event, the flag byte in the input register of the predictor FIFO falls into the FIFO stack. The input register thereupon signals the

occurrence of a favorable prediction for storage capacity, and an additional data word is requested from main memory. When the data is received from main memory and loaded into the input registers of the data FIFOs,

5 the input register of the predictor FIFO again is sensed as before described. If the data byte transfer to the peripheral storage device has emptied the input register of the predictor FIFO, an additional data request is issued to main memory. Otherwise, no further data 10 requests are made until a transfer to the peripheral storage device is made.

In one aspect of the invention, data words received from main memory are stored in a left byte FIFO and a right byte FIFO. In transferring the data to a disk storage device, the left and right bytes are alternately selected for transfer to the disk storage device. When the right FIFO is unloaded, the predictor FIFO also is unloaded to synchronize the operation of the predictor FIFO with that of the data FIFOs.

DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention and for further objects and advantages thereof, references may now be had to the following description taken in conjunction with the accompanying drawings in which:

FIG. 1 is a functional block diagram of a data processing system having system units electrically coupled to a common communication bus:

FIG. 2 is a functional block diagram of the disk controller of FIG. 1;

FIGS. 3A and 3B are a graphical illustration of communication words transferred through the common bus of FIG. 1;

FIGS. 4 and 5 are a detailed functional block diagram of the disk controller of FIG. 1;

FIG. 6 is a functional block diagram of a firmware control system used in controlling the operation of the system of FIGS. 4 and 5;

FIGS. 7A and 7B are detailed functional block diagrams of the range and offset range control unit of FIGS. 4 and 5;

FIG. 8 is a detailed logic diagram of the data FIFO unit of FIG. 4, which is an embodiment of the inven-45 tion;

FIG. 9 is a timing diagram of the operation of the system of FIG. 8:

FIG. 10 is a timing diagram of the operation of the system of FIGS. 4-8 during a data transfer from a disk device to the common communication bus; and

FIG. 11 is a timing diagram of the operation of the system of FIGS. 4-8 during a data transfer from the main memory unit to the disk adapter of FIG. 1.

DESCRIPTION OF THE PREFERRED **EMBODIMENTS**

FIG 1

FIG. 1 illustrates in functional block diagram form a the input register of the predictor FIFO is filled, how- 60 computer system having a medium-performance disk controller (MPDC) 10 in electrical communication with a central processor unit 11 and a main memory unit 12 by way of a common communication bus hereinafter referred to as megabus 13. The MPDC 10 is a microprogrammed peripheral control subsystem for storing and retrieving data from mass storage media. The controller includes a Read Only Store (ROS) memory to be later described having stored therein microprogram instructions. The ROS communicates with mass storage adapters such as the device adapter 14, which has the facility to support plural daisy-chained disk devices 15.

The megabus 13 provides an information path between any two units in the system. The paths are asynchronous in design, thereby enabling units of various speeds to operate efficiently. The bus accommodates information transfers including communication requests, control commands, status signals and data transfers between main memory 12 and disk devices 15.

Any system unit requiring communication with any other system unit issues a bus cycle request. When the bus cycle is granted, the requesting unit becomes the master and the addressed system unit becomes the slave. Some bus interchanges require a response cycle as well ¹⁵ as a request cycle. By way of example, the master unit may identify itself to a slave unit and indicate that a response is required. When the required information becomes available, the slave assumes the role of master and initiates a transfer to the requesting unit. ²⁰

In the servicing of bus cycle requests, the central processor has the lowest priority, the MPDC 10 has the next to the lowest priority, and the memory 12 has the highest priority.

A more detailed background description of the system of FIG. 1 is given in U.S. Pat. No. 3,993,981 which is assigned to the assignee of the present invention, and which is incorporated by reference herein.

FIGS. 2 and 3

FIG. 2 illustrates in functional block diagram form the MPDC 10 of FIG. 1, and FIG. 3 graphically illustrates the binary instruction formats necessary for the operation of the MPDC.

operation of the MPDC. 35 The megabus 13 is connected to an address logic unit 20 by way of an address cable 21. Logic unit 20 is comprised of address transceivers through which memory addresses, channel destination numbers and function codes are transferred between the MPDC 10 and the megabus 13. The logic unit 20 further is comprised of control logic for distributing information on the address cable 21 throughout the MPDC.

Logic unit 20 is connected to a range and offset range logic unit 22 by way of a unidirectional control cable 23, and connected to an arithmetic logic unit 24 by way of a bidirectional control cable 25. The logic unit 22 includes a 16-bit range counter which is loaded with the number of bytes to be transferred during a read or write operation. The logic unit further includes a 16-bit offset range counter which is loaded with a count indicating the number of leading data bytes to be ignored during a read data transfer. data out of the scratchpad memory is delivered to the AMUX and the BMUX for distribution throughout the MPDC. The microprogram control store logic unit 27 is typical of that known in the art, and includes a return register unit, a selector, a microprogram address counter, a Read Only Store (ROS) memory, a microprogram instruction register (MPIR), a decoder and a firmware distribution unit to be further described. The ROS provides permanent storage for resident control firmware

The arithmetic logic unit (ALU) 24 is the focal point of all data operations within the MPDC. Such data 55 operations may occur between MPDC 10 and the megabus 13, or between the MPDC and the device adapter 14. The ALU performs both logic and arithmetic operations on incoming data, and is comprised of an A-operand multiplexer (AMUX), a B-operand multiplexer 60 (BMUX), an eight-bit arithmetic unit (AU), and an eight-bit accumulator (ACU) to be further described. Under firmware control, the AMUX selects one of eight data fields and the BMUX selects one of four data fields. The AU performs 8-bit arithmetical and logical 65 operations on the data selected by the multiplexers, and supplies the result to the accumulator for temporary storage.

The ALU receives range and offset range control signals from the logic unit 22 by way of a control cable 26, and firmware control signals from a microprogram control store logic unit 27 by way of a control cable 28. The ALU 24 further communicates with an adapter logic unit 29 by way of a bidirectional control cable 30, and with a scratchpad memory unit 31 by way of a bidirectional control cable 32. In addition, the ALU 24 communicates with the device adapter 14 by way of a

10 bidirectional control cable 33, and supplies control information to a bus logic unit 34 by way of a unidirectional control cable 35. The ALU also receives and transfers data to a data logic unit 36 by way of a bidirectional data cable 37.

15 The adapter logic unit 29 is connected to the device adapter 14 by way of a bidirectional communication cable 38. The logic unit 29 provides the MPDC with a communication path to control the transfer of data and status information between the adapter 14 and the 20 MPDC 10.

The scratchpad memory unit 31 includes logic comprised of an index register, an address register, an address selector, a scratchpad memory, and the logic elements controlling the operation of the scratchpad mem-25 ory. The scratchpad memory is a 1.024 K-bit by 8-bit read/write memory which is segmented into indexed and non-indexed sections, each section containing two quadrants. The non-indexed section of the memory is comprised of 256 work locations and 256 reserve loca-30 tions. The indexed section of the memory is comprised of 256 locations for the storage of device-related information and 256 reserve locations. The 256 locations for device-related information are further subdivided into four sections, each comprising 64 locations per channel.

The address register of the scratchpad memory unit 31 is a 10-bit register, wherein the high order bit selects either the indexed or non-indexed mode. The second high order bit selects a 256-location quadrant, and the next two bits select 64 locations within the quadrant. The six low order bits select a scratchpad address. Data is written into the selected address of the scratchpad memory unit from the AMUX of the ALU 24 during the execution of a firware memory write command. The data out of the scratchpad memory is delivered to the AMUX and the BMUX for distribution throughout the MPDC.

The microprogram control store logic unit 27 is typical of that known in the art, and includes a return register unit, a selector, a microprogram address counter, a Read Only Store (ROS) memory, a microprogram instruction register (MPIR), a decoder and a firmware distribution unit to be further described. The ROS provides permanent storage for resident control firmware and diagnostic microprograms, and may be addressed to select various microinstruction sequences for execution. The ROS provides a 16-bit wide output derived from the outputs of sixteen 1,024 by 4-bit programmable Read Only Memory (PROM) chips. The ROS output is applied to the MPIR which is a 16-bit wide register used to store the output of the ROS for one clock cycle during a microinstruction execution.

The bus logic unit 34 receives control signals from the ALU 24 by way of cable 35, and from the microprogram control store logic unit 27 by way of cable 28 and a control cable 39. The logic unit 34 is connected to the megabus 13 by way of a bidirectional control cable 40. The bus logic unit 34 performs asynchronous handshaking operations by responding to and generating megabus cycle requests. Further, simultaneous requests and grants of megabus cycles are accommodated on a priority basis with the MPDC at an intermediary priority position and the main memory at a position of increased priority.

The data logic unit 36 includes error checkers, five 16 word by 4-byte first-in-first-out (FIFO) data buffers and a read selector for accommodating the transfer of data or a bidirectional data cable 41 between the MPDC 10 and the megabus 13. Any information entering the 10 MPDC 10 from the megabus 13 is gated through data transceivers and checked for parity. The same logic is used to deliver the MPDC channel number to the megabus 13 in response to a bus cycle request from a system unit. Four of the five FIFOs receive data, and the fifth 15 FIFO is used to prevent the MPDC from making a cycle request when the data FIFOs are full. The FIFO chips are capable of stacking 14 words, plus retaining one word in the input and output registers to provide a total capacity of 16 words. 20

Clock signals for controlling the operation of the MPDC 10 are provided by a system clock unit 42 comprised of an 8 MHz crystal oscillator. The system clock signal is applied to a clock logic unit 43 which provides a 4 MHz square wave that is distributed throughout the MPDC. The clock logic unit 43 also receives control signals from the microprogram control store logic unit 27 by way of a control line 44 to enable or reset the logic unit.

The operations performed by the MPDC 10 include a 30 direct memory access (DMA) read, a DMA write, an I/O output command, an I/O input command and an interrupt operation. Each of the operations require a single bus cycle except for the DMA read and the I/O input commands which require two bus cycles. 35

Referring to FIGS. 3a and 3b, the specific parameter formats for machine instructions used in megabus communications with the MPDC are illustrated. When a data transfer is to occur, the CPU 11 of FIG. 1 issues a machine instruction referred to as an I/O Output Com- 40 mand which includes a destination channel number, a 6-bit function code, and a data word as illustrated by the I/O output command format of FIG. 3a. The destination channel number identifies the system device to which a request is directed, and the function code pro- 45 vides the address in scratchpad memory unit 31 to which a data transfer is directed. The function code further identifies a CPU command as an input or an output command. The data word may include a task to be executed, range and offset range counts, a main mem- 50 ory address, or configuration words used to control the disk device during a data transfer. As shown in FIG. 3a, the destination channel numbers and function codes are transferred between the megabus 13 and the MPDC 10 by way of the address logic unit 20. The source channel 55 number, main memory addresses, range and offset range and information stored in reserve areas are transferred between the megabus and the MPDC by way of the data logic unit 36. If data is to be written into main memory 12 of FIG. 1, the CPU 11 issues a DMA mem- 60 ory write operation. In response thereto, the starting memory address 60a is applied to the megabus 13 via the address cable 21, and the data 60b to be written into memory is applied to the megabus via the cable 41. As illustrated in FIG. 3a, the memory address register is a 65 24-bit register, while the data register is a 16-bit register.

If data is to be read from main memory 12, the CPU 11 issues a machine instruction referred to as a DMA

memory read request. The instruction includes a 24-bit memory address 61a, a 10-bitsource channel number 61b, and a 6-bit reserve area 61c. The memory address 61a is received from the megabus 13 via cable 21 leading 5 to the address logic unit 20. The channel number 61band reserve area 61c are received by the data logic unit 36 by way of data cable 41. In response to the DMA read request instruction, the MPDC issues a DMA memory read response instruction comprising a 10-bit destination channel number 62a, a 6-bit reserve area 62b, and 16 bits of data 62c to be transferred. The destination channel number and reserve area are transferred to the megabus by way of the address cable 21, while the 16 bits of data are transferred to the megabus by way of data cable 41. It is to be understood that the contents of the reserve area 62b is identical to that of the reserve area 61c. Thus, information stored by the CPU into the reserve area 61c is returned to the megabus by way of the reserve area 62b.

The CPU 11 may transfer data from main memory and indicate a task which the MPDC 10 is to perform upon the data. For example, the CPU may issue an I/O output command instruction comprising a 10-bit destination channel number 63a to identify the MPDC, a address, and 16 bits of data 63c to be stored in the indicated scratchpad location. As before described, the destination channel number and function code are received by the address logic unit 20 by way of address cable 21, and the data is stored in the data logic unit 36. The data is transferred under firmware control from the logic unit 36 to the ALU 24, and thereafter stored in the scratchpad memory unit 31. The CPU 11 issues additional I/O output commands to store into the scratchpad a range, an offset range, a main memory address, a task to be executed and configuration words for controlling the operation of the disk device during a data transfer. The firmware further may determine from the low order bit of the function code whether the task includes an input or an output operation. The task may include any of the before-described MPDC operations.

If the CPU 11 requires information from the MPDC 10, an I/O input command instruction may be issued. The instruction is comprised of a 10-bit destination channel number 64a, a 6-bit function code 64b, a 10-bit source channel number 64c identifying the source of the request, and a 6-bit reserve area 64d. In response to the CPU request, the MPDC issues an I/O input response instruction comprising a 10-bit destination channel number 65a, a 6-bit reserve area 65b having stored therein the data appearing in reserve area 64d, and 16 bits of data 65c.

When data is to be written into the scratchpad memory unit 31, a two cycle operation occurs. The CPU 11 issues an I/O load output command which is comprised of two instructions. The first instruction includes an 8-bit module number 66a indicating the high order eight bits of a main memory address, a 10-bit destination channel number 66b, a 6-bit function code 66c, and 16 address bits 66d indicating the low order bits of a 24-bit main memory address. The module number, destination channel number and function code are transferred through address logic unit 20 and ALU 24 to the scratchpad memory unit 31 under firmware control. The firmware thereafter accesses the function code in the scratchpad memory to identify the scratchpad memory address into which the main memory address data is to be written. Upon loading the address in the scratch-

pad memory, the firmware commands the bus logic unit 34 to issue a ready signal to the megabus 13. The CPU in response thereto issues a second instruction including a 10-bit destination channel number 67a designating the MPDC, a 6-bit function code 67b, a high order bit 67c 5 indicating whether the range count is positive or negative, and 15 range bits 67d indicating the number of data bytes to be transferred. The firmware thereupon accesses the function code to determine the scratchpad memory locations into which the range and S bit are to 10 be stored.

In an interrupt operation, the MPDC issues an interrupt instruction comprising a 10-bit destination channel number 68a, a 6-bit logic zero area 68b, a 10-bit source channel number 68c, and a 6-bit source priority level 15 that the data transfer is complete. number 68d. When the MPDC completes an operation, the interrupt instruction is issued to the CPU 11. If the priority level number of the MPDC is higher than the priority level of the task that is currently being performed by the CPU, the MPDC interrupt will be ser- 20 viced immediately. Otherwise, the MPDC enters a wait state until a CPU is received.

The formats of two configuration words used to control the operation of a disk device during a data transfer are illustrated in FIG. 3b. The configuration words A 25 and B include an image of an ID field of a disk sector on which a particular operation will be initiated. More particularly, the configuration word B includes a 7-bit area reserved for user (RFU) 69a, a 1-bit track number 69b and an 8-bit sector number 69c. The sector number 30 output of an accumulator 75, and the A3 input to field is incremented by one after each data field is successfully transferred during a read or a write operation.

Configuration word A includes a 4-bit RFU field 70a, a 1-bit platter select field 70b, a 2-bit RFU field 70c, and a 9-bit cylinder number field 70d. The cylinder number 35 and platter select fields are used as the the seek arguments for disk seek operations.

The operation of the invention may best be described in the context of a read or a write operation. If the firmware on evaluating a task word in memory unit 31 40 detects a command for writing a record onto a disk, the firmware accesses the configuration words A and B in memory unit 31 by way of the ALU 24. The firmware thereafter stores the words in the device adapter 14. which compares the words with track information read 45 from the disk. During the period that the logic unit 29 is searching for an ID match, the firmware commands the bus logic unit 34 to request data from the main memory unit 12. In response thereto, the main memory transfers 32 bytes of data to the FIFOs of the data logic unit 36. 50 As the data is being loaded into the data logic unit, the range count in logic unit 22 is decremented and the address logic unit is incremented.

When an ID match occurs, the adapter 14 initiates a write gap operation on the indicated record of the disk 55 system. Sixteen of the 32 bytes of data in the data logic unit 36 thereupon are moved from the data logic unit 36 to the device adapter 14 by way of ALU 24. As the data is being transferred to the adapter 14, the firmware commands the bus logic unit 34 to request additional 60 data from the memory unit 12. The above-described process continues until the range field of the logic unit 22 is exhausted.

If data is to be read from a disk device and written into main memory 12, the CPU 11 first issues machine 65 instructions for storing configuration words A and B, range, offset range, a beginning main memory address and a task to be performed into the scratchpad memory.

In response to firmware initiated control signals from the adapter logic unit 29, the device adapter 14 searches a disk device to find the data record to be transferred. When the disk track has been identified as before described, the data is transferred under hardware control to the data logic unit 36 by way of cable 33 and ALU 24. The hardware accesses the offset range count of the logic unit 22 to detect the number of leading data bytes to be ignored. The logic unit 36 thereafter forms 2-byte words from the succeeding data, and transfers a word under hardware control to the megabus 13 each time two bytes are received. The data transfer continues from the disk adapter 14 to the data logic unit 36 until the range register of the address logic unit 20 indicates

FIGS. 4 and 5

FIGS. 4 and 5 illustrate in a more detailed functional block diagram form the system of FIG. 2.

A 24-bit address shift register 70 is connected to the megabus 13 by way of a 24-bit data cable 71. The output of the shift register is applied to the A2 input of an 8 to 1 multiplexer 72 (AMUX). Bits 15 and 16 of the shift register output are applied by way of a data cable 73 to the two-bit A1 input of an index register 74. The clock (CK) input to shift register 70 is connected to a control line 70a leading to a firmware output terminal to be further described.

The A1 input to AMUX 72 is connected to the 8-bit AMUX 72 is connected by way of a data cable 76 to the output of a range and offset range control unit 77 to be later described. The A4 input to AMUX 72 is connected by way of a data cable 78 to an output of an 8-bit scratchpad address counter 79. The A5 input to AMUX 72 is connected to a data cable 80 leading from the D1 two-bit output of index register 74, and the A6 input to AMUX 72 is connected to the 8-bit output of a 1K by 8-bit scratchpad memory 81. The A7 input to AMUX 72 is connected to the output of a 16-bit data register 82. The select (SEL) input to the AMUX 72 is connected by way of a control line 72a to a firmware output terminal. The 8-bit output of AMUX 72 is connected to the A1 input of an OR logic unit 83.

A 4-to-1 multiplexer 84 (BMUX) has an 8-bit output connected to the A2 input of an arithmetic unit 85. The A1 input to BMUX 84 is supplied by firmware on a control cable 86. The A2 input to BMUX 84 is connected to the output of scratchpad memory unit 81 by way of a data cable 87. The A3 input to BMUX 84 is supplied by way of a control cable 88, and the A4 input to the multiplexer is connected to the output of accumulator 75 by way of a data cable 89. The select (SEL) input to the multiplexer is supplied by firmware on a control line 84a.

The A1 input to arithmetic unit 85 is connected by way of a data cable 90 to the 8-bit D1 output of logic unit 83, and the mode input to the arithmetic unit is connected to the output of an arithmetic control unit 91. The 8-bit output of the arithmetic unit is applied to the input of accumulator 75, and applied by way of data cables 92 and 93 to the data input of counter 79. Further, the output of the arithmetic unit is applied by way of data cables 92 and 94 to the A2 input of device adapter 14, and by way of data cable 95 to a data cable 96. The arithmetic unit output also is applied by way of data cables 95 and 97 to the input of a second half-read (SHRD) register 98, and by way of data cables 95 and

99 to the 8 bit data inputs of a 16-bit bus data register 100. The arithmetic unit output in addition is applied to data cables 95 and 101 leading to the data input of a test logic unit 102.

The output of accumulator 75 further is applied to a 5 data cable 103, and to the two bit A2 input of index register 74. The load (LD) input to the accumulator is connected by way of a control line 75*a* to a firmware output terminal.

The A1 input of arithmetic control unit 91 is con-10 nected by way of a control line 106 to an output terminal of the firmware control system, and the A2 input to the control unit 91 is connected by way of a control line 107 to the D1 output of a hardware control unit 108.

The A1 input to control unit 108 is connected to a 15 control line 109 leading to an output of the firmware control system, and the A2 input to the control unit 108 is connected to a control line 108a. The A3 interrupt input of control unit 108 is supplied by the device adapter 14 to a control line 110. The A4 input to the 20 control unit is connected to a control line 108b leading from system hardware control. The D2 output of control unit 108 is connected by way of a control line 111 to the A1 input of adapter logic unit 29, and the D3 output of the control unit 108 is connected to a control line 112 25 leading to the A1 input of a data control unit 113. The D4 output of control unit 108 is connected by way of a control line 70b to the load (LD) input of shift register 70, and the D5 output is connected to the A1 input of test logic unit 102. The D6 output of the control unit is 30 connected to a control line 108c leading to the system hardware control.

Firmware generated clock signals on a control line 79b are supplied to the clock (CK) input of address counter 79, and firmware control signals on a control 35 line 114 are supplied to the LD input of the counter. Further, the up/down select input to the counter receives firmware control signals by way of a control line 79b. Two output bits of the counter are applied to the A1 input of a selector 115. The low order six bits of the 40 counter output are applied to the A2 input of the scratchpad memory unit 81.

The A2 input of selector 115 is connected to the D2 output of index register 74, the LD input of which is supplied by firmware to a control line 74*a*. The 3 bit 45 output of the selector 115 is applied to the address (ADDR) input of scratchpad memory unit 81, and the SEL input of the selector receives firmware control signals by way of a control line 116.

The A1 input to memory unit 81 is connected by way 50 of a data cable 117 to the 8 bit D2 output of logic unit 83. The A2 input to logic unit 83 is connected to the D1 output of data FIFO unit 118, and the A3 input to logic unit 83 is connected to the D2 output of unit 118. The A4 input to logic unit 83 is supplied by the device 55 adapter 114 by way of a data cable 119.

The data input to the data register 82 is connected to a 16 bit data cable 120 electrically connected to the megabus 13, and the output of the data register further is connected to the input of the data FIFO unit 118. The LD input to the register is supplied by hardware control on a control line 82a. The output of the register further is applied to data cables 139 and 140. unit 77, and the D5 output is applied to control line 98a leading to the LD input of register unit 98. The A2 input to control unit 77 is connected to the D1 output of a bus address register unit 136, and the A3 input to the control unit is connected by way of a control line 137 to an output of the firmware control system. The D2 output of the control unit 77 is applied

The LD input to data register 100 is supplied by data control unit 113 on a control line 121. The output of 65 register 100 is applied to the A2 input of a 2-to-1 data multiplexer 122. The 16 bit A1 input to the multiplexer is supplied by the SHRD register 98, the LD input of which is supplied by data control unit 113 on a control line 98*a*. The output of the multiplexer is applied by way of a 16 bit data cable 123 to the megabus 13.

Referring to test logic unit 102, a status signal is applied to the A2 input of the logic unit by the firmware control system on a control line 124. In addition, the bus logic unit 128 supplies a status signal by way of a control line 102*a* to the A3 input of the logic unit 102, and the control unit 77 supplies an end of range signal to the

A4 input of the logic unit by way of a control line 102b. The A5 input of logic unit 102 is connected to a control line 125 carrying interrupt signals from the D1 output of device adapter 14. The test logic unit supplies a control signal to a control line 126 leading to a firmware control system to be further described.

The adapter logic unit 29 also receives a firmware signal on a control line 127 connected to its A2 input. The output of the logic unit is applied to the A1 input of device adapter 14. A control line 29*a* leading from the output of the logic unit is connected to the A5 input of data control unit 113, and to a control line 118*b* leading to the transfer on parallel (TOP) input of Data FIFO unit 118.

As illustrated by FIG. 5, the megabus 13 is connected to bus logic unit 128 by way of a bidirectional data cable 129. The A2 input to logic unit 128 is connected to data cable 103 carrying the output of accumulator 75, and the A3 input to the logic unit is connected to a control line 130 leading to an output of the firmware control system. The A4 input to logic unit 128 is connected to the D1 output of control unit 77, and the A5 input to the logic unit is connected to the D1 output of a first-infirst-out (FIFO) unit 131. The A6 input to the logic unit is supplied by system hardware on a control line 128a. The D1 output of logic unit 128 is connected to data cable 88, and the D2 output is connected to a control line 132 leading to the select (SEL) input of data multiplexer 122. The D3 output of the logic unit is connected to the A2 input of data control unit 113, and the D4 output is connected to the A1 input of FIFO unit 131. The D5 output of logic unit 128 is connected to the SEL input of a dual 2-to-1 address multiplexer 133, and the D6 output of the logic unit is connected to control line 102a

The A2 input to FIFO unit 131 is connected to the D1 output of control unit 113, and the D2 output of the FIFO unit is connected to the A3 input of control unit 113. The A4 input to control unit 113 is connected to an output of the firmware control system by way of a control line 134, and the A5 input of the control unit is connected to line 29a. The D2 output of the control unit is connected to control line 121, and the D3 output is applied by way of a control line 135 to a control (CTR) input of data FIFO unit 118. The D4 output of data control unit 113 is applied to the A1 input of control unit 77, and the D5 output is applied to control line 98a leading to the LD input of register unit 98.

The A2 input to control unit 77 is connected to the D1 output of a bus address register unit 136, and the A3 input to the control unit is connected by way of a control line 137 to an output of the firmware control system. The D2 output of the control unit 77 is applied to data cable 76 leading to an input of AMUX 72. The D3 output of control unit 77 is applied to a control line 77*a* leading to the A3 input of device adapter 14, and to control line 102*b* leading to the A4 input of test logic unit 102 as before described.

The bus address register unit 136 is comprised of a 24-bit up counter which may be controlled to count either bytes or words, where a word is comprised of two bytes. The 8-bit D1 output of unit 136 also is applied to the B1 input of address multiplexer 133, and the 5 8-bit D2 output of the unit 136 is applied to the B2 input of multiplexer 133. The 8-bit D3 output of unit 136 is applied by way of a data cable 138 to the megabus 13. The LD input to the register unit 136 is supplied by firmwave on a control line 136a. The 8-bit A1 and A2 10 inputs to address multiplexer 133 are supplied by data register 82 by way of data cables 139 and 140.

In operation, the MPDC 10 interfaces with the disk adapter 14 which in turn may service plural disk devices as illustrated in FIG. 1.

If an unsolicited bus request is received from the megabus 13, the bus logic unit 128 issues a signal on line 102a leading to the test logic unit 102. Further, a device adapter 14 request is indicated by an interrupt signal on control line 127. The logic unit thereby is notified 20 whether a device adapter request or a megabus 13 request is to be serviced. The test logic unit 102 thereupon indicates to the firmware by way of a signal on control line 125 the microinstruction sequence to be executed. In the event that a request is directed to a disk device 25 which is already involved in executing a task, the bus logic unit 128 will issue a not accepted (NAK) status signal to the megabus 13 under system hardware control. If a disk device not presently involved in executing a task is addressed by the megabus 13, but the MPDC is 30 presently involved in executing a previous task involving a second disk device, then the logic unit 128 may issue a wait status signal to the megabus 13. If the disk device which is addressed is not busy, and the MPDC is not involved in servicing the device while executing a 35 previous task, then an accept (ACK) status signal is issued to the megabus 13.

It is to be understood that in the operation of the MPDC, the data paths for a data transfer are prepared by firmware operating in combination with the system 40 of FIGS. 4 and 5. The data transfer, however, occurs under system hardware firmware control. Detailed descriptions of such hardware may be found in U.S. Pat. No. 3,993,981, and in the following Honeywell reference manuals: MPDC Reference Manual, Doc. No. 45 71010241-100, Order No. FM55, Rev. 0; MPDC Cartridge Disc Adapter Reference Manual, Doc. No. 71010239-100, Order No. FM57, Rev. 0; and MPDC No. Reference Manual, Doc. Adapter Disc 71010441-100, Order No. FK90, Rev. 0. 50

In a read or a write operation, the CPU 11 of FIG. 1 initially supplies a channel destination number and a function code to the address shift register 70. The shift register is compared under system hardware control to a destination number set in hex rotary switches, and if a 55 cable 73 are supplied to the A1 input of index register 74 match is detected the bus logic unit 128 acknowledges the match to the bus 13. As before described, the acknowledgement may be a wait, a nonacceptance (NAK), or an acceptance (ACK). If an ACK acknowledgement is issued by the logic unit 128 to the megabus 60 13, the logic unit in addition issues a busy signal to the megabus 13 to place subsequent bus requests in a wait state. The system hardware thereafter controls the transfer of data between megabus 13 and MPDC 10.

In order to provide means for controlling the opera- 65 tion of the disk during a read or a write operation, the CPU 11 also supplies a configuration word A to megabus 13 which under hardware control is loaded into the

data register 82 and address shift register 70. Upon completing the load operation, the system hardware issues an ACK signal to the megabus 13 followed by a busy signal. Firmware senses the busy signal, and controls the transfer of the data in address shift register 70 and data register 82 through the arithmetic unit 85 for storage into scratchpad memory 81. When the firmware has completed the memory store operation, it signals the system hardware which then controls the loading of the address and data registers with a configuration word B. The configuration word B then is loaded into scratchpad memory under firmware control, and the process is repeated to receive in order a main memory address, a range count, a task and a status request. When 15 the task is loaded into the data register 82 and stored in scratchpad memory 81, the task is executed under firmware control. Upon completing the task, the function code is interrogated to detect the presence of status requests which may be honored.

In the memory store operation, the firmware senses the function code to determine the scratchpad address in which information is to be stored from data register 82. Further, firmware is able to distinguish between data formats by interrogating the function code. A function code of hex 0 7 indicates that a task has been loaded into the scratchpad memory, a function code of hex 1 1 identifies a configuration word A and a function code of hex 1 3 identifies a configuration word B. In addition, a function code of hex O D identifies a range count (data bytes to be transferred). It is to be noted that the configuration words A and B, the task, and the range have formats as illustrated by the data field of I/O output command word of FIG. 3a. A main memory address input, however, is comprised of the module number and address fields illustrated by the I/O LD output command word of FIG. 3a.

During a read operation wherein data is read from a disk device and stored in main memory unit 12, the system hardware loads the high order bits of a main memory address, a function code and a channel destination number from megabus 13 into the address shift register 70, and loads the low order bits of the main memory address, a range or a task into the data register 82. Under firmware control, the information in the address shift register 70 is clocked through the AMUX 72 and the OR logic unit 83 to the Al input of the arithmetic unit 85. Further, in response to a firmware command on line 106, the arithmetic control unit 91 issues a mode to the arithmetic unit 85 to select the A1 input. The A1 input to the arithmetic the arithmetic unit thereupon is supplied to the input of the scratchpad address counter 79, and loaded into the address counter under a firmware command supplied to control line 114.

Two bits of the address shift register output on data to indicate the disk device from which information is to be read. Under firmware control by way of control line 74a, the two identification bits are loaded into the index register. The output of the index register is supplied to the selector 115 as is the two high-order bits of the address counter 79.

The firmware further initializes the address counter 79 by issuing an up/down signal on control line 79a, and a clock signal on control line 79b. The counter is commanded to count up or down at the rate indicated by the firmware generated clock signal. In response to the inputs from the index register and the address counter, the selector 115 addresses the scratchpad memory unit 81. The data resident in the data register 82 thus is transferred under firmware control to the scratchpad memory address indicated by selector 115 by way of a data path through the AMUX 72, the OR logic unit 83 and data cable 117. The configuration words A and B, a 5 main memory address, a range, and a task thereby are loaded into scratchpad memory.

Upon completing the memory store operation, the firmware accesses the function code in the address shift register 70 to determine whether a task is indicated. 10 More particularly, the firmware supplies a hex code 0 7 by way of cable 86 to the A1 input of BMUX 84. The BMUX is selected to the A1 input via a firmware control signal on control line 84a. The hex code thereupon is routed through the arithmetic unit 85 and stored in 15 in bus data register 100. accumulator 75. Thereafter, the ouptut of address counter 79 is channelled through the AMUX 72 and the OR logic unit 83 to the A1 input of arithmetic unit 85. Under firmware control, the arithmetic unit compares the code in the accumulator 75 with the output of the 20 address counter 79. If a match occurs, a task is indicated and the test logic unit 102 issues a signal to the firmware by way of control line 126 to initiate the execution of a next sequence of microinstrucions. In addition, the bus logic unit 128 in response to firmware control signals on 25 memory unit as the system unit addressed, and to issue line 130 sets the addressed disk device channel busy. Thereafter, any further information which is sent by way of megabus 13 to address the device for which the present task is assigned shall be acknowledged with a 30 NAK status signal.

Upon detecting the presence of a task, the firmware accesses the task stored in the scratchpad memory 81 and transfers that information through the AMUX 72 and OR logic unit 83 to the arithmetic unit 85. Under firmware control, the arithmetic unit 85 and the test 35 logic unit 102 tests the task information to determine the command to be executed. For example, the task may indicate that a disk seek, a recalibrate, a read or a write operation is required. The results of these tests are supplied by the test logic unit 102 to firmware by way of 40 device adapter 14 also issues an interrupt by way of control cable 126.

In a write operation wherein data is to be read from main memory unit 12 and written on a disk device, the adapter logic unit 29 under firmware control issues a strobe to the device adapter 14 to load an internal data 45 counter with a count of four. Further, the adapter logic unit 29 is commanded to issue a sequence of four strobes to load configuration words A and B into a data buffer of the device 14. More particularly, the information is routed under firmware control from the scratchpad 50 memory 81 through the BMUX 84 and the arithmetic unit 85 to data cables 92 and 94 leading to the device adapter 14

Before the logic unit 29 issues a BEGIN EXECU-TION command to the device adapter 14, the megabus 55 13 must be set up for the transfer of data. The firmware supplies two dummy bytes of offset range to the BMUX 84 by way of cable 86, and controls the transfer of the bytes through the arithmetic unit 85 and along data cable 96 to the bus address register 136. The loading of 60 the address register 136 is accomplished under firmware control on line 136a. The firmware then accesses the range information stored in the scratchpad memory unit 81, and transfers that information through the BMUX 84 and the arithmetic unit 85 to data cable 96 leading to 65 the bus address register 136. As the range data is loaded into register 136, the offset range data is transferred to control unit 77. The two bytes of range data thereafter

are transferred from the bus address register 136 into the control unit 77 under firmware control, and three bytes of the address information in scratchpad memory are stored into the bus address register 136. The MPDC thereby is prepared for receiving data from main memory for writing on the indicated disk device.

To initiate a data transfer, the firmware accesses the scratchpad memory 81 to transfer the MPDC channel number previously supplied by the CPU 11, and transfers the channel number through the BMUX and arithmetic unit 85 for storage in the bus data register 100. At this time, the main memory address from which data is to be initially read resides in the bus address register 136, and the MPDC channel destination number resides

The firmware also supplies bus logic commands to the BMUX 84 by way of cable 86, and stores those commands in the accumulator 75. From the accumulator, the commands are supplied by way of data cable 103 to the bus logic unit 128. These commands in logical sequence instruct the bus logic unit 128 to issue a response-required request to main memory to acknowledge that data is to be supplied to the MPDC, to issue a main memory channel number identifying the main an indication as to whether the MPDC is in a byte or a word mode.

In normal operation, a read or a write command is always preceded by a seek command wherein the firmware commands the adapter device 14 to position the read-write heads of the disk device. In addition, the device adapter is instructed to select the proper head from which the information is to be read or written. The device adapter 14 then compares the configuration words A and B with data read from the surface of the disk. If a match is detected which indicates that a designated record is in position, the device adapter 14 issues a write command to the disk device and begins to write a header gap on the record. During this period, the control line 110 to the hardware control unit 108. In response thereto, the control unit issues a signal to the A1 input of test logic unit 102 to notify firmware by way of control cable 126 that control should be turned over to the before-described system hardware. Firmware thereupon issues an enable hardware command to control line 109, and further issues commands by way of control line 134 to the data control unit 113 to control the operation of FIFO unit 131 in requesting data from memory. The FIFO unit 131 operates to anticipate the availability of space in the data FIFO unit 118 for the receipt of data word from main memory. More particularly, each time the bus logic unit 128 requests a data word from main memory, a dummy byte is loaded into the FIFO unit 131. The bus logic unit 128 thereafter requests a second word of data only if the dummy byte has dropped from the input register of the FIFO unit 131 into the FIFO stack. Main memory thereupon issues data words by way of megabus 13 to the data register 82.

When the bus logic unit 128 has requested a data word from main memory and accepted the word, the logic unit issues a signal to the A2 input of data control unit 113. In response thereto, the control unit issues a command on control line 135 to the data FIFO unit 118 to store data from the data register 82. The abovedescribed operation is repeated until the data FIFO unit 118 is filled with 32 bytes of data.

When the data FIFOs are filled, unit 118 issues a signal by way of control lines 118*a* to the hardware control unit 108. Control unit 108 thereupon issues a strobe by way of control line 111 to the adapter logic unit 20. Logic unit 29 in turn issues a strobe to the de-5 vice adapter 14 to indicate that a data byte may be transferred from the data FIFOs to the device adapter 14. The same strobe is applied by way of control lines 29*a* and 118*b* to the TOP (transfer out parallel) terminal of data FIFO unit 118. The D1 and D2 outputs of the 10 FIFO unit thereupon are transferred through the OR Logic 83 and through the arithmetic unit 85 to the device adapter 14 by way of data cables 92 and 94.

The logic unit 29 strobe also is applied by way of control line 29a to the data control unit 113. The recep-15 tion of two of such strobes indicates that a two-byte data word has been transferred from the data FIFO unit 118 to device adapter 14. The data control unit 113 thereupon issues a control signal to the A2 input of FIFO unit 131 to drop a dummy byte out of the output 20 register of the FIFO stack. The input register of the FIFO unit thereby is emptied, and issues a signal to the bus logic unit 128 to initiate a request for an additional data word from main memory. The above-described process continues until the device adapter unit 14 indi-25 cates that a record has been written.

It is to be understood that the device adapter 14 controls the write operation on the disk device. As the data is being written on the disk, the device adapter signals the test logic unit 102 by way of control line 125 to 30 cease supplying data until the internal buffers of the device adapter have been emptied. During this period, the test logic unit 102 notifies the firmware control system that control may be transferred from the hardware to the firmware. When the device adapter 14 is 35 ready to receive additional data, the logic state of control line 125 is changed. The test logic unit 102 thereupon notifies the firmware to return control to the hardware to resume the data transfer. This process continues until a data transfer is completed as indicated by a range 40 count of zero.

Each time the bus logic unit 128 requests an additional data word, the data control unit 113 under system hardware control decrements the range counters of control unit 77 by one. Further, after a data request 45 including a main memory address has been issued to the megabus 13 and accepted by the main memory unit 12, the control unit 77 increments the bus address register 136 by two and decrements the range counters by one. When the range count has been exhausted, the range 50 control unit 77 issues an end-of-range (EOR) signal by way of control lines 77a and 102b to the device adapter 14 and the test logic unit 102, respectively.

It is to be noted that the control cable 125 includes two interrupt lines. A first interrupt line is a firmware 55 request line to indicate that control should be returned to firmware while the device adapter 14 is between records. The second interrupt line is used to notify firmware that non-data service requests may be serviced. Such action normally indicates that there is some 60 type of error in the device adapter 14.

If the EOR signal is issued during a record or at the end of a record on the disk device, the firmware will terminate the write order. If the EOR signal is received by the device adapter 14 before an end of record occurs, 65 the device adapter fills the remaining portion of the record with dummy bytes. If an EOR signal does not occur, however, and there is no device adapter error indicated on interrupt cable 127, then the firmware will update the configuration words A and B in device adapter 14 to point to a next logical sector of the disk device.

FIG. 6

FIG. 6 illustrates in functional block diagram form a firmware control system for controlling the operation of the system illustrated in FIGS. 4 and 5.

The 12-bit output of a 16-bit return register 200 is connected to the A1 input input of a selector 201. The 12-bit output of the selector 201 in turn is applied to the input of a 16-bit microprogram address counter 202, and the 12-bit output of the address counter is connected to the input of a 4.0 K by 16-bit Read Only Store (ROS) 203 having the microinstructions of a microprogram stored therein. The 16-bit D1 output of the ROS is connected to the input of a 16-bit microprogram instruction register 204, and the D2 output of the ROS is applied to the A3 input of the selector 201.

The microprogram instruction register 204 further receives a control signal from the test logic unit 102 of FIG. 4 by way of a control line 126 to reset or clear the register. The 16-bit output of the microprogram instruction register 204 is applied to the input of a decoder 205, to the A1 input of return register unit 200, and to the A1 input of a firmware distributor 206. A one-bit output of the register 204 is applied to the LD input of return register 200.

The D1 output of decoder 205 is applied to the A2 input of the selector 201, and the D2 output of the decoder is applied to the A2 input of return register unit 200. Further, the D3 output of decoder 205 is applied to the A2 input of distributor 206. The D1 output of the distributor is applied to control line 130 leading to the bus logic unit 128, and the D2 output is applied to control line 134 leading to the data control unit 113. The D3 output of distributor 208 is applied to control line 127 connected to the A2 input of adapter logic unit 29, and the D4 output is applied to control line 106 leading to the arithmetic control unit 91. The D5 output is supplied to control line 109 connected to the A1 input of hardware control unit 108, and the D6 output is connected to line 137 leading to the A3 input of control unit 77. The D7 output is connected to control cable 86, and the D8 output is applied to control line 114 carrying load commands to the counter 79. The D9 output is applied to control line 116, and the D10 output is applied to control line 124. The D11 output is applied to control line 70b, the D12 output to control line 72a and the D13 output to control line 84a. The D14 output is applied to line 75a, the D15 output to line 74a and the Di6 output to line 79a. The Di7 output is applied to line 79b and the D18 output to line 136a. The D19 output of distributor 206 is applied to the LD input of counter 202, the clock input of which is supplied by the system hardware by way of control line 207. Control line 207 further is connected to the LD input of register 204

The 16-bit firmware commands stored in ROS 203 are divided into four fields: the OPCODE, the AMUX 72 select, the BMUX 84 selected and the miscellaneous fields. The firmware commands further are segmented into seven categories each representative of bit configurations for performing a designated operation. The seven basic categories of firmware commands are: miscellaneous commands, bus logic commands, ALU commands, constant value data commands, memory commands, test commands, and branch commands. Each of the firmware categories is identified by a particular OPCODE which is a binary decode of bits 0, 1 and 2 of ROS 203.

is loaded from selector 201 under firmware control, and thereafter clocked by hardware system control signals on line 207. The address counter output addresses the ROS 203, which in response thereto supplies microinstructions to the instruction register 204. The register 10 204 loads the microinstructions under hardware control, and applies the microinstruction bit configuration to decoder 205, distributor 206 and return register 200.

The order in which the microinstruction sequences stored in ROS 203 are executed may be controlled in 15 Further, the OPCODE 1 1 0 refers to Table G and the any of several ways. The test logic unit 102 may issue a reset signal causing a no-op instruction to occur in the instruction register 204. The instruction register thereupon skips the current instruction in the register, and proceeds to the next occurring instruction. In the alter- 20 native, the address counter 202 may be loaded with a microinstruction address formed from Read Only Store 203 and register 200. The firmware control system of FIG. 6 thus offers significant versatility in the execution of microprograms. 25

As each microinstruction addressed in ROS 203 is loaded into register 204, the instruction bit configuration and a binary code from decoder 205 identifying the

response thereto, the distributor applies firmware control signals to the system of FIGS. 4 and 5 as before described.

A copy of the microprogram stored in the ROS 203 is In operation, the microprogram address counter 202 5 reproduced in its entirety, and attached hereto as Appendix A.

> The operation of decoder 205 and firmware distributor 206 may better be understood by reference to Tables A-K. The OPCODES are defined in Table A, which provides a pointer to one of Tables B-K. For example, the OPCODE 0 0 0 refers to the miscellaneous commands of Table B. The OPCODE of 0 1 0 refers to Table C, the OPCODE 011 to Table D, the OPCODE 100 to Table E, and the OPCODE 101 to Table F.

OPCODE 1 1 1 to Table I.

1	a	bl	e	А	

	_Орс	ode Instr	ructions
	MICR	DINSTR	UCTIONS
0	0	0	MISCELLANEOUS
0	0	1	RFU
0	1	0	BUS LOGIC
0	1	1	ALU
1	0	0	CONSTANTS
1	0	1	MEMORY
1	1	0	TEST
i	1	1	BRANCH

	Table B		
_1	Miscellaneous Commands		
OPERATION	BINARY VALUE	MNEMONIC	HEX CODE
NO OPERATION	000000000000000000000000000000000000000	NOP	0000
CLEAR COMMAND	00010000000000000	CLR	1000
SET ERROR FLOPS	00001000000000000	SEF	0800
ENABLE HARDWARE DATA PATH	0000011000000000	EHP	0600
DISABLE HARDWARE DATA PATH	0000001000000000	DHP	0200
RESET DIAGNOSTIC MODE	000000001000000	RSD	0080
SET DIAGNOSTIC MODE	00000011000000	STD	0180
HALT	0000000001000000	HLT	0040
RFU	0000000000100000	_	0020
CLEAR FLOPS AND REGISTERS	0000000010010000	CRF	0010
RESET DEVICE ADAPTER	0000000010001000	RDA	0008
SET QLT (BLT DONE)	000000000000000000000000000000000000000	OLT	0004
SET BUS ACK	000000000000000000000000000000000000000	ŠBA	0002
RFU	000000000000000000000000000000000000000		0001
ENABLE READ PATH	0000011000000000	ERP	0600
ENABLE WRITE PATH	0000011000000001	EWP	0601

Table C									
		Bu	s Lo	ric C	Commands		<u> </u>		
OPERATION			BIN	ARY	VALUE		MNEMONIC	HEX CODE	
INCREMENT ADDRESS CNTR.	010	0	0	0	010000000	0	IAC	4100	
RESET STATUS	010	0	0	0	001000000	ō	RST	4080	
DECREMENT RANGE CNTR.	010	0	0	Ó	000100000	ō	DRC	4040	
CYCLE	010	A 1	A ₂	A1	000010000	Ăı	CYC	4040	
SET CHANNEL READY	010	o	0	0	000001100	0	SCR	4018	
RESET CHANNEL READY	010	Ō	ō	õ	000001000	ŏ	RCR	4010	
SET REGISTER BUSY	010	ō	õ	ō	000000010	ŏ	SRB	4004	
RESET REGISTER BUSY	010	Ō	õ	ō	000000001	ŏ	RPB	4002	
RESET INTERRUPT LATCH	010	õ	õ	õ	000000000	ĩ	RIL	4001	
CLEAR BUS	010	ŏ	Õ	Õ	001000011	ò	CLB	4086	

 $A_0 A_1 A_2 A_3 = SELECT AOP MUX INPUT.$

instruction category are applied to distributor 206. In

				Tat	ole I	D							
OPERATION			AI BINA				_					MNEMONIC	HEX CODE
AOP NEGATION BOP NEGATION ZERO ALU AOP TRANSFER	011 011	$\begin{array}{c} A_1 \ A_2 \ A_3 \\ A_1 \ A_2 \ A_3 \end{array}$	B ₀ B ₁ B ₀ B ₁	с с	S S	0 0	0 1 0 1	0 0 1 1	0 1 1 1	1 1 1 1	A0 A0 A0 A0	ANT BNT ZER XFA	N/A N/A N/A N/A

19

			Table	• D-	con	tipu	led		¥-2				
OPERATION			AL BINA	UC RY			_					MNEMONIC	HEX CODE
OPERATION BOP TRANSFER NOR A TO B NAND A TO B XNOR A TO B XNOR A TO B AND A TO B OR A TO B OR A TO B AOP PLUS ONE AOP PLUS ONE AOP MINUS ONE SUBTRACT B FROM A ADD A TO B LEFT SHIFT AOP	0 1 1 0 1 1	A1 A2 A3 A1 A2 A3	BINA Bo B1 Bo B1 Bo B1 Bo B1 Bo B1 Bo B1 Bo B1 Bo B1 Bo B1 B0 B1 B0 B1 B0 B1 B0 B1 B0 B1	000000000000000000000000000000000000000	S S S S S S S S S S S S S S S S S S S	1 0 0 1 1 1 0 1 0 1	0 0 1 1 0 0 1 0 1 1 0 1	1 0 1 0 1 1 0 1 1 0 0 0	0 1 0 1 1 0 0 1 0 1 0	1 1 1 1 1 0 0 0 0 0	A0 A	XFB NOR NND XOR XNR AND ORR INC DEC SUB ADD LSH	N/A N/A N/A N/A N/A N/A N/A N/A N/A
CARRY OUT IN STORE RESULT IN AOP	011	A ₁ A ₂ A ₃ A ₁ A ₂ A ₃	B ₀ B ₁ B ₀ B ₁	1 C	S 1	x x	x x	x	X X	X X	A0 A0	COTI SRIA	N/A N/A

4,159,532

 $\begin{array}{l} A_0 \ A_1 \ A_2 \ A_3 = \ AOP \ REG. \ SELECT \\ B_0 \ B_1 = \ BOP \ REG. \ SELECT \\ C = \ DETERMINE \ CARRY \ IN \\ S = \ DETERMINE \ A \ OR \ B \ RESULT \ STORAGE. \end{array}$

Table E **Constant Commands** MNEMONIC HEX CODE BINARY VALUE OPERATION N/A N/A N/A 0 CC 1 CC 0 CC LCN CCCCC CCCCC CCCCC C C C C LOAD CONSTANT TO AOP AOP ANDED WITH CONSTANT AOP ORED WITH CONSTANT A₁ A₂ A₃ A₁ A₂ A₃ A₁ A₂ A₃ 0 100 ACN 100 0 1 100

 $A_1 A_2 A_3 = AOP REG. SELECT C = VALUE OF CONSTANT.$

Table F								
OPERATION		Memory Co BINARY	mmands VALUE		MNEMONIC	HEX CODE		
MEMORY WRITE INCREMENT SP ADDRESS DECREMENT SP ADDRESS MEMORY WRITE & INC MEMORY WRITE & INC MEMORY WRITE & DEC SET SP TEST MODE RFU LOAD REQUESTING CHANNEL LOAD INDEX REG. WITH AOP SET MODULE BAD PARITY RFU	101 101 101 101 101 101 101 101 101 101	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	A0 0 0 A0 0 0 0 0 0 0 0 0 0 0	MWT IMA DMA WIA WDA SPT LRC LIR MBP	N/A A100 A008 N/A N/A A080 A040 A020 N/A A004 A002		

 $A_0 A_1 A_2 A_3 = AOP REG. SELECT.$

					1	[ab]	e G	r					
OPERATION				BI	 NARY V			nds	-			MNEMONIC	HEX CODE
TEST FOR ZERO TEST FOR ONE RETURN	110 110 110	A ₁ A ₁ 0	A ₂ A ₂ 0	A3	0001 0010 1000	Т	Т	Т Т 0	Т Т 0	T T 0	A0 A0 0	TFZ TFO RTN	N/A N/A C200

 $A_0 A_1 A_2 A_3 = AOP REG. SELECT$ TTTTT = 0 TEST MUX INPUT.

	Table H								
Test Parameters									
MNEMONIC	FUNCTION	HEX CODE	DESCRIPTION						
TAHR	HDTSRO+00	00	ADAPTER HARDWARE REQUEST						
TBCA	SHRCOM+00	01	BUS CYCLE ACTIVE						
TRSP	BSRSVP+30	02	BUS RESPONSE REQUIRED						
TEQZ	ALUEQZ+00	03	ALU OUTPUT EQUALS 00						
	ALUEOF+00	04	ALU OUTPUT EQUALS FF						
TEQF	ALUCOT+00	05	ALU CARRY OUT						
TCOT	CREREQ+00	06	CHANNEL REQUEST						
TREQ	ACKRSP+00	07	BUS ACK RESPONSE						
TACK	ALUAXO -00	08	AOP MULTIPLEXER, BIT 0						
TAX0	ALUANO-00	09	BITI						
TAX1		0Å	BIT 2						
TAX2	$\downarrow 2$	0B	BIT 3						
TAX3	13	0C	BIT 4						
TAX4	14	00	BIT 5						
TAX5	↓ 5	UD	f DEF 2						

-	1
4	L

Test Parameters								
MNEMONIC	FUNCTION		DESCRIPTION					
TAX6	16	0E	↓ BIT 6					
TAX7	ÅLUAX7-00	0F	AOP MULTIPLEXER, BIT 7					
TORZ	ORCAR3-00	10	OFFSET RANGE ZERO					
TRGZ	EOR(XXX) + 00	11	RANGE ZERO					
TSBS	SBS0BS+00	12	SINGLE BYTE STORED					
TSAW	SPAWRP+00	13	SP ADDRESS WRAPAROUND					
TADB	BUSY(XX) + 00	14	ADAPTER BUSY					
TNDS	NDTSRO+00	15	NON-DATA SERVICE REQUEST					
TORH	OFRNGZ=00	16	OFFSET RANGE HISTORY					
TDCN	MYDCNN-00	17	MY DATA CYCLE NOW					
TBSY	BDRBSY+00	18	BUS DATA REGISTER BUSY					
TUBR	UBRO(XX)+00	19	UNSOLICITED BUS REQUEST					
TINT	RESINT+00	1A	RESUME INTERRUPT					
TNAK	NAKRSP+00	1B	NAK RESPONSE					
TBYT	BSAD23+00	1 C	BYTE MODE					
TATY	BSPYCK+00	ID	BUS PARITY CHECK					
TNBR	NOHTRO+00	1 E	NO BUFFER REQUEST					
TFDR	FDTSRQ+00	lF	FIRMWARE DATA SERVICE REQUEST					

-				
	•	bl	~	
		UJ.	с.	

OPERATION	Branch Commands BINARY VALUE	MNEMONIC	HEX CODE
GO TO LOAD RETURN	1111 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	GTO LRA	FXXX EXXA

	Table J										
	AOP Multiplexer Input Selection										
A ₀	AI	A ₂	A3	SELECTED REGISTER (SRIA)	MNEMONIC	SELECTED REGISTER (SRIA)*	MNEMONIC				
0	0	0	0	ACCUMULATOR	AACU	ACCUMULATOR	AACU				
õ	ŏ	ň	ĭ	SCRATCH PAD MEMORY	ASPM	SCRATCH PAD MEMORY	ASPM				
õ	ň	ĭ	ò	SCRATCH PAD ADDRESS	ASPA	SCRATCH PAD ADDRESS (INDEXED)	ASPA				
õ	ň	i	ĭ	INDEX REGISTER	AIDX	SCRATCH PAD ADDRESS (INDEXED)	ASPA1				
õ	ĩ	'n	Ô	ADAPTER DATA REGISTER	AAD0	ADAPTER DATA REGISTER	AAD0				
ő	1	õ	ĭ	ADAPTER DEVICE 1D	AAD1	ADAPTER DATA COUNTER	AAD1				
õ	1	ĭ	ò	ADAPTER STATUS I	AAD2	ADAPTER COMMAND REGISTER	AAD2				
0	i	1	1	ADAPTER STATUS 2	AAD3	ADAPTER UNIT SELECT	AAD3				
1		ó	ó	BUS ADDRESS OUT	ABUS1	BUS REGISTER IN	ABUS1				
1	ň	ñ	1	BUS DATA OUT 1	ABUS2	BUS DATA IN 1	ABUS2				
1	ň	1	6	BUS DATA OUT 2	ABUS3	BUS DATA IN 2	ABUS3				
1	Ň	ì	ň	BUS RANGE OUT	ABUS4	BUS ADDRESS IN	ABUS4				
1	1	ò	6	ADAPTER RFU	AAD4	RESET ADAPTER INDEX COUNT	AAD4				
÷	1	ň	ĭ	ADAPTER RFU	AAD5	ADAPTER STATUS & FIFQ CLEAR	AAD5				
1	1	1		ADAPTER RFU	AAD6	ADAPTER SEEK PULSE	AAD6				
1	i	1	ĭ	ADAPTER RFU	AAD7	ADAPTER DATA BYTE TAKEN	AAD7				

*SRIA AND SRIA = STORE RESULT IN SELECTED AOP REGISTER.

		Table K		_
		BOP MUX Input		
B ₀	Bl	SELECTED DATA INPUT	MNEMONIC	_
0	0	ACCUMULATOR	BACU	50
0	1	SCRATCH PAD MEMORY	BSPM	
1	0	BUS STATUS	BBST	
		. 0-3 (ZEROS)		
		4 BUS YELLOW IND.		
		. 5 BUS NAK		
		6 BUS PARITY ERROR		- 55
		, 7 BUS RED IND.		
1	1	BOP CONSTANT		_

The instructions of Tables C-G and I include A-fields comprised of bits A₀-A₃. Each of the A-fields refer to 60 registers providing data to the AMUX 72 of FIG. 4. Table D further includes instructions having a B-field comprised of bits B₀ and B₁. The B-field is defined by Table K, wherein it is indicated that the BMUX may be selected to the accumulator 75, the scraptchpad mem-65 ory unit 81, to the bus logic unit 128 by way of cable 88 for bus status inputs, and to the firmware control system by way of cable 86 for a constant value input. Where

two-byte arithmetic is being performed by the arithmetic unit 85, the C-field of Table D is used to provide a carry-in feature wherein the result of a previous AU 85 operation may be used in a subsequent operation. The F-field of the instructions of Table D provides a command to store the result of the AU 85 operation into a register designated by the A-field. The remaining loworder bits of Table D refer to the mode select bits for commanding the AU 85 to perform the indicated operation.

The instruction set of Table E includes a C-field for constant values, and the low-order bits of the instructions of Table F provide for the generation of strobes for loading the registers indicated by the A-field thereof. The instruction set of Table G includes test or T-fields which are defined by the entries of Table H. The A-field of Table I refers to the address of the microprogram to which a transfer is to be made.

Table L provides a cross-reference between the mnemonics used in the Tables A-K and the component parts of the system as described in FIGS. 4-8.

TABLE L

Microinstruction Mnemonic	Hardware Device	_
RFU	Reserved For User	_
Bus Logic	Bus logic unit 128	_
ALU	Arithmetic Unit 85.	5
	Arithmetic Control Unit 91,	
	Accumulator 75	
Accumulator	Accumulator 75	
Scratchpad Memory	Scratchpad Memory Unit 81	
Scratchpad Address	Scratchpad Address Counter 79	
BLT	Bus Logic Tests	10
Address Counter	Bus Address Counters 300,	
	302 and 303	
Range Counter	Range Counters 306-309	
AOP	AMUX 72	
BOP	BMUX 84	
SP Address	Scratchpad Address Counter	15
Memory	Scratchpad Memory Unit 81	15

FIG. 7

FIG. 7 illustrates in a more detailed functional block 20 diagram form the range and offset range control unit 77, the address multiplexer 133 and the bus address register 136. A bus address counter 300 receives data from AU 85 on an 8-bit data cable 96, and load commands from firmware on control line 136a. The clock input to 25 a byte at a time from scratchpad memory unit 81 into counter 300 is connected to the clock input of a bus address counter 302, to the clock input of a bus address counter 303, and to the output of an address clock logic unit 304. The 8-bit output of the counter 300 is applied to the megabus 13 by way of a data cable 305, and to the 30 data input of counter 302.

In the preferred embodiment described herein, address counters 300, 302 and 303 form a 24-bit memory address up counter.

The load input of counter 302 is connected to control 35 line 136a and to the load inputs of counter 303, a range counter 306, a range counter 307, an offset range counter 308, and an offset range counter 309. The counters 306 and 307 form a 16-bit range down counter. and the counters 308 and 309 form a 16-bit offset range 40 down counter. The 8-bit output of counter 302 is applied to the A1 input of an address multiplexer 310, and to the data input of counter 303. The 8-bit output of counter 303 is applied to the A1 input of an address multiplexer 311, and to the data input of range counter 45 306

Address multiplexer 310 also receives at its A2 input data from data register 82 of FIG. 4 by way of cable 139. The 8-bit output of the multiplexer is applied to a data cable 312 leading to megabus 13. The select (SEL) 50 input to multiplexer 310 is supplied by the bus logic unit 128 on a control line 313.

The address multiplexer 311 also receives data from the data register 82 by way of data cable 140, and supplies 8 bits of data to a data cable 314 leading to 55 megabus 13. The SEL input to multiplexer 311 is connected to the SEL input of multiplexer 310.

The 8-bit output of range counter 306 is connected to the input of range counter 307. The output of counter 307 in turn is applied to the input of counter 308, and the 60 8-bit output of counter 308 is applied to the input of counter 309. The 8-bit output of counter 309 in turn is applied to control line 76 leading to the A3 input of AMUX 72.

The clock source for the system of FIG. 7 is a 4.0 65 MHz oscillator 315, which supplies clock signals to address clock logic unit 304 and a range clock logic unit 316. The logic unit 304 receives enable signals from bus

logic unit 128 and from firmware on control lines 317 and 318, respectively. In response thereto, the logic unit 304 issues increment commands to counters 300, 302 and 303.

The range clock logic unit 316 receives enable signals from bus logic unit 128, the firmware and the data control unit 113 by way of control lines 319-321, respectively. Further, the control unit 113 supplies an offset range enable signal to the EN4 input of logic unit 316. ¹⁰ When enabled, the logic unit 316 supplies decrement commands to counters 306-307 or counters 308-309,

If data is to be read from or written onto a disk device controlled by the device adapter 14, the CPU 11 of FIG. 1 supplies a channel destination number and a function code to the address shift register 70 of FIG. 4 as before described. In addition, the CPU supplies configuration words A and B, a main memory address, a range count, an offset range count, a task and a status request to the data register 82. The firmware accesses the function code in register 70 to detect the address in scratchpad memory unit 81 in which the data of register 82 is to be stored.

The firmware then serially shifts seven bytes of data address counters 300, 302 and 303, range counters 306 and 307, and offset range counters 308 and 309. Upon completion of the load operation, a main memory address resides in address counters 300, 302 and 303, a range count in counters 306-307, and an offset range count in counters 308-309.

In a read operation wherein data is to be read from the disk device and written into main memory unit 12, the megabus 13 is supplied both data and a 24-bit address in main memory in which the data is to be written. More particularly, the data resides in the bus data register 100. When a data word comprising two data bytes is to be transferred from the MPDC 10 to the megabus 13, the bus logic unit 128 selects the multiplexers 310 and 311 to the A1 inputs. The main memory module to which the data is to be transferred thereby is made available to the megabus 13. The main memory address in which the transferred data is to be written thereupon is supplied from address counters 300, 302 and 303 to cables 305, 312 and 314 respectively. Each time the main memory unit issues an acknowledgement signal and accepts data into the indicated address, the main memory address in counters 300, 302 and 303 is incremented by two.

During a data transfer from device adapter 14 to MPDC 10, the data control unit 113 of FIG. 5 issues a logic one signal to control line 322 each time a data byte is transferred. The range clock logic unit 316 is enabled thereby to decrement the offset range counters 308 and 309. The output of counter 309 is applied by way of cable 76 to the AMUX 72 and the AU 85 of FIG. 4. As long as the offset range count is greater than zero, the data bytes are ignored and are not transferred to megabus 13. When the offset range count is exhausted, however, data transfer control switches from the offset range counters to the range counters 306 and 307. More particularly, the data control unit 113 disables the EN4 input to logic unit 316, and thereafter issues enable signals to the EN3 input of the logic unit by way of control line 321. The logic unit 316 in response thereto decrements the range counters each time a data byte is transferred from the device adapter 14 to the MPDC 10.

Each of the data bytes transferred after control switches to the range counters are transferred to megabus 13.

When the range count in counters 306 and 307 is exhausted, counter 307 issues an end-of-range (EOR) signal on lines 77a and 102b as before described.

A write operation wherein data is read from main memory and written onto a disk device is accomplished in a manner similar to that of the read operation. A channel designation number and a function code are loaded into the address shift register 70, and data includ- 10 ing configuration words A and B, a main memory address, a range count, a task and a status request are loaded from data register 82 into scratchpad memory unit 81. An offset range count is not used in writing data onto a disk device.

After the device adapter 14 has positioned the write heads of the disk device, and issued a hardware service request signal on line 110 of FIG. 4, a firmware loads two dummy bytes into the offset range counters 308 and 309, a range count into counters 306 and 307, and a main 20 memory address into counters 300, 302 and 303. The firmware further transfers a MPDC channel number from scratchpad memory unit 81 to the bus data register 100, and thence through data multiplexer 122 to megabus 13. Under firmware control, the bus logic unit 128 25 issues a response-required data request to main memory, and selects the multiplexers 310 and 311 to their A2 inputs to supply the main memory channel number in address shift register 70 to megabus 13. The bus logic unit thereafter selects the multiplexers 310 and 311 to 30 their A1 inputs to supply the main memory address to megabus 13.

Each time the bus logic unit 128 requests an additional data byte from main memory, the logic unit also range clock logic unit. The range counters 306 and 307 thereupon are decremented by one. Further, after a data request and a main memory address have been issued to megabus 13 and accepted by the main memory unit 12, the bus logic unit 128 enables the EN1 input of the 40 address clock logic unit 304. In response thereto, the address counters 300, 302 and 303 are incremented by two

When the range count has been exhausted, counter 307 issues an EOR signal to lines 77a and 102b as before 45 at a logic zero level when the input register is filled. The described. The data transfer from main memory unit 12 to disk device 14 thereby is designated complete.

The system of FIG. 7 represents a significant improvement over prior firmware data transfer controls, which required too much time for bookkeeping. Previ- 50 ously, bookkeeping parameters were stored in memory, and had to be retrieved and restored when a parameter was updated. In the instant hardware/firmware invention, the bus address counters 300, 302 and 303, the range counters 306-307, and the offset range counters 55 308-309 may be loaded serially to substantially decrease the number of microinstructions required in a load operation. Further, during a data transfer, the counters may be incremented or decremented under hardware control to accommodate an increased data flow rate.

FIG. 8

FIG. 8 illustrates in detailed logic diagram form the FIFO unit 131 of FIG. 5, which embodies the invention described herein.

In referring to the electrical schematics illustrated in the Figures, it is to be understood that the occurrence of a small circle at the input of a logic device indicates that

the input is enabled by a logic zero. Further, a circle appearing at an output of a logic device indicates that when the logic conditions for that particular device are satisfied, the output will be a logic zero.

An AND gate 400 has one input connected to a control line 401, and a second input connected to both a control line 402 and one input of an AND gate 403. A second input to gate 403 is connected to a control line 404 leading to line 110 of FIG. 4, and a third input is connected to a control line 417.

The output of gate 400 is connected to the D input of a flip-flop 405, and to the D input of a flip-flop 406. The output of gate 403 is applied to the trigger (T) input of a flip-flop 407.

15 The trigger input to flip-flop 405 is connected to the Q output of flip-flop 407, and the reset input of flip-flop 405 is connected to the output register (OPR) output of a 16-word by eight bit FIFO 408. When the OPR output is at a logic 1 level, the output register is filled. Further, when the OPR output is at a logic zero level, the output register is empty. The Q of flip-flop 405 is applied to the transfer on parallel (TOP) input of FIFO 408.

The Q output of the flip-flop 407 is connected to its D input, and to the T input of flip-flop 406. The reset input to flip-flop 406 is connected to the OPR output of a 16-word by 8 bit FIFO 410. The Q output of the flipflop 406 is connected to the TOP input of FIFO 410, and to the TOP input of a 16-word by 8 bit FIFO 411.

The load (LD) input to FIFO 408 is connected to a control line 412, and the data input to the FIFO is connected to a data cable 408a leading from data register 82 of FIG. 4. The parallel data output of FIFO 408 is connected to a data cable 408b leading to cable 94. The issues a logic one signal to control line 319 to enable the 35 LD input of FIFO 410 is connected to a control line 413, and the data input to the FIFO is connected to a data cable 410a leading from data register 82. The parallel output of the FIFO is applied through a data cable 410b to cable 94.

The LD input to FIFO 411 is connected to the output of an AND gate 414. The input register (IPR) output of the FIFO 411 is connected by way of a control line 415 to one input of an AND gate 416. The IPR output is at a logic one level when the input register is empty, and OPR output of FIFO 411 is applied by way of a control line 411b to line 102b of FIG. 5.

A second input to gate 416 is connected to a third input to gate 403, and to a control line 417. A third input to gate 416 is connected to one input of gate 414, and to a control line 416a. The output of gate 416 is applied to the T input of a flip-flop 418, the Q output of which is applied to a control line 419 leading to the bus logic unit 128.

The D input of flip-flop 418 is connected to the output of an AND gate 420, one input of which is connected to a control line 421. A second input to gate 420 is connected to a control line 422.

A second input to gate 414 is connected to control 60 line 417, and a third input to gate 414 is connected to a control line 423.

In a write operation wherein data is read from the main memory 12 of FIG. 1 and written into a disk device serviced by the device adapter 14, a problem may 65 arise during the transfer of a sequence of data bytes. If a request for additional data is not issued by the MPDC 10 when a data byte is received from the main memory unit 12, other system devices may intercede to communicate with the memory unit. The MPDC thus would not be able to maintain a transfer rate to the disk device. If a request for data is made without regard for empty buffer locations, data stored in the data register 82 of FIG. 4 may be lost before the full range of data to be 5 transferred from main memory has been written upon the disk device. The logic system of FIG. 8 provides a means for obviating such a problem.

In operation, when data is to be transferred from the main memory unit 12 to the MPDC 10, firmware issues 10 a logic 1 signal to control line 417. If the megabus 13 is clear for a data transfer, the bus logic unit 128 of FIG. 5 issues a logic 1 signal to control line 422 to indicate that the megabus 13 is ready. Further, until the data transfer is completed, the control line 421 leading from 15 the data FIFOs may be emptied. The device adapter 14 the range and offset range control unit 77 remains at a logic 1 level to indicate that the range count has not been exhausted. The output of gate 420, therefore, is at a logic 1 level which is applied to the D input of the 20 flip-flop 418.

Prior to any data being transferred to the MPDC 10, the FIFO's 408, 410 and 411 are empty. The IPR output of FIFO 411 thus is at a logic 1 level indicating that the input register is empty. Further, the bus logic unit 128 supplies a logic 1 signal to control line 416a during a 25 time period when the MPDC 10 is not using the megabus 13 in servicing a bus cycle request. Thus, the output of the gate 416 is at a logic 1 level to toggle the flip-flop 418, thereby issuing a bus cycle request on line 419 leading to the bus logic unit 128.

In generating a bus cycle request for output on the megabus 13, the bus logic unit 128 issues a logic 1 signal to control line 423 to indicate that an MPDC 10 bus cycle request has been issued. The firmware control signal on control line 417 thereupon is applied through 35 gate 414 to the load input of FIFO 411. A dummy byte or control flag byte thereby is loaded into the FIFO under firmware control, and the IPR output of the FIFO transitions to a logic zero level. It is thus seen that each time a cycle request is generated at the Q output of 40 flip-flop 418 to request additional data from main memory unit 12, a dummy byte is loaded into the FIFO 411.

When the main memory unit responds to the bus cycle request, the bus logic unit 128 issues a logic zero signal to control line 423 and a logic 1 signal to control 45 lines 412 and 413. Data bytes supplied by the main memory unit 12 to the megabus 13 thereby are loaded from data cables 408a and 410a into FIFO 408 and FIFO 410, respectively. The bus logic unit 128 thereupon transitions the control line 416a to a logic 1 level to indicate 50 that the bus cycle request for data has become inactive. If the dummy data byte loaded into the FIFO 411 has dropped from the input register into the FIFO stack, the IPR output of the FIFO will transition to a logic 1 level to again trigger the flip-flop 418 to issue another 55 cycle request on control line 419.

The above-described process continues until the FIFOs 408 and 410 are filled as indicated by the output register (OPR) outputs of the FIFOs. The FIFO 411 thus serves to indicate in advance that if a data word is 60 loaded into the data FIFOs 408 and 410, the data word will pass into the FIFO stack before another data word can be requested of main memory unit 12. More particularly, each time a data request is made to main memory unit 12 a dummy byte is loaded into the FIFO 411. If the 65 dummy byte has passed into the FIFO stack before a next data request is made to main memory, then the time delays are such that it is known that the data bytes in the

FIFOs 408 and 410 shall pass into the respective FIFO stacks before additional data bytes are received from main memory.

When the FIFO units 408 and 410 are filled with data, the OPR outputs of the FIFO units are at a logic zero level indicating a filled condition. Further, the IPR output of FIFO 411 is at a logic zero level. The gate 416 thus is disabled, and the generation of cycle requests on control line 419 is terminated.

When the OPR output of FIFO 411 transitions to a logic 1 level to indicate that the data FIFOs 408 and 410 are filled, the hardware control unit 108 issues a strobe to the adapter logic unit 29. The logic unit 29 in turn issues a strobe to the device adapter 14 to indicate that thereon issues a logic 1 hardware service request signal to control line 404, and the firmware in response thereto issues a hardware enable signal to control line 402. The firmware further issues a logic 1 signal to control line 401 to indicate that a write on disk operation has been initiated.

The flip-flop 407 is triggered by the output of gate 403, and toggles between set and reset conditions. For example, if the flip-flop is in a set condition, it resets upon being triggered. Further, if the flip-flop is in a reset condition, it sets upon being triggered. The Q and Q outputs of the flip-flop thereby alternately trigger the flip-flops 405 and 406 respectively. If the flip-flop 405 is triggered, the Q output of the flip-flop is applied to the TOP input of the FIFO 408. In response thereto, the data byte in the output register of the FIFO is supplied to data cable 408b leading to the device adapter 14. When the output register is emptied, the OPR output of the FIFO 408 immediately resets the flip-flop 405. In like manner, when the flip-flop 406 is triggered, the Q output of the flip-flop supplies an unload signal to the FIFO 410. When the output register of the FIFO is emptied, the OPR output of the FIFO resets the flipflop 406. It is apparent that the flip-flop 407 in combination with the flip-flops 405 and 406 alternately selects data bytes from FIFO 408 and FIFO 410. The data bytes transmitted to the device adapter 14 thus are comprised of a left byte from FIFO 408 and a right byte from FIFO 410.

Each time the FIFO 410 is unloaded, the FIFO 411 also is unloaded. As soon as the input register to the FIFO 411 is emptied, the IPR output of the FIFO transitions to a logic 1 level to generate a cycle requests as before described. As data bytes are loaded into the FIFOs 408 and 410, the FIFOs again are unloaded. Before a cycle request for a next data byte is requested from main memory unit 12, however, the input register to the FIFO 411 must be emptied.

Two conditions may occur which may prevent the generation of a cycle request on control line 419 when the input register to FIFO 411 is empty. When the range count indicating the total number of data bytes to be transferred from main memory unit 12 to the device adapter 14 is exhausted, line 421 transitions to a logic zero. Further, if an unsolicited bus request or other data occurs on the megabus 13 to cause the MPDC 10 to issue a NAK, the gate 420 is disabled. The Q output of the flip-flop 418 thus does not transition to a logic 1 level when triggered, and no further cycle requests may be made.

In summary, the invention is comprised of a logic data transfer control system responsive to both firmware and hardware control, and including data FIFOs operating in parallel with a predictor FIFO. Each time a data word is loaded from main memory to the data FIFOs, the input register of the predictor FIFO is sensed. If the input register is empty, a data request is issued to main memory and the predictor FIFO is 5 loaded with a dummy byte. Since no data request is issued unless the input register of the predictor FIFO is empty, no data is lost.

When the data FIFOs are filled, the predictor FIFO out unloading data bytes to the disk device. Each time the right data FIFO is unloaded, the predictor FIFO is unloaded. Synchronization between the predictor FIFO and the data FIFO thereby is provided.

may be seen in the sequence of operating steps. When a data request to main memory is made, the predictor FIFO thereafter is loaded with a dummy byte. The data FIFOs, however, are not loaded until a data byte is 20 received from main memory. Thus, if the dummy byte in the predictor FIFO has dropped into the FIFO stack by the time a data word is loaded into the data FIFOs, a prediction can be made that the newly received data word will drop into the FIFO stacks before a next data word is received. Under these conditions, a next request for data is issued to main memory.

FIG. 9

FIG. 9 is a timing diagram illustrating in graphic form $_{30}$ the operation of the system of FIG. 8.

It is to be understood that the system disclosed herein is comprised of devices in intercommunication on an asynchronous bus. Thus, absolute time values are not disclosed in the description of the timing diagrams of 35 until the waveform again transitions to a logic 1 level. FIGS. 9-11. It is the order of occurrence rather than the absolute time of occurrence which is of primary importance.

Referring to FIG. 9, a waveform 501 illustrates a signal issued by firmware to place the MPDC 10 into a 40 write mode, and a waveform 502 illustrates a cycle request signal issued by the bus logic unit 128 of FIG. 5 in response to firmware commands. A waveform 503 illustrates a bus cycle request made by the MPDC 10 to the megabus 13, and a waveform 504 illustrates a strobe 45 issued by the bus logic unit 128 to set the cycle request logic signals of waveform 502 onto the megabus 13 as indicated by waveform 503. A waveform 505 illustrates a logic signal formed on the megabus 13 in response to the logic signals of waveforms 503 and 504. A wave- 50 form 506 illustrates a waveform generated in the MPDC 10 to indicate that the MPDC is busy. A waveform 507 illustrates a logic signal issued by a slave to the megabus 13 in response to a bus request issued by a edgement logic signal issued by the MPDC 10 to the megabus 13 in response to a second-half bus cycle signal from the main memory unit 12 as illustrated by a waveform 509. A waveform 510 illustrates the load signal issued by the gate 414 to the FIFO 411 of FIG. 8, and 60 a waveform 511 illustrates the logical inverse of the input register output of the FIFO 411.

In the mnemonics used to describe the waveforms 501-511 in FIG. 9, a plus sign (+) indicates that the condition signified by the mnemonic occurs when the 65 associated waveform is at a logic 1 level. A negative sign (-) indicates that the designated condition occurs when the waveform is at a logic zero level.

When data is to be written from main memory unit 12 of FIG. 1 to a disk device serviced by the device adapter 14, firmware transitions the control line 417 of FIG. 8 to a logic 1 level as indicated at 501a of waveform 501. Since the bus cycle is not active as indicated at 506a of waveform 506, the MPDC 10 is not engaged in servicing a previous bus cycle request. Thus the control line 416a is at a logic 1 level, and a logic 1 signal issued by the input register FIFO 411 as illustrated at is filled and no further data requests may be made with- 10 511a of FIG. 11 is applied through the gate 416 to trigger the flip-flop 418. The Q output of flip-flop 418 thereupon transitions to a logic one level as illustrated at 502a. The cycle request 502a thereby is placed onto the megabus 13 as control line 419. When a cycle of the The look-ahead characteristic of the predictor FIFO 15 megabus 13 is available, the bus logic unit 128 of FIG. 5 will issue a logic 1 pulse 504a to place the cycle request 502a onto the megabus 13 as illustrated by the logic 1 pulse 503a. The signal appearing on the megabus 13 in response to the pulses 503a and 504a is illustrated by a logic 1 pulse 505a of waveform 505.

The bus logic unit 128 issues a logic 1 pulse 506b concurrently with pulse 504a to indicate that the bus cycle is active, i.e., the MPDC 10 is busy. In response thereto, the output of gate 414 transitions to a logic 1 25 level as illustrated by a logic 1 pulse 510a to load a dummy byte into the FIFO 411. Upon receiving the bus cycle request from the MPDC 10, the main memory unit 12 acknowledges its acceptance of the request by issuing a logic 1 pulse 507a of waveform 507.

When the dummy byte is loaded into the FIFO 411, the waveform 511 transitions to a logic zero level as indicated at 511a. Since gate 416 will be disabled during the time period that waveform 511 remains at a logic zero level, no further bus cycle requests may be made

When the main memory unit 12 has retrieved a requested data word and placed it on the megabus 13, the memory unit issues a logic 1 pulse 509a to indicate that the data is available. Further, the memory unit issues a logic 1 pulse 505b. Upon receiving the pulses 505b and 509a, the bus logic unit 128 issues an acknowledgement logic 1 pulse 508a which appears on the megabus 13 as logic 1 pulse 507b. Upon receiving the pulse 507b, the main memory unit releases the megabus 13 to accommodate another bus cycle request. Upon issuing the pulse 508a, the MPDC 10 is no longer in a bus cycle active state as indicated at 506c. Since the output of the input register of the FIFO 411 is again empty as indicated at 511b, a logic 1 pulse 502b is supplied at the Q output of flip-flop 418 to initiate a next bus cycle request operation.

FIG. 10

FIG. 10 is a timing diagram illustrating the operation master device. A waveform 508 illustrates an acknowl- 55 of the system of FIGS. 4-8 during a data transfer from a disk device to megabus 13.

A waveform 600 illustrates the hardware data service request signal issued by the device adapter 14 to control line 110 of FIG. 4, and a waveform 601 illustrates the hardware enable signal issued by firmware in response to the waveform 600. A waveform 602 illustrates a hardware data service enable signal which is a logical AND of waveforms 600 and 601. Waveform 602 illustrates the enable signal applied by firmware to the EN2 enable input of range clock logic unit 316 of FIG. 7 during diagnostic tests.

A waveform 603 illustrates the output of range clock logic unit 316 in response to the enable signal illustrated by waveform 602. A waveform 604 illustrates the output of gate 403 of FIG. 8, and the output of the adapter logic unit 29 of FIG. 4. A waveform 605 illustrates the inverse to the Q output of flip-flop 407 of FIG. 8.

Waveforms 606 and 607 each are formed from waveforms 604 and 605, and indicate the output states of the flip-flop 407. A waveform 608 illustrates the bus cycle request signals issued at the Q output of flip-flop 418 of FIG. 8, and a waveform 609 illustrates the pulse pairs generated by the address clock logic unit 304 each time 10 a cycle request is made as illustrated by waveform 608.

When data is to be read from a disk device, the device adapter 14 of FIG. 4 issues a logic 1 pulse 600*a* to control line 110 to indicate that a data byte is available for transfer to the MPDC 10. In response thereto, the firm-15 ware control system of FIG. 6 issues an enable hardware pulse 601*a* to the control line 109 of FIG. 4 leading to the hardware control unit 108. As the data byte is transferred from the device adapter 14 to the MPDC 10, the timing signal illustrated by waveform 602 is applied 20 to the range clock logic unit 316 of FIG. 7. In response thereto, the offset range counters 308 and 309 are decremented until the offset range count is exhausted. The range counters 306 and 307 thereafter are decremented as illustrated by the logic 1 pulses of waveform 603. 25

Each time data bytes are transferred from the device adapter 14 to the MPDC 10, the output of gate 403 as illustrated by the waveform 604 triggers the flip-flop 407. When the Q output of flip-flop 407 is at a logic 1 level, flip-flop 405 is triggered to load a left byte in bus 30 data register 100 for transfer to the megabus 13. This condition is illustrated by the logic 1 levels of waveform 605 and waveform 607. When the Q output of the flipflop 407 transitions to a logic 1 level, the flip-flop 406 is triggered to load a right byte in register 100 for transfer 35 to the megabus 13. This condition is illustrated by the logic zero levels of waveform 605 and the logic 1 levels of waveform 606.

When a data word comprising a left and a right data byte have been formed in the register 100, the bus logic 40 unit 128 under firmware control issues a bus cycle active signal to control line 416a of FIG. 8 to trigger the flip-flop 418. A bus cycle request thereby is generated as illustrated by the logic 1 levels of waveform 608. Each time a busy cycle request is generated, the bus 45 logic unit 128 enables the address clock logic unit 304 to issue logic 1 pulse pairs as illustrated by waveform 609. The main memory address stored in the bus address counters 300, 302 and 303 thereupon is incremented by two. 50

Should an interim condition arise wherein data is not available for transfer to the MPDC 10 before the range count has been exhausted, the device adapter issues an interrupt to line 125 of FIG. 4 to return control from the system hardware system to the firmware. In that event, 55 the enable hardware signal of waveform 601 transitions to a logic zero level as indicated at 601b. No further MPDC activity occurs until the device adapter 14 indicates that data again is available for transfer by issuing a logic 1 pulse 600b to line 110 of FIG. 4. The data 60 transfer thereafter continues as before described until the range counter is exhausted.

FIG. 11

FIG. 11 is a timing diagram illustrating the operation 65 of the system of FIGS. 4-8 during a write operation.

A waveform 700 illustrates the hardware data service request signal issued by the device adapter 14 to the control line 110 of FIG. 4, and a waveform 701 illustrates a strobe signal issued by the adapter logic unit 29 to control lines 29a and 118b of FIG. 4. A waveform 702 illustrates the output of gate 403 of FIG. 8, and a waveform 703 illustrates the logic inverse of the Q output of the flip-flop 407. A waveform 704 illustrates the logic inverse of the Q of flip-flop 405, and a waveform 705 illustrates the output register (OPR) output of FIFO 408.

A waveform 706 illustrates the logic inverse of the Q output of flip-flop 406, and a waveform 707 illustrates the OPR output of flip-flop 410. A waveform 708 illustrates the OPR output of FIFO 411, and a waveform 709 illustrates the logic inverse of the IPR output of FIFO 411. A waveform 710 illustrates the Q output of flip-flop 418, and a waveform 711 illustrates a bus cycle request signal generated by the bus logic unit 128 in response to the waveform 710.

A waveform 712 illustrates a bus cycle active signal placing the MPDC 10 in a busy state in response to the bus cycle request pulses of waveform 711. A waveform 713 illustrates a data cycle signal issued by the bus logic unit 128 to indicate a time period in which the main memory unit 12 must acknowledge a data request from the MPDC 10. A waveform 714 illustrates the bus request and acknowledgement pulses occurring on the megabus 13 as a result of the handshaking between the MPDC and the main memory. A waveform 715 illustrates the bus acknowledgement pulses issued by a slave system device in response to a bus request from a master system device, and a waveform 716 illustrates MPDC acknowledgement pulses which are reflected in the pulses of waveform 715. A waveform 717 and a waveform 718 respectively illustrate address increment pulses and range decrement pulses generated during the transfer of data from main memory unit 12 to the device adapter 14.

Prior to the transfer of data from main memory, the device adapter 14 positions the write heads of a disk device at a designated record. After the disk device is prepared for a write operation, the adapter 14 issues a hardware service request signal as illustrated by pulse 700a to the control line 110. The bus logic unit 128 thereupon requests data from the main memory unit 12. The main memory unit 12 in response thereto, supplies data to the data register 82 of FIG. 4. Under control of the data control unit 113, the data is transferred from data register 82 into the data FIFOs 408 and 410. When the data FIFOs are filled, the hardware control unit 108 signals the adapter logic unit 29. The logic unit 29 in turn issues a strobe pulse 701a to the device adapter 14 to indicate that a data byte is being transferred. Concurrently, gate 403 of FIG. 8 issues a pulse 702a to select a data byte from one of the FIFOs 408 and 410 for transfer to the device adapter 14. In response to the gate 403 output, flip-flop 407 of FIG. 8 issues a pulse 703a to trigger the flip-flop 405. Flip-flop 405 in turn issues a pulse 704a to select a data byte from the FIFO 408.

When the data byte is taken from the output register of the FIFO 408, the OPR output of the FIFO transitions to a logic zero level as indicated at 705*a*. The OPR output further resets the FIFO 405 as indicated at 704*b* of waveform 704. When the data byte has been taken by the device adapter 14, the adapter issues a second hardware data service request pulse 700*b*. In response thereto, the adapter logic 29 pulse 701*b* and the gate 403 pulse 702*b* are generated as before described. Upon the occurrence of pulse 702*b*, the Q output of the flip-flop 407 triggers the flip-flop 406 as indicated at 703b of waveform 703. The Q output of flip-flop 406 thereupon issues a logic 1 pulse 706a to unload the output register of the FIFO 410. When the data byte is transferred out of the output register, the OPR output of the FIFO 410 5 transitions to a logic zero as indicated at 707a of waveform 707. In response to the logic transition of the OPR output, the flip-flop 406 is reset as indicated at 706b.

As before described, the FIFO 411 is unloaded at the same time the FIFO 410 is unloaded. Thus, when the 10 OPR output of FIFO 410 transitions to a logic zero, the OPR output of FIFO 411 also transitions to a logic zero as indicated at 708a of waveform 708. When an additional dummy byte enters the output register of FIFO 411, the OPR output transitions to a logic 1 as indicated 15 at 708b. In addition, the input register output IPR changes state as indicated at 709a. A bus cycle request on control line 419 thereby is initiated as indicated by logic one pulse 710a. In response to pulse 710a, the bus logic unit 128 of FIG. 5 issues a strobe pulse 713a to 20 place the cycle request pulse 710a onto the megabus 13 as indicated by pulse 711a. Upon the occurrence of the strobe 713a and the pulse 711a, a pulse 714a is carried by the megabus 13 to the main memory unit 12.

When the cycle request pulse 710*a* is generated, the 25 bus logic unit 128 places the MPDC 10 in a busy state as indicated by the logic 1 pulse 712*a*. During the time period of the pulse 712*a*, the MPDC 10 issues a data request to the main memory unit 12 as indicated by pulse 714*a* and awaits a response. 30

If the memory unit 12 accepts the bus cycle request and the main memory address supplied by MPDC 10,

MODEL: MPDC-REV30 REV[5]0N1 000.00 the main memory unit issues a pulse 715*a*. In response thereto, the bus logic unit 128 of FIG. 5 transitions the bus cycle request signal illustrated by waveform 711 to a logic zero level as indicated at 711*b*. During a time period not exceeding that indicated by the logic 1 pulse 712*a*, the main memory unit retrieves the contents at the indicated main memory address and supplies the data to the megabus 13. In addition, the main memory unit issues a pulse 714*b* to notify the MPDC 10 that data at the indicated main memory address is forthcoming. In response thereto, the bus logic unit 128 issues a strobe 716*a* to place an acknowledgement pulse 715*b* on the megabus 13. Concurrently therewith, the bus logic unit removes the MPDC 10 from the busy state as indicated by the logic zero level 712*b* of waveform 712.

The above-described process is repeated until the total number of data bytes indicated by the range count has been transferred from the main memory unit 12 to the device adapter 14.

20 During the data transfer process, the bus address counters 300, 302 and 303 are incremented and the range counters 306-309 are decremented. More particularly, the address counters are incremented twice as indicated by pulses 717a and 717b each time a data 25 request is made to the main memory unit 12 as indicated by pulse 715a. Further, the range counters are decremented each time a data byte is requested by the MPDC 10 from the main memory unit 12. One decrement command as illustrated by pulse 718a is issued when a re-30 quest 710a for a data word is issued. A second decrement command as illustrated by pulse 718b is issued by the main memory unit 12.

08/01/77 DOC+#1 12.605 PAGE:

1

				PARAMETER	SECTION	QUC+#1		
LINE #								
	PARAMETE							
2000	NODEL MP	DC=REV3D‡						
	SPACE 1				1			
4000								
5000		** ** *	****** **	*** ******				
6000 7000				* *				
8000								
9000				11				
10000				11				
11000								
12000					<u>۱</u>			
13000					•			
14000		HE MPDC IS A	VERTICAL	MICROPROCESSOR. EACH WORD				
15000		S STATEEN B	TS WIDE WI	TH THE LEFTMOST THREE BITS				
16000		N EFFECTIVE	OP-CODE.	THE FIELD USAGE FOR THE				
17000		EVERAL MICRO	D-INSTRUCTL	ON TYPES 15-				
19000					`			
20000		OMMAND TYPE	0P=CODE					
21000								
22000			-		<u>۱</u>			
23000	и у м	I SCELLANEOUS	5 000	COMMAND 3-13	,			
24000		FU	001	COMMAND 3-13	,			
25000		US LOGIC	010	COMMAND 3-13	<u>۱</u>			
26000		LU	011	AOP 3-3+15-1+BOP 6-2+CMD 8-8	N			
27000		ONSTANT	100	AOP 3-3+ COMMAND 11613	<u>۱</u>			
28000 29000		CRATCHPAD EST	101	COMMAND 3-13	Ň			
30000		RANCH	110	COMMAND 6-4+ CONDITION 10-6 COMMAND 3+ ADDRESS 4-12	<pre> `` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `</pre>			
31000				COMMAND 31 NODRE33 4412	``			
	SKIP HOF				1			
	DC-REV3U			RTL/6000 FIL		08/01/77	12.605 PAGE	: 2
REVISION	000.00			PARAMETER S	BECTION	UUC.#:		
LINE #								
33000								
34000								
35000	V PAR M	ETERS			1.1			
36000								
37000								
		IN+16+4096+	0000#+\$\$UP(5	1			
39000								
40000								
41000								
43000	BRCHFLD	BAD+AB2+4/1	2 \ BH	RANCH-ADDRESS FIELD DEFINITION	4 \\$			
44000								
45000								
	CNSTFLD	0PC+0/3	`	OP-CODE FIELD DEFINITION	1.			
47000			•					
48000								
49000	CNSTFLD	COM+3/13	∖ GEM	ERAL COMMAND FIELD DEFINITION	4 XI			
50000								
51000								

RTL/6000 FILE EDIT PARAMETER SECTION

4,159,532

~ -	
76	

		33	
MODEL: MPDC-R	EV3a		00 FILE EDIT
REVISION: 000	.00	PARAME	TEN SERTION
		-co	ntinued
LINE #			
52000 CNST	FLD AOP+3/3	COMMON A-OP FIELD DEFIN	ITION NI
53000			
54000			
55000 CNST	FLD A0P0+15/1	AOP BIT 0	14
56000			
57000			
58000 CNST	FLD 80P+6/2	X BOP FIELD DEFINITION FOR A	LU U-0P5 \\$
59000			
60000			
61000 CNST	FLD CON+6/5+12/	1+14/2 \ CONSTANT FIELD DEFI	NITION \\$
62000			
63000		_	
	FLD CSWORD+0/16	V FULL WORD FIELD FOR HALT.	S FILL \1
65000			
66000			
	FLD SCOM+6/8	\ SCRATCH-PAD COMMAND DEF. W	1TH A-OP \1
68000			
69000			
70000 CNST	FLD TCOM+10/5	A TEST-SKIP-NUX INPUT SELEC	T FIELQ NI
71000			
72000			
73000 CN51	FLD TST+6/4	TEST-COMMAND TYPE SELE	CTOR \1
74000			
75000			
76000 CNS	FLD XCOM+6/10	\ GENERAL COMMAND FIELD. A-	OP CASE \1
77000			
78000			
79000 CHS	FLD A.3/1	V UPAC-SRAR LOAD CONTROL FOR	GTO-LRA \I
80000			
81000			
82000 CNS	FLD Waa/1	COMMAND FIELD FOR ALU PREV	1002 C+0 /1
83000			
84000			
85000 CNS	TFLD 1+9/1	COMMAND FIELD FOR A-OP DES	TINATION VI
86000			
87000			
0000 CHE	TFLD ALU+10/5	ALU MODE, CEA, AND CI# FOR	I ALU OP5 \1

MODEL: MPOC-REV3D REVISION: 000.00

COMMAND BIT FOR CONSTANT MICRO
COMMAND ALT FOR CONSTANT MICRO
COMMAND BIT FOR CONSTANT MICRO

MDDEL: MPDC-REV30 REVISION: 000.00

LINE #			
97000			
98000			
99000	CNSTFLD	UPC500+0/1	\ 41CRO-PROGRAM CONTROL-STORE BIT 00 \;
100000			
101000			
102000	CNSTFLD	UP(501+1/1	\ MICRD-PROGRAM CONTROL-STORE BIT 01 \1
103000			
104000			
105000	CNSTFLD	UPC502+2/1	\ MICRO-PROGRAM CONTROL-STORE BIT UZ \1
106000			
107000			
108000	CNSTFLD	UPC503+3/1	\ MICRO-PROGRAM CONTROL-STORE BIT 03 \1
109000			
110000			
	CNSTFLD	UPC504+4/1	\ MICRD-PROGRAM CONTROL-STORE BIT 04 \F
112000			
113000			
	CNSTFLD	UPC505+5/1	\ MICRO-PROGRAM CONTROL-STORE BIT US \1
115000			
116000		UD-564 4 4	N MICRO-PROGRAM CONTROL-STORE BIT 06 14
	CNSTFLD	UPC\$06+6/1	(AICROPROGRAM CONTROL STORE ST. 40 11
118000			
	CNSTFLD	UPC\$07+7/1	N MICRO-PROGRAM CONTROL-STORE BIT 07 NI
121000		0/(0/////	A MICKO-MODICAL CONTROL DIGHT DIT OF T
122000			1
	CNSTFLD	UPC508+8/1	N MICRO-PROGRAM CONTROL-STORE BIT UN NE
124000			
125000			
126000	CNSTFLD	UPc509.9/1	\ HICRO-PROGRAM CONTROL-STORE BIT 09 \;
127000			
128000)		
129000	CNSTFLD	UPC510+10/1	\ MICRO-PROGRAM CONTROL+STORE BIT 10 \1
130000)		
131000			
	CNSTFLD	UPC511+11/1	V MICRO-PROGRAM CONTROL-STORE BIT II VI
133000			
134000		1000513.13.1	N MICRD-PROGRAM CONTROL-STORE BIT 12 NE
	CNSTFLD	UPC\$12+12/1	V MICKU-PROGRAM COMINGLADIONE BIT 12 ()
136000			
137000	CNSTFLD	UPC513+13/1	N MICRO-PROGRAM CONTROL-STORE BIT 13 NT
139000		ALC 413413/1	A HERE A HERE CALLER AND A DEC TO A HERE AND A
160000			
	CNSTFLD	UPC514+14/1	A MICRO-PROGRAM CONTROL-STORE BIT 14 11
14200			
14300			
	CNSTFLD	UPC515+15/1	\ MICRD-PROGRAM CONTROL-STORE BIT 15 \1
14500			
	SKIP HO		L L

36

UB/U1/77 12.605 PAGE: 2 UUC.0:

08/01/77 12-805 PAGE: 4

08/01/77 12.605 PAGE: 3 DOC.#:

HTL/6000 FILE EDIT PARAMETER SECTION

XF. ١ŧ ÷

RTL/6000 FILE EDIT PARAMETER SECTION

NODELI MPDC-REV3D REV15[gn1 000.00

RTL/6000 FILE EDIT PARAMETER SECTION

38

08/01/77 12.605 PAGE: 5 DQC.#:

ALT 1910					CONSIGNED SET	1104	000.01
LINE #							
14700	0						
14800	0						
14900		-PAD SYMBOLIC-A					
15000		BLE (NOTE THAT				M	
15100		E ADDRESS OF TH	E SEGMENT	SELECTED BY	THE SPMIR)-	NF	
15200							
		(6/5+12/1+14/2)					
15400			5T53/1A#	DID2/27#	WL07/34#		
15600		OFR1/OE# OFR2/OF#	5T54/18#	CHN1/28#	WL08/35# WL09/36#		
15700		CNF1/10#		CHN2/29# CPC1/2A#	WL10/37		
15800		CNF2/11#		CPC2/28#	WL11/38#		
15900		CNF3/12#		10F1/2C#	WL12/39#		
16000		CNF4/13#	DTA1/20#	10F2/20#	LSTRW/FD#		
16100		C (1) 1 1 1	DTA2/21.		5KSTK/FE#		
16200				WL02/2F#	RWSTK/FF#		
16300	0 ADR2/09#			WL03/30#	FWRV/3D#		
16400	0		MON1/24#		DEVST/3E#		
16500	0 MOD1/08#	ST51/18#	DMA1/25#	wL05/32#	UNSEL/3F#		
16600		ST52/19#	DID1/26#	WL06/33#		•	
16700							
16800	O SKIP HOF					1	
MODEL	MPDC-REV3.						
	N: 000.00				RIL/6000 FILE		UB/U
4641510					DICTIONARY SE	CTION	υυς,
LINE #							
16900	0 DICTION	4 P v					
17000		80.7				;	
17100		NG ARE THE MICH		TONS THUSE	AUL ADTIELS-	14	
17200		AINTAINED IN AL	PHARETICA	L DROFP TO FA	ARE ARTICIC	1	
17300	0 A TRIEVAL		De le		CITINIC NE-	Ň	
17400						**	
17500	0						
17600							
	O MICRO AACU	(AOP/0#)	Υ.	AUP= ACCUMULA	TUR (ACU) REG	1:	
17800							
17900							
	O MICRO AADO	(AOP/4#)	× 1	AUP= ADAPTER	DATA-REGISTER	NF	
18100							
LB200							
18500	O MICRO AAD1	(AUP/5#)	<u>۱</u>	AUP= ADAPTER	IDENTITY BYTE	NI -	
18500							
	O MICRU AAD2	400/641					
18700		(`	AUPE ADAPTER	STATUS REG. 1	14	
18800							
	O MICRO A4D3	(AOP / 74)	,		STATUS REG. 2		
19000			•	NOTE HORT LER	518105 KEG. 2		
19100							
19200	O MICRO AAD4	(AOP/4#+AOP0/1#))	ADP= ADAPTER	STROBE	1.	
19300	0		, .			••	
19400							
		(AOP/5#+AOPO/1#) N	AUP= ADAPTER	STROBE	NF .	
19600							
19700							
19800	O MICRO AAD6	1A0P/6#+A0P0/1#) \A	OP= ADAPTER S	TROBE	1.	
19900							
20000							
		140P/7# +40P0/1#) \A	OP= ADAPTER S	TROUE	A F	
20200 20300							
	O SKIP HOF						
20400	V JKIP MUR					1	

MODEL: MPDC+REV30 REVISION: 000.00

RTL/6000 FILE EDIT DICTIONARY SECTION

I	.INE #						
		T		0			
	206000					R TRANSFERING DATA	
	207000	FIL	HER	O OR FROM THE B	US INTERFAC	E LOGIC.	
	208000	THE	MEA	NING OF EACH COD	E IS AS FOL	L0W5-	
	209000						
	210000			BIT NOT SET	SRIA HI	T SET	
	211000	ABL	/S1=80	JS ADD OUT	ABUS1=BUS	DATA REG	
	212000	AGL	J52=Bt	US DATA OUT 1	ABUS2=BUS	DATA IN 1	
	213000	ABL	J53=BI	JS DATA DUT 2	ABUS3=BUS	DATA IN 2	
	214000			US RANGE OUT	ABUS4#BUS		1.1
	215000						•••
	216000						
		HICRO A	in is i	(ADP/0#+AOP0/1#	1 10P-	0115 1	NF.
	218000	MICAU	9031		1 1406-	603 1	N
	219000						
		WICKO N	48025	(AOP/L#+AOP0/L#) (X ON=	BUS 2	11
	221000						
	222000						
	223000	MICRO A	ABUS3	(ADP/2#+AOP0/L#	1 \A0P=	BOS 3	11
	224000						
	225000						
	226000	NICRO A	4054	(AOP/3#+AOP0/1#	1 \AOP=B	JS 4	11
	227000				/		••
	228000						
		HICRO A	CN	OPC/4#+E/0#+T/1		OP + AOP AND CONSTANT	AL.
	230000	MILLING P			•/ \ h	St - HOF HAD CONSTANT	
	231000						
				(OPC/3#+ALU/12#)			
	233000	WICHO P	00	(UPC/304ALU/120)	N .	ALU = AOP/ADD/BOP	AL.
	234000						
		MICHO A	IDX	(AOP/3#)	\ AOP	= INDEX REG	NF.
	236000						
	237000						
	238000	MICRO A	N'ID	{OPC/3#+ALU/17#}	N .	ALU = AOP/AND/HOP	\₽
	239000						
	240000						
	241000	MICRO A	VAT	(OPC/3#+ALU/01#)	\ XFF	R A+OP+ TO ALU OUTPUTS	NI.
	242000				,		
	243000						
		HICOD I	SDA	(AOP/2#)	1 400	= SCRATCH-PAD ADD-REG.	
	245000	11110 2	- J- A		1 406	- SCRATCH-FAD ROD-REG.	
	246000						
		HICKO >	IAMO	(AOP/3#)	\ AUP #	S.P. ADD REG INDEXED	١,
	248000						
	249000						
		MICRO A	SPM	(AOP/1#)	\ AOP	= SCRATCH-PAD CONTENTS	1.1
	251000						
	252000						
	253010	SKIP HO) F				:

/01/17 12.605 PAGE: 6

08/01/77 L2.605 PAGE: 7 DUC.#1

39

4,159,532

			39		
MODEL: N				RTL/6000 FILE	EDIT
REVISION	000+	00		DICTIONARY SEA	T I (SA)
LINE #					
254000					
	MICRO	BACU	(BOP/0#)		
256000		0.400		A BOPF ACCUMULATOR (ACU) REG	\ ;
257000					
	MICRO	ANT	(OPC/3++At L/OP+)	XFER B-OP* TO ALU OUTPUTS	
259000			(0. 2/30 (AFER BOUPA TO ALU OUTPUTS	XF
260000					
261000	MICRO	885T	(BOP/2#)	AND A BUS STATUS	
262000				(80) - 803 STATUS	M
263000					
264000	Υ.	THE	FOLLOWING BITS ARE ST	DRED WHEN BOP#2 IS SPECIFIED	
265000			810 - 0	the second to second the	
266000			81T 1 - 0		
267000			8IT 2 - 0		
268000			8IT 3 - 0		
269000			BIT 4 - BUS YELL	OW INDICATOR	
270000			8[T 5 - 8US NAK		
271000			BIT 6 - BUS PARI	TY ERROR	
272000			BIT 7 - BUS RED	INDICATOR	M .
273000					N
274000					
	MICHU	R26W	(BOP/1#)	\ HOP = SCRATCH-PAD CONTENTS	NI .
276000					
	HICPO	CL D	(OPC/0#+COM/1000#)		
279000	MICRO	CLR	(0PC/0#+COM/1000#)	\ CLEAR + INITIATES PROM SCAN	1
280000					
	Mirsa	CLB	(0PC/2#+COM/0086#)	CLEAR BUS	
282000			(0. 0/20/000000)	ACCEAR 803	\ F
283000					
284000	MICRO	CNST	(CON)	V FLELD FOR CONSTANT IN UPIN	
285000	•••	-		CONSTANT IN DETA	NI
286000					
287000	MICRO	COTI	(W/l#)	ALU CI = PREVIDUS CO	11
288000					\
289000					
290000	MICRO	CRF	(OPC/0#+COM/0010#)	CLEAR REGISTERS+ FLOPS	11
4+1000					
292000					
293000	MICRO	CSHF	(CSWORD/0040#)	\ CONTROL.STORE HALTS FILLER	11
294000					
295000					
296010	MICKD	CONF	(C>WDRD/00D0#)	CONTROL STORE NOOP FILLER	\1
298000					
299000	5	é CE			
2770000	44 (F P	tur			ş

40

US/UI/77 12+005 PA(+E: B

08/01/77 12+605 PAGE: 9 DUC+#:

MODEL: MPDC-REV3D REVISION: 000.00

RTL/6000 FILE EDIT DICTIONARY SECTION

REVISIONI DOO.	00	DICTIONARY SECT	ION
LINE .			
300000			
301000 MICRO	CYC IDPC/2#+XCOM/02	D#I \ CYCLE BUS AS AOP DEFINES \	
302000		UFI A CYCLE BUS AS ADP DEFINES A	•
303000			
304000 \	NOTE THAT THE "CYC"	U-INSTRUCTION USES BITS	
305000	OF A SPECIFIED AOP	FOR CONTROL OF THE BUS AS	
306000	FOLLOWS-		
307000	BIT O CYC	LE	
306000		ORY REFERENCE	
309000 310000		PONSE REQUIRED	
311000		OND HALF READ	
312000	817 4 BYTI 817 5 REA	E MODE	
313000	BIT 5 WEA		
314000	BIT 7 RFU		
315000	017	N	
316000			
317000 M1CR0	DEC (OPC/3#+ALU/1E#	I ALU = AOP/MINUS/ONE \I	
318000			,
319000			
320000 MICRO	DHP (0PC/0#+CDM/020)	D#I \ DISABLE HARD DATA PATH \ \	1
321000			
322000			
323000 MICRO 324000	D'1A [OPC/5#+COM/00]	D8#) \DECREMENT S. P. ADDRESS \;	1
325000			
326000 MICRO	DRC (OPC/2#+XCOM/O	40#) \DECREMENT RANGE COUNTER \1	
327000		40#) \DECREMENT RANGE COUNTER \1	
328000			
329000 M[CRU	ERP (0PC/0#+COM/0600	0#) \ ENABLE HARD DATA PATH READS	
330000			
331000			
332000 MICRO	E#P (0PC/0#+COM/060)	1∉) \ENABLE WRITE HARD PATH \1	5
333000			
334000	-		
335000 MJCRO 336000	GTD (BAD) 10PC/7#.R,	<pre>/1#) \ JNCONDITIONAL BRANCH \;</pre>	
337000			
338000 MICRO	HLT (0PC/0#+COM/0040	D#) \ HALT MICROPROCESSOR \;	
339000		D#) \ HALT MICROPROCESSOR \1	
340000			
341000 MICRO	1AC (OPC/2#+XCDM/100	D#) A INCREMENT ADD BUS COUNTER AT	
342000			
343000			
344000 MICRO	IMA (OPC/5++COM/010	DOW) \ SPAC INCREMENT BY +1 \;	
345000			
346000 347000 MICRO			
348000	1'1C (0PC/3#+ALU/0#)	ALU = ADP/PLU5/ONE \;	
349000			
350000 MICRO	[1] (0PC/0#+COM/0098		
351000		The second s	
352000			
353000 MICRO	LCN (0PC/4#+E/0#+T/0	Del : LOAD CONSTANT TU A-OP : :	
354010			
355000			

4,159,532

42

08/01/77 12.605 PAGE: 10 DOC++:

41

HTL/6000 FILE EDIT DICTIONARY SECTION

.

		41		
NODEL: M	PDC-REV30 1 000+00		HTL/6000 FILE Dictionary Se	ED C T II
LINE # 356000 357000	MICRO LIR	{OPC/5#+5COM/OC#}	LOAD INDEX REG FROM ADP	.,
358000	MICRO LUC	(SPA)	N SPA LOAD VIA SYMBOLIC-REF.	NF.
361000	MICRO LRA	(BAD) (0PC/7#+R/0#)	N LOAD RETURN REGISTER	NF.
	MICRO LKC	(OPC/5#+COM/0020#)	LOAD REQUESTING CHANNEL	M
	MICRO LSH	(OPC/3#+ALU/18#)	\ ALU ■ AOP LEFT-SHJFTED	NI.
369000 370000 371000	MICRO MHP	(0PC/5#+C0M/0024#)	SET MODULE HAD PARITY	
372000 373000 374000	MICRO MAT	(0PC/5#+SCDM/80#)	SCRATCH-PAD WRITE FROM AUP	
375000 376000	MICRO NND	(OPC/3#+ALU/09#)	ALU # (AOP/AND/BOP)*	
378000 379000	MICRO NUP	{DPC/0#+COM/0000#]		
381000 382000	MICRO NOR	(0PC/3#+ALU/03#)		14
384000 385000	MICRO DON		ALU = AOP/NOR/BOP	М
387000 386000		(OPC/4#+E/1#+T/0#)	AOP + AOP/OR/CONSTANT	Nł.
390000 391000	MICRO DRR	(OPC/3#+ALU/1D#)	\ ALU ≈ AOP/OR/HOP	1
393000 394000	MICRO OLT	(0PC/0#+COM/0004#)	SET THE ULT FLOP (READY)	11
396000 397000	MICRO RCR	(OPC/2#+XCOM/010#)	N RESET CHANNEL-READY FLOP	1
399000 400000	MICRO RDA	(OPC/D#+COM/OD88#)	N RESET DEVICE ADAPTER	Nł.
402000 403000	MICRO RIL	(OPC/2#+XCOM/001#)	N RESET INTERRUPT LATCH	14
405000 406000	MICRO RPC	(OPC/5#+XCOM/002#)	\ READ-ONLY PARITY CHECK	1
408000 409000	MICRO RRB	(OPC/2#+XCOM/002#)	V RESET REGISTER BUSY	1
410000 411000	MICRO RSD	(OPC/O#+COM/0080#)	N RESET DIAGNOSTIC MODE	¥ł.
MODEL: MPI REVISIONI			RTL/6000 FILE (Dictionary Sect	ED11 TLON

RTL/6000 FILE EDIT DICTIONARY SECTION

		DICTIONARY 5	ECTION
LINE #			
412000			
413000 MICRO RST	(OPC/2#+XCOM/084#)		
414000	(GFC/291ACOM/0849)	V RESET BUS STATUS	14
415000			
416000 MICRO RTN	(OPC/6#+TST/8#)	\ GO TO RETURN REGISTER	11
417000			
418000			
419000 MICRO SHA	(OPC/0#+COM/0002#)	V SET BUS ACK	NF .
420000			.,
421000			
422000 M1CRO SCR	(OPC/2#+COM/0018#)	SET CHANNEL READY FLOP	NF.
423000		C SET CHANNEL READY FLOP	14
424000			
425000 MICRO SEF	(OPC/0#+COM/0800#)	V SET ERROR AND STATUS FLOP	
426000		S OLI ERROR AND STRIUS PLOP:	> \;
427000			
428000 MICRO SPT	(OPC/5#+COM/0080#)		
429000	(OFC/ ># (CUM/ OUBU#)	SET 5. P. TEST MODE	11
430000			
431000 MICRO SKB 432000	(OPC/2#+XCDM/004#)	SET REGISTER-BUSY FLOP	14
433000			
434000 MICRO SRIA	· (L/1#)	N DELIVER ALU RESULT TO A-OF	× 1
435000			••
436000			
437000 MICRO 55PA	(OPC/4#+AOP/2#+E/0#	+T/0#1 \ SET S-P ADURESS UP	
438000		COLL DAY HODKEDS OF	11
439000			
440000 MICRO 55PA	1 (OPC/4#+ADP/3#+E/0	HAT (OH) ASET INCOME C. D	
441000		#+T/O#} \SET INDEXED S+P. AUD	11
442000			
443000 HICRO 5TO	(OPC/0#+COM/0180#)		
444000	[0PC/0##C0#/0180#]	N SET DIAGNOSTIC MODE	11
445000			
446000 MICRO SUB			
447000 MICRO 308	(OPC/3#+ALU/OC#)	ALU = AOP MINUS BOP	M
448000			
449000 MICRO TACK	(TCOM/07#) \ TES'	T ACKRSP+DD+ BUS ACK RESPONSE	1.
450000			
451000			
452000 MICRO TADB	(TCOM/14#) \TEST	BUSYXX+30+ADAPTER BUSY	NF .
453000		ETTER PROFILE	
454000			
455000 MICRO TAHR	(ICOM/DOA) STEST	HOTSRU+00 ADAP HARD HEJ	
456000	(TEST	HOISRUTUURUAP HARD REU	14
457000 458000 MICRO TAXO	(TCON/044)		
458000 MICRO TAXO	(TCOM/06#) V TEST	ALUAXO-DO. A-OP MUX BIT D OUT	Ni -
458000 M1CRD TAXO 459000	(TCOM/08#) \ TEST	ALUAXO-DO. A-OP MUX BIT D OUT	\ ;
458000 M1CRD TAX0 459000 460000			
458000 MICRO TAXO 459000 460000 461000 MICRO TAXL		ALUAXI-00+ A-0P MUX BIT 1 OUT	
458000 M1CRD TAX0 459000 460000 461000 M1CR0 TAX1 462000			
458000 MICRO TAXO 459000 460000 461000 MICRO TAXI 462000 463000	(TCOM/09#) \ TEST	ALUAXI-CO, A-OP MUX BIT 1 OUT	4
458000 MICRO TAXO 450000 460000 461000 MICRO TAXI 462000 463000 464000 MICRO TAX2	(TCOM/09#) \ TEST	ALUAXI-CO, A-OP MUX BIT 1 OUT	4
458000 M1CR0 TAX0 459000 480000 481000 M1CR0 TAX1 482000 483000 484000 M1CR0 TAX2 485000	(TCOM/09#) \ TEST		4
458000 M1CR0 TAX0 459000 460000 M1CR0 TAX1 462000 M1CR0 TAX1 463000 M1CR0 TAX2 465000 M1CR0 TAX2 465000	(ТСОМ/09#) \ ТЕST (ТСОМ/04#) \ ТЕST	ALUAXI-CO, A-OP MUX BIT 1 OUT	4
458000 M1CR0 TAX0 459000 460000 M1CR0 TAX1 462000 M1CR0 TAX1 463000 M1CR0 TAX2 465000 M1CR0 TAX2 465000	(TCOM/09#) X TEST (TCOM/0##) X TEST	ALUAXI-CO+ A-OP MUX BIT 1 OUT ALUAX2-CO+ A-OP MUX BIT 2 OUT	\4 \4
458000 M1CR0 TAX0 459000 480000 481000 M1CR0 TAX1 482000 483000 484000 M1CR0 TAX2 485000	(TCOM/09#) X TEST (TCOM/0##) X TEST	ALUAXI-CO, A-OP MUX BIT 1 OUT	\4 \4

08/01/77 12.005 PAGE: 11 DUC+#:

43

4,159,532

MODEL: MPDC-REV30 REVISION: 000+00	4 4 4 4	RTL/6000 FILE EDIT DICTIONARY SECTION
LINE # 468000	i	
469000 470000 MICRO TAX4 471000	(TCDH/OC#) \ TEST ALUAX4+0	D+ A-OP MUX HIT 4 OUT 14
472000 473000 MICRO TAXS 474000	(TCOM/OD#) \ TEST ALUAX5-0	OF A-OP MUX BIT 5 OUT /6
475000 476000 Micro Tax6 477000	(TCOM/DE#) \ TEST ALUAX6-0	04 A-OP MUX BIT 6 DUT 11
478000 479000 MICRO TAX7 480000	(TCOM/OF#) \ TEST ALUAX7+0	IC+ A-OP MUX BIT 7 OUT \1
481000 482000 MICRD TOCA 483000	(TCOM/01#) \TEST SHRCOM+00	BUS CYCLE ACTIVE \
484000 485000 M1CRO TBSY 486000	(TCOM/18#) \ TEST BORBSY+0	0+ BDR BUSY INDICATOR \1
487000 488000 MICRO TBYT 489000	TCONVICA: TEST BBAD23+00	BYTE MODE \1
490000 491000 MICRO TCOT 492000	(TCOM/05#) \ TEST ALUCOT+(00+ ALU CARRY-OUT LINE \1
493000 494000 HICRO 70CH 495000	TCOM/17#1 ATEST MYDCNN+D	DI MY DON 1
496000 497000 HICRO TEUF 498000	(TCDH/04#) \ TEST ALUEDF+	00+ ALU DUTPUTS ARE FF \1
499000 500000 MICRO TEQZ 501000	TCOM/03#1 \TEST ALUEQZ+0	DALU EQUALS OD 1
502000 503000 M1CRO TERR 504000	(TCOM/16#) \ TEST MEMERR+	00+ DMA-CYCLE ERR FLAG \1
505000 506000 MICRO TFO 507000	(0PC/6#+T5T/2#) \ 1F T	EST#1+ SKIP NEXT WORD \\$
508000 509000 MICRO TFZ 510000	(OPC/6#+T57/1#) \ IF T	EST#0+ SKIP NEXT WORD \
511000 512000 MICRO TIN 513000	T (TCOM/1A#) \ TEST RESINT+	00+ RESUME INTERRUPT 11
514000 515000 MICRO TNA 516000	<pre>({TCOM/18#) \ TEST NAKRSP+</pre>	00+ NAK INDICATOR LINE \\$
517000 518000 MICRO TND 519000	R (TCOM/15#) \TEST NOTSRO+0	DINON-DATA REQUEST
520000 521000 M1CRO TNB 522000	R (TCOM/18#) \ TEST NORQT3+	001 ND BUFFER REQUEST \\$
523000		
MODEL: MPDC-REV3D Revision: 000.00		RTL/6000 FILE EDIT Dictionary Section

NODELI MPDC-REV3D REVISIONI 000.00

LINE # 524000 HICRO TORH (TCOH/16#) 525000 527000 HICRO TORZ (TCOH/10#) 528000 528000 HICRO TPTY (TCOH/10#) 530000 HICRO TPTY (TCOH/17#) 532000 532000 S32000 TEST OFRNGZ-00. OFFSET RANGE HISTORY .. V TEST OFREVL-00+ OFFSET RANGE ZERO VI 1 TEST BSPYCK+00+ BUS PARITY CHECK 1 V TEST BSOLTO-00+ OLT OUTPUT LINE M 534000 535000 536000 M1CRO TREQ (TCOM/06#) 537000 V TEST CREREG+00+ CHANNEL REQUEST - 14 538000 539000 MICRO TRGZ (TCOM/11#) V TEST EORXXX+00+ RANGE EDUALS ZERO VI 540000 541000 542000 MICRO TR5P (TCDM/02#) 543000 544000 545000 MICRO TSAW (TCDM/13#) V TEST BSRSVP+30+ BUS RESPONSE REQU. VI 544000 544000 544000 546000 546000 546000 547000 546000 548000 548000 548000 550000 560000 560000 560000 560000 560000 560000 560000 560000 560000 560000 560000 560000 560000 560000 TEST SPAWRP+00+SPA WRAPAROUND M 576000 577000 578000 MICRO UPIRÚ8 579000 (UPCSO8/1#) \ SET UPCS WORD BIT ON FOR LRC \}

44

08/01/77 DUC++1

12.605 PAGE: 12

12.605 PAGE: 13 08/01/77 DUC+#:

45	4,159,532	46	
HODEL: MPDC-REV3: REVISION: 000.00	RTL/6000 FILE EDIT Dictionary Section	08/01/77 JUC:	12.005 PAGE: 14
LINE #			
580000 581000 MTCRO UPIRO9 (UPC509/1#)	N SET UPCS WORD BIT 09 FOR LRC NI		
582000			
583000			
584000 MICRO UPIRLO (UPCS10/1#) 585000	V SET UPCS WORD BIT LO FUR LHC VI		
586000			
587000 M1CR0 UPIR11 (UPC511/1#)	SET UPCS WORD BIT 11 FOR LRC N#		
588000			
589000 590000 MICRO UPIR12 (UPC512/1#)	V SET UP:5 WORD BIT 12 FOR LRC VI		
591000			
592000	V SET UPCS WORD BIT 13 FOR LRC VI		
593000 MICRO UPIRI3 (UPC513/1#) 594000	V SET UPCS WORD BIT 13 FUR LRC VI		
595000			
596000 MICRO UP[R14 (UPC514/1#)	A SET UPCS WORD BIT 14 FOR LRC AN		
597000 598000	·		
599000 MICRO UPIR15 (UPCS15/1#)	V SET UPCS WORD BIT 15 FOR LRC VI		
600000			
601000	COMBINED MWT & DMA DELAYED 1		
602000 HICRO WDA (0PC/5#+5COM/82#) 603000	(COMBINED HAT & DAW DECUTED (1		
604000			
605000 M1CRO WIA (OPC/5#+SCOM/CO#)	V COMBINED MWT & IMA DELAYED VI		
606000 607000			
608000 MICRO XFA (0PC/3#+ALU/1F#)	N XFER A-OP TO ALU DUTPUTS NI		
609000			
610000 611000 MICRO XFB (OPC/3#+ALU/15#)	X XFER B-DP TO ALU OUTPUTS 1		
612000 MILKO KAB (000) SETADO 1981			
613000			
614000 H1CRO XNR (OPC/3#+ALU/13#)	ALU = AOP/XNOR/BOP 1		
615000 616000			
617000 MICRO XOR (OPC/3#+ALU/OD#)	ALU = AOP/XOR/BOP \1		
618000			
619000 620000 MICRO ZER (DPC/3#+ALU/07#)	ALU = ZERO NI		
621000			
622000 SK 1P HOF	ŧ		
MODEL: MPDC-REV30 REVISION: 000.00	RTL/6000 FILE EDIT Dictiumary Section	08/01/77 DUC+#:	12.605 PAGE: 15

LINE #

623000									
624000					****	DOLMTE			
625000	N		HAR	DWAHE	IF2:	POINTS			
626000	Λ.								
627000	N	THE FOLLOWING L		GIVES	TEST	PJINIS	PUR	STOUTLICA	
628000	۸.	REGISTER OUTPUT	5-						
629000	۸.								
630000	Υ.								
631000	١.			ACU	MULATO	JR			
632000	١.								
633000	١.			AC0+0					
634000	1			AC1+0					
635000	×			AC2+0					
636000	×		ALU:	AC3+0	0				
637000	\			AC4+0					
638000	× 1		ALU	AC5+0	0				
639000	<u>۱</u>		ALU	AC6+0	0				
640000	1		ALU	AC7+0	0				
641000	Ň								
642000	Ň								
643000	Ň		SC.	RATCH	PAD	MEMORY			
644000	Ň								
645000	Ň	(INDEX MODE)	5PM	ICF+D	0				
646000	Ň								
647080	Ň	(ADDRE55		A50+0					
548000	1	SELECTORI	SPM	A51+0	0				
649000	Υ.								
650000	1	ADDRESS		AC0+0					
651000	1	COUNTER)	5PM	AC1+0	0				
652000	×			AC2+0					
653000	Ň		5PM	AC3+0	0				
654000	× 1			AC4+0					
655010	1		5PM	AC5+0	0				
656000	N			AC6+0					
657000	ν.		SPM	MC7+0	00				
658000	1								
659000	<u>۱</u>								
660000	N	IMEMORY		10T0+1					
661000	<u>۱</u>	OUTPUTS		IOT1+1					
662000	<u>۱</u>			OT 2 + 1					
663000	×			IOT 3+ 1					
664000	Ň			IDT 4+ 1					
665000	Ň			1075+1					
666000				40T6+1					
667000	1		SPA	1017+1	10				
668070									
669010	Ň								

671000 SKIP HOF

WODEL: MPDC-REV30 REVISION: 000.00

HTL/6000 FILE EDIT DICTIONARY SECTION

;

LINE # 672000 673000 674000 675000

672000			
673000			
674000	Υ	HARDWARE TEST POINTS (CONT.)	``
675000			
676000	`	BUS DATA REGISTER	,
677000	,		<u>۱</u>
678000	,	MYAD16+00	1
679000		MYAD17+00	Ň
680000	×	MYAD18+00	`
681000	\$	MYAD19+00	`

08/01/77 DUC.#:

12.005 PAGE: 16

			4,159,5	52
			47	
MODEL: M			HTL/6000 FILE	FOIT
REVISION	: 000	.00	UICTIONARY DE	
LINE #			-continue	
682000			MYA020+00	-
683000	N.			N.
684000	<u> </u>		HYAD21+00	`
685000	<u> </u>		NYA022+00	N N
686000	1		MYAD23+D0	`
687000				
688000				
689000				
690000				
691000				
692000			BDC CHANNEL NUMBER	
693000	ì			<pre>\</pre>
694000	``			•
695000	λ.	BUS ADDRESS BIT		1
696000	``	Bee Abbilets DI		`
697000	÷.	0 g	BSASW1+00 HEX ROTARY SWITCH	
698000	Ň	09	85A5W2+00 HEX ROTARY SWITCH	2
699000	,	10	BSASW3+DD HEX ROTARY SWITCH	
700000	Ś	11	85ASW4+00 HEX ROTARY SWITCH	
701000	÷	12	BSASW5+00 HEX ROTARY SWITCH	
702000	- N	13	BSA5W6+00 HEX ROTARY SWITCH	,
703000	Ň	14	BSA5W7+00 HEX ROTARY SWITCH	
704000	Ň	15	M5B OF ADAPTER PORT NUMBER	
705000	· ·	16	LSB OF ADAPTER PORT NUMBER	
706000	Ň	17	DIRECTION OF DATA TRANSFER. 0 = INPUT	
707000				
708000	SKIP	HOF		

MODEL: MPOC-REV3D REVISION: 000.00

RTL/6000 FILE EDIT DICTIONARY SECTION

				<i>D</i>iiiiiiiiiiiii	000.10
LINE #					
709000					
710000					
711000					
71,2000	•	DEFINIT	ION OF CON	TROL-BYTES MAINTAINED FOR EACH OF	
713000	Ň	THE ACT	IVE CHANNE	IS.	2
714000					
715000	Ň				
716000					2
717000				DMA FLAG BYTE	N N
718000				(DMA1)	<u> </u>
719000				(DART)	
720000					``
721000	\DE!	FINITON-			
722000					×
723000	``	BITO	RESPONS	E REQUIRED . IS SET OR RESET BY TH	- .
724000			BUS REO	UEST ROUTINE ACCORDING TO THE	
725000	Ň		DIRECTI	ON BIT.	N N
726000				04 01/1	١
727000	、 、	817 1	- UNUSED		
728000			0		`
729000	×	ATT 2	- IMPLIED	SEEK HIT: SET WHEN PERFORMING A	
730000			TRACK O	R CYLINDER LING ON A SEARCH OPERAT	
731000				CIEFODER EINE DIE A BEARCH OPERAL	10N /
732000	×	BIT 3	· LONORE	READ ERRORS. THIS BIT IS SET IN ORI	
733000			TO READ	PACKS FORMATED WITH THE H-716 FOR	JER
734000				FACES FORMATED WITH THE HAVES FOR	MAT \
735000	``	81T 4	- UNUSED		
736000	,		UNUSED		<u>۱</u>
737000	1	817 5	- UNUSED		
738000			UNUSED		``
739000	ι.	B11 6	- UNUSED		
740000	•		0.00000		<u>۱</u>
741000	ν.	817 7	- UNUSED		
742000	•		5		1
	SKIP HO	F			
					1

MODEL: MPDC-REV3D REVISION: 000.00

LINE # 744000

RTL/6000 FILE EDIT DICTIONARY SECTION

745000					
746000					
747000	× 1			CHANNEL MONITUR FLAGS	
748000				(MON1)	<u>\</u>
749000				(1011)	١
750000	1	DEFINI	TIUN-		
751000					١
/52000	× 1	8	ιτ υ -	- INTERRUPT PENDING, IS SET BY THE INTERRUPT	
/53000		-	-	SUBROUTINE WHEN AN INTERRUPT 15 NAK "U.	
754000				The second second second second	`
755000				THIS BIT IS RESET BY THE RESUME INTERRUPT	
756000	·			SUBROUTINE WHEN THE INTERRUPT IS ACK+D	1
757000				The second second second second	`
758000	1			THIS BIT IS ALSO RESET WHEN EXECUTING A STOP	
759000	Ň			1/0 OR WHEN INITIALIZING.	
760000				2 1 1 1 1 1 1 1 1 1 1	١
761000		В.	17.1	CHANNEL BUSY 15 SET BY THE BUS REDUEST	
762000				ROUTINE WHEN A START-UP FUNCTION CUDE	`
763000				ITASKIIS DETECTED.	ì
764000					`
765000	Δ.			THIS BIT IS RESET BY THE INTERRUPT OR RESUME	1
766000				INTERRUPT SUBROUTINES.	~
767000					`
768000				THIS BIT IS ALSO RESET WHEN EXECUTING A STOP	、
769000				I/O OR WHEN INITIALIZING.	ì
770000					`
771000		81	T 2 -	STOP 1/0. IS SET BY THE BUS REQUEST ROUTINE	x
772000				WHEN A STOP 1/0 COMMAND IS DETECTED.	Ň
773000					
774000				THIS BIT IS RESET BY THE INTERRUPT ROUTINE	Υ.
775000	Ň			OR BY THE RESUME INTERRUPT SUBROUTINE WHEN	Ň
776000	N .			THE INTERRUPT IS ACKID. IT IS RESET BY THE	Ń
777000	<u>۱</u>			INTERRUPT ROUTINE IF THE INTERRUPT LEVEL IS	Ň
178000	×			ZERO.	Ń
779000					
780000	×			THIS BIT IS ALSO RESET WHEN INITIALIZING	Υ.
781000					
782000	2KIb	ноғ			;

48

48 08/01/77 DUC:	12.005	PAGE :	i6
08/01/77 DOC.₽:	12.605	PAGE I	17

08/01/77 12.605 PAGE: 18 DUC.#:

ODEL: M	PDC-RI	EV30			RTL/6000 FILE	FDIT
EVISION					DICTIONARY SEC	TION
INE #						
783000						
784000						
785000				_		
786000	<u>۱</u>	ç	HANNI	EL	MONITOR (MON1) DEFINITION (CON+T.)-	<u>۱</u>
787000	<u>۱</u>					<u>۱</u>
788000	۱.					N
789000	<u>۱</u>		81T	3	- SEEK ACTIVE BIT. IT IS SET BY THE SEEK	
790000					ROUTINE AND IS USED BY THE POLLING LOOP	
791000					IN ORDER TO DETERMINE WHEN TO SEND AN	
792000					INTERRUPT AT THE COMPLETION OF A SELK.	<u>۱</u>
793000						
794000	<u>۱</u>		811	4	- INTERRUPT STORED, IS SET WHEN AN INTERRUPT	
795000					CAN NOT BE SENT BECAUSE THE INTERFACE LOGIC	
796000					IS LOADED TO EXECUTE A READ OR WRITE OPER-	
797000					ATION . THE BIT IS RESET WHEN THE INTERRUPT	
798000					15 SENT AFTER THE INTERFACE BECOMES NON BUSY	Υ.
799000						
800000	١		81 T	5	RECALIBRATE OPERATION. IS SET IN ORDER TO	1
801000	۱ ا				SELECT PLATTER ZERO TRACE ZERO AT THE	1
802000	١				COMPLETION OF A RECALIBRATE OPERATION	<u>۱</u>
803000						
804000	<u>۱</u>		8[7	6	- UNUSED	<u>۱</u>
805000						
806000	×		6 I T	7	- UNUSED	Υ.
807000			-			
808000	SUID	HOF				:

49

MODEL: MPDC-REV30 REVISION: 000.00 RTEADOS FILE EDIT DICTIONARY SECTION 12.605 PAGE: 20 DUCAN LINE # 809000 A0PS 810000 ----811000 812000 AU A1 A2 AU AL AZ A3 SRIAN SRIA NMN NMN
 AU
 AI
 AZ
 A3
 SRIA
 NMN
 SRIA
 NMN

 U
 U
 0
 0
 ACCUMULATOR
 AACU
 - ACCUMULATOR
 AACU

 U
 U
 0
 1
 S.P. MEMORY
 ASPM
 S.P. MEMORY
 ASPM

 U
 U
 1
 0
 S.P. MEMORY
 ASPM
 S.P. MEMORY
 ASPM

 U
 U
 1
 0
 S.P. ADDRESS
 ASPA
 S.P. MEMORY
 ASPA

 U
 1
 1
 NDEX
 REG.
 AIDX
 S.P. MEMORY
 ASPA

 U
 1
 0
 AADP DATA
 REG.
 AADA
 AADA
 AADA

 U
 1
 0
 AADP DATA
 ACGU
 AADA
 AADA
 AADA
 AADA

 U
 1
 0
 AADA PSTATS
 I
 AADA
 AADA
 AADA
 AADA

 U
 1
 ADAS DATA
 ADUT
 ABUS1
 BUS REG.
 IN
 ABUS1

 U
 1
 AD 813000 814000 815000 816000 817000 818000 820000 822000 822000 823000 823000 825000 826000 826000 831000 832000 833000 833000 834000 834000 834000 x BOP5 60 B1 0 0 ACCUMULATOR 0 l S-P. MEMORY 1 0 BUS STATUS 1 l USED TO DEFINE A CONSTANT FOR BOP BACU BSPM 638000 839000 840000 B851 ١
 841000
 1

 842000
 842000

 843000
 CYCLI

 844000
 BYE

 845000
 DFF1

 845000
 DFF1

 845000
 1

 845000
 2

 850000
 2

 850000
 2

 850000
 3

 851000
 4

 852000
 5

 852000
 5

 852000
 5

 852000
 5

 855000
 855000

 855000
 5
 841000 EOR READ INPUT RNG WRT WRT READ HEAD W/SINGLE ADD FLD1 FLDN FLD1 FLDN BYTE STORD ETC. V CYCLE DEFINITION 0 - CYCLE 1 - MEMORY REF. 2 - RESPONSE RED. 3 - 2ND HALF READ 4 - BYTE HODE 5 - READ 6 - WRITE 7 - RFU 01100010 0 0 0 1 0 0 1 0 0 0 100 00×100 000100 0 X 0 1 0 100000 ١ ŧ MODEL: MPDC-REV30 REVISION: 000.00 RTL/6000 FILE EDIT DICTIONARY SECTION 08/01/77 DOC+#: 12.605 PAGE: 21 LINE # 858000 \ 0 - MISCELLANEOUS 859000 OPERATION 860000 OPERATION 860000 OPERATION 863000 0 I 863000 ND OPERATION 0 0 865000 ND OPERATION 0 0 865000 SET ERRAD PATH 0 0 866000 SET ERRAD PATH 0 0 869000 ENABLE WAT PATH 0 0 870000 OSBL HOWR DATA PATH 0 0 871000 CRABL WAT PATH 0 0 871000 CRABL MORE OF 0 0 872000 SFT DIAG, MODE 0 0 872000 SFT DIAG, MODE 0 0 873000 HALT 0 0 UP1R+ BITS 00 - 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 NMA
 NO OPERATION
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NDF 0 0 CLH 0 0 SEF 0 0 ERF 0 1 EWF 0 0 JHF 0 0 KSU 0 0 STC 0 0 HLT \

	51	
DDEL: MPC EVISION:		6000 FILE EDIT
INE #		-continued
884000 885000	1 - RESERVED	Ň
886000 887000	V 2 - BUS LOGIC	N
688000 889000	OPERATION UPIR+ BITS 00 - 15	
890000 891000	0 1 2 3 4 5 6 7 8 9 10 11 12 1	
892000 893000	INC.ADDR CNTR 010000001000000 RESET STATUS 0100000000000000000000000000000000000	0 0 0 IAC 0 0 0 RST
894000 895000	DECR. RNG CNTR 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 CYC
896000 897000	SET CHNL RDY 0100000000000000000000000000000000000	0 0 0 5CH 0 0 0 RCH
898000	SET REG. BUSY 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 SRM 0 1 0 RRM
899000 900000	RST INTRPT LTCH 0 1 0 0 0 0 0 0 0 0 0	0 0 1 AJL 1 1 0 CLH \
901000 902000		
903000	SKIP HOF	
ODEL: NM EVISION:		76000 FILE EDIT
INE #		
904000	\ \ 3 - ALU	Ň
906000		
907000 908000	OPERATION UPIR+ BITS 00 - 15 01234567891011121	3 14 15 NMN
909000 910000		L AO ANT
911000 912000	ZERO 011A1A2A3 80 81 C 5 0 0 1	L 1 AO BNT 1 1 AO ZEH
913000 914000	ADP 0 1 1 A1 A2 A3 80 81 C 5 1 C 1 BDP 0 1 1 A1 A2 A3 80 81 C 5 1 0 1	1 1 AO XFA D 1 AO XFB
915000	NOR 011 A1 A2 A3 B0 B1 C 5 0 0 0 NAND 011 A1 A2 A3 B0 B1 C 5 0 1 0	L L AO NOR D L AO NND
917000	EX OR 0 1 1 A1 A2 A3 B0 B1 C 5 0 1 1	D LAD XOR 1 1 AG XNR \
919000		1 1 AO AND
920000 921000	OR 0 1 1 A1 A2 A3 80 81 C 5 1 1 1	D 1 AO ORR D 0 AO INC
922000 923000	DECR AOP 0 1 1 A1 A2 A3 B0 B1 C 5 1 1 1	L O AO DEC O O AO SUB
924000		L O AO ADD
925000		
925000 926000 927000	LET SHIFT AOP 0 1 1 A1 A2 A3 B0 B1 C 5 1 1 0 CARRY DUT IN 0 1 1 A1 A2 A3 B0 B1 1 5 X X X	O O AD LSH X X AD COTI
925000 926000 927000 928000 929000) LFT SMIFT AOP O 1 1 A1 A2 A3 BO B1 C 5 1 1 O O CARRY OUT IN O 1 1 A1 A2 A3 BO B1 1 5 X X X O STR RSLT AOP O 1 1 A1 A2 A3 BO B1 C 1 X X X O N	
925000 926000 927000 928000 928000 931000 931000) L PT SHIFT AOP O 1 1 AL A2 A3 BO BL C 5 1 1 O O CARRY OUT IN O 1 L AL A2 A3 BO BL S X X X O STR RSLT AOP O 1 L AL A2 A3 BO BL C L X X X O STR RSLT AOP O 1 L AL A2 A3 BO BL C L X X X O SK1P HOF PDC-REV3D RT	X X AD COTI
925000 926000 927000 928000 929000 930000 931000 931000 400EL: M ^E REV1510N1) ЦРТ SHIFT AOP 0 1 1 AL A2 A3 B0 BL C 5 1 1 0 C CARRY DUT IN 0 1 AL A2 A3 B0 BL C 5 1 X X X STR RSLT AOP 0 1 L AL A2 A3 B0 BL C L X X X STR RSLT AOP 0 1 L AL A2 A3 B0 BL C L X X X N SK1P HOF PDC-REV3D RT 0 000-00 D1	X X AD COTI X X AD SH]A 3 1/6000 File EDIT
925000 927000 927000 928000 928000 931000 931000 931000 931000 931000 931000 931000 931000 931000 934000	С Т SHIFT AOP 0 1 1 AL A2 A3 B0 BL C 5 1 1 0 C CARPY DUT IN 0 1 AL A2 A3 B0 BL S X X X STR RSLT AOP 0 1 L AL A2 A3 B0 BL C L X X X STR RSLT HOF PDC-REV3D RT 1 000-D0 PL 4 - CONSTANT	X X AD COTI X X AD SH]A 3 1/6000 File EDIT
925000 927000 927000 928000 930000 931000 931000 931000 932000 933000 935000 935000	0 0 1 1 1 2 43 80 81 C 1 0 0 1 1 1 2 33 80 81 5 X<	X X AD COTI X X AD SH]A 3 1/6000 File EDIT
925000 922000 927000 927000 930000 930000 931000 931000 931000 935000 935000 935000 935000 935000 935000	0 1 STR STR </td <td>X X AD COTI X X AD SHIA I L/6000 FILE EDIT CTIOMARY SECTION 13 14 15 NMA 0 C C LCA</td>	X X AD COTI X X AD SHIA I L/6000 FILE EDIT CTIOMARY SECTION 13 14 15 NMA 0 C C LCA
925000 922000 922000 923000 930000 931000 931000 931000 931000 932000 935000 935000 935000	0 1 1 1 1 2 43 80 81 C 1 0 0 1 1 1 2 43 80 81 5 X </td <td>X X AD COTI X X AD SHIA 5 L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMN</td>	X X AD COTI X X AD SHIA 5 L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMN
925000 922000 922000 930000 930000 931000 10DEL: M ¹ IEVISION INE # 932000 933000 935000 935000 935000 939000 939000 939000 939000	0 1 Simplefication 1 1 1 1 2 3 80 81 C 1 1 0 1 1 1 2 3 80 81 5 X	X X AD COTI X X AD SHIA J L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMM 0 C C LCA 1 C C ACA
925000 927000 927000 927000 930000 930000 931000 10DEL: M ¹ HEV1510M1 1NE # 932000 935000 935000 935000 935000 939000 939000	L PT SHIFT AOP 0 1 1 AL A2 A3 B0 BL C 5 1 1 0 C CARPY DUT IN 0 1 1 AL A2 A3 B0 BL S X X STR RSLT AOP 0 1 1 AL A2 A3 B0 BL C 1 X X X STR RSLT AOP 0 1 1 AL A2 A3 B0 BL C 1 X X X STR RSLT AOP 0 1 1 AL A2 A3 B0 BL C 1 X X X STR RSLT AOP 0 1 1 AL A2 A3 B0 BL C 1 X X X STR RSLT AOP 0 1 1 AL A2 A3 B0 BL C 1 X X X D SK1P HOF IPDC-REV3D RT D SK1P HOF OPERATION D 1 2 3 4 5 6 7 8 9 10 11 12 LOAD CONSTANT 1 0 0 A1 A2 A3 C C C C C 0 C AND CONSTANT 1 0 0 A1 A2 A3 C C C C C 1 C OR CONSTANT 1 0 0 A1 A2 A3 C C C C C 1 C V 5 - MEMORY	X X AD COTI X X AD SHIA J L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMM 0 C C LCA 1 C C ACA
925000 926000 922000 928000 931000 931000 931000 931000 935000 935000 935000 935000 935000 935000 935000 935000 935000 935000 935000 935000 935000 941000 941000 945000	L PT SHIFT AOP 0 1 1 AL AZ A3 80 BL C 5 1 1 0 C CARPY DUT IN 0 1 1 AL AZ A3 80 BL S X X X STR RSLT AOP 0 1 1 AL AZ A3 80 BL S X X STR RSLT AOP 0 1 1 AL AZ A3 80 BL C 1 X X X STR RSLT AOP 0 1 1 AL AZ A3 80 BL C 1 X X X STR RSLT AOP 0 1 1 AL AZ A3 80 BL C 1 X X X D SK1P HOF PDC-REV3D RT D OPERATION D 1 Z 3 4 5 6 7 8 9 10 11 12 LOAD CONSTANT L 0 AL AZ A3 C C C C 0 C OR CONSTANT 1 0 0 AL AZ A3 C C C C 1 C OR CONSTANT 1 0 0 AL AZ A3 C C C C 1 C S - HEMORY OPERATION UPIR+ BITS 00 = 15	X X AO COTI X X AO SHIA ; ; L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMA 0 C C LCA 0 C C LCA 0 C C OCA \
925000 926000 922000 928000 931000 931000 931000 931000 935000 935000 935000 935000 935000 935000 935000 935000 935000 935000 935000 935000 935000 935000 935000 935000 935000 941000 944000 944000 945000 940000 940000 940000 940000 940000 940000 940000 940000 940000 940000 940000 940000 940000 940000 940000 940000 940000 940000 940000 9400000 9400000 9400000 9400000 9400000000	Lift SHIFT AOP 0 1 1 AL A2 A3 B0 BL C 5 1 1 0 C CARPY DUT IN 0 1 1 AL A2 A3 B0 BL S X X STR RSLT AOP 0 1 1 AL A2 A3 B0 BL C 1 X X X STR RSLT AOP 0 1 1 AL A2 A3 B0 BL C 1 X X X STR RSLT AOP 0 1 1 AL A2 A3 B0 BL C 1 X X X D SK1P HOF PDC-REV3D PDC-REV3D D SK1P HOF D CARPY OUT D L 2 3 4 5 6 7 8 9 L0 L1 12 D D L 2 3 4 5 6 7 8 9 L0 L1 12 LOAD CONSTANT LOAD CONSTANT LOAD CONSTANT LO AL 2 3 4 5 6 7 8 9 L0 L1 12 C D 2 3 4 5 6 7 8 9 L0 11 12	X X AO COTI X X AO SHIA ; L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMN 0 C C LCA 1 C C ACA 0 C C QCA \ 13 14 15 NMN 0 0 AO MWT
925000 922000 922000 923000 930000 931000 931000 931000 933000 933000 933000 933000 933000 935000 939000 939000 939000 934000 945000 945000 945000 945000	Lift SHIFT AOP 0 1 1 AL A2 A3 B0 BL C 5 1 1 0 CARPY DUT IN 0 1 1 AL A2 A3 B0 BL S X X STR RSLT AOP 0 1 1 AL A2 A3 B0 BL C 1 X X X STR RSLT AOP 0 1 1 AL A2 A3 B0 BL C 1 X X X STR RSLT AOP 0 1 1 AL A2 A3 B0 BL C 1 X X X DSTR RSLT AOP 0 1 1 AL A2 A3 B0 BL C 1 X X X DSTR RSLT AOP 0 1 1 AL A2 A3 B0 BL C 1 X X X DSTR RSLT AOP 0 1 1 AL A2 A3 B0 BL C 1 X X X DSTR RSLT AOP 0 1 1 AL A2 A3 B0 BL C 1 X X X DSTR RSLT AOP 0 1 1 AL A2 A3 B0 BL C 1 X X X DDC-REV3D RT DDC-REV3D D 1 2 3 4 5 6 7 8 9 10 11 12 D 1 2 3 4 5 6 7 8 9 10 11 12 LOAD CONSTANT LOAD CONSTANT 1 0 0 A1 A2 A3 C C C C C 0 C OR CONSTANT 1 0 0 A1 A2 A3 C C C C C 1 C OR CONSTANT 1 0 0 A1 A2 A3 C C C C C 1 C OPERATION UPIR, BITS 00 = L5 0 1 2 3 4 5 6 7 8 9 10 11 12 OPERATION UPIR, BITS 00 1 1 12 DT NCR SP ADDR 1 0 1 AL A2 A3 L 0 0 0 0 0	X X AO COTI X X AO SHIA J L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMA 0 C C LCA 1 C C ACA 0 C C OCA \ 13 14 15 NMA 0 O AO MWT 0 O AO MWT 0 O D DMA
925000 922000 922000 923000 930000 931000 931000 931000 933000 933000 933000 933000 933000 935000 936000 945000 945000 945000 951000	0 1 1 1 1 1 2 3 80 81 C 1 0 1 1 1 2 3 80 81 5 X <td>X X AO COTI X X AO SHIA 3 L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMA 0 C C LCA 1 C C ACA 0 C C OCA 1 C C OCA 1 C C OCA 0 C OCA 0 O AO MWT 0 O AO MWT 0 O AO WTA 0 O AO WDA</td>	X X AO COTI X X AO SHIA 3 L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMA 0 C C LCA 1 C C ACA 0 C C OCA 1 C C OCA 1 C C OCA 0 C OCA 0 O AO MWT 0 O AO MWT 0 O AO WTA 0 O AO WDA
925000 922000 922000 923000 931000 931000 931000 931000 931000 933000 933000 935000 935000 940000 945000 945000 945000 945000 9550000 9550000	0 1 1 1 1 1 1 2 3 80 81 C 1 0 0 1 1 1 2 3 80 81 5 X <td>X X AO COTI X X AO SHIA J L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMN 0 C C LCA 1 C C ACA 0 C C UCA \ 13 14 15 NMN 0 0 AO MWT 0 0 0 DMA 0 0 AO MIA</td>	X X AO COTI X X AO SHIA J L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMN 0 C C LCA 1 C C ACA 0 C C UCA \ 13 14 15 NMN 0 0 AO MWT 0 0 0 DMA 0 0 AO MIA
925000 922000 922000 923000 92000 931000 931000 931000 931000 931000 931000 932000 932000 932000 932000 932000 932000 932000 932000 940000 940000 944000 944000 944000 945000 951000 951000 951000	0 1 1 1 1 1 2 3 80 81 C 1 0 0 1 1 1 2 3 80 81 5 X <td>X X AO COTI X X AO SHIA 3 L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMA 0 C C LCA 1 C C ACA 0 C C OCA 1 C C OCA 1 C C OCA 0 C OCA 0 O AO MWT 0 O AO MWT 0 O AO WTA 0 O AO WDA</td>	X X AO COTI X X AO SHIA 3 L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMA 0 C C LCA 1 C C ACA 0 C C OCA 1 C C OCA 1 C C OCA 0 C OCA 0 O AO MWT 0 O AO MWT 0 O AO WTA 0 O AO WDA
925000 922000 922000 922000 922000 931000 931000 931000 931000 931000 931000 931000 932000 932000 932000 932000 932000 932000 932000 932000 932000 940000 944000 944000 944000 944000 944000 944000 951000 95000000 950000 950000 950000 950000 950000 950000 950000 950000 950000 950000 950000 950000 950000 950000 950000 950000 950000 950000 9500000 9500000 9500000 9500000 9500000000	0 1 1 1 1 1 1 2 3 80 81 C 1 0 0 1 1 1 2 3 80 81 5 X <td>X X AO COTI X X AO SHIA J L/6000 FILE EDIT ETIONARY SECTION 13 14 15 NMN 0 C C LCA 1 C C ACA 0 C C QCA \ 13 14 15 NMN 0 0 AO MWT 0 0 AO MWT 0 0 AO MWT 0 0 AO MTA 0 0 AO ATA 0 0 AO MTA 0 0 AO ATA 0 0 0 ATA 0 0 ATA 0 0 ATA 0 0 0 0 ATA 0 0 0 0 0 ATA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	X X AO COTI X X AO SHIA J L/6000 FILE EDIT ETIONARY SECTION 13 14 15 NMN 0 C C LCA 1 C C ACA 0 C C QCA \ 13 14 15 NMN 0 0 AO MWT 0 0 AO MWT 0 0 AO MWT 0 0 AO MTA 0 0 AO ATA 0 0 AO MTA 0 0 AO ATA 0 0 0 ATA 0 0 ATA 0 0 ATA 0 0 0 0 ATA 0 0 0 0 0 ATA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
925000 922000 922000 922000 922000 931000 931000 931000 931000 931000 931000 931000 931000 931000 931000 932000 935000 9410000 941000 9500000 9500000 9500000 9500000000	1 1 1 1 1 1 1 2 3 80 81 C 1 0 0 1 1 1 2 3 80 81 5 X <td>X X AO COTI X X AO SHIA ; ; ; ; ; ; ; ; ; ; ; ; ;</td>	X X AO COTI X X AO SHIA ; ; ; ; ; ; ; ; ; ; ; ; ;
925000 922000 922000 922000 92000 92000 930000 931000 931000 931000 931000 931000 933000 933000 933000 933000 933000 933000 933000 933000 933000 933000 933000 933000 933000 933000 933000 941000 945000 945000 945000 950000 9500000 9500000 950000 950000 950000 950000 950000 950000 950000 950000 950000 950000 950000 950000 95000000 9500000 9500000 9500000 9500000 9500000 950000000 9500000000	1 1 1 1 1 1 1 2 3 80 81 C 1 0 0 1 1 1 2 3 80 81 5 X <td>X X AO COTI X X AO SHIA ; ; ; ; ; ; ; ; ; ; ; ; ;</td>	X X AO COTI X X AO SHIA ; ; ; ; ; ; ; ; ; ; ; ; ;
925000 922000 922000 929000 929000 931000 931000 931000 931000 931000 932000 933000 933000 935000 935000 945000 945000 945000 945000 945000 945000 945000 945000 95000 95000 9000 9000 90000 90000 90000 9000 90000 90000 90000 90000 90000 9000 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000 900000 900000 900000 900000 900000 900000 900000 900000 900000 900000 900000 9000000	i i i 1 1 1 1 2 3 80 81 C 1 0 1 1 1 2 3 80 81 5 X <td>X X AO COTI X X AO SHIA ; ; ; ; ; ; ; ; ; ; ; ; ;</td>	X X AO COTI X X AO SHIA ; ; ; ; ; ; ; ; ; ; ; ; ;
925000 922000 922000 929000 929000 931000 931000 931000 935000 935000 935000 935000 942000 9400000 940000 940000 940000 940000 940000 940000 940000 940000 940000 940000 940000 940000 9400000 9400000 9400000 9400000 9400000 9400000 9400000 9400000 9400000 9400000 9400000 9400000 9400000 9400000 9500000 9500000 9500000 9500000 9500000 9500000 9500000 9500000 9500000 9500000 9500000 9500000 9500000 9500000000	1 1 1 1 1 1 1 2 3 80 81 C 1 1 0 0 1 1 1 2 3 80 81 5 X <td>X X AO COTI X X AO SHIA I L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMM 0 C C LCA 1 C C ACA 0 C C UCA 1 C C C C C 1 C C C C C C C 1 C C C C C C C 1 C C C C C C C C 1 C C C C C C C C C C C C C C C C C C C</td>	X X AO COTI X X AO SHIA I L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMM 0 C C LCA 1 C C ACA 0 C C UCA 1 C C C C C 1 C C C C C C C 1 C C C C C C C 1 C C C C C C C C 1 C C C C C C C C C C C C C C C C C C C
925000 922000 922000 929000 929000 931000 931000 931000 935000 935000 935000 935000 942000 942000 942000 942000 944000 944000 944000 944000 944000 944000 944000 945000 945000 95000 95000 9500000 9500000000	1 1 1 1 1 1 1 2 3 80 81 C 1 1 0 0 1 1 1 2 3 80 81 5 X <td>X X AO COTI X X AO SHIA I L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMM 0 C C LCA 1 C C ACA 0 C C UCA 1 C C C C C 1 C C C C C C C 1 C C C C C C C 1 C C C C C C C C 1 C C C C C C C C C C C C C C C C C C C</td>	X X AO COTI X X AO SHIA I L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMM 0 C C LCA 1 C C ACA 0 C C UCA 1 C C C C C 1 C C C C C C C 1 C C C C C C C 1 C C C C C C C C 1 C C C C C C C C C C C C C C C C C C C
925000 922000 922000 922000 922000 931000 931000 931000 931000 933000 933000 933000 933000 933000 933000 933000 933000 935000 941000 943000 945000 945000 95000 950000 950000 950000 950000 950000 950000 950000 950000 9500000 9500000000	1 1 1 1 1 1 1 1 2 3 80 81 C 1 1 0 0 1 1 1 1 2 3 80 81 5 X <td>X X AO COTI X X AO SHIA 3 L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMM 0 C C LCA 1 C C ACA 0 C C CCA 13 14 15 NMM 0 O AO MWT 0 O C OCA 13 14 15 NMM 13 14 15 NMM 13 0 AO MWT 0 O AO MWT 1 O AO WTA 1 O AO WTA 1 O AO MWT 1 O AO AO WTA 1 O AO AO TAC 1 O AO AO AO TAC 1 O AO AO TAC 1 O AO A</td>	X X AO COTI X X AO SHIA 3 L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMM 0 C C LCA 1 C C ACA 0 C C CCA 13 14 15 NMM 0 O AO MWT 0 O C OCA 13 14 15 NMM 13 14 15 NMM 13 0 AO MWT 0 O AO MWT 1 O AO WTA 1 O AO WTA 1 O AO MWT 1 O AO AO WTA 1 O AO AO TAC 1 O AO AO AO TAC 1 O AO AO TAC 1 O AO A
925000 922000 922000 929000 929000 931000 931000 931000 931000 933000 933000 933000 933000 933000 933000 933000 933000 933000 940000 943000 943000 944000 944000 944000 944000 944000 944000 945000 945000 950000 950000 950000 9500000000	1 1 1 1 1 1 1 1 2 3 80 81 C 1 1 0 0 1 1 1 2 3 80 81 5 X <td>X X AO COTI X X AO SHIA 3 L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMM 0 C C LCA 1 C C ACA 0 C C C C C C 0 C C C C C C C C 0 C C C C C C C C C 0 C C C C C C C C C C C 0 C C C C C C C C C C C C C C C C C C C</td>	X X AO COTI X X AO SHIA 3 L/6000 FILE EDIT CTIONARY SECTION 13 14 15 NMM 0 C C LCA 1 C C ACA 0 C C C C C C 0 C C C C C C C C 0 C C C C C C C C C 0 C C C C C C C C C C C 0 C C C C C C C C C C C C C C C C C C C
925000 922000 922000 929000 929000 931000 931000 931000 931000 933000 933000 933000 933000 933000 933000 933000 933000 933000 941000 942000 94000 94000 9400000000	1 1 1 1 1 1 1 1 2 3 80 81 C 1 1 0 0 1 1 1 1 2 3 80 81 5 X <td>X X AO COTI X X AO COTI X X AO SHIA 3 1 1 1 1 1 1 1 1 1 1 1 1 1</td>	X X AO COTI X X AO COTI X X AO SHIA 3 1 1 1 1 1 1 1 1 1 1 1 1 1
925000 922000 922000 922000 922000 922000 931000 931000 931000 931000 935000 935000 935000 935000 935000 935000 935000 941000 945000 945000 95000 9500000 9500000000	1 1 1 1 1 1 1 1 2 3 80 81 C 1 1 0 1 1 1 1 2 3 80 81 5 X <td>X X AO COTI X X AO COTI X X AO SHIA ; ; ; ; ; ; ; ; ; ; ; ; ;</td>	X X AO COTI X X AO COTI X X AO SHIA ; ; ; ; ; ; ; ; ; ; ; ; ;
925000 922000 922000 922000 922000 922000 931000 931000 931000 935000 935000 935000 935000 935000 935000 945000 945000 945000 945000 951000 955000 9570000 9570000 9570000 9570000000000	i i	X X AO COTI X X AO COTI X X AO SHIA 3 1 1 1 1 1 1 1 1 1 1 1 1 1
925000 922000 922000 922000 922000 922000 931000 931000 931000 935000 935000 935000 935000 945000 945000 945000 945000 945000 945000 945000 945000 945000 957000 955000 9570000 9570000 9570000 9570000 9570000000000	1 1 1 1 1 1 1 1 2 3 80 81 C 1 1 0 0 1 1 1 2 3 80 81 5 X <td>X X AO COTI X X AO COTI X X AO SHIA 3 1 1 1 1 1 1 1 1 1 1 1 1 1</td>	X X AO COTI X X AO COTI X X AO SHIA 3 1 1 1 1 1 1 1 1 1 1 1 1 1
925000 922000 922000 929000 929000 929000 931000 931000 931000 935000 935000 935000 935000 945000 945000 945000 945000 945000 945000 945000 945000 95000 950000 950000 950000 950000 950000 950000 950000 950000 950000 950000 950000 950000 9500000000	1 1 1 1 1 1 1 1 2 3 80 81 5 1 1 0 1 2 3 80 81 5 X </td <td>X X AO COTI X X AO COTI X X AO SHIA 3 1 1 1 1 1 1 1 1 1 1 1 1 1</td>	X X AO COTI X X AO COTI X X AO SHIA 3 1 1 1 1 1 1 1 1 1 1 1 1 1

52

.

<u> </u>				
08/01/77 DOC+#1	12.605	PAGE :	21	

08/01/77 12.605 PAGE: 22 DUC.#:

08/01/77 12.605 PAGE: 23 DOC.#:

00/01/77 12.605 PAGE: 24 DUC.+:

54 UB701777 12.005 PAGE: 24 DUC...: RTL/6000 FILE EDIT DICTIONARY SECTION N Ň ì U8/01/77 12.605 PAGE: 25 DOC.+: FILE EDIT UPERATION UPER-BITS 00 + 15 0 1 3 3 4 5 6 7 8 9 10 11 12 13 14 15 NMN

		33	
MODEL: MPD	C-REV3U		RTL/6000 F
REVISION	000.00		DICTIONARY
LINE #			
979000	TBCA	OL BUS CYCLE ACTIVE	
980000	TRSP	02 BUS REQUEST REQUIRED	
981000	TEQZ	D3 ALU DUTPUT EQUALS DD	
982000	TEUF	04 ALU OUTPUT EQUALS FF	
983000	TCOT	05 ALU CARRY OUT	
984000	TREQ	06 CHANNEL REQUEST	
985000	TACK	07 BUS ACK RESPONSE	
986000	TAX0	08 ADP MULTIPLEXOR, BIT D	
987000	TAXL	08 AOP MULTIPLEXOR: BIT 1	
988000	TAX2	DA AOP MULTIPLEXOR. BIT 2	
989000	TAX3	DB AOP MULTIPLEXOR, BIT 3	
990000	TAX4	OC AOP MULTIPLEXOR: BIT 4	
991000	TAX5	OD AOP MULTIPLEXOR + BOT 5	
992000	ТАХЬ	OE AOP MULTIPLEXOR, BIT 5	
993000	TAX7	OF ADP MULTIPLEXOR, BIT 7	
994000	TORZ	10 OFFSET RANGE ZERO	
995000	TRGZ	11 RANGE ZERD	
996000	TSHS	12 SINGLE BYTE STORED	
997000	TSAW	13 S. P. ADDRESS WRAPAROUND	
998000	TADB	14 ADAPTER BUSY	
999000	TNDR	15 NON-DATA SERVICE REQUEST	
1000000	TORH	16 OFFSET RANGE HISTORY	
1001000	TOCN	17 MYDCNN+00	
1002000	TBSY	18 BUS DATA REGISTER BUSY	
1003000	TUBR	19 UNSOLICITED BUS REQUEST	
1004000	TINT	LA RESUME INTERRUPT	
1005000	TNAK	1B NAK RESPONSE	
1006000	TBYT	1C BYTE MODE	
1007000	TPTY	1D BUS PARITY CHECK	
1008000	TNBR	1E NO BUFFER REQUEST	
1009000	TEDR	IF FIRMWARE DATA SERVICE REQUES	\$T
	SKIP HOF		
1010000	SKIP DO.		
			RTL/6000 1
	DC-REV3D		DICTIONAR
REVISION	1 000.00		DICHIONAR
1 T.N.E			
LINE # 1011000	1 7 - BF	ANCH	
1012000	(
1013000	OPERAT	ION UPIR+ BITS OD	• 15
1014000	0. 2.0.0	01334567891011	12 13 14 15
1015000			

1014000							
1015000			`				
1016000 GO TO	11114444						
1017000 LOAD RETURN	1110 4 4 4 4		• •				
1016000							
1019000 SKIP HOF			;				
		30					
			-		08/01/77	12.605 P	AGE: 26
MODEL1 MPDC-REV3U		RTL/6000 FI				12.000 0	NGC: IV
REVISION: 000.00		HICROPRUGRAM	SECTION		buc.#:		
				AUDRESS			
LINE #		SEQUENCE: \$\$UPCS		(HEX)	(HEX)		
1020000 MICRUPRUGRAM			;				
1021000							
1022000 \$5UPC5			;				
1022000 \$5000							
L024000 \$	NOP FOR PROM SCA	AN RECOVERY	N	000	0000		
1025000	NOP		1 I I I I I I I I I I I I I I I I I I I				
1025000	NUP						
1027000							
	START OF BASIC LO	OGIC TEST	1	UO1	0096		
	INI		1				
1029000	1714						
1030000 1031000 \$	CLEAR BUS		1	002	4086		
	CLB		1				
1032000	CL0						
1033000							
1034000							
1035000 1036000 \ BLT BRA	NEW TEST EXERCISES TO	HE FULLOWING COMMANDS	<u>۱</u>				
	ST AND SKIP		Ň				
	TO COMMAND		١.				
1036000 \ - 60	TO COMPANY						
1040000							
1041000 SBLT-NEXTOL	SKIP IF CARRY OU	17 15 1	Ν.	003	C08A		
1042000	TEO TCOT		1				
1043000							
1044000 \$	15K1P 1F CARRY DU	15 0	<u>۱</u>	004	C04A		
1045000	TFZ TCOT		1				
1046000							
1047000							
1048000 SBLT-HALTO1	HLT	VHALT IF TEST FAILS	11	005	0040		
1049000							
1030000 \$	NGO TO START OF T	TEST	<u>۱</u>	006	F009		
1051000	GTO (SBLT-NEXTO2)		1				
1052000	· ·						
1053000 \$	HLT	WALT IF GO TO FAILS	N#	our	0040		
1054080							
1055080 5	HLT	WHALT IF GO TO ONLY NOPS	1	008	0040		
1056000							
1057000 \ END OF	BRANCH TEST		<u>۱</u>				
1058000							
1059000 SKIP HOF			:				

MODELT MPC REVISION1 LINE #	C+REV35 000+00		RTL/6000 FILE Microprogram Se Sequence: \$\$UPC\$		AUDRES5 (HEX)	06/01/77 DUC+#1 IMAGE (HEX)	12.605	PAGE:	27
1060000 1061000 1062000 1063000	NOT STATUS	5 TEST ASSURES THAT	CERTAIN DIVISION OF THE	\# \\$					
1064000	SALT-NEXTO2	TED TEDZ	SKIP IF EQZ SET	M	009	C086			
1066000	\$	TEQ TEOF	SKIP IF EQF RESET	NI .	ADO	C048			
1068000	5	HLT	HALT- EQZ OR EQF FAILURE	N I	008	0040			
1070000	-	TFO TCOT	SKIP IF CARRY OUT SET	\ \$	UOC	COBA			
1072000		TEZ TACK	SKIP IF ACK RESET	1	000	C04E			
1074000 1075000 1076000	-	HLT	NHALT- CARRY OUT OR ACK FAIL	М	OOE	00+0			

	55	4,1	59,532		E (
MODEL: MPDC-REV30 REVISIONI 000.00	00	RTL/6000 MICROPROGR	RTL/6000 FILE EDIT MICROPROGRAM SECTION		56 08/01/77 005.01	12.605	PAGE :	27
LINE #		SEQUENCE: SSUPCS		AUURESS (HEX)	IMAGE (HEX)			
1077000			ntinued					
1077000 \$ 1078000	TFZ TNAK	SKIP IF NAK RESET	11	OOF	C076			
1079000 s 1080000 1081000	HLT	HALT- NAK FAILURE	X.F	010	0040			
1082000 SKIP HOF			Ŧ					
MODEL: MPDC-REV3D REVISION: 000+00		RTL/6000 MICROPHOG	FILE EDIT RAM SECTION		UB/01/77 DUC.#:	12.005	PAGE:	28
LINE #		SEQUENCE: SSUPES		AUDRESS				

				MICRUPROGRAM S	ECTION		UUC.#1	
LINE # 1083000				SEQUENCE: SSUPCS		AUDRESS (HEX)	IMAGE (HEX)	
1084000	\$	SEF		SET STATUS FLOPS	X4	011	0800	
1086000	5	TFZ	TEOZ	SKIP IF EQZ RESET	XI	012	C046	
1086000	5	TFQ	TEQF	\SKIP IF EQF SET	\;	013	Соня	
1090000	5	HLT		SHALT- EQZ OR EQF FAILURE	\ ;	014	0040	
1092000	5	TFZ	ICDT	15KIP IF CARRY OUT RESET	\ ;	015	C04A	
1094000	5	TFO	TACK	SKIP IF ACK SET	\ ;	016	CORF	
	5	HLT		THALT- CARRY OUT OR ACK FAIL	1	017	0040	
	5	TFZ	TNAK	SKIP IF NAK RESET	\ ;	018	C076	
1100000	5	TFO	TBSY	SKIP IF BUSY SET	1.1	610	CORD	
1102000	5	HLT		HALT- NAK OR BUSY FAILURE	A F	014	0040	
	5	CRF		V CLEAR ALL STATUS FLOPS	1	016	0010	
1106000	5	CLB		NCLEAR BUS	1	910	4086	
1108000	\ EM	ID OF STATUS	TEST		\;	_	-	
1110000	SKIP HO)F			:			

STONE	C-REV3D 000.00		RTL/6000 FILE MICROPRUGRAM 5			08/01/77 DOC.#:	12.605	PAGE:
E #			SEQUENCE: \$\$UPC5		AUDRESS (HEX)	[MAGE (HEX)		
2010								
3000	VBLT ALU TE	ST PERFORMS BASIC	OPERATIONS ON THE ACUMULATOR	11				
4000	VTO TEST TH	E ALU MODE BITS FO	R STUCK AT ONE OR STUCK AT	Ni -				
5000	VZERO CONDI	TIONS.	-	N1				
6000								
	IALT-NEXTO3	SRB	VINHIBIT CLEAR TO BIR	14	010	4004		
8000								
9000 1	i	XFA AACU BACU	N MOINGI CE STUCK AT U	1.1	01E	603E		
0000						-		
1000 1	i	TFO TEOZ	SKIP IF ACU=00	\;	01F	C086		
3000 1								
4000	•	HLT	VALU MODE FAILURE	14	020	0040		
5000 1		ANT AACU BACU						
5000		ANT AACO BACO	NO MO MO STUCK AT ONE	NF	021	5002		
7000 1		TFO TEOF	FRID IS ANY NEW CO					
000			V5KIP IF ACU NEQ FF	11	022	совя		
9000 1		HLT	ALU MODE FAILURE					
0000			CALO HODE PAILORE	11	023	0040		
1000 5		INC AACU BACU	\ MO+M3+CE+C1 STUCK AT 0		07/			
2000			A MOTHER CETCE STOCK AT 0	``	024	6000		
3000 5		TFZ TEQZ	SKIP IF ACU NEG UD	1.	0.35	C046		
000					025	L046		
5000 s	i	TFO TCOT	SKIP IF CARRY	1.	026	C08A		
2000					515	LOOM		
7000 5		HLT	VALU MODE FAILURE	11	027	0040		
000				,,		0040		
000 \$		AACD DEC BACU	VMO+M3+CI STUCK AT 0	M	028	6030		
000								
1000 \$		TFO TEOF	\5K]P IF ACU NEU FF	A4	029	COBB		
2000						-		
000 \$		HLT	ALU MODE FAILUHE	M	02A	0040		
1000 1000	LEND OF ALU	****						
5000	COND OF ALU	1521		M				

MODEL: MPDC-REV30 REVISIONI 000+00	RTL/6000 F1 MICROPROGRAM	LE EDIT SECTION		US/01/77 LUC.#:	12.605 PAGE:	3ú
LINE # 1148000 1149000	SEQUENCE: SSUPCS		AUDHESS (HEX)	IMAGE (HEX)		
1150000 \ BLI REG 1151000 \THE ACUM 1152000 \ADDRESS (ISTER TEST USES A SHIFTED DNES PATTERN TU TEST JLATOR, BUS INTERFACE REGISTER, AND SCRATCH PAG IOUNTER FOR STORAGE AND SELECTION CAPABILITY.					
1153000 1154000 SBLT-NEXT04 1155000 1156000	\SET SPA TO ZERO LCN ASPA CNST (DO#)		U28	8800		
1157000 \$ 1158000 1159000	\LOAD STARTING DATA PATTERN IN ACU LCN AACU CNST (01#)	` ŧ	υłζ	8001		
1160000 \$BLT-REGIST 1161000 1162000	\SFT BUS REG 7 TIMES TO LOAD DATA PATTERN XFB ABUS4 BACU SR∣A	X F	02D	6C0H		
1163000 s 1164000	XFB ABUS4 BACU SRIA	i	02E	6C0B		
1165000 s 1166000	XFB ABUS4 BACU SRIA	1	02F	6668		
1167000 \$ 1168000	XFB ABUS4 BACU SRIA	ĩ	030	6(68		
1169000 s 1170000	XFB ABUSA BACU SRIA	+	031	6C08		
1171000 \$	XFB ABUS4 BACU SRIA	3	032	6663		

		4,1J	19,002							
		57	-		58					
MODEL: MP REVISION:			RTL/6000 FILE EDIT Microphogram Section			12.605	PAGE:	30		
LINE 4		SEQUENCE: SSUPCS	AUDRESS (HEX)	[MAGE (HEX)						
1172000		-cont	inued							
1173000	5	XFB ABUS4 BACU SRIA	ŧ	033	9C9H					
1175000 1176000 1177000	5	XXFER SPA THRU ALU TO VALIDATE EQZ XFA ASPA SRIA	ì	034	687E					
1178000	5	\5KJP 1F EQZ FLOP SET ON PREVIOUS TRANSFER TFO TEQ2	ì	035	C086					
1180000 1181000 1182000	5	\HALT- SPA FAILURE HLT) t	036	0040					
1183000 1184000 1185000	5	NHOVE ACU TO SPA XFB ASPA BACU SRIA	Ì	037	686A					
1186000 1187000 1188000 1189000	\$	NO OP FOR TIMING NOP	X I	038	0000					
	SKIP HOF		1							

MODEL: MPDC-REV REVISION: 000+0				08/01/77 DUC.#:	12.605	PAGE :	31
LINE #			AUDRESS	IMAGE			
1191000 s	SEQUENCE: SSUPCS		(HEX)	(HEX)			
1192000	ASPA XOR BACU	N N	039	681A			
1193000	HUR HUR DALU	:					
1194000 s	XFER ACU THRU ALU TO ACU TO VALIDATE EQZ						
1195000	KFB BACU	N.	AEO	602A			
1196000	AND DACU	+					
1197000 \$	SKIP IF EQZ FLOP SET ON PREVIOUS TRANSFER						
1198000	TFO TEQZ	Ň	038	C086			
1199000	110 1202	;					
1200000 \$	VHALT- ACU FAILURE						
1201000	HLT HLD FAILURE	N N	030	0040			
1202000		F					
1203000 \$	MOVE SPA TO ACU						
1204000	ASPA XFA BACU	2 Y	030	683£			
1205000		1					
1206000 \$	SET SPA EQUAL TO FF						
1207000	XNR ASPA BACU SRIA	2	03E	6866			
1208000		;					
1209000 5	NO OP FOR TIMING						
1210000	NOP	<u>\</u>	03F	0000			
1211000		:					
1212000 s	XFER SPA THRU ALU TO SPA TO VALIDATE EDF	\ \					
1213000	XFA ASPA BACU SRIA		040	68/E			
1214000		1					
1215000 s	VSKIP IF SPA EQUAL FF	`					
1216000	TFO TEOF	ì	041	CORR			
1217000		•					
1218000 s	VHALT- SPA FAILURE	1	013	00/0			
1219000	HLT		042	0040			
1220000		•					
1221000 \$	SET SPA EQUAL TO DATA PATTERN	1	043				
1222000	KFB ASPA BACU SRIA	ì	043	0864			
1223000		•					
1224000 s	NO OP FOR TIMING	1	044	0000			
1225000	NOP	1	••••				
1226000	_						
1227000 \$	SET ACU EQUAL TO FF	1	045	6826			
1228000	ASPA XNR BACU	:					
1229000							
1230000 5	VXFER ACU THRU ALU TO ACU TO VALIDATE EUF	١.	U46	6024			
1231000	XFB BACU	1					
1232000							
1233000 5	SKIP IF ACU EQUAL FF	١.	047	COBB			
1234000	TFO TEOF	;					
1235000 1236000 SK1P HD							
TERRORING SKIP HU	-	:					

ISION: 000.00	MICROPHU	0 FILE EDIT GRAM SECTION		08/01/77 DUC.#:	12.605	PAGE :	3
NE # 370ng	SEQUENCE: SSUPCS	1	AUDRESS (HEX)	IMAGE (HEX)			
38000 s 39000	NHALT- ACU FAILURE HLT	ì	048	0040			
40000 41000 \$ 42000 43000	\SET ACU EQUAL TO DATA PATTERN ASPA XFA BACU	, , ,	649	683E			
44000 s 45000 46000	NSET SPA TO DO XOR ASPA BACU SRIA) I	04A	685A			
47000 S 48000 49000	\COMPARE ACU WITH STORED DATA PATTERN Abus+ xor bacu sria	\ 1	• 048	6C5B			
50000 <u>5</u> 51000 52000	SKIP IF DATA IS THE SAME TFO TEGZ	, i	04C	Сояр			
53000 s 54000 55000	NHALT- BUS REG FAILURE HLT	X F	04D	0040			
56000 \$ 57000 58000	VSHIFT ACU TO NEXT DATA PATTERN LSH AACU BACU	N I	04E	6030			
59000 \$ 50000 51000	\SKIP IF DATA PATTERN 15 NOW ZERO TFD TEGZ	\ 1	04F	C086			
2000 \$ 3000	GTO (SBLT-REGTST)	;	050	FOZD			
5000 5 5000	SKIP IF TEST IS REALLY OVER TFO TAXO ABUS4	۲ ۲	051	CC 81			
7000 s 6000 9000	\HALT- BUS REG FAILURE HLT) F	052	0040			
	REGISTER TEST	N					
2000 SKIP HOF							

			4,159,	532		~~			
		59				60			
MODEL: MPE REVISIONI	000.00	:	RTL/6000 FIL MICROPROGRAM		ADDRESS		12.605	PAGEI	33
LINE #			E: SSUPCS		(HEX)	(HEX)			
1273000	A THE FOLLO	DWING TEST IS USED TO VERIFY THE A FURN ADDRESS AS WELL AS PROPERLY F	ABILITY TO RETURN.	N N					
1275000 1276000 1277000 1278000	SBLT-NEXTOS	LOAD STARTING COUNT		}	053	8008			
1279000	5	SET RETURN ADDRESS		}	054	E05B			
1281000 1282000 1283000	5	LRA (SBLT-LRA005) SET RETURN ADDRESS		1	055	ESFD			
1284000 1285000 1286000	s	LRA (SBLT-LRADO4)		}	056	ESFÇ			
1287000 1288000 1289000	5	LRA (SBLT-LRA003) SET RETURN ADDRESS		\ \	057	ESFB			
1290000 1291000 1292000	SBLT-LRADO1	ÚRA (SBLT+LRA002) \return via return stack		2	058	C200			
1293000 1294000 1295000	5	RTN NHALT IF RETURN FAILS			059	0040			
1296000 1297000 1298000	5	HLT \HALT IF RETURN ONLY NOPS		2	05A	0040			
1299000	-	HLT		·	058	6070			
1301000 1302000 1303000	SOLT-LRADO5	VDECREMENT ACU DEC AACU SRIA		i	050	C086			
1304000 1305000 1306000	\$	\SKIP IF ACU = 0 TFO TEDZ		i	05D				
1307000	5	\HALT IF RET. REG. ADD FAILURE HLT		i					
1309000 1310000 1311000		RETURN REGISTER TEST.		х т					
1312000	SK [P HOF								
MODEL: MI REVISION	PDC+R€V30 1 000+00		RTL/6000 FI HICROPRUGRAM	LE EDIT SECTION	AUDRESS	08/01/77 DUC+#: [MAGE	12.605	PAGE:	34
LINE #		SEQUEN	CE: SSUPCS		(HEX)	(HEX)			
1313000 1314000	THE FOL	LLOWING TEST IS USED TO VERIFY TH N OF THE OFFSET RANGE COUNTER, RA	E PROPER	ì					
1315000	AND ADDRI	ESS COUNTER. THIS TEST ALSO CHECK	S FOR AND THE	Ň					
1317000	\CORRECT (UPERATION OF THE BYTE FLOP .		N		- 1.			
1319000 1320000 1321000	SBLT-NEXTO6	\HEX FF TO ACU Lon Aacu onst (FF#}		۱ ۲	05E				
1322000 1323000 1324000	5	VLOAD OFF RANGE LOW XFB ABUS4 BACU SRIA		1	05F				
1325000 1326000 1327000) \$)	\LOAD OFF RANGE H1 XFB ABUS4 BACU 5R1A		,					
1328000 1329000 1330000	s	\LOAD RANGE LOW XF8 ABUS4 BACU SRIA		1	061				
1331000 1332000 1333000	0 \$ 0	LLOAD RANGE HI XFB ABUS4 BACU SRIA		1	063				
133400 133500 133600 133600	0 s 0	\HEX FD TO ACU Len AACU (NST (FD#)		i.	06				
133800	0 s 0	\LOAD ADDRESS LDW XFB ABUS4 BACU SRIA		î.	06				
134000 134100 134200	0 5 0	\HEX FF TO ACU Lon Aacu CNST (FF#)		ì		5 83ER			
134300 134400 134500	0 S 10	\LOAD ADDRESS MID XFB ABUS4 BACU SR1A		;	06				
134600 134700 134800	10 S 10	\LOAD ADDRESS HI XFB ABUS4 BACU SRIA		l l	06				
134900 135000 135100	00 S	\SET OFFSET RNG CONST AND BYT LCN AACU CNST (08₽)	E MODE		06				
135200 135300 135400	50 s 50	VLOAD CYCLE ON BUS INTERFACE		*	04				
13550(13560(13570)	10 S 10	NHEX FD-TO SPA Lon Aspa (NST (FD#)		ì	06				
13580 13590 13600	no s	NEX FF TO ACU Lon onst (FF#)		ì	06	B 83EB			
13610	00 00 5KIP HOF			1					
MODEL: REVISIO	MPDC-REV3D NI 000+00		RTL/6000 F MICROPROGRA	FILE EDIT Am Section		08/01/77 DUC+#: 5 IMAGE	12.60	5 PAGE	: 35
L1NE 4	; 10		NCE: \$\$UPC5		(HEX) 06	(HEX) C 4040			
13640(13650(10 SBLT-RANGO	1 VDECREMENT OFFSET RANGE DRC		1		-			
13660 13670 13680	50 S	NDECREMENT FIRMWARE COUNT DEC ASPA SRIA		ì	06				
136900 137000 137100	no s no	NPROPAGATE CARRY DEC AACU SRIA CDTI		ì	06	E 60FC			
13720 13730 13740	no no s no	\SKIP IF FIRMWARE COUNT ZERO TFZ TCOT		}	06	F C04A			
13750									

61

62

08/01/77 DUC+#: AUDRESS [MAGE (HEX) (HEX) 12.605 PAGE: 35 RTL/6000 FILE EDIT MICROPROGRAM SECTION MODEL: MPDC-REV3D REVISION: 000.00 SEQUENCE: \$\$UPC5 LINE # 1376000 \$ 1377000 \$ 1378000 \$ 1378000 \$ 1380000 \$ 1382000 \$ 1382000 \$ 1385000 \$ 1385000 \$ 1385000 \$ 1387000 \$ 1389000 \$ 1392000 \$ 1392000 \$ 1392000 \$ 1392000 \$KIP HOF -continued 070 F06C 1 GTO (SBLT-RANGOL) 071 (060 VSKIP IF OFFSET RANGE NON-ZERU TF2 TORZ ì 072 0040 VHALT-OFF RANGE COUNT INCORRECT ì VDECREMENT OFFSET RANGE 073 4040 ì 074 COAO SKIP IF OFFSET RANGE ZERD ì NHALT - OFF RANGE COUNT INCORRECT 075 0040 ì ł 08/01/77 DUC.#: 12.605 PAGE: 36 . RTL/6000 FILE EDIT MICROPRUGRAM SECTION MODEL: MPDC-REV30 REVISION: 000.00

NEATONI	000.00		NORROGRAM SECTION	ADDRE 55	IMAGE	
LINE #		SEQUENCE: 1	SUPCS	(HEX)	(HEX)	
1394000						
1395000		THEX FF TO ACU	λ.	U76	8368	
1396000	•	LCN AACU CNST (FF#)	l			
1397000						
1398000		THEX FD TO SPA	`	077	8BE9	
1399000	•	LCN ASPA CNST (FD#)				
1400000						
1401000	SBLT-RANGOZ	VDECREMENT RANGE	`	078	4040	
1402000		DRC	;			
1403000		5AC				
1404000		VDECREMENT FIRMWARE COUNT	Υ.	079	6870	
1405000	•	DEC ASPA SRIA	1			
1406000						
1407000		VPROPAGATE CARRY	Υ.	07A	60FC	
1408000	•	DEC AACU SRIA COTI	i			
1409000		Dec and anti- cont	-	٠		
1410000		SKIP IF RANGE NON-ZERO	`	078	C062	
1411000	,	TFZ TRGZ				
1412000		ITE TROP				
1413000		HALT - RANGE COUNT INCORRECT	1	07C	0040	
1414000		HLT				
1415000						
1416000		SKIP IF FIRMWARE COUNT ZERO	`	070	C04A	
1417080	,	TFZ ICOT	•			
1418000						
1419000		GTO (SBLT-RANGOZ)	1	07E	F078	
1420000	,					
1421000		ADECREMENT RANGE	`	07F	4040	
1422000		DRC	1			
1423000		5.12				
1424080		NO OP FOR TIMING	<u>۱</u>	080	0000	
1425000		NOP				
1426000						
1427000		SKIP IF RANGE ZERO	۱ ۱	081	COA2	
1428000		TFO TRGZ	1			
1429000						
1430000		WHALT - RANGE COUNT INCORRECT	۱	082	0040	
1431000		HLT	;			
1432000						
	SKIP HOF		;			

MDDEL: MPD REVISION1			RTL/6000 FILE EDIT MICROPROGRAM SECTION	AUDRESS		12.605	PAGE:	37
LINE #		SEQUEN	CE: \$SUNCE	(HEX)	(HEX)			
1434000				0.83	4100			
1435000	5	VINCREMENT ADDRESS COUNTER		085	4100			
1436000		IAC	1					
1437000				044	0000			
1438000	5	NOOP FOR TIMING	No. 1	084	0000			
1439000		NOP	•					
1440000				045	C078			
1441000	5	SKIP IF BYTE MODE RESET		085	(010			
1442000		TFZ TOYT	•					
1443000				0.84	0040			
1444000	5	HALT - BYTE MODE NOT WORKING	N N	000	0040			
1445000		HLT	1					
1446000				7 6 0	4100			
1447000	\$	VINCREMENT ADDRESS COUNTER	N N	va/	4100			
1448000		IAC	1					
1449000				0.0.0	0000			
1450000	5	NO OP FOR TIMING	N	058	0000			
1451000	-	NDP	;					
1452000								
1453000	5	SHIFT ADDRESS	۱ ۱	089	6C3F			
1454000	-	XFA ABUS4 BACU	:					
1455000								
1456000	5	SHIFT ADDRESS	N	OBA	6C3F			
1457000	•	XFA ABUSA BACU	1					
1453000								
	5	SHIFT ADDRESS	١	088	6C3F			
1460000	•	XFA ABUSA BACU	F F					
1461000								
	5	SHIFT ADDRESS	١	080	6C3F			
1463000	•	XFA ABUS4 BACU	:					
1464000								
1465000		LOW ADDRESS BYTE TO ACJ	ν.	080	6C3F			
1466000	•	XFA ABUS4 BACU	1					
1467000								
1468000	5	YOR MID ADDR BYTE WITH ACU	N .	08E	6C38			
1469000		DRR ABUSA BACU	1					
1470000		OKR ADOOF BACO						
1471000		YOR HI ADDR BYTE WITH ACU	ν.	08F	6(38			
1472000	•	ORR ABUS4 BACU	L L					
1473000								
1474000	5	SKIP IF ACU EQUAL TO DO	١	090	C086			
1475000	•	TFO TEOZ	:					
1476000								
1477000	\$	WHALT ADDRESS COUNTER NOT WORK		091	0040			
1478000	•	HLT						
1479000		ting t						
1480000		BUS INTERFACE REGISTER TEST	۸					

PAGE:	38
PAGE:	38

VISION	DC-REV30 909_99		RTL/6000 FILE EDIT MICROPROGRAM SECTION	ADDARTE	08/01/77 DOC+#:	12.605	PAGE	3
INE # 515000 516000	THE FOLLOWIN	SEQUEN G PORTION OF THE INDEX REGISTER TO CORRECTLY ADDRESS INDEXED SPI	CE: SSUPCS TEST CHECKS M. \	AUDRESS (HEX)	IMAGE (HEX)			
517000			16 \					
518000	\$	ACLEAR ACU	ν.	096	0010			
519000		CRF	:					
521000		CLEAR SPA						
522000	•	LCN ASPA CNST (00#)	1	090	8800			
523000			•					
524000	5	LOAD INDEX REGISTER	ι.	09D	A030			
525000		LIR	i					
526000								
527000	S	SET SPA FOR INDEXED MODE	<u>۱</u>	09E	8000			
528000		LCN ASPAI CNST (00#)	ĩ					
530000	SBLT-IDX1	WRITE MEMORY FROM INDEX REGIS						
531000		MAT AIDX		09F	AEOO			
532000		CALCOLUM CONTRACTOR	•					
533000	5	VINCREMENT INDEX REGISTER	``	GAD	6000			
534000		INC AIDX	ì	040	0000			
535000			•					
536000	\$	LOAD INDEX REGISTER	ν.	OA1	A030			
537000 538000		LIR	5					
539000								
540000	•	VSKIP IF ALL CHANNELS DONE	N N	OA2	CU9A			
541000			4					
542000	\$	GTO (SOLT-IDXI)	•	043	FORF			
543000			•	U A3	rvvr			
544000	SeLT-IUX2	COMPARE INDEX REG WITH SPM	``	044	601A			
545000		XOR AIDX BSPM	1	•				
546000	_							
547000 548000	5	SKIP IF EQUAL	۸	0A5	C086			
549000		TFO TEOZ	ŧ					
550000		VINDEX REG OR SPM FAILURE						
551000	•	HLT		UA6	0040			
552000			1					
553000	\$	VDECREMENT INDEX REG	`	047	6C3C			
554000		DEC AIDX	i	9 41				
555000								
556000	5	VLOAD INDEX REG	<u>۱</u>	UAB	A030			
557000 558000		LIR	;					
559000		SETTO IS ALL CURNED C CUREERS						
560000	,	VSKIP IF ALL CHANNELS CHECKED	2 Average States and Ave	UA9	C09A			
561000			:					
562000	\$	GTO (\$8LT-IDX2)	F		FUA4			
563000	-		•	UAA	r vat			
564000	VEND OF INDEX	REGISTER TEST.	`					
565000 5	KIP HOF							

MODEL: MP REVISION:		RTL/6000 FIL Microprugram			06/01/77 DUC.#:	12,605	PAGE:	40
LINE # 1566000 1567000 1568000	N BLT SCRAT	SEDUENCE: \$\$UPCS CH PAD ROW TEST USES ALL ONES DATA PATTERN TO TCH PAD MEMORY FOR ADJACENT ROW INTERFERENCE.	X X	AUDRESS (HEX)	IMAGE (HEX)			
1569000 1570000 1571000 1572000	SHLT-NEXTOB	\LOAD RETURN ADDRESS LRA (SBLT-SPMHQW)	X Ŧ	OAB	EQAU			
	\$	NGO TO CLEAR SCRATCH PAD GTO (SCLEARSPHOO)	X 4	UAC	F1F1			
1576000 1577000 1578000	SBLT-SPMROW	NCLEAR ACU CRF	i i	QAO	0010			
1579000 1580000 1581000	\$	ICLEAR SPA LCN ASPA CNST (00#)	X Ŧ	OAE	8800			
1582000 1583000 1584000	5	\SET S. P. TEST MODE SPT	X Ŧ	OAF	080A			
1585000 1586000	\$	15ET RETURN REG. FOR TEST DONE LRA (SBLT-SPDONE)	ι I	080	F0C0			

		4,1	159,532					
		65			66			
	PDC=REV30 1 000.00		00 FILE EDIT Ugram Section		08/01/77 00C+#:	12.605	PAGE :	40
LINE #		SEQUENCE: SSUPC	s Intinued	ADDRESS (HEX)	(HEX)			
1587000 1588000	5	SET RETURN REG. FOR TESTING 256 LOCATI		081	E084			
1589000 1590000 1591000	5	LRA (SBLT-ROWWRT) \SET RETURN REG. FOR TESTING 256 LOCATIO	:					
1592000 1593000		LKA (SBLT-ROWWRT)	1	082	E084			
1594000 1595000 1596000	5	\SET RETURN REG. FOR TESTING 256 LOCATI(LRA (SBLT-ROWWRT)	DNS N	083	E084			
1597000 1598000 1599000	SBLT-ROWWRT	\LOAD ACU WITH ALL DNES LCN AACUCNST(FF#)	ì	084	83EB			
1600000	5	NSTORE ALL ONES MWT AACU	2	085	A200			
1602000 1603000 1604000	5	\CDPY SCRATCH PAD ADDRESS ASPA XFA BACU	2	086	683E			
1605000 1606000	SK1P HDF		•					
MODEL: MP	0C-REV3D	RTL/600	O FILE EDIT		08/01/77	12.605	PAGE:	41
LINE #		SEQUENCE: \$\$UPCS	GRAM SECTION	ADDRESS (HEX)	DUC+#: IMAGE (HEX)			
1607000 1608000 1609000	SBLT-ROWADD	INCREMENT ADDRESS	N	087	A100			
1610000 1611000	\$	XFER S.P CONTENTS THRU ALU TO VALIDATE	ŧ EQZ N	088	612A			
1612000 1613000 1614000	5	XFB BSPM \SKIP 1F SCRATCH PAD NOT ALL ZERO	1					
1615000 1616000 1617000		TFZ TEQZ	ł		C0+6			
1618000 1619000	5	\GO TEST NEXT ADDRESS GTO (\$BLT-ROWADD)		OBA	F087			
1620000 1621000 1622000	5	\SKIP IF SCRATCH PAD IS ALL ONES TFO TEDF	ì	088	C088			
1623000 1624000	\$	HLT VHALT- SPM FAILURE	1	08C	0040			
1625000 1626000 1627000	5	\CHECK IF RIGHT ADDRESS ASPA XOR BACU	ì	08D	681A			
1628000 1629000 1630000	5	\5K1P 1F RIGHT ADDRESS TFO TEGZ	1	OBE	C086			
1631000	5	HLT VHALT- SPM FAILURE	11	OBF	0040			
1633000 1634000 1635000	5	VREPLACE ALL ONES WITH ALL ZERDS WIA AACU	ì	000	A300			
1636000 1637000 1638000	5	NO OP FOR TIMING) ŧ	001	0000			
1639000 1640000	5	NCHECK FOR 256 BOUNDARY XFA ASPA SRIA) I	0C2	687L			
1641000 1642000 1643000	\$	\SKIP IF ADDRESS IS ZERD TFD TEQZ	1	0C3	Сове			
1644000 1645000 1646000	\$	GD TO TEST NEXT ROW	X	064	FOB4			
1647000	5	1256 BOUNDARY COMPLETE	1	905	C200			
1649000 1650000 1651000	SALT-SPDONE	RTN NRESET S. P. TEST MODE	•	006				
1652000 1653000 1654000	SEND OF SCH	CRF	i i	0,0	0010			
1655000 :	5KIP HOF	ATCO FOU MEMORY ROW CHECK	3					
IDDELI MPO		RTL/6000 MICROPRU	FILE EDIT RAM SECTION		08/01/77 DUC+#:	12.605	PAGE :	42
LINE #	THE FOLLOW	SEQUENCE: SAUPOS	`	ADDRESS (HEX)				
1657000 1658000 1659000	LOC 00=DU#	S REGISTER AND MEMORY. THE TEST WRITES LOC OLEOL#, LOC O2=02#, LOC O3=03#, ETC LOC IS VERIFIED FOR THE PROPER CONTENTS.						
1660000 1661000 1662000	NOTE- FURT	HER TESTS USE SPM BASED ON THESE CONTENTS.						
1663000	SBLT-NEXTO9	VELEAR ACU CRF	Ì	067	0010			
1665000 1666000 1667000	5	\CLEAR SPA LCN ASPA (NST (00#)) 4	UCB	8800			
1668000	5	SET 5. P. TEST MODE	}	009	A080			
1670000 1671000 1672000	SBLT-SPHIO1	WRITE SPM FROM SPA MWT ASPA	2	• • • • • •	AAOU			
1673000	5	COMPARE ACU TO SPM	1	0СВ	611A			
1676000 1677000	\$	N SKIP IF VALID COMPARISON	;	οcc	C086			
1678000 1679000 1680000	5	TEN TENT	i .					
1681000	-	HLT	ŀ	000	0040			
1684000	\$	VINCREMENT SPA Ima	N III	OCE	ALUO			
1686000 1687000 1688000	5	LINCREMENT ACU	Ì	OCF 0	6040			
1689000	5	VSKIP IF LAST ADDRESS CHECKED TFO TSAW	X ŧ	000	CUAD			
1693000	5	GT0 (\$BLT-\$PM101)	;	001	FOCA			
1694000 5	KTP HOF							,

			4,159,532					
		67			68			
MODEL1 MPO REVISION1	000.00		RTL/6000 FILE EDIT Microprogram Section	ADDRESS	08/01/77 DOC+#: IMAGE	12.605	PAGEI	43
LINE #		SEQUENCI	E: SSUPCS	(HEX)	(HEX)			
1695000 1696000 1697000	THE FOLLO STARTS WI ZEROS ARE	WING TEST IS USED TO TEST THE SP TH THE SPA ± 400# AND DECREMENTS	A REG. IT					
1698000	ZERUS ARE	REAL/ADD.	•					
1699000 1700000	SBLT-SPMD01	NDECREMENT SPA	1	002	A008			
1701000 1702000 1703000 1704000	5	NDECREMENT ACU DEC	X B	003	603C			
1705000	5	COMPARE ACU TO SPM XOR AACU BSPM) ¥	OD4	611A			
1707000 1708000 1709000	s	SKIP IF VALID COMPARISON TFO TEQZ	X H	005	C086			
1710000 1711000 1712000	\$	\HALT = 5PA OR SPM ERROR HLT	Ì	ODe	0040			
1713000 1714000 1715000	5	SKIP IF LAST ADDRESS CHECKED	Y Ŧ	0D7	C0A6			
1716000 1717000 1718000	5	GTD (SOLT-SPMDOL)	ŧ	ODa	FOD2			
1719000	LEND OF SPA	AND SPM TEST	N					
1720000	SKIP HOF		3					
MODEL: MP REVISION:			RTL/6000 FILE EDIT Microprogram Section	AUDRESS	08/01/77 DOC+#: IMAGE	12.605	PAGE:	**
LINE # 1722000 1723000 1724000 1725000	DF THE BUS BUS REG FR	SEQUENC ING TEST IS USED TO VERIFY THE L INTERFACE SHIFT REGISTER. THE T ION SPM WHICH WAS PREVIDUSLY LOAD PROUTINE.	TEST LOADS THE	(HEX)	(HEX)			
1726000 1727000 1728000	SBLT-NEXTIO	NCLEAR ACU CRF	ì	009	0010			
1729000 1730000 1731000	5	\CLEAR SPA LCN ASPA CNST (00#)	` ŧ	ODA	8800			
1732000 1733000 1734000	s	SET S.P. TEST MODE	3	008	A080			
1735000 1736000 1737000	s	\HEX FF TO ACU LCN CNST (FF#)	X I	ODC	83EB			
1738000 1739000 1740000	s	\ACU TO 5PA XFB ASPA SR]A	ì	ODD	686A			
1741000 1742000 1743000 1744000	\$BLT-BUSSR1	\SPM TO BUS INTERFACE REGISTER XFB ABUS4 BSPM SRIA	ì	ÛDE	6098			
1745000 1745000 1746000 1747000	5	NDECREMENT SPA	X 4	ODF	8008			
1749000	\$	\SPM TO BUS INTERFACE REGISTER XFB ABUS4 BSPM SRIA) ł	OEO	6D68			
1751000	\$	NDECREMENT SPA DMA	X #	OE 1	A006			
1754000	5	\SPM TO BUS INTERFACE REGISTER XFB ABU54 BSPM SRIA	\ +	OE 2	6D68			
1757000 1758000 1758000	5	\DECREMENT SPA	Ì	0E 3	A008			
1760000 1761000 1762000	5	\SPM TO BUS INTERFACE REGISTER XFB ABUS4 BSPM SRIA	X ¥	QE4	6D6B			
1763000	5	LDECREMENT SPA	` ŧ	0530	A006			
	SK[P HOF		4					
MODELI MP REVISIONI	DC-REV30 000+00		RTL/6000 FILE EDIT Microprugram Section	4000777	08/01/77 DUC+#1	12,605	PAGE	45
LINE		SEQUENC	E: SSUPCS	ADDRESS (HEX)	IMAGE (HEX)			

				ADDRESS	IMAGE
LINE #		SEQUENCE: SSUPC	5	(HEX)	(HEX)
1767000	5	SPH TO BUS INTERFACE REGISTER	۱	0E0	6068
1768000		XFB ABUS4 BSPM SR1A	ŧ		
1769000					
1770000	5	VDECREMENT SPA	<u>۱</u>	0E7	ADOB
1771000		DMA	\$		
1772000					
1773000	5	SPH TO BUS INTERFACE REGISTER	N	QE8	6D6B
1774000		XFB ABUS4 BSPM SRIA	•		
1775000					
1776000	5	VDECREMENT SPA	<u>۱</u>	0E9	AOG8
1777000		DHA	6		
1778000					
1779000	5	SPM TO BUS INTERFACE REGISTER	N N	OFA	6D6B
1760000		XFB ABU54 BSPM SRIA	1		
1781000					
1782000	5	VDECREMENT SPA	N .	QEB	AOUS
1783000		OMA	•		
1764000					
1785000	SBLT-BUSSR2	COMPARE ACU TO BUS INTERFACE REG	N N	OFC	6(58
1786000		XOR ABUS4 BACU SRIA	4		
1787000					
1788000	\$	SKIP IF EQUAL	N N	OED	C086
1789000		TFO TEOZ	1		
1790000					8044
1791000	5	VHALT- BUS INTERFACE RES FAILURE	2	VEE	0040
1792000		HLT	•		
1793000					6036
1794000	5	VDECREMENT ACU	<u>}</u>	021	0030
1795000		DEC	\$		
1796000				050	611A
1797000	\$	COMPARE ACU TO SPM	}	000	¥447
1798000		XOR AACU BSPM	•		

		(0)	4,	159,552		70			
		69				08/01/77	12.605	PAGET	45
REVISION:	DC=AEV3D 000+00		RTL/60 MICROPR	00 FILE EDIT UGRAM SECTION		DOC+#1	12.000		
LINE #		:	SEQUENCE: SSUPC		ADDRESS (HEX)	IMAGE (HEX)			
				ntinued					
1799000 1800000 1801000	5	SKIP IF EQUAL		4	OFI	C086			
1802000 1803000	\$	GTD (\$BLT-BUSSR2)		1	OFZ	FOEC			
1804000 1805000 1806000	s	SKIP IF SPA WRAPAROUND (TEST DONE)	ì	UF3	C0A6			
1807000 1808000	5	GTD (\$8LT-BUSSR1)		:	OF4	FODE			
1809000 1810000	-	INTERFACE REGISTER TEST		Υ.					
1811000 1812000				;					
10120//0	SK1P 1101								
NODEL: MPD REVISION:				DUO FILE EDIT DGRAM SECTION		08/01/77 DUC.==:	12,005	PAGE :	46
LINE #			SEQUENCE: SSUPO	5	ADDRESS (HEX)	(HEX)			
1813000 1814000 1815000	OF THE ADAI	ING TEST IS USED TO VERIF PTER FIFD, THE TEST LOADS HICH WAS PREVIDUSLY LOADE	THE ADAPTER F	FO					
1815000 1817000	HOUT INE.			۱ ۱					
1818000 1819000	SBLT-NEXTL1	NCLEAR ACU CRF		2	0F5	0010			
1820000 1821000	-	RESET ENABLE HARDWARE		Υ.	UF6	C050			
1822000	s	TF2 TAXO AACU		i		-			
1823000 1824000	5	TFO TAXO AACU		1	OF7	C090			
1825000 1826000	5	NO OP		È N	OFS	0000			
1827000		NOP		t t					
1830000	5	\CLEAR SPA LCN ASPA CNST (00#)		1	0F9	8800			
1831000 1832000 1833000	\$	CLEAR ADAPTER COMMAND R	REGISTER	\ I	OFA	9800			
1834000 1835000 1836000	5	\CLEAR ADAPTER FIFO XFB AAD5 SRIA		1	OFB	746B			
1837000 1838000 1839000	\$	\SET 5.P. TEST MODE SPT		ì	OFC	A080			
1840000 1841000 1842000 1843000	5	NRESET ADAPTER RDA		;	OFD	0088			
1844000 1845000 1846000	\$	VSET RANGE COUNTER TO N	DN ZERO	*	OFE				
1847000 1848000	5	LCN CNST (FF#)		1	OFF	83EB			
1849000 1850000 1851000	5	VACU TO SPA XFB ASPA SR1A		X ŧ	100	686A			
1852000	SKIP HOF			ĩ					
MODELI MP REVISIONI				DOO FILE EDIT RUGRAM SECTION		08/01/77 DUC+#:	12.605	PAGE	47
	- #		SEQUENCE: SSUP		ADDRESS (HEX)	IMAGE (HEX)			
LINE # 1854000 1855000	SBLT-ADFIFO	\SPM TO ADAPTER FIFO XFB AADO BSPM SRIA	3690ENCE: \$9070	1	101	716A			
1856000 1857000 1858000 1859000	5	NDECREMENT SPA DMA		ì		A008			
1861000 1861000 1862000	s	\SPM TO ADAPTER FIFO XFB AADO BSPM SRIA		•		716A			
1863000 1864000 1865000	5	VINCREMENT SPA Ima		` ;		A100			
1865000 1867000 1867000	s	\LDAD ADAPTER COMMAND LCN AAD2 CNST (C2#)		4		9802			
1858000 1870000 1870000	5	NENABLE READ HARDWARE PA	АТН	1		0600			
L872000 L873000 L874000	\$	NTRANSFER ADAPTER FIFD 1 XFA	TD ACU	ì		603E			
1875000 1876000 1877000	5	VUNLOAD BYTE FROM ADAPTE XFA AAD7 SRIA	EQ FIFO	;	108	767F			
	SKIP HOF			ŧ					

RTL/6000 FILE EDI MICROPRUGRAM SECTIO SEDUENCE: \$\$004C5 NOP SKIP IF ADAPTER HAPN... TFO TAHR 08/01/77 DUC+#: AUDRES5 IMAGE (HEX) (HEX) 109 ODUU RTL/6000 FILE EDIT MICROPRUGRAM SECTION 12.605 PAGE: 48 MODEL: MPDC-REV3. REVISION: 000.00 10A COBO NHALT- ADAPTER FAILURE \ + \ 1 10B 0040 10C 681A VCOMPARE ACU TO SPA XOR ASPA ∖SKIP 1F EQUAL TFO TEOZ ì 100 C086

	71	4,159,532		72			
NODEL: MPDC_REV3D Revision: 000.00		/6000 FILE EDIT OPROGRAM SECTION		08/01/77 DUC+#:	12.605	PAGE:	48
LINE #	SEQUENCE: SS	UPC5	AUDRESS (HEX)	IMAGE (HEX)			
		-continued					
1894000 s 1895000 1896000	NHALT- ADAPTER FIFO ERROR HLT	X F	. 10E	0040			
1897000 5 1898000 1899000	NDECREMENT SPA DMA	;	10F	8008			
1900000 \$ 1901000	\LOAD ADAPTER COMMAND LCN AAD2 CNST (C2#)	ì	110	9602			
1902000 1903000 s 1904000	LENABLE READ HARDWARE PATH ERP	Ì	111	0600			
1905000 1906000 5 1907000	TRANSFER ADAPTER FIFD TO ACU	ì	112	603E			
1908000 1909000 s 1910000	\UNLOAD BYTE FROM ADAPTER FIFO XFA AAD7 SRIA	X I	113	7C7F			
1911000 1912000 s 1913000 1914000	NO OP FOR TIMING NOP	X 1	114	0000			
1915000 5 1915000 5 1916000 1917000	\SKIP IF ADAPTER HARDWARE REQ RESET TFZ TAHR	ì	115	C040			
1918000 s 1919000 1920000	NHALT- ADAPTER FAILURE HLT) E	116	0040			
1921000 SKIP HOF		i i					

REVISION:			RTL/GDOD FILE EDIT MICROPROGRAM SECTION		08/01/77 DOC.#:	12.605	PAGE:	49
LINE #		SEQUE	NCE: SSUPCS	AUDRESS (HEX)	IMAGE			
1922000	5	COMPARE ACU TO SPA		117	(HEX) 681A			
1923000		XOR ASPA		•••	0014			
1924000			•					
1925000	5	SKIP IF EQUAL	۰ ۱	11.8	C086			
1926000		TFO TEQ2	i		2000			
1927000			•					
1928000	5	\HALT+ ADAPTER FIFO ERROR	ν.	119	0040			
1929000		HLT	i	•••				
1930000			•					
1931000	\$	\DECREMENT SPA	<u>۱</u>	114	AUOB			
1932000		DMA	i					
1933000			•					
1934000	5	\CLEAR ADAPTER COMMAND	١.	118	784E			
1935000		ZER AAD2 SRIA	1					
1936000			•					
1937000	5	SKIP IF TEST DONE	<u>۱</u>	110	CUAD			
1938000		TFO TSAW	1		•			
1939000								
	5	GTO (\$BLT-ADFIFO)	1	110	F101			
1941000								
1942000	5	ACLEAR ADAPTER COMMAND	۸.	11E	9800			
1943000		LCN AAD2 CNST (DO#)	1					
1944000								
1945000	VEND OF ADA	PTER WRAPAROUND TEST	۸.					
1946000								
1947000 5	5K[P HOF		;					

MUDEL: MPDC-REV30 Revision: 000.00		UD FICE EDIT UGRAM SECTION		08/01/77 DUC+#1	42.605	PAGE:	50
1949000 VERIFY THE DRIVERS AND 1950000 ADDRESS AND DATA REGIS 1951000 ADDRESS PARITY IN ORDE	SEQUENCE: \$\$UPC IS USED TO WARP THE BUS LOGIC RECEIVERS AS WELL AS THE BUS TERS. THE TEST SENDS BAD MODUL R TO CYCLE THE BUS WITHOUT A THERE ARE FOUR PORTIONS OF THI S-	τυ Ε	AUDRESS (MEX)	IMAGE (HEX)			
1955000 1. CYCLE THE BUS WIT 1956000 HARDWARE DATA TRA 197000 2. CYCLE THE BUS WIT 1958000 HARDWARE DATA TRA 1958000 CYCLE THE BUS WIT 1958000 SCOND HARDWARE DATA TRA 1959000 SCOND HALF READ 196000 SECOND HALF READ 1961000 4. CYCLE THE BUS WIT 1962000 SECOND HALF READ	H ALL ONES PÄTTERN USING THE NSFER REGISTERS. H ALL ZEROS PATTERN USING THE REGISTERS. H ALL ONES PATTERN USING THE	٨					
1963000 1964000 SBLT-NEXT12 \CLEAR AC 1965000 CRF 1966000	υ	ĭ	11F	0010			
1967000 S \CLEAR CY 1968000 CYC 1968000	CLE BYTE	\ ;	120	4020			
1970000 \$ \CLEAR SP	A CNST (DD#)		121	8800			
1974000 MBP 1975000	LE RAD PARITY	5	122	A024			
1977000 LRA (SBLT 1978000		ì	123	E131			
1979000 \$BLTBUSLD1 \RESET BU 1980000 RST 1981000		N I	124	4084			
1982000 \$ \LOAD MS8 1983000 XF8 ABUS2 1984000	SRIA		125	5468			
1985000 \$ \LOAD LSB 1986000 XFB ABUS3 1987000 1988000 SKIP HOF		1	126	6868			

		73	4,15	9,532		74			
HODELI MP REVISIONI			RTL/6000 MICROPROGR/			08/01/77 DUC•#:	12.605	PAGEI	51
LINE # 1989000 1990000 1991000	SBLTBUSLDIA	\LOAD ADDRESS LOW XFB ABUS4 SRIA	SEQUENCE: SSUPCS	1	ADDRESS (HEX) 127	IMAGE (HEX) 6C6B			
1992000 1993000 1994000	5	\LDAD ADDRESS MID XFB ABUS4 SRIA		х в	128	6C6B			
1995000 1996000 1997000	\$	\LOAD ADDRESS HI XFB ABUS4 SRIA		ì	129	6668			
1998000 1999000 2000000	-	\CYCLE CONSTANT TO ACU LCN CNST (CO#)		ì	124	8300			
2001000 2002000 2003000	-	VSET BUS CYCLE CYC		X F	128	4020			
2004000 2005000 2006000	SBL TBUSLD2	VSKIP IF MYDCNN SET TFO TDCN		2	120	COAL			
2007000 2008000	-	GTO (SBLTBUSLD2)		\$	12D	F12C			
2009000 2010000 2011000	-	\SET FIRMWARE BUS ACK SBA		ì	12E	0002			
2012000 2013000 2014000	\$	NMSB OF DATA REG TO ACU XFA ABUS2		ì	12F	643F			
2015000 2016000 2017000	-	RTN		;	130	C200			
				•					

MODEL: MPDC-REV3D REVISION: 000+00		RTL/6000 FILE EDIT MICROPRUGRAM SECTION		06/01/77 DUC+#1	12.605	PAGE:	52
LINE #	SEQUEN	CE: SSUPCS	ADDRESS (HEX)	IMAGE (HEX)			
2018000 \$8LT8USWR1 2019000	VOR LSB OF DATA WITH ACJ	N	131	6838			
2020000	DRR ABUS3	•					
2021000 \$	VOR LOW ADDRESS WITH ACU	χ.	132	6038			
2022000 2023000	ORR ABUSI	ŧ	•-•	5000			
2024000 5	VOR MID ADDRESS WITH ACJ	,					
2025000	ORR ABUSI	1	193	603 <u>9</u>			
2026000 2027000 s							
2028000	\OR H1 ADDRESS WITH ACU ORR ABUS1	<u>}</u>	134	6038			
2029000		1					
2030000 s 2031000	CHECK ACU FOR ALL ZEROS	۸	. 135	602A			
2032000	XFB BACU	ĩ					
2033000 \$	SKIP IF ACU EQUAL TO ZERO	١	136	C086			
2034000 2035000	TFO TEOZ	t i	••••				
2036000 \$	NALT- BUS WRAPAROUND FAILURE	``	137	0040			
2037000 2038000	HLT	i i	137	0040			
2039000 \$	THEY FF TO ACU						
2040000	LCN CNST (FF#)		138	83EB			
2041000 2042000 s							
2043000	LSET RETURN FROM BUS LOAD LRA (\$BLTBUSWR2)	2	139	E138			
2044000		,					
2045000 s 2046000	GTO (SBLTBUSLDI)	1	13A	F124			
2047000 SKIP HOP							
		,					

NEA[2]041	000+00		RTL/6000 FILE EDIT MICROPROGRAM SECTION	10000000	08/01/77 DUC+#:	12.605	PAGE:	53
LINE #		SEQUE	NCE: SSUPCS	AODRESS (HEX)	IMAGE			
2048000	SBL TBUSWR2	AND LSB OF DATA WITH ACU	\ \		(HEX) 682F			
2049000		AND ABUS3	i	130	0821			
2050000			•					
2051000	5	AND LOW ADDRESS WITH ACU	ν.	130	602F			
2052000 2053000		AND ABUS1	1	• • •				
2054000								
2055000		AND MID ADDRESS WITH ACU	۱ ۱	130	602F			
2056000		AND ABUSI	F					
2057000								
2058000	•	AND HE ADDRESS WITH ACJ	۱ ۱	13E	602F			
2059000		AND ABUSI	1					
2060000	5	CHECK ACU FOR ALL ONES						
2061000	-	XFB BACU	١	13F	602A			
2062000			1					
2063000	5	SKIP IF ACU EQUAL TO ONES						
2064000	•	TFO TEOF		140	C088			
2065000			1					
2066000	5	HALT- BUS WRAPAROUND FAILURE						
2067000		HLT	2	141	00+0			
2068000			•					
2069000	5	VELEAR ACU	λ.	1 / 7	4.004			
2070000		ZER	, i	142	600F			
2071000			•					
2072000	5	NRESET BUS	ν.	143	4084			
2073000		RST	i		4084			
2074000			•					
2075000	5	LONES TO MSB OF DATA	ν.	144	6457			
2076000		BNT ABUSZ SRIA	1	•••	0.00			
2077000 2078000								
2079000	5	VONES TO LSB OF DATA	۸.	145	6857			
2080000		BNT ABUS3 SAIA	1					
2061000								
2082000	5	SET RETURN	١	146	E148			
2083000		LRA (\$BLTBUSWRZA)	:					
2084000	\$							
2085000	•	GTO (SBLTBUSLOIA)	t i	147	F127			
2086000	SOL TOUSWRZA	SET RETURN FROM BUS LOAD						
2087000		LRA (SBLTBUSWR3)	2	148	E158			
2088000			ł					
2089000	5	VCLEAR ACU	λ.					
2090000		ZER	1	149	POOF			
2091000			•					
2092000 5								

				17,336					
		75		•		76			
		75				08/01/77	12.605	-	54
MODEL1 MPD				FILE EDIT RAM SECTION		DUC.#:	12.003	PAGET	
REVISION	000.00		MICHUPROG	NAM SECTION	ADDRESS	IMAGE			
LINE #			SEQUENCE: SSUPCS		(HEX)	(HEX)			
	SBL TBUSLD3	A LOAD H.W. ADDRESS REG	LOW	N	LAA	6C0B			
2094000		XFB ABUS4 SRIA							
2095000				`	148	есен			
2096000	5	LOAD H.W. ADDRESS REG XFB ABU54 SR1A	410	ì	•••				
2097000 2098000		AFD ADUSA SKIA		•					
2099000		V LOAD H.W. ADDRESS HI		<u>۱</u>	140	6C68			
2100000	•	XFB ABUS4 SRIA		;					
2101000					1.0	* 6 4 11			
2102000	\$	LOAD MSB OF DATA REG			140	6468			
2103000		XFB ABUS2 SRIA		•					
2104000 2105000	-	LOAD LSB OF DATA REG		١.	146	6868			
2106000	2	XFB ABUS3 SRIA		1					
2107000					·				
2108000	5	LOAD MSB OF SHR REG		}	14F	6057			
2109000		BNT ABUSI SRIA		1					
2110000	_	LOAD LSB OF SHR REG		1	150	6057			
2111000 2112000	\$	BNT ABUSI SRIA		i					
2113000		but about outs							
2114000	5	VCYCLE CONSTANT TO ACU		2	191	8340			
2115000		LCN CNST (DO#)		1					
2116000		SET BUS CYCLE		١.	152	4020			
2117000 2118000	\$			i					
2119000		cie							
2120000	SBL TBUSLD4	SKIP IF MYDENN SET		N N	123	COAL			
2121000		TFD TDCN		;					
2122000					154	F153			
2123000	5	GTO (SBLTBUSLD4)		•					
2124000 2125000	5	SET FIRMWARE BUS ACK		ν.	155	0002			
2126000	•	SBA		1					
2127000					154	4435			
2128000	\$	MSB OF DATA REG TO ACI	j .	}	130	643F			
2129000		XFA ABUSZ		•					
2130000 2131000		RTN		;	157	C200			
2132000	*			-					
	SKIP HOF			1					

MODEL: MMI REVISION:			RTL/6000 FILE EDIT MICROPROGRAM SECTION		08/01/77 DUC+#1	12.605	PAGE :	55
				ADDRESS	IMAGE			
LINE #			E: SSUPCS	(HEX)	(HEX)			
2134000	SALTOUSWA3	NOR LSB OF DATA WITH ACU	`	120	682F			
2135000		AND ABUS3	•					
2136000				1.50	1035			
2137000	5	VAND LOW ADDRESS WITH ACU	N N	124	602F			
2138000	•	AND ABUSI	•					
2139000				1.0.	602F			
2140000	5	AND MID ADDRESS WITH ACU	۱	124	802F			
2141000	-	AND ABU51	1					
2142000				1.64	6018			
2143000	5	VAND H1 ADDRESS WITH ACU	2	170	0018			
2144000		XOR ABUSI	•					
2145000				150	602A			
2146000	\$	ACHECK ACU FOR ALL ONES	2	•	0024			
2147000		XFB BACU	i i					
2148000				150	C088			
2149000	5	SKIP IF ACU EQUAL TO DNES	}		C084			
2150000		TFO TEOF	1					
2151000				156	0040			
2152000	5	<pre>\HALT+ BUS SHR WRAPAROUND FAILL</pre>	ME }					
2153000		HLT	•					
2154000			``	156	83EB			
2155000	\$	HEX FF TO ACU	ì		0000			
Z156000		LCN CNST (FF#)	•					
2157000			١.	160	4084			
2158000	5	RESET BUS		•••				
2159000		RST	•					
2160000		ANT OFTIGH FROM ALL I OND	λ	161	E163			
2161000	5	SET RETURN FROM BUS LOAD	i					
2162000		LRA (SBLTBUSWR4)	•					
2163000		CTO (CPI TRUSI 03)	\$	162	F14A			
2164000	5	GTO (SBLTBUSLD3)	•					
2165000			\$					
2166000	SK1P HOF		•					

MODEL: M ⁴⁰ REVISION:			RTL/6000 FILE EDIT MICROPRUGRAM SECTION	AUDRESS	08/01/77 DUC+#: IMAGE	12.605	PAGE:	58
LINE .		SEQUE	NCE: SSUPCS	(HEX)	(HEX)			
	SEL TEUSWR4	NAND LSB OF DATA WITH ACU	N N	163	6836			
2168000	*Be / Decality	ORR ABUS3	1					
2169000								
2170000		VOR LOW ADDRESS WITH ACJ	۱	164	603H			
2171000	-	DRR ABUSI	1					
2172000					(01)			
2173000	5	VOR MID ADDRESS WITH ACU	`	165	603b			
2174000		ORR ABUS1	4					
2175000					6027			
2176000	5	VOR HI ADDRESS WITH ACU	N N	100	0021			
2177000		XNR ABUSI	•					
2178000				. 147	602A			
2179000	5	VCHECK ACU FOR ALL ZERDS	2	101	OVER			
2180000		XFB BACU	•					
2181000				160	C086			
2182000	5	SKIP IF ACU EQUAL TO ZERO	2	140	2000			
2183000		TFO TEOZ	•					
2184000			11.105	149	0040			
2185000	5	WHALT- BUS SHR WRAPARDUND FA	ILURE Y					
2186000		HLT	•					
2187000 2188000	5KTP HOF		t i					

78

			4,139,332		70			
		77			78			
NDDEL: MPD REVISIONI			RTL/6000 FILE EDIT MICROPROGRAM SECTION	ADDRES5	08/01/77 . DUC-#1 IMAGE	12.605	PAGE	5
LINE #			ENCE: SSUPCS	(HEX)	(HEX)			
	THE FOLLOWIN	IG ROUTINE IS USED TO WRAP THE	MOTHER BUARD					
2190000		E ADAPTER TO CHECK THE READ A						
2191000	L061C.		١					
2192000			,	144	0010			
	SBLT-NEXT13	ACLEAR ACU	i i	104	0010			
2194000		CRF	1					
2195000			,	149	C050			
2196000	\$	RESET ENABLE HARDWARE	1	100	(050			
2197000		TEZ TAXO AACU	•					
2193000		TED TAXE AACU	1	140	C090			
2199000	5	SPU TAXU AACU	,		2000			
2200000		NDP	1	16D	0000			
2201000	3	NUP	•					
2202000		CLEAR CYCLE REGISTER	Υ.	L6F	4020			
2204000	,	CYC	ì					
2205000			•					
		VCLEAR ADAPTER COMMAND	>	16F	9800			
2206000 2207000	•	LCN AAD2 CNST (00#)	ì	•••				
2208000		LE4 4402 (431 (000)	•					
2209000		VRESET BUS STATUS	Ň	170	4084			
2210000	3	R51		• • •				
2211000		KJ1	•					
2212000		VCLEAR SPA	``	171	8800			
2213000	3	LEN ASPA CNST (00#)	i	• •				
2214000		ECH ABER CAST (VOP)	•					
2215000		VELEAR MOTHER BOARD FIFD	Υ.	172	0088			
2216000	<i>r</i>	RDA	i i					
2217000		R DA						
	5	VELEAR ADAPTER FIFO	<u>۱</u>	173	744F			
2219000	•	ZER AAD5 SRIA						
2220000								
2221000		SET MODULE BAD PARITY	λ.	174	A024			
2222000		MBP						
2223000								
2224000	•	SET 5.P. TEST MODE	Υ.	175	A080			
2225000	•	SPT	1					
2226000								
	SKIP HOF		1					

MODEL: MPD REVISION:			RTL/6000 FILE EDIT Microprogram Section	AUDRESS	08/01/77 DUC.#: IMAGE	12.605	PAGE:	58
LINE #		SEQUE	NCE: SSUPCS	(HEX)	HEAL			
2228000	5	HEX FF TO SPA	\ \	176	BBED			
2229000	-	LCN ASPA CNST (FF#)	1					
2230000								
2231000	5	VCLEAR OFFSET RANGE LOWER	Υ.	177	6C68			
2232000	•	XFB ABUS4 SRIA	;					
2233000								
2234000	5	VCLEAR OFFSET RANGE H1	١.	178	9000			
2235000		XFB ABUSA SRIA	:					
2236000								
2237000	5	VCLEAR RANGE LOW	λ.	179	6C6B			
2238000		XFB ABUS4 SRIA	;					
2239000								
2240000	\$	CLEAR RANGE HI	۸	178	6668			
2241000		XFB ABUS4 SRIA	;					
2242000								
2243000	5	VCLEAR ADDRESS LOW	١.	176	6C6B			
2244000		XFB ABUS4 SRIA	1					
2245000								
2246000	5	\CLEAR ADDRES5 MID	ν.	110	6668			
2247000		XFB ABUS4 SRIA	i					
2248000								
2249000	5	VCLEAR ADDRESS H1	١.	170	6C68			
2250000		XFB ABUSH SRIA	•					
2251000				175	4040			
2252000	5	VSET RANGE TO NON ZERO	N N	1/6	4040			
2253000		DRC	ŧ.					
2254000								
2255000	SKIP HOF		i					

MODEL: MP REVISION:			RTL/6000 FILE EDIT Microprogram Section	ADDRESS	08/01/77 DUC+#1 IMAGE	12.605	PAGE :	59
LINE #			SEQUENCE: SSUPCS	(HEX)	(HEX)			
	\$BUSCYMRT1	ACYCLE CONSTANT TO ACU	\ \	17F	8182			
2257000		LCN CNST (62#)	I					
2258000								
2259000	5	RESET BUS	۱ ۱	180	4084			
2260000		RST	1					
2261000								
2262000	\$	SET BUS CYCLE		181	4020			
2263000		CYC	1					
2264000				102	COAL			
2265000	\$BUSCYWRT2	SKIP IF MYDENN SET	<u>``</u>	102	CUAC			
2266000		TFD TDCN	;					
2267000			1	183	F182			
2268000	5	GTO (\$BUSCYWRT2)	,	105				
2269000	-	SET BUS ACK	١	186	0002			
2270000	5	SBA	ì					
2271000		304	•					
2273000		VLOAD DATA HI	Υ.	185	6568			
2274000	,	XFB ABUSZ BSPM 5R1A	i					
2275000		ALL HOUSE BOIN ONLY						
2276000		DECREMENT SPA	ν.	186	A008			
2277000	•	DHA	1					
2278000								
2279000	5	VEDAD DATA LOW	١	187	6968			
2280000	=	XFB ABUS3 BSPM SRIA	l I					
2281000								
2282000	5	IDECREMENT SPA	N .	188	AOOB			
2283000		DMA	4					
2284000								
2285000	SKIP HOF		+					

•

^	^	
ж		
v	v	

ADDEL: MPDC+F REVISION: 000			00 FILE EDIT Ogram Section		08/01/77 DUC+#:	12.605	PAGE :	
LINE #		STOLENCE - ANDA		AUDRESS				
	USCYWRT3	SEQUENCE: SSUPC		(HEX)	(HEX)			
2287000		TFO TDCN	1	184	COAL			
2288000			1					
2289000 \$		GTO (SBUSCYWRI3)		1.0.4	F189			
2290000		3.0 (0000ctill())	•	194	F107			
2291000 \$		15ET FIRMWARE BUS ACK	、	1.64	0002			
2292000		SBA	i	100	0002			
2293000			•					
2294000 \$		ACLEAR ACU	``	Lar.	600F			
2295000		ZER			COLC.			
2296000		-	•					
2297000 \$		VSKIP IF NOTHER BOARD FIFD FULL	`	180	C042			
2298000		TFZ TBCA			2012			
2299000								
2300000 \$		GTO (SBUSCYWRT2)	1	185	F182			
2301000								
2302000 \$		NCLEAR ADAPTER FIFO	<u>۱</u>	185	7465			
2303000		XFB AAD5 SRIA	1					
2304000								
2305000 \$		VCLEAR CYCLE BYTE	× ×	190	4020			
2306000		CYC	:					
2307000								
2308000 s		VSET DATA COUNTER TO 16	<u>۱</u>	191	9408			
2309000		LCN AAD1 CNST (04#)	1					
2310000								
2311000 \$		LOAD ADAPTER COMMAND	λ	192	9808			
2312000		LCN AAD2 CNST (C4#)	;					
2313000								
2314000 \$		VEYELE CONSTANT TO ACU	N .	193	8182			
2315000 2316000		LCN CNST (62#)						
2317000 \$								
2318000		VENABLE WRITE HARDWARE PATH	`	194	0601			
2319000		EWP	1					
2320000 5		SET CHELE						
2321000		SET CYCLE	N N	195	4020			
2322000		CYC	1					
2323000 SK1	0.005							
at 1	- HUI		1					

MODEL: MPDC-REV3D REVISION: 000.00		6000 FILE EDIT PROGRAM SECTION		08/01/77 DUC+#:	12.605	PAGE	61
LINE # 2324000 \$BUSCYHRTA1 2325000 2326000	SEQUENCE: \$\$U \Skip if no buffer reduest TFO TNBR	PC\$ \ I	ADDRESS (HEX) 196	IMAGE (HEX) COBC			
2327000 \$	GTO (SBUSCYWRTA1)	i	197	F196			
2328000 2329000 SBUSCYWRTA2 2330000 2331000	WAIT FOR BUS NAK TFO TNAK	ì	198	C086			
2332000 \$	GTO (SBUSCYWRTA2)	5	199	F198			
2333000 2334000 s 2335000	VCLEAR ACU ZER		19A	600E			
2336000 2337000 s 2338000	\CLEAR ADAPTER COMMAND ZER AADZ SRIA	}	198	784E			
2339000 2340900 \$ 2341000	NRESET BUS	N I	190	4084			
2342000 2343000 s 2344000	NRESET CYCLE BYTE) ŧ	19D	4020			
2345000 2346000 s 2347000	116 TO ACU LCN CNST (10#)	ì	19E	8040			
2348000 2349000 s 2350000 2351000	VSET SPA FOR STARTING ADDRESS OF COMP. ADD ASPA BACU SRIA	ARE \	19F	6804			
2352000 s 2352000 2354000	VSET DATA COUNT TO 16 LCN AADI CNST (08#)	*	140	9420			
2356000 s 2356000 s 2356000 2357000	\LOAD ADAPTER COMMAND LCN AAD2 CNST (C2#)	X Ŧ	141	9802			
2358000 SKIP HOF		1					

MODEL: MPI REVISION:			RTL/6000 FILE EDIT MICROPROGRAM SECTION		08/01/77 DOC+#:	12.605	PAGE :	62
LINE # 2359000 2360000 2361000	\$BUSCYRDA1	SEQUENCE NCYCLE-CONSTANT TO ACU LCN CNST (44#)	E: \$\$UPC5 \ 4	ALDRESS (HEX) 1A2	[MAGE (HEX) Blub			
2362000 2363000 2364000	5	\ENABLE READ HARDWARE PATH ERP	ì	143	0600			
2365000 2366000 2367000	-	VSET CYCLE CYC	\ 7	144	4020			
2368000 2369000 2370000	\$BUSCYRDA2	NSKIP TF MYDONN SET TFO TDON	` ¥	145	COAL			
2371000 2372000	-	GTO (SBU5CYRDA2)	;	146	FIA5			
2373000 2374000 2375000		SET FIRMWARE BUS ACK	:	147	0002			
2376000 2377000 2379000	5	ACOMPARE DATA HI TO SPM XOR ABU52 85PM	1	LAB	651B			
2379000 2380000 2381000	5	NSKIP IF EQUAL TFO TEGZ	ì	LA9	Сояя			
2382000 2383000 2384000	5	NHALT- FIFO BUS WRAPAROUND FAILU HLT	JRE \ ţ	144	0040			

MODELI MPOC-REV3D REVISION: 000+00		6000 FILE EDIT Program Section		08/01/77 DOC.#:	12.605	PAGE:	62
LINE #	SEQUENCE: \$50	PCS	AUDRESS (HEX)	IMAGE (HEX)			
	-	continued					
2385000 s 2386000 2387000	\DECREMENT SPA DMA	X I	148	AGOB			
2368000 5 2389000 2390000	\COMPARE DATA LOW TO SP4 XOR ABUS3 BSPM	X T	140	6918			
2391000 s 2392000 2393000	\SKIP IF EQUAL TFO TEQ2	ì	1AD	C086			
2395000 5 2395000 2396000	NHALT- FIFO BUS WRAPAROUND FAILURE	X F	146	0040			
2397000 5KIP HOF		¥.					

MODEL: MPDC-REV3D Revision: 000.00		DOG FILE EDIT Rogram Section		08/01/77 DUC.#:	12.605	PAGE:	63
LINE # 2398000 \$	VDECREMENT SPA	5	ADDRESS (HEX)	(HEX)			
2399000	DMA	1	1AF	A008			
2401000 \$	LEAR ACU	۸.	180	600E			
2402000 2403000	ZER	1					
2404000 s 2405000	ACLEAR CYCLE REGISTER	ì	181	4020			
2406000 2407000 \$	SKIP IF NO ADAPTER HARDWARE REQUEST		182	C040			
2408000 2409000	TFZ TAHR	i	-0-	2070			
2410000 \$ 2411000	GTO (\$BUSCYRDA1)	1	183	F1A2			
2412000 \$ 2413000	\CLEAR ADAPTER COMMAND LCN AAD2 CNST (00#)) }	184	9800			
2414000 2415000 s	CLEAR MOTHER BOARD FIFD						
2416000 2417000	RDA	1	185	0088			
2418000 s 2419000	SKIP IF TEST DONE	ì	186	C046			
2420000 2421000 s	GTO (SBUSCYWRTL)		187	F17F			
2422000 2423000 s 2424000	LEAR HODULE BAD PARITY	}	188	A020			
2425000 2426000 s	VRESET BUS	•		_			
2427000	RST	*	189	4084			
	WRAPAROUND TEST	N					
2431000 5K1P HOF		;					

MODEL: MMC REVISION:			JOUND FILE EDIT OPROGRAM SECTION		08/01/77 DOC.#:	12.605	PAGE:	64
2435000 2435000 2435000	NUMBERS. WHE	SEQUENCE: \$8 G ROUTINE IS USED TO READ MEMORY LDC. OW COUNTER). THE TEST CYCLES USING AL N MY CHANNEL IS USED. THE MPDC WILL R VERIFING THE CHANNEL COMPARE LOGIC AS LOGIC.	3E# L CHANNEL ESPOND	ADDRESS (HEX)	IMAGE (HEX)			
2437000 2438000 2439000 2440000	SOLT-NEXT14	\CLEAR CRF	\ #	184	0010			
	\$	\CLEAR CYCLE REGISTER CYC	` t	186	4020			
2444000 2445000 2446000	-	RESET BUS STATUS	Ì	180	4084			
2447000 2448000 2449000		RESET MOTHER BOARD FIFD	ì	LED .	0088			
2450000 2451000 2452000	-	MEHORY YELLOW ADDRESS TO ACU LCN CNST (38#)	ì	18E	80EA			
2453000 2454000 2455000 2456000		ACU TO ADDRESS REG LOW XFB ABUS4 SRIA	\ 4	İBF	6C08			
2457000	5	CLEAR ACU ZER	× ;		600E			
2460000 2461000	5	VLOAD ADDRESS MID XF8 ABUS4 SRIA VLOAD ADDRESS HI	5		6C6B			
2463000 2464000	5	XFO ABUSA SRIA	r N	102				
	\$	LCN ASPA CNST (00#) SET STARTING CHANNEL NJMBER	i	1(3	8008			
2459000 2470000 2471000 2472000	5	LCN CNST (04#) \write in Spm	i X	105				
2473000	\$	WIA VSET L5B OF STARTING CHANNEL NUMBER ZER	1	166				
2476000	5	VWRITE IN SPM MWT	*	167	A200			
2479000 2480000 5	KIP HOF		i i					

		00	4,159,532		84			
MODEL: MPC Revision:	000+00		RTL/6000 FILE EDIT ICROPROGRAM SECTION	ADDRESS	08701/77 08701/77 DOC+#1 [HAGE	12.605	PAGE I	65
L1NE # 2481000	SBUS-MEM1	SEQUENCE:	N	(HEX) 1C8	(HEX) 8800			
2482000 2483000 2484000	\$	LCN ASPA CNST (00#) \LOAD DATA M58	1	169	6 568			
2485000 2486000 2487000	5	XFB ABUS2 SRIA BSPM	1	104	A100			
2488000 2489000		IMA NLOAD DATA LSB	i N	ICB	6968			
2490000 2491000 2492000	5	XFB ABUS3 SR1A 85PM	1	100	4084			
2493000 2494000 2495000	\$	NRESET BUS RST	1					
2496000 2497000 2498000	5	LCYCLE CONSTANT TO ACU LCN CNST (EO#)	i	100	8380			
2499000 2500000	5	NCYCLE BUS CYC	X F	ÌCE	4020			
2501000 2502000 2503000	5	NO OP FOR TIMING NOP	1 1	1CF	0000			
2505000 2505000 2506000	\$BUS-HEM2	SKIP IF NO BUS CYCLE ACTIVE	X T	100	C042			
2507000 2508000 2509000	5	GTO (SBUS-MEM2)	1	101	F100			
2510000 2511000	5	TIME OUT CONSTANT TO ACU LCN CNST (OC#)	*	102	8028			
2512000 2513000 2514000	SBU5-MEM2A	NDECREMENT ACU DEC	X B	103	603C			
2515000 2516000 2517000	s	SKIP IF TIME OUT	\ ;	104	C086			
2518000 2519000	s	GTO ISBUS-MEM2A)	4	105	F103			
	SKIP HOP		1 111,5000 File Evii		08/01/77	12.605	PAGE :	60
MODEL: MP REVISION:	000.00		MICROPROGRAM SECTION	AUDHESS (HEX)	DUC.#: [MAGE (HEX)			
L1NE # 2522000 2523000	s	SEQUENCE SHIFT LOW ADDRESS BYTE XFA ABUSI	: \$\$UPC5 \ {	106	603F			
2524000 2525000 2526000	s	NMASK UNUSED BITS ACN CNST (80#)	\ \$	107	8204			
2527000 2526000 2529000	\$	\COMPARE CHANNEL NUMBER WITH SPM XDR AACU BSPM	1 1	10s	611A			
2530000 2531000 2532000	5	SKIP IF EQUAL COMPARE	X Ŧ	109	C086			
2533000 2534000	s	GTO (SBUS-HEM2B)	4	1DA	FIEO			
2535010 2536010 2537010	\$	VDECREMENT MEMORY ADDRESS	ì	108	BOOR			
2538000 2539000 2540000	s	VCHANNEL NUMBER TO ACU XFA ABUSI	L B	נסכ	603F			
2541000 2542000 2543000	\$	\COMPARE CHANNEL NUMBER WITH SPI XDR AACU BSPM	4 X 1	100	611A			
2544000 2545000 2546000		NSKIP IF NOT MY CHANNEL NUMBER TFZ TEQZ	\ \$	106	C046			
2547000 2548000 2549000	s	GTO (SBUS-MEM3)	\$		F1E9			
2550000 2551000 2552000	_	\SET SPA FOR CHANNEL NUMBER LCN ASPA CNST (D1#)	*		6801			
2553000 2554000 2555000	5	\INCREMENT CONSTANT TO ACU LCN CNST (80#)	1	161	8200			
2556000 2557000	5	VINCREMENT CHANNEL NUMBER ADD AACU BSPM SRIA	\ \$	163	6164	,		
2558000 2559000 2560000	5	WRITE AND DECREMENT SPA	N F	163	A208			
2561000 2562000 2563000) 5	\PROPAGATE CARRY INC ASPM COTI	•	164	6480			
2565000 2565000 2566000) s	WRITE IN SPM MWT	X \$	LE	A200			
2567000) 5 КІР НОР		1					
	PDC-REV3D 11 000.00		RTL/6000 FILE EDIT MICROPRUGRAM SECTION	ADDRES		12.605	PAGE	67
LINE #		SEQUENC \SKIP IF NOT ALL CHANNELS CHECK TFZ TEQZ	ET SSUPCS ED \ 1	(HEX) LE	(HEX) 5 C046			
2570000 2571000 2572000)) s	HALT- NO SUCESSFUL MEMORY READ		١E	0040			
2573001 2574001 2575001	D 5 5	HLT GTD (SBUS-MEML)	4 6	16	B FICS			
257600 257700 257800	D SBUS-MEMB	\CLEAR ACU CRF	\ ŧ	1E	9 0010			
257900 258000 258100	0 5 5	VCLEAR CYCLE REG Cyc	*	16	4020			
258200 258300 258400	0 0 s	RESET BUS	ì	16	8 4084			
258500 258600	0 0 s	CLEAR MOTHER BOARD FIFD	Y I	LE	0088			
258700 258800 258900	0 0 ∖END DF MEM	RDA IORY READ TEST	``					
259000	O C							

4.159.532

			4,139,332					
		85	-,,		86			
MODEL: MP REVISION:	DC+REV30 000.00		RTL/6000 FILE EDIT MICROPROGRAM SECTION	AUDRESS	08/01/17 DOC∎#:	12,605	PAGE:	68
LINE #		SEQUEN	E: SSUPCS	(HEX)	IMAGE {HEX}			
2592000								
2593000	5	ARESET 5. P. TEST MODE	``	1E0	0010			
2594000	-	CRF						
2595000		-						
2596000	5	ACLEAR REGISTERS	۱	1 E E	0098			
2597000		INI	;					
2598000								
2599000								
2600000								
2601000								
2602000								
2603000		VEND OF BASIC LOGIC TEST	۸					
2604000								
2605000								
2606000								
2607000								
2608000								
2609000		•						
2610000		· · · · · · · · · · · · · · · · · · ·						
2611000		TEST HAS BEEN SUCCESSFULLY COM						
2612000	ATHE BLT DONE	FLOP WHICH WILL EXTINGUISH THE	LED. N					
2613000								
2614000								
2615000	SEL TSETDONE	SET OLT DONE FLOP		1EF	0004			
2616000		QLT	1					
2617000		ALL DETUDE FOR CLEAR SER		160	E1FA			
2618000	5	SET RETURN FOR CLEAR SPM	2	140	EIFA			
2619000		LRA (\$SETUNITSEL)	•					
2620000			•					
4021000	SKIP HOF		•					

ODELI MP EVISIONI			75 RTL/6000 FILE EDIT MICROPRUGRAM SECTION		08/01/77 DUC:	12.605	PAGE :	e
LINE # 2622000		SEQUENCE	: SSUPCS	ADDRESS (HEX)	1MAGE (HEX)			
2623000 2624000 2625000		WING SUBROUTINE IS USED FOR CLEAR	ING V					
2626000	SCLEARSPHOD	ACLEAR ACU	,	151	0010			
2628000	SCEERASPAGO	CRF	F					
2629000	\$	ACLEAR SPA	١.	1F2	8600			
2631000		LCN ASPA CNST (00#)	;					
2633000	5	VSET SCRATCH PAD TEST HODE) t	1F3	AOBO			
2635000				154	A300			
2637000	SCLEARSPH01	NWRITE MEMORY WIA AACU	*	•r •	4300			
2638000	5	NO OP FOR TIMING	N	1F5	0000			
2640000		NOP	ŧ					
2642000	\$	NSKIP IF SPA WRAPAROUND TFD TSAW	}	1F6	COAP			
6644000				167	F1F4			
2645000	5	\CLEAR NEXT LOCATION GTO (SCLEARSPMO1)		467	r 1 r 4			
2647000	5	RESET S. P. TEST MODE	١.	1F8	0010			
2649000		CRF	;					
2651000	\$	NRETURN TO CALLER		169	C200			
2653000	SKIP HOF							

NODELI MP REVISIONI			00 FILE EDIT NGRAM SECTION		98/01/77 DUC+#:	12.605	PAGE :	70
LINE #		SEQUENCE: \$\$UPC	5	AUDHESS (HEX)	[MAGE (HEX)			
2655000 2656000		OLLOWING ROUTINE 15 USED TO LOAD THE						
2657000		ZED UNIT SELECTION BYTES INTO SCRATCH						
2658000		RY. ON ENTERING THIS ROUTINE BOTH THE						
2659000		PAD MEMORY AND THE ACU HAVE BEEN						
2660000		Y CLEARED BY THE SCLEARSPH ROUTINE.	<u>۱</u>					
	PREVIOUS	T LLEARED BY THE SULEARSPA RUDIINE.	,					
2661000								
2662000		ACU TO INDEX REGISTER	,	154	A030			
2663000	SETUNITSEL	LIR	>	• • •	2030			
2665000		LIN	•					
2666000		SET SPA FOR UNIT SELECT LOCATION		164	BCEB			
2667000	,	SSPAL LOC (UNSEL)		*** 0	0000			
2668000		SSPRI EUC (UNSEL)	•					
2669000	-	VINITIALIZE LOCATION - ACU TO SPM		1FC	A200			
2670000	,	MAT		••••				
2671000		man t	•					
2672000		VINCREMENT ACU		150	6000			
	3			110	0000			
2673000		INC AACU	•					
2674000		SKIP IF ALL CHANNELS INITIALIZED		IFE	C09A			
2675000 2676000		TEO TAX5	2		COM			
2677000		IFU TAX2	•					
2678000		VINITIALIZE NEXT CHANNEL		IFF	F1FA			
2679000		GTD (\$SETUNITSEL)	;					
2680000		and reactournaces	1					
	SKIP HOF		,					

	87	4,159,532		•••	
I MPDC-REVID IONT 000+00	RT	76000 FILE EDIT		88 08/01/77	12.605 PAGE:
4	MICI SEQUENCE 1 SI	IOPROGRAM SECTION	ADDRESS (HEX)	DUC+#1 [MAGE (HEX)	
000 INIT 000 LOG 000 SET 000 LOAD 000 LOAD 000 LOAD 000 LOAD 000 UPDA	UTINE IS USED TO PERFORM THE FOLLOWING IALIZE THE DEVICE ADAPTER THE DEVICE 1.D. CODE IN SCRATCH PAD. THE INITIALIZE FLAG IN THE CHANNEL MON: THE STATE UP FUNCTION CODE IN SCRATCH IME STATE UP FUNCTION CODE IN SCRATCH THE STATE IREADY OR NONREADY IN SCRATCH THE CURRENT FIRMWARE REVISION. WORKING PRAMETERS IN SCRATCH PAD. TE STATUS. LIBRATES THE DEVICE.	FUNCTIONS- TOR BYTE. Pad.			
000 + GOES 000 000	TO THE INTERRUPT SUBROUTINE.	Ň			
000 \$SETUP-ADP 000 000	\CLEAR ACU ZER	X	200	600E	
000 s 000 000	\GO TO SET UP CURRENT CHANNEL GTO (\$SETUP=DEV)	` ŧ	201	F205	
DND SETUP-LOOP	VINCREMENTED INDEX REGISTER TO ACU- INC AIDX	ţ	202	600	
000 % 000	\SKIP IF NOT ALL CHANNELS INITIALIZE TFZ TAX5 AACU		203	C0 5A	
000 000 \$ 000	\SET UP DONE. START POLLING GTO (\$START∽WALT)	X I	204	F210	
000 SKIP HOF		i			
: MPDC=REV30 IONI OD0+00 #		DOROGRAM SECTION	AUDRESS	UH/U1/77 DUC.#: IMAGE	12.605 PAGE;
000 000 ≴SE1UP+DEV 000	VACU TO INDEX REGISTER	N	(HEX) 205	(HEX) AQBU	
100 100 \$ 300	NRESET DEVICE ADAPTER RDA	;	206	0088	
000 s 000 s	NCLEAR ADAPTER STATUS XFB AAD5 SRIA	1 \	207	7468	
000 000 \$ 000	NCLEAR ADAPTER HARDWARE REQUEST ZER AAD7 SRIA	1	208	7(41	
000 000 s 000	SET SPA FOR UNIT SELECT BYTE SSPAI LOC (UNSEL)	1	-209	8CE8	
000 s 000 s	VSELECT DEVICE	;	20 A	706A	
000 000 5 000	XF8 AAD3 B5PM SRIA VSET SPA FOR DEVICE 1. D.	*	208	8C8A	
000 000 5 000 5	SSPAI LOC (DID1)	F 3	200	8083	
000 000 \$	LCN AACU CNST (23#) STORE MSB OF DEVICE I. D.	i N		A300	
000 000 SK1P HOF	Alw	4 1			
MPDC-REV3D ON: 000.00	RTL	6000 FILE EDIT		08/01/77	12.605 PAGE:
	NICR Sequence: SS	PROGRAM SECTION	ADDRESS (HEX)	DOC.#: IMAGE (HEX)	
00 00 s 00	ASTORE LSB OF DEVICE I. D. HWT AADI	,		8600	
00 00 ≴ 00	NSET SPA FOR FIRMWARE REV SSPAI LOC (FWRV)	1	20F	BCE9	
no no si no	(SET FIRMWARE REVISION IN ACU LCN AACU CNST (3D#)	Υ	210	ROFO	
no s. no s.	A STORE FIRMWARE REV FOR SOFTWARE USE		211	A200	
00 00 % 00	SET SPA FOR DEVICE STATUS		212	BLEA	
no no s no	N WRITE CURRENT DEVICE STATUS	; }	213	βΑίο	
10 10 5 10	SKIP IF DEVICE READY TFO TAXO ASPM	;	214	C490	
10 70 s 70	GO TO NEXT CHANNEL GTO (\$5ETUP-DEV1)	:	215	F218	
10 10 s 10	SET SPA FOR STSL SSPAL LOC (STSL)		615	8660	
10 10 5 10	LSET READY CONSTANT IN ACU LCN CNST (800)	X	217	6200	
00 00 s 00	LUPDATE STSI MWT	÷	218	A200	
	VSET RETURN FOR RECALIBRATE	T N	/19	5202	
10 s					
10 50 50 10 10 5	LRA (\$5ETUP-LOOP) NGC TO RECALIBRATE	i N	21A 4	638.1	
10 50 50 50 50 50 50 50 50 50 50 50 50 50	LRA (SSETUP-LODP) NGO TO RECALIBRATE GTO (SRECAL) NSET CHANNEL READY	, ; ,	21A 4 21B 4		
10 5 10 5 10 5 10 5 10 5 10 5	LRA (\$5ETUP-LOOP) NGD TO RECALIBRATE GTO (\$RECAL)	х ;		+01H	

4 B

		89			90			
REVISION:		. 00	RTL/6000 FILE EDIT HICROPHUGRAM SECTION		08/01/77 DOC.#:	12.605	PAGE:	7
LINE # 2789000		SEQUENCE:	SSUPCS	ADDRESS (HEX)	IMAGE (HEX)			
2790000 2791000 2792000	`	THE WAIT ROUTINE PRIORITIZES THE EXECUTION ACTIVITIES IN THE FOLLOWING ORDER-	OF CHANNEL					
2793000 2794000 2795000 2795000		1. UNSOLICITED BUS TRANSFERS. INDICATING A FROM THE CP WITH THE DATA STORED IN THE INTERFACE REGISTER.	TRANSFER BUS					
2797000 2798000 2799000 2800000 2800000		2. DEVICE REDUESTS. INDICATING THAT THE ADA COMPLETED SEARCHING A FIELD AND REDUIRES (RELOAD SEARCH ARGUMENT, A HIT ON A SEA OR AN ERROR.)	SEDVICING					
2802000 2803000 2804000 2805000 2805000		THE FOLLOWING ACTIVITIES ARE CHECKED FOR ON THE ADAPTER IS NOT BUSY: SINCE UNLY ONE CHA CAN BE READ/WRITE/SEARCHING AT A TIME.	LY WHEN NNEL					
2807000 2808000 2809000		3. RESUME INTERRUPT+ INDICATING THAT THE CP RAISED THE RESUME INTERRUPT LINE.	HAS					
2810000 2811000 2812000		4. SEEKS STACKED. INDICATING THAT A PREVIOU OPERATION WAS STACKED.	S SEEK					
2813000 2814000 2815000 2816000 2816000	Ň	> POLL DEVICES. WHICH CHECKS FOR ANY PREVI INITIATED SEEKS BECOMING DONE OR ANY ASY DEVICE STATE TRANSITIONS (OFF LINE TO RE READY TO OFF LINE) WHICH MAY HAVE TAKEN I	CHRONOUS					
2818000 2819000 2820000 2821000		6. READ/WRITES STACKED, INDICATING THAT A PI READ OR WRITE OPERATION WAS STACKED.	REVIOUS \					
2822000 5	KIP	HDF	;					

ODELI MPD Evisioni		RTL/ MICRD	6000 FILE EDIT PRUGRAM SECTION		08/01/77 DUC+#1	12.605	PAGE:	75
LINE # 2823000 2824000		SEQUENCE: SSU	PC5	ADDRESS (HEX)	INAGE (HEX)			
2825000	SSTART-WAIT	RESET BUS REGISTER BUSY	}	210	4002			
2829000	SWAIT-LOOP	\SKIP IF REQUEST IS ON TFO TREQ	<u>}</u>	21E	C08C			
2830000 2831000 : 2832000	5	\GD TO STACKED CHECK GTO (\$WAIT-BUSY)) 1	21F	F227			
2835000	SWAIT-LOOP1	SET REGISTER BUSY) t	220	4004			
2836000 2837000 j 2838000	5	LOAD REQUESTING CHANNEL	}	221	A020			
1839000 1840000 1 1841000	6	\5K1P IF NOT A BUS REQUEST TFZ TUBR	, ,	222	C072			
842000 843000 1 844000	•	\GO TO SERVICE UNSOLICITED BUS REQUEST GTO (\$STARTBUSRQ)	-	223	F287			
845000 846000 s 847000	L	\SET SPA FOR CURRENTLY ACTIVE R/W CHAN SSPA LOC(LSTRW)		224	8869			
848000 849000 s 850000	i	LOAD INDEX REGISTER	ì	225	A430			
851000 852000 s 853000		NGO TO DEVICE SUPPORT ROUTINE		226	(200			
854000 855000 856000 858000 858000 858000 860000 861000 862000 863000 864000 864000	N THE H	OLLDWING IS A LIST OF POSSIBLE RETURNS MDING ON THE OPERATION BEING PERFORMED- FWT-RET - FORMAT WRITE ID SCH-RET - SEARCH ID WRT-RET - DATA XFER DURING WRITES READ-RET - DATA XFER DURING READS READ-RET - DATA XFER DURING READS FMT-READ - FORMAT READ ID ONLY AFTER SPACING DATA FIELD DIAG-AMK - DIAGNOSTIC READ (FIRST RET ()ΝLΥ) \					

MODEL	÷	MPDC-REV30)

MUDEL: MP REVISION:		RTL/6000 F MICROPROGRA	ILE EDIT M SECTION		08/01/77 DUC.#;	12,605	PAGE :	76
LINE # 2867000		SEQUENCE: SAUPCS		ADDHESS (HEX)	IMAGE (HEX)			
2868000 2869000 2870000	\$wA[T-BUSY	NSKIP IF NO ADAPTER HARDWARE REQUEST TAHR TF2	\ ;	227	C040			
2871000 2872000 2873000	5	\GO TO RETURN TO ADAPTER GTO (\$WAIT-LOOPI)	}	228	F220			
2874000 2875000 2876000	\$	SKIP IF ADAPTER NOT BUSY TFZ TADB	X i	229	Соев			
2877000 2878000 2879000	5	NGO TO WAIT FOR A REQUEST GTD (SSTART-WAIT)	}	22A	F210			
2880000 2881000 2882000	SPOLL-PEND	SKIP IF RESUME INTERRUPT NOT SET TINT TF2	÷	22B	C074			
2883000 2884000 2885000	5	NGO TO RESUME INTERRUPT GTO (\$STARTRESUM)	ì	225	F25A			
2886000 2887000 2888000	\$POLLDEVST	SET BUS REGISTER BUSY	\ #	220	4004			
2889000 2890000	\$	NCLEAR ACU ICN CMST (90#)	` ;	228	8000			

	4,13	19,332					
	91	-		92			
NDEL: MPDC-REV3D NEVISION: 000.00	RTL/6000	FILE EDIT	ADURESS	U8/01/77 DUC+#1 IMAGE	12.605	PAGE :	
LINE #	SEQUENCE: SSUPCS	inued	(MEX)	(HEX)			
	-001						
2891000 2892000 \$ 2893000	\SKIP IF NO UNSOLICITED BUS REQUESTS TUBR TFZ	A A A A A A A A A A A A A A A A A A A	22F	C072			
2894000 2895000 \$	NO TO SERVICE UNSOLICITED BUS REQUEST	2 Y	230	F21E			
2896000 2897000 2898000 \$5EEKSTACK	GTO (\$WAIT-LOOP) \SET SPA TO SEEK STACKED COUNT	•	231	BBEA			
2899000 2900000	SSPA LDC (SKSTK)	i.					
2901000 \$ 2902000	SEEK COUNT TO ACU	ì	232	643E			
2903000 2904000 s 2905000	\SKIP IF NO SEEK STACKED TFD TEQZ	ì	233	C086			
2905000 2906000 2907000 \$	GO TO UNSTACK SEEK	X	234	F27D			
2908000 2909000	GTO (SSEEKUNSTK1)	•					
2910000 5K1P HOF		i					

MODEL: MPD REVISION!	000.00		RTL/4000 FILE EDIT NCROPRUGRAM SECTION	ADDRESS	08/01/77 DOC+#: 1MAGE	12.605	PAGE:	77
LINE #		SEQUENCE	SSUPC5	(HEX)	(HEX)			
2911000								
2912000	SPOLL-LOOP	VLOAD INDEX REGISTER FROM ACU	N .	235	A030			
2913000		LIR AACU	F					
2914000				•••				
2915000	•	VSET SPA FOR UNIT SELECT BYTE	۱	230	8CEB			
2916000	•	SSPAT LOC (UNSEL)	1					
2917000					3044			
2918000	•	SELECT DEVICE	N N	237	706A			
2919000	•	XFB AAD3 B5PH SRIA	\$					
2920000				23.0	BCEA			
2921000	5	SET SPA FOR DEVICE STATUS	N N	130	acen			
2922000	•	SSPAI LOC (DEVST)	•					
2923000				110	8604			
2924000	\$	SAVE ONLY READY BIT	N N	234	8004			
2925000	-	ACN ASPM CNST (80#)	4					
2926000				274	8C60			
2927000	5	SET SPA FOR STS1	N N	234	8000			
2928000	-	SSPAI LOC (STS1)	1					
2929000				210	643A			
2930000	5	ADD READY BIT		230	8454			
2931000		ORR ASPH BACU	•					
2932000			``	230	A200			
2933000	\$	RE-WRITE STSL	ì					
2934000		MwT	•					
2935000			tus N	23D	BCEA			
2936000	5	SET SPA FOR PREVIOUS DEVICE STA	103					
2937000		SSPAI LOC(DEVST)	,					
2938000		A REAL AND A REAL AND A REAL AND A REAL	Υ.	23E	643E			
2939000	5	PREVIOUS DEVICE STATUS TO ACU	ì					
2940000		XFA ASPH BACU	,					
2941000			λ.	23F	BAOD			
2942000	5	VUPDATE DEVICE STATUS	i		-			
2943000		NWT AAD2	•					
2944000		COMPARE OLD STATUS TO NEW STATU	s \	240	611A			
2945000	5		1					
Z946000		XDR AACU BSPM	•					
2947000		SKIP IF STATUS EQUAL	``	241	C086			
2948000	5		1					
2949000		TFO TEOZ	-					
2950000		NGO TO ANALYZE STATUS CHANGE	ν.	242	FZBA			
2951000	5	GTO (\$POLLSEEK)	Í.					
2952000		GIV (Brockster/						
2953000	CH 40 405		:					
2424000	SK1P HOF							

DDEL: MPDC-RE EV1510N: 000			RTL/6000 FILE EDIT Microprugram Section	ADDRESS	08/01/77 DUC=#: IMAGE	12.605	PAGE:	71
		SEQUENC	E: SSUPCS	(HEX)	(HEX)			
LINE #		VINCREMENT INDEX REGISTER	\ \	243	6000			
	LINEXT	INC AIDX BACU	1					
2956000		THE ALOX BACO						
2957000		SKIP IF ALL CHANNELS POLLED	<u>۱</u>	244	C09A			
2958000 \$		TFO TAX5 AACU						
2959000								
2960000		VPOLL NEXT CHANNEL	<u>۱</u>	245	F235			
2961000 \$		GTO (SPOLL-LOOP)						
2962000								
2963000	WRTSTACK	SET SPA TO R/W STACKED COUNT	Υ	246	8868			
	WAT STACK	SSPA LOC (RWSTK)	1					
2965000		JOEK LOC (MADIN)		_				
2967000 5		NR/W STACK COUNT TO ACU	۱	, 247	643E			
2968000		XFA ASPM BACU	1					
2969000 2970000 \$		ASKIP IF NO R/W COMMANDS STACK	p ۱	248	C086			
2971000		TEO TEOZ	- 1					
2972000		110 1202			F 3 4 4			
2973000 5		VGO TO UNSTACK R/W COMMAND	N	249	FZAC			
2974000		GTO (SRDWTUNSTK1)	:					
2975000		••••						
2976000 SK : 9	HOF		ţ.					

			7,109,002		94			
		93			94			
MODEL: MPD REVISIONS		RT	L/6000 FILE EDIT Roprogram Section	AUDRESS	08/01/77 DOC+#1 IMAGE	12.605	PAGEI	79
LINE # 2978000 2978000 2980000 2981000 2982000 2982000 2983000 2984000	INTERRUPT FOR THE F BU AN	SEQUENCE: SEQUENCE: STORED. THE INTERRUPT COULD BE STOR OLLOWING REASONS- BUS PARITY ERROR DURING AN UNSOLICIT S REQUEST WHILE THE ADAPTER 15 BUSY OTHER CHANNEL STOP 1/0 CONTROL WORD TO A NON-BUSY ANNEL WHILE EXECUTING A TAKK TU A	ED ED ON	(HEX)	(HEX)			
2985000 2985000 2987000 2987000 2988000		COND CHANNEL ACLEAR ACU ZER	\ I	24A	600E			
2998000 2990000 2990000 2991000	5	SET SPA TO CHANNEL MONITOR	ì	24B	8688			
2992000 2993000 2994000	SPOLLINTST1	VACU TO INDEX REGISTER	k i	240	A030			
2995000 2996000 2997000	5	NSKIP IF NO INTERRUPT STORED TFZ TAX4 ASPM	*		C458			
2998000 2999000 3000000	\$	\GO TO SEND INTERRUPT GTO (\$STARTINTPT)	1	24E	F33F			
3001000 3002000	SKIP HOF		ŧ					

MODEL: MPD REVISION:			6000 FILE EDIT PRUGRAM SECTION	ADDRESS	08/01/77 UUC+#: IMAGE	12.605	PAGE :	80
LINE #		SEQUENCE: \$\$U	PCS	(HEX)	(HEX)			
3003000	•	VINCREMENT INDEX REGISTER	- N	24F	6000			
3004000	-	INC AIDX BACU	;					
3005000								
3006000	د	VSKIP IF ALL CHANNELS CHECKED	N	250	C09A			
3007000	· .	TFD TAX5 AACU	. 1					
3008000					_			
1009000	5	CHECK NEXT CHANNEL	\	251	F24C			
3010000	-	GTO (SPOLLINTSTI)	1					
3011000								
3012000	5	GO TO POLL INTERRUPTS PENDING	<u>۱</u>	252	F21D			
3013000		GTO (SSTART-HALT)	•					
3014000								
3015000				25.7	60 / A			
3016000	SWAIT-CONTD	VSK1P IF NO ADAP HARDWARE REQUEST	N N	200	C040			
3017000		TAHR TEZ	;					
3018000				254	E 1 6 7			
3019000	5	RETURN TO ADAPTER DATA TRANSFER	2	234	1421			
3020000		GTO (\$WAIT-CONTL)	1					
3021000		· · · · · · · · · · · · · · · · · · ·		255	COBC			
3022000	5	SKIP IF DEVICE REQUEST	1	•	CVUC			
3023000		TED TREQ	,					
3024000		A TO STADT WAT	ν.	256	F2LD			
3025000	1	GO TO START WAIT	ì	••••				
3026000		GTO (SSTART-WAIT)	•					
3027000	swAlT=CONT1	SET SPA FOR CURRENTLY ACTIVE R/W CH	INNEL V	257	88E9			
3028000	SWALLACOULT	SSPA LOC (LSTRP)	1					
3029000 3030000		JOPR LOC (LOTRE)						
3031000		LOAD INDEX REGISTER	χ.	258	A430			
3032000	•	LIR ASPM	1					
3033000		LTR COLU						
3034000		AGO TO DEVICE SUPPORT ROUTINE	<u>۱</u>	259	C200			
3035000	,	RTN	L L					
3036000								
3037000	\ THE	FOLLOWING 15 A LIST OF POSSIBLE RETURN.	5					
3039000	DEPE	NDING ON THE OPERATION BEING PERFORMED	-					
3039000		FWT-REI - FORMAT WRITE 1D						
3040000		SCH-RET - SEARCH ID						
3041000		WRT-RET - DATA XFER DURING WRITES						
3042000		READ-RET - DATA XFER DURING READS						
3043000		READ-AMK - FIRST TIME ON ALL READS						
3044000		FMT-READ - FORMAT READ 1D ONLY AFTER						
3045000		SPACING DATA FIELD	w ashiran a					
3046000		DIAG-AMK - DIAGNOSTIC READ IFIRST RE	TONLY) N					
3047000								
	SKIP HOF		i					

MODEL: MPD REVISION:		RTL/6000 FILE MICROPRUGRAM S		AUDRESS (HEX)	08/01/77 DOC.#* [NAGE (HEX)	12.005	PAGE	81
LINE #		SEQUENCE: \$\$UPCS		11647	111 - 117			
3049000 305000 3051000 3052000 3054000 3054000 3056000 3056000 3058000 3059000 3060000 3060000 3061000 3062000	, 5 1 1 8 3 5 5 4 8 4 1 1 5 5 5 1 1 5 5 5 1 1 5 5 5 1 1 1 1	HE RESUME INTERRUPT ROUTINE IS CALLED BY THE WAIT DUTINE WHEN THE RESUME INTERRUPT LATCH IS FOUND EI AND A PREVIOUS INTERRUPT HAS STACKED. HE DESUME INTERRUPT ROUTINE HILL SUBJECT AND AND AND AND AND AND AND AND NIACK ALL INTERRUPTS WHICH ARE PENDING. I.E. NIERRUPTS WHICH WERE PREVIOUSLY NAK.D WILL BE CATIENTED. TO DO THIS THE ROUTINE HILL BOUENTIALLY EXAMINE ALL CHANNELS. STARTING WITH HEANNEL ZERD. THE CHANNEL MONITOR BYTE (MONI) WILL E CHECKED FOR INTERRUPT PENDING (BIT O). IF SET. N INTERRUPT BUS CYCLE IS ATTEMPIED. IF THE NIERRUPT BUS CYCLE IS ATTEMPIED. IF THE HONG BIT IS RESET. OTHENNISE THE INTERRUPT ENDING BIT IS RESET. OTHENNISE THE INTERRUPT ENDING BIT IS RESET.	X					
3054000	۲	AVE TO AGAIN BE ATTEMPTED ON DETECTION OF ANOTHER						
3065000	F	ESUME INTERRUPT PULSE.	,					
3066000 3067090 3068090 3068090	STARTUES	M VSET BUS REGISTER BUSY SRB	ì	25A	4004			
3070000			`	258	8000			
3071000	\$	NCLEAR ACU Lon onst(00#)	÷					
3072000 3073000 3074000 3075000 3075000 3076000	5	VSKIP IF NO UNSULICITED BUS REQUESTS TUBR TFZ	\ 1	250	Ç072			

95 MODELI MMDC_REV3D REVISIONI DOD.CC LINE # SEQUENCE: SSUPCS 3077000 \$ \G0 TO SERVICE UNSOLICITED BUS REQUEST \ GTO (SWAIT-LOOP) ; 3078000 GTO (SWAIT-LOOP) ; 307800 GTO (SWAIT-LOOP) ; 3078000 GTO (SWAIT-LOOP) ; 30780	
REVISION:000.00 DOC.#: LINE # SEQUENCE: SSUPCS AUDRESS IMAGE -continued -continued 3077000 s \G0 TO SERVICE UNSOLICITED BUS REQUEST 250 F21E 3078000 GTO (SWAIT=LOOP) i - -	
LINE # SEQUENCE: \$\$UPC\$ (HEX) (HEX) -continued 3077000 \$ \G0 TO SERVICE UNSOLICITED BUS REQUEST \ 25D F21E 3078000 GT0 (\$##1T+LD0P) t	81
3077000 \$ \GO TO SERVICE UNSOLICITED BUS REQUEST \ 25D F21E 3078000 GTO (\$WAIT-LOOP) ;	
3078000 GTO (\$WAIT-LOOP) \$	
3079000 3080000 \$ \RESET RESUME INTERRUPT LATCH \ 25E 4001 3081000 RIL I	
3082000 308300 \$RESUM~LOOP \LOAD INDEX REGISTER \ 25F A030 3084000 LIR AACU I	
3085000 3086000 \$ \SET 5PA FOR CHANNEL HONITOR BYTE \ 260 8C88 3087000 \$SSPAI LOC(MON1) 	
3088000 3089000 5K1P H0F	

MODEL: MPDC_REV3) REVISION: 000.00	RTL/6000 Microprogr		ADDRESS	08/01/77 00C.#: Image	12.605	PAGE :	82
LINE #	SEQUENCE: SSUPCS		(HEX)	(HEX)			
3090000 \$	SKIP IF INTERRUPT PENDING	`	261	(490			
3091000	TFO TAXO ASPM			• • • •			
3092000		-					
3093000 \$	NO INTERRUPT PENDING-GO TO NEXT CHANNEL	`	262	F274			
1094000	GTO (SRESUM-NEXT)	;					
3095000							
3096000 \$	SET SPA FOR FIRST BYTE CP CHANNEL NUMBER	`	263	8603			
3097000	SSPAI LOC(ILC2)	:					
3098000							
3099000 s	VCLEAR LOW ORDER BITS	`	264	8704			
3100000	ACN CNST (CO#) ASPM	:					
3101000							
3102000 \$	LOAD LSB OF BUS ADDRESS	`	265	6C6B			
3103000	XFB ABUS4 BACU SRIA	1					
3104000							
3105000 \$	SET SPA FOR 2ND BYTE CP CHANNEL NUMBER	1	266	8002			
3106000	SSPAI LOC(ILCI)	1					
3107000							
3108000 \$	VLOAD MID OF BUS ADDRESS	×	267	606B			
3109000	XFB ABUS4 BSPM SRIA	1					
3110000							
3111000 \$	LOAD MSB OF BUS ADDRESS	`	268	6C4F			
3112000	ZER ABUS4 SRIA	1					
3113000							
3114000 \$	SET SPA FOR INTERRUPT VECTOR	N N	269	BCAU			
3115000	SSPA1 LOC(1DF1)	1					
3116000							
3117000 S	LOAD LSB OF DATA BUS	2	26A	6968			
3118000	XFB ABU53 B5PM SRIA	1					
3119000 3120000 5K1P HQF							
STEDUND SKIP HUM		1					

MODEL: MPDC- REVISION: OC			TL/6000 FILE EDIT CROPRUGRAM SECTION		08/01/77 DUC+#:	12.605	PAGE:	83
LINE #		SEQUENCE: :	SSUPC5	ADDRESS	IMAGE (HEX)			
3121000 \$		SET SPA FOR REST OF INTERRUPT VEC	TOR \	268	BCAO			
3122000		SSPAI LOC (CHNI)	;					
3123000								
3124000 \$		LOAD M5B OF DATA BUS	ν.	260	6568			
3125000		XF8 ABUS2 85PM SRIA	1					
3126000								
3127000 \$		CLEAR BUS STATUS	`	26D	4084			
3128000		RST						
3129000								
3130000 \$		VLOAD CYCLE BYTE IN ACU	>	26E	8200			
3131000		LCN AACU CNST (80#)	i i					
3132000			•					
3133000 5		VINITIATE BUS CYCLE	١.	26F	4020			
3134000		CYC AACU	i					
3135000			•					
	RESUM-TNAK	SKIP IF NO NAK	``	270	C076			
3137000		TEZ TNAK	i					
3138000			•					
3139000 5		NAK RECEIVED-LEAVE INTERRUPT STAC	(FD) \	27)	F278			
3140000		GTO (SRESUM-COS)		• • •				
3141000			•					
3142000 SK	1P HOF							
	-							

MODEL: MPI REVISION:			RTL/6000 FILE EDIT MICROPRUGRAM SECTION		05/01/77 UUC.#:	12.605	PAGE:	64
LINE #		SEQUEN	CE: SSUPCS	AUDRESS (HEX)	[MAGE (HEA)			
3143000								
	SRESUM-TACK	SKIP IF ACK 15 SET	N	272	COBF			
3145000		TFO TACK	;					
3146000								
3147000	5	NO RESPONSE - WAIT	١.	273	F270			
3148000		GTO (SRESUM-TNAK)	1					
3149000								
3150000	5	SET SPA FOR CHANNEL MUNITOR	N N	274	8688			
3151000		SSPA1 LOC (MON1)	1					
3152000								
3153000	5	ICLEAR ACU	Ň	275	600E			
3154000		ZER BACU	ŧ.					
3155000					4300			
3156000	\$	CLEAR MONITOR	N. N	2/8	A200			
3157000		MWT AACU	i.					
3158000				377	4018			
3159000	\$	SET CHANNEL READY	<u>`</u>	211	4018			
3160000		SCR	•					
3161000 3162000	SRE5UM-CH5	CLEAR BUS STATUS		370	4084			
3163000	SKE DOM-CBD	RST	\	£ / G	4004			
3164000		RSI	•					
3165000	SRESUM-NEXT	VINCREMENT INDEX REGISTER	λ.	279	6000			
3166000	3KE DOM-HEAD	INC AIDX BACU	, ,		0200			
3167000		THE ALOX BACO	•					
3168000	4	SKIP IF ALL CHANNELS CHECKED	```	27A	C09A			
3169000	•	TFO TAX5 AACU	2					
3170000		0.0 0842 8864	,					
3171000		VCHECK NEXT CHANNEL	`	278	F25F			
3172000	•	GTO (SRESUM-LOOP)	1					
3173000			•					
3174000	5	NGO TO CHECK FOR SEEKS STACKED) \	270	F231			
3175000	-	GTO (SSEEKS ACK)	1					
31.000								

			4,159,532					
		9 7			98			
	DC-REV3D 000.00		RTL/6000 FILE EDIT MICROPRUGRAM SECTION		08/01/77 DOC+#1	12,605	PAGEI	8
INE # 178000 179000	Ň	THE SEEK UNSTACK ROUTINE IS CALLED ROUTINE WHEN A SEEK OPERATION IS F		AUDRESS (HEX)	IMAGE (HEX)			
180000 181000 182000 183000		STACKED (5.P. LOCATION SKSTK). The routine will sequentially exam starting with the one after the la	INE ALL CHANNELS					
184000 185000 186000		CHANNEL IS FOUND TO HAVE A SEEK ST. ROUTINE WILL UNSTACK THE TASK (SEE TO COMMAND DECODE.	ACKED THE					
187000 188000 189000	SSEEKUNS	TK1 \DECREMENT SEEKS STACK DEC AACU BACU	\ F	27D	6030			
191000 192000 193000	s	NRE-WRITE UPDATED SEEKS INDIC		27E	A200			
194000 195000 196000	\$	\LAST R/W CHANNEL TO SPA SSPA LOC(LSTRW)	, F	27F	8BE9			
197000 196000 199000 200000	5	NLAST R/W CHANNEL TO SPA XFB ASPA BSPM SRIA	\ \$	280	696A			
201000 202000 203000	SSEEK UNS	TK2 \INCREMENT LAST R/W CHANNEL IMA	X I	281	A100			
204000 205000 206000	5	NO OP FOR TIMING NDP	\ \$	282	0000			
207000 208000 209000	5	\MASK HIGH ORDER BITS ACN CNST(03#) ASPA	X Ŧ	283	6807			
210000 211000 212000	5	VSKIP IF SEEK STACKED TFO TAXO ASPM	х т	284	C490			
213000 214000 215000	5	\GO TD CHECK NEXT CHANNEL GTO (\$SEEKUNSTK2) \CLEAR SEEK STACKED INDICATOR	*		F281			
216000 217000 218000 219000	S	ACN CNST(7F#) ASPM	i X	286 287	85EF A200			
220000 221000 222000	5	MWT AACU	i	284	A830			
22300.0	\$	LIR ASPA	i X		F306			
226000 227000 228000 1	SKIP HOF	GTO (SCMDEC-El)	1					
	000.00		RTE/6000 FILE EDIT MICROPROGRAM SECTION		08/01/77	12.605	PAGE :	
15104: NE #		SEQUEN	RTL/6000 FILE EDIT MICROPROGRAM SECTION NCE: \$\$UPCS	AUDRESS (HEX)	08/01/77 DUC+#; [MAGE (HEX]	12.605	PAGE :	8
NE # 29000 30000 31000 32000 33000 33000	/	THE POLLING ROUTINE IS CALLED WHEN ROUTINE DETECTS A CHANGE IN DEVICE ROUTINE ANALYZES THE STATUS CHANGE IF ANY SEEKS HAVE BECOME DONE OR IF HAVE MADE A STATE TRANSITION (OFF L	NICROPROGRAN SECTION ICE: SSUPCS THE WAIT : STATUS, THE TO DETERNINE : ANY DEVICES		DUC:	12.005	PAGE :	
NE # 29000 30000 31000 32000 33000 33000 33000 33000 33000 33000 33000	/	THE POLLING ROUTINE IS CALLED WHEN ROUTINE DETECTS A CHANGE IN DEVICE ROUTINE ANALYZES THE STATUS CHANGE IF ANY SEEKS HAVE BECOME DONE OR IF HAVE MADE A STATE TRANSITIUM (OFF L READY OR READY TO OFF LINE). SKIP IF PREVIOUS SEEK ACTIVE	NICROPROGRAN SECTION ICE: SSUPCS THE WAIT : STATUS, THE TO DETERNINE : ANY DEVICES	(HEX)	DUC:	12.605	PAGE :	
15104: NE # 29000 30000 31000 32000 33000 35000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 36000 37000 36000 36000 37000 30000 370000 370000 370000 370000 370000 370000 3700000 370000000 370000000000	1	THE POLLING ROUTINE IS CALLED WHEN ROUTINE DETECTS A CHANGE IN DEVICE RUUTINE ANALYZES THE STATUS CHANGE IF ANY SEEKS HAVE BECOME DONE OR IF HAVE MADE A STATE TRANSITIUN (DFF L READY OR READY TO DFF LINE). SKIP IF PREVIOUS SEEK ACTIVE TFZ TAX1 AACU \GO TO CHECK FOR STATE TRANSIT	MICROPROGRAM SECTION NCE: \$500°CS THE WAIT : STATUS. THE TO DETENNINE : AMY DEVICES .INE TD 	(HEX)	UUC+#: MAGE HEX C052	12.605	PAGE:	
IS10H: NE # 290n0 300n0 310n0 320n0 330n0 340n0 350n0 360n0 370n0 380n0 400n0 400n0 410n0 420n0	SPOLLSEEK	THE POLLING ROUTINE IS CALLED WHEN ROUTINE DETECTS A CHANGE IN DEVICE ROUTINE MALVZES THE STATUS CHANGE IF ANY SEEKS HAVE BECOME DONE OR IF HAVE MADE A STATE TRANSITION (OFF L READY OR READY TO OFF LINE). \SKIP IF PREVIOUS SEEK ACTIVE TFZ TAX1 AACU \GO TO CHECK FOR STATE TRANSIT GTO (SPOLLREADY) \SKIP IF NO SEEK ERRON	MICROPROGRAM SECTION NCE: \$SUPCS THE WAIT : STATUS. THE TO DETENNINE : ANY DEVICES .INE TO X X	(HEX) 288 285	UUC+#: MAGE HEX C052	12.605	PAGE:	
IS104: NE # 290n0 300n0 310n0 320n0 330n0 340n0 350n0 360n0 360n0 390n0 400n0 410n0 420n0 430n0 440n0 450n0	SPOLLSEEK	THE POLLING ROUTINE IS CALLED WHEN ROUTINE DETECTS A CHANGE IN DEVICE ROUTINE ANALYZES THE STATUS CHANGE IF ANY SEEKS HAVE BECOME DONE OR IF HAVE MADE A STATE TRANSITIUM (OFF L READY OR READY TO OFF LINE). \SKIP IF PREVIOUS SEEK ACTIVE TFZ TAX1 AACU \GO TO CHECK FOR STATE TRANSIT GTO (\$POLLREADY) \SKIP IF NO SEEK ERROR TFZ TAX2 ASPM \SET SEEK ERROR STATUS	MICROPROGRAM SECTION NCE: \$5UPCS THE WAIT : STATUS. THE TO DETENNINE : ANY DEVICES .INE TO : IION : : : : : : : : : : : : :	(HEX) 28A 285 28C	UUC+#: MAGE (MEX) C052 F2A4	12.605	PAGE:	
IS10H: NE # 290n0 300n0 310n0 320n0 330n0 340n0 350n0 360n0 360n0 390n0 40	SPOLLSEEK S	THE POLLING ROUTINE IS CALLED WHEN ROUTINE DETECTS A CHANGE IN DEVICE RUUTINE ANALYZES THE STATUS CHANGE IF ANY SEEKS HAVE BECOME DONE OR IF HAVE MADE A STATE TRANSITION (JFF L READY OR READY TO OFF LINE). SKIP IF PREVIOUS SEEK ACTIVE TFZ TAX1 AACU \GO TO CHECK FOR STATE TRANSIT GTO (\$POLLREADY) \SKIP IF NO SEEK ERROR TFZ TAX2 ASPM	MICROPHOGRAN SECTION NCE: \$\$UPCS THE WAIT ISTATUS. THE TO DETERNINE INE TO INE TO INE TO INE TO INE TO INE INE INE TO INE INE INE TO INE	(HEX) 20A 20B 20C 20D	UUC+#: MAGE (HEX) C052 F2A4 C454	L2.605	PAGE:	
IS10H: NE # 29000 31000 31000 33000 33000 33000 33000 33000 39000 39000 40000 42000 43000 43000 43000 43000 43000 50000 50000 51000 52000	SPOLLSEEK S S S	THE POLLING ROUTINE IS CALLED #HEN ROUTINE DETECTS A CHANGE IN DEVICE RUUTINE ANALYZES THE STATUS CMANGE IF ANY SEEKS MAKE BECOME DONE OR IF HAVE MADE A STATE TRANSITION (OPF L READY OR READY TO OFF LIME). (SKIP IF PREVIOUS SEEK ACTIVE TFZ TAX1 AACU \GO TO CHECK FOR STATE TRANSIT GTO (SPOLLREADY) \SKIP IF NO SEEK ERROR TFZ TAX2 ASPM \SET SEEK ERROR STATUS GTO ISPOLLSEEKERI \SKIP IF SEEK COMPLETE	MICROPROGRAM SECTION NCE: \$\$UPCS THE WAIT ISTATUS. THE TO DETERNINE INE TO INE T	(HEX) 28A 28B 28C 28D 28E	UUC+#: MAGE HAGE (HEX) C052 F2A4 C454 F29E	12.605	PAGE:	
IS10H: NE 4 29008 30080 31080 32082 33080 33080 33080 33080 33080 33080 33080 33080 33080 33080 33080 34080 34080 34080 34080 44080 44080 44080 44080 44080 44080 44080 44080 44080 44080 50800 50800 51080 53080 550800 550800 550800 550800 55080000000000	SPOLLSEEK S S S	THE POLLING ROUTINE IS CALLED #HEN ROUTINE DETECTS A CHANGE IN DEVICE ROUTINE MALYZES THE STATUS CHANGE IF ANY SEEKS HAVE BECOME DONE OR IF HAVE MADE A STATE TRANSITIUM (OFF L READY OR READY TO OFF LINE). \SKIP IF PREVIOUS SEEK ACTIVE TFZ TAX1 AACU \GO TO CHECK FOR STATE TRANSIT GTO (SPOLLREADY) \SKIP IF NO SEEK ERROR TFZ TAX2 ASPM \SET SEEK ERROR STATUS GTO ISPOLLSEEKERI \SKIP IF SEEK COMPLETE TFO TAX1 ASPM \GO TO CHECK FOR STATE TRANSIT \GO TO CHECK FOR STATE TRANSIT	MICROPROGRAM SECTION NCE: \$5UPCS THE WAIT STATUS. THE TO DETEMINE ANY DEVICES INE TO YION X X X X X X X X X X X X X	(HEX) 28A 28B 28C 28D 28E 28E 28F	UUC+#: MAGE (HEX) C052 F2A4 C454 F29E C492	12.605	PAGE:	
IS10H: NE # 29000 30000 31000 31000 33000 33000 33000 33000 33000 33000 33000 33000 33000 34000 40000 41000 40000 40000 40000 40000 51000 51000 530000 5500000 5500000 5500000000	000.00 SPOLLSEEK S S S S S	THE POLLING ROUTINE IS CALLED #HEN ROUTINE DETECTS A CHANGE IN DEVICE ROUTINE MALYZES THE STATUS CHANGE IF ANY SEEKS HAVE BECOME DONE OR IF HAVE MADE A STATE TRANSITIUM (OFF L READY OR READY TO OFF LINE). \SKIP IF PREVIOUS SEEK ACTIVE TFZ TAX1 AACU \GO TO CHECK FOR STATE TRANSIT GTO (\$POLLREADY) \SKIP IF NO SEEK ERROR TFZ TAX2 ASPM \SET SEEK ERROR STATUS GTO I\$POLLSEEKER) \SKIP IF SEEK COMPLETE TFO TAX1 ASPM \GO TO CHECK FOR STATE TRANSIT GTO I\$POLLREADY) \SET SPA FOR CHANNEL MONITOR	MICROPHOGRAN SECTION NCE: \$5UPCS THE WAIT ISTATUS. THE TO DETENNINE ANY DEVICES .INE TD V V V V V V V V V V V V V	(HEX) 28A 28B 28C 28D 28E 28E 28E 28F 290	UUC+#: MAQE (HEX) C052 F2A4 C454 F29 <u>E</u> C492 F2A4	12.605	PAGE:	
IS10H: IS10H: 29000 30000 31000 32000 33000 33000 33000 33000 33000 33000 33000 33000 33000 33000 33000 40000 40000 42000 42000 44000 44000 44000 44000 44000 44000 50000 55000 500000 500000 500000 500000 500000 500000000	000.00 x spoll SEEK s s s s s	THE POLLING ROUTINE IS CALLED #HEN ROUTINE DETECTS A CHANGE IN DEVICE ROUTINE MALVZES THE STATUS CHANGE IF ANY SEEKS HAVE BECOME DONE OR IF HAVE MADE A STATE TRANSITION (OFF L READY OR READY TO OFF LIME). \SKIP IF PREVIOUS SEEK ACTIVE TFZ TAX1 AACU \GO TO CHECK FOR STATE TRANSIT GTO (SPOLLREADY) \SKIP IF NO SEEK ERROH TFZ TAX2 ASPM \SET SEEK ERROR STATUS GTO I\$POLLSEKER) \SKIP IF SEEK COMPLETE TFO TAX1 ASPM \GO TO CHECK FOR STATE TRANSIT GTO I\$POLLSEKER) \SKIP IF SOLA FOR CHANNEL MONITOR SSPAL LOC (MONI) \SKIP IF NOT A RECALIBHATE	MICROPROGRAM SECTION NCE: SSUPCS THE WAIT TO DETERMINE ANY DEVICES INE TO Y Y Y Y Y Y Y Y Y Y Y Y Y	(HEX) 28A 28B 28C 28D 28E 28E 28F 290 291	DUC.#: MAGE (HEX) C052 F2A4 C454 F29 <u>E</u> C492 F2A4 BC88	L2.605	PAGE:	
/1510/4: /1520/01 32000 33000 33000 33200 33200 33000 33000 33000 33000 33000 240000 240000 240000 240000 240000 240000 240000 240000 240000 240000 240000 250000 250000000 250000000000	000.00 x spoll SEEK s s s s s	THE POLLING ROUTINE IS CALLED #HEN ROUTINE DETECTS A CHANGE IN DEVICE ROUTINE MALVZES THE STATUS CHANGE IF ANY SEEKS HAVE BECOME DONE OR IF HAVE MADE A STATE TRANSITION (OFF L READY OR READY TO OFF LINE). SKIP IF PREVIOUS SEEK ACTIVE TFZ TAX1 AACU \GO TO CHECK FOR STATE TRANSIT GTO ISPOLLERADY1 \SKIP IF NO SEEK ERRON TFZ TAX2 ASPM \SET SEEK ERRON STATUS GTO ISPOLLSEKER1 \SKIP IF SEEK COMPLETE TFO TAX1 ASPM \GO TO CHECK FOR STATE TRANSIT GTO ISPOLLSEKER1 \SKIP IF SEEK COMPLETE TFO TAX1 ASPM \GO TO CHECK FOR STATE TRANSIT GTO ISPOLLREADY1 \SET SPA FOR CHANNEL MONITOR SSPA1 LOC (MON1) \SKIP IF NOT A RECALIBHATE TFZ TAX3 ASPM \GO TO SELECT PLATTER ZERO, TR GTO ISRECALPLSEL) \SKIP IF SEEK ACTIVE BIT SET TFO TAX3 ASPM	MICROPHOGRAN SECTION NCE: \$5UPCS THE WAIT STATUS. THE TO DETEMINE ANY DEVICES INE TO Y YION I YION I I N N I N I N I N N N N N N N N N N N N N	(HEX) 28A 28B 28C 28D 28C 28D 28E 28F 290 291 292	DUC.#: IMAGE (HEX) C052 F2A4 C454 F29E C492 F2A4 BC88 C45A		PAGE:	
/1510/4: /1510/4: 22000 23000 23000 231000 23200 233000 233000 233000 233000 233000 233000 233000 233000 24000 250000	000.00 x SPOLL SEEK S S S S S S S S S S S S S	THE POLLING ROUTINE IS CALLED #HEN ROUTINE DETECTS A CHANGE IN DEVICE ROUTINE MALYZES THE STATUS CHANGE IF ANY SEEKS HAVE BECOME DONE OR IF HAVE MADE A STATE TRANSITIUN (OFF L READY OR READY TO OFF LINE). \SKIP IF PREVIOUS SEEK ACTIVE TFZ TAXI AACU \GO TO CHECK FOR STATE TRANSIT GTO (SPOLLREADY) \SKIP IF NO SEEK ERROR TFZ TAX2 ASPM \SET SEEK ERROR STATUS GTO ISPOLLSEEKER) \SKIP IF SEEK COMPLETE TFO TAX1 ASPM \GO TO CHECK FOR STATE TRANSIT GTO ISPOLLREADY) \SET SPA FOR CHANNEL MONITOR SSPAI LOC (MONI) \SKIP IF NOT A RECALIBHATE TFZ TAX3 ASPM \GO TO SELECT PLATTER ZERO, TR GTO ISPECAPLSEL) \SKIP IF SEEK ACTIVE BIT SET TFO TAX3 ASPM \GO TO SELECT PLATTER ZERO, TR GTO ISPECAPLSEL) \SKIP IF SEEK ACTIVE BIT SET TFO TAX3 ASPM \CHECK FOR STATE TRANSITION GTO (SPOLLSEEKI)	MICROPROGRAM SECTION NCE: \$5UPCS THE WAIT ISTATUS: THE TO DETERMINE INT TO INT T	(HEX) 20A 20B 20C 20D 20E 20F 20G 201 202 203	DUC.#: MAGE (HEX) C052 F2A4 C454 F294 C452 F2A4 BC88 C45A F3E7	12.605	PAGE:	
/1510/4: NE # 229010 33000 33000 33000 33000 33000 33000 33000 33000 33000 240000 240000 240000 240000 240000 240000 240000 240000 240000 240000 240000 240000 240000 2500000 250000	000.00 \$POLLSEEK \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	THE POLLING ROUTINE IS CALLED #HEN ROUTINE DETECTS A CHANGE IN DEVICE ROUTINE MALYZES THE STATUS CHANGE IF ANY SEEKS HAVE BECOME DONE OR IF HAVE MADE A STATE TRANSITIUM (OFF L READY OR READY TO OFF LINE). \SKIP IF PREVIOUS SEEK ACTIVE TFZ TAX1 AACU \GO TO CHECK FOR STATE TRANSIT GTO (\$POLLREADY) \SKIP IF NO SEEK ERROR TFZ TAX2 ASPM \SET SEEK ERROR STATUS GTO I\$POLLSEEKER! \SKIP IF SEEK COMPLETE TFO TAX1 ASPM \GO TO CHECK FOR STATE TRANSIT GTO I\$POLLSEEKER! \SET SPA FOR CHANNEL MONITOR SSPAI LOC (MONI) \SKIP IF NOT A RECALIBHATE TFZ TAX3 ASPM \GO TO SELECT PLATTER ZERO, TR GTO I\$POLLSEL) \SKIP IF SEEK ACTIVE BIT SET TFO TAX3 ASPM \CHECK FOR STATE TRANSITION GTO (\$POLLSEEXE!) \SKIP IF SEEK ACTIVE BIT SET TFO TAX3 ASPM \CHECK FOR STATE TRANSITION GTO (\$POLLSEEX!) \RESET SEEK BIT IN MONITOR ACN ASPM CNST (EF#)	MICROPHOGRAN SECTION NCE: SSUPCS THE WAIT ISTATUS. THE TO DETERNINE ANY DEVICES INE TO V V V V V V V V V V V V V	(HEX) 28A 28B 28C 28D 28C 28D 28D 28D 290 291 292 293 293 294 295	DUC.#: IMAGE (HEX) C052 F2A4 C454 F29E C492 F2A4 BC88 C45A F3E7 C496 F2A2 B7AF		PAGE:	
/1510/4: /1510/4: 220000 231000 231000 231000 231000 231000 233000 233000 233000 233000 233000 233000 242000 255000 25000 250000 270	000.00 x SPOLL SEEK S S S S S S S S S S S S S	THE POLLING ROUTINE IS CALLED #HEN ROUTINE DETECTS A CHANGE IN DEVICE ROUTINE MALYZES THE STATUS CHANGE IF ANY SEEKS HAVE BECOME DONE OR IF HAVE MADE A STATE TRANSITIUM (DFF L READY OR READY TO DFF LINE). \SKIP IF PREVIOUS SEEK ACTIVE TFZ TAX1 AACU \GO TO CHECK FOR STATE TRANSIT GTO (\$POLLREADY) \SKIP IF NO SEEK ERRON TFZ TAX2 ASPM \SET SEEK ERROR STATUS GTO I\$POLLSEEKER! \SKIP IF SEEK COMPLETE TFO TAX1 ASPM \GO TO CHECK FOR STATE TRANSIT GTO (\$POLLREADY) \SET SPA FOR CHANNEL MONITOR SSPAI LOC (MONI) \SKIP IF NOT A RECALIBHATE TFZ TAX5 ASPM \GO TO SELECT PLATTER ZERO, TR GTO I\$POLLSEL) \SKIP IF SEEK ACTIVE BIT SET TFO TAX3 ASPM \GO TO SELECT PLATTER ZERO, TR GTO I\$POLLSEEL) \SKIP IF SEEK ACTIVE BIT SET TFO TAX3 ASPM \CHECK FOR STATE TRANSITION GTO (\$POLLSEEKI) \RESET SEEK BIT IN MONITOR	MICROPHOGRAN SECTION NCE: \$5UPCS THE WAIT TO DETERNINE : STATUS. THE TO DETERNINE : ANY DEVICES INE TO : 110N : : IACK ZERU : : : : : : : : : : : : :	(HEX) 28A 28B 28C 28D 28C 28D 28D 28D 290 291 292 293 293 294 295	DUC.#: IMAGE IMAGE C052 F2A4 C454 F29L C492 F2A4 BC88 C45A F3E7 C496 F2A2		PAGE:	
/1510/4: /1510/4: 229000 231000 231000 231000 231000 233000 233000 233000 233000 233000 233000 233000 240000 240000 240000 240000 240000 240000 240000 240000 25000 270	SPOLLSEEK S S S S S S S S S S S S S S S S S S	THE POLLING ROUTINE IS CALLED #HEN ROUTINE DETECTS A CHANGE IN DEVICE ROUTINE MALVZES THE STATUS CHANGE IF ANY SEEKS HAVE BECOME DONE OR IF HAVE MADE A STATE TRANSITIUM (OFF L READY OR READY TO OFF LIME). \SKIP IF PREVIOUS SEEK ACTIVE TFZ TAX1 AACU \GO TO CHECK FOR STATE TRANSIT GTO (SPOLLREADY) \SKIP IF NO SEEK ERRON TFZ TAX2 ASPM \SET SEEK ERROR STATUS GTO ISPOLLSEEKER) \SKIP IF SEEK COMPLETE TFO TAX1 ASPM \GO TO CHECK FOR STATE TRANSIT GTO ISPOLLREADY) \SKIP IF NOT A RECALIBHATE TFZ TAX5 ASPM \GO TO SELECT PLATTER ZERO+ TR GTO ISRECALPLSEL) \SKIP IF SEEK ACTIVE BIT SET TFO TAX3 ASPM \CHECK FOR STATE TRANSITION GTO (SPOLLSEEKI) \SKIP IF SEEK ACTIVE BIT SET TFO TAX3 ASPM \CHECK FOR STATE TRANSITION GTO (SPOLLSEEKI) \KESET SEEK BIT IN MONITOR ACN ASPM CNST (EF+) \RE-WRITE MONITOR	MICROPHOGRAM SECTION NCE: \$5UPCS THE WAIT ISTATUS. THE TO DETERMINE ANY DEVICES INE TO YION INE TO YION INE YION YION INE YION YION INE YION	(HEX) 28A 28B 28C 28D 28C 28D 28D 28D 290 291 292 293 293 294 295	DUC.#: IMAGE IMAGE (HEX) C052 F2A4 C454 F29E C492 F2A4 BC88 C492 F2A4 BC88 C45A F3E7 C496 F2A2 B7AF A200			
/15104: NE 4 229000 33000 332000 332000 332000 332000 333000 335000 335000 335000 240000 240000 240000 240000 240000 240000 240000 240000 240000 240000 240000 240000 240000 240000 25000 27000	SPOLLSEEK S S S S S S S S S S S S S S S S S S	THE POLLING ROUTINE IS CALLED #HEN ROUTINE DETECTS A CHANGE IN DEVICE ROUTINE MALVZES THE STATUS CHANGE IF ANY SEEKS HAVE BECOME DONE OR IF HAVE MADE A STATE TRANSITION (OFF L READY OR READY TO OFF LIME). \SKIP IF PREVIOUS SEEK ACTIVE TFZ TAX1 AACU \GO TO CHECK FOR STATE TRANSIT GTO ISPOLLERADY) \SKIP IF NO SEEK ERRON TFZ TAX2 ASPM \SET SEEK ERRON STATUS GTO ISPOLLEKER) \SKIP IF SEEK COMPLETE TFO TAX1 ASPM \GO TO CHECK FOR STATE TRANSIT GTO ISPOLLERADY) \SET SEEK ERRON STATUS GTO ISPOLLERADY) \SET SFA FOR CHANNEL MONITOR SSPA1 LOC (MON1) \SKIP IF NOT A RECALIBHATE TFZ TAX3 ASPM \GO TO SELECT PLATTER ZERO, TR GTO ISPOLLESEL) \SKIP IF SEK ACTIVE BIT SET TFO TAX3 ASPM \CHECK FOR STATE TRANSITION GTO ISPOLLSEEK1) \REST SEEK BIT IN MONITOR ACN ASPM CNST (EF#) \RE-WRITE MONITOR MMT	MICROPROGRAM SECTION NCE: \$5UPCS THE WAIT ISTATUS. THE TO DETERMINE IAT DEVICES INT TO ION I ION I ION I IACK ZERO I I IACK ZERO I I I I I I I I I I I I I	(HEX) 284 285 286 286 286 286 290 291 292 293 294 293 294 295 296	DUC.+: IMAGE (HEX) C052 F2A4 C454 F29E C492 F2A4 BC88 F2A2 BC88 C492 F2A2 BC88 C492 F2A2 BC88 C492 F2A4 BC88 C492 F2A2 BC88 C490 C4	12.605		
/1510/4: /1510/4: 229000 231000 231000 231000 231000 233000 233000 233000 233000 233000 233000 233000 240000 240000 240000 240000 240000 240000 240000 240000 25000 270	000.00 x SPOLL SEEK S S S S S S S S S S S S S	THE POLLING ROUTINE IS CALLED #HEN ROUTINE DETECTS A CHANGE IN DEVICE ROUTINE MALVZES THE STATUS CHANGE IF ANY SEEKS HAVE BECOME DONE OR IF HAVE MADE A STATE TRANSITION (OFF L READY OR READY TO OFF LIME). \SKIP IF PREVIOUS SEEK ACTIVE TFZ TAX1 AACU \GO TO CHECK FOR STATE TRANSIT GTO ISPOLLERADY) \SKIP IF NO SEEK ERRON TFZ TAX2 ASPM \SET SEEK ERRON STATUS GTO ISPOLLEKER) \SKIP IF SEEK COMPLETE TFO TAX1 ASPM \GO TO CHECK FOR STATE TRANSIT GTO ISPOLLERADY) \SET SEEK ERRON STATUS GTO ISPOLLERADY) \SET SFA FOR CHANNEL MONITOR SSPA1 LOC (MON1) \SKIP IF NOT A RECALIBHATE TFZ TAX3 ASPM \GO TO SELECT PLATTER ZERO, TR GTO ISPOLLESEL) \SKIP IF SEK ACTIVE BIT SET TFO TAX3 ASPM \CHECK FOR STATE TRANSITION GTO ISPOLLSEEK1) \REST SEEK BIT IN MONITOR ACN ASPM CNST (EF#) \RE-WRITE MONITOR MMT	MICROPROGRAM SECTION NCE: \$5UPCS THE WAIT ISTATUS: THE TO DETERNINE IACK JUNE IACK ZERU IACK ZERU I RTL/6000 FILE EDIT	(HEX) 28A 28B 28C 28D 28C 28D 28D 28D 290 293 293 293 294 295 296	DUC.#: [MAQE (MEX) C052 F2A4 C454 F29E C492 F2A4 BC88 C45A F3E7 C496 F2A2 87AF A200 OU/U1/77 DUC.#: [MAQE			87

4,159,532				32		100			
		99				100	1.5 6.05	DACL	87
MODEL: MMD Revision:			RTL/6000 FILE MICROPHUGRAM SH			08/01/77 DUC+#1	12.605	PAGE	
LINE #		SEQUENCE	1 SSUPC5		AUDRESS (HEX)	IMAGE (HEX)			
			-continue	d					
3283000 3284000 3285000	5	GTO INITIATE R/W GTO ISCMDEC-E2)		1	299 298	F382 8C89			
	5	SET SPA FOR DMA BYTE SSPAI LOC (DMAL)			-	(454			
	5	SKIP IF NOT AN IMPLIED SEEK TFZ TAX2 ASPM		1					
3292000 3293000	5	\GO TO CONTINUE READ/WRITE GTO (\$CMDEC=E2)		х ¥		F382			
3296000	\$	NGO TO SEND INTERRUPT GTU (SSTARTINTPT)		1	290	F33F			
3297000 3298000 3299000	SPOLLSEEKER	VADDRESS CHANNEL MONITOR SSPAI LOC (MONI)		N. T	29E	8088			
3300000 3301000 3302000	5	SKIP IF SEEK ACTIVE SET		1 1	29F	C496			
3303000 3304000 3305000	5	\SKIP 1F NOT A RECALIBRATE TFZ TAX5 ASPM) I	240	C45A			
3306000 3307000	\$	GTO (SSEEK-ERR)			241	F5A4			
3308000 3309000	SPOLLSEEKI	SET CHANNEL READY		ì	2A2	4018			
3310000 3311000		SCR	T.(5	,	243	BCEA			
3312000 3313000	5	SET SPA FOR UPDATED DEVICE STA	105	ì					
3314000 3315000	5K1P HOF			;					
MUDEL: NM	DC-REV3.		RTL/6000 F1L	E EDIT		06/01/77	12.005	PAGE :	88
REVISION:	000.00	5E QUENC	MICROPRUGRAM	SECTION	AUDRESS (HEX)	DUC+#: IMAGE (HEX)			
3316000 3317000 3318000	SPOLLREADY	NSKIP IF PREVIOUSLY NOT READY TF2 TAXO AACU		ì	244	C050			
3319000 3320000 3321000	5	IGO TO CHECK FOR OFF LINE TRANS GTO (SPOLLOFFLIN)	17 ION	1	245	FZAY			
3322000 3323000 3324000	\$	\SKIP IF STILL NOT READY TFZ TAXO ASPM		, ,	246	C450			
3325000 3326000 3327000	5	\GO TO SEND ATTENTION ON LINE T GTO (STERM-ATT)	RANSITION	\ #	247	F596			
3328000 3329000 3330000	5	NGD TO POLL NEXT CHANNEL GTO (\$POLLNEXT)		1	248	F243			
3331000 3332000 3333000	SPOLLOFFLIN	\SKIP IF NOT READY TFZ TAXO ASPM		ì	289	C450			
3334000 3335000 3336000	s	\GD TO POLL NEXT CHANNEL GTO (\$POLLNEXT)		ì	244	F243			
3337000 3338000 3339000	s	\GO TO SEND ATTENTION OFF LINE GTO (STERM-ATT)	TRANSITION) Ŧ	248	F 5 96			
3340000 3341000 3342000	SKIP HOF			1					
MODEL: MP			RTL/6000 FIL	E EDIT		08/01/77	12.605	PAGE :	69
REVISION:		SE OUENC	MICROPHUGRAM	SECTION	ADDRESS (HEX)	DUC+#: [MAGE (HEX)			
LINE # 3343000									
3344000 3345000 3346000	wA1	READ/WRITE UNSTACK ROUTINE IS CA T ROUTINE WHEN A READ/WRITE OPERA BE STACKED (5.P. LOCATION RWSTK).	TION IS FOUND						
3347000 3348000	THE	ROUTINE WILL SEQUENTIALLY EXAMIN RTING WITH THE ONE AFTER THE LAST	E ALL CHANNELS						
3349000 3350000	CHA	NNEL IS FOUND TO HAVE READ/WRITE TINE WILL UNSTACK THE TASK (READ	STACKED THE						
3351000 3352000	AND	BRANCH TO COMMAND DECODE.	0	١.					
	SROWTUNSTK 1	NDECREMENT R/W STACK DEC AACU BACU		1	240	603C			
3356000 3357000 3358000		VRE-WRITE UPDATED R/W INDICATOR	2	\ \$	240	A200			
3359000 3360000 3361000	5	SET SPA FOR LAST R/W CHANNEL		2	2 A E	8BE9			
3362000 3363000 3364000		LAST RIW CHANNEL TO SPA		N N	2AF	696A			
	SRDWTUNSTK2	VINCREMENT LAST R/W CHANNEL		ì	280	A100			
3368000 3369000 3310000	5	IMA NO OP FOR TIMING		}	281	0000			
3371000 3372000 3373000	5	NOP MASK HIGH ORDER BITS		, ,	282	8807			
3374000 3375000 3376000	5	ACN CNST(03#) ASPA \Skip if R/w command stacked TFQ TAX1 ASPM		, , ,	283	6492			
3377000 3378000 3379000	5	NGO TO CHECK NEXT CHANNEL GTO (\$PDWTUNSTK2)		ì	284	F280			
3380000 3381000 3382000	5	GTU (SWDWTUNSTK27 ACLEAR R/W STACKED INDICATOR ACN CNST(BF#) ASPM		``````````````````````````````````````	28	999F			
3383000 3384000 3385000)	ACH CHATCHER ASPH	ATE TASK	N	28	5 F287			
3386000 3387000)	GTO (SSEEKUNSTK3)		1 :					
2200000	AND IN THE R.								

101

102

MODEL: MPI . REVISION:		RTL/6000 F MICROPRUGRA		AUURESS	08/01/77 00C+#: IMAGE	12.605	PAGE:	9 0
LINE # 3389000 3391000 3392000 3392000	HOUTINE DETECIED EXECUIE	KEQUEST ROUTINE IS CALLED BY THE WAIT WHENEVER AN UNSOLICITED BUS TRANSFER IS THE PURPOSE OF THE BUS REQUEST ROUTINE IS THE I/O REQUERMENTS OF THE BUS CYCLE AND T	່ບ	(HEX)	(HEX)			
3393000 3394000	INITIATE	ANY DEVICE SUPPORT THAT IS REQUIRED.	Υ.					
3395000 3396000 3397000		NSKIP IF RESPONSE NOT REQUIRED TFZ TRSP	ì	287	C044			
3396000 3399000 3400000		VRESPONSE IS REQUIRED GO TO RESPONSE SEG	ĭ	268	F326			
3401000 3402000 3403000	5	\SET SPA FOR CH2 (LSB OF CHANNEL NUMBER) SSPAT LOC(CHN2)	\ 1	289	8CA1			
3404000 3405000 3406000	\$	\STORE BOC CHANNEL NUMBER (LSB) MWT ABUS)	ì	28A	A201			
3407000 3408000 3409000 3410000	5	\FUNCTION CODE TO ACU ACN ASPM CNST(3E#)) ŧ	288	84LL			
3411000 3412000 3413000	5	\SET SPA FOR CH1 IMSB OF CHANNEL NUMBER) SSPAI LOC(CHN1)	÷		BCAO			
3414000 3415000 3416000	5	NSTORE BOC CHANNEL NUMBER (MSB) MHT ABUS1	ì	280	A201			
3417000 3418000 3419000 3420000	INDEXED	SCRATCH PAD MEMORY WITH FUNCTION CODE By CHANNEL NUMBER.	٨					
3421000 3422000 3423000	s	\ADDRESS SCRATCH PAD WITH FUNCTION CODE XFB ASPAI BACU SRIA	ţ,	28E	6(6A			
3424000 3425000 3426000	5	STORE MSB OF DATA WIA ABUSZ	` ŧ	28F	A701			
3427000 3428000 3429000 3429000	\$	N STORE LSB OF DATA MWT ABUS3	Ţ	2C0	AA01			
3430000 3431000 3432000			1					

MODEL: MPD REVISION:		RTL, 6000 F Microprugra		ADDRESS	08/01/77 DOC+#1 IMAGE	12,605	PAGE:	91
LINE .		5EQUENCE: \$\$UPC5		(HEX)	(HEX)			
3433000	```	IF FUNCTION CODE 15 OUTPUT ADDRESS						
3434000		. POST DIRECTION BIT IN DWA CONTROL (DMAL) B	110)					
3435000		. STORE MAIN MEMORY'S MODULE NUMBER AT MODI						
3436000		ELSE GO TO CHECK FOR BUS PARITY ERROR,						
3437000		FUNCTION CODE1	`					
3438000		SET ACU FOR OUTPUT ADDRESS COMPARE	<u>۱</u>	201	8021			
3439000	5		ì					
3440000		LCN AACU CNST(09#)	•					
3441000	-	A CUMPARE FUNCTION CODE WITH HEX 09	1	202	681A			
3442000 3443000	,	XOR ASPA BACU	1					
3444000		XON HJER BREV						
3445000		SKIP IF FUNCTION CODE OUTPUT ADDRESS	ν	203	C086			
3446000	•	TFO TEQ2	1					
3447000				344	5300			
3448000	5	V GO TO TEST FOR BUS PARITY ERROR	١	2(4	F2D0			
3449000		GTO (\$BUSROPTYCK)	;					
3450000				205	8CA1			
3451000	5	SET SPA FOR DIRECTION BIT	ì		02//0			
3452000		SSPAT LOC(CHN2)	,					
3453000			<u>۱</u>	2(6	8000			
3454000	s	∖ CLEAR ACU Lon AAcu (NST(00#)	i					
3455000		LCH ANCO CHST(000)						
3456000 3457000		SKIP IF DIRECTION IS ZERO (READ)	ν	207	C452			
3458000	•	TEZ TAXL ASPM	:					
3459000					0200			
3460010		SET DIRECTION BIT IN ACU	Ν.	2(8	8200			
3461000	-	LCN AACU CNST(80#)	;					
3462000				209	8C89			
3463000	5	N SET SPA FOR DMA BYTE			0007			
3464000		SSPAI LOC(DMAL)	,					
3465000		11005 0H4 0H75	×	2CA	A200			
3466000	5	STORE DMA BYTE	ì					
3467000		MwT						
3458000			Ŧ					
3469000	akte Hui	t de la constante de						

MODEL: MMDC-REV30 REVISION: 000,00		NTL/6000 FILE EDIT ICROPRUGHAM SECTION	AUDHESS	08/01/77 00C+#: [MAGE	12.005	PAGE:	92
LINE #	SEQUENCE:	SSUPCS	(HEX)	(HEX)			
3470000 \$	SET SPA FOR MODULE NUMBER	N	∠СВ	8623			
3471000	SSPAT LOC (MOD1)	:					
3472000			200	AZUL			
3473000 \$	V STORE MODULE NUMBER	2					
3474000	HWT ABUS!	,					
3475000			200	СИНА			
3476000 \$	V SKIP IF PARITY ERROR	2		C00~			
3477000	TEC TOTY	•					
3478000			2CF	F330			
3479000 \$	V GE TO RELEASE BUS	?					
3480000	GTO (SBUSRQ=DONE)	•					
3481000			ZCF	FZUB			
3+82000 \$	V GO TO SET PARITY ERROR	2					
3483000	GTO (SBUSRQSETER)	•					
3484000							
3485000 5K1P HOF		ĩ					

.

			4,159,532					
		103	.,,		104			
MODEL: MP REVISIONI			RTL/6000 FILE EDIT (ICROPROGRAM SECTION		08/01/77 00C+#:	12.605	PAGE:	93
LINE #		SEQUENCE	SSUPC5	AUDRESS (HEX)	IMAGE (HEX)			
3486000 3487000 3488000	\$BUSROPTYCK	\ 5k1P IF PARITY ERROR TFO TPTY	Ì	200	сова			
3489000	\$	V GO TO TEST FOR FUNCTION CODE 1		201	FZDC			
3491000 3492000 3493000	\$	GTO (SBUSRGCODEL) \ SET ACU FOR INTERRUPT FUNCTION	1 CODE \	202	8003			
3494000 3495000		LCN AACU CNST (03#)	1		(
3496000 3497000 3498000	5	N COMPARE FOR OUTPUT INTERRUPT LE XOR ASPA BACU	EVEL X	203	681A			
3499000 3500000	\$	N SKIP IF INTERRUPT CODE TFO TEQZ	\ \$	204	C086			
3501000 3502000 3503000	5	\ GO TO SET PARITY ERROR GTO (SBUSRQSETER)) +	205	FZD8			
3504000 3505000 3506000	5	N CLEAR INTERRUPT LEVEL) I	206	A208			
3507000 3508000	5	CLEAR INTERRUPT LEVEL		207	A200			
3509000 3510000 3511000	SBUSROSETER	MWT N SET SPA FOR STATUS BYTE	1	208	8(61			
3512000 3513000 3514000		SSPAL LOC(STS2)	1	360	a. 1 1			
3515000	,	\ SET PARITY ERROR DCN ASPM CNST(02≢)	1	204	8412			
3517000 3518000 3519000	5	\ RESTORE STATUS BYTE Mwt	N I	20 A	A200			
3520000	5	\ GO TO SET INTERRUPT GTO (\$BUSRQ-STP4)	\ +	208	F321			
3522000 3523000 3524000	N TE FU	INCTION CODE EQUALS & THEN						
3525000 3526000		• GD TO BLT IF INITIALIZE • GD TO STOP SEGMENT IF STOP 1/0						
3528000 3528000 3529000		. ENTER TEST MODE IF TEST IS SET	Ň	T.				
3530000	SKIP HOF		I I					

DDEL: MPD EVISION:		30 RTL/6000 FIL MICROPRUGRAM		AUDRESS	US/U1/7/ LUC.et There	12.605	PAGE:	44
LINE # 3531000		SEQUENCE: SSUPCS		(HEX)	(HEX)			
3532000 3533000	SBUSRQCODE1	A LOAD ACU WITH OUTPUT CONTROL FUNCTION CUDE LCN AACU CNST(01#)	;	200	aoo1			
3534000 3535000 3536000	5	N COMPARE FUNCTION CODE EQUAL TO 01 XOR ASPA BACU	;	200	681A			
3537000 3538000 3539000	5	\ SKIP IF FUNCTION CODE DUTPUT CONTROL IFD TEQ2		ZDE	C086			
3540000 3541000 3542000	5	N GD TO TEST FOR GO COMMAND GTO (\$BUSRQTSTGO)	, ;	2DF	F2E6			
3543000 3544000 3545000	\$	NDECREMENT SPA	\ \$	260	ACOH			
3546000 3547000 3548000	s	N SKIP IF NOT AN INITIALIZE TFZ TAXO ASPM	X I	2E1	C450			
1549000 1550000 1551000	5	LINITIALIZE CLR	ì	2E2	1000			
552000 553000 554000	5	N SKIP IF NOT STOP 1/0 TFZ TAX1 ASPM	ì	2E3	C452			
3555000 3556000 3557000	5	\ STOP I/O GTO (\$BUSRO-STOP)	\ 1	2E4	F309			
3558000 3559000 3560000	\$	N GD TD RELEASE BUS GTO (SBUSRQ-DONE)	\ t	2E5	F33D			
3561000 3562000 3563000		FUNCTION CODE IS EQUAL TO A TASK FUNCTION						
3564000 3565000 3566000 3567000	CODE • 1	(HEN • RESET CHANNEL READY FLDP • CLEAR DEVICE STATUS • ENQUEUE TASK	\ \					
3568000								
3571000 3572000		N TASK FUNCTION CODE TO ACU LCN AACU CNST(07#)	÷	260	8005			
3573000 3574000 3575000	\$	N COMPARE FUNCTION CODE TO 07# XOR ASPA BACU	, i	267	6814			
3576000 3577000 3578000	\$	\ SKIP 1F OUTPUT TASK FUNCTION CODE TFO TEQZ	ţ	268	C086			
3579000	5K[P HOF		t					

MODEL: MPDC-REV REVISION: 000.0		TL/6000 FILE EDIT CROPRUGRAM SECTION	AUDRESS	08/01/77 DUC.#1 IMAGE	12.605	PAGE:	45
LINE # 3580000	SEQUENCE:	\$SUFC>	(HEX)	(HEX)			
3581000 s 3582000	N GO TO DONE GTO (SBUSRG-DONE)	>	2E 9	F33U			
3563000	A RESET CHANNEL READY	•	254	4010			
3585000	RCR	ţ	264	4010			
3587000 \$ 3588000	<pre>\ SET SPA FOR CHANNEL MONITOR SSPAI LOC(MONI)</pre>	` ŧ	2EB	8688			

MODEL: MPDC-REV3D REVISION: 000.00		RTL/6000 FILE EDIT MICROPROGRAM SECTION		08/01/77 DOC.#:	12.005	PAGE	95
LINE #	SEQUENC	E: SSUPCS -continued	ADDRESS (HEX)	IMAGE (HEX)			
3589000 3590000 s 3591000	\ SET BUSY FLAG LCN AACU (NST(40#)	\ #	2EC	8100			
3592000 3593000 \$ 3594000 3595000	\ STORE CHANNEL MONITOR MWT) ŧ	2ED	A200			
3596000 s 3597000 3598000	\ SET SPA FOR STATUS BYTE S5PA1 LOC(STS2)		2EE	8661			
3599000 5 3600000 3601000	\ SKIP IF NO PARITY ERROR TFZ TAX6 ASPM	\ 1	2EF	C45C			
3602000 s 3603000 3604000	\ PARITY ERROR-SEND INTERRUPT GTO (\$8USRQSETER)	4	2F0	FZD8			
3605000 \$ 3606000 3607000	N CLEAR BUS STATUS RST	*		4084			
3608000 \$ 3609000 3610000 3611000 \$	\ CLEAR ACU ZER BACU \ CLEAR LSB DF STATUS			600E			
3612000 3613000 3614000 s	WDA	;		A208			
3615000 3616000 3617000 5	MWT	;	-	BCUA			
3618000 3619000 3620000 s	SSPAL LOC(TSK1) \ SKIP IF SEEK COMMAND.	ŧ \	2F6	C450			
3621000 3622000 3623000 s	TFZ TAXO ASPM	ĩ	2F7	C454			
3624000 3625000 3626000 s 3626000 s	TFZ TAX2 ASPM \ GO TD SET SEEK STACKED GTO (\$BUSRG-SEEK)	* \ 1	2F8	F3U1			
3628000 3628000 3629000 SKIP HOF	GIU (BOUSKU-SCEK)	1					

MODEL: MPDC- REVISION: 20			RTL/6000 FILE MICROPROGRAM S			06/01/77 00C=#:	12,605	PAGE:	96
LINE # 3630000		SEQUENCE	E: \$\$UPC5		AUDRESS (HEX)	IMAGE (HEX)			
	USRQ-RW	\ SET SPA FOR R/W STACKED INDIC/ SSPA LOC(RWSTK)	ATOR	\ ;	2F9	99E8			
3634000 \$ 3635000 3636000		V INCREMENT COUNT INC ASPM BACU		N F	2FA	6400			
3637000 \$ 3638000 3639000		N RESTORE COUNT		Y F	2F8	A200			
3640000 \$ 3641000 3642000		\ INDEX REG TO ACU XFA AIDX BACU		X ŧ	2FC	6C3E			
3643000 \$ 3644000 3645000		NACU TO SPA XFB ASPA BACU SRIA		N I	2FD	686A			
3646000 \$ 3647000 3648000		\ SET R/W STACKED INDICATOR DCN ASPM CNST(40#)		Х 4	2FE	8510			
3649000 \$ 3650000 3651000		\ RESTORE INDICATOR MWT		}	2FF	A200			
3652000 \$ 3653000 3654000		\ RETURN TO WAIT LOOP GTO (\$BUSRG-DONE)		}	300	F33U			
3655000 SB 3656000 3657000	USRQ-SEEK	\ SET SPA FOR SEEK STACKED INDIC SSPA LOC(SKSTK)	ATOR	ì	301	88EA			
3658000 \$ 3659000 3660000		N INCREMENT COUNT		}	302	6400			
3661000 \$ 3662000 3663000		N RESTORE COUNT MWT		\$	303	A200			
3664000 \$ 3665000 3666000		V INDEX REG TO ACU XFA AIDX BACU		ì	304	6C3E			
3667000 \$ 3668000 3669000		VACU TO SPA XFB ASPA BACU SRIA		4	305	686A			
3670000 \$ 3671000 3672000		\ 5ET SEEK STACKED INDICATOR DCN ASPM CNST(80#)		*	306	8610			
3673000 \$ 3674000 3675000		N RESTORE INDICATOR		× •	307	A200			
3676000 \$ 3677000 3678000		N RETURN TO WAIT LOOP GTO (\$BUSRQ-DONE)		\ F	308	F33D			
3679000 3680000 SK[Р НОР			:					

MODEL: MPD REVISION:			./6000 FILE EDIT OPROGRAM SECTION		08/01/77 DUC+#:	12.605	PAGE:	97
LINE # 3681000 3682000 3683000 3684000	V FUNC	SEQUENCE: \$1 TION CODE. WITH STOP 1/0 SET HAS BEEN STOP ANY READ OR WRITE WHICH IS IN INITIALIZE CHANNEL MONITOR BYTE INITIALIZE INTERNUPT	DETECTED.	ADDRESS (MEX)	IMAGE (HEX)			
3685000 3686000 3687000 3688000	SBUSRG-STOP	\ SET SPA FOR LAST R/W CHANNEL S5PA LOC(LSTRW)	\ ;	309	8 6 19			
3689000 3690000	\$	∖ SKIP IF ADAPTER BUSY TFD TADB	X F	30A	C048			

			7, ЈЈЕ		400			
		107			108			
					08/01/77	12.605	DAGE :	97
MODEL: MMDC		RTL/6000 (MICROPROGR/			000.01	111000		•
REVISIONI	00.00	HICKUPRUGR	AM JECTION	ADDRE 55	IMAGE			
LINE #		SEQUENCE: SSUPCS		(HEX)	(HEX)			
LINE .		-contin	nued					
3691000		-00114						
3692000	د	N GD TO STOP TASK	١.	30B	F310			
3693000	•	GTO (SBUSRG-STP1)	1					
3694000								
3695000	5	VIS STOP I/O FOR ACTIVE CHANNEL	۱	300	601A			
3696000		KOR AIDX BSPM	1					
3697000				305	C0.04			
3698000	\$	\ SKIP IF STOP I/D IS FOR ACTIVE CHANNEL	N State	300	C085			
3699000		TFO TEQZ	1					
3700000				305	F310			
3701000	\$	STOP 1/0 FOR NON-ACTIVE CHANNEL-DEQUE TAS	K L	205	, , , , , , , , , , , , , , , , , , , ,			
3702000		GTD (SBUSRQ-STP1)	•					
3703000	_	V GO TO STOP READ DR WRITE OPERATION	`	30F	F59C			
3704000	5	GTO (STERM-NOR)	ì					
3705000 3706000		GIU (SIERM-NOR)	•					
	SBUSRO-STP1	V INDEX REGISTER TO ACU	`	310	6C3E			
3708000	PROPERT THE	XFA AIDX	i					
3709000								
3710000		ACU TO SPA	۱	311	686A			
3711000	•	XFB ASPA BACU SRIA	4					
3712000								
3713000	5	N CLEAR ACU	N N	312	600E			
3714000		ZER	•					
3715000					C450			
3716000	5	V SKIP IF NO SEEK STACKED	N N	313	(400			
3717000		TFZ TAXO ASPM	•					
3718000			<u>۱</u>	314	F318			
3719000	5	\ GO TO CLEAR SEEK STACKED GTO (\$BUSRQ-STP2)	ì	244	1210			
3720000		GTU 19803KG=31P21	•					
3721000 3722000		N SKIP IF ND R/W STACKED	`	315	C452			
3723000	5	TFZ TAX1 ASPM	i		-			
3724000		ITZ TAKI BER	•					
	5	V GO TO CLEAR R/W STACKED	١.	316	F31D			
3726000		GTO (SBUSRQ-STP3)	1					
3727000				-				
3728000	5	V GO TO SEND INTERAUPT	١.	317	F321			
3729000	-	GTO (SBUSRG-STP4)	1					
3730000								
3731000 5	SKIP HOF		1					

MODEL: MPDC-REV30 REVISION: 000.00		RTL/6000 FILE EDIT Microprogram Section Audress 1		08/01/77 DUC+#: 18465	12.605	PAGE:	¥8		
LINE .		SEQUENCI	E: SSUPCS		(HEX)	(HEX)			
3732000									
3733000	SBUSRO-STP2	\ CLEAR SEEK STACKED INDICATOR		N	318	A200			
3734000		MwT		:					
3735000					315	BBLA			
3736000	5	V SET SPA FOR SEEK STACK INDICA	TOR	<u>`</u>	314	80CA			
3737000		SSPA LOCISKSTKI		۱.					
3738000					23.4	6430			
3739000	5	V DECREMENT INDICATOR		2	244	8490			
3740000		DEC ASPM		1					
3741000				`	318	A200			
3742000	5	N RE-WRITE INDICATOR		ì					
3743000		MwT		•					
3744000	-	SO TO SEND INTERRUPT		`	310	F321			
3745000 3746000	•	GTO (\$BUSRO-STP4)		1					
3747000		GIU (\$60342-31247		•					
3748000	SBUSRO-STP3	V CLEAR R/W STACKED INDICATOR		1	31D	A200			
3749000	PROPERT OILS	MWT		i	-				
3750000		14							
3751000		A SET SPA FOR RIW STACK INDICAT	'OR	N	31E	BBEB			
1752000	•	SSPA LOC (RWSTK)		1					
3753000									
3754000		V DECREMENT INDICATOR		N	31F	6430			
3755000	•	DEC ASPM		1					
3756000									
3757000	5	\ RE-WRITE INDICATOR		۱.	320	A200			
3758000		MWT		1					
3759000									
3760000	\$BUSRQ=STP4	X RESET BUS STATUS		N.	321	4084			
3761000		RST		\$					
3762000					172	8688			
3763000	5	V SET SPA FOR CHANNEL MONITOR		ì	722	0100			
3764000		S5PAI LOC(MONI)		•					
3765000				\	323	8430			
3766000	5	V SET INTERRUPT STORED		1	•••	• • • • •			
3767000		OCN ASPM CNST (D8#)		•					
3768000		N RE-WRITE MONITOR		λ.	324	A200			
3769000	5			i					
3770000 3771000		MwT		•					
3772000		A GO TO WALT LOOP		1	325	F253			
3773000	•	GTD (SWAIT-CONTD)		i					
3774000				-					
3775000									
	SKIP HOF			1					
21.0000	est, ne.								

3778000 BYTES FR			6000 FILE EDIT Program Section	ADDRESS	08/01/77 DUC+#: Image	12.605	PAGE :	99
		SEQUENCE: SSUPCS Is Required. Load bus data register with 2 Rom Scratch Pad Using the function code as the		(HEX)	(HEX)			
3779000 3780000 3781000 3782000	START IN	NG ADDRESS. V FUNCTION CODE TO ACU XFA ABUSI BACU	ì	326	603F			
3783000 3784000 3785000	\$	N MASK UNUSED BITS ACN AACU (NST(3E#)	ì	327	BOEE			
3786000 3787000 3788000	5	ADDRESS S.P. WITH FUNCTION CODE XFB ASPAI BACU SRIA) F	328	6(6A			
3789000 3790000 3791000	\$	\ LOAD MSB OF DATA IN BJS DATA REGIST XFB ABUSI USPM SRIA	IER \ 1	329	6165			

	109	9,332		110			
MODEL: MPDC-REV3D REVISIONI 000.00	RTL/6000 F	RTL/6000 FILE EDIT Microprogram Section		08/01/77 DOC+#: IMAGE	12.605	PAGE:	99
LINE #	SEQUENCE: SSUPCS		ADDRESS (HEX)	(HEX)			
	-conti	inued					
3792000							
3793000 \$	V INCREMENT SPA	١	32A	A100			
3794000	IMA	1					
3795000							
3796000 \$	\ LOAD LSB OF DATA IN BJS DATA REGISTER	١.	32B	6168			
3797000	XFB ABUSI B5PM SRIA	1					
3798000							
3799000 \$	N SET CYCLE PARAMETERS	<u>۱</u>	320	8240			
3800000	LCN AACU CNST(90#)	4					
3801000							
3802000 \$	V INITIATE BUS CYCLE	۸	32D	4020			
3803000	CYC AACU	4					
3804000							
3805000 SKIP HOF		4					

MUDEL:	MPDC-REV30
REVISI	UN: 000.00

MUDEL: MPDC-REV30 REVISION: 000.00	RTL/6000 F M]CROPHUGRA			06/01/77 DUC++:	12.605	PAGE:	100
LINE #	SEQUENCE: SSUPC5		AUDRESS (HEX)	IMAGE (HEX)			
3805000 \$	V HEX 19 TO ACU	,	326	8061			
3807000	LCN AACU CNST(19#)	2	261	8001			
3808000	Con anco casilitari	,					
	COMPARE FOR INPUT STATUS FUNCTION CUDE		135	681A			
		ì	321	681A			
3810000	XOR ASPA BACU	4					
3011000							
3812000 \$	V SKIP IF INPUT STATUS FUNCTION CODE	`	330	C086			
3813000	TFO TEQZ	:					
3814000							
3815000 \$	V DD NDT CLEAR ATTENTION	`	331	F336			
3816000	GTO (\$BUSRQ-SHR)	1					
3817000							
3818000 \$	N RESET STATUS 13 AND 14	`	332	8765			
3619000	ACN ASPM CNST(F9#)	1					
3820000							
3821000 \$	V RESTORE STATUS BYTE 2	<u>۱</u>	333	AZUS			
3822000	WDA AACU	:					
3823000							
3824000 \$	N RESET ATTENTION BIT	<u>۱</u>	334	BOEF			
3825000	ACN ASPM (NST (BF#)						
3826000		•					
3827000 \$	V RESTORE STATUS BYTE 1	``	335	A200			
3828000	MwT	È					
3829000		•					
3830000 5K1P HOF		;					

MODEL: MPDC-REV30 REVISION: 000.00		RTL/6000 FILE EDIT Microprogram Section Aduress		08/01/77 DOC+#: IMAGE	12.605	PAGE :	101	
LINE #		SEQUENCE :	SSUPCS	(HEX)	(HEX)			
3831000 3832000 3833000	\$RUSRQ-SHR	∖ SKIP 1F ACK NOT RECEIVED TFZ TACK	X 1	336	C04E			
3834000 3835000 3836000	s	N ACK WAS RECEIVED GO TO DONE GTO (\$BUSRG-DONE)) ŧ	337	F33D			
3837000 3838000 3839000	5	∖ SKIP IF NAK WAS RECEIVED TFO TNAK	ì	338	C086			
3840000 3841000 3842000	\$	NO RESPONSE LOOP GTO (\$BUSRG-SHR)	ì	339	F336			
3843000 3844000 3845000	5	\ NAK RECEIVED - SET SPA FOR ST52 S5PAI LOC(STS2)	ì	AEE	8(61			
3846000 3847000 3848000	s	\ SET NON-EXISTANT RESOURCE ERROR DCN ASPM CNST(04#)		338	8418			
3849000 3850000 3851000	s	N RESTORE STS2 MWT	*	330	A200			
3854000	SBUSRO-DONE	N CLEAR BUS STATUS RST	Ì,	330	4084			
3855000 3856000 3857000	\$	V GD TO WAIT GTO ISWAIT-CONTD)	3	33E	F253			
3858000 3859000	SKIP HOF		:					

DDEL: MMD Evision:			RTL/6000 FILE EDIT ICROPHOGRAM SECTION	AUDRESS	U8/U1/// DUC+#: IMAGE	12.005	PAGE ;	10
LINE # 3860000 3861000 3862000	OF A DF	SEQUENCE: IERRUPT ROUTINE IS ENTERED UPON DETI VICE STATE TRANSITION, OR AFTER THE INA TRANSFER, OR AFTER THE EXECUTION	EXECUTION	(HEX)	(HEX)			
3863000 3864000		CONTROL WORD	N N					
3867000	\$STARTINTPT	N SET SPA FOR INTERRUPT LEVEL SSPAI LOC(ILC2)	ì	33F	8603			
3868000 3869000 3870000	s	<pre>\ STRIP 2 HIGH ORDER BITS ACN ASPM CNST (3F#)</pre>	ì	340	84£F			
3871000 3872000 3873000	\$	N CHECK FOR INTERRUPT LEVEL ZERD XFB BACU	ì	341	602A			
3874000 3875000 3876000	\$	N SKIP IF INTERRUPT LEVEL NOT ZER TFZ TEQZ		342	C046			
3877000 3878000 3879000	s	<pre>\ INTERRUPT LEVEL ZERO-RESET MON[GTO (\$INTPT-ACK)</pre>	TOR \	343	F360			
3880000 3881000 3882000	5	<pre>\ SET SPA FOR INTERRUPT VECTOR SSPAI LOC(10F1)</pre>	¥.	344	BCAB			
3883000 3884000 3885000	\$	N STORE INTERRUPT VECTOR MWT AACU	× •	345	A200			
3886000 3887000 3888000 3888000	\$	\SET SPA FOR LSB OF CP CHANNAL NU SSPAI LOC(ILC2)	HBER \	346	8003			
	SKIP HOF		;					

	4,	159,532		112			
DDEL: MPDC-REV3D EVISION: 000.00	RTL/6000 FILE EDIT Microprogram Section Aduress		08/01/77 DUC+#1 IMAGE	12.605	PAGE	103	
LINE #	SEQUENCE: SHUP	5	(HEX)	(HEX)			
3891000 3892000 \$ 3893000	N CLEAR LOW ORDER BITS ACN ASPM CNST (CO#)	;	347	8704			
3894000 3895000 \$ 3896000	N LOAD LSB OF BUS ADDRESS XFB ABUS4 BACU SRIA	+	348	6C6H			
3897000 3898000 s 3899000	VSET SPA FOR 2ND BYTE OF CP CHANNEL NU SSPAT LOC(ILCI)	IBER N	349	8002			
3900000 3901000 \$	V LOAD MID OF BUS ADDRESS	ì	34A	606B			
3902000 3903000 3904000 \$	XFB ABUS4 BSPM SRIA N LOAD MSB OF BUS ADDRESS	N	348	6C4F			
3905000 3906000 3907000 5	ZER ABUS4 SRIA \ SET 5PA FOR LSB OF MPDC CHANNEL NUMB	I R N	340	8CA1			
3908000 3909000	SSPAL LOC (CHN2)	1	340	8704			
3910000 \$ 3911000 3912000	∖ SAVE ONLY ADDRESS BITS Acn ASPM CNST (CU#)	1	-				
3913000 s 3914000 3915000	<pre>\ SET SPA FOR INTERRUPT VECTOR SSPA1 LOC(IDF1)</pre>	تر ۲	34E	8648			
3916000 \$ 3917000	\ GENERATE LSB OF INTERRUPT VECTOR ORR ASPM BACU	تر. ¥	341	643A			
3918000 3919000 \$ 3920000	N STORE INTERRUPT VECTOR MWT AACU	ì	350	A200			
3921000 3922000 \$ 3923000	\ LOAD LSB OF INTERRUPT VECTOR IN BU5 XFB ABU\$3 BACU SR1A	REG \ #	351	6865			
3924000 3925000 s 3926000	N SET SPA FOR MSB OF INTERRUPT VECTOR SSPAI LOCICHNII	\ ;	352	8CA0			
3927000 3928000 5 3929000	LDAD MSB OF INTERRUPT VECTOR IN BUS XFB ABUS2 BSPM SRIA	REG. N	353	656H			
3930000 3931000 s 3932000	NCLEAR BUS STATUS	1	354	4084			
3933000 3934000 \$ 3935000	L SET CYCLE PARAMETERS		355	8200			
3936000 3937000 \$	V SET CYCLE	Υ.	356	402 0			
3938000 3939000 3940000 SKIP HOF	CYC	÷ ;					

MODEL: MP REVISION:		RTL/6000 () MICROPHERS		AUDRESS	08/01/77 00C+#: IMAGE	12.605	PAGE:	104
LINE #		SEQUENCE: SSUPCS		(HEX)	(HEX)			
3941000 3942000 3943000 3944000	\$INTPT-TACK	V SKIP IF NO ACK RESPONSE TFZ TACK	i.	357	(04E			
3945000 3946000 3946000	5	N GO TO SET CHANNEL READY GTO (STNTPT-ACK)	`. •	358	F360			
3948000 3949000 3950000	-	N SKIP IF NAK RESPONSE TFO TNAK	Х Г		C086			
3951000 3952000 3953000		N NO NAK GO TO TEST ACK GTO (SINTPT-TACK)	•		F357			
3955000 3956000	SINTPT-NAK	NAK RECEIVED-SET SPA FOR CHANNEL MONITO® SSPAILOC (MONI)	5		8088			
3957000 3958000 3959000		N SET INTERRUPT PENDING OCN ASPM CNST (80#)	:	.450	8610 A200			
3960000 3961000 3962000 3963000		N RESTORE MONITOR CHANNEL MHT AACU N RESET CHANNEL READY	i		4010			
3965000 3965000 3965000	-	A CLEAR BUS STATUS AND RETURN TO WALT	i .		F364			
3967000 3968000 3969000		GTO (SINTPT-EXIT)	÷	<u>а</u>	асно			
3970000 3971000 3972000	5	SSPAT LOC(MONI) N RESET MONITOR	4 N	461	600E			
3973000 3974000 3975000	\$	ZER N RESTORE MONITOR	I N	362	A200			
3976000 3977000 3978000	s	MWT AACU N SET CHANNEL READY	۱ ۱	103	4018			
3979000 3980000 3981000	\$INTPT-EXIT	SCR	1 \	364	4084			
3982000 3983000 3984000 3985000	s	RST N GD TO WAIT GTO (SSTART-WAIT)	\$ \ \$	365	F2lu			
3985000 3987000	SKIP HOF		I.					

MODEL: MMOC-KEV3D Revision: 000.00	RTL/0000 - J.S. EUIT MICPOPROGPA - SECTION	AUDHESS	198571517*7 3132≤♥* 31MA-1612	kata kata	$a^{0}+a^{0}(2)=-0^{0}$
LINE # 3980000 \ THE FULLOWING FIRMWARE IS THE 3990000 SPECIFIC ROUTINES DEDICATED TO 3991000 CAELUS CARTRIDGE DISK. 3992000 SIJNIFICANT STATUS AND WORK RE 3993000 FOLLOWS	THE SUPPORT OF THE	(HEX)	i⊷ξ λ j		

میت 09/01/77 اکیوں PAGE: 105 DUCes: AUDRESS IMAGE (HEX) (HEX)

	4,159,532
113	.,,,
MODEL: MMDC-HEV3D	RTL/6000 FILE EDIT
REVISION: 000.00	MICROPRUGRAM SECTION
LINE #	SEQUENCE: SSUPCS
	-continued
3994000	
3995000 \ ADAPTER DEVICE 1.D.	ADAPTER COMMAND (AAD2)
3996000 BIT	BIT
3997000 0 - 0	0 - ADAPTER BUSY
3998000 1 - 0	1 - DATA TRANSFER
3999000 2 - 1	2 - RECALIBRATE
4000000 3 - 1	3 - DIAGNOSTIC MODE
4001000 4 - 0	4 - SEARCH
4002000 5 - 0	5 - WRITE
4003000 6 - 200 T.P.I.	6 + READ
4004000 7 - FIXED VOLUME PRESENT	7 - FORMAT
4005000	
4006000	
4007000 \ ADAPTER STATUS [(AAD2)	ADAPTER STATUS [] (AAD3)
4008000 BIT	BIT
4009000 0 - DRIVE READY	0 - READ/WRITE ERROR
4010000 1 - SEEK COMPLETE	1 - SECTOR PLUSE ERROR
4011000 2 - SEEK TIMEDUT	2 - UNDERRUN/OVERRUN
4012000 3 - 0	3 - WRITE PROTECT
4013000 4 + 0	4 + CRC ERROR
4014000 5 - 0	5 + SEARCH MISCOMPARE
4015000 6 - 0	6 - ADDRESS MARK ERROR
4016000 7 - 0	7 - SECOND INDEX DETECTED \
4017000	- SECOND INDEX DETECTED (
4018000	
4019000 \ CHANNEL MUNITOR BYTE	DMA BYTE
4020000 B1T	BIT
4021000 0 - INTERRUPT PENDING	0 - READ=0, WRITE=1
4022000 1 - CHANNEL BUSY	1 - UNUSED
4023000 2 - STUP 1/0	2 - IMPLIED SEEK
4024000 3 - SELK ACTIVE	3 - IGNORE READ ERRORS
4025000 4 - INTERRUPT STORED	4 - UNUSED
4026000 5 - RECALIBRATE OPERATION	5 - UNUSED
4027000 6 - UNUSED	6 - UNUSED
4028000 7 - UNUSED	
4029000	7 = UNUSED
4030000 SK1P HOF	
	;

MODEL	MPDC-REV30

MODEL: MPDC-REV30 Revision: 000.00		RTL/6000 FILE EDIT Microprogram Section		08/01/77 D0C+#:	12.605	PAGE :	106
4032000 OPERATIONS	ON OF COMMAND DECODE PERFORMS THE	CE: \$\$UPC5 E FOLLOWING	ADDRESS (HEX)	IMAGE (HEX)			
4033000 1. SEL 4034000 2. PAN 4035000 4036000	ECTS THE DEVICE TIAL COMMAND DECODE	X					
4037000 SCMDEC-E1 4038000 4039000	ADDRESS DMA BYTE SSPAL LOC (DMAL)	\ ¥	366	8689			
40400n0 <u>5</u> 40410n0 40420n0	<pre>\RESET ALL BUT DIRECTION BIT ACN ASPM CNST (80#)</pre>	¥ F	367	8604			
4043000 \$ 4044000 4045000	NRESTORE DMA BYTE MWT) +	368	A200			
4046000 S 4047000 4048000	<pre>\ ADDRESS UNIT SELECT SSPAI LOC(UNSEL)</pre>	X I	369	8CEB			
4049000 s 4050000 4051000	N SEND TO ADAPTER XFB AAD3 BSPH SRIA	` ;	36A	7D6A			
4052000 5 4053000 4054000	\ RETURN FROM SEEK OR RECALIBRA LRA (\$START-WAIT)	TE Y	36B	E210			
4055010 \$ 4056010 4057010	\ ADDRESS TASK SSPAI LOC(TSKI)	X I	360	BCOA			
4058010 s 4059010 4060010	∖ SKIP IF NOT WRAP TEST TFZ ASPM TAXL	X #	36D	C452			
4061000 \$ 4062000 4063000 \$	GTO (SCMDEC-E2)	i i	36E	F382			
4064000 4065000	\ SKIP IF DEVICE READY TFO AAD2 TAXO	\ \$	36F	0890			
4066000 \$ 4067000 4068000 \$	GTO (SSTARTINTPT) \ SKIP IF R/W	1	370	F33F			
4069000 4070000	TEO ASPM TAXO	•	371	C490			
4071000 5 4072000 4073000 5к1Р нон	GTD (\$5K-RCB)		372	F3B3			
		ŧ					

MODEL: MMDC-REV30 REVISION: 000.00		RTL/6000 FILE EDIT Microprogram Section		08/01/77 DUC.#:	12,605	PAGE :	107
LINE #	SEQUENCE	: SSUPCS	AUDRESS (HEX)	IMAGE (HEX)			
40740N0 \$	SET SPA FOR UNIT SELECT BYTE	· · · · · · · · · · · · · · · · · · ·	373	BCEB			
4075000	SSPAI LOC (UNSEL)		313	8CEB			
4U76000		•					
4077000 S	VCLEAR TRACK BIT	``	374	87E7			
4078000	ACN ASPM CNST (FB#)	1	3/4	8,61			
407900 0		. · · · · · · · · · · · · · · · · · · ·					
40800n0 s	\RESTORE		375	4300			
4081000	MwT		3/3	A200			
4082000		,					
4083000 \$	ADDRESS CONF & UPPER	ν.	174	8042			
4084000	SSPAT LOC(CNF3)		376	8642			
4085000		•					
4086010 \$	A SHIFT TRACK BIT	`	377	6430			
4087000	LSH ASPM	2	317	6430			
+088000		•					
4089000 \$	V SHIFT TRACK BIT	`	370	6030			
4090000	LSH		218	8030			
4091000		•					
4092000 \$	ADDRESS UNIT SELECT	۱. ۱	379	8CEB			
4093000	SSPAI LOCIUNSELI	, t	3/1	8(10			
4094000		•					

		4,159,532		447			
	115			116			107
MODEL: MPDC-REV3D Revision: 000.00		RTL/6000 FILE EDIT MICROPROGRAM SECTION	AUDRESS	08/01/77 DUC+#1 IMAGE	12.605	PAGEI	
LINE .	SEQUENC	LE: SSUPCS	(HEX)	(HEX)			
		-continued					
4095000 S	V SUPERIMPOSE UNIT SELECT BITS ORR ASPM	\ \$	374	643A			
4097000 4098000 \$	SEND TO ADAPTER	ν.	378	7C6A			
4099000	XFB AAD3 SRIA	ŀ					
4101000 \$ 4102000	\ RESTORE UNSEL WITH NEW TRACK MWT	t i i i i i i i i i i i i i i i i i i i	370	A200			
4103000 4104000 S 4105000	ADDRESS TASK SSPAL LOC (TSK1)	X 1	37D	BCOA			
4106000 4107000 \$	SKIP IF NO SEEK IMPLIED		37E	(454			
4108000 4109000 4110000 s	TFZ ASPM TAX2 GTO (SSEEK-IMPL)	•	37F	F380			
4111000 4112000 \$	V SKIP IF NO SEEK ERROR	}	380	0854			
4113000 4114000	TFZ AAD2 TAX2 GTD (\$SEEK-ERR)	•	381	F5A4			
4115000 \$ 4116000 4117000 Skip HOF	VIV (BJELK-ERR)						

NDDEL: MPC REVISIONI			./6000 FILE EDIT ROPROGRAM SECTION	ADDRESS		12.605	PAGE	108
		SEQUENCE: S	SUPC5	(HEX)	(HEX)			
LINE #								
4118000	THIS PORTIO	N OF COMMAND DECODE-						
	(11110 FORTIO	ES THE CURRENTLY ACTIVE CHANNEL FOR	FUTURE					
4120000		AN THE WAIT LOOP.						
4121000	2 1 0 60	S THE BUS INTERFACE COUNTERS (MEMORY	ADDHESS+					
4122000		E. AND OFFSET RANGE! FOR USE DURING	THE					
4123000	DENO	ING READ/WRITE OPERATION.	<u>۱</u>					
4125000	PC-0							
	SCMDEC-E2	ADDRESS LAST R/W	<u>۱</u>	382	BREA			
	\$CHDEC-Ct	SSPA LOCILSTRWI	1					
4127000		SOFR ECCLECTION						
4128000		STORE CH #	<u>۱</u>	383	AEOO			
4129000 4130000	,	MWT AIDX	;					
4131000								
4132000		ADDRESS DHA BYTE	N	384	8689			
4133000	,	SSPAI LOC(DMA1)	+					
4134000				3.05	C490			
4135000		SKIP IF WRITE MODE	N N	362	(470			
4136000	•	TFO ASPH TAXO	1					
4137000			_	386	F388			
4136000	5	GTO (SCMDEC-LDOF)	1	200				
4139000	-			387	6C4F			
4140000	\$ZER-OSR	V CLEAR OFFSET LOWER						
4141000		ZER ABUS4 SRIA	•					
4142000			λ.	368	6C4F			
4143000	5	V CLEAR OFFSET UPPER	i					
4144000		ZER ABUS4 SRIA	•					
4145000		ADDRESS RANGE LOWER	N .	389	8C29			
4146000	\$	SSPAI LOC(RNG2)	i i					
4147000		SSPAT LUCIRIDAT						
4148000		GTO (SCHOEC-LD)	:	38A	F38C			
4149000	5	gio (achore-to)						
4150000	SCMDEC-LDOF	ADDRESS OFFSET LOWER	١	388	8028			
4152000	\$CMDEC-LDU	SSPAL LOCIOFRES	•					
4153000								
	SCHDEC-LD	V LOAD OFFSET RANGE AND RANGE	١.	380	6068			
4155000		XFB ABUS4 BSPM SRIA	4					
4156000				380	A006			
4157000	5	V DECREMENT S.P. ADDRESS	2	340	2000			
4158000		DMA	1					
4159000				345	0000			
4160000		NO DP FOR TIMING		200				
4161000		NOP	•					
4162000		THE AP APPERT IN DINCE COMPEN	λ.	38F	C85A			
4163000		V SKIP IF OFFSET AND RANGE LOADED	ì					
4164000		TEZ ASPA TAX5	•					
4165000		GTO (SCHDEC-LD)	4	390	F38C			
4166000								
4167000			F					
#198000	SK1P HOF							

MODEL: MPD REVISION:			6000 FILE EDIT Prugram Section	AUDRESS	OU/U1/77 DUC+#1 IMAGE	12.605	PAGE :	109
LINE #		SEQUENCE: \$\$U	PCS	(HEX)	(HEX)			
4169000		ADDRESS LOWER	· • •	391	8C21			
4170000	•	SSPAL LOC (ADR2)	i					
4171000		SOFAT COCCORE	•					
4172000		\ LOAD	``	392	6068			
4173000		XFB ABUS4 BSPH SRIA	4					
4174000								
4175000	•	V DECREMENT SPA	`	393	AOOB			
4176000	•	DMA	l l					
4177000								
4178000	•	V LOAD ADDRESS MIDDLE	N .	394	606B			
4179000	-	XFB ABUS4 BSPM SRIA	:					
4180000								
4181000	5	ADDRESS UPPER	<u>۱</u>	395	8C23			
4182000	-	55PAL LOC (MOD1)	1					
4183000								
4184000	5	\ LOAD	`	396	6068			
4185000		XFB ABUSA BSPM SRIA	1					
4186000				207				
4187000	5	SET SPA FOR MSB OF CHANNEL NUMBER	2 A A A A A A A A A A A A A A A A A A A	397	8CA0			
4188000		SSPAI LOCICHNL)	1					
418900Q				398	6568			
+190000	\$	LOAD MSB OF CHANNEL NUMBER IN BUS RE	G (348	0708			
4191000		XFB ABU52 B5PM SRIA	1					
4192000								
4193000	\$	SET SPA FOR LSB OF CHANNEL NUMBER	N N	399	BCA1			
4194000		SSPAI LOC(CHN2)	1					
4195000								

÷

118

		4,1.	JY,JJZ					
		117			118			
MODEL1 M REVISION	IPDC=REY30 RTL/4000 F 1: 000-00 NICROPROGRA			AUDRESS	OB/U1/77 DUC.#1 IMAGE	12.605	PAGE :	109
LINE #		SEQUENCE: \$\$UPC5	SEQUENCE: SSUPCS		(HEX)			
		-cont	inued					
4196000 4197000	-	SAVE ONLY ADDRESS BITS ACN ASPM CNST (CO#)	}	39A	6704			
4198000 4199000 4200000	\$	\LOAD LSB OF CHANNEL NUMBER IN BUS REG XFB ABUS3 BACU SRIA	}	396	6868			
4201000 4202000 4203000		SKIP JF RANGE EQUAL ZERD	· ·	390	COA2			
4204000 4205000 4206000	5	GTO (SCMDEC-CT)	•	39D	F3A0			
4207000 4208000		\SKIP IF OFFSET RANGE NON-ZERO TFZ TORZ	}	39E	C060			
4209000 4210000 4211000		GTO (STERM-NOR)		39F	F59C			
	SKIP HOF		1					

REVISIONI	000.00		OG FILE EDIT Ogram Section		08/01/77 DOC+#1	12,605	PAGE:	110
LINE .		SEQUENCE: SSUPC	د	ADDRESS (HEX)	IMAGE (HEX)			
4213000		DEGUENCE: SAUFL	-	INEAT	(HEX)			
	SCHDEC-CT	ADDRESS TASK	``	340	8COA			
4215000	achore to	SSPAL LOC(TSKI)	ì					
4216000		SSPAT COCCISATI	•					
4217000		SKIP IF NOT WRAP AROUND	``	341	C452			
4218000	•	TFZ ASPM TAX1	ì					
4219000			•					
4220000		GTO (SWRAP)		342	F49F			
4221000	•		•	••••				
4222000		V SETUP FOR 256 BYTE DATA FIELDS	``	343	8100			
4223000	•	LCN CNST (40#)						
4224000			•					
4225000	•	SKIP IF DATA FIELDS ARE 256 BYTES	``	384	C456			
4226000	•	TFZ ASPM TAX3	i					
4227000			•					
4228000	5	SETUP FOR 576 BYTE DATA FIELDS	``	3A5	8240			
4229000	-	LCN CNST (90#)	i					
4230000								
4231000	5	ADDRESS DATA LENGTH (LDC #5)	``	386	809			
4232000		SSPAI LOC (DATL)	:					
4233000								
4234000	5	\ STORE DATA FIELD SIZE + ADDRESS TASK	`	3A7	A300			
4235000		WIA .	\$					
4236000								
4237000	5	V SKIP IF NOT FORMAT	`	3A6	C49E			
4238000		TFD ASPM TAX7						
4239000								
4240000	5	GTO (SFORMAT)	;	349	FBFC			
4241000		· · · · · · · · · · · · · · · · · · ·						
4242000	5	V SKIP IF DIAGNOSTIC	N N	388	C49C			
4243000		TFO ASPM TAX6	+					
4244000			_					
4245000	5	GTO (\$5CH-SET)		3AB	F420			
4246000			-					
	5	ADDRESS DHA BYTE	2	3AC	8689			
4248000		SSPAI LOC(DMAL)	+					
4249000	_			145	C1 00			
4250000	3	V SKIP IF WRITE		SAU	C490			
4251000 4252000		TFO ASPM TAXO	•					
4253000		GTO (SDIAG-READ)		145	F561			
4254000	•	010 (301AG-READ)	•	SAE				
4255000		GTD (\$SCH-SET)	:	346	F420			
4256000	•	010100C1-0217	•					
4257000 :	SKIP HOF		:					
	A. 1. 1. 1. 1. 1.		•	• •				

DDEL; MM VISION:	DC-REV3D 000.00		RTL/6000 FILE EDIT HICROPRUGRAM SECTION		08/01/77 DUC+#:	12.605	PAGE :	11
INE #		SEQUENCE	: SBUPCS	ADDRESS (HEX)	IMAGE (HEX)			
258000		IED SEEK IS USED DURING AN EXTENDE						
259000	AND READ	D OPERATION. WHEN AUTOMATIC CYLINDER	2					
260000	LINKING	15 REQUIRED.	١.					
261000								
262000								
263000	\$5EEK-IMPL	ADDRESS DMA BYTE	ν.	380	8(89			
264000		SSPAL LOC(DMAL)	1					
265000								
266000	5	SET SEEK IMPLIED	۱	381	8490			
267000		OCN ASPM CNST (20#)	1					
268000								
269000	\$	N RESTORE DMA BYTE	۱	382	A200			
270000		MWT	1					
271000								
272000	THIS POP THIS THIS	TION OF THE SEEK/RECALIBRATE ROUTIN	NE SETS THE					
273000	SEEK AC	FIVE BIT IN THE CHANNEL MONITOR BYT	E FOR USE					
\$274000		AIT-LOOP. TO DETERMINE WHICH CHANN	ELS HAVE					
275000	P051710	VERS IN MOTION.	N					
276000								
\$277000	SSK-RCB	SET SPA FOR CHANNEL MONITOR	``	383	8688			
4278000		SSPAI LOC (MONI)	;					
4279000								
4280000	5	SET SEEK ACTIVE BIT	``	384	8450			
281000		OCN ASPM CNST (10#)	1	-				
4282000								
\$283000	5	RE-WRITE MONITOR	ν.	385	A200			
4284000		MWT	;					
4265000								
\$286000	5	SET SPA FOR UNIT SELECT BYTE	ι.	386	BCEB			
\$287000		SSPAL LOC (UNSEL)	1					
4288000								
1289000	5	CLEAR PLATTER AND MSB OF CYLIND	R \	367	878F			
4290000		ACN ASPH CNST (E7#)	•					
\$291000								
4292000	5	\RESTORE	Ň	388	A200			
4293000		MWT	1					
4294000			-					
	5	SET SPA FOR TASK		389				

			4,139,332	
		119	, ,	120
	MPDC-REV3D N1 000.00		RTL/6000 FILE EDIT Microprugram Section	08/01/77 12.605 PAGE: 111 DUC.+;
LINE	ı		SEQUENCE: SSUPCS -continued	ADDRESS IMAGE (MEX) (HEX)
296000		SSPAI LOC (TSK1)	\$	
298000	5	\SKIP IF NOT IMPLIED SEEK TF2 ASPM TAX2	\$	38A (454
	5	GTO (SSEEK)	¥ .	388 F38E
	5	\ SKIP IF SEEK TFO ASPN TAX7	Ì	3BC C49E
	5	GTO (SRECAL)	I I	380 F3F1
308000 5	KIN HOP		8	

MODEL: N	PDC-REV30 1 000.00		RTL/6000 FILE EDIT Microprogram Section		08/01/77 DOC+#:	12.605	PAGE	112
LINE #		SEQUENC	E: SSUPCS	ADDRESS (HEX)	IMAGE (HEX)			
4310000		SKIP IF NO SEEK EARDR	Υ.	385	D654			
4311000		TEZ TAX2 AAD2			0004			
4312000			•					
4313000		GTO (SSEEK-ERA)	;	38F	F5A4			
4314000			•					
4315000	5	ADDRESS LSB OF CYCLINDER	<u>۱</u>	300	8C41			
4316000		SSPAI LOC (CNF2)	\$					
4317000								
4318000		SKIP IF 100 TPI DEVICE	١	3C1	D45C			
4319000		TEZ TAX6 AAD1	1					
4320000								
4321000		GTO (SSEEK-2TP1)	:	362	F3CF			
4322000								
4323000		LSB OF MAX CYCLINDER TO ACU	N N	363	8328			
4324000		LCN CNST (CC#)	\$					
4325000 4326000		CURRENT CHELTHORN WINE MAY CH		3.64	4410			
4327000		CURRENT CYCLINDER HINUS MAX CY		2(4	6418			
4328000		SUB ASPH BACU	ŧ					
4329000		SKIP IF NOT AN ILLEGAL CYCLIND	20	345	C04A			
4330000		TFZ TCDT	ER \	3(3				
4331000			,					
4332000		GTO (SSEEK-ILL)		366	FSAB			
4333000			•					
4334000	5	ADDRESS MSB OF CYCLINDER	Υ.	3C7	8C40			
4335000		SSPAI LOC (CNF1)	4					
4336000								
4337000		SKIP IF NOT AN ILLEGAL CYCLIND	ER \	3C8	C45E			
4338000		TFZ ASPM TAX7	;					
4339000								
4340000		GTD (SSEEK-ILL)	·· •	369	FSAB			
4341000		AND NOT THE ATT						
4342000		\ SAVE VOLUME BIT ACN ASPM CNST (08#)	2	JCA	8424			
4344000		ACN ASPM (NSI (UBB)	1					
4345000		ADDRESS CONF & LOWER	χ.	200	8C41			
4346000		SSPAI LOC (CNF2)	i	200	0041			
4347000			•					
4348000		\ SKIP IF MSB CYL BIT = 0	Υ.	300	C450			
4349000		TFZ ASPM TAXO	ì	200				
4350000			•					
4351000		\ SET MSB OF CYLINDER	λ.	3CD	8050			
4352000		OCN CNST (10#)	i i					
4353000								
4354000		GTO (\$5EEK150)	1	3CE	F3DD			
4355000								
4356000	SK1P HOF		1					
	SK1P HOF		- 1					

MODELI MPDC REVISIONI O		RTL/600D FI Microprogram			08/01/77 DOC+#:	12,605	PAGE:	113
LINE #		SEQUENCE: SSUPCS		ADDRESS (HEX)	IMAGE (HEX)			
4357000 \$	SFFE-2TPI	LSB OF MAX CYCLINDER TO ACU	1	3CF				
4358000	Jeen-Livit	LCN CNST (98#)	1					
4359000			•					
4360000 s		CURRENT CYCLINDER MINUS MAX CYCLINDER	N	300	6418			
4361000		SUB ASPM BACU	1					
4362000								
4363000 \$		ADDRESS MSB OF CYCLINDER	۱	301	8C40			
4384000		SSPAI LOC (CNF1)	1					
4365000								
4366000 5	,	SAVE ONLY CYCLINDER BIT	N N	302	8405			
4367000		ACN ASPH CNST (01#)	Ŧ					
4368000		ADDRESS WORK LOCATION OF SPM		303	BCAA			
4369000 s 4370000	i	SSPAI LDC (WL01)	2	505	BLAA			
4371000		JUPAI COL (ACUI)	•					
4372000 \$		STORE CYCLINDER BIT	`	306	A200			
4373000	•	MWT	ì	-••				
4374000			•					
4375000 \$	•	NM58 OF MAX CYCLINDER TO ACU	N .	305	6001			
4376000		LCN CNST (D1#)	1					
4377000								
4376000 s	5	CURRENT CYCLINDER MINUS MAX CYCLINDER M5B	N	306	6498			
4379000		SUB ASPM BACU COTI	1					
4380000								
438100D \$	5	SKIP IF VALID CYCLINDER	2	307	C04A			
4382000 4383000		TFZ TCOT	4					
4384000 \$		GTO (SSEEK-ILL)		306	F5AB			
4385000		GIO (BJEEK-IEE)	•	200	/ 200			
4386000 \$		ADDRESS CONF & UPPER	<u>۱</u>	309	8C40			
4387000		SSPAI LDC (CNF1)						
4388000								
4389000 s		SAVE VOLUME AND CYCLINDER BITS	N	3DA	8424			
4390000		ACN ASPM CNST (08#)	1					
4391000								
4392000 \$	6	SKIP IF MSB OF CYCLINDER IS ZERO	N N	308	C45E			
4393000		TEZ TAXT ASPM	ŧ					
4394000 4395000 s		SET MSB OF CYCLINDER	``	300	8050			
4396000	•	DEN ENST (10#)	1	500				
4397000			•					
4398000 SK	TP HOF		+					
			•					

122

		121				144			
NODEL: MPC REVISION:			RTL/6000 HICROPROGR			08/01/77 DUC+#:	12.005	PAGE :	114
LINE # 4399000 4400000 4401000	\$SEEK150	ADDRESS UNIT SELECT	SEQUENCE: \$\$UPC\$) F	ADDRESS (HEX) 30D	IMAGE (HEX) BCEB			
	5	\ SUPERIMPOSE SELECTION ORR ASPM	8112	ì	, 3DE	643A			
	s	\RESTORE Hwt		ì	3DF	A200			
4408000 4409000 4410000	\$	N SEND TO ADAPTER		;	360	7664			
4411000 4412000 4413000	5	\ ADDRESS CONF A LOWER SSPAI LOC(CNF2)		ì	3E1	BC41			
4414000 4415000 4416000	5	N STURE CYL IN ACU XFA ASPM		ì		643E			
4417000 4418000 4419000	5	\ SKIP [F 200 TP] TFO AADI TAX6		ì	3E3				
4420000 4421000 4422000	-	\ SHIFT CYL # LEFT FOR : LSH	100 TP1	¥		6030			
4423000 4424000 4425000	-	V SEND TO ADAPTER XFB AADI SRIA		1	365				
4426000 4427000 4428000	-	GTO (\$STROBE)		1	366	F3F5			

MODEL: MP REVISION:			FILE EDIT RAN SECTION	ADDRES5	08/01/77 DOC+#1 IMAGE	12.605	
LINE #	THIS POR	SEQUENCE: \$\$UPC5 TION OF THE RECALIBRATE ROUTINE IS USED FOR		(HEX)	(HEX)		
4430000 4431000	ZERDING	THE CONFIGURATION WORDS IN ORDER TO SELECT ZERD+ TRACK ZERD AFTER THE RECALIBRATE.	``				
4432000	FERTIES :						
4433000	SRECALPLSEL	\RESET RECALIBRATE BIT ACN ASPM (NST (FB#)	ì	3E 7	87E7		
4435000							
4436000	5	RESTORE MONITOR	۸.	368	A200		
4437000		MWT	1				
4438000				350	4005		
4439000	5	VCLEAR ACU	<u>}</u>	3E9	600E		
4440000		ZER	•				
4441000		SET SPA FOR MSB OF CONFIGURATION WORDS	•	354	8040		
4442000	s	SSPAI LOC (CNFI)	2				
4443000 4444000		SSPRI LUC (CAPI)	•				
4445000		ACLEAR FOUR BYTES OF CONFIGURATION	λ.	3E8	A300		
4446000	•	w1A	i				
4447000							
4448000	5	w[A	ŧ	3EC	A300		
4449000	-						
4450000	5	wIA	1	3ED	A300		
4451000		_	-	100	A200		
4452000	5	MWT	1	366	#200		
4453000		SET RETURN FOR WALT LOOP		3F.F.	E210		
4454000 4455000	5	LRA (SSTART-WAIT)	ì				
4456000		THE COLORI-RELIT	•				
4457000		GTO (SSEEK)	;	3F0	F3BE		
4458000	•						
	SKIP HOF		;				

MODEL: MMDC-REV3) REVISION: 000.00		RTL/6000 FILE EDIT MICROPROGRAM SECTION		08/01/77 DOC+#:	12.005	PAGE :	116
LINE #	SEQUENC	E: SSUPCS	ADDRESS (HEX)	IMAGE {HEX]			
4460010 SRECAL	V SET RECALIBRATE IN ADAPTER		3F1	9880			
4461000	LCN AADZ CNST (20#)	1	••••				
4462000							
4463000 s	VSET SPA FOR CHANNEL MUNITOR	N	3F2	8688			
4464000	SSPAL LOC (MONI)	6					
4465000							
4466000 5	SET RECALIBRATE BIT	N .	- 3F 3	8418			
4467000	OCN ASPM CNST (04#)	\$					
4468000							
4469000 S 4470000	RESTORE MONITOR	N N	3F4	A200			
4471000	MwT	1					
4472000 \$5TROBE	V SET SEEK STROBE		356				
4473000	XFB AAD6 SR1A	2	3F 5	7646			
4474000	ALD CODE SKIN	•					
4475000 \$	ADDRESS DEVICE STATUS	ς.	354	BCEA			
4476000	SSPAI LOC (DEVST)	2	360	BLEA			
4477000		•					
4478000 s	N RESET SEEK COMPLETE BIT	、 、	367	86EF			
4479000	ACN ASPM CNST IBF#1	i i	21.	90L1			
**80000		•					
4481000 S	V RESTORE	<u>۱</u>	3F8	A200			
4482000	MwT						
4483000							
4484000 S	V RESET SEEK STROBE	N	3F9	7865			
4485000	XFB AAD6 SRIA	\$					
4486000							
4487000 S	A RESET ADAPTER COMMAND	N .	3FA	9800			
4488000 4489000	LCN AAD2	i					
4490000 s	RTN						
4491000	K I M	i	3F8	C200			
4492000 SKIP HOF							
STEEDING SKIP HUP		•					

	123			144			
MODELI MPDC-HI Revisioni nod		RTL/0000 FILE EDIT Michoprugram Section		08/01/11 UUC.#: 1MAGE	12-005	PAGE :	117
LINE .	SEQUE	NCE: SSUPCS	\$11£ X >	(HEX)			
4493000 4494000 \$F0 4495000	RMAT V ADDRESS DMA BYTE SSPAT LOCIDMATI	4	JFC	8(84			
4496000 4497000 \$ 4498000	N SKIP IF FORMAT WRITE TFD ASPM TAXO	N I	3FD	(490			
4499000 4500000 \$	GTO (SFMT-READ)	1	3F£	F4E7			
4503000	I-JDT - V SET FORMAT WRITE WITH DATA LCN CNST (C5#)	TRANSFER L	364	8304			
4504000 4505000 \$ 4506000	N ADDRESS TASK SSPAL LOC (TSK1)	Ì	400	BLUA			
4507000 4508000 \$ 4509000	\ SKIP IF NOT DIAGNUSTIC MODE TFZ ASPM TAX6		+01	(45)			
4510000 4511000 \$ 4512000	<pre>\ SET DIAGNOSTIC MODE UCN CNST(10#)</pre>	ì	402	8050			
4513000 4514000 \$ 4515000	N SEND COMMAND TO ADAPTEN XFB AADZ SRIA	ì	403	786A			
4516000 4517000 \$ 4518000	N CLEAR STATUS AND FIFU IN AU XFB AADS SRIA	۲ ۹ر ۲	404	7408			
4519000 4520000 \$ 4521000	N LOAD AME UPPER LCN AADO (NST (FA#)	۲. ۶	405	93L2			
4522000 4523000 \$ 4524000	\ LOAD AMK LOWER LEN AADU ENST (AA#)	i i	*Ob	92A2			
4525000 4526000 \$ 4527000	\ LOAD DATA CUUNT LCN AADI CNST (U1#)	\ 4	₩ 07	9401			
4528000 4529000 \$ 4530000	LOAD HETURN LRA (SFHT-DAT)	Ì	*0*	E411			
4531000 4532000 SKTP	нон	ŧ					

ADDRESS [MAGE LINE # SEJUENCE: \$\$0405 (HEX) (HEX) 4533000 4534000 \$WR1-HODE \SET RETURN FROM DATA LJOP \ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
4533000 4534000 SWRT-MODE (SET RETURN FROM DATA LJOP) 409 1525	
4734000 SHRI-HOMA (DET HEIDA PART EDA	
45350R0 LRA (\$WRT-EDF) \$	
45360N	
4537000 s SET BYTE WRITE MODE S 40A 81A2	
4538000 LLN (NST (64#) 3	
45 19 000	
4940000 \$ VSKIP IF BYTE MODE Y 40H COHB	
4541000 1F0 TBYT	
454200U	
4543000 SWNI-HET VSET WRITE MODE ONLY V 40C BIBZ	
4544000 LCN CNST (628)	
****5000	
4546000 \$ \SKIP IF ADAPTER HARDWARE REDUEST \ 40D CUBU	
5557000 TEO TAHR	
*5*800U	
4549000 \$ VERROR UR END OF FILLU \ 404 C200	
4550000 RTN 7	
*551090	
4552000 \$ VENABLE WRITE HARDWARE PATH V 40F V60L	
4553000 EWP	
4334000	
4555000 \$ GTO (\$DATA=LOOP) 1 4L0 F504	
*55600	
4557000 SKTP HUF 1	

DELT MPDC-I			RTL/6000 FILE EDIT MICROPROGRAM SECTION	ADDRESS	08/01/77 DUC+#; IMAGE	12.005	PAGE:	119
INE #		SEDUENC	E: SSUPCS	(HEX)	(HEX)			
560000	HT-DAT	\ DMK UPPER TO ADP L(N AADD (NST (FD#)	X ¥	411	93E9			
561000 562000 5 563000		N DMK LOWER TO ADP LCN AADO CNST (DD#)	\ #	412	9369			
564000 565000 5 566000		\ ADDRESS DATA LENGTH SSPAI LOCIDATL)	۲ ۲	614	8(09			
567000 568000 \$ 569000 570000		X DATA COUNT TO ADAPTER XFB AAD1 BSP4 SRIA	1	414	756A			
\$71000 \$71000 \$72000 \$72000		\ SET FORMAT WRITE WITH NO DATA LCN AADZ CNST (85#)	N XFER N		9409			
575000 S		\ LOAD RETURN FROM WAIT-LOOP LRA (SFWT-RET)	Ì		£418			
577000 S 578000 579000 SF	WI-RET	GTO (SSTART-WALT) N SKIP IF NOT EUR	i X	-	F210 (062			
580000 581000 582000 5		TFZ TAG2 GTD (SEND-GAP)	t t	414	F410			
4583000 4584000 s 4585000		V SKIP IF END OF FILLU TF2 TNDR	1	41A	(06A			
4586000 4587000 \$ 4588000		GTO (STERM-STS) GTO (SFWT-1DT)	1		4 JFF			
4589000 \$ 4590000 4591000 \$F 4592000	NU-GAP	SKIP IF NDTSRU TFO INDR	, ,		COAA			
593000 594000 5		GTO (SEND-GAP)	•		F=10			
4596000 5 4597000 4598000 5k		GTO (STERM-NOR)	•	+11	1546			

126

	125			120					
MODEL: MPI Revision:			RTL/6000 FILE EDIT MICROPROGRAM SECTION	AUDRESS	08/01/77 DUC+#:	12.605	PAGE:	120	
LINE #		SEQUENCE	: SSUPCS	(HEX)	IMAGE (HEX)				
4600000 4601000 4602000 4603000	ANU SEAH	THE ENIRY POINT FOR LOADING THE AD CH ARGUMENT DURING A SEARCH AND RE ND WRITE CPERATION.							
4604000 4605000 4606000	SCH-SET	\ CLEAR STATUS + FIFO IN ADP XFB AADS SRIA	`;	+20	7468				
4607000 4608000 4609000	\$	N LOAD AMK UPPER LCN AADO CNST(FA#)	\ \$	421	93E2				
4610000 4611000 4612000	-	V LOAD AMK LOWER Lon Aado onst(aa#)	X i	+22	92A2				
4613000 4614000 4615000		\ ADDRESS CONF A UPPER SSPAI LOC(CNF1)	ì	+23					
4617000 4618000	SSCH-ARG	SEND FIRST BYTE OF SEARCH ARG	1		716A				
4619000 4620000 4621000	-	V INCREMENT SPA IMA	;		A100				
4622000 4623000 4624000		VSEND SECOND BYTE OF SEARCH ARG	1		716A				
4625000 4626000 4627000 4628000		VINCREMENT SPA	3		ALGO				
4629000 4630000	-	SEND THIRD BYTE OF SEARCH ARG	3		716A				
4631000 4632000 4633000		VINCREMENT SPA	;		A100				
4634000 4635000 4636000	-	SEND FOURTH BYTE OF SEARCH ARG	` ;	_	716A				
4637000 4638000 4639000		LOAD DATA COUNTER LCN AADI CNST(01#)	1		9401				
4640000 4641000 4642000		\ STORE SEARCH + WRITE CONSTANT LCN CNST(8C#)	1	420	8228				
4043000	SKIP HOF		;						

MODELI MPDC-REV3D REVISIONI 000+00		TL/6000 FILE EDIT ICROPROGRAM SECTION	ADDRESS	08/01/77 DOC.#: IMAGE	12.605	PAGE:	121
LINE #	SEQUENCE:	SSUPC5	(HEX)	(HEX)			
4544000 \$	ADDRESS DMA CONTROL	N N	42D	8689			
4645000	SSPAI LOC(DHAL)	1					
4545000							
4647000 \$	SKIP IF WRITE	<u>۱</u>	42E	C490			
4648000	TFO ASPM TAXD	1					
4649000							
4650000 \$	STORE SEARCH + READ COMMAND	۸.	42F	8222			
4651000	LCN CNST (BA#)	1					
4652000							
4653000 \$	SEND COMMAND TO ADAPTER	λ.	430	786A			
4654DN0	XFB AADZ SRIA	;					
4655000							
4655000 S	\ LOAD RETURN	Υ.	+31	E433			
4657000	LRA (\$SCH-RET)	i					
4658000							
4659000 \$	GTO (SSTART-WALT)	1	432	F210			
4650000							
4661000 SKIP HOF		•					

MODEL: MP AEVISION!			RTL/6000 FILE EDIT ICROPROGRAM SECTION	AUDRESS	08/01/77 DOC+#:	12.605	PAGE:	122
LINE # 4662000 4563000 4665000 4665000	AD APTER	SEQUENCE: HE RETURN POINT FROM THE WAIT-LOOP HAS SIGNALED FIRMWARE THAT A SEARCH HEFEN COMPLETED.	AFTER THE	(HEA)	IMAGE (HEX)			
	\$SCH-RET	∖SKIP 1F ADDRESS MARK ERROR TFO TAX6 AAD3	× •	433	0C9C			
4650000 4670000	5	GTO (\$SCH-RET1)	*	434	F43A			
4671000 4672000 4673000	2	NSKIP IF SECOND INDEX DETECTED TFD TAX7 AAD3	` ŧ	435	DC9E			
4674000 4675000	\$	GTO (\$SCH-SET)	;	436	F420			
4676000 4677000 4678000	\$	ADDRESS STS1 SSPAI LOC (STS1)	¥	437	8660			
4680000 4680000 4681000	\$	VSET UNSUCESSFUL SEARCH OCN ASPM CNST (81#)	;	438	8611			
4682000	5	GTO (STERM-CL1)	;	439	F58L			
	\$SCH-RET1	N SKIP IF EOF+ID TFZ FNDR	Ť	43A	C06A			
4687000 4688000	5	GTO (STERM-STS)	;	43B	F570			
4699000 4690000 4691000	\$	NGET STATUS (SEARCH CUMPARISON RE: XFA AAD3	5ULT} \ \$	43(7C3E			
4692000 5693000 4694000	\$	\SKIP TE NO ERROR (HIT ON SEARCH) TEO TEOZ	\ 1	43D	086			
4695000	1	GTO (\$5CH+ERR)	;	43E	F44E			
4697000 4698000 4699000	\$	NRESET INDEX MARK COUNTER ZER AAD4 SRIA	ì	43F	704F			

		4,159,552					
	127	, ,		128			
MODEL: MPDC_REV30 REVISION: 000+00 LINE 4		RTL/6000 FILE EDIT MICKOPROGRAM SECTION SEQUENCE: \$\$UPCS	AUURESS (HEX)	08/01/77 DUC+#: Image (HEx)	12.005	PAGE :	122
		-continued					
4700000 s 4701000	ADDRESS DMA CONTROL SSPAI LOC(DMA1)	1	440	8689			
4702000							
4703000 s 4704000 4705000	\ SKIP IF WRITE TFO ASPM TAXO	1	441	C490			
4706000 \$ 4707000	GTO (SREAD-DATA)	1	442	F543			
4708000 SKIP HOF		1					

DEL: MPDC- VISIONI OD			O FILE EDIT GRAM SECTION		08/01/77 DUC+#:	12.605	PAGE :	123
INE #		SEQUENCE: SSUPCS		ADDRESS (HEX)	IMAGE (HEX)			
709000 \$	N LOAD DMK UPPER	32902HCE: \$30FC3	١.		9369			
710000	LCN AADO CNST (FD#)			112				
711000			1					
712000 5	I LOAD DMK LOWER		1	444	9369			
713000	LCN AADD CNST(DD#)		1					
714000								
715000 5	ADDRESS DATA LEN	а т н	`	445	8009			
716000	SSPAI LOC(DATL)		i					
717000								
718000 \$	\ SEND DATA LENGTH	TO ADAPTER	1	446	756A			
719000	XFB AAD1 BSPM SRIA		1					
720000								
721000 \$	ADDRESS TASK		١.	447	8COA			
722000	SSPAI LDC(TSK1)		1					
723000								
124000 \$	\ SET WRITE		N .	448	8308			
725000	LCN CNST (C4#)		1					
726000								
727000 \$	V SKIP IF NOT DIAG	NOSTIC	N .	449	C45C			
728000	TEZ ASPM TAX6		ŧ					
729000	. Frt origination							
730000 \$	SET DIAGNOSTIC		N N	44A	8358			
731000	DCN CNST (D4#)		;					
732000	V SEND WRITE CMD T	400	1	(6 D	786A			
734000	XFB AAD2 SRIA	J ROP	;	440	100A			
735000	ALB CADE SKIR		•					
736000 5	V LOAD RETURN FROM	DMA-CHK	١.	64F	E453			
737000	LRA (SSCH-UPD)		i		2433			
738000	2		•					
739000 5	GTO (SWRT-MODE)		1	44D	F409			
740000			-					
741000 \$5	SCH-ERR \ SAVE READ ERROR		`	44E	8024			
742000	ACN CNST(OB#)		:					
743000								
144000 \$	ADDRESS STATUS U	PPER	N .	44F	8C60			
745000	SSPAI LOC(STS1)		1					
746000								
747.000 \$	SAVE PREVIOUSLY	READ ERADE BIT	N	450	643A			
748000	ORR ASPM		1					
749000								
750000 5	V RESTORE STS1		<u>}</u>	451	A200			
751000	MwT		1					
752000					C . 10			
753000 \$	GTU (\$5CH-SET)		1	452	F420			
754000			•					

MODEL: MPI REVISION:			76000 FILE EDIT OPROGRAM SECTION	AUDRESS	08/01/77 DOC-#:	12.605	PAGE :	124
LINE #		SEQUENCE: \$5	UPCS	(HEX)	(HEX)			
4756000 4757000 4758000 4759000 4760000	1. INCF 2. CHE(IN OF FIRMWARE IS USED FOR THE FOLLOWI REMENTING THE SECTOR NUMBER. KING IF AUTOMATIC TRACK OR CYLINDER JING IS REDUIRED.	NG-					
4763000	SSCH-UPD	ADDRESS SECTOR NUMBER SSPAI LOC(CNF4)	X ŧ	453	8(43			
4764000 4765000 4766000 4767000	\$	N INCREMENT SECTOR INC ASPM	ì	•54	6400			
4768000 4769000 4770000		N RESTORE NEW SECTOR MWT	ì	455	A20U			
4771000 4772000 4773000		SET SPA FOR DATA LENGTH	;		8009			
4774000 4775000 4776000 4777000		\SET CONSTANT FOR 24 SECTORS LCN CNST (18∰) \SKIP IF DATA LENGTH = 256	;		8060			
4778000 4779000 4780000	-	TEZ TAX3 ASPM	ţ		8028			
4781000 4782000 4783000	-	LCN CNST (OC#)	ţ		8643			
4784000 4785000 4786000		SSPAL LOC (CNF4) ACHECK IF LINKING REQUIRED	Ŧ		641A			
4787000 4788000 4789000	\$	XOR ASPM BACU \5kip if no linking required	;	45((046			
4790000 4791000 4792000	5	TFZ TEGZ GTD (SMAX-SECTOR)	;	450	F+82			
4793000 4794000 4795000 4795000	SSCH-LHA	\SET RETURN FOR LOADING SEARCH ARGUN LRA (\$SCH-SET)	IENT \	45E	£420			
4797000 4798000 4799000	\$SCH=TRGZ	N SKIP IF RANGE NOT ZERJ TFZ TRGZ	ĩ	45F	C062			
4800000 4801000	\$ 5k1P HOF	GTO (STERM-NOR)	r T	460	F59C			

-	~	~
	- 44	
		U.

		4,159	,					
		129			130			
ELI MPE ISIONI	DC-REV30 000.00	RTL/6000 F MICROPROGRA			08/01/77 DOC+#1	12.605	PAGE:	125
NE 03000 04000 05000 06000 07000	AFTER TH DURING W SINCE TH	SEQUENCE: \$\$UPCS T OF FIRMWARE IS USED FOR UPDATING SCRATCH PA IS SUCESSFULL READING OR WAITTING OF A DATA FI RITE OPERATIONS A FIRMWARE UPDATE TARES PLACE E MARDWARE WILL BE 16 WORDS INTO THE NEAT FIEL D OPERATION).	ELD.	ADDRESS (HEX)	IMAGE (HEX)			
08000 09000 10000	DURING A	READ OPERATION, THE BUS INTERFACE COUNTERS AN INCE THEY ARE EXACT.	RE N					
	SDEC-RHG	NSET SPA FOR DMA BYTE SSPAI LOC (DMAI)	ì	461	8689			
15000	\$	\5KIP IF WRITE OPERATION TFD TAXO ASPM	r F	462	C490			
16000 17000 18000 19000	5	\GD TO STORE BUS INTERFACE COUNTERS GTO (\$STORE+CTRS)	ì	463	F538			
	\$	\ ADDRESS DATA LENGTH SSPAI LOC(DATL)	}	464	8009			
	\$	\ SKIP IF DATA LENGTH ≈ 256 TFZ ASPM TAXO	X ¥	465	C+50			
26000 27000	s	GTO (\$DATL-576)	;	466	F473			
29000 30000	5	V LOAD CONSTANT FOR 256 LCN CNST(01#)	1	467	8001			
32000 33000	5	\ ADDRESS RANGE UPPER SSPAI LOC(RNGI)	X #	468	8C26			
35000 36000	s	\ SUBTRACT 256 BYTES FROM COUNT SUB ASPM	ì	469	6418			
37000 38000 39000	5	\ RESTORE RANGE UPPER MNT	ì	46A	A200			
40000 41000 42000	\$	\ LDAD CONSTANT FOR 256 LCN CNST(01#)	i.	46B	8001			
	5	\ ADDRESS MEMORY ADDRESS MIDDLE SSPAI LOC(ADRL)	ì	46(8C20			
6000 7000 8000	5	ADD 256 TO MEMORY ADDRESS ADD ASPM	1	46U	6424			
9000 10000	5	\ RESTORE ADRI MWT	ì	46E	A200			
2000 5	5K1P HOF		ł					
								1 :
	000-00	RTL/6000 F			U8741277	12.605	PAGE :	12
510N1	000.00	MICROPROGRA		AUURESS	UUC+#: IMAGE	12.605	PAGE :	12
510N1 3000 4000				AUURESS (HEX) 46F	UUC+#:	12.005	PAGE :	12
510N3 3000 4000 5000 6000 6000	000.00	HICROPROGRA SEQUENCE: \$\$UPCS ADDRESS MODULE	A SECTION	(HEX)	DUC+#: IMAGE (HEX)	12.005	₽ å GE:	12
510N1 3000 4000 5000 5000 5000 5000 5000 5000	SINC-MJD	MICHOPROGRA SEQUENCE: \$\$UPC5 SSPAI LOC(MODI) V UPDATE MODULE	A SECTION	(HEX) 46F	DUC+*: [MAGE (MEX) BC23 6480	12.005	PAGE :	12
510N ² 3000 4000 500	000.00 SINC-MJD S S	MICROPROGRA SEQUENCE: \$\$UPCS SSPAI LOC(MODI) V UPDATE MODULE INC ASPM COTI V RESTORE MODI MWT RTN	A SECTION 1 1 1 1	(HEX) *6F *70 *71	DUC+*: [MAGE (MEX) BC23 6480	12.005	PAGE :	12
510N1 E # 3000 5000 5000 5000 9000 9000 9000 9000 2000 3000 5000 5000 5000	000.00 SINC-MJD S	MICROPROGRA SEQUENCE: \$\$UPCS SSPAI LOC(MODI) V UPDATE MODULE INC ASPM COTI V RESTORE MODI MWT	й SECTION \ + + + + + + + + + + + + + + + + + +	(HEX) *6F *70 *71	UUC IMAUE (HEX) BC23 6480 A200	12.005	PAGE :	12
SIGN: E # 3000 4000 5000 7000 8000 7000 2000 3000 5000 5000 5000 6000 800 8000 8	000.00 SINC-MJD S S	MICROPROGRA SEQUENCE: \$\$UPCS SSPAL LOC(MODI) V UPDATE MODULE INC ASPM COTI V RESTORE MODI MWT RTN V LOAD CONSTANT FOR 64	й SECTION 	(HEX) *6F *70 *71 *72 *73	UUC: IMAUE (HEX) BC23 6480 A200 C200	12.005	PA(jE :	12
510N3 E # 3000 4000 5000 5000 5000 2000 2000 3000 5000 5	000.00 \$1NC-MJD \$ \$ \$ \$DA1L->76 \$	MICROPROGRA SEQUENCE: \$\$UPCS SSPAI LOC(MODI) V UPDATE MODULE INC ASPM COTI V RESTORE MODI MWT RIN V LOAD CONSTANT FOR 64 LCN CNST(40#) V ADDRESS HANGE LOWER	N SECTION	(HEX) *6F *70 471 472 473 474	DUC: IMAUL (MEX) BC23 6480 A200 C200 B100	12.605	PAGE :	12
5 10N3 E # 3000 5000 5000 5000 5000 2000 5000	000.00 \$1NC-MJD \$ \$ \$ \$DA1L->76 \$	MICROPROGRA SEQUENCE: \$\$UPCS SSPAI LOC(MODI) V UPDATE MODULE INC ASPM COTI V RESTORE MODI MWT RTN V LOAD CONSTANT FOR 64 LCN CNST(40#) V ADDRESS RANGE LOWER SSPAI LOC(RNG2) V SUBTRACT 64 FROM RANGE	M SECTION I I I I I I I I I I I I I	(HEX) 46F 470 471 472 473 474 475	UUC++: IMAUE IMAUE VE23 6+80 A200 C200 8100 8C29	12.605	₽ ∧ _G £;	12
510N3 E # 3000 4000 4000 5000 8000 1000 2000 3000 4000 50000 5000 5000 5000 5000 5000 5000 5000 5000	000.00 \$ NC - MJD \$ \$ \$ \$DA 1L -> 76 \$ \$	MICROPROGRA SEQUENCE: \$\$UPCS \ ADDRESS MODULE SSPAI LOC(MODI) \ UPDATE MODULE INC ASPM COTI \ RESTORE MODI MWT RTN \ LOAD CONSTANT FOH 64 LCN CNST(40#) \ ADDRESS RANGE LOWER SSPAI LOC(RNG2) \ SUBTRACT 64 FROM RANGE SUB ASPM \ RESTORE RNG2 AND ADURESS RANGE UPPEN	M SECTION	(HEX) 46F 470 471 472 473 474 475	UUC: IMAUE (HEX) BC23 6480 A200 C200 B100 BC24 6418	12.605	PAGE:	12
510N: E # 3000 5000 5000 7000 8000 7000 8000 2000 3000 2000 3000 1000 2000 3000 1000	000.00 SINC-HUD S S SDAIL-576 S S	MICROPROGRA SEQUENCE: \$\$UPCS SSPAI LOC(MODI) V UPDATE MODULE INC ASPM COTI V RESTORE MODI MWT RTN V LOAD CONSTANT FOR 64 LCN CNST(40#) V ADDRESS RANGE LOWER SSPAI LOC(RNG2) V SUBTRACT 64 FROM RANGE SUB ASPM V RESTORE RNG2 AND ADDRESS RANGE UPPER MDA V LOAD CONSTANT FOR 512	M SECTION	(HEX) +6F +70 +71 +72 +73 +74 +75 +76	DOC++: IMAUE (HEX) BC23 6+80 C200 B100 BC24 6418 A208	12.605	PAGE:	12
510N: 2000 3000 3000 3000 3000 7000 8000 7000 2000 3000 4000 3000 4000 3000 4000 3000 4000 3000 4000 3000 4000 3000 3000 3000 2000 3000	000.00 \$ NC-HUD \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	MICROPROGRA SEQUENCE: \$\$UPCS \ ADDRESS MODULE SSPAI LOC(MODI) \ UPDATE MODULE INC ASPM COTI \ RESTORE MODI MWT RTN \ LOAD CONSTANT FOR 64 LCN CNST(40#) \ ADDRESS RANGE LOWER SSPAI LOC(RNG2) \ SUBTRACT 64 FROM RANGE SUB ASPM \ RESTORE RNG2 AND ADDRESS RANGE UPPER WDA \ LOAD CONSTANT FOR 512 LCN CNST(02#) \ SUBTRACT 512 FROM RNG USING PREVIOUS CARR.	M SECTION	(HEX) 46F 470 471 472 473 474 475 476 477	UUC: (HEX) (HEX) UC23 6480 A200 C200 8100 8C24 6418 A208 B002	12.605	PAGE :	12
510N1 5000 4000 5000 6000 7000 8000 9000 9000 1000 5000 6000 5000 6000 7000 8000 1000	000.00 \$ NC - MJD \$ \$ \$ \$DA 1L -> 76 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	MICROPROGRA SEQUENCE: \$\$UPCS SSPAI LOC(MODI) V UPDATE MODULE INC ASPM COTI V RESTORE MODI MWT RTN V LOAD CONSTANT FOR 64 LCN CNST(40#) V ADDRESS RANGE LOWER SSPAI LOCIRNG2) V SUBTRACT 64 FROM RANGE SUB ASPM V RESTORE RNG2 AND ADURESS RANGE UPPER MDA V LOAD CONSTANT FOR 512 LCM CNST(02#) V SUBTRACT 512 FROM RNG USING PREVIOUS CARR: SUB ASPM COTI V RESTORE RNG1		(HEX) 46F 470 471 472 473 474 475 476 477 478 479	DOC: IMAUE (HEX) BC23 64B0 A200 C200 BLU0 BC24 641B A208 B002 649B	12.605	PAGE :	12
510N1 E 4 3000 4000 5000 7000 7000 3000 3000 3000 3000 3	000.00 s1NC-HUD s s sDA1L->76 s s s s s	ALCROPROGRA SEQUENCE: \$\$UPCS SSPAI LOC(MODI) V UPDATE MODULE INC ASPM COTI V RESTORE MODI MWT RTN V LOAD CONSTANT FOR 64 LCN CNST(40#) V ADDRESS HANGE LOWER SSPAI LOC(RNG2) V SUBTRACT 64 FROM RANGE SUB ASPM V RESTORE RNG2 AND ADDRESS RANGE UPPER MDA V LOAD CONSTANT FOR 512 LCN CNST(02#) V SUBTRACT 512 FROM RNG USING PREVIOUS CARR: SUB ASPM COTI V RESTORE RNG1 MWT V LOAD CONSTANT FOR 64	M SECTION	(HEX) 46F 470 471 472 473 474 475 476 477 478 479	DUC: IMAUE IMAUE VEZ3 6+80 A200 C200 8100 8C2Y 6418 A208 8002 6498 A200	12.605	PAGE :	12
510N: 5000 4000 5000 5000 5000 5000 7000 9000 5000	000.00 \$ 1 NC - HUD \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	AICROPROGRA SEQUENCE: \$\$UPCS SSPAI LOC(MODI) V UPDATE MODULE INC ASPM COTI V RESTORE MODI MWT RIN V LOAD CONSTANT FOR 64 LCN CNST(400) V ADDRESS RANGE LOWER SSPAI LOC(RNG2) V SUBTRACT 64 FROM RANGE SUB ASPM V RESTORE RNG2 AND ADURESS RANGE UPPER MDA V LOAD CONSTANT FOR 512 LCM CNST(020) V SUBTRACT 512 FROM RNG USING PREVIOUS CARR: SUB ASPM COTI V RESTORE RNG1 MWT V LOAD CONSTANT FOR 64 LCN CNST(400)	M SECTION	(HEX) 46F 470 471 472 473 474 475 476 477 478 479	DUC: IMAUE IMAUE A200 C200 B1D0 BC2Y 641B A208 B002 B498 A200 B1D0 B26/01/77	12.605		
SINN: E ≠ 3000 4000 5000 6000 7000 9000 7000 9000 5000 5000 5000 5000 5000 5000 1000 5000 5000 1000 5000 1000 5000 5000 1000 5000	000.00 SINC-HUD S S S S S S S S S S S S S	ALCROPROGRA SEQUENCE: \$\$UPCS ADDRESS MODULE SSPAI LOC(MODI) A UPDATE MODULE INC ASPM COTI A RESTORE MODI MWT RIN A LOAD CONSTANT FOR 64 LCN CNST(400) A ADDRESS RANGE LOWER SSPAI LOC(RNG2) A SUB TARCT 512 A SUB ASPM A ADDRESS RANGE LOWER SSPAI LOC(RNG2) A SUB TARCT 512 A SUB ASPM A ADDRESS RANGE RNG2 A ADDRESS RANGE LOWER SSPAI LOC(RNG2) A SUB TARCT 512 A SUB ASPM A ADDRESS RANGE RNG2 A ADDRES	M SECTION	(HEX) 46F 470 471 472 473 474 . 475 476 477 478 479 478 479 47A	UUC: IMAUE (MEX) BC23 6480 A200 C200 BLU0 C200 BLU0 BC24 6418 A208 BU0 BLU0 BC2 BC24 BLU0 BLU0 BC2 BLU0 BLU0 BLU0 BLU0 BLU0 BLU0 BLU0 BLU0			
SINN: E # 3000 4000 5000 5000 5000 4000 5000 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 1000	000.00 \$ NC-HUD \$ \$ \$ \$DAIL-576 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ALCROPROGRA SEQUENCE: \$\$UPCS ADDRESS MODULE SSPAI LOC(MODI) UPDATE MODULE INC ASPM COTI RESTORE MODI LOAD CONSTANT FOR 64 LCN CNST(40#) ADDRESS RANGE LOWER SSPAI LOC(RNG2) ADDRESS REMORY ADDRESS LOWER SSPAI LOC(RNG2) ADDRESS MEMORY ADDRESS LOWER SSPAI LOC(RDR2) ADDRESS MEMORY ADDRESS LOWER SSPAI LOC(RDR2) ADDRESS MEMORY ADDRESS	A SECTION	(HEX) 40F 471 472 473 474 . 475 476 477 478 479 478 478	DUC: IMAGE IMAGE C23 6+80 A200 C200 8100 8C24 A208 B100 08/01/77 DUC: IMAGE BC21			
S10N1 E 4 3000 4000 5000 5000 6000 7000 6000 7000 6000 7000 6000 7000 6000 7000 6000 7000 6000 7000 7000 1000 7000 1000 7000 100 100	000.00 \$1NC-HUD \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	AICROPROGRA SEQUENCE: \$\$UPCS ADDRESS MODULE SSPAI LOC(MODI) UPDATE MODULE INC ASPM COTI RESTORE MODI AUTORNSTANT FOR 64 LCN CNST(400) ADDRESS RANGE LOWER SSPAI LOC(RNG2) ADDRESS RANGE LOWER SSPAI LOC(RNG2) ADDRESS RANGE LOWER SUB ASPM A RESTORE RNG2 AND ADDRESS ANGE UPPEN WDA LOAD CONSTANT FOR 512 LCN CNST(020) ADDRESS REMORY ADDRESS LOWER SEQUENCE: \$SUPCS ADD ASPM ADDRESS MEMORY ADDRESS ADRI ARESTORE ADR2 AND ADDRESS ADRI	Y SECTION	(HEX) +6F +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +78 +78 +76	DUC: IMAGE IMAGE 223 6480 A200 C200 8100 8C29 6418 A208 8002 6418 A208 8002 6418 A208 8002 6418 A208 8100 08/01/77 DUC: IMAGE C21 6424			
SION: SI	000.00 \$ 1 NC - HUD \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	AICROPROGRA SEQUENCE: \$\$UPCS SSPAI LOC(MODI) V UPDATE MODULE INC ASPM COTI V RESTORE MODI MWT RTN V LOAD CONSTANT FOH 64 LCN CNST(400) V ADDRESS RANGE LOWER SSPAI LOC(RNG2) V SUBTRACT 64 FROM RANGE SUB ASPM V RESTORE RNG2 AND ADDRESS RANGE UPPEN WDA V LOAD CONSTANT FOR 512 LCN CNST(020) V SUBTRACT 512 FROM RNG USING PREVIOUS CARR: SUB ASPM V RESTORE RNG1 MWT V LOAD CONSTANT FOR 64 LCN CNST(400) MTL/6000 FI MICROPROGRAM SEQUENCE: \$SUPCS V ADDRESS MEMORY ADDRESS LOWER SSPAI LOC(ADDRESS ADD ASPM V RESTORE ADR2 AND ADDRESS ADRI WDA	A SECTION	(HEX) 46F 470 471 472 473 474 . 475 476 477 478 479 47A AUDRESS (HEX) 478 472 470	DUC: IMAUE (MEX) BC23 6480 A200 C200 B100 8C24 6418 A208 B002 6498 A200 B100 08/01/77 DUC: (MAX B221 6424 A208			
SIGN: SIG	000.00 \$ 1 NC - NJD \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ALCROPROGRA SEQUENCE: \$\$UPCS SSPAI LOC(MODI) V UPDATE MODULE INC ASPM COTI V RESTORE MODI MWT RTN V LOAD CONSTANT FOR 64 LCN CNST(400) V ADDRESS RANGE LOWER SSPAI LOC(RNG2) V SUBTRACT 64 FROM RANGE SUB ASPM V RESTORE RNG2 AND ADURESS RANGE UPPER MDA V LOAD CONSTANT FOR 512 LCM CNST(020) RTL/6000 FI MICROPROGRAM SEQUENCE: \$\$UPCS SSPAI LOC(ADR2) V ADD 64 TO ADDRESS ADD ASPM V RESTORE ADR2 AND ADDRESS ADRI MDA V ADD CONSTANT FOR 512 LCM CNST(020) V ADD 64 TO ADDRESS ADD ASPM V RESTORE ADR2 AND ADDRESS ADRI MDA	Y SECTION	(HEX) 40F 470 471 472 473 474 475 476 477 478 479 478 479 478 479 478 479 478 470 471 475 475 475 475 475 475 475 475	DUC: IMAUE IMAUE 223 6+80 A200 C200 8100 8C29 6418 A208 A200 8100 8100 08/01/77 DUC: IMAUE (HEX) 8C21 6424 A208 8002			
SINN: E	000.00 \$ NC-HUD \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	AICROPROGRA SEQUENCE: \$SUPCS SSPAI LOC(MODI) V UPDATE MODULE INC ASPM COTI V RESTORE MODI MWT RTN V LOAD CONSTANT FOH 64 LCN CNST(400) V ADDRESS HANGE LOWER SSPAI LOC(RNG2) V SUBTRACT 64 FROM RANGE SUB ASPM V RESTORE RNG2 AND ADDRESS RANGE UPPEN WDA V LOAD CONSTANT FOR 512 LCN CNST(020) RTL/6000 FI MICROPROGRAM SEQUENCE: SSUPCS V ADDRESS MEMORY ADDRESS LOWER SSPAI LOC(ADR2) V ADD 64 TO ADDRESS ADD ASPM V RESTORE ADR2 AND ADDRESS ADRI #DA V LOAD CONSTANT FOR 512 LCN CNST(020) V ADD 612 TD ADDRESS USING PREVIOUS CARRY ADD ASPM COTI	M SECTION	(HEX) 46F 470 471 472 473 474 . 475 476 477 478 479 478 479 47A AUDRESS (HEX) 478 470 472 470 472 475	DUC: IMAUE (MEX) BC23 64B0 A200 C200 BLU0 C200 BLU0 BC24 641B A208 B002 649B A200 BL00 C549B A200 BL00 C549B A200 BL00 C549B A200 BL00 C549B A200 BL00 C549B A200 BL00 C549B A200 BL00 C549B A200 BL00 C549B A200 BL00 C549B A200 BL00 C549B A200 BL00 C549B A200 BL00 C549B A200 BL00 C549B A200 C549B A200 C549B A200 BL00 C549B A200 C549B A200 C549B C549			
SIGN: SIGN:	000.00 \$1NC-HUD \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ALCROPROGRA SEQUENCE: \$SUPCS ADDRESS MODULE SSPAI LOC(MODI) UPDATE MODULE INC ASPM COTI RESTORE MODI AUTORNAL ADDRESS HANGE LOWER SSPAI LOCINSTANT FOH 64 LCN CNST(400) ADDRESS HANGE LOWER SSPAI LOCING2) ADDRESS HANGE LOWER SSPAI LOCINSTANT FOR 512 LCN CNST(020) RTL/6000 FI MICROPROGRAM SEQUENCE: SSUPCS ADDRESS MEMORY ADDRESS LOWER SSPAI LOCIADR2) ADDRESS MEMORY ADDRESS ADRI #DA AESTORE ADR2 AND ADDRESS ADRI #DA ADD 64 TO ADDRESS USING PREVIOUS CARHY	M SECTION	(HEX) 46F 470 471 472 473 474 . 475 476 477 478 479 478 479 47A AUDRESS (HEX) 478 470 472 470 472 475	DUC: IMAUE IMAUE 223 6+80 A200 C200 8100 8C29 6418 A208 A200 8100 8100 08/01/77 DUC: IMAUE (HEX) 8C21 6424 A208 8002			

RTL/6000 FILE EDIT

		131				132			
MODEL: MP REVISIONI			RTL/6000 F10 MICROPRUGRAM			08/01/77 DOC.#:	12.603	PAGE:	128
					AUDRESS	IMAGE			
LINE #		SEQUE	INCE: SSUPCS		(HEX)	(HEX)			
4910000 4911000		SECTOR ROUTINE IS USED TO DETER							
4912000		DER SWITCH IS NECESSARY AFTER L							
4913000		WHEN SWITCHING IS REQUIRED.							
4914000		ATE THE CONFIGURATION WORDS IN							
4915000	TO THE N	EW TRACK AND CYLINDER.		۸					
6916000									
4917000	SMAX-SECTOR	SKIP IF NOT END OF RANGE		<u>}</u>	482	C062			
4918000		TFZ TRGZ		1					
4919000 4920000	\$	GTD (STERM-NOR)			483	F59C			
4921000	•	are (areas to a)		•					
4922000	5	N ZERO SECTOR NUMBER		Ν.	484	600E			
4923000		ZER		4					
4924000									
4925000	5	A RESTORE SECTOR AND ADDRESS	TRACK (CNF3)	<u>``</u>	485	A208			
4926000		WDA		1					
4927000 4928000		V LOAD CONSTANT TO UPDATE TR	rr	\		8001			
4929000	5	LCN CNST(01#)	~~~	1	400	0001			
4930000				•					
4931000	5	V TOGGLE TRACK BIT		Ν.	487	641A			
4932000	•	XOR ASPM		6					
4933000									
4934000	\$	A RESTORE TRACK AND ADDRESS	CYLINDER (CNF2)	N N	488	AZOB			
4935000		WDA		ŧ.					
4936000	_	. FUID IF TORCH - D		`	489	C05E			
4937000 4938000	5	\ SKIP IF TRACK ∓ D TFZ AACU TAX7		ì	407	CODE			
4939000		IT BALL THAT		•					
4940000	5	GTO (SUPD-UNSEL)		:	48A	F49A			
4941000	-								
4942000	5	V INCREMENT CYLINDER		١	488	6400			
4943000		INC ASPM		1					
4944000					495	A208			
4945000 4946000	5	V RESTORE CYLINDER AND ADDRE	JJ MJD	ν.	700	4140			
4947000		WDA		ì					
4946000									
4949000	5	INCREMENT M5B BASED ON PRE	VIOUS CARRY	<u>۱</u>	460	6480			
4950000		INC ASPH COTI		4					
4951000						1000			
4952000	5	N RESTORE MSB OF CYLINDER		ì	48E	A200			
4953000 4954000		Mari		•					
	SKIP HOF			ĩ					
MODEL MP			RTL/6000 FIL MICROPROGRAM			08/01/77 DUC•#:	12.605	PAGE :	129
REVISION			and the second		ADDRESS	IMAGE			
LINE #		SEQUE	ENCE: \$\$UPCS		(HEX)	(HEX)			
4956000	5	ADDRESS DMA BYTE		N	48F	8689			
4957000		SSPAI LOC(DMA1)		ŧ					
4958000		V SET IMPLIED SEEK BIT		`	40A	8490			
4959000 4960000	s	OCN ASPM CNST (20#)		i	470	•··•			

47700.00			•		•	
4957000		SSPAI LOC(DMAI)	i			
4958000						
4959000		V SET IMPLIED SEEK BIT	1	490	8490	
	3	OCN ASPM CNST (20#)			• • • •	
4960080		ULA ROPA LASI (2007				
4961000						
4962000	5	\ RESET FIRST PASS BIT	1	491	82EF	
4963000		ACN CNST(BF#)	t t			
4964000						
4965000		N RESTORE DMA BYTE	۰ ۱	492	A200	
	3					
4966000		MWT	•			
4967000						
4968000	5	ADDRESS UNIT SELECT	<u>۱</u>	493	BCEB	
4969000		SSPAT LOC (UNSEL)	:			
4970000						
4971000		N RESET TRACK BIT	1	494	87E7	
	3		ì	474	0.E.	
4972000		ACN ASPM CNST(FB#)	•			
4973000						
4974000	5	N RESTORE UNSEL	<u>۱</u>	495	A200	
4975000		MWT	:			
4976000						
4977000		NRESET MOTHER BOARD FIFD	1	496	0088	
			i			
4978000		RDA	•			
4979000						
4980000	5	VCLEAR STATUS AND FIFO IN ADAPTER	<u>۱</u>	497	744F	
4981000		ZER AADS SRIA	:			
4982000						
4983000		LRA (SSEEK-IMPL)	;	498	E3B0	
	3	THE CARECK-146C1	•	.,,	2000	
4984000		-Te seets pass		400	F461	
4985000	5	GTO (SDEC-RNG)	4	499	F 481	
4986000						
4987000	SUPD-UNSEL	ADDRESS UNIT SELECT	١.	49A	BCEB	
4988000		SSPAI LOC (UNSEL)	:			
4989000						
4990000		\ SET TRACK ≠ 1	<u>۱</u>	498	8418	
	3		ì			
4991000		OCN ASPM CNST(04#)	•			
4992000						
4993000	\$	N RESTORE UNSEL	<u>۱</u>	490	A200	
4994000		Min T	4			
4995000						
4996000		V SEND NEW TRACK TO ADAPTER	>	490	7C6A	
4997000	-	XFB AAD3 SRIA				
		VID CONS SOLO	•			
4998000			-		F45E	
4999000	5	GTO (\$5CH-LRA)	;	4 Y E	F 4 3 C	
5000000						
5001000						
	SKIP HOF		;			

MUDEL: MPD REVISION:			68/01/77 00C.#:	12.605	PAGE:	130
		AUUNESS	IMAGE			
LINE 4	SEQUENCE: \$\$UPC5	[HEA]	(HEX)			
5003000	1 THIS IS THE BEGINNING OF THE WRAPAROUND FIRMWARE. THE					
5004000	ROUTINES PERFORM THE FOLLOWING FUNCTIONS-					
5005000	L. LUADS UP TO 16 BYTES INTO EITHER THE MOTHER BOARD					
5006000	OR ADAPTER FIFO IN ORDER TO VERIFY THE OUTPUT					
5007000	DATA PATH.					
5008000	2. READS THE DATA PREVIOUSLY LOADED FROM THE MOTHER					
5009000	BOARD OR ADAPTER FIFO IN ORDER TO VERIFY THE INPUT					
5010000	DATA PATH.	1				
5011000						

MUDEL: MP REVISION:			NTL/BUUD FILE EDIT Mickoprugham Sectiun	AUURESS	UB/U1/77 DOC+#: IMAGE	12.605	PAGE:	130	
LINE #		SEQUEN	CE: SSUPCS	(HEA)	(HEX)				
			-continued						
5012000 5013000 5014000	SWRAP	\ SKIP IF ADAPTER WRAPARDUND TFZ ASPM TAX7	ì	49F	(45t				
5015000 5016000 5017000	5	\ GO TO MOTHER BRD WRAP GTD (\$WRAP-MOTH)	Y I	4A0	F4BL				
5018000 5019000	5	\ ADDRESS DMA BYTE S5PAI LOCIDMAL)	ì	· +A1	8683				
5020000 5021000 5022000	s	\ SKIP IF WRITE MODE TFO ASPM TAXO	1		C490				
5023000 5024000 5025000		GTO (SWRAP-READ)	1	443	F481				
5026000 5027000 5028000		5 THE ADAPTER WRITE WRAPAROJND ROU EMORY UP TO 16 DATA BYTES INTO THE							
5029000 5030000 5031000	SWRAP-#RT	N CLEAR ADP STATUS AND FIFD XFB AAD5 SRIA	1	484	7488				
5032000 5033000 5034000	5	\ SET DATA COUNT = 16 LCN AAD1 CNST(04#)	1	4 #5	9408				
5035000 5036000 5037000	s	N LOAD ADP CHD LCN AAD2 CNST (C4#)	ì	486	9808				
5038000 5039000 5040000	\$	\ SET BYTE MODE WRITE LCN CNST(6A#)	ì	4A7	81A2				
5041000 5042000 5043000	5	V SKIP IF BYTE MODE TFO TBYT	ì	488	C088				
5045000 5045000 5045000	5	\ SET WRITE MODE LCN CNST(62#)	ž	449	8182				
5048000 5048000 5049000	\$	VENABLE WRITE HARDWARE PATH Ewp	ţ	444	0601				
5050000	SKIP HOF		\$						

MODEL: MPI REVISION:			L/6000 FILE EDIT Roprogram Section		08/01/77 DOC.#:	12.605	PAGE :	131
		SEQUENCE: S	118C5	ADDRES5 (HEX)	IMAGE (HEX)			
L]NE # ⇒051000		LOAD RETURN	1		E591			
5052000		LRA (STERM+CL3)	i					
5053000			•					
5054000	5	LOAD RETURN FROM DMA-CHK	`	4AC	E590			
5055000	-	LRA (STERM-NORL)	1					
5056000								
5057000	5	SET CYCLE	N	4AU	4020			
5058000		CYC	;					
5059000								
	SWRAP-wA1T	SKIP IF NO ADAPTER BUFFER REQUEST	N N	441	CORC			
5061000 5062000		TFO TNBR	1					
5063000		GTD (SWRAP-WAIT)	1	6.8.F	F4AL			
5064000	,	010 (386AP-8811)	•		1.446			
5065000		GTO (SDMA-CHK)	1	480	F574			
5056000	•	Sto (John-Cite)	•					
5067000	\ THIS IS T	HE ADAPTER READ WRAPAROUND ROUTINE.	IT TRANSFERS					
5068000		FROM THE ADAPTER FIFD THE DATA BYTE						
5069000	PREVIOUSL	Y LOADED BY THE ADAPTER WRITE WRAPAR	OUND					
5070000	COMMAND+		١.					
5071000					0.10			
	SWRAP-HEAD	V SET DATA COUNT # 16	N .	481	9420			
5073000		LCN AAD1 CNST(08#)	1					
5074000 5075000		V LOAD ADP CHD	``	482	9802			
5076000	•	LCN AADZ CNST (CZ#)	ì	704	,001			
5077000			•					
5078000		SET BUSS = READ BYTE MODE	λ.	483	8128			
5079000	-	LCN CNST (4C#)	1					
5080000								
5081000	5	\ SKIP IF BYTE MODE	١	484	совя			
5082000		TFO TBYT	ł					
5083000								
3084000	\$	<pre>\ SET BUS = READ MODE LCN CNST(44#)</pre>	V I	482	8108			
5085000 5086000		L(N (NSI (44#)	•					
5085000		VENABLE READ HARDWARE PATH	\ \	480	0600			
5088000	•	ERP						
5089000		2.07	•					
5090000	5	V LOAD RETURN FROM DMA-CHK	N	487	E596			
\$091000	-	LAA (STERM-NOR)	ŧ					
5092000								
\$093000	5	VSET CYCLE	N	*68	4020			
5094000		CYC	;					
5095000								
>096000	SKIP HOF		;					

MODEL: MP(REVISION:			L76000 FILE EDIT Roprogram Section	AJURESS	05/01/77 DUC+#: IMAGE	12.005	PAGE:	132
LINE #		SEQUENCE: \$	SUPCS	(HEX)	(HEX)			
5097000	S⊌RAP=⊰EAD1	SKIP IF NO ADAPTER BUFFER REQUEST	,	60	COBC			
5098000 5099000	2MHHHA4CAD1	TFO TNBR	;	-0,	COBC			
	s	GTO (SWRAP-READL)	;	484	F489			
5102000 5103000	\$	GTO (SREAD-EOR2)	;	*88	F519			
5104000 5105000	\ THIS IS T	HE BEGINNING OF THE MOTHER BOARD WRA	PARUUNU					
5106000 5107000	FIRMWARE		N					
\$108000	SWRAP-10TH	SET SPA FOR RANGE UPPER	ν.	+8C	BC28			
5109000		SSPAI LOC(RNG1)	ł					
5110000 5111000	s	A TRANSFER RANGE UPPER THRU ALU	١	480	612A			

		4,139,332					
	135			136			
MODEL: MPDC-R REVISION: 000		RTL/6000 FILE EDIT MICROPRUGRAM SECTION		08/01/77 UUC.#:	12.005	PAGE:	132
LINE .	58.2	UENCE: SSUPCS	AUDRESS (HEX)	IMAGE (HEX)			
		-continued					
\$112000	XFB BSPM	-continucu					
\$113000		•					
5114000 s	SKIP IF RANGE UPPER ZERO	、	'48E	C086			
5115000	TFO TEO2						
5116000		•					
5117000 s	ABORT - RANGE GT 16	λ.	48F	F4E1			
5118000	GTO (SWRAP-STS)	:					
5119000							
5120000 s	\ SET SPA FOR RANGE LOWER	١.	40	8C29			
5121000	SSPAI LOC(RNG2)	1					
5122000							
5123000 \$	V HEX11 TO ACU	١.	4(1	8041			
5124000	LCN CNST(11#)	1					
\$125000							
5126000 s	V CHECK FOR RANGE LOWER GT	16 \	402	6418			
5127000	SUB ASPM BACU	1					
5128000							
5129000 \$	V SKIP IF RANGE LOWER LT 16		4()	C04A			
>130000	TF2 TCOT	•					
5131000 5132000 s	ABORT - RANGE GT 16			F4E1			
5133000	GTO (SWRAP=STS)	N I	4(4	F461			
5134000	GIU (SHRAP-313)	•					
5135000 s	\ SET SPA FOR DMA BYTE	λ.	465	8689			
5136000	SSPAI LOC(DMA1)	ì		0.01			
5137000	Sorra Edetomati	•					
5138000 s	V SKIP IF WRITE MODE	ν.	406	C490			
5139000	TFO ASPM TAXO			•			
5140000		•					
5141000 s	V GO TO READ WRAP FOR MOTHE	R BOARD \	407	F4D3			
\$142000	GTO (SWRAP-RDHO)	i i	-				
5143000							
5144000 SKIF	HOF	1					
-							

MODEL: MP REVISION:			RTL/6000 FILE EDIT MICROPROGRAM SECTION	AUDRESS	08/01/77 DOC+#: IMAGE	12.605	PAGEI	133
LINE #		SEQUEN	CE: SSUPCS	(HEX)	(HEX)			
\$145000								
5146000		THE MOTHER BOARD WRITE WRAPAROUN						
5147000		M MEMORY UP TO 16 DATA BYTES IN						
5146000	BOARD FI	°0,	۸.					
5149000								
5150000	SWRAP-#RTMO	N SET BYTE MODE WRITE IN ACU	۸.	4CB	81A2			
5151000		LCN CNST(6A#)	1					
5152000								
5153000	\$	V SKIP IF BYTE MODE	N N	4(9	CORR			
5154000		TFO TBYT	1					
5155000								
5156000	\$	N SET WRITE MODE IN ACU	N N	4CA	8182			
5157000		LCN CNST(62#)	i i					
5158000					21.00			
>159000	s	SET TEST MODE	N N	4CB	0180			
5160000		STD	1					
5161000	-							
5162000	\$	VENABLE WRITE HARDWARE PATH		466	0601			
5163000 5164000		EWP	ŧ					
5165000		SET CHCLE		460	4020			
5166000	3	SET CYCLE		4CD	4020			
5167000		CYC	ţ					
5168000	SWRAP-WRTM1	1 5K [P 1F RANGE ZERD		465	CUA2			
5169000	2MKUL-AUIMT	TFO TRGZ	ì	402	LORZ			
5170000		IFU IRUZ	•					
5171000		V WAIT FOR RANGE ZERO	\ \	6C F	F4CE			
5172000	•	GTO (SWRAP-WRTMI)	Ì	40	, vec			
5173000		GIG (Sanne-antimit)	•					
5174000		V LOAD RETURN	λ.	600	E592			
5175000	•	LRA (STERM-CL4)	ì	400				
5176000		ENG (FILENI-CEA)	,					
5177000		V LOAD RETURN	Υ.	601	E590			
5178000	-	LRA (STERM-NORL)		-01				
5179000								
5180000		GTO (\$DMA=CHK)	1	402	F574			
5181000	-	•••••••	•	•••				
5182000	SKIP HOF		;					
			•					

MUDEL: MP REVISION:		NTL/6000 FIL MICROPROGRAM			0m/01/17 DUL+#1	12.005	PAGE:	134
LINE # 5183000		SEQUENCE: \$\$UPC5		AUDHESS (HEX)	IMAGE IHEKE			
5184000 5185000 5186000 5187000	TRANSFERS	THE MOTHER BOARD READ WKAPARDUND ROUTINE, IT 5 to memory from the mother board fifo the data Evidusly loaded by the write wraparound cummanu	• `					
5188000 5189000 5190000	SWRAP-RDMO	N SET BYTE MODE READ IN ACU LCN CNST(4C#)	\ ŧ	3ئە	8158			
5191000 5192000 5193000	\$	N SKIP IF BYTE MODE TFO TBYT	ì	بەر) بە	Сйба			
5194000 5195000 5196000	5	\ SET READ MODE IN ACU LCN CNSTI44∉}	ì	405	8106			
5197000 5198000 5199000	\$	N SET TEST MODE STD	ì	40b	0180			
5200000 5201000 5202000	\$	N SET CYCLE CYC	ì	+D7	4020			
5203000 5204000 5205000	\$	LLDAD RETURN LRA (STERM-NOR)	ĩ	⊷ ∁8	E 59C			
5206000 5207000 5208000	\$WRAP-ROMO1	LENABLE READ HARDWARE PATH	ĩ	409	0600			
5209000 5210000 5211000	5	N SEND BYTE TO INTERFACE ZER AADT SRIA	, ,	4DA	764F			
\$212000	\$	NO OP FOR TIMING	N	4D8	0000			

			マットングッンフム					
		137	, ,		138			
NUDEL: NH REVISION1			HTL/6000 FILE EDIT MICROPRUGRAM SECTION		UB/U1/77 DUC.#:	12.005	PAGE:	134
MEA19104.	000100		HICHORNOGRAM SECTION	AUDRESS	IMAGE			
LINE #		SEG	NUENCE: SSUPCS	(HEX)	(HEX)			
			-continued					
5213000		NGP						
5214000			-					
5215000	SWRAP-HDM02	\5KIP IF BUS CYCLE NOT ACT:	(VE \	400	C042			
5216000		TFZ TBCA			•			
5217000		-						
\$218000	\$	WAIT FOR BUS TO FINISH	<u>۱</u>	4DD	F4DC			
\$219000		GTO ISWRAP-ROMOZI						
5220000								
5221000	5	SKIP IF END OF RANGE	۰ ۱	4DE	COA2			
\$222000		TFO TRGZ						
5223000								
\$224000	5	SEND INTERFACE ANOTHER BY	TE \	4DF	F4D9			
5225000		GTO (SWRAP-RDMO1)						
5226000								
\$227000	5	VGO TO CHECK FOR SINGLE BY	TE STORED \	4E0	F519			
5228000		GTO (\$READ-EOR2)	:					
5229000								
	SKIP HOF							

MODELI MPDC+ REVISIONI DO			RTL/6000 FILE EDIT MICROPROGRAM SECTION		08/01/77 DUC.#:	12,605	PAGE :	135
LINE #		SEQUENCE	: \$\$UPC5	ADDRESS (HEX)	1MAGE (HEX)			
	RAP-STS	\ SET STATUS BYTE 1 IN ACU LCN CNST(AO#)) F	4E1	8280			
5235000 \$ 5236000 5237000		\ SKIP IF DEVICE READY TFO AAD2 TAXO	}	4E2	D890			
5238000 S 5239000 5240000		<pre>\ SET STATUS BYTE 1 NOT RDY IN A LCN CNST(20#)</pre>	CU \ 1	4E3	8080			
5241000 s 5242000 5243000		\ SET SPA FOR STS1 SSPA1 LDC(STS1)	ì	4E4	8C60			
5244000 \$ 5245000 5246000		N UPDATE STATUS MWT	ì	465	A200			
5247000 s 5248000		GTD (STERM-CL2)	;	4E0	F58F			
5249000 SK11	P HOF		;					

MODEL: MP Revision:		RTL/6000 F; MICROPRUGRAM	ILL EDIT 4 SECTION		08/01/77 DUC+#:	12.605	PAGE:	130
LINE #		SEQUENCE: SSUPCS		ALURESS				
	SFMT-READ	V CLEAR ADP STATUS + FIFO +RESET READ GATE XFB AADS SRIA	;	(HEX) 4E7	(HEX) 7468			
5253000 5254000 5255000	5	\SKIP 1F RANGE NOT ZERO TFZ TRGZ), t	4E8	C062			
5256000 5257000 5258000	5	NGD TO TERMINATION GTD (\$TERM-NOR)	\ \$	469	F59(
5259000 5260000 5261000	SREAD-IDT	\SET SPA FOR LOW ORDER BYTE OF TASK SSPAI LOC (TSK2)	X F	4EA	всов			
5262000 5263000 5264000	s	SKIP IF IGNORE READ ERRORS SET TFO ASPM TAXO	X Ŧ	4 €B	C490			
5265000 5266000	\$	GTO (SREAD-IDTL)	1	+EC	F4F0			
5267000 5268000 5269000	5	\SET SPA FOR DMA BYTE SSPAI LOC (DMAL)	X ‡	4ED	8689			
5270000 5271000 5272000	\$	\ SET IGNORE READ ERRUR BIT OCN ASPM CNST (10#)	N I	4EE	8450			
5273000 5274000 5275000	5	NRESTORE DMA BYTE MWT	\ ‡	4EF	A200			
5275000 5277000 5278000	SREAD-IDT1	∖ SET FORMAT READ COMMAND LCN CNSTIC3#J	X Ŧ	4F0	8303			
5279000 5280000 5281000	5	\ ADDRESS TASK SSPAL LOC(TSK1)	X ¥	4F1	8004			
5282000 5283000 5284000		V SKIP IF NOT DIAGNOSTIC MODE TFZ ASPM TAX6	\ #	4F2	(45(
5285000 5286000	-	GTO (SREAD-1DT2)	1	4F 3	FAFC			
5287000 5288000 5289000	-	N SEND COMMAND TO ADAPTER XFB AAD2 SRIA	X 4	4F4	786A			
5290000 5291000 5292000	-	N LOAD AMK UPPER LCN AADO CNST(FA#)	\ 4	4F5	93E2			
5293000 5294000 5295000	-	N LOAD AMK LOWER LCN AADO CNST(AA#)	ì	4F6	92A2			
5296000	5KIP HOF		1					

MODELI NPDC-REV30 REVISIONI 000.00			FILE EDIT RAM SECTION		08/01/77 DUC.#:	12.605	PAGE:	137
LINE #		SEQUENCE: SSUPCS		ADDRESS (HEX)	IMAGE			
5297000 5298000	5	<pre>\ LOAD DATA COUNTER = 4 LCN AAD1 CNST(01#)</pre>	ì	4F7	9401			
5299000 5300000 5301000	5	\ RETURN FROM READ-EOF LRA (SREAD-DATA)	X	4F8	E543			
5302000		LRA (BREAD-DATA) V RETURN FROM DATA-LOOP IF AAP REG	1					
5304000 5305000	•	LRA (SREAD-EOR)	;	4F9	E518			
5306000	5	N RETURN FROM WAIT-LOUP+FIRST TIME ONLY	N	4FA	E51F			

- 4	4	ъ.	
	-		

		139	4,139,332		140			
MODELI MP REVISIONI			IL/6000 FILE EDIT Roprogram Section	ADDRESS	08/01/77 DUC+#1 IMAGE	12.605	PAGE :	137
LINE #		SEQUENCE: 1	suPCS -continued	(HEX)	(HEX)			
5307000		LRA (SREAD-AMK)	1					
5308000 5309000	\$	GTO (SSTART-WALT)	ŧ	4FB	FZID			
5310000 5311000 5312000	SREAD-1DT2	SET DIAGNOSTIC READ 1D Lon AADZ CNST (D3#)	X 1	+FC	9643			
5313000 5314000 5315000	5	GTO (SDIAG-READ4)	\$	4FD	F560			
5316000 5317000 5318000	SREAD-MODE	\ SET BUS = READ BYTE MODE LON ONST(4C#)	\$	4FE	8128			
5319000 5320000	\$	N SKIP IF BYTE MODE TFD TBYT	ì	4FF	сова			
5321000 5322000 5323000	SREAD-RET	\ SET BUS * READ MODE LCN CNST(44#)	1	500	8108			
5324000 5325000 5326000	\$	\SKIP IF ADAPTER HARDWARE REQUEST TFO TAHR	3	501	C080			
5327000 5328000 5329000	5	VERROR OR END OF FIELD RTN	\ \$	502	C200			
5330000 5331000 5332000	5	\ENABLE READ HARDWARE PATH ERP		503	0600			
5333000 5334000	SKIP HOF		ŧ					

MODEL: MPI REVISION:		RŤL/6000 F Microprugraj			08/01/77 UGC+#:	12.005	PAGE:	138
LINE # 5335000 5336000 5337000 5338000 5338000	ROUTINES. BEING FUL	SEQUENCE: SSUPCS HE COMMON DATA LOOP USED BY THE READ AND WRI IT IS USED TO CHECK FOR THE ADAPTER FIFO L ON WRITES AND EMPTY UN READS IN ORDEH TO IF AN UNSOLICITED BUS REQUEST CAN BE	re N	AUDRESS (HEX)	IMAGE (HEX)			
5342000	\$DATA+LOOP	SET CYCLE) ŧ	504	4020			
5343000 5344000 5345000 5346000	SDATAL	\ SKIP IF NO ADAPTER BUFFER REQUEST TFO INBR	\ ŧ	505	Сояс			
5347000	\$	GTD (SDATA1)	:	506	F505			
5348000 5349000 5350000	5	NNO OP FOR TIMING NOP	ì	507	0000			
5351000 5352000 5353000	5	NO OP FOR TIMING NOP	ì	50 B	0000			
5354000 5355000 5356000	5	ACLEAR ACU	\ 4	509	600E			
5357000 5358000 5359000 5360000	SDATA2	N SKIP IF NO BUS CYCLE ACTIVE TFZ TBCA	5 4	50A	C042			
5361000	\$	GTO (SDATA2)	1	508	FSUA			
5362000 5363000 5364000 5365000	5	ACLEAR CYCLE REGISTER	ì	50C	4020			
5365000 5367000 5368000	5	V SKIP IF NO ADP REQUEST	1	500	C04C			
5369000 5370000 5371000	s	\ RETURN TO- 1. FWT-DAT - FORMAT WRITES 2. READ-EDR - ADAPTER REQ DURING READ DATA		50E	C200			
5372000 5373000		3. WRT-EDF - ADAPTER RED DURING WRITE DAT. RTN	A X					
5374000 5375000	SKIP HOF		ł					

MODEL: MPDC-REV3D REVISION: 000.00		RTL/6000 FILE EDIT MICROPROGRAM SECTION		08/01/77 DOC•#:	12.605	PAGE :	139
LINE #		SEQUENCE: SSUPCS	ADDRESS (HEX)	IMAGE (HEX)			
5376000 \$	ADDRESS DMA BYTE	`	50F	8689			
5377000	SSPA1 LOC(DMAL)	1					
5378000							
5379000 S	\ 5k1P 1F WRITE MODE	١.	510	C+90			
5380000	TFO ASPM TAXO	1					
5381000							
5382000 \$	GTO (SDATA3)	ŧ	511	F515			
5383000							
5384000 \$	N RETURN FROM WAIT-LOOP	١.	512	E+0C			
5385000	LRA (\$WRT-RET)	l I					
5386000							
5387000 \$	\ RETURN FROM DMA=CHK	۱	513	E210			
5388000	LRA (SSTART-WAIT)	1					
5389000							
5390000 \$	GTO (SDMA-CHK)	1	514	F574			
5391000							
5392000 SDATA3	\ RETURN FROM WAIT=LOOP	١.	515	E4FE			
5393000	LRA (SREAD-MODE)	•					
5394000							
5395000 \$	N RETURN FROM DMA-CHK	Υ	516	E210			
5396000	LRA (SSTART-WAIT)	•					
5397000							
5398000 5	GTO (SDMA+CHK)	i	517	F574			
5399000							
5400000 SKIP HOF		ŧ					

			4,109,0	32						
		141	.,,,			142				
MODEL: MP Revision:			RTL/6000 FILE MICROPROGRAM S			U8/U1/77 UUC+#:	12.605	PAGE :	140	
LINE #		SEDUE	NCE: SSUPCS		AUDRESS (HEX)	1MAGE (HEX)				
	SREAD-EUR	V LOAD RETURN		`		E529				
5402000		LRA (SREAD-EDF)		1						
5403000										
5404000 5405000	SREAD-LOR2	SKIP IF OFFSET RANGE HISTORY	1	N N	519	COOC				
5406000		TEZ TORH		•						
5407000	5	SKIP IF SINGLE BYTE STORED		`	51A	CUA4				
5408000		TFD TSBS		1						
5409000										
5410000	\$	GTD (SDMA-CHK)		:	516	F574				
5411000 5412000	_	A NOAD DUE OVELE			61.0					
5413000	5	N LOAD BUS CYCLE LCN CNST(CC#)		}	210	8328				
5414000		Eck Chortectry		•						
5415000	5	V CYCLE BUS		N	510	4020				
5416000		CYC		÷						
5417000										
5418000	5	GTO (SDMA-CHK)		:	51E	F574				
\$419000 \$420000	SREAD-AMK	SKIP IF NO ADDRESS MARK ERF	000	`	. 51F	0050				
5421000	JRENU NRK	TFZ AAD3 TAX6				Deve				
5422000				•						
5423000	5	GTO (SREAD=5T5)		:	520	F533				
5424000					5 .1	*0.00				
5425000 5426000	SREAD-AMK1	 \SKIP IF ADAPTER HARDWARE RED TFO TAHR 	JUESI	}	521	C080				
5427000		TFO TRAR		•						
5428000	5	\5K1P IF NO ERROR		1	522	C04C				
5429000		TFZ TREQ		1						
\$430000										
5431000	s	GTO (SREAD-MODE)		;	523	FAFE				
5432000 5433000		GTO (SREAD-AMKL)		1	524	F521				
5434000	•	GIO (JACOD-AMAL)		,	264	(244				
5435000	\$wRT-EOF	\ 5k1P 1F NOT EOF		N	525	COAA				
\$436000		TFO TNDR		;						
5437000	_									
5438000 5439000	3	GTO (SDMA-CHK)		4	526	F574				
5440000		LOAD RETURN FROM DMA+CHK		`	527	E57D				
5441000	-	LRA (STERM-STS)		ì						
5442000										
5443000	5	GTO (SDMA-CHK)		ŀ	528	F574				
5444000	5									
2643000	SKIP HOF			•						

MODELI MPI Revisioni			000 FILE EDIT ROGRAM SECTION	AUDRESS	08/01/77 DGC+#: IMAGE	12.605	PAGE	141
LINE e		SEQUENCE: \$\$UP	C\$	(HEX)	(HEX)			
\$446000								
3447000	SREAD-EOF	VZERO TO ACU	١.	529	600E			
5448000		ZER	1					
5449000								
5450000	5	VCLEAR CYCLE REGISTER	N N	52A	4020			
5451000		CYC	4					
5452000				F 1 0	co			
5453000	5	SKIP IF NO NON-DATA SERVICE REQUEST		248	C06A			
5454000 5455000		TFZ TNDP	•					
5456000		GTO (SREAD-STS)	1	520	F533			
5457000	,	GIU (188EAD-3/3)	,	240				
5458000		V GET DEVICE STATUS	`	520	7(3)			
5459000	•	XFA AAD3	i					
5460000			•					
5461000		V SKIP IF ERROR	`	52E	C046			
5462000	•	TFZ TEQZ	1					
5463000								
5464000	5	V RETURN TO+		52F	C200			
5465000		 READ-DATA-FORMAT READ 						
5466000		2. TERM-NOR-EOR	N					
5467000		RTN	1					
5468000								
5469000	5	VADDRESS DHA BYTE))	530	8689			
5470000		SSPAI LOC (DMA1)	1					
5471000	_	SKIP IF NOT LENORING READ ERRORS	1	531	C456			
5472000 5473000	\$	TFZ ASPM TAX3	ì	221	2430			
5474000		IFZ ASPA TAKS	•					
5475080		GTD (\$READ+STS1)	;	512	F535			
5476000	,	6/6 (\$MER0 3/31)	•					
5477000	SREAD-STS	LOAD RETURN FROM STORE-CTRS	ν.	533	E570			
5478000		LRA (STERM-STS)	1					
5479000								
5480000	5	GTO (\$STORE-CTRS)	1	534	F538			
5481000								
54B2000	SREAD=5151	VRESET IGNORE READ ERROR BIT	۱ ۱	535	87AF			
5483000		ACN ASPM CNST (EF#)	1					
5484000				(A.				
5465000	5	VUPDATE DHA BYTE	N N	536	A200			
5486000		MwT	1					
5487000	_		1	6.27	C200			
5488000	5	RTN	•	, , , ,	CE00			
5489000 5490000	SET D LOF		1					
2440000	arte nor		•					

MODEL: MP REVISION:		RTL/6000 4 MICROPROGN		a classic C.C.	US/U1/77 UUC.#:	12.605	PAGE :	7.
LINE #		SEQUENCE: \$\$UPC5		AUDRESS (HEX)	(HEX)			
5492000	\ THIS RO⊍	TINE IS USED TO STORE THE BUS INTERFACE						
5493000		(ADDRESS, RANGE, AND OFFSET RANGEL IN RWS.)					
5494000								
5495000	\$STORE-CTRS	ADDRESS OFFSET LOWER	1	538	8(28			
5496000		SSPAI LOC(DFR2)			0010			
5497000								
5498000	\$	\ SAVE OFFSET LOWER IN DSR2	Δ.	539	AEUY			
5499000		WUA ABUSA	:					
5500000								
5501000	5	\ SAVE OFFSET UPPER IN DSR1	1	53A	ALUS			
55020nu		WDA ABUS4						

4,159,532

		4,139,332					
	143	, , , , , , , , , , , , , , , , , , , ,		144			
REVISIONI OF		RTL/6000 FILE EDIT MICROPROGRAM SECTION		08/01/77 DUC.#:	12.605	PAGE:	142
LINE #	SEQUE	NCE: SSUPCS	ADDRESS (HEX)	IMAGE			
	JEWVE		(HEX)	(HEX)			
5503000		-continued					
5504000 s	N SAVE RANGE LOWER IN RNGZ						
5505000	NDA ABUSA		536	AE09			
5506000		ŧ					
55070n0 s	SAVE RANGE UPPER IN RNG1	,	610	4501			
5508000	MWT ABUS4)	230	AEOI			
5509000		,					
5510000 5	ADDRESS ADR2	、 、	630	8021			
5511000	SSPA1 LOC (ADR2)		230	0(24			
5512000		,					
5513000 s	V SAVE ADDRESS LOWER	Υ.	536	AEDS			
5514000	WDA ABUS4	i	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	AL03			
5515000		•					
9516000 s	SAVE ADDRESS MID	`	53F	AEOL			
5517000	MWT ABU54						
5518000							
5519000 \$	ADDRESS MOD1	Υ.	540	8C23			
>520000	SSPAI LOC(HOD1)	1		0000			
5521000							
5522000 S	V SAVE MEM MODULE	ν.	541	AEOL			
5523000	MWT ABUS4	:					
5524000							
5525000 S	V RETURN TO-		542	C200			
>526000	1. END-GAP - FORMAT WRITE						
>527000	2. TERM-CL2 - NORMAL TERMINA						
5528000	3. TERM-STS - ERROR IN DEVIC	E STATUS ON HEAD					
5529000	4. SCH-SET - EXTENDED SEARC						
5530000 5531000	EXTENDED SEARC						
5532000	5. SEEK-IMPL- IMPLICIT SEEK						
	AND CYLINDER L	INKING \					
5533000	RTN	I					
5534000	5						
5535000 SK	r Hur	;					

MODEL: MPDC Revision: C			RTL/6000 FILE EDIT MICROPROGRAM SECTION	AUDRESS	06/01/77 DUC.##:	12.605	PAGET	143
LINE #		SEQUEN	CE: SSUPCS	(HEX)	IMAGE (HEX)			
	READ-DATA	SKIP IF RANGE NOT EQUAL ZERO	1	543	C062			
55380 00		TFZ TRGZ			0.001			
5539000								
5540000 s	5	GTO (STERM+NOR)	:	544	F596			
5541000								
5542000 \$	•	\SET SPA FOR DMA BYTE	Υ.	545	8649			
5543000		SSPAI LOC (DMA1)	1					
5544000								
5545000 s	5	RESET IGNORE READ ERROR BIT	Λ	546	8784			
5546000 5547000		ACN ASPM CNST (EO#)	1					
5548000 s		RESTORE DMA BYTE						
5549000		MWT	N .	547	A200			
5550000			i i					
5551000 s		V LOAD DATA MARK UPPER	1	548	93E9			
5552000	•	LCN AADO CNST(FD#)	1		7327			
5553000								
5554000 s		\ LOAD DMK LOWER	λ.	549	9369			
5555000		LCN AADO CNST(DD#)	i					
5556000								
5557000 5	1	ADDRESS DATA LENGTH	1	54A	8009			
5558000		SSPAI LOC (DATL)	1					
5559000								
5560000 s	i	LOAD DATA LENGTH	۸	548	756A			
5561000 5562000		XFB AAD1 BSPM SRIA	1					
5563000 S		ADDRESS TASK						
5564000		SSPAI LOC(TSKI)	N N	546	ACOA			
5565000		SSPAT LUC(TSKT)	•					
5566000 s		SKIP IF NOT FORMAT READ ID	Υ.	b (0	C45A			
5567000		TEZ ASPM TAX5	;	340	CHOM			
5568000			•					
5569000 s		GTO (SSPACE-DATA)	1	546	F 5 5 6			
5570000								
5571000 SK	TP HOF		i					

MODEL: MPDC-REV3 REVISION: 000.00				UBZ01/77 2000.001	12.605	44G£ :	144
LINE #	SEQUENCE: SEUPCS		AUDHE55 (HEX)	TMAGE (HEX)			
5572000 S	V SET READ COMMAND IN ADAPTER	1	541	NHUZ			
5573000	LCN AAD2 CNST (C2#)	:					
5574000							
5575000 \$	N RETURN FROM DMA-CHK IF SEARCH AND READ	1	550	2453			
5576000	LRA (SSCH-UPD)	1					
5577000							
5578000 5	SKIP IF SEARCH AND READ	١.	551	C49L			
5579000	TFO ASPM TAX7	;					
5580000							
5561000 S	N RETURN FROM DMA+CHK IF FORMAT READ	4	ちちど	E4E7			
5582000	LRA (SFMT-READ)	i .					
5583000							
5584000 S	N RETURN FROM DATA LOOP IF EOF	1	553	E. 5 & H			
>585000	LRA (SREAD-EDR)	;					
>>86000				1.1.50			
5567000 \$	A RETURN FROM WAIT-LOOP FIRST TIME ONLY	N. N	204	F 5 1 F			
5588000	LRA (SREAD-AMK)	;					
5589000				F210			
5590000 s	GTO (SSTART-WAIT)	•	202	F & LU			
5591000 5592000 SKIP HO	F	;					

MODEL: MPC REVISION:			RTL76000 MICROPROGR		ADDRESS	0H/01/77 DUC.##: IMAGE	12-895	PAGE;	145
LINE #			SEQUENCE: \$\$UPCS		(HEX)	(HEX)			
	\$5PACE-DATA	\ SET READ WITHOUT DATA LCN AADZ CNST(82#)	XFER IN ADAPTER) ;	556	9A02			
5597000	s	A RETURN FROM WAIT LOOP		N.	557	E41'7			

NODELI MP REVISIONI		н	RTL/6000 FILE EDIT ICROPROGRAM SECTION		08/01/77 DOC.#:	12.605	PAGEI	145
LINE #		SEQUENCE:	SSUPCS	ADDRESS (HEX)	[MAGE (HEX)			
			-continued					
5598000		LRA (SFMT-READ)	t					
5599000			•					
5600000	5	GTO (SSTART-WALT)	1	558	F21D			
5601000								
5602000	SD [AG-AMK	SKIP IF NO ADDRESS MARK ERROR	λ.	559	DC5C			
5403000		TFZ AAD3 TAX6	1					
5604000								
5605000	5	GTO (SDIAG-AMK2)	1	55A	F55F			
5606000								
	SDIÅG-AMK1	SKIP IF ADAPTER HARDWARE REQUEST	١	55B	C080			
5608000		TEO TAHR	1					
5609000								
5610000	5	SKIP IF NO ERROR	`	550	C04C			
5611000		TFZ TREQ	1					
5612000								
5613000	\$	GTO (SREAD-MODE)	1	55D	F4FE			
5614000								
5615000 5616000	•	GTO (SDIAG-AMK1)	1	55E	F558			
	SD1AG-AHK2	SKIP IF NO ADAPTER ERRORS			co			
5618000	\$D100-08K2	TFZ TNDR	2	221	COPY			
5619000		IFZ INUR	4					
5620000		GTO (SREAD+STS)	:	540	F533			
5621000	,	310 (aken0-313)	•	200				
	SD1AG-READ	ADDRESS TASK	,	561	8CUA			
5623000		SSPAI LOC (TSK1)	`	201	всоя			
5624000			•					
5625000	5	\5kIP IF HEAD ALIGNMENT TASK	ι.	562	C498			
5626000	•	TED TAX4 ASPM	i		2.00			
5627000			•					
5628000	5	GTO (SDIAG+READ3)	:	563	F56A			
3629080	-		•					
5630000	5	\SET ADAPTER COMMAND	N	564	9A43			
5631000		LCN AADZ CNST (93#)			-			
\$632000								
5633000 5	SKIP HOF		:					

VISION	000.00		RTL/6000 FILE EDIT MICROPRUGRAM SECTION		UB/01/77 DUC.#:	12.605	PAGE:	1
INE #			SEQUENCE: \$\$UPCS	ADDRESS (HEX)	(HEX)			
634000	\$DIAG-READI	RESET BUS	\		4084			
635000		RST	ì	202	4084			
636000			•					
6370110	5	LOAD DUMMY RETURN	Υ.	644	£568			
638000		LRA (SDIAG-READ2)	ì	200	2368			
639000			,					
640000	\$	GTO (SSTART-WAIT)	1	547	F210			
641000	•	0.0 (000) 001()	,	201	F210			
	SD1AG-READ2	RESET INDEX COUNT	N	6	3035			
643000	201 10 112102	XFA AAD4 SRIA		208	707F			
644000			;					
645000		GTO (SDIAG-READL)			F4 . F			
646000	•		;	204	F505			
	SDIAG-HEAD3	RESET ADAPTER BUSY			6 m m m			
648000	201-10 HE-100	LCN AAD2 CNST (00#)	2	26A	9800			
649000		CCH HADE CHUI (OUW)	;					
650000		CLEAR ADAPTER STATUS AN	5 150					
651000	•			56B	7468			
652000		XFB AADS SRIA	:					
653000								
1654000	,	LOAD ADAPTER COMMAND	N	560	9862			
655000		LCN AAD2 CNST(DA#)	•					
	SDIAG-READ4	11010 ANY 10000						
657000	\$D146**E404		١	56D	93E2			
658000		LCN AADO CNST (FA#)	ŧ					
659000								
660000	,	A LOAD AMK LOWER	۸.	56E	92A2			
		LCN AADO CNST(AA#)	:					
661000								
662000	5	A LOAD DUMMY DATA LENGTH	۸	56F	97EU			
6664000		LCN AADL CNST(FF#)	\$					
665000								
666000	3	A RETURN FROM READ-EOF	N N	570	E59C			
667000		LRA (STERM-NOR)	:					
568000			· · · · ·					
669000	5	N RETURN FROM DATA-LOOP		571	E518			
		LRA (SREAD-EOR)	l l					
670000								
671000	5	N RETURN FROM WAIT-LOOP	FIRST TIME \	572	E559			
672000		LRA (SDIAG-AMK)	ł					
673000								
674000	5	GTO (SSTART-WAIT)	I	573	F210			
675000								
a 76000	SKIP HOF		1					

HODEL: MPDC- VEVISION: 0			TL/6000 FILE EDIT CROPROGRAM SECTION		08/01/77 DOC.#:	12.605	PAGE:
LINE .		SEQUENCE:	SSUPCS	ADDRESS (HEX)	IMAGE (HEX)		
5677000							
5678000		-CHK ROUTINE STORES THE FOLLOWING BUS					
5679000		ORS BEFORE GOING TO THE WAIT-LOOP TO	CHECK				
5680000	FUR AN	UNSOLICITED BUS REQUEST-					
5661000		B1T 0 = 0					
5682000		B1T 1 = 0					
56830 00		B17 2 - 0					
>684000		B17 3 - 0					
5685000		BIT 4 - BUS YELLOW INDICATOR					
5686000		BIT 5 - BUS NAK					
5687000		BIT 6 - BUS PARITY ERROR					
5688000		BIT 7 - BUS RED INDICATOR	、				
5689000			· ·				
5690000 st	DMA-CHK	\ SKIP IF NO BUS CYCLES ACTIVE	,	576	C042		
5691000		TF2 TBCA	:	214	(042		
5692000			•				
5693000 s		V WAIT FOR BUS TO FINISH	,		F574		
5694000		GTO (SDMA-CHK)		575	1314		
5695000		GIG SECONTERNA	•				
5696000 \$		ADDRESS STATUS BYTE LOWER		4.7.			
5697000		SSPA1 LOC(STS2)	`	576	8661		

MODELI MPDC-REV3D Revisioni 000.00	RTL/6000 F Microprogra		AUURESS	08/01/77 DOC+#: IMAGE	12.605	PAGE:	147
LINE 4	SEQUENCE: \$\$UPCS		(HEX)	(HEX)			
CINE -	-conti	nued					
5699000 S 5700000	X FER BUS ERROR TO ACU	ì	577	667A			
5701000 5702000 s 5703000	N RESTORE	ì	578	A200			
5704000 5705000 s 5706000	RESET BUS STATUS) F	579	4084			
5707000 5706000 S 5709000	NMASK BUS YELLOW BIT ACN AACU CNST (07#)	2	57A	BOUF			
5710000 5711000 \$ 5712000	SKIP IF BUS RED. BUS NAK. OR BUS PARITY	, ,	57B	C046			
5713000 5714000 SKIP HOF		1					
MODEL: MPDC-REV30 REVISION: 000.00		FILE EDIT Am Section	AUDHESS	08/01/77 DDC+#: IMAGE	12.60	5 PAGE	; 148
LINE # 5715000 S 5716000 5717000 5718000 5718000	SEQUENCE: \$\$UPCS \ RETURN TO- 1. TERM-NOR - TEST MODE WRITE 2. SCH-UPD - SCH/WRT W/D ERROR ON DATA FIELD 3. FWT-DAT - FORMAT WRITE (EOF ON ID)		(HEX)	(HEX) (200			
5720000 5721000 5722000 5722000	4, START-WAIT - SERVICE BUS REQUESTS DURING DATA TRANSFERS 5, TERM-STS - DEVICE ERROR ON WRITE OPERATION						
5724000 5725000 5726000	6. READ-EOF - ÉOF ON ÂLL READS 7. SCH-SET - SCH/READ W/O ERROR ON DAT FIELD #ITHOUT END OF RANG						
5727000 5728000 5729000	B. FNT-READ - FORMAT READ (D AND DATA (EDF ON DATA FIELD) RTN	X 1					
5730000 5731000 5KTP HOF		1					

MODELI MPI REVISION:			RTL/6000 MICROPROGR		ADDRESS	08/01/77 DDC+#: IMAGE	12.645	PAGE:	149
			QUENCE: SSUPCS		(HEX)	(HEX)			
LINE #		V SKIP IF DEVICE READY	SOFUCE: SPORCA	١.		D890			
	STERM-ST5	TED AAD2 TAXO		ì		2010			
5733000		IFU BADE TAKU		•					
5734000 5735000		GTO (STERM-ATT)		1	57E	F596			
\$736000	,	alo (aleka-ali)		,					
5737000		INPUT DEVICE ERROR STATU	5	<u>۱</u>	57F	7C3E			
5738000	•	XFA AAO3		1					
5739000									
5740000	5	V SET READY		N .	580	8210			
5741000	-	OCN CNST(80#)		1					
9742000									
5743000	5	SAVE STS1 ERROR BITS AND	READY	<u>۱</u>	581	82E7			
5744000		ACN CNST(BB#)		+					
5745000					1.43				
5746000	5	ADDRESS STATUS UPPER		ì	284	8000			
\$747000		SSPAI LOC(STS1)		•					
5748000	_	SAVE DOENTOUS STORED STA	THE	<u>۱</u>	583	643A			
5749000	S	SAVE PREVIOUS STORED STA ORR ASPM	105	ì	202				
5750000 5751000		URR AJPA		•					
5752000		SET SPA FOR TASK		<u>۱</u>	584	8CUA			
\$753000	,	SSPAL LOC (TSKL)		i					
5754000									
5755000	6	SKIP IF FORMAT OPERATION		١.	585	C45E			
5756000	•	TEZ TAX7 ASPM		1					
5757000									
5758000	5	GTO (STERM-ST51)		;	586	F589			
5759000									
5760000	5	SKIP IF RANGE NOT ZERD		N N	587	C062			
5761000		TFZ TRGZ		1					
5762000		CLEAR FORMAT CROOP UIT		`	500	BJEL			
5763000	s	ACN CNST(FE#)		1	200				
5764000 5765000		ACH CHUITPEN		,					
	STERM-STS1	SET SPA FOR STS1		Λ.	589	8660			
5767000	BIENN DIGT	SSPAI LOC (STS1)		4					
5768000									
5769000	\$	N RESTORE ST51 AND INCREME	NT TO STS2	<u>۱</u>	58A	A300			
5770000		w1A		1					
5771000						363			
5772000	5	\ INPUT DEVICE STATUS		N N	288	7C3E			
5773000		XFA AAD3		;					
5774000		. TANK NUTERA AND FEETAD			her	8304			
5775000	5	SAVE RWTFRR AND SECERR		ì	200	0204			
5776000		ACN CNST (CO#)		•					
5777000		SAVE PREVIOUS STORED BUS	STATUS	1	586	643A			
5778000 5779000	3	ORR ASPM		ì					
5780000				•					
	5K1P HOF			1					

MODEL: MPDC-REV30 Revision: 000.00		OO FILE EDIT Ogram Section	AUDRESS	08/01/77 000.001 IMAGE	12,605	PAGE :	150
LINE #	SEQUENCE: \$\$UPC	S	(HEX)	(HEA)			
5782000							
5783000 STERM-CL1	N RESTORE STATUS BYTE	`	58E	A200			
5786000	MwT	:					
5785000							
5786000 STERM-CL2	CLEAR STATUS AND FIFU IN ADAPTER	``	5 BF	7466			
5787000	XFB AAD5 SRIA						
5788000							
5789000 s	CLEAR ADAPTER HARDWARE REQUEST	``	590	7C4F			
5790000	ZER AADT SRIA	4					
5791000							
5792000 STERM-CL3	VCLEAR ADAPTER AND RESET MDC FIFO	N	591	0088			

150

			4,137,332					
		149	, ,		150			
MODEL; MPD REVISIONI			RTL/6000 FILE EDIT Michoprogram Section	ADURESS	08/01/77 DUC.#:	12.005	PAGE :	150
LINE #			SEQUENCE: \$50PC5 -continued	(HEX)	IMAGE (HEX)			
5793000 5794000		RDA	ŧ					
5795000 y 5796000 5797000	STERM-CL4	NCLEAR ACU ZER	Y F	592	600E			
5798000 ; 5799000 5800000	s	N RESET BUS CYCLES	Y F	. 593	÷020			
5801000 : 5802000	5	\ RESET TEST MODE RSD	}	594	0080			
5803000 5804000 5805000	5	GTO (SSTARTINTPT)	ŧ	595	F33F			
	STERM-ATT	\ ADDRESS DEVICE STATUS SSPAI LOC(DEVST)	۲ ۲	596	NCEA			
5809000 5810000 581000	\$	N STORE NEW STATUS MWT AAD2	\ \$	597	BAOG			
5812000 5813000 5814000	s	\ SAVE READY BIT ACN ASPM CNST(80#)	\ ₹	598	8604			
5815000 5816000 5817000	s	<pre>\ SET ATTENTION BIT DCN CNST(40#)</pre>	X 1	599	8110			
5818000 5819000 5820000	\$	\ ADDRESS STATUS UPPER SSPAI LOC(STSI)	X 1	59A	8660			
5821000 5822000 5823000 S		GTO (STERM-CL1)	;	598	F58E			
2013000 3	KIP HOP		1					

25

MODEL: MPDC- REVISION1 00			RTL/6000 FILE EDIT MICROPROGRAM SECTION	ADDRESS	08/01/77 DUC+#: IMAGE	12.605	PAGE:	151
LINE #			SEQUENCE: SSUPCS	(HEX)	(HEX)			
5824000 5825000 ST 5826000		LOAD RETURN	X 1	59C	E58F			
5827000	•		•					
5828000 ST 5829000 5830000		VCLEAR ACU ZER	1	59D	600E			
5831000 \$ 5832000 5833000		RESET BUS CYCLE BYTE	X ŧ	59E	4020			
5834000 \$		N READY BIT TO ACU XFA AAD2	\ #	59F	783E			
5836000 5837000 \$ 5838000 5839000		N MASK READY BIT ACN CNST(80#)) F	5A0	8204			
5840000 S 5841000 5842000		ADDRESS STATUS UPPER SSPAI LOC(STS1)) F	5A1	8660			
5843000 \$ 5844000 5845000		N RESTORE ST51 HWT	X Ŧ	5A2	A200			
5846000 \$		STO (\$STORE-CTRS)	1	5A3	F538			
5848000 SK1	P HOF		1					

HODEL: MPOC-REV30 REVISION: 000.00

RTL/6000 FILE EDIT MICROPROGRAM SECTION

LINE # SEDUENCE: \$\$UPCS ADURESS IMAGE 3949000 \$SEEK-ERR \ SET SEEK ERROR BIT 2 \ 344 8080 385000 LCN CNST(20#) ; 385000 S \ ADDRESS STATUS LOWER \ 344 8080 385000 SSPAL LOC(STS2) ; 385000 S \ SAVE PREVIOUS BUS EKRORS \ 346 643A 385000 ORR ASPM ; 385000 S \ RESTORE STS2 AND ADDRESS STS1 \ 347 420#	005 PAGE: 152
>3832000 \$ \ ADDRESS STATUS LUWER \ >45 86.61 >883000 SSPAI LOC(STS2) \$ >45 96.61 >883000 \$ \ SAVE PREVIOUS BUS EKRORS \ >46.643A >8837000 ORR ASPM \$ >46.643A	
5856000 ORR ASPM 5857000 576 645A	
3058000 \$ V RESTORE 5152 AND ADDRESS 5153	
5859010 S (RESIDE STS2 AND ADDRESS STS1) 547 A208 5859010 NDA \$	
3661000 \$ \ READY BIT TO ACU \ 548 783E 5862000 XFA AADZ \$ 5863000 \$	
>864-0∩0 \$ \ MASK READY BIT \ >A9 8204 >8650∩0 ACN CNST(80#) \$8660∩0	
58670ND \$ GTO (\$TERM-CL1) \$ 5AA F58E	
>8890∩0 \$SEEK=JLL \ SET READY AND ILLEGAL SEEK \ >8208 >8700∩0 LCN CNST(8≪#) I >871000	
3872000 \$ \ ADDRESS STATUS UPPER \ 54C 8C60 5873000 SSPAL LOC(STS1} i 5874000	
5875000 \$ \ \$TDRE_\$TATUS \ 540_4200 \$876000 MWT 1 \$877000	
5878000 \$ GTO (\$STARTINTPT) 1 5AE F33F 5879000 \$ GTO (\$STARTINTPT) 1 5AE F33F 5880000 \$K1P HOF	

MODELI MPDC-REV3D

MODEL: MPDC-REV REVISION: 000.0		RTL/6000 FILE EDIT MICROPROGRAM SECTION		08/01/77 DOC+#:	12.605	PAGE:	153
LINE # 5881000 SUNUS 5882000		CE: \$\$UPCS Filler \;	ADDRESS (HEX)	IMAGE (HEX)			
5883000 s 5884000	(SFA#)\HALT- 1F RETURN FAILS HLT	};	5FA	0040			
5687000	LRA002 (5FB#)\DECREMENT ACU DEC AACU SRIA	ì	5FB	6070			
5890000	LHA003 (SFC#)\DECREMENT ACU DEC AACU SRIA	ì	5FC	607C			
5893000	LRA004 (5FD#)\DECREMENT ACU DEC AACU SRIA		SFD	607C			
5894000 5895000 s 5896000	(5FE#)\ GTD {\$BLT=LRA001]	Ì	SFE	F058			
5897000 5898000 SUPC5 5899000 5900000	-LRC (SFF#)\LRC WORD FOR PROM SCAN Longpar (0.5FE#1EVEN)	}	SFF	3708			
5901000 5901000 5902000 SKIP H	OF	1					

MODEL: MPDC-REV3D Revision: 000-00	RTL/6000 FILE EDIT MICROPROGRAM SECTION		08/01/77 DOC.#:	12.605	PAGEI	154
LINE # \$903000	SEQUENCE: \$\$UPC5	AUDRESS (HEX)	IMAGE (HEX)			
5904000 \ THAT'S IT . THERE IS NO MORE .	1 THERE ARE NO SEVENE MESSAGES IN THE ARC	DVE FILE.				

THERE AND NO SEVENE MESSAGES IN THE ABOVE FILE. THERE ARE NO WARNING MESSAGES IN THE ABOVE FILE.

In accordance with the invention, a logic data transfer control system is provided for predicting the availability of storage locations in a peripheral controller 30 before data is requested from main memory. Thus, in a data processing environment wherein plural system units are electrically coupled to a common communication bus for asynchronous transfer of information therebetween, a data transfer rate from main memory to a 35 peripheral controller may be accommodated without loss of data.

Having described the invention in connection with certain specific embodiments thereof, it is to be understood that further modifications may now suggest them- 40selves to those skilled in the art, and it is intended to cover such modifications as fall within the scope of the appended claims.

What is claimed is:

1. A logic data transfer control system for a periph-45 eral controller having hardware control means and firmware control means, said peripheral controller servicing a peripheral storage device in a data processing system having a main memory unit, and plural system units including said peripheral controller electrically 50 coupled to a common communication bus for asynchronous transfer of information therebetween, which comprises:

- a. plural data FIFOs receiving binary information from said main memory unit in response to data 55 requests issued by said hardware control means to said common bus;
- b. a predictor FIFO responsive to load control signals initiated at the inception of said data requests for anticipating the capacity of said plural data FIFOs 60 to receive said binary information;
- c. first logic control means responsive to said firmware and said hardware control means and to input control signals from said predictor FIFO for issuing bus cycle requests to said hardware control means and supplying said load control signals to 65 said predictor FIFO; and
- d. second logic control means responsive to output register control signals of said predictor FIFO for

unloading said plural data FIFOs and said predictor FIFO for transfer of data to said peripheral storage device.

152

- 2. The combination set forth in claim 1, wherein said first logic control means includes:
 - a. a first AND gate responsive to said hardware control means:
 - b. a second AND gate responsive to said predictor FIFO and to said hardware and said firmware control means:
 - c. a flip-flop in electrical communication with said first AND gate and responsive to said second AND gate for issuing bus cycle requests to said hardware control means; and
 - d. a third AND gate in electrical communication with said second AND gate and responsive to said hardware and said firmware control means for supplying said load control signals to said predictor FIFO.

3. The combination set forth in claim 1, wherein said plural data FIFOs include left byte FIFOs and right byte FIFOs for storing two byte data words, and said second logic control means includes;

- a. a first AND gate responsive to said firmware and said hardware control means;
- b. a first flip-flop in electrical communication with said first AND gate for supplying a first output data transfer control signal to said left byte FIFOs;
- c. a second AND gate in electrical communication with said first AND gate and responsive to said firmware and said hardware control means;
- d. a second flip-flop in electrical communication with said first flip-flop and said first AND gate for supplying a second output data transfer control signal to said right byte FIFOs and to said predictor FIFO: and
- e. a third flip-flop responsive to said second AND gate and in electrical communication with said first and said second flip-flops for alternately selecting either said left byte FIFOs, or said right byte and predictor FIFOs for output data transfers.

4. A method of controlling the transfer of data words from a main memory of a data processing system through a peripheral controller having plural data FIFOs operating in parallel in a data path, and further having a predictor FIFO, said controller communicating asynchronously with said main memory on a common communication bus, which comprises:

- a. generating a data request from said controller to said main memory;
- b. loading said predictor FIFO with a control flag ¹⁰ byte upon issuing said data request to provide an indication of the capacity of said plural data FIFOs

to receive a second data word before a first data word is loaded into said plural data FIFOs;

- c. sensing an input control signal of said predictor FIFO immediately upon loading a data word from said main memory into said plural data FIFOs;
- d. repeating steps (a) through (c) if said input control signal indicates said plural data FIFOs shall have the capacity to receive additional data; and
- e. unloading said plural data FIFOs and said predictor FIFO if said input control signal indicates said plural data FIFOs shall not have the capacity to receive additional data.

.

15

20

25

30

35

40

45

50

55

60