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VALIDATION - BASED DETERMINATION OF 
COMPUTATIONAL MODELS 

RELATED APPLICATION 

[ 0001 ] This application is a divisional of , and claims 
priority to , U.S. patent application Ser . No. 15 / 402,503 , filed 
on Jan. 10 , 2017 , entitled “ VALIDATION - BASED DETER 
MINATION OF COMPUTATIONAL MODELS ” , the dis 
closure of which is fully incorporated herein by reference in 
its entirety 

BACKGROUND 

[ 0002 ] With computer and Internet use forming an ever 
greater part of day to day life , security exploits and cyber 
attacks directed to stealing and destroying computer 
resources , data , and private information are becoming an 
increasing problem . For example , “ malware ” , or malicious 
software , is a general term used to refer to a variety of forms 
of hostile or intrusive computer programs . Malware is , for 
example , used by cyber attackers to disrupt computer opera 
tions , to access and to steal sensitive information stored on 
the computer or provided to the computer by a user , or to 
perform other actions that are harmful to the computer 
and / or to the user of the computer . Malware may include 
computer viruses , worms , Trojan horses , ransomware , root 
kits , keyloggers , spyware , adware , rogue security software , 
potentially unwanted programs ( PUPs ) , potentially 
unwanted applications ( PUAs ) , and other malicious pro 
grams programs . Malware may be formatted as executable 
files ( e.g. , COM or EXE files ) , dynamic link libraries 
( DLLs ) , scripts , steganographic encodings within media 
files such as images , and / or other types of computer pro 
grams , or combinations thereof . 
[ 0003 ] Malware authors or distributors ( “ adversaries ” ) 
frequently disguise or obfuscate malware in attempts to 
evade detection by malware - detection or -removal tools . 
Consequently , it is time consuming to determine if a pro 
gram is malware and , if so , to determine the harmful actions 
the malware performs without actually running the malware . 
[ 0004 ] Throughout this document , hexadecimal values are 
prefixed with “ Ox ” and C - style backslash escapes are used 
for special characters within strings . 

[ 0008 ] FIG . 3 is a dataflow diagram that illustrates 
example processes for determining and operating computa 
tional model ( s ) according to various examples described 
herein . 
[ 0009 ] FIG . 4 is a dataflow diagram that illustrates 
example processes for determining or updating computa 
tional model ( s ) according to various examples described 
herein . 
[ 0010 ] FIG . 5 is a dataflow diagram that illustrates 
example processes for determining signatures of data 
streams according to various examples described herein . 
[ 0011 ] FIG . 6 is a dataflow diagram that illustrates 
example processes for determining computational model ( s ) 
according to various examples described herein . 
[ 0012 ] FIG . 7 is a dataflow diagram that illustrates 
example processes for determining signatures for use in 
determining computational model ( s ) according to various 
examples described herein . 
[ 0013 ] FIG . 8 is a dataflow diagram that illustrates 
example processes for determining or updating computa 
tional model ( s ) according to various examples described 
herein . 
[ 0014 ] FIG . 9 is a dataflow diagram that illustrates 
example processes for determining computational model ( s ) 
using multi - node processing according to various examples 
described herein . 
[ 0015 ] FIG . 10 is a dataflow diagram that illustrates 
example processes for updating computational model ( s ) 
according to various examples described herein . 
[ 0016 ] FIG . 11 is a dataflow diagram that illustrates 
example processes for determining training or validation 
data for training a computational model according to various 
examples described herein . 
[ 0017 ] FIG . 12 is a dataflow diagram that illustrates 
example processes for updating or operation computational 
model ( s ) , e.g. , using multi - node update processing , accord 
ing to various examples described herein . 

DETAILED DESCRIPTION 

Overview 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0005 ] The detailed description is described with refer 
ence to the accompanying figures . In the figures , the left 
most digit ( s ) of a reference number identifies the figure in 
which the reference number first appears . The use of the 
same reference numbers in different figures indicates similar 
or identical items or features . For brevity of illustration , in 
the diagrams herein , an arrow beginning with a diamond 
connects a first component or operation ( at the diamond end ) 
to at least one second component or operation that is or can 
be included in the first component or operation . 
[ 0006 ] FIG . 1 is a block diagram depicting example sce 
narios for determining and operating computational models 
as described herein . 
[ 0007 ] FIG . 2 is a block diagram depicting an example 
computing device configured to participate in determining or 
operating computational model ( s ) according to various 
examples described herein . 

[ 0018 ] Some examples herein relate to detection or clas 
sification of malware , e.g. , concealed malware . Some 
examples herein relate to determining of computational 
models that can detect malware or that can classify files ( or 
other data streams , and likewise throughout this discussion ) . 
Classifications can include , e.g. , malware vs. non - malware , 
or what type of malware ( e.g. , virus vs. Trojan ) . Some 
examples relate to determining representations of files that 
permit automatically sorting multiple files based on their 
characteristics , e.g. , to permit effective training and valida 
tion of computational models . Some examples permit reduc 
ing the time or memory or network bandwidth required to 
train computational models . Some examples permit more 
effectively detecting or classifying malware samples . 
[ 0019 ] Some examples herein determine a signature of a 
data stream including data stored in , e.g. , a file , a disk boot 
sector or partition root sector , or a block of memory , or a 
portion thereof . For brevity , the term “ sample ” herein refers 
to a named collection of data from which a data stream can 
be retrieved , e.g. , an individual malware file , a user file such 
as a docment , a benign executable , or a malware - infected 
user file . The signature can indicate characteristics of the 
data stream , so that the degree of similarity between the 
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signatures of two streams is positively correlated with the 
likelihood that those two files are , e.g. , from the same family 
of malware . Signatures can include , but are not limited to , 
conventional antivirus - detection signatures . 
[ 0020 ] Some examples determine training and validation 
sets of data based on comparisons of the signatures and then 
use the training and validation sets to determine a compu 
tational model . Some examples select the training and 
validation sets so that the signatures of items in the training 
set are generally different from the signatures of items in the 
validation set , e.g. , using locality - sensitive hashing ( LSH ) or 
other nearest - neighbor ( s ) techniques . Some examples herein 
can determine a computational model that avoids overfitting 
and is more accurate for new inputs than can prior schemes . 
Some examples can significantly reduce the amount of time 
required to prepare the computational model , compared to 
prior schemes , by pre - arranging the training and validation 
sets in memory . 
[ 0021 ] While example techniques described herein may 
refer to analyzing a program that may potentially be mal 
ware , it is understood that the techniques may also apply to 
other non - malicious software that includes obfuscation or 
other transformation of computer - executable instructions 
( “ code ” ) of the software . For example , a web server appli 
cation may include code obfuscation to make it more 
difficult to locate security vulnerabilities in the code of the 
web server application . A digital video player may include 
code obfuscation to make it more difficult to reverse engi 
neer a video decoding process . A commercial software 
product may include code obfuscation to protect its serial 
number algorithm so that it is more difficult for a software 
pirate to generate registration numbers for free . A crypto 
graphic software product may include code obfuscation to 
hide a cryptographic algorithm . Accordingly , analysis of 
data streams discussed herein may be used by anti - malware 
security researchers , white - hat vulnerability researchers , 
interoperability developers , anti - piracy testers or other ana 
lysts of data streams . The above examples are not limiting ; 
not all tools used in generating programs obfuscate their 
inputs . 
[ 0022 ] Various entities , configurations of electronic 
devices , and methods for determining and operating com 
putational models , e.g. , for stream - analysis or malware 
detection applications , are described herein . While many 
examples described herein relate to servers and other non 
consumer electronic devices , other types of electronic 
devices can be used , e.g. , as discussed with reference to FIG . 
1. References throughout this document to " users ” can refer 
to human users or to other entities interacting with a com 
puting system . 

illustrated as , e.g. , desktop computers , laptop computers , 
tablet computers , and / or cellular phones , computing device 
( s ) 102 and / or 104 can include a diverse variety of device 
categories , classes , and / or types and are not limited to a 
particular type of device . 
[ 0024 ] In the illustrated example , computing device ( s ) 
102 ( 1 ) -102 ( N ) can be computing nodes in a cluster com 
puting system 106 , e.g. , a cloud service such as GOOGLE 
CLOUD PLATFORM or another cluster computing system 
( " computing cluster ” or “ cluster " ) having several discrete 
computing nodes ( device ( s ) 102 ) that work together to 
accomplish a computing task assigned to the cluster as a 
whole . In some examples , computing device ( s ) 104 can be 
clients of cluster 106 and can submit jobs to cluster 106 
and / or receive job results from cluster 106. Computing 
devices 102 ( 1 ) -102 ( N ) in cluster 106 can , e.g. , share 
resources , balance load , increase performance , and / or pro 
vide fail - over support and / or redundancy . Computing 
devices 104 can additionally or alternatively operate in a 
cluster and / or grouped configuration . In the illustrated 
example , computing devices 104 communicate with com 
puting devices 102. Additionally or alternatively , computing 
devices 104 can communicate with cluster 106 , e.g. , with a 
load balancing or job - coordination device of cluster 106 , 
and cluster 106 or components thereof can route transmis 
sions to individual computing devices 102 . 
[ 0025 ] Some cluster - based systems can have all or a 
portion of the cluster deployed in the cloud . Cloud comput 
ing allows for computing resources to be provided as 
services rather than a deliverable product . For example , in a 
cloud - computing environment , resources such as computing 
power , software , information , and / or network connectivity 
are provided ( for example , through a rental agreement ) over 
a network , such as the Internet . As used herein , the term 
" computing ” used with reference to computing clusters , 
nodes , and jobs refers generally to computation , data 
manipulation , and / or other programmatically - controlled 
operations . The term “ resource ” used with reference to 
clusters , nodes , and jobs refers generally to any commodity 
and / or service provided by the cluster for use by jobs . 
Resources can include processor cycles , disk space , random 
access memory ( RAM ) space , network bandwidth ( uplink , 
downlink , or both ) , prioritized network channels such as 
those used for communications with quality - of - service 
( QoS ) guarantees , backup tape space and / or mounting / un 
mounting services , electrical power , etc. Cloud resources 
can be provided for internal use within an organization or for 
sale to outside customers . In some examples , computer 
security service providers can operate cluster 106 , or can 
operate or subscribe to a cloud service providing computing 
resources . 

Illustrative Environment 

[ 0023 ] FIG . 1 shows an example scenario 100 in which 
examples of computational - model - based systems can oper 
ate and / or in which computational - model determination 
and / or use methods such as those described herein can be 
performed . Illustrated devices and / or components of sce 
nario 100 include computing device ( s ) 102 ( 1 ) -102 ( N ) ( indi 
vidually and / or collectively referred to herein with reference 
102 ) , where N is any integer greater than and / or equal to 1 , 
and computing devices 104 ( 1 ) -104 ( K ) ( individually and / or 
collectively referred to herein with reference 104 ) , where K 
is any integer greater than and / or equal to 1. In some 
examples , N = K ; in other examples , N > K or N < K . Although 

[ 0026 ] In some examples , as indicated , computing device 
( s ) , e.g. , computing devices 102 ( 1 ) and 104 ( 1 ) , can inter 
communicate to participate in and / or carry out computa 
tional - model determination and / or operation as described 
herein . For example , computing device 104 ( 1 ) can be or 
include a data source owned or operated by or on behalf of 
a user , and computing device 102 ( 1 ) can be a computational 
model determination and operation system , as described 
below . 
[ 0027 ] Different devices and / or types of computing 
devices 102 and 104 can have different needs and / or ways of 
interacting with cluster 106. For example , computing 
devices 104 can interact with cluster 106 with discrete 
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request / response communications , e.g. , for queries and 
responses using an already - determined computational 
model . Additionally and / or alternatively , computing devices 
104 can be data sources and can interact with cluster 106 
with discrete and / or ongoing transmissions of data to be 
used as input to a computational model or a process of 
determining a computational model . For example , a data 
source in a personal computing device 104 ( 1 ) can provide to 
cluster 106 data of newly - installed executable files , e.g. , 
after installation and before execution of those files . The 
data of newly - installed executable files can include , e.g. , 
data such as that as described herein with respect to training 
data streams 114 or trial data streams 116. This can provide 
improved accuracy of outputs of a computational model 
( CM ) , e.g. , a malware - detection CM , by increasing the 
amount of data input to the CM . Additionally and / or alter 
natively , computing devices 104 can be data sinks and can 
interact with cluster 106 with discrete and / or ongoing 
requests for data output from a CM , e.g. , updates to firewall 
or routing rules based on changing network conditions . 
[ 0028 ] In some examples , computing devices 102 and / or 
104 can communicate with each other and / or with other 
computing devices via one or more network ( s ) 108. In some 
examples , computing devices 102 and 104 can communicate 
with external devices via network ( s ) 108. For example , 
network ( s ) 108 can include public networks such as the 
Internet , private networks such as an institutional and / or 
personal intranet , and / or combination ( s ) of private and pub 
lic networks . Communications between computing devices 
102 and / or 104 via network ( s ) 108 can be structured , e.g. , 
according to defined application programming interfaces 
( APIs ) . For example , data can be retrieved via network ( s ) 
108 , e.g. , using a Hypertext Transfer Protocol ( HTTP ) 
request such as a GET to a Web Services and / or Represen 
tational State Transfer ( REST ) API endpoint . Remote Pro 
cedure Call ( RPC ) APIs or other types of APIs can addi 
tionally alternatively be used for network 
communications . 
[ 0029 ] In some examples , computing devices 102 and / or 
104 , e.g. , laptops , smartphones , and / or other computing 
devices 102 and / or 104 described herein , interact with an 
entity 110 ( shown in phantom ) . The entity 110 can include 
systems , devices , parties such as users , and / or other features 
with which computing devices 102 and / or 104 can interact . 
For brevity , examples of entity 110 are discussed herein with 
reference to users of a computing system ; however , these 
examples are not limiting . In some examples , computing 
device 104 is operated by entity 110 , e.g. , a user . In some 
examples , computing devices 102 operate CM ( s ) to deter 
mine a model output corresponding to a file on a user's 
computing device 104 , and transmit an indication of the 
model output via network 108 to the computing device 104 , 
e.g. , a smartphone . The computing device 104 can , e.g. , 
present information of the model output to entity 110 . 
Examples processing of trial files , e.g. , from a user's com 
puting device 104 , are discussed in more detail below with 
reference to at least FIG . 3 or 12 . 
[ 0030 ] Computing device ( s ) 102 can store one or more 
computational model ( s ) , CM ( s ) , 112 , individually and / or 
collectively referred to herein with reference 112. In some 
examples , algorithms for determining or operating CMS ) 
112 as described herein can be performed on a computing 
device ( e.g. , computing device 102 ) , such as a smart phone , 
a tablet , a desktop computer , a server , a server blade , a 

supercomputer , etc. The resulting models can be used on 
such computing devices and / or on computing devices ( e.g. , 
computing device 104 ) having one or more input devices , 
such as a physical keyboard , a soft keyboard , a touch screen , 
a touch pad , microphone ( s ) , and / or camera ( s ) . In some 
examples , functions described herein can be shared between 
one or more computing device ( s ) 102 and one or more 
computing device ( s ) 104. For example , the computing 
device ( s ) 102 can determine a CM 112 initially and the 
computing device ( s ) 104 can perform incremental updating 
of the CM 112 . 
[ 0031 ] In various examples , e.g. , of CM ( s ) 112 for deter 
mining signatures of files , classifying files , determining 
whether files contain malware , or other use cases noted 
herein , the computational model ( s ) 112 may include , but are 
not limited to , multilayer perceptrons ( MLPs ) , neural net 
works ( NNs ) , gradient - boosted NNs , deep neural networks 
( DNNs ) , recurrent neural networks ( RNNs ) such as long 
short - term memory ( LSTM ) networks or Gated Recurrent 
Unit ( GRU ) networks , decision trees such as Classification 
and Regression Trees ( CART ) , boosted trees or tree 
ensembles such as those used by the “ xgboost ” library , 
decision forests , autoencoders ( e.g. , denoising autoencoders 
such as stacked denoising autoencoders ) , Bayesian net 
works , support vector machines ( SVMs ) , or hidden Markov 
models ( HMMs ) . The CMs 112 can additionally or alterna 
tively include regression models , e.g. , linear or nonlinear 
regression using mean squared deviation ( MSD ) or median 
absolute deviation ( MAD ) to determine fitting error during 
the regression ; linear least squares or ordinary least squares 
( OLS ) ; fitting using generalized linear models ( GLM ) ; hier 
archical regression ; Bayesian regression ; or nonparametric 
regression . 
[ 0032 ] The CMs 112 can include parameters governing or 
affecting the output of the CM 112 for a particular input . 
Parameters can include , but are not limited to , e.g. , per 
neuron , per - input weight or bias values , activation - function 
selections , neuron weights , edge weights , tree - node weights , 
or other data values . A training module 226 , FIG . 2 , can be 
configured to determine CMs 112 , e.g. , to determine values 
of parameters in CMs 112. For example , CMs 112 can be 
determined using an iterative update rule such as gradient 
descent ( e.g. , stochastic gradient descent or AdaGrad ) with 
backpropagation . 
[ 0033 ] In some examples , the training module 226 can 
determine the CMs 112 based at least in part on “ hyperpa 
rameters , " values governing the training process . Example 
hyperparameters can include learning rate ( s ) , momentum 
factor ( s ) , minibatch size , maximum tree depth , regulariza 
tion parameters , class weighting , or convergence criteria . In 
some examples , the training module 226 can determine the 
CMs 112 in an iterative process involving updating and 
validation . The training data set can be used to update the 
CMs 112 , and the validation data set can be used in 
determining ( 1 ) whether the updated CMs 112 meet training 
criteria or ( 2 ) how the next update to the CMs 112 should be 
performed . Examples are discussed herein , e.g. , with refer 
ence to at least FIG . 8 . 
[ 0034 ] The computing device ( s ) 102 can be configured to 
use the determined parameter values of trained CM ( s ) 112 
to , e.g. , categorize a file with respect to malware type , and / or 
to perform other data analysis and / or processing . In some 
examples , the computing device 104 can be configured to 
communicate with computing device ( s ) 102 to operate a CM 

or 



US 2021/0075798 A1 Mar. 11 , 2021 
4 

112. For example , the computing device 104 can transmit a 
request to computing device ( s ) 102 for an output of the 
CM ( s ) 112 , receive a response , and take action based on that 
response . For example , the computing device 104 can pro 
vide to entity 110 information included in the response , or 
can quarantine or delete file ( s ) indicated in the response as 
being associated with malware . 
[ 0035 ] In the illustrated example , computing device ( s ) 104 
provide data streams ( or portions thereof , and likewise 
throughout this document ) to computing device ( s ) 102. The 
illustrated data streams include training data stream 114 and 
trial data stream 116. Although only one of each stream 114 
and 116 is shown , multiple of either can be used . The 
computing device ( s ) 102 can determine or operate CM 112 
based at least in part on the stream ( s ) 114 and 116. The 
computing device ( s ) 102 can provide to computing device ( s ) 
104 a signature 118 , a classification 120 , or other outputs of 
CM 112. In some examples , at least one of , or all of , the 
training data stream ( s ) 114 or trial data stream ( s ) can com 
prise or consist of the partial or full contents of respective 
digital files , e.g. , executable files , data files , or system files . 
In some examples , training data stream 114 can be used in 
determining CM 112 , and CM 112 can be operated to 
determine whether trial data stream 116 is associated with 
malware . 
[ 0036 ] In the illustrated example , trial data stream 116 
includes bytes of an executable file ( “ EXE ” ) 122 , e.g. , a 
WINDOWS Portable Executable ( PE ) -format file . The spe 
cific illustrated form and contents of executable file 122 are 
provided for clarity of explanation , and are not limiting . The 
illustrated executable file 122 includes a DOS ( Disk Oper 
ating System ) header , a PE header , and a TEXT segment 
including computer - executable instructions . In this example , 
the first byte of the TEXT segment is an entry point at which 
execution begins , e.g. , after an operating system loads the 
executable file 122 into memory . Trial data stream 116 can 
include any number of bytes of the executable file 122 , e.g. , 
of headers , the TEXT segment , or other segments ( e.g. , a 
DATA segment holding compile - time - initialized data ) . In 
some examples , trial data stream 116 includes ten ( or 
another number of ) bytes beginning with the byte at the 
entry point . Analyzing bytes beginning with or shortly after 
the entry point can permit identifying characteristics of 
tool ( s ) used in preparing the executable file , since such tools 
often embed specific code sequences in the files they output . 
[ 0037 ] In some examples , data streams 114 and 116 have 
the same format ( although this is not required ) . Moreover , in 
some examples , CM 112 can perform the same processing 
on a training data stream 114 as on a trial data stream 116 . 
Accordingly , discussion herein of formats or processing of 
trial data stream 116 can additionally or alternatively apply 
to training data stream 114 , and vice versa , unless otherwise 
expressly specified . 
[ 0038 ] In the illustrated example , the signature 118 
includes a vector of numerical values , shown as real num 
bers , although at least some of the numerical values can 
additionally or alternatively be fractions , integers , imaginary 
numbers , complex numbers , or other numerical values . The 
numerical values can be or include feature values , e.g. , 
representing the contents or structure of the data in the data 
stream 116. In some examples , the values can be between 
zero and unity , or at least zero , or at most zero , or unre 
stricted . The values can be stored in various formats , includ 
ing two's - complement or sign - magnitude integers or IEEE 

754 four - byte ( “ single ” ) or eight - byte ( " double " ) floating 
point formats . The term “ float value , " as used herein , can 
refer to a value formatted as a single , double , or any other 
floating - point format . In some examples , signature 118 can 
include scalar value ( s ) , e.g. , numeric , character , string , or 
boolean value , or compound value ( s ) such as tuples , struc 
tures , or arrays . A compound value can include at least one 
of a scalar value or another compound value . In some 
examples , a signature 118 can include a copy of part or all 
of the respective stream 114 or 116. In some examples , a 
signature 118 can include text , e.g. , the name of at least one 
of a family of malware or of a specific virus or other 
malicious program . 
[ 0039 ] In the illustrated example , the classification 120 
includes a bitmask , attribute list , or other representation of 
categories to which the trial data stream 116 belongs , as 
determined by CM 112. For example , classification 120 can 
include a Boolean value indicating whether or not trial data 
stream 116 is associated with malware , or an enumerated 
value indicating with which of several categories trial data 
stream 116 is associated ( e.g. , “ benign , ” “ virus , ” or “ spy 
ware ” ) . Classification 120 can additionally or alternatively 
include one or more confidence values or other values 
indicating the likelihood of a classification , e.g. , a “ spyware ” 
value of 0.42 indicating a 42 % likelihood that the sample is 
spyware . In an example , classification 120 can include 
multiple confidence values for respective categories of mal 
ware ( e.g. , “ spyware = 0.42 ; worm = 0.05 % ) . 
[ 0040 ] Malware programs and other files are often pre 
pared by or using various software tools , referred to herein 
for brevity as “ generators . ” Generator processing can 
remove or change characteristics of a file , e.g. , by modifying 
headers or removing markers commonly found in a non 
processed file . Example generators can include compilers , 
linkers , librarians , or other software - development tools use 
ful in preparing computer - executable instructions ( “ code ” ) ; 
packers , encryptors , or other code - obfuscation tools ; or 
installation , copy - protection , archiving , or self - extractor 
generation tools useful in packaging the executable code 
into an executable file or in assembling an executable file 
from components . 
[ 0041 ] A data stream 114 or 116 , e.g. , an executable file 
122 , can be associated with malware if , e.g. , the data stream 
is itself malicious code , is ( or is likely ) at least a portion of 
a grouping of malicious code , or is output by a generator 
commonly used for generating malware . For example , a data 
stream 114 or 116 may include a decruncher that decom 
presses data from a file into RAM . A decruncher itself may 
be entirely benign . However , the decompressed data may be 
or include executable code of a malicious program , 
dynamic - link library ( DLL ) , or other computer - executable 
module . Accordingly , a decruncher commonly used to com 
press malicious code , or compressed malicious code itself , 
may be associated with malware , as indicated by the clas 
sification 120. Some generators are used for malware , and 
are also used for legitimate software . A determination that a 
data stream is associated with malware does not necessarily 
require or guarantee that the data stream in fact be malware . 
In some examples , classification 120 , discussed below , can 
be used by a security analyst in triaging data streams , and 
can permit the security analyst to readily separate data 
streams based on a likelihood they are in fact malware 
[ 0042 ] In some examples , malware comprises malicious 
data instead of or in addition to malicious code . Such data 
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is also considered to be associated with malware . For 
example , some programs may have bugs that prevent them 
from correctly processing certain inputs . Examples include 
Structured Query Language ( SQL ) injection attacks , in 
which a program populates a query with unescaped external 
data . For example , the query template “ SELECT cost from 
Products WHERE name LIKE ' % { $ name } % ?; " can be 
abused by providing malicious data to be populated in place 
of the placeholder " { $ name } ” . When the malicious data 
$ name = " foo ' ; DROP TABLE Products ; -- ” is substituted 
into the query template , for example , the resulting query will 
cause the “ Products ” table of the database to be deleted 
( " dropped ” ) , causing unexpected loss of data . In another 
example , malicious data can include malformed UTF - 8 
( Unicode Transformation Format 

[ 0043 ] 8 bit ) that causes a buggy UTF - 8 processing 
routine to enter an unexpected or erroneous state . In 
still another example , malicious data can include data 
that is too large or too complicated for a processing 
routine to handle , e.g. , a Christmas - tree packet . Such 
data can trigger buffer overflows or other vulnerabili 
ties within processing routines . Data designed to trigger 
or exploit vulnerabilities is associated with malware . 

[ 0044 ] Except as expressly indicated otherwise , a deter 
mination of whether a trial data stream 116 is associated with 
malware is carried out programmatically by or using CM 
112 according to techniques herein . Various examples herein 
can be performed without human judgment of whether a 
program or data block is in fact malicious . Using CM 112 
can permit more readily identifying potential computational 
threats , e.g. , in the context of an antivirus program or cloud 
security service . 
[ 0045 ] By way of example and not limitation , computing 
device ( s ) 102 and / or 104 can include , but are not limited to , 
server computers and / or blade servers such as Web servers , 
map / reduce servers and / or other computation engines , and / 
or network - attached - storage units ( e.g. , 102 ( 1 ) ) , laptop com 
puters , thin clients , terminals , and / or other mobile comput 
ers ( e.g. , 104 ( 1 ) ) , wearable computers such as smart watches 
and / or biometric and / or medical sensors , implanted comput 
ing devices such as biometric and / or medical sensors , com 
puter navigation client computing devices , satellite - based 
navigation system devices including global positioning sys 
tem ( GPS ) devices and / or other satellite - based navigation 
system devices , personal data assistants ( PDAs ) , and / or 
other specialized portable electronic devices ( e.g. , 104 ( 2 ) ) , 
tablet computers , tablet hybrid computers , smartphones , 
mobile phones , mobile phone - tablet hybrid devices , and / or 
other telecommunication devices ( e.g. , 104 ( 3 ) ) , portable 
and / or console - based gaming devices and / or other entertain 
ment devices such as network - enabled televisions , set - top 
boxes , media players , cameras , and / or personal video 
recorders ( PVRs ) ( e.g. , 104 ( 4 ) , depicted as a gamepad ) , 
automotive computers such as vehicle control systems , 
vehicle security systems , and / or electronic keys for vehicles 
( e.g. , 104 ( K ) , depicted as an automobile ) , desktop comput 
ers , and / or integrated components for inclusion in comput 
ing devices , appliances , and / or other computing device ( s ) 
configured to participate in and / or carry out computational 
model determination and / or operation as described herein , 
e.g. , for file - analysis or malware - detection purposes . 
[ 0046 ] Network ( s ) 108 can include any type of wired 
and / or wireless network , including but not limited to local 
area networks ( LANs ) , wide area networks ( WANs ) , satel 

lite networks , cable networks , Wi - Fi networks , WiMAX 
networks , mobile communications networks ( e.g. , 3G , 4G , 
and so forth ) and / or any combination thereof . Network ( s ) 
108 can utilize communications protocols , such as , for 
example , packet - based and / or datagram - based protocols 
such as Internet Protocol ( IP ) , Transmission Control Proto 
col ( TCP ) , User Datagram Protocol ( UDP ) , other types of 
protocols , and / or combinations thereof . Moreover , network 
( s ) 108 can also include a number of devices that facilitate 
network communications and / or form a hardware infrastruc 
ture for the networks , such as switches , routers , gateways , 
access points , firewalls , base stations , repeaters , backbone 
devices , and the like . Network ( s ) 108 can also include 
devices that facilitate communications between computing 
devices 102 and / or 104 using bus protocols of various 
topologies , e.g. , crossbar switches , INFINIBAND switches , 
and / or FIBRE CHANNEL switches and / or hubs . 
[ 0047 ] In some examples , network ( s ) 108 can further 
include devices that enable connection to a wireless net 
work , such as a wireless access point ( WAP ) . Examples 
support connectivity through WAPs that send and receive 
data over various electromagnetic frequencies ( e.g. , radio 
frequencies ) , including WAPs that support Institute of Elec 
trical and Electronics Engineers ( IEEE ) 802.11 standards 
( e.g. , 802.11g , 802.11n , and so forth ) , other standards , e.g. , 
BLUETOOTH , cellular - telephony standards such as GSM , 
LTE , and / or WiMAX . 
[ 0048 ] As noted above , network ( s ) 108 can include public 
network ( s ) or private network ( s ) . Example private networks 
can include isolated networks not connected with other 
networks , such as MODBUS , FIELDBUS , and / or Industrial 
Ethernet networks used internally to factories for machine 
automation . Private networks can also include networks 
connected to the Internet and / or other public network ( s ) via 
network address translation ( NAT ) devices , firewalls , net 
work intrusion detection systems , and / or other devices that 
restrict and / or control the types of network packets permit 
ted to flow between the private network and the public 
network ( s ) . 
[ 0049 ] Different networks have different characteristics , 
e.g. , bandwidth or latency , and for wireless networks , acces 
sibility ( open , announced but secured , and / or not 
announced ) , and / or coverage area . The type of network 108 
used for any given connection between , e.g. , a computing 
device 104 and cluster 106 can be selected based on these 
characteristics and on the type of interaction , e.g. , ongoing 
streaming or intermittent request - response communications . 

Illustrative Configurations 
[ 0050 ] FIG . 2 is an illustrative diagram that shows 
example components of a computing device 200 , which can 
represent computing device ( s ) 102 and / or 104 , and which 
can be and / or implement a computational - model determi 
nation and / or operation system , device , and / or apparatus , 
according to various examples described herein . Computing 
device 200 can include and / or be included in a system and / or 
device for determining and / or operating a computational 
model as described herein . 
[ 0051 ] Computing device 200 can include and / or be con 
nected to a user interface 202. In some examples , user 
interface 202 can be configured to permit a user , e.g. , entity 
110 and / or a computational - model ( CM ) administrator , to 
operate the CM 112 , or to control and / or otherwise interact 
with cluster 106 and / or computing devices 102 therein . 
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Accordingly , actions such as presenting information of or 
corresponding to an output of a CM 112 to entity 110 can be 
taken via user interface 202 . 
[ 0052 ] In some examples , user interface 202 can include 
various types of output devices configured for communica 
tion to a user and / or to another computing device 200 . 
Output devices can be integral and / or peripheral to comput 
ing device 200. Examples of output devices can include a 
display 204 , a printer , audio speakers , beepers , and / or other 
audio output devices , a vibration motor , linear vibrator , 
and / or other haptic output device , and the like . Display 204 
can include an organic light - emitting - diode ( OLED ) display , 
a liquid - crystal display ( LCD ) , a cathode - ray tube ( CRT ) , 
and / or another type of visual display . Display 204 can be a 
component of a touchscreen , and / or can include a touch 
screen . 

[ 0053 ] User interface 202 can include a user - operable 
input device 206 ( depicted as a gamepad ) . User - operable 
input device 206 can include one or more input devices , 
integral and / or peripheral to computing device 200. The 
input devices can be user - operable , and / or can be configured 
for input from other computing device 200. Examples of 
input devices can include , e.g. , a keyboard , keypad , a mouse , 
a trackball , a pen sensor and / or smart pen , a light pen and / or 
light gun , a game controller such as a joystick and / or game 
pad , a voice input device such as a microphone , voice 
recognition device , and / or speech - recognition device , a 
touch input device such as a touchscreen , a gestural and / or 
motion input device such as a depth camera , a grip sensor , 
an accelerometer , another haptic input , a visual input device 
such as one or more cameras and / or image sensors , and the 
like . User queries can be received , e.g. , from entity 110 , via 
user interface 202 . 
[ 0054 ] Computing device 200 can further include one or 
more input / output ( I / O ) interface ( s ) 208 to allow computing 
device 200 to communicate with input , output , and / or I / O 
devices ( for clarity , some not depicted ) . Examples of such 
devices can include components of user interface 202 such 
as user - operable input devices and output devices described 
above . Other examples of such devices can include power 
meters , accelerometers , and other devices for measuring 
properties of entity 110 , computing device 200 , and / or 
another computing device 102 and / or 104. Computing 
device 200 can communicate via I / O interface 208 with 
suitable devices and / or using suitable electronic / software 
interaction methods . Input data , e.g. , of user inputs on 
user - operable input device 206 , can be received via I / O 
interface 208 ( e.g. , one or more I / O interface ( s ) ) . Output 
data , e.g. , of user interface screens , can be provided via I / O 
interface 208 to display 204 , e.g. , for viewing by a user . 
[ 0055 ] The computing device 200 can include one or more 
processing unit ( s ) 210. In some examples , processing unit ( s ) 
210 can include and / or be connected to a memory 212 , e.g. , 
a RAM and / or cache . Processing units 210 can be operably 
coupled to the I / O interface 208 and to at least one computer 
readable media 214 ( CRM ) , e.g. , a tangible non - transitory 
computer - readable medium . 
[ 0056 ] Processing unit ( s ) 210 can be and / or include one or 
more single - core processors , multi - core processors , CPUs , 
GPUS , GPGPUs , and / or hardware logic components config 
ured , e.g. , via specialized programming from modules and / 
or APIs , to perform functions described herein . For example , 
and without limitation , illustrative types of hardware logic 
components that can be used in and / or as processing units 

210 include Field - programmable Gate Arrays ( FPGAs ) , 
Application - specific Integrated Circuits ( ASICs ) , Applica 
tion - specific Standard Products ( ASSPs ) , System - on - a - chip 
systems ( SOCs ) , Complex Programmable Logic Devices 
( CPLDs ) , Digital Signal Processors ( DSPs ) , and other types 
of customizable processors . For example , processing unit ( s ) 
210 can represent a hybrid device , such as a device from 
ALTERA and / or XILINX that includes a CPU core embed 
ded in an FPGA fabric . These and / or other hardware logic 
components can operate independently and / or , in some 
instances , can be driven by a CPU . In some examples , at 
least some of computing device ( s ) 102 and / or 104 , FIG . 1 , 
can include a plurality of processing units 210 of multiple 
types . For example , the processing units 210 in computing 
device 102 ( N ) can be a combination of one or more GPG 
PUs and one or more FPGAs . Different processing units 210 
can have different execution models , e.g. , as is the case for 
graphics processing units ( GPUs ) and central processing 
unit ( CPUs ) . In some examples at least one processing unit 
210 , e.g. , a CPU , graphics processing unit ( GPU ) , and / or 
hardware logic device , can be incorporated in computing 
device 200 , while in some examples at least one processing 
unit 210 , e.g. , one or more of a CPU , GPU , and / or hardware 
logic device , can be external to computing device 200 . 
[ 0057 ] Computer - readable media described herein , e.g. , 
CRM 214 , includes computer storage media and / or commu 
nication media . Computer storage media includes tangible 
storage units such as volatile memory , nonvolatile memory , 
and / or other persistent and / or auxiliary computer storage 
media , removable and non - removable computer storage 
media implemented in any method and / or technology for 
storage of information such as computer - readable instruc 
tions , data structures , program modules , and / or other data . 
Computer storage media includes tangible and / or physical 
forms of media included in a device and / or hardware com 
ponent that is part of a device and / or external to a device , 
including but not limited to RAM , static RAM ( SRAM ) , 
dynamic RAM ( DRAM ) , phase change memory ( PRAM ) , 
read - only memory ( ROM ) , erasable programmable read 
only memory ( EPROM ) , electrically erasable program 
mable read - only memory ( EEPROM ) , flash memory , com 
pact disc read - only memory ( CD - ROM ) , digital versatile 
disks ( DVDs ) , optical cards and / or other optical storage 
media , magnetic cassettes , magnetic tape , magnetic disk 
storage , magnetic cards and / or other magnetic storage 
devices and / or media , solid - state memory devices , storage 
arrays , network attached storage , storage area networks , 
hosted computer storage and / or memories , storage , devices , 
and / or storage media that can be used to store and maintain 
information for access by a computing device 200 . 
[ 0058 ] In contrast to computer storage media , communi 
cation media can embody computer - readable instructions , 
data structures , program modules , and / or other data in a 
modulated data signal , such as a carrier wave , and / or other 
transmission mechanism . As defined herein , computer stor 
age media does not include communication media . 
[ 0059 ] In some examples , CRM 214 can store instructions 
executable by the processing unit ( s ) 210 , and / or instructions 
executable by external processing units such as by an 
external central processing unit ( CPU ) and / or external pro 
cessor of any type discussed herein . Any of these instruc 
tions are referred to herein as computer - executable instruc 
tions or processor - executable instructions . For example , 
CRM 214 can store instructions of an operating system 216 . 
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CRM 214 can additionally or alternatively store at least one 
executable file 218 , which can represent executable file 122 , 
FIG . 1. Executable file 218 represents any file comprising 
computer - executable instructions , even if those instructions 
are compressed , encrypted , or otherwise obfuscated . In 
some examples , executable file 218 comprises at least one 
header or other information usable by a loader ( e.g. , a 
loading routine such as UNIX / POSIX exec ( 2 ) ) in loading 
the computer - executable instructions from executable file 
218 into a RAM or other high - speed memory , or in other 
wise preparing computer - executable instructions from 
executable file 218 for execution by processing unit ( s ) 210 . 
In the illustrated example , the loader is a component of the 
operating system 216 , although some examples , e.g. , bare 
metal embedded - systems configurations , can include a 
loader but not an operating system 216. Examples herein are 
discussed with reference to executable file 218 and can 
additionally or alternatively be used for other types of files , 
e.g. , data files . 
[ 0060 ] Table 1 shows an example of a portion of execut 
able file 218. Table 1 shows an example of a conventional 
MICROSOFT WINDOWS Portable Executable ( PE ) file , 
but this example is not limiting . Executable file 218 can be , 
for example , an a . out , Common Object File Format 
( COFF ) , MZ ( MS - DOS ) , NE ( WINDOWS 3.1 ) , PE , Mach 
0 , or Executable and Linkable Format ( ELF ) compiled 
object file ( e.g. , a standalone executable or a static or 
dynamic library ) , an ar static - library archive , a Java Archive 
( JAR ) , or a Dalvik Executable ( DEX ) archive . 

TABLE 1 

Offset Field 

programs , and / or applications that are loadable and execut 
able by processing unit ( s ) 210. Processing unit ( s ) 210 can be 
configured to execute modules of the plurality of modules . 
For example , the computer - executable instructions stored on 
the computer - readable media 214 can upon execution con 
figure a computer such as a computing device 200 to 
perform operations described herein with reference to the 
modules of the plurality of modules . The modules stored in 
the computer - readable media 214 can include instructions 
that , when executed by the one or more processing units 210 , 
cause the one or more processing units 210 to perform 
operations described below . For example , the computer 
executable instructions stored on the computer - readable 
media 214 can upon execution configure a computer such as 
a computing device 102 and / or 104 to perform operations 
described herein with reference to the operating system 216 
or the above - listed modules 222-230 . 
[ 0063 ] In some examples not shown , one or more of the 
processing unit ( s ) 210 in one of the computing device ( s ) 102 
and / or 104 can be operably connected to computer - readable 
media 214 in a different one of the computing device ( s ) 102 
and / or 104 , e.g. , via communications interface 232 ( dis 
cussed below ) and network 108. For example , program code 
to perform steps of flow diagrams herein , e.g. , as described 
herein with reference to modules 222-230 , can be down 
loaded from a server , e.g. , computing device 102 ( 1 ) , to a 
client , e.g. , computing device 104 ( K ) , e.g. , via the network 
108 , and executed by one or more processing unit ( s ) 210 in 
computing device 104 ( K ) . 
[ 0064 ] The computing device 200 can also include a 
communications interface 232 , which can include a trans 
ceiver device such as a network interface controller ( NIC ) to 
send and receive communications over a network 108 
( shown in phantom ) , e.g. , as discussed above . As such , the 
computing device 200 can have network capabilities . Com 
munications interface can include any number of network , 
bus , and / or memory interfaces , in any combination , whether 
packaged together and / or separately . In some examples , 
communications interface 232 can include a memory bus 
internal to a particular computing device 102 or 104 , trans 
mitting via communications interface 232 can include stor 
ing the transmitted data in memory 212 or computer - read 
able media 214 , and receiving via communications interface 
232 can include retrieving data from memory 212 or com 
puter - readable media 214. In some examples , the commu 
nications interface 232 can include , but is not limited to , a 
transceiver for cellular ( 3G , 4G , and / or other ) , WI - FI , Ultra 
wideband ( UWB ) , BLUETOOTH , and / or satellite transmis 
sions . The communications interface 232 can include a 
wired I / O interface , such as an Ethernet interface , a serial 
interface , a Universal Serial Bus ( USB ) interface , an 
INFINIBAND interface , and / or other wired interfaces . The 
communications interface 232 can additionally and / or alter 
natively include at least one user - interface device or user 
interface , at least one bus such as a memory bus and / or local 
bus , at least one memory interface , and / or at least one 
hardwired interface such as a 0-20 mA control line . 
[ 0065 ] In some examples , the operating system 216 can 
include components that enable and / or direct the computing 
device 200 to receive data via various inputs ( e.g. , user 
controls such as user - operable input device 206 , network 
and / or communications interfaces such as communications 
interface 232 , devices implementing memory 212 , and / or 
sensors ) , and process the data using the processing unit ( s ) 

Ox00 Pattern : Ox4D 0X5A 

Ox3C Offset of PE header , referred to in this table as " OFS ” . 

OFS + 0x00 Pattern : Ox50 OX45 

OFS + 0x28 Offset of entry point , in this table “ ENTRY ” 

ENTRY + Ox00 The code to be executed after the executable 
file is loaded , typically library - provided startup code 

ENTRY + n A jump from the startup code to the beginning of 
code specific to the particular executable file 

MAIN The code specific to the particular executable file , 
e.g. , compiled from the C main ( ) function . 

[ 0061 ] In some examples , trial data stream 116 can include 
a predetermined number of bytes beginning at address 
ENTRY or at address MAIN in Table 1. In some examples , 
trial data stream 116 can include a predetermined number of 
bytes beginning at the beginning of a particular section of an 
executable file , e.g. , a TEXT or DATA segment . In some 
examples , trial data stream 116 can include a predetermined 
number of bytes beginning at a header with the trial data 
stream 116 , e.g. , an MP3 header or an ID3v2 or VORBIS 
comment block . 
[ 0062 ] Computer - executable instructions or other data 
stored on CRM 214 can additionally or alternatively include 
at least one computational model ( CM ) 220 , which can 
represent CM 112 , FIG . 1 , or instructions of the operating 
system 216 , a representation module 222 , a preparation 
module 224 , a training module 226 , an operation module 
228 , a communications module 230 , and / or other modules , 
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210 to generate output . The operating system 216 can further 
include one or more components that present the output 
( e.g. , display an image on an electronic display 204 , store 
data in memory 212 , and / or transmit data to another com 
puting device 102 or 104. The operating system 216 can 
enable a user ( e.g. , entity 110 ) to interact with the computing 
device 200 using a user interface 202. Additionally , the 
operating system 216 can include components that perform 
various functions generally associated with an operating 
system , e.g. , storage management and internal - device man 
agement . 
[ 0066 ] In some examples , the processing unit ( s ) 210 can 
access the module ( s ) on the computer - readable media 214 
via a bus 234. I / O interface 208 and communications inter 
face 232 can also communicate with processing unit ( s ) 210 
via bus 234. Bus 234 can include , e.g. , at least one of a 
system bus , a data bus , an address bus , a Peripheral Com 
ponent Interconnect ( PCI ) Express ( PCIe ) bus , a PCI bus , a 
Mini - PCI bus , any variety of local , peripheral , and / or inde 
pendent buses , and / or any combination thereof . 
[ 0067 ] In various examples , the number of modules can 
vary higher and / or lower , and modules of various types can 
be used in various combinations . For example , functionality 
described associated with the illustrated modules can be 
combined to be performed by a fewer number of modules 
and / or APIs and / or can be split and performed by a larger 
number of modules and / or APIs . For example , the repre 
sentation module 222 and the preparation module 224 can be 
combined in a single module that performs at least some of 
the example functions described below of those modules , or , 
likewise , the training module 226 and the operation module 
228 , or all four modules 222-228 . In some examples , com 
puter - readable media 214 can include a subset of the above 
described modules . 
[ 0068 ] In the illustrated example , the representation mod 
ule 222 determines a signature 118 of the executable file 
218. For example , the signature can include a locality 
sensitive hash ( LSH ) value of a feature vector associated 
with the executable file 218. Examples are discussed herein , 
e.g. , with reference to at least one of FIG . 3-7 , 9 , 11 , or 12 . 
[ 0069 ] In the illustrated example , the preparation module 
224 determines a training set and a validation set of the 
training data streams 114 based at least in part on the 
signature 118. For example , the preparation module 224 can 
divide a collection of training data streams 114 into the 
training set and the validation set . Examples are discussed 
herein , e.g. , with reference to at least one of FIG . 3 , 4 , 6 , 10 , 

212 or another processor - accessible storage device , e.g. , a 
transmit buffer of communications interface 232. In some 
examples , the classification 120 can indicate whether the 
trial data stream 116 is associated with malware . In some 
examples , CM 220 can be configured to provide a classifi 
cation 120 for any type of trial data stream 116. In other 
examples , CM 220 can be configured to provide a classifi 
cation 120 for trial data stream 116 known to be of a 
particular type , e.g. , of a particular family of malware . For 
example , separate CMS 220 can be determined and operated 
for ransomware and spyware . 
[ 0072 ] In some examples , the operation module 228 can 
determine respective outputs 236 for multiple trial data 
streams 116. The operation module 228 can then locate data 
streams 116 similar to a given data stream 116 based at least 
in part on similarity of the outputs 236 , e.g. , based on 
Euclidean or another distance metric between the respective 
outputs 236 for multiple different data streams 116 ( e.g. , 
files ) . 
[ 0073 ] In some examples , the training module 226 or the 
operation module 228 can operate the CM 220 based at least 
in part on training data stream ( s ) 114 of the validation set to 
evaluate the performance of the CM 220. The CM 220 can 
then be updated based on the evaluation . The arrow from 
operation module 228 to training module 226 depicts coor 
dination between those modules ; alternatively , the evalua 
tion and updating can both be performed by the training 
module 226 . 
[ 0074 ] In the illustrated example , the communications 
module 230 can transmit an indication of the output 236 , 
e.g. , via the communications interface 232. For example , the 
indication can be transmitted to a computing device 104 . 
Examples are discussed herein , e.g. , with reference to FIG . 
1. In some examples , communications module 230 can 
additionally or alternatively receive the executable file 218 
( or another data stream ) via the communications interface 
232 . 
[ 0075 ] In some examples , the operation module 228 , the 
communications module 230 , or another module stored in 
computer - readable media 214 can be configured to receive 
inputs , e.g. , via user - operable input device 206 or from a 
filesystem , transmit corresponding queries to a computing 
device 102 , receive responses from computing device 102 , 
and present the responses , e.g. , via display 204. In some 
examples , determination and operation of CMs are carried 
out on computing device ( s ) 102. In some examples , deter 
mination and operation are carried out on a computing 
device 104. In some of these examples , any of the above 
noted modules can be configured to receive inputs , deter 
mine and / or operate CM ( s ) 112 using instructions of opera 
tion module 228 based at least in part on those inputs , e.g. , 
to determine a model output . In some examples , computer 
executable instructions on computer - readable media 214 can 
include , but are not limited to , instructions of a Web browser , 
smartphone app or desktop application , background service 
conducting or monitoring network communications , or 
instant - messaging client , or can include components of any 
of those configured to perform functions described herein . 
Such programs or components can invoke or include func 
tions of any of the listed modules . 

or 11 . 
[ 0070 ] In the illustrated example , the training module 226 
determines the CM 220 , e.g. , based at least in part on the 
training set . For example , the training module 226 can 
update parameters of a neural network based at least in part 
on the training data streams 114 of the training set . Examples 
are discussed herein , e.g. , with reference to at least one of 
FIG . 3 , 4 , 6 , 8-10 , or 12 . 
[ 0071 ] In the illustrated example , the operation module 
228 operates the CM 220 based at least in part on a trial data 
stream 116 to provide atrial model output . The trial model 
output can include a classification 120. Examples are dis 
cussed herein , e.g. , with reference to at least one of FIG . 3-5 , 
8-10 , or 12. Operation module 228 can provide an output 
236 , e.g. , a signature 118 or classification 120. Output 236 
is shown as stored in computer - readable media 214. Output 
236 can additionally or alternatively be stored in memory 

Illustrative Processes 

[ 0076 ] FIG . 3 is a dataflow diagram that illustrates an 
example process 300 for determining and operating com 
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putational model ( s ) , and related dataflow . Example func 
tions shown in FIG . 3 and other flow diagrams and example 
processes herein can be implemented on and / or otherwise 
embodied in one or more computing device ( s ) 102 and / or 
104 , e.g. , a computing device 200 , e.g. , using software 
running on such device ( s ) , e.g. , software executed by pro 
cessing unit ( s ) 210. For the sake of illustration , the example 
process 300 is described below with reference to processing 
unit 210 and other components shown in FIGS . 1 and 2 that 
can carry out and / or participate in the steps of the exemplary 
method . However , other processing unit ( s ) such as process 
ing unit ( s ) 210 and / or other components of computing 
device ( s ) 102 and / or 104 can carry out step ( s ) of described 
example processes such as process 300. Similarly , exem 
plary method ( s ) shown in FIGS . 4-12 are also not limited to 
being carried out by any specifically - identified components . 
[ 0077 ] The order in which the operations are described in 
each example flow diagram and / or process is not intended to 
be construed as a limitation , and any number of the 
described operations can be combined in any order and / or in 
parallel to implement each process . In each flow diagram , 
fewer than all of the depicted operations can be performed , 
except as expressly noted . Moreover , the operations in each 
of FIGS . 3-12 can be implemented in hardware , software , 
and / or a combination thereof . In the context of software , the 
operations represent computer - executable instructions that , 
when executed by one or more processors , cause the one or 
more processors to perform the recited operations . In the 
context of hardware , the operations represent logic functions 
implemented in circuitry , e.g. , datapath - control and finite 
state - machine sequencing functions . Therefore , descriptions 
of operations below also describe such software or hardware 
structures to carry out the described functions . Operations 
herein can be performed by modules described herein with 
reference to FIG . 2 . 
[ 0078 ] For clarity of explanation , the operations of FIG . 3 
are described in terms of a batch process . However , this is 
not limiting , and the operations of FIG . 3 ( or FIGS . 4-12 ) 
can be performed in a streamed or pipelined manner , or any 
combination of batch , stream , and pipelined processing . 
[ 0079 ] In some examples , at operation 302 , the represen 
tation module 222 determines respective signatures 304 of 
individual training data streams 114 of a plurality of training 
data streams 114. As discussed above , the training data 
streams 114 can be , include , or consist of files or other 
streams of data . Each training data stream 114 can include 
the entirety of a data unit such as a file , or only a portion 
thereof . In some examples , the signature 118 for a training 
data stream 114 can include a feature vector or hash value of 
the training data stream 114 , or other values described above 
with reference to FIG . 1. In some examples , the represen 
tation module 222 can determine the signatures as LSH 
values of or otherwise associated with the respective training 
data streams 114. Examples of feature vectors and LSH are 
discussed herein with reference to operation 402 , FIG . 4 , and 
to FIGS . 5 and 11 . 
[ 0080 ] In some examples , the representation module 222 
can determine at least one of the signatures 304 including or 
consisting of a hash of at least a portion of the respective 
training data stream 114. For example , the representation 
module 222 can compute a cryptographic hash value , e.g. , a 
Secure Hash Algorithm 2-256 bit ( SHA - 256 ) , SHA - 3 , 
Skein , or other cryptographic hash value , of at least part of 
the respective training data stream 114. In some examples , 

the representation module 222 can determine at least one of 
the signatures 304 including or consisting of a value deter 
mined using context - triggered piecewise hashing , e.g. , the 
ssdeep hash , or another content - dependent hash technique . 
[ 0081 ] In some examples , at least one of the plurality of 
training data streams 114 comprises at least part of an 
executable file 218. For example , each training data streams 
114 can include at least part of a respective executable file 
218. In some examples , no two training data streams 114 are 
associated with the same executable file 218. In some 
examples , at least two of the training data streams 114 are 
associated with the same executable file 218. For example , 
a fat binary including code for multiple processor architec 
tures can be associated with multiple training data streams 
114 , one for each architecture . 
[ 0082 ] In some examples , at operation 306 , the prepara 
tion module 224 determines a training set 308 comprising at 
least some training streams 310 of the plurality of training 
data streams 114 and a validation set 312 comprising at least 
some validation streams 314 of the plurality of training data 
streams 114. In some examples , at least one of the training 
set 308 and the validation set 312 additionally includes at 
least some labels indicating target model outputs associated 
with the respective training streams 310 or validation 
streams 314. In some examples of training a computational 
model 220 to determine a classification 120 of a data stream , 
the respective labels can include respective classifications 
120 of the respective training streams 310 or validation 
streams 314. For example , some of the training streams 310 
or validation streams 314 can be associated with malware 
( for brevity , " dirty " ) , some of the training streams 310 or 
validation streams 314 can be not associated with malware 
( “ clean ” ) , and labels for the training streams 310 or valida 
tion streams 314 can indicate whether or not respective 
streams are associated with malware . In some examples , the 
preparation module 224 can select the training set 308 and 
the validation set 312 so that each of the training set 308 and 
the validation set 312 includes at least one clean stream and 
at least one dirty stream . 
[ 0083 ] The preparation module 224 can select the training 
set 308 and the validation set 312 based at least in part on 
the signatures 118 and a predetermined difference criterion 
316. In some examples , the preparation module 224 can 
select the validation set 312 so that each validation data 
stream 314 is dissimilar to , i.e. , satisfies the predetermined 
difference criterion 316 with respect to , each training stream 
310. This can reduce the risk of overfitting of computational 
model ( CM ) 220 , since a computational model 220 tested on 
the validation streams 314 will not have been trained on 
similar training streams 310. In some examples , the prede 
termined difference criterion 316 is defined with respect to 
the signatures 304 , as discussed in more detail below . For 
example , the predetermined difference criterion 316 can 
define a threshold for difference between training data 
streams 114 or signatures 304 thereof above which two 
training data streams 114 will be considered distinct . 
[ 0084 ] In some examples , the training set 308 and the 
validation set 312 can be disjoint ( i.e. , no individual training 
data stream 114 is in both the training set 308 and the 
validation set 312 ) , but this is not required . In some 
examples , fewer than 5 % ( or 10 % , 15 % , 25 % , or 50 % ) of 
the training data streams 114 in the training set 308 are also 
in the validation set 312 , or vice versa , or both . 
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[ 0085 ] In some examples , the preparation module 224 can 
cluster the training data streams 114 into two clusters , one 
cluster for the training streams 310 and the other cluster for 
the validation streams 314. Clustering can be performed 
using hierarchical clustering , k - means ( e.g. , 2 - means ) clus 
tering , k - medoids ( e.g. , 2 - medoids ) clustering , or other 
clustering algorithms or techniques . In some examples , the 
preparation module 224 can select without replacement from 
the training data streams 114 and allocate each selected 
training data stream 114 to either the training set 308 or the 
validation set 312 based on differences between the signa 
ture 304 of the selected training data stream 114 and the 
signature ( s ) of the already - allocated training stream ( s ) 310 
or validation stream ( s ) 314 . 
[ 0086 ] In some examples , the preparation module 224 
computes a locality sensitive hash ( LSH ) or other signature 
304 for each training data stream and allocates each stream 
to exactly one of the training set 304 or the validation set 312 
so that there is no particular LSH value or other signature 
304 common to streams in both sets 304 , 312. In some 
examples , the preparation module 224 separates training 
streams 310 from validation streams 314 based on detection 
names derived using conventional anti - virus signatures . In 
some examples , related malware samples , e.g. , as indicated 
by a common prefix in the detection name ( e.g. , " Burger ” or 
“ Silly ” ) , can be placed entirely in the training set 304 or 
entirely in the validation set 312 , rather than being split 
between the two sets 304 , 312. In some examples , malware 
samples are named according to Computer Antivirus 
Research Organization ( CARO ) conventions , and sets of 
samples that share a CARO family name , or a family name 
plus variant name , are placed in their entirety in either 
training set 304 or validation set 312. In some examples , sets 
of samples sharing a product name , e.g. , in the Portable 
Executable VERSIONINFO or other metadata , are placed in 
their entirety in either training set 304 or validation set 312 . 
[ 0087 ] In some examples , related malware samples can be 
placed primarily in the training set 304 or primarily in the 
validation set 312. For example , out of a group of related 
samples , the number of the samples in one of the training set 
304 and the validation set 312 can be at most 25 % of the 
number of the samples in the other of the training set 304 and 
the validation set 312 ( or other percentages , e.g. , 10 % , 5 % , 
or 1 % ) . In any examples in this paragraph or the preceding 
discussion , beginning with operation 306 , a set of samples 
considered to be similar can be apportioned so that at most 
a selected percentage of the samples is in one of the training 
set 304 and the validation set 312 and the remainder of the 
samples are in the other of the training set 304 and the 
validation set 312. Selected percentages can include , e.g. , 
1 % , 5 % , 10 % , or 25 % . Further examples of operation 306 
are discussed herein with reference to at least one of FIG . 4 , 
6 , 10 , or 11 , or to predetermined difference criterion 316 . 
[ 0088 ] In some examples , at operation 318 , the training 
module 226 determines a CM 220 based at least in part on 
the training set 308. The CM 220 can be configured to take 
a signature 118 as input and provide a classification 120 as 
output . In some examples , the CM 220 can include a neural 
network , decision tree , decision forest , support vector clas 
sification , support vector regression , logistic regression , 
Gaussian process regression or other type of model 
described herein with reference to CM 112. For example , the 
training module 226 can perform stochastic gradient descent 
to train a neural network or decision tree , or can perform 

another computational - model determining process or algo 
rithm discussed herein . In some examples , the training 
module 226 can perform minibatch - based training . In some 
examples , depicted using a dashed line , the training module 
226 can run at least one training epoch , then validate using 
the validation set 312. Examples are discussed herein , e.g. , 
with reference to operations 408-414 , FIG . 4 , or FIG . 8 or 
10 . 

[ 0089 ] In some examples , at operation 318 , the training 
module 226 ( or the operation module 228 , and likewise 
throughout this paragraph ) can determine a plurality of 
partitions of the training set based at least in part on the 
signatures . Each partition of the plurality of partitions can 
include or consist of at least one of the data streams of the 
training set . The training module 226 can provide individual 
partitions of the plurality of partitions to respective com 
puting nodes of a plurality of computing nodes via a 
communications interface 232 communicatively connected 
with the processing unit ( s ) 210. The training module 226 can 
receive respective results from individual computing nodes 
of the plurality of computing nodes . The training module 
226 can then determine the CM based at least in part on the 
results . Examples are discussed herein , e.g. , with reference 
to process 900 , FIG . 9 . 
[ 0090 ] Throughout this disclosure , the term “ node ” refers 
to a device or portion of a device configured to perform 
functions described herein , e.g. , neural - network training or 
other computational - model determination . In at least one 
example , training module 226 executes on each of a plurality 
of computing devices 200 , and each computing device 200 
has exactly one single - core processing unit 210. Each such 
computing device 200 is a node in this example . In some 
examples , training engine 202 executes on a single comput 
ing device 200 having a plurality of multi - core processing 
units 210. In such examples , each core of the multi - core 
processing units 210 represents a node . Other combinations , 
and points between these extremes , can also be used . For 
example , an individual processing unit 210 , e.g. , an accel 
erator such as an FPGA , can include or implement one or 
more nodes . In other examples , multiple cores of a process 
ing unit 210 can be configured to operate together as a single 
node . 

[ 0091 ] In some examples , at operation 320 , the operation 
module 228 operates the CM 220 based at least in part on a 
trial data stream 116 to provide a trial model output 322. For 
example , the operation module 228 can determine a feature 
vector of the trial data stream 116 and apply the feature 
vector to the trained CM 220 to determine a classification 
120 as the trial model output 322. In some examples , the trial 
model output 322 indicates whether the trial data stream 116 
( e.g. , executable instructions or data ) is associated with 
malware . In an example in which the CM 220 includes a 
neural network , the operation module 228 can apply multi 
plication , summing , and activation functions to successive 
layers of the neural network , beginning with the feature 
vector applied as the input to a first layer of the neural 
network . In an example in which the CM 220 includes a 
decision tree , the operation module 228 can perform suc 
cessive tests for specific characteristics of the feature vector 
while traversing the decision tree . Feature vectors can be 
determined , e.g. , as described herein with reference to 
operation 502 , feature vectors 504 , operation 714 , feature 
vectors 716 , operation 1106 , or feature vector 1108 



US 2021/0075798 A1 Mar. 11 , 2021 
11 

[ 0092 ] FIG . 4 is a dataflow diagram that illustrates an 
example process 400 for determining and operating CM ( s ) , 
and related dataflow . In some examples , operation 302 can 
include operation 402. In some examples , operation 306 can 
include operation 406. In some examples , e.g. , examples in 
which the CM 220 comprises a neural network ( NN ) , 
decision tree , decision forest , or tree ensemble , operation 
318 can include operations 408 , 410 , or 414. Each of the 
following groups of operations can be used in combination 
with other ( s ) of the groups or independently : ( 1 ) 402 , ( 2 ) 
406 , or ( 3 ) 408 , 410 , and 414 . 
[ 0093 ] In some examples , at operation 402 , the represen 
tation module 222 determines at least some of , or all of , a 
plurality of LSH signatures 404 as LSH values associated 
with the respective training data streams 114. LSH signa 
tures 404 can represent signatures 304. For example , the 
LSH signatures 404 can include or consist of LSH values 
computed based on bit ( s ) of the training data streams 114 or 
on feature vectors that are themselves determined based on 
bit ( s ) of the training data streams 114. Further examples of 
feature vectors are discussed below with reference to FIG . 5 . 
[ 0094 ] In some examples , the LSH process for a given 
training data stream 114 takes as input a vector of values , 
e.g. , numerical values , associated with ( e.g. , of or deter 
mined based at least in part on ) that training data stream 114 . 
The representation module 222 computes the dot products of 
the input vector with multiple weight vectors . The concat 
enated signs of the resulting dot products form a hash value 
for the input vector . This is an example of an LSH technique 
known as E’LSH . The weight vectors can be determined , 
e.g. , by selecting vector elements randomly ( or pseudo 
randomly , and likewise throughout this document ) . Other 
LSH techniques , which can be used singly or in combination 
with other techniques , can include lattice LSH , spherical 
LSH , or other f - distance based LSH techniques ; E’LSH , 
kernel LSH , or other angle - based LSH techniques ; Ham 
ming - distance based LSH techniques ; min - hash , K - min 
sketch , or other Jaccard - coefficient based LSH techniques ; 
chi - squared - based LSH techniques ; winner - take - all hashing ; 
or shift - invariant kernel hashing . 
[ 0095 ] In some examples , the LSH process for a giving 
training data stream 114 can including determining a 
“ peHash ” hash or pre - hash , or other hash determined based 
at least in part on , or including or representing , portions or 
characteristics of the training data stream 114 selected by a 
security analyst . The peHash algorithm determines a hash as 
a SHA - 1 hash of a pre - hash ( also referred to as a “ hash 
buffer ” ) . The pre - hash can include values determined from 
fields of a PE file's header and the file's section headers , 
including the file's flags , subsystem identifier , stack commit 
size , and heap commit size , and each section's virtual 
address , raw size , and section characteristics . The number of 
bits of each field used can be limited to , e.g. , between eight 
and 32 to increase locality - sensitivity . This is not limiting , 
and other amounts of data can additionally or alternatively 
be used , e.g. , > 100 bytes , > 200 bytes , 512 bytes , one 
kilobyte , or larger buffers . The pre - hash can additionally or 
alternatively include a binned compression ratio of each 
section indicating the entropy of that section . In some 
examples , the LSH signatures 404 or other signatures 304 
can include at least one of the above types of data of a 
pre - hash , or cryptographic hashes of pre - hashes including 
any of the above types of data . 

[ 0096 ] In some examples , at operation 406 , the prepara 
tion module 224 determines the validation set 312 including 
validation streams 314 of the plurality of training data 
streams 114 that satisfy the predetermined difference crite 
rion 316 with respect to training stream ( s ) 310 in the training 
set 308. Examples are discussed herein , e.g. , with reference 
to operation 306. For example , the preparation module 224 
can select at least some training stream ( s ) 310 , then select 
validation streams 314 that are distant from those training 
stream ( s ) 310 as measured by the predetermined difference 
criterion 316. For clarity of explanation , without limitation , 
some examples herein are given for which an LSH hash code 
is an f - dimensional bit string . 
[ 0097 ] In some examples , the predetermined difference 
criterion 316 can be satisfied between two training data 
streams 114 a and ß if any , or any combination , of the 
following hold . Throughout this paragraph and the next 
paragraph , examples of LSH has codes are used for brevity . 
However , techniques herein can additionally or alternatively 
be used for types of signatures 304 other than LSH hash 
codes . Criterion 316 can be satisfied , e.g. , when : ? and ß are 
in different LSH hash buckets ( or bins ) ; a and ß have 
respective , different LSH hash codes ( or other signatures 
304 ) ac and Be ; or ac is in a hash bucket including only , or 
over 50 % , training streams 310 and ß . is in a hash bucket 
including only , or over 50 % , validation streams 314 ( e.g. , for 
impure hash buckets ) . 
[ 0098 ] In some examples , the predetermined difference 
criterion 316 can be satisfied if a , and Be are spaced apart 
from each other by at least a predetermined distance in an 
evaluation space or metric . Example evaluation spaces or 
metrics can include Euclidian , Manhattan , or other distances 
in an f - dimensional space ; Hamming distance or Jaccard 
distance ; or angle between the vectors ac- and B. - 7 . In 
some examples , the predetermined difference criterion 316 
can be satisfied if a , and Be ( or numeric representations 
thereof , such as length ) fall in separate quantization bins , the 
level of quantization defined by the predetermined differ 
ence criterion 316 . 
[ 0099 ] In some examples , at operation 408 , the training 
module 226 performs a supervised learning process to 
determine the CM 220. The supervised learning process can 
use at least one training stream 310 of the training set 308 
as training data . Examples are discussed herein , e.g. , with 
reference to operation 318. In other examples , an unsuper 
vised learning process can additionally or alternatively be 
used . In some examples , each training stream 310 is asso 
ciated with a classification 120. The training module 226 can 
determine the CM 220 to output classifications 120 , e.g. , 
with at least a predetermined level of accuracy , for the 
training streams 310 . 
[ 0100 ] Some CMs are subject to overfitting , an effect by 
which the training increases the accuracy of the CM on the 
specific training data provided , at the expense of the model's 
ability to generalize or corr orrectly process new samples . For 
example , consider a CM being trained to classify malware . 
There are various high - level categories of malware , such as 
spyware , adware , ransomware , and botnet software . Within 
each category , there may be numerous families of malware . 
For example , some families of ransomware lock the user 
interface of an infected computer , e.g. , until a ransom is 
paid . Other families of ransomware encrypt files on an 
infected computer using an encryption key known only to 
the adversary . Still other families encrypt files on any 
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network drives connected to an infected computer . Some 
families may combine characteristics of multiple of these 
families , and adversaries continue to develop new families 
of ransomware and other malware . The widespread avail 
ability of high - speed Internet connections and powerful 
computers has increased the use of malware variants by 
unskilled adversaries as well as by sophisticated adversaries . 
Therefore , a CM that is trained and overfit to distinguish 
between specific families of ransomware may not correctly 
classify new families of ransomware , and may even fail to 
identify malware from such families as ransomware . 
[ 0101 ] To reduce the probability of overfitting , the CM 
220 can be tested using the validation set 312. Even if the 
CM 220 is very accurate on the training set 308 , it may be 
necessary to retrain or adjust the CM 220 if it is not very 
accurate on the validation set 312. In some examples , to 
permit determining accuracy during validation , each valida 
tion stream 314 is associated with a classification 120 . 
[ 0102 ] In some examples , at operation 410 , the training 
module 226 ( or the operation module 228 ) tests the deter 
mined CM 220 based at least in part on at least one 
validation stream 314 of the validation set 312 ( depicted 
using a dashed arrow ) . Operation 410 produces a trial result 
412. Examples are discussed herein , e.g. , with reference to 
operation 320. For example , the training module 226 can 
apply the at least one validation stream 314 to the CM 220 
to determine a classification 120. The classification 120 , or 
an indication of whether the classification 120 was accurate , 
can then be included in the trial result 412 . 
[ 0103 ] In some examples , at operation 414 , the training 
module 226 selectively updates the CM 220 based at least in 
part on a result of the testing ( operation 410 ) . For example , 
if the trial result 410 indicates that the accuracy of the CM 
220 is consistent between the training set 308 and the 
validation set 312 , training can continue , and the training 
module 226 can update the parameters of the CM 220 as 
discussed herein with reference to operation 408 . 
[ 0104 ] In some examples , operations 408-414 can be 
repeated as long as accuracy on the validation set 312 is 
improving as training proceeds , as indicated by the trial 
result 412 , and can terminate when accuracy on the valida 
tion set 312 ceases to improve as training proceeds . Using 
operations 408-414 can permit detecting overfitting , e.g. , 
when accuracy on the validation set 312 ceases to improve . 
Avoiding overfitting using techniques of process 400 can 
permit determining CMS 220 that have a higher probability 

of determining the category of malware , even for malware 
families not represented in the training data streams 114 
( “ unseen samples ” ) . Some examples herein can also 
improve the determination probability on unseen samples 
for CMs 220 configured to provide model outputs other than 
malware category , e.g. , malware type , malware family , or 
adversary identity ( individual or group ) . 
[ 0105 ] Using ransomware as a nonlimiting example , even 
if the training data streams 114 do not include ransomware 
of the cookie - monster family , a CM 220 trained using 
process 400 or other example processes herein may never 
theless be able to identify a cookie - monster malware sample 
as being in the ransomware category . In some examples , 
such a CM 220 may also be able to identify , via a field in 
classification 120 , that the cookie - monster sample is not of 
a known family of ransomware . This can permit early 
detection of new families of ransomware or other malware , 
which can in turn permit mitigating deleterious effects of 
malware belonging to those new families more rapidly and 
effectively . 
[ 0106 ] FIG . 5 is a dataflow diagram that illustrates an 
example process 500 for determining and operating CM ( s ) , 
and related dataflow . In some examples , operation 302 or 
operation 402 can include operation 502 or operation 510. In 
some examples , operation 302 or operation 402 can include 
operation 508 . 
[ 0107 ] In some examples , at operation 502 , the represen 
tation module 222 determines respective feature vectors 504 
of the individual training data streams 114. For example , 
representation module 222 can operate a feature extractor , 
such as a previously - trained CM or a hand - coded feature 
extractor , on bit ( s ) of a training data stream 114 to provide 
the feature vector 504. In some examples , the feature 
extractor can determine additional features 506 that are not 
included in the feature vector 504 . 

[ 0108 ] In some examples , the representation module 222 
can determine at least one of the features listed in Table 2 
with respect to a training data stream 114. For brevity , the 
symbol E in the Table 2 refers to the training data stream 114 
or portion ( s ) thereof as may be determined or processed by 
the representation module 222. The listed features can be 
included in feature vector 504 or can be additional features 
506 . 

TABLE 2 

Feature 

Entropy of ? 
Entropy of a segment or other portion ( s ) of E , e.g. , a TEXT or DATA segment 
Entropy of a subset of E , e.g. , of multiple sections 
Character ( s ) or symbol ( s ) , or hash ( es ) or other representation ( s ) , of human - readable text 
( " printable strings ” ) included in 2 
Number of printable strings in E 
Flags or other values of standardized headers in E , e.g. , the MZ or PE headers or the DLL 
import table of a WINDOWS executable file 122 
Flags or other values of other headers or structures in 2 , e.g. , comp . id values found in the 
Rich header in a WINDOWS executable file 122 
Contents of , e.g. , ten ( or another number of ) bytes at the entry point or the beginning of 
main ( ) in an executable file 122 
Output ( s ) of an autoencoder ( as discussed below ) when provided as input , e.g. , when 
provided bytes at the entry point 
Size of 2 ( e.g. , in bytes ) 
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TABLE 2 - continued 

Feature 

SHA - 256 or other cryptographic hash value ( s ) of at least portion ( s ) of E , e.g. , of headers , 
individual sections , metadata , version information , or icons , text , fonts , audio , graphics , 
or other content assets embedded or included in 2 . 
File type of E , e.g. , as output by pefile , PEID , TrID , or file ( 1 ) 

[ 0109 ] As noted in Table 2 , one example feature is output 
( s ) of an autoencoder . An autoencoder can include , e.g. , a 
deep neural network , trained to produce output substantially 
equal to its input . Neural - network autoencoders generally 
include at least one hidden layer having fewer outputs than 
the number of inputs . As a result , the outputs of the hidden 
layer are a representation of the input , and that representa 
tion has lower dimensionality than the input itself . This 
reduction in dimensionality can provide information about 
the structure of the input or of a class of related inputs . In 
some examples , the autoencoder is a denoising autoencoder . 
The denoising autoencoder is trained to produce output 
substantially equal to a reference , when the training inputs 
to the neural network are portions of , or partly - corrupted 
versions of , the reference . The lower - dimensional hidden 
layer outputs of a denoising autoencoder can provide infor 
mation about the input that is robust to minor variations , 
such as may be introduced by adversaries to render their 
malware more difficult to detect . 
[ 0110 ] In an example , an autoencoder can receive a one 
hot or other encoding of a number of bytes of E , e.g. , 2560 
bits of input that are a one - hot encoding of ten bytes of Eor 
a portion thereof . The bytes can include or consist of , e.g. , 
bytes beginning with the byte at the entry point . The 
autoencoder can provide a number of float values , e.g. , 20 
float values , that are the outputs of a hidden layer , e.g. , as 
discussed above . A feature in a feature vector 504 can then 
include or consist of those 20 float values ( or other value ( s ) 
provided by the autoencoder ) , or a portion thereof . 
[ 0111 ] In some examples , at operation 508 , the represen 
tation module 222 can select at least one additional feature 
506 for inclusion in the feature vector 504 , as depicted by the 
dashed arrows . The representation module 222 can , e.g. , add 
the at least one additional feature 506 to the feature vector 
504 immediately . The representation module 222 can addi 
tionally or alternatively update stored information , e.g. , in 
CRM 214 , so that the at least one additional feature 506 will 
be included in the feature vector 504 upon future perfor 
mance of operation 502 . 
[ 0112 ] In some examples , the representation module 222 
can select the at least one additional feature 506 providing 
at least a predetermined number of bits of entropy , e.g. , at 
least three bits or at least n bits , n23 . This can permit 
expressing finer distinctions between data streams than can 
binary - valued features or other features providing only a 
small number of possible values . 
[ 0113 ] In some examples , the representation module 222 
can select the at least one additional feature 506 based at 
least in part on performance on a desired task of the CM . For 
example , a CM 220 configured to determine whether a trial 
data stream 116 is associated with malware can be evaluated 
based on a corpus of known samples to determine the 
accuracy of the CM 220. If CM 220 meets a predetermined 
accuracy criterion , the CM 220 can be inspected to deter 
mine which inputs are significant contributors to the ( suffi 

ciently accurate ) results provided by the CM 220. For 
example , Garson's or Goh’s algorithms can be used to 
determine , based on the weights of a neural network , which 
inputs of that neural network have the most significant role 
in determining a particular output of that neural network . 
The Lek profile method can determine the sensitivity of 
particular outputs of a neural network to changes in particu 
lar inputs of that neural network . 
[ 0114 ] In some examples , e.g. , using decision trees , 
ensembles , or forests , information gain algorithms can be 
used to determine changes in the mutual information of 
node ( s ) of tree ( s ) over the course of training , e.g. , as in 
RANDOM FORESTS . Gradient - boosted tree - ensemble 
training can take into account leaf weights when determin 
ing the importance of an input to the output of the ensemble , 
e.g. , as in xgboost . Accordingly , the training module 226 can 
provide to the representation module 222 mutual - informa 
tion data , leaf weights , or other values useful in determining 
relative effect on the outputs of various features . The rep 
resentation module 222 can then select for inclusion the at 
least one additional feature 506 having , e.g. , the most 
significant relative effect among the additional features 506 . 
[ 0115 ] Accordingly , in some examples , the representation 
module 222 ( or other modules herein ) can include candidate 
feature ( s ) of the additional features 506 in a CM and train 
that CM until it meets the predetermined accuracy criterion . 
The representation module 222 can then use the above 
techniques to select as the at least one additional feature 506 
at least one of the candidate feature ( s ) strongly associated 
with or otherwise significantly responsible for the accuracy 
of the trained CM . 
[ 0116 ] In some examples , at operation 510 , the represen 
tation module 222 determines the signatures 304 based on 
the respective feature vectors 504. For example , represen 
tation module 222 can determine the signatures 304 as the 
LSH values of the respective feature vectors 504. Examples 
of LSH are discussed herein , e.g. , with reference to opera 
tion 402. Some examples in which locality - sensitive hashes 
of feature vectors 504 are used as representations of the 
respective data streams 114 , 116 can permit grouping train 
ing data streams 114 in semantically - meaningful ways with 
the use of considerably fewer computational resources than 
prior schemes such as exhaustive pairwise comparison . For 
example , hashing the training data streams 114 using LSH 
can permit readily determining similar training data streams 
114 and avoiding dividing those similar training data 
streams 114 between the training set 308 and the validation 
set 312. This can in turn reduce the risk of overfitting of CM 
220 , as discussed above . In some examples of operation 306 , 
training data streams 114 allocated to a particular LSH bin 
are included entirely in the training set 308 or entirely in the 
validation set 312 , and are not allocated some to the training 
set 308 and some to the validation set 312 . 
[ 0117 ] In some examples , the representation module 222 
can determine LSH hash values using angular - distance ( dot 
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product ) -based LSH . Such a hash value , in some examples , 
is a concatenation of n bits by . Each bit by is determined from 
a respective one of n integer or float values Vn , e.g. , by 
thresholding Vm . For example , bn can be 1 if v , 20 and 0 
otherwise . Each value Vn can be a dot product of a signature 
vector S , e.g. , a signature 304 such as a feature vector 504 , 
with a respective weight vector Wn . 
[ 0118 ] In some examples , the representation module 222 
can determine LSH hash values using sparse LSH tech 
niques . In some examples , e.g. , using the notation of the 
previous paragraph , the representation module 222 can 
compute the bits by based on respective modified values m .. 
Each modified value m , can be computed using a dot 
product , but with a modified weight vector Un ( e.g. , a 
" sparse LSH weight vector ” ) instead of with weight vector 
Vn . Each modified weight vector Un can be determined by 
copying W ,, to form Um , then randomly modifying elements 
of Un with a probability of modification p . For example , the 
ith element of Un can be set to zero , unity , or another 
predetermined value if di < p for a respective random draw d , 
from a uniform distribution on the range [ 0,1 ] . 
[ 0119 ] Using sparse LSH techniques can provide benefits 
similar to the benefits of denoising autoencoders . For 
example , using sparse LSH techniques can reduce the like 
lihood that a CM 220 will overfit to particular features to the 
exclusion of other features . Using sparse LSH techniques 
can therefore improve the ability of CM 220 to generalize to 
trial data streams 116 different from the training data streams 
114 used in determining the CM . Accordingly , in some 
examples , operation 510 can include determining sparse 
LSH weight vectors Un and determining the signatures 304 
as the LSH values of the respective feature vectors 504 
based at least in part on the sparse LSH weight vectors Un . 
[ 0120 ] In other examples , as depicted by the stippled 
arrow , the signatures 304 can include or consist of the 
respective feature vectors 504 or subsets thereof . For 
example , the predetermined difference criterion 316 can 
specify a threshold distance above which two feature vectors 
504 or respective subsets thereof will be considered distinct . 
Such a threshold distance can be a Euclidean , Hamming , 
angular , or other distance described herein . 
[ 0121 ] FIG . 6 is a dataflow diagram that illustrates an 
example process 600 for determining and operating com 
putational model ( s ) , and related dataflow . Process 600 can 
be carried out , e.g. , under control of at least one processing 
unit 210. Process 600 can take as input data streams 602 , 
e.g. , of a plurality of data streams . Data streams 602 can 
represent training data streams 114 , FIG . 1 . 
[ 0122 ] In some examples , at operation 604 , the represen 
tation module 222 determines signatures 606 of respective 
data streams 602. Examples are discussed herein , e.g. , with 
reference to at least one of operation 302 or FIG . 4 , 5 , or 7 . 
[ 0123 ] In some examples , at operation 608 , the prepara 
tion module 224 determines , based at least in part on the 
signatures 606 , a training set 610 comprising at least one 
data stream 612 of the data streams 602 and a validation set 
614 comprising at least one data stream 616 of the data 
streams 602. Examples are discussed herein , e.g. , with 
reference to operation 306. In some examples , the prepara 
tion module 224 determines the training set 610 and the 
validation set 614 so that the training set is disjoint from the 
validation set , e.g. , as discussed above . 
[ 0124 ] In some examples , the respective signatures 606 of 
a data stream 612 of the training set 610 and a data stream 

616 of the validation set 614 satisfy a predetermined differ 
ence criterion 618. In some examples , the validation set 614 
includes at least some elements different from the training 
set 610. For example , the preparation module 224 can 
determine the validation set 614 including individual data 
streams 616 that satisfy the predetermined difference crite 
rion 618 with respect to at least some of the data streams 612 
in the training set 610. Examples are discussed herein , e.g. , 
with reference to predetermined difference criterion 316 . 
[ 0125 ] In some examples , at operation 620 , the training 
module 226 determines a computational model ( CM ) 622 , 
e.g. , including a neural network , decision tree , or tree 
ensemble , based at least in part on the training set 610 . 
Examples are discussed herein , e.g. , with reference to opera 
tion 318 . 
[ 0126 ] In some examples , operation 620 can include , 
before determining the CM 622 , arranging the training set 
610 and the validation set 614 in respective , different regions 
of a computer memory 212 communicatively connected 
with the processing unit ( s ) 210. This can improve the 
locality of data streams 602 during the determination of the 
CM 622 , which can reduce cache misses and therefore 
improve the speed of power efficiency of the model deter 
mination ( operation 620 ) . 
[ 0127 ] FIG . 7 is a dataflow diagram that illustrates an 
example process 700 for determining CM ( s ) , and related 
dataflow . In some examples , operation 604 can include 
operations 702 and 708. In some examples , operation 604 
can include operations 714 and 718 . 
[ 0128 ] In some examples , at operation 702 , the represen 
tation module 222 determines the signatures 606 comprising 
respective dissimilarity values 704 between the respective 
data streams 602 and a common reference data stream 706 
of the data streams 602. The reference data stream 706 can 
be selected , e.g. , randomly , based on selection by entity 110 , 
or ( e.g. , for full intercomparison of each possible pair of data 
streams 602 ) as the next data stream 602 , when the data 
streams 602 are taken in turn as common reference data 
streams 706. Operation 702 can include , e.g. , one - to - many 
pairwise comparisons of the data streams 602 to determine 
the signatures 606 , based on which the training set 610 and 
the validation set 614 can be determined as discussed herein 
with reference to operation 608 . 
[ 0129 ] In some examples , an individual dissimilarity value 
704 can include at least one of : a Hamming distance between 
at least part of the respective data stream 602 and at least part 
of the reference data stream 706 ; a dot product or other 
angular distance , a Euclidean distance , or another distance 
measure between a first vector including at least some bits 
of the respective data stream 602 and a second vector 
including at least some bits from the reference data stream 
706 ; a comparison between a value in the respective data 
stream 602 and a corresponding value in the reference data 
stream 706 such as a difference between two float values , a 
true / false indication of whether the data stream 602 and the 
reference data stream 706 differ , or any of the above 
measures with respect to respective hashes ( e.g. , SHA - 256 , 
EPLSH , ssdeep , peHash , or other hashes described herein ) or 
other representations of at least a portion of the respective 
data stream 602 and at least a portion of the reference data 
stream 706 . 
[ 0130 ] In some examples , at operation 708 , the represen 
tation module 222 determines the signatures 606 further 
comprising respective dissimilarity values 710 between the 
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respective data streams 602 and a common second reference 
data stream 712 of the data streams 602. The common 
second reference data stream 712 can be different from the 
common reference data stream 706. The common second 
reference data stream 712 can be determined as described 
herein with reference to the reference data stream 706. For 
example , each data stream 602 in turn can be selected to be 
the common second reference data stream 712. Examples of 
dissimilarity values are discussed herein , e.g. , with reference 
to operation 702 . 
[ 0131 ] In some examples , operation 708 can include deter 
mining any number of values of or in signatures 606 , e.g. , 
based on respective pairwise comparisons of data streams 
602 , e.g. , up to the N ( N - 1 ) / 2 such possible pairs that can be 
made from a set of N data streams 602. Operation 708 can 
therefore include or permit , e.g. , performing many - to - many 
pairwise comparisons of the data streams 602 to determine 
the signatures 606. In some examples , signatures 606 can be 
columns ( or rows ) of a dissimilarity matrix , or other vectors , 
e.g. , sparse or dense vectors , showing the results of the 
pairwise comparisons . 
[ 0132 ] In some examples , at operation 714 , the represen 
tation module 222 determines respective feature vectors 716 
of at least some of the data streams 602. Examples are 
discussed herein , e.g. , with reference to operations 402 and 
502 . 
[ 0133 ] In some examples , at operation 718 , the represen 
tation module 222 determines the signatures 606 comprising 
locality - sensitive hash ( LSH ) values 720 of the respective 
feature vectors 716. Examples are discussed herein , e.g. , 
with reference to operations 402 and 510. In some examples 
using sparse LSH techniques , operation 718 can include 
determining sparse LSH weight vectors and determining the 
signatures 606 as the LSH values 720 of the respective 
feature vectors 716 based at least in part on the sparse LSH 
weight vectors . Examples are discussed herein , e.g. , with 
reference to operation 510 . 
[ 0134 ] FIG . 8 is a dataflow diagram that illustrates an 
example process 800 for determining and operating CM ( s ) , 
and related dataflow . In some examples , operation 620 can 
include operations 802 , 808 , 812 , or 814. Process 800 can 
include successively determining two CMs 804 and 816 , 
each of which can represent CM 622. For example , process 
800 can be used as part of an iterative training technique to 
determine CM 622. Each CM 804 , 816 can be determined 
based at least in part on respective , different hyperparameter 
values , as described below . This can provide improved 
performance of CM 622 , as described herein , compared to 
some prior training techniques using only one hyperparam 
eter value or value set for training . 
[ 0135 ] In some examples , at operation 802 , the training 
module 226 determines a CM 804 , which can represent CM 
622 , further based at least in part on a first hyperparameter 
value 806. Examples of training are discussed herein , e.g. , 
with reference to operation 620. Examples of hyperparam 
eters are discussed herein , e.g. , with reference to training 
module 226. For example , the first hyperparameter value 
806 can include a learning rate or momentum . In some 
examples , the first hyperparameter value 806 can include a 
tuple or other collection , e.g. , of float values , or other scalar 
or compound value ( s ) . 
[ 0136 ] In some examples , at operation 808 , the training 
module 226 ( or the operation module 228 , and likewise 
throughout the following operations of process 800 ) oper 

ates the CM 622 based at least in part on at least some of the 
data streams 616 of the validation set 614 to provide 
respective model outputs 810 . 
[ 0137 ] In some examples , at operation 812 , the training 
module 226 determines that the model outputs 810 do not 
satisfy a predetermined completion criterion ( or , equiva 
lently , do satisfy a predetermined continuation criterion ) . 
Examples are discussed herein , e.g. , with reference to opera 
tion 410. In response to the determination at operation 812 , 
the training module 226 can perform operation 814 . 
[ 0138 ] In some examples , at operation 814 , the training 
module 226 determines a second CM 816 based at least in 
part on the training set 610 and a second hyperparameter 
value 818 , e.g. , a float value or tuple , different from the first 
hyperparameter value 806. In some examples in which the 
first hyperparameter value 806 and the second hyperparam 
eter value 818 are tuples , the first hyperparameter value 806 
and the second hyperparameter value 818 can differ in at 
least one corresponding element . The second CM 816 can 
represent CM 622. The second CM 816 can be determined 
as discussed herein with reference to , e.g. , operation 802 , 
operation 620 , or operation 318. In some examples , the 
training module 226 can determine the second hyperparam 
eter value 818 based at least in part on the first hyperpa 
rameter value 806. In some examples , the training module 
226 can determine the second hyperparameter value 818 
based at least in part on at least one of the model outputs . 
[ 0139 ] In some examples , depicted by the dashed arrow , 
operation 814 can be followed by operation 808 to deter 
mine model outputs 810 of the second CM 816. Process 800 
can include iterating , e.g. , using a mathematical optimiza 
tion technique , to determine hyperparameter value ( s ) that 
will provide a CM 622 whose outputs ( e.g. , accuracy of 
malware identification ) satisfy the predetermined comple 
tion criterion . Any of the mathematical optimization tech 
niques described herein can be used in determining the 
second hyperparameter value 818 or subsequent hyperpa 
rameter values , e.g. , techniques such as gradient descent . 
Additionally or alternatively , techniques such as grid search 
or other searching techniques can be used to explore the 
hyperparameter space to determine hyperparameter values . 
In some examples , using mathematical techniques to tra 
verse the hyperparameter space can provide a classifier , e.g. , 
a malware / non - malware classifier , that performs effectively 
or that most effectively generalizes to new malware families 
or other data beyond the training set 610 . 
[ 0140 ] FIG . 9 is a dataflow diagram that illustrates an 
example process 900 for determining and operating CM ( s ) , 
and related dataflow . In some examples , operation 620 can 
include operations of process 900. In some example of 
process 900 and in other examples , neural - network training 
or other computational - model determination can be per 
formed by multiple nodes in a parallel manner to reduce the 
time required for training . 
[ 0141 ] In some examples , at operation 902 , the training 
module 226 ( or the preparation module 224 or the operation 
module 228 , and likewise throughout the following discus 
sion of process 900 ) determines a plurality of partitions 904 
of the training set 610 based at least in part on the signatures 
606. Each partition 904 of the plurality of partitions 904 
comprises at least one of the data streams 612 of the training 
set 610. The illustrated partitions 904 are a second partition 
906 and a ?th partition 908 , discussed below with reference 
to nodes 912 . 
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[ 0142 ] In some examples , at operation 910 , the training 
module 226 provides individual partitions 904 of the plu 
rality of partitions 904 to respective computing nodes 912 of 
a plurality of computing nodes 912 ( 1 ) -912 ( I ) ( shown in 
phantom ) ( individually and / or collectively referred to herein 
with reference 912 ) , where J is any integer greater than 
and / or equal to 1 , via a communications interface 232. The 
training module 226 can provide the partitions 904 , e.g. , by 
transmitting data of at least some of the individual partitions 
904 to the respective computing nodes 912 via , e.g. , a 
memory or network interface communicatively connected 
with the processing unit ( s ) 210 ( e.g. , a processor ) . This can 
permit the computing nodes 912 to process the respective 
partitions 904 in parallel , which can reduce the amount of 
time required to determine the CM 622. In the illustrated 
example , as depicted by the dotted lines and dash - dot 
indicator , the training module 226 provides the second 
partition 906 to node 912 ( 2 ) and the Jth partition 908 to node 
912 ( J ) . 
[ 0143 ] In some examples , operation 910 can be performed 
more than once , as depicted by the dashed arrow and 
discussed below . In some of these examples , the second and 
subsequent performance of operation 910 can include trans 
mitting a command to at least one node 912 to begin 
processing using data previously transmitted . For example , 
the nodes 912 can retain local copies of their respective 
partitions 904 and perform computations repeatedly on those 
copies . 
[ 014 ] In some examples of a multiple - node computa 
tional - model - determining system ( e.g. , having separate 
memory banks per node ) , the training set 610 can be divided 
into the partitions 904 based at least in part on the signatures 
606 to determine CMs 622 to achieve specific objectives . In 
some examples , each partition 904 can include or consist of 
similar files ( or other data streams , and likewise throughout 
this paragraph ) to permit each node to train on specific traits . 
In some examples , each partition 904 can include a diverse 
set of data streams ( e.g. , having respective , different signa 
tures ) so that each node contributes to determining a CM 622 
in view of the context provided by the whole training set 610 
or a broad subset thereof . 
[ 0145 ] In some examples , each partition 904 ( or at least 
some of the partitions 904 , and likewise throughout the 
discussion of operation 910 ) can include or consist of similar 
data streams 612. This can permit the respective nodes 912 
to train on specific traits that are effectively reflected in the 
training set 610. In some of these examples , at operation 
910 , the training module 226 can determine a first partition , 
e.g. , partition 906 ( or some , or all partitions ) of the plurality 
of partitions 904 based at least in part on a predetermined 
similarity criterion 914. In some examples , the respective 
signatures 606 of a majority of the data streams in the first 
partition satisfy the predetermined similarity criterion 914 
with respect to each other . Similarity comparisons can be 
made between data streams 612 or signatures 606. Similarity 
comparisons can include pairwise comparisons , hashing and 
hash - bin comparisons , or other comparisons . 
[ 0146 ] In some examples , each partition 904 can include 
or consist of a diverse set of data streams 612 , 
streams 612 having signatures that differ from each other . 
This can permit more improving model training speed while 
retaining understood behavior , e.g. , of minibatch - based 
training techniques . In some of these examples , at operation 
910 , the training module 226 can determine a first partition , 

e.g. , partition 906 of the plurality of partitions 904 based at 
least in part on the predetermined similarity criterion 914. In 
some examples , for any majority of the data streams 612 in 
the first partition , the respective signatures 606 of the data 
streams 612 in that majority do not satisfy the predetermined 
similarity criterion 914 with respect to each other , as deter 
mined using pairwise comparisons , hashes , or other com 
parison techniques described herein . In some examples , no 
partition 904 has more than 50 % data streams 612 that are 
grouped together by the predetermined similarity criterion 
914 . 
[ 0147 ] In some examples , at operation 916 , the training 
module 226 receives , e.g. , via communications interface 
232 , respective results 918 from individual computing nodes 
912 of the plurality of computing nodes 912. For example , 
the results can include at least one of : a parameter value , a 
parameter - gradient value , e.g. , with respect to a loss , cost , or 
value function ; or an output of part or all of the CM for a 
specific input . In some examples using gradient descent to 
train neural networks , the results 918 from each respective 
node 912 can include gradients determined based on the 
respective partitions 904 . 
[ 0148 ] In some examples , at operation 920 , the training 
module 226 determines the CM 622 based at least in part on 
the results 918. For example , the training module 226 can 
determine an overall gradient , e.g. , as an average or other 
combination of gradients included in the results 918 , and 
then can update parameter values of the CM 622 based on 
the overall gradient , e.g. , using backpropagation . 
[ 0149 ] In some examples , as depicted by the dashed 
arrows , operation 920 can be followed by operation 902 or 
operation 910. These examples can permit iteratively updat 
ing CM 622 , e.g. , during a mathematical - optimization train 
ing process . 
[ 0150 ] In some examples , neural networks are trained 
using minibatch - based stochastic gradient descent ( SGD ) 
techniques . SGD can be parallelized along three dimensions : 
model parallelism , layer parallelism , and data parallelism 
( and combinations thereof ) . In model parallelism , each node 
computes only some parameters of the model , and nodes 
intercommunicate to exchange parameters . In layer paral 
lelism , each node receives inputs , computes parameters for 
a particular layer , and provides outputs of that layer to 
another node . In data parallelism , each node trains a full CM 
on respective , different data , and the parameter updates ( e.g. , 
gradients ) are merged to determine how to update the model . 
Some examples of process 900 provide data - parallel training 
to determine CM 622 . 
[ 0151 ] FIG . 10 is a dataflow diagram that illustrates an 
example process 1000 for determining and operating com 
putational model ( s ) , and related dataflow . Process 1000 can 
be carried out , e.g. , under control of at least one processing 
unit 210. Process 1000 can take as input a training set 1002 
including data streams 1004 and a candidate set 1006 
including data streams 1008. Data streams 1004 and 1008 
can represent training data streams 114 , FIG . 1 . 
[ 0152 ] In some examples , at operation 1010 , the prepara 
tion module 224 determines a validation set 1012 of data 
streams 1014 from the candidate set 1006 of data streams 
1008 based at least in part on the training set 1002 of data 
streams 1004 and on a predetermined difference criterion 
1016 between data streams . Examples are discussed herein , 
e.g. , with reference to operations 306 , 406 , or 608 , or 
predetermined difference criterion 316. In some examples , 
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the preparation module 224 can select for inclusion in the 
validation set 1012 data streams 1008 that satisfy the pre 
determined difference criterion 1016 with respect to at least 
one , some , a majority of , or all of the data streams 1004 of 
the training set 1002. The training set 1002 can be a subset 
of the candidate set 1006 , or can be disjoint from the 
candidate set 1006 , in some examples . In some examples , 
the training set 1002 and the determined validation set 1012 
can be disjoint , although this is not required . In some 
examples , the training set 1002 comprises or consists of at 
least some , but fewer than all , of the data streams 1008 of the 
candidate set 1008 . 
[ 0153 ] In some examples , operation 1010 can include 
determining LSH values , performing other hash - based simi 
larity analysis , or comparing malware family names derived 
using conventional anti - virus signatures , e.g. , as discussed 
herein with reference to FIG . 4 or 5. In some examples , 
operation 1010 can include one - to - many or many - to - many 
sets of pairwise comparisons to determine similarity . In 
some examples , whether hashing or pairwise comparisons , 
data streams 1008 are not selected for inclusion in the 
validation set 1012 if they are similar to data streams 1004 
of the training set 1002 . 
[ 0154 ] In some examples , at operation 1018 , the training 
module 226 ( or the operation module 228 , and likewise throughout the following operations of process 800 ) can 
operate computational model ( CM ) 1020 , which can 
represent CM 220 , based at least in part on data stream ( s ) 
1014 of the validation set 1012 to provide respective model 
output ( s ) 1022. Examples are discussed herein , e.g. , with 
reference to operations 320 or 808 . 
[ 0155 ] In some examples , at operation 1024 , the training 
module 226 determines that the model output ( s ) 1022 do not 
satisfy a predetermined completion criterion 1026 . 
Examples are discussed herein , e.g. , with reference to opera 
tions 410 and 812. In response , operation 1024 can be 
followed by operation 1028 . 
[ 0156 ] In some examples , at operation 1028 , the training 
module 226 updates the CM 1020 based at least in part on 
data stream ( s ) 1004 of the training set 1002. For example , 
the training module 226 can run the next training epoch in 
a sequence of epochs , or can perform training with different 
hyperparameter values , as described herein . Examples are 
discussed herein , e.g. , with reference to operations 414 and 
814. In some examples , operation 1028 can be followed by 
operation 1018. This can permit iteratively training the CM 
1020 , e.g. , using mathematical - optimization techniques . 
[ 0157 ] In some examples , operation 1028 can include , 
before updating the CM 1020 , packing the training set 1002 
of data streams 1004 in a processor - accessible memory 212 . 
Packing can include any data rearrangement to increase 
locality , e.g. , defragmenting the data streams 1004 in 
memory , arranging them on successive cache lines for 
improved prefetch , or other techniques . Locality can also be 
increased in the CM 1020 , which can speed operation of the 
CM 1020. In some examples , e.g. , using hashing ( e.g. , LSH ) 
or other signatures , a decision - forest CM 1020 can be 
determined so that each decision tree in the forest is asso 
ciated with a bin of signatures ( e.g. , of hash codes thereof ) . 
This can permit operating the decision forest using param 
eters having increased locality for any particular trial data 
stream 116. This can additionally or alternatively permit 
loading into memory fewer than all of the parameters of the 
decision forest by only loading parameters relevant to a 

particular trial data stream 116 , which can increase data 
cache locality of the parameters and speed operation of the 
CM 1020. Techniques in this paragraph and similar tech 
niques can additionally or alternatively permit reducing the 
memory bandwidth or network bandwidth used during train 
ing of the CM 1020 . 
[ 0158 ] FIG . 11 is a dataflow diagram that illustrates an 
example process 1100 for determining and operating CM ( s ) , 
and related dataflow . In some examples , operation 1010 can 
include operations 1102 , 1112 , and 1116. In some examples , 
process 1100 can include determining the training set 1002 
and the validation set 1012 in a coordinated manner , e.g. , as 
discussed below with reference to operation 1118 . 
[ 0159 ] In some examples , the predetermined difference 
criterion 1016 applies to at least two signatures and is 
satisfied by the at least two signatures having at least a 
predetermined threshold difference . The predetermined 
threshold difference can be inequality , a difference in mag 
nitude of at least ( or exceeding ) a threshold , a Hamming 
distance or other distance measure of at least ( or exceeding ) 
a threshold , or another difference threshold . 
[ 0160 ] In some examples , at operation 1102 , the prepara 
tion module 224 determines respective signatures 1104 , 
which can represent signatures 304 , of at least some data 
streams 1008 of the candidate set 1006. Examples are 
discussed herein , e.g. , with reference to operations 402 , 604 , 
or 902. Operation 1102 can be followed by operation 1112 
or operation 1118. In some examples , operation 1102 
includes operations 1106 and 1110 . 
[ 0161 ] In some examples , at operation 1106 , the prepara 
tion module 224 determines a feature vector 1108 associated 
with a first data stream 1008 of the candidate set 1006 . 
Examples are discussed herein , e.g. , with reference to opera 
tion 502 or feature vectors 504 . 
[ 0162 ] In some examples , at operation 1110 , the prepara 
tion module 224 determines the respective signature 1104 of 
the first data stream 1008 as a locality - sensitive hash ( LSH ) 
of the feature vector 1108. Examples are discussed herein , 
e.g. , with reference to operations 402 or 510 or signatures 
304. In some examples using sparse LSH techniques , opera 
tion 1110 can include determining sparse LSH weight vec 
tors and determining the respective signature 1104 of the 
first data stream as a locality - sensitive hash ( LSH ) of the 
feature vector 1108 based at least in part on the sparse LSH 
weight vectors . Examples are discussed herein , e.g. , with 
reference to operation 510 . 
[ 0163 ] In some examples , at operation 1112 , the prepara 
tion module 224 determines respective signatures 1114 , 
which can represent signatures 304 , of at least some data 
streams 1004 of the training set 1002. Examples are dis 
cussed herein , e.g. , with reference to operations 402 , 604 , 
902. For example , signatures 1114 can be determined as 
discussed herein with reference to signatures 1104 . 
[ 0164 ] In some examples , at operation 1116 , the prepara 
tion module 224 selects a first data stream 1008 ( or at least 
one data stream ) of the candidate set 1006 for inclusion in 
the validation set 1012 in response to the respective signa 
ture 1104 of the first data stream 1008 satisfying the prede 
termined difference criterion 1016 with respect to the 
respective signature 1114 of at least one data stream 1004 of 
the training set 1002. Examples are discussed herein , e.g. , 
with reference to FIG . 4. For example , the first data stream 
1008 can be selected further based at least in part on the first 
data stream 1008 satisfying the predetermined difference 
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criterion 1016 with respect to a majority of , or all of , or at 
least a predetermined number or percentage of , the respec 
tive signatures 1114 of the data streams 1004 of the training 
set 1002 . 
[ 0165 ] In some examples , at operation 1118 , the prepara 
tion module 224 determines a first subset 1120 of the 
candidate set 1006 and a second subset 1122 of the candidate 
set 1006 based at least in part on at least some of the 
signatures 1104 and on the predetermined difference crite 
rion 1016. Examples are discussed herein , e.g. , with refer 
ence to the preparation module 224. For example , the 
preparation module 224 can cluster data streams 1008 of the 
candidate set 1006 into the first subset 1120 and the second 
subset 1122 based on the signatures 1104 of those data 
streams 1008. The preparation module 224 can then deter 
mine the training set 1002 comprising or consisting of the 
first subset 1120 and the validation set 1012 comprising or 
consisting of the second subset 1122. Determining the 
subsets 1120 and 1122 in a coordinated manner can permit 
more effectively determining a validation set 1012 having 
desired characteristics , e.g. , as discussed herein with refer 
ence to operation 1010. In some examples , the signatures 
include locality - sensitive hash values , e.g. , as discussed 
herein with reference to operation 1110 . 
[ 0166 ] FIG . 12 is a dataflow diagram that illustrates an 
example process 1200 for determining CM ( s ) , and related 
dataflow . In some examples , operation 1028 can include 
operations 1202 , 1206 , 1210 , or 1214. In some examples , 
operation 1028 or operation 1214 can be followed by 
operation 1218 . 
[ 0167 ] In some examples , at operation 1202 , the training 
module 226 ( or the preparation module 224 or the operation 
module 228 , and likewise throughout the following discus 
sion of operations 1202-1214 ) determines a plurality of 
partitions 1204 of the training set 1002 based at least in part 
on the signatures 1114. Each partition 1204 of the plurality 
of partitions 1204 can include or consist of at least one of the 
data streams 1004 of the training set 1002. Examples are 
discussed herein , e.g. , with reference to operation 902 and 
partitions 904 . 
[ 0168 ] In some examples , at operation 1206 , the training 
module 226 provides individual partitions 1204 of the 
plurality of partitions 1204 to respective computing nodes 
1208 of a plurality of computing nodes 1208 via a commu 
nications interface 232 communicatively connected with the 
processing unit ( s ) 210. Examples are discussed herein , e.g. , 
with reference to operation 910 and nodes 912 . 
[ 0169 ] In some examples , at operation 1210 , the training 
module 226 receives respective results 1212 from individual 
computing nodes 1208 of the plurality of computing nodes 
1208. Examples are discussed herein , e.g. , with reference to 
operation 916 , nodes 912 , and results 918 . 
[ 0170 ] In some examples , at operation 1214 , the training 
module 226 updates the CM 1020 based at least in part on 
the results 1212 to provide updated CM 1216. Examples are 
discussed herein , e.g. , with reference to operations 414 , 814 , 
920 , and 1028 . 
[ 0171 ] In some examples , at operation 1218 , the operation 
module 228 operates the CM 1020 based at least in part on 
at least one trial data stream 1220 to provide a trial model 
output 1222. The trial model output 1222 can indicate 
whether the trial data stream 1220 is associated with mal 
ware . Examples are discussed herein , e.g. , with reference to 
operation 320 and trial model output 322 . 

Example Clauses 
[ 0172 ] A : A method comprising , under control of at least 
one processing unit : determining respective signatures of 
individual training data streams of a plurality of training data 
streams ; determining , based at least in part on the signatures 
and a predetermined difference criterion , a training set 
comprising at least some of the plurality of training data 
streams and a validation set comprising at least some of the 
plurality of training data streams ; determining a computa 
tional model based at least in part on the training set ; and 
operating the computational model based at least in part on 
a trial data stream to provide a trial model output . 
[ 0173 ] B : The method according to claim A , wherein the 
trial model output indicates whether the trial data stream is 
associated with malware . 
[ 0174 ] C : The method according to claim A , wherein at 
least one of the plurality of training data streams comprises 
at least part of an executable file . 
[ 0175 ] D : The method according to claim A , further com 
prising : determining the computational model by perform 
ing a supervised learning process using at least one training 
stream of the training set as training data ; testing the 
computational model based at least in part on at least one 
validation stream of the validation set ; and selectively 
updating the computational model based at least in part on 
a result of the testing . 
[ 0176 ] E : The method according to claim D , wherein the 
computational model comprises at least one of a neural 
network , a decision tree , or a tree ensemble . 
[ 0177 ] F : The method according to claim A , further com 
prising determining the signatures as locality - sensitive hash 
( LSH ) values associated with the respective training data 
streams . 
[ 0178 ] G : The method according to claim F , further com 
prising : determining respective feature vectors of the indi 
vidual training data streams ; and determining the signatures 
as the LSH values of the respective feature vectors . 
[ 0179 ] H : The method according to claim A , wherein : the 
method further comprises determining the validation set 
including validation streams of the plurality of training data 
streams that satisfy the predetermined difference criterion 
with respect to training stream ( s ) in the training set ; and the 
predetermined difference criterion is defined with respect to 
the signatures . 
[ 0180 ] I : The method according to claim A , further com 
prising : determining respective feature vectors of the indi 
vidual training data streams ; and determining the signatures 
based on the respective feature vectors . 
[ 0181 ] J : The method according to claim A , further com 
prising determining at least one of the signatures as a hash 
of at least a portion of the respective training data stream . 
[ 0182 ] K : The method according to claim A , further com 
prising : determining respective feature vectors of the indi 
vidual training data streams ; determining sparse LSH weight 
vectors ; and determining the signatures as the LSH values of 
the respective feature vectors based at least in part on the 
sparse LSH weight vectors . 
[ 0183 ] L : The method according to claim A , further com 
prising : determining a plurality of partitions of the training 
set based at least in part on the signatures , wherein each 
partition of the plurality of partitions comprises at least one 
of the data streams of the training set ; providing individual 
partitions of the plurality of partitions to respective com 
puting nodes of a plurality of computing nodes via a 



US 2021/0075798 A1 Mar. 11 , 2021 
19 

communications interface communicatively connected with 
the processor ; receiving respective results from individual 
computing nodes of the plurality of computing nodes ; and 
determining the computational model based at least in part 
on the results . 
[ 0184 ] M : A method comprising , under control of at least one processing unit : determining signatures of respective 
data streams ; determining , based at least in part on the 
signatures , a training set comprising at least one of the data 
streams and a validation set comprising at least one of the 
data streams , wherein the respective signatures of a first data 
stream of the training set and a second data stream of the 
validation set satisfy a predetermined difference criterion ; 
and determining a computational model based at least in part 
on the training set . 
[ 0185 ] N : The method according to claim M , further comprising : determining respective feature vectors of at 
least some of the data streams ; and determining the signa 
tures comprising locality - sensitive hash ( LSH ) values of the 
respective feature vectors . 
( 0186 ] 0 : The method according to claim M , further 
comprising determining the signatures comprising respec 
tive dissimilarity values between the respective data streams 
and a common reference data stream of the data streams . 
[ 0187 ] P : The method according to claim O , further com prising determining the signatures further comprising 
respective second dissimilarity values between the respec 
tive data streams and a common second reference data 
stream of the data streams . 
[ 0188 ] Q : The method according to claim O , wherein at 
least one dissimilarity value comprises at least one of a 
Euclidean distance , an angular distance , or a Hamming 
distance . 
[ 0189 ] R : The method according to claim M , further comprising : determining the computational model further 
based at least in part on a first hyperparameter value ; 
operating the computational model based at least in part on 
at least some of the data streams of the validation set to 
provide respective model outputs ; determining that the 
model outputs do not satisfy a predetermined completion 
criterion ; and , in response , determining a second computa 
tional model based at least in part on the training set and a 
second , different hyperparameter value . 
[ 0190 ] S : The method according to claim R , further com 
prising determining the second hyperparameter value based 
at least in part on at least one of : the first hyperparameter 
value ; or at least one of the model outputs . 
[ 0191 ] T : The method according to claim M , further 
comprising determining the validation set including indi 
vidual data streams that satisfy the predetermined difference 
criterion with respect to at least some of the data streams in 
the training set . 
[ 0192 ] U : The method according to claim M , wherein the 
training set is disjoint from the validation set . 
[ 0193 ] V : The method according to claim M , further 
comprising : determining a plurality of partitions of the 
training set based at least in part on the signatures , wherein 
each partition of the plurality of partitions comprises at least 
one of the data streams of the training set ; providing 
individual partitions of the plurality of partitions to respec 
tive computing nodes of a plurality of computing nodes via 
a communications interface communicatively connected 
with the processing unit ; receiving respective results from 

individual computing nodes of the plurality of computing 
nodes ; and determining the computational model based at 
least in part on the results . 
[ 0194 ] W : The method according to claim V , further 
comprising determining a first partition of the plurality of 
partitions based at least in part on a predetermined similarity 
criterion , wherein the respective signatures of a majority of 
the data streams in the first partition satisfy the predeter 
mined similarity criterion with respect to each other . 
[ 0195 ] X : The method according to claim V , further com 
prising determining a first partition of the plurality of 
partitions based at least in part on a predetermined similarity 
criterion , wherein , for any majority of the data streams in the 
first partition , the respective signatures of the data streams in 
the majority do not satisfy the predetermined similarity 
criterion with respect to each other . 
[ 0196 ] Y : The method according to claim V , wherein the 
providing comprises transmitting data of at least some of the 
individual partitions to the respective computing nodes via 
a network interface . 
[ 0197 ] Z : The method according to claim M , further 
comprising : determining respective feature vectors of at 
least some of the data streams ; determining sparse LSH 
weight vectors ; and determining the signatures as the LSH 
values of the respective feature vectors based at least in part 
on the sparse LSH weight vectors . 
[ 0198 ] AA : The method according to claim M , wherein 
the computational model comprises at least one of a neural 
network ( NN ) , a decision tree , or a tree ensemble . 
[ 0199 ] AB : The method according to claim M , further 
comprising , before determining the computational model , 
arranging the training set and the validation set in respective , 
different regions of a computer memory communicatively 
connected with the processor . 
[ 0200 ] AC : A method comprising , under control of at least 
one processing unit : determining a validation set of data 
streams from a candidate set of data streams based at least 
in part on a training set of data streams and on a predeter 
mined difference criterion between data streams ; and oper 
ating a computational model based at least in part on data 
stream ( s ) of the validation set to provide respective model 
output ( s ) ; determining that the model output ( s ) do not 
satisfy a predetermined completion criterion ; and , in 
response , updating the computational model based at least in 
part on data stream ( s ) of the training set to provide an 
updated computational model . 
[ 0201 ] AD : The method according to claim AC , wherein : 
the predetermined difference criterion applies to at least two 
signatures and is satisfied by the at least two signatures 
having at least a predetermined threshold difference ; and the 
method further comprises : determining respective signatures 
of at least some data streams of the candidate set ; determin 
ing respective signatures of at least some data streams of the 
training set ; and selecting a first data stream of the candidate 
set for inclusion in the validation set in response to the 
respective signature of the first data stream satisfying the 
predetermined difference criterion with respect to the 
respective signature of at least one data stream of the 
training set . 
[ 0202 ] AE : The method according to claim AD , further 
comprising : determining a feature vector associated with the 
first data stream ; and determining the respective signature of 
the first data stream as a locality - sensitive hash ( LSH ) of the 
feature vector . 
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CONCLUSION [ 0203 ] AF : The method according to claim AD , further 
comprising selecting the first data stream further based at 
least in part on the first data stream satisfying the predeter 
mined difference criterion with respect to a majority of the 
respective signatures of the data streams of the training set . 
[ 0204 ] AG : The method according to claim AD , further 
comprising : determining a feature vector associated with the 
first data stream ; determining sparse LSH weight vectors ; 
and determining the respective signature of the first data 
stream as a locality - sensitive hash ( LSH ) of the feature 
vector based at least in part on the sparse LSH weight 
vectors . 

[ 0205 ] AH : The method according to claim AC , further 
comprising : determining respective signatures of at least 
some data streams of the candidate set ; determining a first 
subset of the candidate set and a second subset of the 
candidate set based at least in part on at least some of the 
signatures and on the predetermined difference criterion ; 
determining the training set comprising the first subset ; and 
determining the validation set comprising the second subset . 
[ 0206 ] AI : The method according to claim AH , wherein 
the training set and the validation set are disjoint . 
[ 0207 ] AJ : The method according to claim AC , further 
comprising : determining a plurality of partitions of the 
training set based at least in part on the signatures , wherein 
each partition of the plurality of partitions comprises at least 
one of the data streams of the training set ; providing 
individual partitions of the plurality of partitions to respec 
tive computing nodes of a plurality of computing nodes via 
a communications interface communicatively connected 
with the at least one processing unit ; receiving respective 
results from individual computing nodes of the plurality of 
computing nodes ; and updating the computational model 
based at least in part on the results . 
[ 0208 ] AK : The method according to claim AC , further 
comprising operating the updated computational model 
based at least in part on at least one trial data stream to 
provide a trial model output indicating whether the trial data 
stream is associated with malware . 
[ 0209 ] AL : The method according to claim AC , wherein : 
the training set comprises at least some , but fewer than all , 
of the data streams of the candidate set ; and the method 
further comprises , before updating the computational model , 
packing the training set of data streams in a processor 
accessible memory . 
[ 0210 ] AM : A computer - readable medium , e.g. , a com 
puter storage medium , having thereon computer - executable 
instructions , the computer - executable instructions upon 
execution configuring a computer to perform operations as 
any of paragraphs A - AL ( e.g. , A - L , M - AB , or AC - AL ) 
recites . 
[ 0211 ] AN : A device comprising : a processor ; and a com 
puter - readable medium , e.g. , a computer storage medium , 
having thereon computer - executable instructions , the com 
puter - executable instructions upon execution by the proces 
sor configuring the device to perform operations as any of 
paragraphs A - AL ( e.g. , A - L , M - AB , or AC - AL ) recites . 
[ 0212 ] AO : A system comprising : means for processing ; 
and means for storing having thereon computer - executable 
instructions , the computer - executable instructions including 
means to configure the system to carry out a method as any 
of paragraphs A - AL ( e.g. , A - L , M - AB , or AC - AL ) recites . 

[ 0213 ] Various computational - model determination and 
operation techniques described herein can permit more 
efficiently analyzing data , e.g. , of a data stream , and more 
readily determining a signature or classification of the data 
stream . Various examples can reduce the time or memory 
requirements of software to determine signatures or classi 
fications while maintaining or improving the accuracy of 
such determinations . Some examples herein permit classi 
fying data streams unknown at the time of training , e.g. , 
malware generated using a custom packer specific to that 
type of malware or the relevant adversary . Some examples 
provide signatures that can then be used by neural networks 
or other classifiers in determining classifications of unknown 
files . Some examples herein can provide improved accuracy 
of classification of malware within a malware family or 
across families . This can , in turn , permit more readily 
detecting and disabling newly - developed malware variants , 
e.g. , polymorphic malware . Some examples are described 
with reference to malware , but techniques described herein 
are not limited to files associated with malware . For 
example , techniques used herein can be used to classify 
media files ( e.g. , audio , video , or image ) ; productivity files 
( e.g. , text documents or spreadsheets ) ; data files ( e.g. , data 
base indexes or tables ) ; or other types of files . 
[ 0214 ] Various examples herein can be used with a variety 
of types of data streams , including data streams that have 
been compiled or linked , assembled into distribution pack 
ages or script packages , combined into self - extractors or 
self - installers , packed , or encrypted , e.g. , for content pro 
tection . Example trial data streams 116 that can be analyzed 
using computational models 112 as described herein include , 
but are not limited to , PE , ELF , Mach - O , JAR , or DEX 
executables , or any other executable formats ; PNG , GIF , or 
other image formats ; OGG , MP3 , MP4 , Matroska , or other 
audio or video container or bitstream formats ; or traces of 
network traffic , e.g. , headers or bodies of data packets in 
protocols such as IEEE 802.11 , IP , UDP , or TCP . Example 
types of trial data streams 116 that can be analyzed using 
computational models 112 as described herein include , but 
are not limited to , executables , static libraries , dynamic 
libraries , data files , compressed files , encrypted files , or 
obfuscated files . 
[ 0215 ] Although the techniques have been described in 
language specific to structural features and / or methodologi 
cal acts , it is to be understood that the appended claims are 
not necessarily limited to the features and / or acts described . 
Rather , the features and acts are described as example 
implementations of such techniques . For example , network 
108 , processing unit ( s ) 210 , and other structures described 
herein for which multiple types of implementing devices or 
structures are listed can include any of the listed types , 
and / or multiples and / or combinations thereof . 
[ 0216 ] The operations of the example processes are illus 
trated in individual operations and summarized with refer 
ence to those operations . The processes are illustrated as 
logical flows of operations , each operation of which can 
represent one or more operations that can be implemented in 
hardware , software , and / or a combination thereof . In the 
context of software , the operations represent computer 
executable instructions stored on one or more computer 
readable media that , when executed by one or more proces 
sors , enable the one or more processors to perform the 
recited operations . Generally , computer - executable instruc 
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tions include routines , programs , objects , modules , compo 
nents , data structures , and the like that perform particular 
functions and / or implement particular abstract data types . 
The order in which the operations are described is not 
intended to be construed as a limitation , and any number of 
the described operations can be executed in any order , 
combined in any order , subdivided into multiple sub - opera 
tions , and / or executed in parallel to implement the described 
processes . The described processes can be performed by 
resources associated with one or more computing device ( s ) 
102 , 104 , and / or 200 such as one or more internal and / or 
external CPUs and / or GPUs , and / or one or more pieces of 
hardware logic such as FPGAs , DSPs , and / or other types 
described above . 
[ 0217 ] All of the methods and processes described above 
can be embodied in , and fully automated via , software code 
modules executed by one or more computers and / or proces 
sors . The code modules can be embodied in any type of 
computer - readable medium . Some and / or all of the methods 
can be embodied in specialized computer hardware . As used 
herein , the term " module ” is intended to represent example 
divisions of the described operations ( e.g. , implemented in 
software or hardware ) for purposes of discussion , and is not 
intended to represent any type of requirement or required 
method , manner or organization . Accordingly , while various 
“ modules ” are discussed , their functionality and / or similar 
functionality could be arranged differently ( e.g. , combined 
into a fewer number of modules , broken into a larger number 
of modules , etc. ) . Further , while certain functions and mod 
ules are described herein as being implemented by software 
and / or firmware executable on a processor , in other embodi 
ments , any or all of the modules may be implemented in 
whole or in part by hardware ( e.g. , as an ASIC , a specialized 
processing unit , etc. ) to execute the described functions . In 
some instances , the functionality and / or modules discussed 
herein may be implemented as part of the operating system 
216. In other instances , the functionality and / or modules 
may be implemented as part of a device driver , firmware , 
and so on . 
[ 0218 ] The word “ or ” and the phrase " and / or ” are used 
herein in an inclusive sense unless specifically stated oth 
erwise . Accordingly , conjunctive language such as the 
phrases “ X , Y , or Z , ” “ at least X , Y , or Z , ” or “ at least one 
of X , Y or Z , " unless specifically stated otherwise , is to be 
understood as signifying that an item , term , etc. , can be 
either X , Y , or Z , or a combination thereof . Conditional 
language such as , among others , “ can , ” “ could , " " might ” 
and / or " may , " unless specifically stated otherwise , are 
understood within the context to present that certain 
examples include , while other examples do not include , 
certain features , elements and / or steps . Thus , such condi 
tional language is not generally intended to imply that 
certain features , elements and / or steps are in any way 
required for one or more examples and / or that one or more 
examples necessarily include logic for deciding , with and / or 
without user input and / or prompting , whether certain fea 
tures , elements and / or steps are included and / or are to be 
performed in any particular example . 
[ 0219 ] Any routine descriptions , elements and / or blocks in 
the flow diagrams described herein and / or depicted in the 
attached figures should be understood as potentially repre 
senting modules , segments , and / or portions of code that 
include one or more computer - executable instructions for 
implementing specific logical functions and / or elements in 

the routine . Alternative implementations are included within 
the scope of the examples described herein in which ele 
ments and / or functions can be deleted and / or executed out of 
order from any order shown or discussed , including sub 
stantially synchronously and / or in reverse order , depending 
on the functionality involved as would be understood by 
those skilled in the art . Examples herein are nonlimiting 
unless expressly stated otherwise , regardless of whether or 
not they are explicitly described as being nonlimiting . It 
should be emphasized that many variations and modifica 
tions can be made to the above - described examples , the 
elements of which are to be understood as being among 
other acceptable examples . All such modifications and varia 
tions are intended to be included herein within the scope of 
this disclosure and protected by the following claims . More 
over , in the claims , any reference to a group of items 
provided by a preceding claim clause is a reference to at 
least some of the items in the group of items , unless 
specifically stated otherwise . 
What is claimed is : 
1. A method comprising , under control of at least one 

processing unit : 
determining a validation set of data streams from a 

candidate set of data streams based at least in part on a 
training set of data streams and on a predetermined 
difference criterion between data streams ; and 

operating a computational model based at least in part on 
data stream ( s ) of the validation set to provide respec 
tive model output ( s ) ; 

determining that the model output ( s ) do not satisfy a 
predetermined completion criterion ; and , in response , 

updating the computational model based at least in part on 
data stream ( s ) of the training set to provide an updated 
computational model . 

2. The method according to claim 1 , wherein : 
the predetermined difference criterion applies to at least 

two signatures and is satisfied by the at least two 
signatures having at least a predetermined threshold 
difference ; and the method further comprises : 

determining respective signatures of at least some data 
streams of the candidate set ; 

determining respective signatures of at least some data 
streams of the training set ; and 

selecting a first data stream of the candidate set for 
inclusion in the validation set in response to the respec 
tive signature of the first data stream satisfying the 
predetermined difference criterion with respect to the 
respective signature of at least one data stream of the 
training set . 

3. The method according to claim 2 , further comprising : 
determining a feature vector associated with the first data 

stream ; and 
determining the respective signature of the first data 

stream as a locality - sensitive hash ( LSH ) of the feature 
vector . 

4. The method according to claim 2 , further comprising 
selecting the first data stream further based at least in part on 
the first data stream satisfying the predetermined difference 
criterion with respect to a majority of the respective signa 
tures of the data streams of the training set . 

5. The method according to claim 1 , further comprising : 
determining respective signatures of at least some data 

streams of the candidate set ; 



US 2021/0075798 A1 Mar. 11 , 2021 
22 

determining a first subset of the candidate set and a second 
subset of the candidate set based at least in part on at 
least some of the signatures and on the predetermined 
difference criterion ; 

determining the training set comprising the first subset ; 
and 

determining the validation set comprising the second 
subset . 

6. The method according to claim 1 , further comprising : 
determining a plurality of partitions of the training set 

based at least in part on the signatures , wherein each 
partition of the plurality of partitions comprises at least 
one of the data streams of the training set ; 

providing individual partitions of the plurality of parti 
tions to respective computing nodes of a plurality of 
computing nodes via a communications interface com 
municatively connected with the at least one processing 
unit ; 

receiving respective results from individual computing 
nodes of the plurality of computing nodes ; and 

updating the computational model based at least in part on 
the results . 

7. The method according to claim 1 , further comprising : 
operating the updated computational model based at least 

in part on at least one trial data stream to provide a trial 
model output indicating whether the trial data stream is 
associated with malware . 

8. A system comprising : 
one or more processors ; and 
memory communicatively coupled to the one or more 

processors , the memory storing instructions executable 
by the one or more processors that , when executed by 
the one or more processors , cause the system to per 
form operations including : 
determining a validation set of data streams from a 

candidate set of data streams based at least in part on 
a training set of data streams and on a predetermined 
difference criterion between data streams ; and 

operating a computational model based at least in part 
on data stream ( s ) of the validation set to provide 
respective model output ( s ) ; 

determining that the model output ( s ) do not satisfy a 
predetermined completion criterion ; and , in 
response , 

updating the computational model based at least in part 
on data stream ( s ) of the training set to provide an 
updated computational model . 

9. The system according to claim 8 , wherein : 
the predetermined difference criterion applies to at least 

two signatures and is satisfied by the at least two 
signatures having at least a predetermined threshold 
difference ; and the instructions , when executed by the 
one or more processors , cause the system to perform 
operations further including : 

determining respective signatures of at least some data 
streams of the candidate set ; 

determining respective signatures of at least some data 
streams of the training set ; and 

selecting a first data stream of the candidate set for 
inclusion in the validation set in response to the respec 
tive signature of the first data stream satisfying the 
predetermined difference criterion with respect to the 
respective signature of at least one data stream of the 
training set . 

10. The system according to claim 9 , wherein the instruc 
tions , when executed by the one or more processors , cause 
the system to perform operations further including : 

determining a feature vector associated with the first data 
stream ; and 

determining the respective signature of the first data 
stream as a locality - sensitive hash ( LSH ) of the feature 
vector . 

11. The system according to claim 9 , wherein the instruc 
tions , when executed by the one or more processors , cause 
the system to perform operations further including : 

selecting the first data stream further based at least in part 
on the first data stream satisfying the predetermined 
difference criterion with respect to a majority of the 
respective signatures of the data streams of the training 
set . 

12. The system according to claim 8 , wherein the instruc 
tions , when executed by the one or more processors , cause 
the system to perform operations further including : 

determining respective signatures of at least some data 
streams of the candidate set ; 

determining a first subset of the candidate set and a second 
subset of the candidate set based at least in part on at 
least some of the signatures and on the predetermined 
difference criterion ; 

determining the training set comprising the first subset ; 
and 

determining the validation set comprising the second 
subset . 

13. The system according to claim 8 , wherein the instruc 
tions , when executed by the one or more processors , cause 
the system to perform operations further including : 

determining a plurality of partitions of the training set 
based at least in part on the signatures , wherein each 
partition of the plurality of partitions comprises at least 
one of the data streams of the training set ; 

providing individual partitions of the plurality of parti 
tions to respective computing nodes of a plurality of 
computing nodes via a communications interface com 
municatively connected with the at least one processing 
unit ; 

receiving respective results from individual computing 
nodes of the plurality of computing nodes ; and 

updating the computational model based at least in part on 
the results . 

14. The system according to claim 8 , wherein the instruc 
tions , when executed by the one or more processors , cause 
the system to perform operations further including : 

operating the updated computational model based at least 
in part on at least one trial data stream to provide a trial 
model output indicating whether the trial data stream is 
associated with malware . 

15. A computer - readable storage medium storing com 
puter - readable instructions executable by one or more pro 
cessors , that when executed by the one or more processors , 
cause the one or more processors to perform operations 
comprising : 

determining a validation set of data streams from a 
candidate set of data streams based at least in part on a 
training set of data streams and on a predetermined 
difference criterion between data streams ; and 

operating a computational model based at least in part on 
data stream ( s ) of the validation set to provide respec 
tive model output ( s ) ; 
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determining that the model output ( s ) do not satisfy a 
predetermined completion criterion ; and , in response , 

updating the computational model based at least in part on 
data stream ( s ) of the training set to provide an updated 
computational model . 

16. The computer - readable storage medium according to 
claim 15 , wherein : 

the predetermined difference criterion applies to at least 
two signatures and is satisfied by the at least two 
signatures having at least a predetermined threshold 
difference ; and the instructions , when executed by the 
one or more processors , cause the one or more proces 
sors to perform operations further including : 

determining respective signatures of at least some data 
streams of the candidate set ; 

determining respective signatures of at least some data 
streams of the training set ; and 

selecting a first data stream of the candidate set for 
inclusion in the validation set in response to the respec 
tive signature of the first data stream satisfying the 
predetermined difference criterion with respect to the 
respective signature of at least one data stream of the 
training set . 

17. The computer - readable storage medium according to 
claim 16 , wherein the instructions , when executed by the 
one or more processors , cause the one or more processors to 
perform operations further including : 

determining a feature vector associated with the first data 
stream ; and 

determining the respective signature of the first data 
stream as a locality - sensitive hash ( LSH ) of the feature 
vector . 

18. The computer - readable storage medium according to 
claim 16 , wherein the instructions , when executed by the 
one or more processors , cause the one or more processors to 
perform operations further including : 

selecting the first data stream further based at least in part 
on the first data stream satisfying the predetermined 
difference criterion with respect to a majority of the 
respective signatures of the data streams of the training 
set . 

19. The computer - readable storage medium according to 
claim 15 , wherein the instructions , when executed by the 
one or more processors , cause the one or more processors to 
perform operations further including : 

determining respective signatures of at least some data 
streams of the candidate set ; 

determining a first subset of the candidate set and a second 
subset of the candidate set based at least in part on at 
least some of the signatures and on the predetermined 
difference criterion ; 

determining the training set comprising the first subset ; 
and 

determining the validation set comprising the second 
subset . 

20. The computer - readable storage medium according to 
claim 15 , wherein the instructions , when executed by the 
one or more processors , cause the one or more processors to 
perform operations further including : 

determining a plurality of partitions of the training set 
based at least in part on the signatures , wherein each 
partition of the plurality of partitions comprises at least 
one of the data streams of the training set ; 

providing individual partitions of the plurality of parti 
tions to respective computing nodes of a plurality of 
computing nodes via a communications interface com 
municatively connected with the at least one processing 
unit ; 

receiving respective results from individual computing 
nodes of the plurality of computing nodes ; and 

updating the computational model based at least in part on 
the results . 


