
US 20210075798A1
IN

(19) United States
(12) Patent Application Publication Publication (10) Pub . No .: US 2021/0075798 A1

Krasser et al . (43) Pub . Date : Mar. 11 , 2021

(54) VALIDATION - BASED DETERMINATION OF
COMPUTATIONAL MODELS

(52) U.S. CI .
CPC H04L 63/145 (2013.01) ; G06F 21/56

(2013.01) ; GO6N 20/00 (2019.01) ; H04L
63/1416 (2013.01) (71) Applicant : CrowdStrike , Inc. , Irvine , CA (US)

(57) ABSTRACT (72) Inventors : Sven Krasser , Los Angeles , CA (US) ;
David Elkind , Arlington , VA (US) ;
Brett Meyer , Alpharetta , GA (US) ;
Patrick Crenshaw , Atlanta , GA (US)

(73) Assignee : CrowdStrike , Inc.
(21) Appl . No .: 17 / 087,194
(22) Filed : Nov. 2 , 2020

Related U.S. Application Data
(62) Division of application No. 15 / 402,503 , filed on Jan.

10 , 2017 , now Pat . No. 10,826,934 .

Example techniques described herein determine a validation
dataset , determine a computational model using the valida
tion dataset , or determine a signature or classification of a
data stream such as a file . The classification can indicate
whether the data stream is associated with malware . A
processing unit can determine signatures of individual train
ing data streams . The processing unit can determine , based
at least in part on the signatures and a predetermined
difference criterion , a training set and a validation set of the
training data streams . The processing unit can determine a
computational model based at least in part on the training
set . The processing unit can then operate the computational
model based at least in part on a trial data stream to provide
a trial model output . Some examples include determining
the validation set based at least in part on the training set and
the predetermined criterion for difference between data
streams .

Publication Classification

(51) Int . Ci .
H04L 29/06
GOON 20/00
G06F 21/56

(2006.01)
(2006.01)
(2006.01)

100 102 (N) VECTOR 112

COMPUTATIONAL
MODEL

1

COMPUTING CLUSTER 106
1

1

3.1
0.41
0.59
-2.6
53.0
0.589

?

102 (1) L102 (2)

118 114
TRAINING DATA

STREAM SIGNATURE

116 - om NETWORK (S)
108

120
TRIAL DATA
STREAM CLASSIFICATION

1
1

1229 1 MALWARE ?
104 (2) 104 (1)

EXECUTABLE FILE
DOS HEADER
MZ

1

BENIGN
VIRUS
WORM
ROOTKIT
SPYWARE
ADWARE

1

2 104 (3) PE HEADER
Pl'El

104 (K) ,
TEXT SEGMENT
637877 2F 4E 43 | 4C | 110

104 (4)

100

102 (N)

VECTOR

- 112

• N

COMPUTATIONAL MODEL

COMPUTING CLUSTER 106

3.1 0.41 0.59 -2.6 53.0 0.589

Patent Application Publication

L 102 (1)

102 (2)

114

118

TRAINING DATA STREAM

SIGNATURE

FIG . 1

116

NETWORK (S)
108

120

TRIAL DATA STREAM

CLASSIFICATION

Mar. 11 , 2021 Sheet 1 of 12

1
}

122

MALWARE ?

1

104 (2)

104 (1)

EXECUTABLE FILE

DOS HEADER ' M'IZ ' :

? BENIGN VIRUS WORM ROOTKIT SPYWARE ADWARE

mo

104 (3)

PE HEADER PE '

104 (K)

TEXT SEGMENT 63 78 77 2F4E 43 4C

US 2021/0075798 A1

110

104 (4)

Patent Application Publication Mar. 11 , 2021 Sheet 2 of 12 US 2021/0075798 A1

200

202 + D -206
204

I / O INTERFACE (S)
208

PROCESSING UNIT (S)
210

MEMORY
212

COMPUTER - READABLE MEDIA 214

OPERATING SYSTEM 216 TRAINING MODULE 226

EXECUTABLE FILE
218

COMPUTATIONAL MODEL
220

REPRESENTATION
MODULE 222 OPERATION MODULE 228

PREPARATION MODULE
224 OUTPUT 236

COMMUNICATIONS
MODULE 230

COMMUNICATIONS INTERFACE (S)
232

NETWORK (S)
108

234

FIG . 2

Patent Application Publication Mar. 11 , 2021 Sheet 3 of 12 US 2021/0075798 A1

300 114 C ? TRAINING DATA STREAMS

302
304

DETERMINE RESPECTIVE
SIGNATURES OF TRAINING DATA

STREAMS
SIGNATURES

306
316

DETERMINE TRAINING SET AND
VALIDATION SET , EACH INCLUDING

TRAINING DATA STREAMS
DIFFERENCE CRITERION

308 312

TRAINING SET VALIDATION SET

TRAINING STREAMS 310 VALIDATION STREAMS 314

} }
}

318
220

DETERMINE COMPUTATIONAL
MODEL BASED ON TRAINING SET COMPUTATIONAL MODEL

116

TRIAL DATA STREAM

320
322

OPERATE COMPUTATIONAL MODEL
BASED ON TRIAL DATA STREAM TRIAL MODEL OUTPUT

FIG . 3

Patent Application Publication Mar. 11 , 2021 Sheet 4 of 12 US 2021/0075798 A1

114
400

TRAINING DATA STREAMS

402
404

302 DETERMINE RESPECTIVE
SIGNATURES AS LOCALITY

SENSITIVE HASH (LSH) VALUES
LSH SIGNATURES

406
316

306
DETERMINE VALIDATION STREAMS
SATISFYING CRITERION W.R.T.

TRAINING STREAM (S)
DIFFERENCE CRITERION

308 312

TRAINING SET VALIDATION SET

TRAINING STREAMS
310

VALIDATION STREAMS
314

1
t

}

A ?.
408

DETERMINE COMPUTATIONAL
MODEL USING SUPERVISED

LEARNING PROCESS
COMPUTATIONAL MODEL

}
}
1
1

-220
}

410

318
TEST COMPUTATIONAL MODEL
BASED AT LEAST IN PART ON AT
LEAST ONE VALIDATION STREAM

TRIAL RESULT

-412

414

SELECTIVELY UPDATE
COMPUTATIONAL MODEL BASED
AT LEAST IN PART ON RESULT

?.

FIG . 4

Patent Application Publication Mar. 11 , 2021 Sheet 5 of 12 US 2021/0075798 A1

114

500 TRAINING DATA STREAMS

502
504

DETERMINE FEATURE VECTORS
OF INDIVIDUAL TRAINING DATA

STREAMS
FEATURE VECTORS

}
}
}

1
1

506

ADDITIONAL FEATURES 302

1
1 }

508

402 SELECT ADDITIONAL FEATURE FOR
INCLUSION IN THE FEATURE

VECTOR

510
304

DETERMINE RESPECTIVE
SIGNATURES AS LSH VALUES OF

FEATURE VECTORS
SIGNATURES

FIG . 5

Patent Application Publication Mar. 11 , 2021 Sheet 6 of 12 US 2021/0075798 A1

600 602

DATA STREAMS

604
606

DETERMINE RESPECTIVE
SIGNATURES OF DATA STREAMS SIGNATURES

608
618

DETERMINE TRAINING SET AND
VALIDATION SET HAVING DATA
STREAMS SATISFYING CRITERION

DIFFERENCE CRITERION

610 614

TRAINING SET VALIDATION SET

DATA STREAM 612 DATA STREAM 616

620
622

DETERMINE COMPUTATIONAL
MODEL BASED ON TRAINING SET COMPUTATIONAL MODEL

FIG . 6

604

700

602

Patent Application Publication

DATA STREAMS

702

606

REFERENCE DATA STREAM 706

DETERMINE DISSIMILARITY VALUES BETWEEN STREAMS AND REFERENCE STREAM

DISSIMILARITY VALUES 704

SECOND REFERENCE STREAM 712

SIGNATURES

DETERMINE SECOND DISSIMILARITY VALUES W.RT SECOND REFERENCE STREAM

SECOND DISSIMILARITY VALUES 710

708

Mar. 11 , 2021 Sheet 7 of 12

714

716

DETERMINE RESPECTIVE FEATURE VECTORS OF DATA STREAMS

FEATURE VECTORS

606

718

SIGNATURES

FIG . 7

DETERMINE LOCALITY SENSITIVE HASH VALUES OF FEATURE VECTORS

LSH VALUES 720

US 2021/0075798 A1

...-

620

800

-610

806

TRAINING SET

FIRST HYPERPARAMETER VALUE

Patent Application Publication

DATA STREAM 612

802

-804 ?

DETERMINE COMPUTATIONAL MODEL BASED ON TRAINING SET AND HYPERPARAMETER VALUE

COMPUTATIONAL MODEL

614

808

810

VALIDATION SET

OPERATE COMPUTATIONAL MODEL ON VALIDATION STREAMS TO PROVIDE MODEL OUTPUTS

MODEL OUTPUTS

DATA STREAM 616

Mar. 11 , 2021 Sheet 8 of 12

812

DETERMINE THAT MODEL OUTPUTS DO NOT SATISFY COMPLETION CRITERION

818

FIG . 8

SECOND HYPERPARAMETER VALUE

814

-816

DETERMINE SECOND CM BASED ON TRAINING SET AND SECOND HYPERPARAMETER VALUE

SECOND COMPUTATIONAL MODEL

US 2021/0075798 A1

.....

Patent Application Publication Mar. 11 , 2021 Sheet 9 of 12 US 2021/0075798 A1

620 FIG . 9
900

610

TRAINING SET 606

SIGNATURES DATA STREAM 612

-914

SIMILARITY CRITERION

1 902 904
1 PARTITIONS

}
{
}
}
}
}
}

DETERMINE PARTITIONS OF
TRAINING SET 2ND 906 JTH 908

}
}
}
}
} 910
} PROVIDE INDIVIDUAL PARTITIONS TO

RESPECTIVE COMPUTING NODES VIA
COMMUNICATIONS INTERFACE

}
}

}
}
}
} 912 (1) 912 (2) . 912 (J) ...

NODE NODE NODE
}
}
}
}
}
{
}
}
{
}
} 916

918

RECEIVE RESPECTIVE RESULTS
FROM COMPUTING NODES RESULTS

}
}
{
}
}
}

920
622

}
}
}

DETERMINE COMPUTATIONAL
MODEL BASED ON RESULTS COMPUTATIONAL MODEL

Patent Application Publication Mar. 11 , 2021 Sheet 10 of 12 US 2021/0075798 A1

1000

1002 1006

TRAINING SET CANDIDATE SET

DATA STREAMS 1004 DATA STREAMS 1008

1016

DIFFERENCE CRITERION

-1012

VALIDATION SET
DETERMINE VALIDATION SET
BASED ON TRAINING SET AND

DIFFERENCE CRITERION
DATA STREAMS 1014

1010

1020

COMPUTATIONAL MODEL

1018
1022

OPERATE COMPUTATIONAL MODEL
BASED ON VALIDATION SET TO
PROVIDE MODEL OUTPUTS

MODEL OUTPUTS

1024
1026

DETERMINE THAT MODEL
OUTPUTS DO NOT SATISFY
COMPLETION CRITERION

COMPLETION CRITERION

1028

UPDATE COMPUTATIONAL MODEL
BASED AT LEAST IN PART ON
TRAINING DATA STREAMS

FIG . 10

Patent Application Publication Mar. 11 , 2021 Sheet 11 of 12 US 2021/0075798 A1

FIG . 11 1006
1010

1100
CANDIDATE SET

DATA STREAMS 1008

1102
1104

DETERMINE SIGNATURES OF
CANDIDATE STREAMS CANDIDATE SIGNATURES

A ?.

1106
1108

DETERMINE FEATURE
VECTOR OF DATA STREAM FEATURE VECTOR

1110

DETERMINE SIGNATURE AS
LSH OF FEATURE VECTOR

1002

TRAINING SET
DATA STREAMS 1004

1112
113

DETERMINE SIGNATURES OF
TRAINING STREAMS TRAINING SIGNATURES

A

1116
1016

SELECT CANDIDATE STREAM FOR
VALIDATION SET BASED ON
SIGNATURES AND CRITERION

DIFFERENCE CRITERION

1120

1118 1ST SUBSET TRAINING
DETERMINE SUBSETS OF
CANDIDATE SET BASED ON
SIGNATURES AND CRITERION

1122

2ND SUBSET - VALIDATION

Patent Application Publication Mar. 11 , 2021 Sheet 12 of 12 US 2021/0075798 A1

1200
1002

TRAINING SET . 1114

DATA STREAMS 1004 TRAINING SIGNATURES

1202 1204
DETERMINE PARTITIONS OF
TRAINING SET BASED ON

SIGNATURES
PARTITIONS

1206 Y

PROVIDE INDIVIDUAL PARTITIONS TO
RESPECTIVE COMPUTING NODES VIA

COMMUNICATIONS INTERFACE

1208 FIG . 12
1028 NODES

1210 1212

RECEIVE RESPECTIVE RESULTS
FROM COMPUTING NODES RESULTS

1214 1216

UPDATE COMPUTATIONAL MODEL
BASED ON RESULTS

UPDATED
COMPUTATIONAL MODEL

1220

TRIAL DATA STREAM

1218 1222
OPERATE UPDATED

COMPUTATIONAL MODEL BASED ON
TRIAL DATA STREAM

TRIAL MODEL OUTPUT

US 2021/0075798 Al Mar. 11 , 2021
1

VALIDATION - BASED DETERMINATION OF
COMPUTATIONAL MODELS

RELATED APPLICATION

[0001] This application is a divisional of , and claims
priority to , U.S. patent application Ser . No. 15 / 402,503 , filed
on Jan. 10 , 2017 , entitled “ VALIDATION - BASED DETER
MINATION OF COMPUTATIONAL MODELS ” , the dis
closure of which is fully incorporated herein by reference in
its entirety

BACKGROUND

[0002] With computer and Internet use forming an ever
greater part of day to day life , security exploits and cyber
attacks directed to stealing and destroying computer
resources , data , and private information are becoming an
increasing problem . For example , “ malware ” , or malicious
software , is a general term used to refer to a variety of forms
of hostile or intrusive computer programs . Malware is , for
example , used by cyber attackers to disrupt computer opera
tions , to access and to steal sensitive information stored on
the computer or provided to the computer by a user , or to
perform other actions that are harmful to the computer
and / or to the user of the computer . Malware may include
computer viruses , worms , Trojan horses , ransomware , root
kits , keyloggers , spyware , adware , rogue security software ,
potentially unwanted programs (PUPs) , potentially
unwanted applications (PUAs) , and other malicious pro
grams programs . Malware may be formatted as executable
files (e.g. , COM or EXE files) , dynamic link libraries
(DLLs) , scripts , steganographic encodings within media
files such as images , and / or other types of computer pro
grams , or combinations thereof .
[0003] Malware authors or distributors (“ adversaries ”)
frequently disguise or obfuscate malware in attempts to
evade detection by malware - detection or -removal tools .
Consequently , it is time consuming to determine if a pro
gram is malware and , if so , to determine the harmful actions
the malware performs without actually running the malware .
[0004] Throughout this document , hexadecimal values are
prefixed with “ Ox ” and C - style backslash escapes are used
for special characters within strings .

[0008] FIG . 3 is a dataflow diagram that illustrates
example processes for determining and operating computa
tional model (s) according to various examples described
herein .
[0009] FIG . 4 is a dataflow diagram that illustrates
example processes for determining or updating computa
tional model (s) according to various examples described
herein .
[0010] FIG . 5 is a dataflow diagram that illustrates
example processes for determining signatures of data
streams according to various examples described herein .
[0011] FIG . 6 is a dataflow diagram that illustrates
example processes for determining computational model (s)
according to various examples described herein .
[0012] FIG . 7 is a dataflow diagram that illustrates
example processes for determining signatures for use in
determining computational model (s) according to various
examples described herein .
[0013] FIG . 8 is a dataflow diagram that illustrates
example processes for determining or updating computa
tional model (s) according to various examples described
herein .
[0014] FIG . 9 is a dataflow diagram that illustrates
example processes for determining computational model (s)
using multi - node processing according to various examples
described herein .
[0015] FIG . 10 is a dataflow diagram that illustrates
example processes for updating computational model (s)
according to various examples described herein .
[0016] FIG . 11 is a dataflow diagram that illustrates
example processes for determining training or validation
data for training a computational model according to various
examples described herein .
[0017] FIG . 12 is a dataflow diagram that illustrates
example processes for updating or operation computational
model (s) , e.g. , using multi - node update processing , accord
ing to various examples described herein .

DETAILED DESCRIPTION

Overview

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The detailed description is described with refer
ence to the accompanying figures . In the figures , the left
most digit (s) of a reference number identifies the figure in
which the reference number first appears . The use of the
same reference numbers in different figures indicates similar
or identical items or features . For brevity of illustration , in
the diagrams herein , an arrow beginning with a diamond
connects a first component or operation (at the diamond end)
to at least one second component or operation that is or can
be included in the first component or operation .
[0006] FIG . 1 is a block diagram depicting example sce
narios for determining and operating computational models
as described herein .
[0007] FIG . 2 is a block diagram depicting an example
computing device configured to participate in determining or
operating computational model (s) according to various
examples described herein .

[0018] Some examples herein relate to detection or clas
sification of malware , e.g. , concealed malware . Some
examples herein relate to determining of computational
models that can detect malware or that can classify files (or
other data streams , and likewise throughout this discussion) .
Classifications can include , e.g. , malware vs. non - malware ,
or what type of malware (e.g. , virus vs. Trojan) . Some
examples relate to determining representations of files that
permit automatically sorting multiple files based on their
characteristics , e.g. , to permit effective training and valida
tion of computational models . Some examples permit reduc
ing the time or memory or network bandwidth required to
train computational models . Some examples permit more
effectively detecting or classifying malware samples .
[0019] Some examples herein determine a signature of a
data stream including data stored in , e.g. , a file , a disk boot
sector or partition root sector , or a block of memory , or a
portion thereof . For brevity , the term “ sample ” herein refers
to a named collection of data from which a data stream can
be retrieved , e.g. , an individual malware file , a user file such
as a docment , a benign executable , or a malware - infected
user file . The signature can indicate characteristics of the
data stream , so that the degree of similarity between the

US 2021/0075798 A1 Mar. 11 , 2021
2

signatures of two streams is positively correlated with the
likelihood that those two files are , e.g. , from the same family
of malware . Signatures can include , but are not limited to ,
conventional antivirus - detection signatures .
[0020] Some examples determine training and validation
sets of data based on comparisons of the signatures and then
use the training and validation sets to determine a compu
tational model . Some examples select the training and
validation sets so that the signatures of items in the training
set are generally different from the signatures of items in the
validation set , e.g. , using locality - sensitive hashing (LSH) or
other nearest - neighbor (s) techniques . Some examples herein
can determine a computational model that avoids overfitting
and is more accurate for new inputs than can prior schemes .
Some examples can significantly reduce the amount of time
required to prepare the computational model , compared to
prior schemes , by pre - arranging the training and validation
sets in memory .
[0021] While example techniques described herein may
refer to analyzing a program that may potentially be mal
ware , it is understood that the techniques may also apply to
other non - malicious software that includes obfuscation or
other transformation of computer - executable instructions
(“ code ”) of the software . For example , a web server appli
cation may include code obfuscation to make it more
difficult to locate security vulnerabilities in the code of the
web server application . A digital video player may include
code obfuscation to make it more difficult to reverse engi
neer a video decoding process . A commercial software
product may include code obfuscation to protect its serial
number algorithm so that it is more difficult for a software
pirate to generate registration numbers for free . A crypto
graphic software product may include code obfuscation to
hide a cryptographic algorithm . Accordingly , analysis of
data streams discussed herein may be used by anti - malware
security researchers , white - hat vulnerability researchers ,
interoperability developers , anti - piracy testers or other ana
lysts of data streams . The above examples are not limiting ;
not all tools used in generating programs obfuscate their
inputs .
[0022] Various entities , configurations of electronic
devices , and methods for determining and operating com
putational models , e.g. , for stream - analysis or malware
detection applications , are described herein . While many
examples described herein relate to servers and other non
consumer electronic devices , other types of electronic
devices can be used , e.g. , as discussed with reference to FIG .
1. References throughout this document to " users ” can refer
to human users or to other entities interacting with a com
puting system .

illustrated as , e.g. , desktop computers , laptop computers ,
tablet computers , and / or cellular phones , computing device
(s) 102 and / or 104 can include a diverse variety of device
categories , classes , and / or types and are not limited to a
particular type of device .
[0024] In the illustrated example , computing device (s)
102 (1) -102 (N) can be computing nodes in a cluster com
puting system 106 , e.g. , a cloud service such as GOOGLE
CLOUD PLATFORM or another cluster computing system
(" computing cluster ” or “ cluster ") having several discrete
computing nodes (device (s) 102) that work together to
accomplish a computing task assigned to the cluster as a
whole . In some examples , computing device (s) 104 can be
clients of cluster 106 and can submit jobs to cluster 106
and / or receive job results from cluster 106. Computing
devices 102 (1) -102 (N) in cluster 106 can , e.g. , share
resources , balance load , increase performance , and / or pro
vide fail - over support and / or redundancy . Computing
devices 104 can additionally or alternatively operate in a
cluster and / or grouped configuration . In the illustrated
example , computing devices 104 communicate with com
puting devices 102. Additionally or alternatively , computing
devices 104 can communicate with cluster 106 , e.g. , with a
load balancing or job - coordination device of cluster 106 ,
and cluster 106 or components thereof can route transmis
sions to individual computing devices 102 .
[0025] Some cluster - based systems can have all or a
portion of the cluster deployed in the cloud . Cloud comput
ing allows for computing resources to be provided as
services rather than a deliverable product . For example , in a
cloud - computing environment , resources such as computing
power , software , information , and / or network connectivity
are provided (for example , through a rental agreement) over
a network , such as the Internet . As used herein , the term
" computing ” used with reference to computing clusters ,
nodes , and jobs refers generally to computation , data
manipulation , and / or other programmatically - controlled
operations . The term “ resource ” used with reference to
clusters , nodes , and jobs refers generally to any commodity
and / or service provided by the cluster for use by jobs .
Resources can include processor cycles , disk space , random
access memory (RAM) space , network bandwidth (uplink ,
downlink , or both) , prioritized network channels such as
those used for communications with quality - of - service
(QoS) guarantees , backup tape space and / or mounting / un
mounting services , electrical power , etc. Cloud resources
can be provided for internal use within an organization or for
sale to outside customers . In some examples , computer
security service providers can operate cluster 106 , or can
operate or subscribe to a cloud service providing computing
resources .

Illustrative Environment

[0023] FIG . 1 shows an example scenario 100 in which
examples of computational - model - based systems can oper
ate and / or in which computational - model determination
and / or use methods such as those described herein can be
performed . Illustrated devices and / or components of sce
nario 100 include computing device (s) 102 (1) -102 (N) (indi
vidually and / or collectively referred to herein with reference
102) , where N is any integer greater than and / or equal to 1 ,
and computing devices 104 (1) -104 (K) (individually and / or
collectively referred to herein with reference 104) , where K
is any integer greater than and / or equal to 1. In some
examples , N = K ; in other examples , N > K or N < K . Although

[0026] In some examples , as indicated , computing device
(s) , e.g. , computing devices 102 (1) and 104 (1) , can inter
communicate to participate in and / or carry out computa
tional - model determination and / or operation as described
herein . For example , computing device 104 (1) can be or
include a data source owned or operated by or on behalf of
a user , and computing device 102 (1) can be a computational
model determination and operation system , as described
below .
[0027] Different devices and / or types of computing
devices 102 and 104 can have different needs and / or ways of
interacting with cluster 106. For example , computing
devices 104 can interact with cluster 106 with discrete

US 2021/0075798 A1 Mar. 11 , 2021
3

request / response communications , e.g. , for queries and
responses using an already - determined computational
model . Additionally and / or alternatively , computing devices
104 can be data sources and can interact with cluster 106
with discrete and / or ongoing transmissions of data to be
used as input to a computational model or a process of
determining a computational model . For example , a data
source in a personal computing device 104 (1) can provide to
cluster 106 data of newly - installed executable files , e.g. ,
after installation and before execution of those files . The
data of newly - installed executable files can include , e.g. ,
data such as that as described herein with respect to training
data streams 114 or trial data streams 116. This can provide
improved accuracy of outputs of a computational model
(CM) , e.g. , a malware - detection CM , by increasing the
amount of data input to the CM . Additionally and / or alter
natively , computing devices 104 can be data sinks and can
interact with cluster 106 with discrete and / or ongoing
requests for data output from a CM , e.g. , updates to firewall
or routing rules based on changing network conditions .
[0028] In some examples , computing devices 102 and / or
104 can communicate with each other and / or with other
computing devices via one or more network (s) 108. In some
examples , computing devices 102 and 104 can communicate
with external devices via network (s) 108. For example ,
network (s) 108 can include public networks such as the
Internet , private networks such as an institutional and / or
personal intranet , and / or combination (s) of private and pub
lic networks . Communications between computing devices
102 and / or 104 via network (s) 108 can be structured , e.g. ,
according to defined application programming interfaces
(APIs) . For example , data can be retrieved via network (s)
108 , e.g. , using a Hypertext Transfer Protocol (HTTP)
request such as a GET to a Web Services and / or Represen
tational State Transfer (REST) API endpoint . Remote Pro
cedure Call (RPC) APIs or other types of APIs can addi
tionally alternatively be used for network
communications .
[0029] In some examples , computing devices 102 and / or
104 , e.g. , laptops , smartphones , and / or other computing
devices 102 and / or 104 described herein , interact with an
entity 110 (shown in phantom) . The entity 110 can include
systems , devices , parties such as users , and / or other features
with which computing devices 102 and / or 104 can interact .
For brevity , examples of entity 110 are discussed herein with
reference to users of a computing system ; however , these
examples are not limiting . In some examples , computing
device 104 is operated by entity 110 , e.g. , a user . In some
examples , computing devices 102 operate CM (s) to deter
mine a model output corresponding to a file on a user's
computing device 104 , and transmit an indication of the
model output via network 108 to the computing device 104 ,
e.g. , a smartphone . The computing device 104 can , e.g. ,
present information of the model output to entity 110 .
Examples processing of trial files , e.g. , from a user's com
puting device 104 , are discussed in more detail below with
reference to at least FIG . 3 or 12 .
[0030] Computing device (s) 102 can store one or more
computational model (s) , CM (s) , 112 , individually and / or
collectively referred to herein with reference 112. In some
examples , algorithms for determining or operating CMS)
112 as described herein can be performed on a computing
device (e.g. , computing device 102) , such as a smart phone ,
a tablet , a desktop computer , a server , a server blade , a

supercomputer , etc. The resulting models can be used on
such computing devices and / or on computing devices (e.g. ,
computing device 104) having one or more input devices ,
such as a physical keyboard , a soft keyboard , a touch screen ,
a touch pad , microphone (s) , and / or camera (s) . In some
examples , functions described herein can be shared between
one or more computing device (s) 102 and one or more
computing device (s) 104. For example , the computing
device (s) 102 can determine a CM 112 initially and the
computing device (s) 104 can perform incremental updating
of the CM 112 .
[0031] In various examples , e.g. , of CM (s) 112 for deter
mining signatures of files , classifying files , determining
whether files contain malware , or other use cases noted
herein , the computational model (s) 112 may include , but are
not limited to , multilayer perceptrons (MLPs) , neural net
works (NNs) , gradient - boosted NNs , deep neural networks
(DNNs) , recurrent neural networks (RNNs) such as long
short - term memory (LSTM) networks or Gated Recurrent
Unit (GRU) networks , decision trees such as Classification
and Regression Trees (CART) , boosted trees or tree
ensembles such as those used by the “ xgboost ” library ,
decision forests , autoencoders (e.g. , denoising autoencoders
such as stacked denoising autoencoders) , Bayesian net
works , support vector machines (SVMs) , or hidden Markov
models (HMMs) . The CMs 112 can additionally or alterna
tively include regression models , e.g. , linear or nonlinear
regression using mean squared deviation (MSD) or median
absolute deviation (MAD) to determine fitting error during
the regression ; linear least squares or ordinary least squares
(OLS) ; fitting using generalized linear models (GLM) ; hier
archical regression ; Bayesian regression ; or nonparametric
regression .
[0032] The CMs 112 can include parameters governing or
affecting the output of the CM 112 for a particular input .
Parameters can include , but are not limited to , e.g. , per
neuron , per - input weight or bias values , activation - function
selections , neuron weights , edge weights , tree - node weights ,
or other data values . A training module 226 , FIG . 2 , can be
configured to determine CMs 112 , e.g. , to determine values
of parameters in CMs 112. For example , CMs 112 can be
determined using an iterative update rule such as gradient
descent (e.g. , stochastic gradient descent or AdaGrad) with
backpropagation .
[0033] In some examples , the training module 226 can
determine the CMs 112 based at least in part on “ hyperpa
rameters , " values governing the training process . Example
hyperparameters can include learning rate (s) , momentum
factor (s) , minibatch size , maximum tree depth , regulariza
tion parameters , class weighting , or convergence criteria . In
some examples , the training module 226 can determine the
CMs 112 in an iterative process involving updating and
validation . The training data set can be used to update the
CMs 112 , and the validation data set can be used in
determining (1) whether the updated CMs 112 meet training
criteria or (2) how the next update to the CMs 112 should be
performed . Examples are discussed herein , e.g. , with refer
ence to at least FIG . 8 .
[0034] The computing device (s) 102 can be configured to
use the determined parameter values of trained CM (s) 112
to , e.g. , categorize a file with respect to malware type , and / or
to perform other data analysis and / or processing . In some
examples , the computing device 104 can be configured to
communicate with computing device (s) 102 to operate a CM

or

US 2021/0075798 A1 Mar. 11 , 2021
4

112. For example , the computing device 104 can transmit a
request to computing device (s) 102 for an output of the
CM (s) 112 , receive a response , and take action based on that
response . For example , the computing device 104 can pro
vide to entity 110 information included in the response , or
can quarantine or delete file (s) indicated in the response as
being associated with malware .
[0035] In the illustrated example , computing device (s) 104
provide data streams (or portions thereof , and likewise
throughout this document) to computing device (s) 102. The
illustrated data streams include training data stream 114 and
trial data stream 116. Although only one of each stream 114
and 116 is shown , multiple of either can be used . The
computing device (s) 102 can determine or operate CM 112
based at least in part on the stream (s) 114 and 116. The
computing device (s) 102 can provide to computing device (s)
104 a signature 118 , a classification 120 , or other outputs of
CM 112. In some examples , at least one of , or all of , the
training data stream (s) 114 or trial data stream (s) can com
prise or consist of the partial or full contents of respective
digital files , e.g. , executable files , data files , or system files .
In some examples , training data stream 114 can be used in
determining CM 112 , and CM 112 can be operated to
determine whether trial data stream 116 is associated with
malware .
[0036] In the illustrated example , trial data stream 116
includes bytes of an executable file (“ EXE ”) 122 , e.g. , a
WINDOWS Portable Executable (PE) -format file . The spe
cific illustrated form and contents of executable file 122 are
provided for clarity of explanation , and are not limiting . The
illustrated executable file 122 includes a DOS (Disk Oper
ating System) header , a PE header , and a TEXT segment
including computer - executable instructions . In this example ,
the first byte of the TEXT segment is an entry point at which
execution begins , e.g. , after an operating system loads the
executable file 122 into memory . Trial data stream 116 can
include any number of bytes of the executable file 122 , e.g. ,
of headers , the TEXT segment , or other segments (e.g. , a
DATA segment holding compile - time - initialized data) . In
some examples , trial data stream 116 includes ten (or
another number of) bytes beginning with the byte at the
entry point . Analyzing bytes beginning with or shortly after
the entry point can permit identifying characteristics of
tool (s) used in preparing the executable file , since such tools
often embed specific code sequences in the files they output .
[0037] In some examples , data streams 114 and 116 have
the same format (although this is not required) . Moreover , in
some examples , CM 112 can perform the same processing
on a training data stream 114 as on a trial data stream 116 .
Accordingly , discussion herein of formats or processing of
trial data stream 116 can additionally or alternatively apply
to training data stream 114 , and vice versa , unless otherwise
expressly specified .
[0038] In the illustrated example , the signature 118
includes a vector of numerical values , shown as real num
bers , although at least some of the numerical values can
additionally or alternatively be fractions , integers , imaginary
numbers , complex numbers , or other numerical values . The
numerical values can be or include feature values , e.g. ,
representing the contents or structure of the data in the data
stream 116. In some examples , the values can be between
zero and unity , or at least zero , or at most zero , or unre
stricted . The values can be stored in various formats , includ
ing two's - complement or sign - magnitude integers or IEEE

754 four - byte (“ single ”) or eight - byte (" double ") floating
point formats . The term “ float value , " as used herein , can
refer to a value formatted as a single , double , or any other
floating - point format . In some examples , signature 118 can
include scalar value (s) , e.g. , numeric , character , string , or
boolean value , or compound value (s) such as tuples , struc
tures , or arrays . A compound value can include at least one
of a scalar value or another compound value . In some
examples , a signature 118 can include a copy of part or all
of the respective stream 114 or 116. In some examples , a
signature 118 can include text , e.g. , the name of at least one
of a family of malware or of a specific virus or other
malicious program .
[0039] In the illustrated example , the classification 120
includes a bitmask , attribute list , or other representation of
categories to which the trial data stream 116 belongs , as
determined by CM 112. For example , classification 120 can
include a Boolean value indicating whether or not trial data
stream 116 is associated with malware , or an enumerated
value indicating with which of several categories trial data
stream 116 is associated (e.g. , “ benign , ” “ virus , ” or “ spy
ware ”) . Classification 120 can additionally or alternatively
include one or more confidence values or other values
indicating the likelihood of a classification , e.g. , a “ spyware ”
value of 0.42 indicating a 42 % likelihood that the sample is
spyware . In an example , classification 120 can include
multiple confidence values for respective categories of mal
ware (e.g. , “ spyware = 0.42 ; worm = 0.05 %) .
[0040] Malware programs and other files are often pre
pared by or using various software tools , referred to herein
for brevity as “ generators . ” Generator processing can
remove or change characteristics of a file , e.g. , by modifying
headers or removing markers commonly found in a non
processed file . Example generators can include compilers ,
linkers , librarians , or other software - development tools use
ful in preparing computer - executable instructions (“ code ”) ;
packers , encryptors , or other code - obfuscation tools ; or
installation , copy - protection , archiving , or self - extractor
generation tools useful in packaging the executable code
into an executable file or in assembling an executable file
from components .
[0041] A data stream 114 or 116 , e.g. , an executable file
122 , can be associated with malware if , e.g. , the data stream
is itself malicious code , is (or is likely) at least a portion of
a grouping of malicious code , or is output by a generator
commonly used for generating malware . For example , a data
stream 114 or 116 may include a decruncher that decom
presses data from a file into RAM . A decruncher itself may
be entirely benign . However , the decompressed data may be
or include executable code of a malicious program ,
dynamic - link library (DLL) , or other computer - executable
module . Accordingly , a decruncher commonly used to com
press malicious code , or compressed malicious code itself ,
may be associated with malware , as indicated by the clas
sification 120. Some generators are used for malware , and
are also used for legitimate software . A determination that a
data stream is associated with malware does not necessarily
require or guarantee that the data stream in fact be malware .
In some examples , classification 120 , discussed below , can
be used by a security analyst in triaging data streams , and
can permit the security analyst to readily separate data
streams based on a likelihood they are in fact malware
[0042] In some examples , malware comprises malicious
data instead of or in addition to malicious code . Such data

US 2021/0075798 A1 Mar. 11 , 2021
5

is also considered to be associated with malware . For
example , some programs may have bugs that prevent them
from correctly processing certain inputs . Examples include
Structured Query Language (SQL) injection attacks , in
which a program populates a query with unescaped external
data . For example , the query template “ SELECT cost from
Products WHERE name LIKE ' % { $ name } % ?; " can be
abused by providing malicious data to be populated in place
of the placeholder " { $ name } ” . When the malicious data
$ name = " foo ' ; DROP TABLE Products ; -- ” is substituted
into the query template , for example , the resulting query will
cause the “ Products ” table of the database to be deleted
(" dropped ”) , causing unexpected loss of data . In another
example , malicious data can include malformed UTF - 8
(Unicode Transformation Format

[0043] 8 bit) that causes a buggy UTF - 8 processing
routine to enter an unexpected or erroneous state . In
still another example , malicious data can include data
that is too large or too complicated for a processing
routine to handle , e.g. , a Christmas - tree packet . Such
data can trigger buffer overflows or other vulnerabili
ties within processing routines . Data designed to trigger
or exploit vulnerabilities is associated with malware .

[0044] Except as expressly indicated otherwise , a deter
mination of whether a trial data stream 116 is associated with
malware is carried out programmatically by or using CM
112 according to techniques herein . Various examples herein
can be performed without human judgment of whether a
program or data block is in fact malicious . Using CM 112
can permit more readily identifying potential computational
threats , e.g. , in the context of an antivirus program or cloud
security service .
[0045] By way of example and not limitation , computing
device (s) 102 and / or 104 can include , but are not limited to ,
server computers and / or blade servers such as Web servers ,
map / reduce servers and / or other computation engines , and /
or network - attached - storage units (e.g. , 102 (1)) , laptop com
puters , thin clients , terminals , and / or other mobile comput
ers (e.g. , 104 (1)) , wearable computers such as smart watches
and / or biometric and / or medical sensors , implanted comput
ing devices such as biometric and / or medical sensors , com
puter navigation client computing devices , satellite - based
navigation system devices including global positioning sys
tem (GPS) devices and / or other satellite - based navigation
system devices , personal data assistants (PDAs) , and / or
other specialized portable electronic devices (e.g. , 104 (2)) ,
tablet computers , tablet hybrid computers , smartphones ,
mobile phones , mobile phone - tablet hybrid devices , and / or
other telecommunication devices (e.g. , 104 (3)) , portable
and / or console - based gaming devices and / or other entertain
ment devices such as network - enabled televisions , set - top
boxes , media players , cameras , and / or personal video
recorders (PVRs) (e.g. , 104 (4) , depicted as a gamepad) ,
automotive computers such as vehicle control systems ,
vehicle security systems , and / or electronic keys for vehicles
(e.g. , 104 (K) , depicted as an automobile) , desktop comput
ers , and / or integrated components for inclusion in comput
ing devices , appliances , and / or other computing device (s)
configured to participate in and / or carry out computational
model determination and / or operation as described herein ,
e.g. , for file - analysis or malware - detection purposes .
[0046] Network (s) 108 can include any type of wired
and / or wireless network , including but not limited to local
area networks (LANs) , wide area networks (WANs) , satel

lite networks , cable networks , Wi - Fi networks , WiMAX
networks , mobile communications networks (e.g. , 3G , 4G ,
and so forth) and / or any combination thereof . Network (s)
108 can utilize communications protocols , such as , for
example , packet - based and / or datagram - based protocols
such as Internet Protocol (IP) , Transmission Control Proto
col (TCP) , User Datagram Protocol (UDP) , other types of
protocols , and / or combinations thereof . Moreover , network
(s) 108 can also include a number of devices that facilitate
network communications and / or form a hardware infrastruc
ture for the networks , such as switches , routers , gateways ,
access points , firewalls , base stations , repeaters , backbone
devices , and the like . Network (s) 108 can also include
devices that facilitate communications between computing
devices 102 and / or 104 using bus protocols of various
topologies , e.g. , crossbar switches , INFINIBAND switches ,
and / or FIBRE CHANNEL switches and / or hubs .
[0047] In some examples , network (s) 108 can further
include devices that enable connection to a wireless net
work , such as a wireless access point (WAP) . Examples
support connectivity through WAPs that send and receive
data over various electromagnetic frequencies (e.g. , radio
frequencies) , including WAPs that support Institute of Elec
trical and Electronics Engineers (IEEE) 802.11 standards
(e.g. , 802.11g , 802.11n , and so forth) , other standards , e.g. ,
BLUETOOTH , cellular - telephony standards such as GSM ,
LTE , and / or WiMAX .
[0048] As noted above , network (s) 108 can include public
network (s) or private network (s) . Example private networks
can include isolated networks not connected with other
networks , such as MODBUS , FIELDBUS , and / or Industrial
Ethernet networks used internally to factories for machine
automation . Private networks can also include networks
connected to the Internet and / or other public network (s) via
network address translation (NAT) devices , firewalls , net
work intrusion detection systems , and / or other devices that
restrict and / or control the types of network packets permit
ted to flow between the private network and the public
network (s) .
[0049] Different networks have different characteristics ,
e.g. , bandwidth or latency , and for wireless networks , acces
sibility (open , announced but secured , and / or not
announced) , and / or coverage area . The type of network 108
used for any given connection between , e.g. , a computing
device 104 and cluster 106 can be selected based on these
characteristics and on the type of interaction , e.g. , ongoing
streaming or intermittent request - response communications .

Illustrative Configurations
[0050] FIG . 2 is an illustrative diagram that shows
example components of a computing device 200 , which can
represent computing device (s) 102 and / or 104 , and which
can be and / or implement a computational - model determi
nation and / or operation system , device , and / or apparatus ,
according to various examples described herein . Computing
device 200 can include and / or be included in a system and / or
device for determining and / or operating a computational
model as described herein .
[0051] Computing device 200 can include and / or be con
nected to a user interface 202. In some examples , user
interface 202 can be configured to permit a user , e.g. , entity
110 and / or a computational - model (CM) administrator , to
operate the CM 112 , or to control and / or otherwise interact
with cluster 106 and / or computing devices 102 therein .

US 2021/0075798 A1 Mar. 11 , 2021
6

Accordingly , actions such as presenting information of or
corresponding to an output of a CM 112 to entity 110 can be
taken via user interface 202 .
[0052] In some examples , user interface 202 can include
various types of output devices configured for communica
tion to a user and / or to another computing device 200 .
Output devices can be integral and / or peripheral to comput
ing device 200. Examples of output devices can include a
display 204 , a printer , audio speakers , beepers , and / or other
audio output devices , a vibration motor , linear vibrator ,
and / or other haptic output device , and the like . Display 204
can include an organic light - emitting - diode (OLED) display ,
a liquid - crystal display (LCD) , a cathode - ray tube (CRT) ,
and / or another type of visual display . Display 204 can be a
component of a touchscreen , and / or can include a touch
screen .

[0053] User interface 202 can include a user - operable
input device 206 (depicted as a gamepad) . User - operable
input device 206 can include one or more input devices ,
integral and / or peripheral to computing device 200. The
input devices can be user - operable , and / or can be configured
for input from other computing device 200. Examples of
input devices can include , e.g. , a keyboard , keypad , a mouse ,
a trackball , a pen sensor and / or smart pen , a light pen and / or
light gun , a game controller such as a joystick and / or game
pad , a voice input device such as a microphone , voice
recognition device , and / or speech - recognition device , a
touch input device such as a touchscreen , a gestural and / or
motion input device such as a depth camera , a grip sensor ,
an accelerometer , another haptic input , a visual input device
such as one or more cameras and / or image sensors , and the
like . User queries can be received , e.g. , from entity 110 , via
user interface 202 .
[0054] Computing device 200 can further include one or
more input / output (I / O) interface (s) 208 to allow computing
device 200 to communicate with input , output , and / or I / O
devices (for clarity , some not depicted) . Examples of such
devices can include components of user interface 202 such
as user - operable input devices and output devices described
above . Other examples of such devices can include power
meters , accelerometers , and other devices for measuring
properties of entity 110 , computing device 200 , and / or
another computing device 102 and / or 104. Computing
device 200 can communicate via I / O interface 208 with
suitable devices and / or using suitable electronic / software
interaction methods . Input data , e.g. , of user inputs on
user - operable input device 206 , can be received via I / O
interface 208 (e.g. , one or more I / O interface (s)) . Output
data , e.g. , of user interface screens , can be provided via I / O
interface 208 to display 204 , e.g. , for viewing by a user .
[0055] The computing device 200 can include one or more
processing unit (s) 210. In some examples , processing unit (s)
210 can include and / or be connected to a memory 212 , e.g. ,
a RAM and / or cache . Processing units 210 can be operably
coupled to the I / O interface 208 and to at least one computer
readable media 214 (CRM) , e.g. , a tangible non - transitory
computer - readable medium .
[0056] Processing unit (s) 210 can be and / or include one or
more single - core processors , multi - core processors , CPUs ,
GPUS , GPGPUs , and / or hardware logic components config
ured , e.g. , via specialized programming from modules and /
or APIs , to perform functions described herein . For example ,
and without limitation , illustrative types of hardware logic
components that can be used in and / or as processing units

210 include Field - programmable Gate Arrays (FPGAs) ,
Application - specific Integrated Circuits (ASICs) , Applica
tion - specific Standard Products (ASSPs) , System - on - a - chip
systems (SOCs) , Complex Programmable Logic Devices
(CPLDs) , Digital Signal Processors (DSPs) , and other types
of customizable processors . For example , processing unit (s)
210 can represent a hybrid device , such as a device from
ALTERA and / or XILINX that includes a CPU core embed
ded in an FPGA fabric . These and / or other hardware logic
components can operate independently and / or , in some
instances , can be driven by a CPU . In some examples , at
least some of computing device (s) 102 and / or 104 , FIG . 1 ,
can include a plurality of processing units 210 of multiple
types . For example , the processing units 210 in computing
device 102 (N) can be a combination of one or more GPG
PUs and one or more FPGAs . Different processing units 210
can have different execution models , e.g. , as is the case for
graphics processing units (GPUs) and central processing
unit (CPUs) . In some examples at least one processing unit
210 , e.g. , a CPU , graphics processing unit (GPU) , and / or
hardware logic device , can be incorporated in computing
device 200 , while in some examples at least one processing
unit 210 , e.g. , one or more of a CPU , GPU , and / or hardware
logic device , can be external to computing device 200 .
[0057] Computer - readable media described herein , e.g. ,
CRM 214 , includes computer storage media and / or commu
nication media . Computer storage media includes tangible
storage units such as volatile memory , nonvolatile memory ,
and / or other persistent and / or auxiliary computer storage
media , removable and non - removable computer storage
media implemented in any method and / or technology for
storage of information such as computer - readable instruc
tions , data structures , program modules , and / or other data .
Computer storage media includes tangible and / or physical
forms of media included in a device and / or hardware com
ponent that is part of a device and / or external to a device ,
including but not limited to RAM , static RAM (SRAM) ,
dynamic RAM (DRAM) , phase change memory (PRAM) ,
read - only memory (ROM) , erasable programmable read
only memory (EPROM) , electrically erasable program
mable read - only memory (EEPROM) , flash memory , com
pact disc read - only memory (CD - ROM) , digital versatile
disks (DVDs) , optical cards and / or other optical storage
media , magnetic cassettes , magnetic tape , magnetic disk
storage , magnetic cards and / or other magnetic storage
devices and / or media , solid - state memory devices , storage
arrays , network attached storage , storage area networks ,
hosted computer storage and / or memories , storage , devices ,
and / or storage media that can be used to store and maintain
information for access by a computing device 200 .
[0058] In contrast to computer storage media , communi
cation media can embody computer - readable instructions ,
data structures , program modules , and / or other data in a
modulated data signal , such as a carrier wave , and / or other
transmission mechanism . As defined herein , computer stor
age media does not include communication media .
[0059] In some examples , CRM 214 can store instructions
executable by the processing unit (s) 210 , and / or instructions
executable by external processing units such as by an
external central processing unit (CPU) and / or external pro
cessor of any type discussed herein . Any of these instruc
tions are referred to herein as computer - executable instruc
tions or processor - executable instructions . For example ,
CRM 214 can store instructions of an operating system 216 .

US 2021/0075798 A1 Mar. 11 , 2021
7

CRM 214 can additionally or alternatively store at least one
executable file 218 , which can represent executable file 122 ,
FIG . 1. Executable file 218 represents any file comprising
computer - executable instructions , even if those instructions
are compressed , encrypted , or otherwise obfuscated . In
some examples , executable file 218 comprises at least one
header or other information usable by a loader (e.g. , a
loading routine such as UNIX / POSIX exec (2)) in loading
the computer - executable instructions from executable file
218 into a RAM or other high - speed memory , or in other
wise preparing computer - executable instructions from
executable file 218 for execution by processing unit (s) 210 .
In the illustrated example , the loader is a component of the
operating system 216 , although some examples , e.g. , bare
metal embedded - systems configurations , can include a
loader but not an operating system 216. Examples herein are
discussed with reference to executable file 218 and can
additionally or alternatively be used for other types of files ,
e.g. , data files .
[0060] Table 1 shows an example of a portion of execut
able file 218. Table 1 shows an example of a conventional
MICROSOFT WINDOWS Portable Executable (PE) file ,
but this example is not limiting . Executable file 218 can be ,
for example , an a . out , Common Object File Format
(COFF) , MZ (MS - DOS) , NE (WINDOWS 3.1) , PE , Mach
0 , or Executable and Linkable Format (ELF) compiled
object file (e.g. , a standalone executable or a static or
dynamic library) , an ar static - library archive , a Java Archive
(JAR) , or a Dalvik Executable (DEX) archive .

TABLE 1

Offset Field

programs , and / or applications that are loadable and execut
able by processing unit (s) 210. Processing unit (s) 210 can be
configured to execute modules of the plurality of modules .
For example , the computer - executable instructions stored on
the computer - readable media 214 can upon execution con
figure a computer such as a computing device 200 to
perform operations described herein with reference to the
modules of the plurality of modules . The modules stored in
the computer - readable media 214 can include instructions
that , when executed by the one or more processing units 210 ,
cause the one or more processing units 210 to perform
operations described below . For example , the computer
executable instructions stored on the computer - readable
media 214 can upon execution configure a computer such as
a computing device 102 and / or 104 to perform operations
described herein with reference to the operating system 216
or the above - listed modules 222-230 .
[0063] In some examples not shown , one or more of the
processing unit (s) 210 in one of the computing device (s) 102
and / or 104 can be operably connected to computer - readable
media 214 in a different one of the computing device (s) 102
and / or 104 , e.g. , via communications interface 232 (dis
cussed below) and network 108. For example , program code
to perform steps of flow diagrams herein , e.g. , as described
herein with reference to modules 222-230 , can be down
loaded from a server , e.g. , computing device 102 (1) , to a
client , e.g. , computing device 104 (K) , e.g. , via the network
108 , and executed by one or more processing unit (s) 210 in
computing device 104 (K) .
[0064] The computing device 200 can also include a
communications interface 232 , which can include a trans
ceiver device such as a network interface controller (NIC) to
send and receive communications over a network 108
(shown in phantom) , e.g. , as discussed above . As such , the
computing device 200 can have network capabilities . Com
munications interface can include any number of network ,
bus , and / or memory interfaces , in any combination , whether
packaged together and / or separately . In some examples ,
communications interface 232 can include a memory bus
internal to a particular computing device 102 or 104 , trans
mitting via communications interface 232 can include stor
ing the transmitted data in memory 212 or computer - read
able media 214 , and receiving via communications interface
232 can include retrieving data from memory 212 or com
puter - readable media 214. In some examples , the commu
nications interface 232 can include , but is not limited to , a
transceiver for cellular (3G , 4G , and / or other) , WI - FI , Ultra
wideband (UWB) , BLUETOOTH , and / or satellite transmis
sions . The communications interface 232 can include a
wired I / O interface , such as an Ethernet interface , a serial
interface , a Universal Serial Bus (USB) interface , an
INFINIBAND interface , and / or other wired interfaces . The
communications interface 232 can additionally and / or alter
natively include at least one user - interface device or user
interface , at least one bus such as a memory bus and / or local
bus , at least one memory interface , and / or at least one
hardwired interface such as a 0-20 mA control line .
[0065] In some examples , the operating system 216 can
include components that enable and / or direct the computing
device 200 to receive data via various inputs (e.g. , user
controls such as user - operable input device 206 , network
and / or communications interfaces such as communications
interface 232 , devices implementing memory 212 , and / or
sensors) , and process the data using the processing unit (s)

Ox00 Pattern : Ox4D 0X5A

Ox3C Offset of PE header , referred to in this table as " OFS ” .

OFS + 0x00 Pattern : Ox50 OX45

OFS + 0x28 Offset of entry point , in this table “ ENTRY ”

ENTRY + Ox00 The code to be executed after the executable
file is loaded , typically library - provided startup code

ENTRY + n A jump from the startup code to the beginning of
code specific to the particular executable file

MAIN The code specific to the particular executable file ,
e.g. , compiled from the C main () function .

[0061] In some examples , trial data stream 116 can include
a predetermined number of bytes beginning at address
ENTRY or at address MAIN in Table 1. In some examples ,
trial data stream 116 can include a predetermined number of
bytes beginning at the beginning of a particular section of an
executable file , e.g. , a TEXT or DATA segment . In some
examples , trial data stream 116 can include a predetermined
number of bytes beginning at a header with the trial data
stream 116 , e.g. , an MP3 header or an ID3v2 or VORBIS
comment block .
[0062] Computer - executable instructions or other data
stored on CRM 214 can additionally or alternatively include
at least one computational model (CM) 220 , which can
represent CM 112 , FIG . 1 , or instructions of the operating
system 216 , a representation module 222 , a preparation
module 224 , a training module 226 , an operation module
228 , a communications module 230 , and / or other modules ,

US 2021/0075798 A1 Mar. 11 , 2021
8

210 to generate output . The operating system 216 can further
include one or more components that present the output
(e.g. , display an image on an electronic display 204 , store
data in memory 212 , and / or transmit data to another com
puting device 102 or 104. The operating system 216 can
enable a user (e.g. , entity 110) to interact with the computing
device 200 using a user interface 202. Additionally , the
operating system 216 can include components that perform
various functions generally associated with an operating
system , e.g. , storage management and internal - device man
agement .
[0066] In some examples , the processing unit (s) 210 can
access the module (s) on the computer - readable media 214
via a bus 234. I / O interface 208 and communications inter
face 232 can also communicate with processing unit (s) 210
via bus 234. Bus 234 can include , e.g. , at least one of a
system bus , a data bus , an address bus , a Peripheral Com
ponent Interconnect (PCI) Express (PCIe) bus , a PCI bus , a
Mini - PCI bus , any variety of local , peripheral , and / or inde
pendent buses , and / or any combination thereof .
[0067] In various examples , the number of modules can
vary higher and / or lower , and modules of various types can
be used in various combinations . For example , functionality
described associated with the illustrated modules can be
combined to be performed by a fewer number of modules
and / or APIs and / or can be split and performed by a larger
number of modules and / or APIs . For example , the repre
sentation module 222 and the preparation module 224 can be
combined in a single module that performs at least some of
the example functions described below of those modules , or ,
likewise , the training module 226 and the operation module
228 , or all four modules 222-228 . In some examples , com
puter - readable media 214 can include a subset of the above
described modules .
[0068] In the illustrated example , the representation mod
ule 222 determines a signature 118 of the executable file
218. For example , the signature can include a locality
sensitive hash (LSH) value of a feature vector associated
with the executable file 218. Examples are discussed herein ,
e.g. , with reference to at least one of FIG . 3-7 , 9 , 11 , or 12 .
[0069] In the illustrated example , the preparation module
224 determines a training set and a validation set of the
training data streams 114 based at least in part on the
signature 118. For example , the preparation module 224 can
divide a collection of training data streams 114 into the
training set and the validation set . Examples are discussed
herein , e.g. , with reference to at least one of FIG . 3 , 4 , 6 , 10 ,

212 or another processor - accessible storage device , e.g. , a
transmit buffer of communications interface 232. In some
examples , the classification 120 can indicate whether the
trial data stream 116 is associated with malware . In some
examples , CM 220 can be configured to provide a classifi
cation 120 for any type of trial data stream 116. In other
examples , CM 220 can be configured to provide a classifi
cation 120 for trial data stream 116 known to be of a
particular type , e.g. , of a particular family of malware . For
example , separate CMS 220 can be determined and operated
for ransomware and spyware .
[0072] In some examples , the operation module 228 can
determine respective outputs 236 for multiple trial data
streams 116. The operation module 228 can then locate data
streams 116 similar to a given data stream 116 based at least
in part on similarity of the outputs 236 , e.g. , based on
Euclidean or another distance metric between the respective
outputs 236 for multiple different data streams 116 (e.g. ,
files) .
[0073] In some examples , the training module 226 or the
operation module 228 can operate the CM 220 based at least
in part on training data stream (s) 114 of the validation set to
evaluate the performance of the CM 220. The CM 220 can
then be updated based on the evaluation . The arrow from
operation module 228 to training module 226 depicts coor
dination between those modules ; alternatively , the evalua
tion and updating can both be performed by the training
module 226 .
[0074] In the illustrated example , the communications
module 230 can transmit an indication of the output 236 ,
e.g. , via the communications interface 232. For example , the
indication can be transmitted to a computing device 104 .
Examples are discussed herein , e.g. , with reference to FIG .
1. In some examples , communications module 230 can
additionally or alternatively receive the executable file 218
(or another data stream) via the communications interface
232 .
[0075] In some examples , the operation module 228 , the
communications module 230 , or another module stored in
computer - readable media 214 can be configured to receive
inputs , e.g. , via user - operable input device 206 or from a
filesystem , transmit corresponding queries to a computing
device 102 , receive responses from computing device 102 ,
and present the responses , e.g. , via display 204. In some
examples , determination and operation of CMs are carried
out on computing device (s) 102. In some examples , deter
mination and operation are carried out on a computing
device 104. In some of these examples , any of the above
noted modules can be configured to receive inputs , deter
mine and / or operate CM (s) 112 using instructions of opera
tion module 228 based at least in part on those inputs , e.g. ,
to determine a model output . In some examples , computer
executable instructions on computer - readable media 214 can
include , but are not limited to , instructions of a Web browser ,
smartphone app or desktop application , background service
conducting or monitoring network communications , or
instant - messaging client , or can include components of any
of those configured to perform functions described herein .
Such programs or components can invoke or include func
tions of any of the listed modules .

or 11 .
[0070] In the illustrated example , the training module 226
determines the CM 220 , e.g. , based at least in part on the
training set . For example , the training module 226 can
update parameters of a neural network based at least in part
on the training data streams 114 of the training set . Examples
are discussed herein , e.g. , with reference to at least one of
FIG . 3 , 4 , 6 , 8-10 , or 12 .
[0071] In the illustrated example , the operation module
228 operates the CM 220 based at least in part on a trial data
stream 116 to provide atrial model output . The trial model
output can include a classification 120. Examples are dis
cussed herein , e.g. , with reference to at least one of FIG . 3-5 ,
8-10 , or 12. Operation module 228 can provide an output
236 , e.g. , a signature 118 or classification 120. Output 236
is shown as stored in computer - readable media 214. Output
236 can additionally or alternatively be stored in memory

Illustrative Processes

[0076] FIG . 3 is a dataflow diagram that illustrates an
example process 300 for determining and operating com

US 2021/0075798 A1 Mar. 11 , 2021
9

putational model (s) , and related dataflow . Example func
tions shown in FIG . 3 and other flow diagrams and example
processes herein can be implemented on and / or otherwise
embodied in one or more computing device (s) 102 and / or
104 , e.g. , a computing device 200 , e.g. , using software
running on such device (s) , e.g. , software executed by pro
cessing unit (s) 210. For the sake of illustration , the example
process 300 is described below with reference to processing
unit 210 and other components shown in FIGS . 1 and 2 that
can carry out and / or participate in the steps of the exemplary
method . However , other processing unit (s) such as process
ing unit (s) 210 and / or other components of computing
device (s) 102 and / or 104 can carry out step (s) of described
example processes such as process 300. Similarly , exem
plary method (s) shown in FIGS . 4-12 are also not limited to
being carried out by any specifically - identified components .
[0077] The order in which the operations are described in
each example flow diagram and / or process is not intended to
be construed as a limitation , and any number of the
described operations can be combined in any order and / or in
parallel to implement each process . In each flow diagram ,
fewer than all of the depicted operations can be performed ,
except as expressly noted . Moreover , the operations in each
of FIGS . 3-12 can be implemented in hardware , software ,
and / or a combination thereof . In the context of software , the
operations represent computer - executable instructions that ,
when executed by one or more processors , cause the one or
more processors to perform the recited operations . In the
context of hardware , the operations represent logic functions
implemented in circuitry , e.g. , datapath - control and finite
state - machine sequencing functions . Therefore , descriptions
of operations below also describe such software or hardware
structures to carry out the described functions . Operations
herein can be performed by modules described herein with
reference to FIG . 2 .
[0078] For clarity of explanation , the operations of FIG . 3
are described in terms of a batch process . However , this is
not limiting , and the operations of FIG . 3 (or FIGS . 4-12)
can be performed in a streamed or pipelined manner , or any
combination of batch , stream , and pipelined processing .
[0079] In some examples , at operation 302 , the represen
tation module 222 determines respective signatures 304 of
individual training data streams 114 of a plurality of training
data streams 114. As discussed above , the training data
streams 114 can be , include , or consist of files or other
streams of data . Each training data stream 114 can include
the entirety of a data unit such as a file , or only a portion
thereof . In some examples , the signature 118 for a training
data stream 114 can include a feature vector or hash value of
the training data stream 114 , or other values described above
with reference to FIG . 1. In some examples , the represen
tation module 222 can determine the signatures as LSH
values of or otherwise associated with the respective training
data streams 114. Examples of feature vectors and LSH are
discussed herein with reference to operation 402 , FIG . 4 , and
to FIGS . 5 and 11 .
[0080] In some examples , the representation module 222
can determine at least one of the signatures 304 including or
consisting of a hash of at least a portion of the respective
training data stream 114. For example , the representation
module 222 can compute a cryptographic hash value , e.g. , a
Secure Hash Algorithm 2-256 bit (SHA - 256) , SHA - 3 ,
Skein , or other cryptographic hash value , of at least part of
the respective training data stream 114. In some examples ,

the representation module 222 can determine at least one of
the signatures 304 including or consisting of a value deter
mined using context - triggered piecewise hashing , e.g. , the
ssdeep hash , or another content - dependent hash technique .
[0081] In some examples , at least one of the plurality of
training data streams 114 comprises at least part of an
executable file 218. For example , each training data streams
114 can include at least part of a respective executable file
218. In some examples , no two training data streams 114 are
associated with the same executable file 218. In some
examples , at least two of the training data streams 114 are
associated with the same executable file 218. For example ,
a fat binary including code for multiple processor architec
tures can be associated with multiple training data streams
114 , one for each architecture .
[0082] In some examples , at operation 306 , the prepara
tion module 224 determines a training set 308 comprising at
least some training streams 310 of the plurality of training
data streams 114 and a validation set 312 comprising at least
some validation streams 314 of the plurality of training data
streams 114. In some examples , at least one of the training
set 308 and the validation set 312 additionally includes at
least some labels indicating target model outputs associated
with the respective training streams 310 or validation
streams 314. In some examples of training a computational
model 220 to determine a classification 120 of a data stream ,
the respective labels can include respective classifications
120 of the respective training streams 310 or validation
streams 314. For example , some of the training streams 310
or validation streams 314 can be associated with malware
(for brevity , " dirty ") , some of the training streams 310 or
validation streams 314 can be not associated with malware
(“ clean ”) , and labels for the training streams 310 or valida
tion streams 314 can indicate whether or not respective
streams are associated with malware . In some examples , the
preparation module 224 can select the training set 308 and
the validation set 312 so that each of the training set 308 and
the validation set 312 includes at least one clean stream and
at least one dirty stream .
[0083] The preparation module 224 can select the training
set 308 and the validation set 312 based at least in part on
the signatures 118 and a predetermined difference criterion
316. In some examples , the preparation module 224 can
select the validation set 312 so that each validation data
stream 314 is dissimilar to , i.e. , satisfies the predetermined
difference criterion 316 with respect to , each training stream
310. This can reduce the risk of overfitting of computational
model (CM) 220 , since a computational model 220 tested on
the validation streams 314 will not have been trained on
similar training streams 310. In some examples , the prede
termined difference criterion 316 is defined with respect to
the signatures 304 , as discussed in more detail below . For
example , the predetermined difference criterion 316 can
define a threshold for difference between training data
streams 114 or signatures 304 thereof above which two
training data streams 114 will be considered distinct .
[0084] In some examples , the training set 308 and the
validation set 312 can be disjoint (i.e. , no individual training
data stream 114 is in both the training set 308 and the
validation set 312) , but this is not required . In some
examples , fewer than 5 % (or 10 % , 15 % , 25 % , or 50 %) of
the training data streams 114 in the training set 308 are also
in the validation set 312 , or vice versa , or both .

US 2021/0075798 A1 Mar. 11 , 2021
10

[0085] In some examples , the preparation module 224 can
cluster the training data streams 114 into two clusters , one
cluster for the training streams 310 and the other cluster for
the validation streams 314. Clustering can be performed
using hierarchical clustering , k - means (e.g. , 2 - means) clus
tering , k - medoids (e.g. , 2 - medoids) clustering , or other
clustering algorithms or techniques . In some examples , the
preparation module 224 can select without replacement from
the training data streams 114 and allocate each selected
training data stream 114 to either the training set 308 or the
validation set 312 based on differences between the signa
ture 304 of the selected training data stream 114 and the
signature (s) of the already - allocated training stream (s) 310
or validation stream (s) 314 .
[0086] In some examples , the preparation module 224
computes a locality sensitive hash (LSH) or other signature
304 for each training data stream and allocates each stream
to exactly one of the training set 304 or the validation set 312
so that there is no particular LSH value or other signature
304 common to streams in both sets 304 , 312. In some
examples , the preparation module 224 separates training
streams 310 from validation streams 314 based on detection
names derived using conventional anti - virus signatures . In
some examples , related malware samples , e.g. , as indicated
by a common prefix in the detection name (e.g. , " Burger ” or
“ Silly ”) , can be placed entirely in the training set 304 or
entirely in the validation set 312 , rather than being split
between the two sets 304 , 312. In some examples , malware
samples are named according to Computer Antivirus
Research Organization (CARO) conventions , and sets of
samples that share a CARO family name , or a family name
plus variant name , are placed in their entirety in either
training set 304 or validation set 312. In some examples , sets
of samples sharing a product name , e.g. , in the Portable
Executable VERSIONINFO or other metadata , are placed in
their entirety in either training set 304 or validation set 312 .
[0087] In some examples , related malware samples can be
placed primarily in the training set 304 or primarily in the
validation set 312. For example , out of a group of related
samples , the number of the samples in one of the training set
304 and the validation set 312 can be at most 25 % of the
number of the samples in the other of the training set 304 and
the validation set 312 (or other percentages , e.g. , 10 % , 5 % ,
or 1 %) . In any examples in this paragraph or the preceding
discussion , beginning with operation 306 , a set of samples
considered to be similar can be apportioned so that at most
a selected percentage of the samples is in one of the training
set 304 and the validation set 312 and the remainder of the
samples are in the other of the training set 304 and the
validation set 312. Selected percentages can include , e.g. ,
1 % , 5 % , 10 % , or 25 % . Further examples of operation 306
are discussed herein with reference to at least one of FIG . 4 ,
6 , 10 , or 11 , or to predetermined difference criterion 316 .
[0088] In some examples , at operation 318 , the training
module 226 determines a CM 220 based at least in part on
the training set 308. The CM 220 can be configured to take
a signature 118 as input and provide a classification 120 as
output . In some examples , the CM 220 can include a neural
network , decision tree , decision forest , support vector clas
sification , support vector regression , logistic regression ,
Gaussian process regression or other type of model
described herein with reference to CM 112. For example , the
training module 226 can perform stochastic gradient descent
to train a neural network or decision tree , or can perform

another computational - model determining process or algo
rithm discussed herein . In some examples , the training
module 226 can perform minibatch - based training . In some
examples , depicted using a dashed line , the training module
226 can run at least one training epoch , then validate using
the validation set 312. Examples are discussed herein , e.g. ,
with reference to operations 408-414 , FIG . 4 , or FIG . 8 or
10 .

[0089] In some examples , at operation 318 , the training
module 226 (or the operation module 228 , and likewise
throughout this paragraph) can determine a plurality of
partitions of the training set based at least in part on the
signatures . Each partition of the plurality of partitions can
include or consist of at least one of the data streams of the
training set . The training module 226 can provide individual
partitions of the plurality of partitions to respective com
puting nodes of a plurality of computing nodes via a
communications interface 232 communicatively connected
with the processing unit (s) 210. The training module 226 can
receive respective results from individual computing nodes
of the plurality of computing nodes . The training module
226 can then determine the CM based at least in part on the
results . Examples are discussed herein , e.g. , with reference
to process 900 , FIG . 9 .
[0090] Throughout this disclosure , the term “ node ” refers
to a device or portion of a device configured to perform
functions described herein , e.g. , neural - network training or
other computational - model determination . In at least one
example , training module 226 executes on each of a plurality
of computing devices 200 , and each computing device 200
has exactly one single - core processing unit 210. Each such
computing device 200 is a node in this example . In some
examples , training engine 202 executes on a single comput
ing device 200 having a plurality of multi - core processing
units 210. In such examples , each core of the multi - core
processing units 210 represents a node . Other combinations ,
and points between these extremes , can also be used . For
example , an individual processing unit 210 , e.g. , an accel
erator such as an FPGA , can include or implement one or
more nodes . In other examples , multiple cores of a process
ing unit 210 can be configured to operate together as a single
node .

[0091] In some examples , at operation 320 , the operation
module 228 operates the CM 220 based at least in part on a
trial data stream 116 to provide a trial model output 322. For
example , the operation module 228 can determine a feature
vector of the trial data stream 116 and apply the feature
vector to the trained CM 220 to determine a classification
120 as the trial model output 322. In some examples , the trial
model output 322 indicates whether the trial data stream 116
(e.g. , executable instructions or data) is associated with
malware . In an example in which the CM 220 includes a
neural network , the operation module 228 can apply multi
plication , summing , and activation functions to successive
layers of the neural network , beginning with the feature
vector applied as the input to a first layer of the neural
network . In an example in which the CM 220 includes a
decision tree , the operation module 228 can perform suc
cessive tests for specific characteristics of the feature vector
while traversing the decision tree . Feature vectors can be
determined , e.g. , as described herein with reference to
operation 502 , feature vectors 504 , operation 714 , feature
vectors 716 , operation 1106 , or feature vector 1108

US 2021/0075798 A1 Mar. 11 , 2021
11

[0092] FIG . 4 is a dataflow diagram that illustrates an
example process 400 for determining and operating CM (s) ,
and related dataflow . In some examples , operation 302 can
include operation 402. In some examples , operation 306 can
include operation 406. In some examples , e.g. , examples in
which the CM 220 comprises a neural network (NN) ,
decision tree , decision forest , or tree ensemble , operation
318 can include operations 408 , 410 , or 414. Each of the
following groups of operations can be used in combination
with other (s) of the groups or independently : (1) 402 , (2)
406 , or (3) 408 , 410 , and 414 .
[0093] In some examples , at operation 402 , the represen
tation module 222 determines at least some of , or all of , a
plurality of LSH signatures 404 as LSH values associated
with the respective training data streams 114. LSH signa
tures 404 can represent signatures 304. For example , the
LSH signatures 404 can include or consist of LSH values
computed based on bit (s) of the training data streams 114 or
on feature vectors that are themselves determined based on
bit (s) of the training data streams 114. Further examples of
feature vectors are discussed below with reference to FIG . 5 .
[0094] In some examples , the LSH process for a given
training data stream 114 takes as input a vector of values ,
e.g. , numerical values , associated with (e.g. , of or deter
mined based at least in part on) that training data stream 114 .
The representation module 222 computes the dot products of
the input vector with multiple weight vectors . The concat
enated signs of the resulting dot products form a hash value
for the input vector . This is an example of an LSH technique
known as E’LSH . The weight vectors can be determined ,
e.g. , by selecting vector elements randomly (or pseudo
randomly , and likewise throughout this document) . Other
LSH techniques , which can be used singly or in combination
with other techniques , can include lattice LSH , spherical
LSH , or other f - distance based LSH techniques ; E’LSH ,
kernel LSH , or other angle - based LSH techniques ; Ham
ming - distance based LSH techniques ; min - hash , K - min
sketch , or other Jaccard - coefficient based LSH techniques ;
chi - squared - based LSH techniques ; winner - take - all hashing ;
or shift - invariant kernel hashing .
[0095] In some examples , the LSH process for a giving
training data stream 114 can including determining a
“ peHash ” hash or pre - hash , or other hash determined based
at least in part on , or including or representing , portions or
characteristics of the training data stream 114 selected by a
security analyst . The peHash algorithm determines a hash as
a SHA - 1 hash of a pre - hash (also referred to as a “ hash
buffer ”) . The pre - hash can include values determined from
fields of a PE file's header and the file's section headers ,
including the file's flags , subsystem identifier , stack commit
size , and heap commit size , and each section's virtual
address , raw size , and section characteristics . The number of
bits of each field used can be limited to , e.g. , between eight
and 32 to increase locality - sensitivity . This is not limiting ,
and other amounts of data can additionally or alternatively
be used , e.g. , > 100 bytes , > 200 bytes , 512 bytes , one
kilobyte , or larger buffers . The pre - hash can additionally or
alternatively include a binned compression ratio of each
section indicating the entropy of that section . In some
examples , the LSH signatures 404 or other signatures 304
can include at least one of the above types of data of a
pre - hash , or cryptographic hashes of pre - hashes including
any of the above types of data .

[0096] In some examples , at operation 406 , the prepara
tion module 224 determines the validation set 312 including
validation streams 314 of the plurality of training data
streams 114 that satisfy the predetermined difference crite
rion 316 with respect to training stream (s) 310 in the training
set 308. Examples are discussed herein , e.g. , with reference
to operation 306. For example , the preparation module 224
can select at least some training stream (s) 310 , then select
validation streams 314 that are distant from those training
stream (s) 310 as measured by the predetermined difference
criterion 316. For clarity of explanation , without limitation ,
some examples herein are given for which an LSH hash code
is an f - dimensional bit string .
[0097] In some examples , the predetermined difference
criterion 316 can be satisfied between two training data
streams 114 a and ß if any , or any combination , of the
following hold . Throughout this paragraph and the next
paragraph , examples of LSH has codes are used for brevity .
However , techniques herein can additionally or alternatively
be used for types of signatures 304 other than LSH hash
codes . Criterion 316 can be satisfied , e.g. , when : ? and ß are
in different LSH hash buckets (or bins) ; a and ß have
respective , different LSH hash codes (or other signatures
304) ac and Be ; or ac is in a hash bucket including only , or
over 50 % , training streams 310 and ß . is in a hash bucket
including only , or over 50 % , validation streams 314 (e.g. , for
impure hash buckets) .
[0098] In some examples , the predetermined difference
criterion 316 can be satisfied if a , and Be are spaced apart
from each other by at least a predetermined distance in an
evaluation space or metric . Example evaluation spaces or
metrics can include Euclidian , Manhattan , or other distances
in an f - dimensional space ; Hamming distance or Jaccard
distance ; or angle between the vectors ac- and B. - 7 . In
some examples , the predetermined difference criterion 316
can be satisfied if a , and Be (or numeric representations
thereof , such as length) fall in separate quantization bins , the
level of quantization defined by the predetermined differ
ence criterion 316 .
[0099] In some examples , at operation 408 , the training
module 226 performs a supervised learning process to
determine the CM 220. The supervised learning process can
use at least one training stream 310 of the training set 308
as training data . Examples are discussed herein , e.g. , with
reference to operation 318. In other examples , an unsuper
vised learning process can additionally or alternatively be
used . In some examples , each training stream 310 is asso
ciated with a classification 120. The training module 226 can
determine the CM 220 to output classifications 120 , e.g. ,
with at least a predetermined level of accuracy , for the
training streams 310 .
[0100] Some CMs are subject to overfitting , an effect by
which the training increases the accuracy of the CM on the
specific training data provided , at the expense of the model's
ability to generalize or corr orrectly process new samples . For
example , consider a CM being trained to classify malware .
There are various high - level categories of malware , such as
spyware , adware , ransomware , and botnet software . Within
each category , there may be numerous families of malware .
For example , some families of ransomware lock the user
interface of an infected computer , e.g. , until a ransom is
paid . Other families of ransomware encrypt files on an
infected computer using an encryption key known only to
the adversary . Still other families encrypt files on any

US 2021/0075798 A1 Mar. 11 , 2021
12

network drives connected to an infected computer . Some
families may combine characteristics of multiple of these
families , and adversaries continue to develop new families
of ransomware and other malware . The widespread avail
ability of high - speed Internet connections and powerful
computers has increased the use of malware variants by
unskilled adversaries as well as by sophisticated adversaries .
Therefore , a CM that is trained and overfit to distinguish
between specific families of ransomware may not correctly
classify new families of ransomware , and may even fail to
identify malware from such families as ransomware .
[0101] To reduce the probability of overfitting , the CM
220 can be tested using the validation set 312. Even if the
CM 220 is very accurate on the training set 308 , it may be
necessary to retrain or adjust the CM 220 if it is not very
accurate on the validation set 312. In some examples , to
permit determining accuracy during validation , each valida
tion stream 314 is associated with a classification 120 .
[0102] In some examples , at operation 410 , the training
module 226 (or the operation module 228) tests the deter
mined CM 220 based at least in part on at least one
validation stream 314 of the validation set 312 (depicted
using a dashed arrow) . Operation 410 produces a trial result
412. Examples are discussed herein , e.g. , with reference to
operation 320. For example , the training module 226 can
apply the at least one validation stream 314 to the CM 220
to determine a classification 120. The classification 120 , or
an indication of whether the classification 120 was accurate ,
can then be included in the trial result 412 .
[0103] In some examples , at operation 414 , the training
module 226 selectively updates the CM 220 based at least in
part on a result of the testing (operation 410) . For example ,
if the trial result 410 indicates that the accuracy of the CM
220 is consistent between the training set 308 and the
validation set 312 , training can continue , and the training
module 226 can update the parameters of the CM 220 as
discussed herein with reference to operation 408 .
[0104] In some examples , operations 408-414 can be
repeated as long as accuracy on the validation set 312 is
improving as training proceeds , as indicated by the trial
result 412 , and can terminate when accuracy on the valida
tion set 312 ceases to improve as training proceeds . Using
operations 408-414 can permit detecting overfitting , e.g. ,
when accuracy on the validation set 312 ceases to improve .
Avoiding overfitting using techniques of process 400 can
permit determining CMS 220 that have a higher probability

of determining the category of malware , even for malware
families not represented in the training data streams 114
(“ unseen samples ”) . Some examples herein can also
improve the determination probability on unseen samples
for CMs 220 configured to provide model outputs other than
malware category , e.g. , malware type , malware family , or
adversary identity (individual or group) .
[0105] Using ransomware as a nonlimiting example , even
if the training data streams 114 do not include ransomware
of the cookie - monster family , a CM 220 trained using
process 400 or other example processes herein may never
theless be able to identify a cookie - monster malware sample
as being in the ransomware category . In some examples ,
such a CM 220 may also be able to identify , via a field in
classification 120 , that the cookie - monster sample is not of
a known family of ransomware . This can permit early
detection of new families of ransomware or other malware ,
which can in turn permit mitigating deleterious effects of
malware belonging to those new families more rapidly and
effectively .
[0106] FIG . 5 is a dataflow diagram that illustrates an
example process 500 for determining and operating CM (s) ,
and related dataflow . In some examples , operation 302 or
operation 402 can include operation 502 or operation 510. In
some examples , operation 302 or operation 402 can include
operation 508 .
[0107] In some examples , at operation 502 , the represen
tation module 222 determines respective feature vectors 504
of the individual training data streams 114. For example ,
representation module 222 can operate a feature extractor ,
such as a previously - trained CM or a hand - coded feature
extractor , on bit (s) of a training data stream 114 to provide
the feature vector 504. In some examples , the feature
extractor can determine additional features 506 that are not
included in the feature vector 504 .

[0108] In some examples , the representation module 222
can determine at least one of the features listed in Table 2
with respect to a training data stream 114. For brevity , the
symbol E in the Table 2 refers to the training data stream 114
or portion (s) thereof as may be determined or processed by
the representation module 222. The listed features can be
included in feature vector 504 or can be additional features
506 .

TABLE 2

Feature

Entropy of ?
Entropy of a segment or other portion (s) of E , e.g. , a TEXT or DATA segment
Entropy of a subset of E , e.g. , of multiple sections
Character (s) or symbol (s) , or hash (es) or other representation (s) , of human - readable text
(" printable strings ”) included in 2
Number of printable strings in E
Flags or other values of standardized headers in E , e.g. , the MZ or PE headers or the DLL
import table of a WINDOWS executable file 122
Flags or other values of other headers or structures in 2 , e.g. , comp . id values found in the
Rich header in a WINDOWS executable file 122
Contents of , e.g. , ten (or another number of) bytes at the entry point or the beginning of
main () in an executable file 122
Output (s) of an autoencoder (as discussed below) when provided as input , e.g. , when
provided bytes at the entry point
Size of 2 (e.g. , in bytes)

US 2021/0075798 A1 Mar. 11 , 2021
13

TABLE 2 - continued

Feature

SHA - 256 or other cryptographic hash value (s) of at least portion (s) of E , e.g. , of headers ,
individual sections , metadata , version information , or icons , text , fonts , audio , graphics ,
or other content assets embedded or included in 2 .
File type of E , e.g. , as output by pefile , PEID , TrID , or file (1)

[0109] As noted in Table 2 , one example feature is output
(s) of an autoencoder . An autoencoder can include , e.g. , a
deep neural network , trained to produce output substantially
equal to its input . Neural - network autoencoders generally
include at least one hidden layer having fewer outputs than
the number of inputs . As a result , the outputs of the hidden
layer are a representation of the input , and that representa
tion has lower dimensionality than the input itself . This
reduction in dimensionality can provide information about
the structure of the input or of a class of related inputs . In
some examples , the autoencoder is a denoising autoencoder .
The denoising autoencoder is trained to produce output
substantially equal to a reference , when the training inputs
to the neural network are portions of , or partly - corrupted
versions of , the reference . The lower - dimensional hidden
layer outputs of a denoising autoencoder can provide infor
mation about the input that is robust to minor variations ,
such as may be introduced by adversaries to render their
malware more difficult to detect .
[0110] In an example , an autoencoder can receive a one
hot or other encoding of a number of bytes of E , e.g. , 2560
bits of input that are a one - hot encoding of ten bytes of Eor
a portion thereof . The bytes can include or consist of , e.g. ,
bytes beginning with the byte at the entry point . The
autoencoder can provide a number of float values , e.g. , 20
float values , that are the outputs of a hidden layer , e.g. , as
discussed above . A feature in a feature vector 504 can then
include or consist of those 20 float values (or other value (s)
provided by the autoencoder) , or a portion thereof .
[0111] In some examples , at operation 508 , the represen
tation module 222 can select at least one additional feature
506 for inclusion in the feature vector 504 , as depicted by the
dashed arrows . The representation module 222 can , e.g. , add
the at least one additional feature 506 to the feature vector
504 immediately . The representation module 222 can addi
tionally or alternatively update stored information , e.g. , in
CRM 214 , so that the at least one additional feature 506 will
be included in the feature vector 504 upon future perfor
mance of operation 502 .
[0112] In some examples , the representation module 222
can select the at least one additional feature 506 providing
at least a predetermined number of bits of entropy , e.g. , at
least three bits or at least n bits , n23 . This can permit
expressing finer distinctions between data streams than can
binary - valued features or other features providing only a
small number of possible values .
[0113] In some examples , the representation module 222
can select the at least one additional feature 506 based at
least in part on performance on a desired task of the CM . For
example , a CM 220 configured to determine whether a trial
data stream 116 is associated with malware can be evaluated
based on a corpus of known samples to determine the
accuracy of the CM 220. If CM 220 meets a predetermined
accuracy criterion , the CM 220 can be inspected to deter
mine which inputs are significant contributors to the (suffi

ciently accurate) results provided by the CM 220. For
example , Garson's or Goh’s algorithms can be used to
determine , based on the weights of a neural network , which
inputs of that neural network have the most significant role
in determining a particular output of that neural network .
The Lek profile method can determine the sensitivity of
particular outputs of a neural network to changes in particu
lar inputs of that neural network .
[0114] In some examples , e.g. , using decision trees ,
ensembles , or forests , information gain algorithms can be
used to determine changes in the mutual information of
node (s) of tree (s) over the course of training , e.g. , as in
RANDOM FORESTS . Gradient - boosted tree - ensemble
training can take into account leaf weights when determin
ing the importance of an input to the output of the ensemble ,
e.g. , as in xgboost . Accordingly , the training module 226 can
provide to the representation module 222 mutual - informa
tion data , leaf weights , or other values useful in determining
relative effect on the outputs of various features . The rep
resentation module 222 can then select for inclusion the at
least one additional feature 506 having , e.g. , the most
significant relative effect among the additional features 506 .
[0115] Accordingly , in some examples , the representation
module 222 (or other modules herein) can include candidate
feature (s) of the additional features 506 in a CM and train
that CM until it meets the predetermined accuracy criterion .
The representation module 222 can then use the above
techniques to select as the at least one additional feature 506
at least one of the candidate feature (s) strongly associated
with or otherwise significantly responsible for the accuracy
of the trained CM .
[0116] In some examples , at operation 510 , the represen
tation module 222 determines the signatures 304 based on
the respective feature vectors 504. For example , represen
tation module 222 can determine the signatures 304 as the
LSH values of the respective feature vectors 504. Examples
of LSH are discussed herein , e.g. , with reference to opera
tion 402. Some examples in which locality - sensitive hashes
of feature vectors 504 are used as representations of the
respective data streams 114 , 116 can permit grouping train
ing data streams 114 in semantically - meaningful ways with
the use of considerably fewer computational resources than
prior schemes such as exhaustive pairwise comparison . For
example , hashing the training data streams 114 using LSH
can permit readily determining similar training data streams
114 and avoiding dividing those similar training data
streams 114 between the training set 308 and the validation
set 312. This can in turn reduce the risk of overfitting of CM
220 , as discussed above . In some examples of operation 306 ,
training data streams 114 allocated to a particular LSH bin
are included entirely in the training set 308 or entirely in the
validation set 312 , and are not allocated some to the training
set 308 and some to the validation set 312 .
[0117] In some examples , the representation module 222
can determine LSH hash values using angular - distance (dot

US 2021/0075798 A1 Mar. 11 , 2021
14

product) -based LSH . Such a hash value , in some examples ,
is a concatenation of n bits by . Each bit by is determined from
a respective one of n integer or float values Vn , e.g. , by
thresholding Vm . For example , bn can be 1 if v , 20 and 0
otherwise . Each value Vn can be a dot product of a signature
vector S , e.g. , a signature 304 such as a feature vector 504 ,
with a respective weight vector Wn .
[0118] In some examples , the representation module 222
can determine LSH hash values using sparse LSH tech
niques . In some examples , e.g. , using the notation of the
previous paragraph , the representation module 222 can
compute the bits by based on respective modified values m ..
Each modified value m , can be computed using a dot
product , but with a modified weight vector Un (e.g. , a
" sparse LSH weight vector ”) instead of with weight vector
Vn . Each modified weight vector Un can be determined by
copying W ,, to form Um , then randomly modifying elements
of Un with a probability of modification p . For example , the
ith element of Un can be set to zero , unity , or another
predetermined value if di < p for a respective random draw d ,
from a uniform distribution on the range [0,1] .
[0119] Using sparse LSH techniques can provide benefits
similar to the benefits of denoising autoencoders . For
example , using sparse LSH techniques can reduce the like
lihood that a CM 220 will overfit to particular features to the
exclusion of other features . Using sparse LSH techniques
can therefore improve the ability of CM 220 to generalize to
trial data streams 116 different from the training data streams
114 used in determining the CM . Accordingly , in some
examples , operation 510 can include determining sparse
LSH weight vectors Un and determining the signatures 304
as the LSH values of the respective feature vectors 504
based at least in part on the sparse LSH weight vectors Un .
[0120] In other examples , as depicted by the stippled
arrow , the signatures 304 can include or consist of the
respective feature vectors 504 or subsets thereof . For
example , the predetermined difference criterion 316 can
specify a threshold distance above which two feature vectors
504 or respective subsets thereof will be considered distinct .
Such a threshold distance can be a Euclidean , Hamming ,
angular , or other distance described herein .
[0121] FIG . 6 is a dataflow diagram that illustrates an
example process 600 for determining and operating com
putational model (s) , and related dataflow . Process 600 can
be carried out , e.g. , under control of at least one processing
unit 210. Process 600 can take as input data streams 602 ,
e.g. , of a plurality of data streams . Data streams 602 can
represent training data streams 114 , FIG . 1 .
[0122] In some examples , at operation 604 , the represen
tation module 222 determines signatures 606 of respective
data streams 602. Examples are discussed herein , e.g. , with
reference to at least one of operation 302 or FIG . 4 , 5 , or 7 .
[0123] In some examples , at operation 608 , the prepara
tion module 224 determines , based at least in part on the
signatures 606 , a training set 610 comprising at least one
data stream 612 of the data streams 602 and a validation set
614 comprising at least one data stream 616 of the data
streams 602. Examples are discussed herein , e.g. , with
reference to operation 306. In some examples , the prepara
tion module 224 determines the training set 610 and the
validation set 614 so that the training set is disjoint from the
validation set , e.g. , as discussed above .
[0124] In some examples , the respective signatures 606 of
a data stream 612 of the training set 610 and a data stream

616 of the validation set 614 satisfy a predetermined differ
ence criterion 618. In some examples , the validation set 614
includes at least some elements different from the training
set 610. For example , the preparation module 224 can
determine the validation set 614 including individual data
streams 616 that satisfy the predetermined difference crite
rion 618 with respect to at least some of the data streams 612
in the training set 610. Examples are discussed herein , e.g. ,
with reference to predetermined difference criterion 316 .
[0125] In some examples , at operation 620 , the training
module 226 determines a computational model (CM) 622 ,
e.g. , including a neural network , decision tree , or tree
ensemble , based at least in part on the training set 610 .
Examples are discussed herein , e.g. , with reference to opera
tion 318 .
[0126] In some examples , operation 620 can include ,
before determining the CM 622 , arranging the training set
610 and the validation set 614 in respective , different regions
of a computer memory 212 communicatively connected
with the processing unit (s) 210. This can improve the
locality of data streams 602 during the determination of the
CM 622 , which can reduce cache misses and therefore
improve the speed of power efficiency of the model deter
mination (operation 620) .
[0127] FIG . 7 is a dataflow diagram that illustrates an
example process 700 for determining CM (s) , and related
dataflow . In some examples , operation 604 can include
operations 702 and 708. In some examples , operation 604
can include operations 714 and 718 .
[0128] In some examples , at operation 702 , the represen
tation module 222 determines the signatures 606 comprising
respective dissimilarity values 704 between the respective
data streams 602 and a common reference data stream 706
of the data streams 602. The reference data stream 706 can
be selected , e.g. , randomly , based on selection by entity 110 ,
or (e.g. , for full intercomparison of each possible pair of data
streams 602) as the next data stream 602 , when the data
streams 602 are taken in turn as common reference data
streams 706. Operation 702 can include , e.g. , one - to - many
pairwise comparisons of the data streams 602 to determine
the signatures 606 , based on which the training set 610 and
the validation set 614 can be determined as discussed herein
with reference to operation 608 .
[0129] In some examples , an individual dissimilarity value
704 can include at least one of : a Hamming distance between
at least part of the respective data stream 602 and at least part
of the reference data stream 706 ; a dot product or other
angular distance , a Euclidean distance , or another distance
measure between a first vector including at least some bits
of the respective data stream 602 and a second vector
including at least some bits from the reference data stream
706 ; a comparison between a value in the respective data
stream 602 and a corresponding value in the reference data
stream 706 such as a difference between two float values , a
true / false indication of whether the data stream 602 and the
reference data stream 706 differ , or any of the above
measures with respect to respective hashes (e.g. , SHA - 256 ,
EPLSH , ssdeep , peHash , or other hashes described herein) or
other representations of at least a portion of the respective
data stream 602 and at least a portion of the reference data
stream 706 .
[0130] In some examples , at operation 708 , the represen
tation module 222 determines the signatures 606 further
comprising respective dissimilarity values 710 between the

US 2021/0075798 A1 Mar. 11 , 2021
15

respective data streams 602 and a common second reference
data stream 712 of the data streams 602. The common
second reference data stream 712 can be different from the
common reference data stream 706. The common second
reference data stream 712 can be determined as described
herein with reference to the reference data stream 706. For
example , each data stream 602 in turn can be selected to be
the common second reference data stream 712. Examples of
dissimilarity values are discussed herein , e.g. , with reference
to operation 702 .
[0131] In some examples , operation 708 can include deter
mining any number of values of or in signatures 606 , e.g. ,
based on respective pairwise comparisons of data streams
602 , e.g. , up to the N (N - 1) / 2 such possible pairs that can be
made from a set of N data streams 602. Operation 708 can
therefore include or permit , e.g. , performing many - to - many
pairwise comparisons of the data streams 602 to determine
the signatures 606. In some examples , signatures 606 can be
columns (or rows) of a dissimilarity matrix , or other vectors ,
e.g. , sparse or dense vectors , showing the results of the
pairwise comparisons .
[0132] In some examples , at operation 714 , the represen
tation module 222 determines respective feature vectors 716
of at least some of the data streams 602. Examples are
discussed herein , e.g. , with reference to operations 402 and
502 .
[0133] In some examples , at operation 718 , the represen
tation module 222 determines the signatures 606 comprising
locality - sensitive hash (LSH) values 720 of the respective
feature vectors 716. Examples are discussed herein , e.g. ,
with reference to operations 402 and 510. In some examples
using sparse LSH techniques , operation 718 can include
determining sparse LSH weight vectors and determining the
signatures 606 as the LSH values 720 of the respective
feature vectors 716 based at least in part on the sparse LSH
weight vectors . Examples are discussed herein , e.g. , with
reference to operation 510 .
[0134] FIG . 8 is a dataflow diagram that illustrates an
example process 800 for determining and operating CM (s) ,
and related dataflow . In some examples , operation 620 can
include operations 802 , 808 , 812 , or 814. Process 800 can
include successively determining two CMs 804 and 816 ,
each of which can represent CM 622. For example , process
800 can be used as part of an iterative training technique to
determine CM 622. Each CM 804 , 816 can be determined
based at least in part on respective , different hyperparameter
values , as described below . This can provide improved
performance of CM 622 , as described herein , compared to
some prior training techniques using only one hyperparam
eter value or value set for training .
[0135] In some examples , at operation 802 , the training
module 226 determines a CM 804 , which can represent CM
622 , further based at least in part on a first hyperparameter
value 806. Examples of training are discussed herein , e.g. ,
with reference to operation 620. Examples of hyperparam
eters are discussed herein , e.g. , with reference to training
module 226. For example , the first hyperparameter value
806 can include a learning rate or momentum . In some
examples , the first hyperparameter value 806 can include a
tuple or other collection , e.g. , of float values , or other scalar
or compound value (s) .
[0136] In some examples , at operation 808 , the training
module 226 (or the operation module 228 , and likewise
throughout the following operations of process 800) oper

ates the CM 622 based at least in part on at least some of the
data streams 616 of the validation set 614 to provide
respective model outputs 810 .
[0137] In some examples , at operation 812 , the training
module 226 determines that the model outputs 810 do not
satisfy a predetermined completion criterion (or , equiva
lently , do satisfy a predetermined continuation criterion) .
Examples are discussed herein , e.g. , with reference to opera
tion 410. In response to the determination at operation 812 ,
the training module 226 can perform operation 814 .
[0138] In some examples , at operation 814 , the training
module 226 determines a second CM 816 based at least in
part on the training set 610 and a second hyperparameter
value 818 , e.g. , a float value or tuple , different from the first
hyperparameter value 806. In some examples in which the
first hyperparameter value 806 and the second hyperparam
eter value 818 are tuples , the first hyperparameter value 806
and the second hyperparameter value 818 can differ in at
least one corresponding element . The second CM 816 can
represent CM 622. The second CM 816 can be determined
as discussed herein with reference to , e.g. , operation 802 ,
operation 620 , or operation 318. In some examples , the
training module 226 can determine the second hyperparam
eter value 818 based at least in part on the first hyperpa
rameter value 806. In some examples , the training module
226 can determine the second hyperparameter value 818
based at least in part on at least one of the model outputs .
[0139] In some examples , depicted by the dashed arrow ,
operation 814 can be followed by operation 808 to deter
mine model outputs 810 of the second CM 816. Process 800
can include iterating , e.g. , using a mathematical optimiza
tion technique , to determine hyperparameter value (s) that
will provide a CM 622 whose outputs (e.g. , accuracy of
malware identification) satisfy the predetermined comple
tion criterion . Any of the mathematical optimization tech
niques described herein can be used in determining the
second hyperparameter value 818 or subsequent hyperpa
rameter values , e.g. , techniques such as gradient descent .
Additionally or alternatively , techniques such as grid search
or other searching techniques can be used to explore the
hyperparameter space to determine hyperparameter values .
In some examples , using mathematical techniques to tra
verse the hyperparameter space can provide a classifier , e.g. ,
a malware / non - malware classifier , that performs effectively
or that most effectively generalizes to new malware families
or other data beyond the training set 610 .
[0140] FIG . 9 is a dataflow diagram that illustrates an
example process 900 for determining and operating CM (s) ,
and related dataflow . In some examples , operation 620 can
include operations of process 900. In some example of
process 900 and in other examples , neural - network training
or other computational - model determination can be per
formed by multiple nodes in a parallel manner to reduce the
time required for training .
[0141] In some examples , at operation 902 , the training
module 226 (or the preparation module 224 or the operation
module 228 , and likewise throughout the following discus
sion of process 900) determines a plurality of partitions 904
of the training set 610 based at least in part on the signatures
606. Each partition 904 of the plurality of partitions 904
comprises at least one of the data streams 612 of the training
set 610. The illustrated partitions 904 are a second partition
906 and a ?th partition 908 , discussed below with reference
to nodes 912 .

US 2021/0075798 A1 Mar. 11 , 2021
16

[0142] In some examples , at operation 910 , the training
module 226 provides individual partitions 904 of the plu
rality of partitions 904 to respective computing nodes 912 of
a plurality of computing nodes 912 (1) -912 (I) (shown in
phantom) (individually and / or collectively referred to herein
with reference 912) , where J is any integer greater than
and / or equal to 1 , via a communications interface 232. The
training module 226 can provide the partitions 904 , e.g. , by
transmitting data of at least some of the individual partitions
904 to the respective computing nodes 912 via , e.g. , a
memory or network interface communicatively connected
with the processing unit (s) 210 (e.g. , a processor) . This can
permit the computing nodes 912 to process the respective
partitions 904 in parallel , which can reduce the amount of
time required to determine the CM 622. In the illustrated
example , as depicted by the dotted lines and dash - dot
indicator , the training module 226 provides the second
partition 906 to node 912 (2) and the Jth partition 908 to node
912 (J) .
[0143] In some examples , operation 910 can be performed
more than once , as depicted by the dashed arrow and
discussed below . In some of these examples , the second and
subsequent performance of operation 910 can include trans
mitting a command to at least one node 912 to begin
processing using data previously transmitted . For example ,
the nodes 912 can retain local copies of their respective
partitions 904 and perform computations repeatedly on those
copies .
[014] In some examples of a multiple - node computa
tional - model - determining system (e.g. , having separate
memory banks per node) , the training set 610 can be divided
into the partitions 904 based at least in part on the signatures
606 to determine CMs 622 to achieve specific objectives . In
some examples , each partition 904 can include or consist of
similar files (or other data streams , and likewise throughout
this paragraph) to permit each node to train on specific traits .
In some examples , each partition 904 can include a diverse
set of data streams (e.g. , having respective , different signa
tures) so that each node contributes to determining a CM 622
in view of the context provided by the whole training set 610
or a broad subset thereof .
[0145] In some examples , each partition 904 (or at least
some of the partitions 904 , and likewise throughout the
discussion of operation 910) can include or consist of similar
data streams 612. This can permit the respective nodes 912
to train on specific traits that are effectively reflected in the
training set 610. In some of these examples , at operation
910 , the training module 226 can determine a first partition ,
e.g. , partition 906 (or some , or all partitions) of the plurality
of partitions 904 based at least in part on a predetermined
similarity criterion 914. In some examples , the respective
signatures 606 of a majority of the data streams in the first
partition satisfy the predetermined similarity criterion 914
with respect to each other . Similarity comparisons can be
made between data streams 612 or signatures 606. Similarity
comparisons can include pairwise comparisons , hashing and
hash - bin comparisons , or other comparisons .
[0146] In some examples , each partition 904 can include
or consist of a diverse set of data streams 612 ,
streams 612 having signatures that differ from each other .
This can permit more improving model training speed while
retaining understood behavior , e.g. , of minibatch - based
training techniques . In some of these examples , at operation
910 , the training module 226 can determine a first partition ,

e.g. , partition 906 of the plurality of partitions 904 based at
least in part on the predetermined similarity criterion 914. In
some examples , for any majority of the data streams 612 in
the first partition , the respective signatures 606 of the data
streams 612 in that majority do not satisfy the predetermined
similarity criterion 914 with respect to each other , as deter
mined using pairwise comparisons , hashes , or other com
parison techniques described herein . In some examples , no
partition 904 has more than 50 % data streams 612 that are
grouped together by the predetermined similarity criterion
914 .
[0147] In some examples , at operation 916 , the training
module 226 receives , e.g. , via communications interface
232 , respective results 918 from individual computing nodes
912 of the plurality of computing nodes 912. For example ,
the results can include at least one of : a parameter value , a
parameter - gradient value , e.g. , with respect to a loss , cost , or
value function ; or an output of part or all of the CM for a
specific input . In some examples using gradient descent to
train neural networks , the results 918 from each respective
node 912 can include gradients determined based on the
respective partitions 904 .
[0148] In some examples , at operation 920 , the training
module 226 determines the CM 622 based at least in part on
the results 918. For example , the training module 226 can
determine an overall gradient , e.g. , as an average or other
combination of gradients included in the results 918 , and
then can update parameter values of the CM 622 based on
the overall gradient , e.g. , using backpropagation .
[0149] In some examples , as depicted by the dashed
arrows , operation 920 can be followed by operation 902 or
operation 910. These examples can permit iteratively updat
ing CM 622 , e.g. , during a mathematical - optimization train
ing process .
[0150] In some examples , neural networks are trained
using minibatch - based stochastic gradient descent (SGD)
techniques . SGD can be parallelized along three dimensions :
model parallelism , layer parallelism , and data parallelism
(and combinations thereof) . In model parallelism , each node
computes only some parameters of the model , and nodes
intercommunicate to exchange parameters . In layer paral
lelism , each node receives inputs , computes parameters for
a particular layer , and provides outputs of that layer to
another node . In data parallelism , each node trains a full CM
on respective , different data , and the parameter updates (e.g. ,
gradients) are merged to determine how to update the model .
Some examples of process 900 provide data - parallel training
to determine CM 622 .
[0151] FIG . 10 is a dataflow diagram that illustrates an
example process 1000 for determining and operating com
putational model (s) , and related dataflow . Process 1000 can
be carried out , e.g. , under control of at least one processing
unit 210. Process 1000 can take as input a training set 1002
including data streams 1004 and a candidate set 1006
including data streams 1008. Data streams 1004 and 1008
can represent training data streams 114 , FIG . 1 .
[0152] In some examples , at operation 1010 , the prepara
tion module 224 determines a validation set 1012 of data
streams 1014 from the candidate set 1006 of data streams
1008 based at least in part on the training set 1002 of data
streams 1004 and on a predetermined difference criterion
1016 between data streams . Examples are discussed herein ,
e.g. , with reference to operations 306 , 406 , or 608 , or
predetermined difference criterion 316. In some examples ,

e.g. , data

US 2021/0075798 A1 Mar. 11 , 2021
17

the preparation module 224 can select for inclusion in the
validation set 1012 data streams 1008 that satisfy the pre
determined difference criterion 1016 with respect to at least
one , some , a majority of , or all of the data streams 1004 of
the training set 1002. The training set 1002 can be a subset
of the candidate set 1006 , or can be disjoint from the
candidate set 1006 , in some examples . In some examples ,
the training set 1002 and the determined validation set 1012
can be disjoint , although this is not required . In some
examples , the training set 1002 comprises or consists of at
least some , but fewer than all , of the data streams 1008 of the
candidate set 1008 .
[0153] In some examples , operation 1010 can include
determining LSH values , performing other hash - based simi
larity analysis , or comparing malware family names derived
using conventional anti - virus signatures , e.g. , as discussed
herein with reference to FIG . 4 or 5. In some examples ,
operation 1010 can include one - to - many or many - to - many
sets of pairwise comparisons to determine similarity . In
some examples , whether hashing or pairwise comparisons ,
data streams 1008 are not selected for inclusion in the
validation set 1012 if they are similar to data streams 1004
of the training set 1002 .
[0154] In some examples , at operation 1018 , the training
module 226 (or the operation module 228 , and likewise throughout the following operations of process 800) can
operate computational model (CM) 1020 , which can
represent CM 220 , based at least in part on data stream (s)
1014 of the validation set 1012 to provide respective model
output (s) 1022. Examples are discussed herein , e.g. , with
reference to operations 320 or 808 .
[0155] In some examples , at operation 1024 , the training
module 226 determines that the model output (s) 1022 do not
satisfy a predetermined completion criterion 1026 .
Examples are discussed herein , e.g. , with reference to opera
tions 410 and 812. In response , operation 1024 can be
followed by operation 1028 .
[0156] In some examples , at operation 1028 , the training
module 226 updates the CM 1020 based at least in part on
data stream (s) 1004 of the training set 1002. For example ,
the training module 226 can run the next training epoch in
a sequence of epochs , or can perform training with different
hyperparameter values , as described herein . Examples are
discussed herein , e.g. , with reference to operations 414 and
814. In some examples , operation 1028 can be followed by
operation 1018. This can permit iteratively training the CM
1020 , e.g. , using mathematical - optimization techniques .
[0157] In some examples , operation 1028 can include ,
before updating the CM 1020 , packing the training set 1002
of data streams 1004 in a processor - accessible memory 212 .
Packing can include any data rearrangement to increase
locality , e.g. , defragmenting the data streams 1004 in
memory , arranging them on successive cache lines for
improved prefetch , or other techniques . Locality can also be
increased in the CM 1020 , which can speed operation of the
CM 1020. In some examples , e.g. , using hashing (e.g. , LSH)
or other signatures , a decision - forest CM 1020 can be
determined so that each decision tree in the forest is asso
ciated with a bin of signatures (e.g. , of hash codes thereof) .
This can permit operating the decision forest using param
eters having increased locality for any particular trial data
stream 116. This can additionally or alternatively permit
loading into memory fewer than all of the parameters of the
decision forest by only loading parameters relevant to a

particular trial data stream 116 , which can increase data
cache locality of the parameters and speed operation of the
CM 1020. Techniques in this paragraph and similar tech
niques can additionally or alternatively permit reducing the
memory bandwidth or network bandwidth used during train
ing of the CM 1020 .
[0158] FIG . 11 is a dataflow diagram that illustrates an
example process 1100 for determining and operating CM (s) ,
and related dataflow . In some examples , operation 1010 can
include operations 1102 , 1112 , and 1116. In some examples ,
process 1100 can include determining the training set 1002
and the validation set 1012 in a coordinated manner , e.g. , as
discussed below with reference to operation 1118 .
[0159] In some examples , the predetermined difference
criterion 1016 applies to at least two signatures and is
satisfied by the at least two signatures having at least a
predetermined threshold difference . The predetermined
threshold difference can be inequality , a difference in mag
nitude of at least (or exceeding) a threshold , a Hamming
distance or other distance measure of at least (or exceeding)
a threshold , or another difference threshold .
[0160] In some examples , at operation 1102 , the prepara
tion module 224 determines respective signatures 1104 ,
which can represent signatures 304 , of at least some data
streams 1008 of the candidate set 1006. Examples are
discussed herein , e.g. , with reference to operations 402 , 604 ,
or 902. Operation 1102 can be followed by operation 1112
or operation 1118. In some examples , operation 1102
includes operations 1106 and 1110 .
[0161] In some examples , at operation 1106 , the prepara
tion module 224 determines a feature vector 1108 associated
with a first data stream 1008 of the candidate set 1006 .
Examples are discussed herein , e.g. , with reference to opera
tion 502 or feature vectors 504 .
[0162] In some examples , at operation 1110 , the prepara
tion module 224 determines the respective signature 1104 of
the first data stream 1008 as a locality - sensitive hash (LSH)
of the feature vector 1108. Examples are discussed herein ,
e.g. , with reference to operations 402 or 510 or signatures
304. In some examples using sparse LSH techniques , opera
tion 1110 can include determining sparse LSH weight vec
tors and determining the respective signature 1104 of the
first data stream as a locality - sensitive hash (LSH) of the
feature vector 1108 based at least in part on the sparse LSH
weight vectors . Examples are discussed herein , e.g. , with
reference to operation 510 .
[0163] In some examples , at operation 1112 , the prepara
tion module 224 determines respective signatures 1114 ,
which can represent signatures 304 , of at least some data
streams 1004 of the training set 1002. Examples are dis
cussed herein , e.g. , with reference to operations 402 , 604 ,
902. For example , signatures 1114 can be determined as
discussed herein with reference to signatures 1104 .
[0164] In some examples , at operation 1116 , the prepara
tion module 224 selects a first data stream 1008 (or at least
one data stream) of the candidate set 1006 for inclusion in
the validation set 1012 in response to the respective signa
ture 1104 of the first data stream 1008 satisfying the prede
termined difference criterion 1016 with respect to the
respective signature 1114 of at least one data stream 1004 of
the training set 1002. Examples are discussed herein , e.g. ,
with reference to FIG . 4. For example , the first data stream
1008 can be selected further based at least in part on the first
data stream 1008 satisfying the predetermined difference

or

US 2021/0075798 A1 Mar. 11 , 2021
18

criterion 1016 with respect to a majority of , or all of , or at
least a predetermined number or percentage of , the respec
tive signatures 1114 of the data streams 1004 of the training
set 1002 .
[0165] In some examples , at operation 1118 , the prepara
tion module 224 determines a first subset 1120 of the
candidate set 1006 and a second subset 1122 of the candidate
set 1006 based at least in part on at least some of the
signatures 1104 and on the predetermined difference crite
rion 1016. Examples are discussed herein , e.g. , with refer
ence to the preparation module 224. For example , the
preparation module 224 can cluster data streams 1008 of the
candidate set 1006 into the first subset 1120 and the second
subset 1122 based on the signatures 1104 of those data
streams 1008. The preparation module 224 can then deter
mine the training set 1002 comprising or consisting of the
first subset 1120 and the validation set 1012 comprising or
consisting of the second subset 1122. Determining the
subsets 1120 and 1122 in a coordinated manner can permit
more effectively determining a validation set 1012 having
desired characteristics , e.g. , as discussed herein with refer
ence to operation 1010. In some examples , the signatures
include locality - sensitive hash values , e.g. , as discussed
herein with reference to operation 1110 .
[0166] FIG . 12 is a dataflow diagram that illustrates an
example process 1200 for determining CM (s) , and related
dataflow . In some examples , operation 1028 can include
operations 1202 , 1206 , 1210 , or 1214. In some examples ,
operation 1028 or operation 1214 can be followed by
operation 1218 .
[0167] In some examples , at operation 1202 , the training
module 226 (or the preparation module 224 or the operation
module 228 , and likewise throughout the following discus
sion of operations 1202-1214) determines a plurality of
partitions 1204 of the training set 1002 based at least in part
on the signatures 1114. Each partition 1204 of the plurality
of partitions 1204 can include or consist of at least one of the
data streams 1004 of the training set 1002. Examples are
discussed herein , e.g. , with reference to operation 902 and
partitions 904 .
[0168] In some examples , at operation 1206 , the training
module 226 provides individual partitions 1204 of the
plurality of partitions 1204 to respective computing nodes
1208 of a plurality of computing nodes 1208 via a commu
nications interface 232 communicatively connected with the
processing unit (s) 210. Examples are discussed herein , e.g. ,
with reference to operation 910 and nodes 912 .
[0169] In some examples , at operation 1210 , the training
module 226 receives respective results 1212 from individual
computing nodes 1208 of the plurality of computing nodes
1208. Examples are discussed herein , e.g. , with reference to
operation 916 , nodes 912 , and results 918 .
[0170] In some examples , at operation 1214 , the training
module 226 updates the CM 1020 based at least in part on
the results 1212 to provide updated CM 1216. Examples are
discussed herein , e.g. , with reference to operations 414 , 814 ,
920 , and 1028 .
[0171] In some examples , at operation 1218 , the operation
module 228 operates the CM 1020 based at least in part on
at least one trial data stream 1220 to provide a trial model
output 1222. The trial model output 1222 can indicate
whether the trial data stream 1220 is associated with mal
ware . Examples are discussed herein , e.g. , with reference to
operation 320 and trial model output 322 .

Example Clauses
[0172] A : A method comprising , under control of at least
one processing unit : determining respective signatures of
individual training data streams of a plurality of training data
streams ; determining , based at least in part on the signatures
and a predetermined difference criterion , a training set
comprising at least some of the plurality of training data
streams and a validation set comprising at least some of the
plurality of training data streams ; determining a computa
tional model based at least in part on the training set ; and
operating the computational model based at least in part on
a trial data stream to provide a trial model output .
[0173] B : The method according to claim A , wherein the
trial model output indicates whether the trial data stream is
associated with malware .
[0174] C : The method according to claim A , wherein at
least one of the plurality of training data streams comprises
at least part of an executable file .
[0175] D : The method according to claim A , further com
prising : determining the computational model by perform
ing a supervised learning process using at least one training
stream of the training set as training data ; testing the
computational model based at least in part on at least one
validation stream of the validation set ; and selectively
updating the computational model based at least in part on
a result of the testing .
[0176] E : The method according to claim D , wherein the
computational model comprises at least one of a neural
network , a decision tree , or a tree ensemble .
[0177] F : The method according to claim A , further com
prising determining the signatures as locality - sensitive hash
(LSH) values associated with the respective training data
streams .
[0178] G : The method according to claim F , further com
prising : determining respective feature vectors of the indi
vidual training data streams ; and determining the signatures
as the LSH values of the respective feature vectors .
[0179] H : The method according to claim A , wherein : the
method further comprises determining the validation set
including validation streams of the plurality of training data
streams that satisfy the predetermined difference criterion
with respect to training stream (s) in the training set ; and the
predetermined difference criterion is defined with respect to
the signatures .
[0180] I : The method according to claim A , further com
prising : determining respective feature vectors of the indi
vidual training data streams ; and determining the signatures
based on the respective feature vectors .
[0181] J : The method according to claim A , further com
prising determining at least one of the signatures as a hash
of at least a portion of the respective training data stream .
[0182] K : The method according to claim A , further com
prising : determining respective feature vectors of the indi
vidual training data streams ; determining sparse LSH weight
vectors ; and determining the signatures as the LSH values of
the respective feature vectors based at least in part on the
sparse LSH weight vectors .
[0183] L : The method according to claim A , further com
prising : determining a plurality of partitions of the training
set based at least in part on the signatures , wherein each
partition of the plurality of partitions comprises at least one
of the data streams of the training set ; providing individual
partitions of the plurality of partitions to respective com
puting nodes of a plurality of computing nodes via a

US 2021/0075798 A1 Mar. 11 , 2021
19

communications interface communicatively connected with
the processor ; receiving respective results from individual
computing nodes of the plurality of computing nodes ; and
determining the computational model based at least in part
on the results .
[0184] M : A method comprising , under control of at least one processing unit : determining signatures of respective
data streams ; determining , based at least in part on the
signatures , a training set comprising at least one of the data
streams and a validation set comprising at least one of the
data streams , wherein the respective signatures of a first data
stream of the training set and a second data stream of the
validation set satisfy a predetermined difference criterion ;
and determining a computational model based at least in part
on the training set .
[0185] N : The method according to claim M , further comprising : determining respective feature vectors of at
least some of the data streams ; and determining the signa
tures comprising locality - sensitive hash (LSH) values of the
respective feature vectors .
(0186] 0 : The method according to claim M , further
comprising determining the signatures comprising respec
tive dissimilarity values between the respective data streams
and a common reference data stream of the data streams .
[0187] P : The method according to claim O , further com prising determining the signatures further comprising
respective second dissimilarity values between the respec
tive data streams and a common second reference data
stream of the data streams .
[0188] Q : The method according to claim O , wherein at
least one dissimilarity value comprises at least one of a
Euclidean distance , an angular distance , or a Hamming
distance .
[0189] R : The method according to claim M , further comprising : determining the computational model further
based at least in part on a first hyperparameter value ;
operating the computational model based at least in part on
at least some of the data streams of the validation set to
provide respective model outputs ; determining that the
model outputs do not satisfy a predetermined completion
criterion ; and , in response , determining a second computa
tional model based at least in part on the training set and a
second , different hyperparameter value .
[0190] S : The method according to claim R , further com
prising determining the second hyperparameter value based
at least in part on at least one of : the first hyperparameter
value ; or at least one of the model outputs .
[0191] T : The method according to claim M , further
comprising determining the validation set including indi
vidual data streams that satisfy the predetermined difference
criterion with respect to at least some of the data streams in
the training set .
[0192] U : The method according to claim M , wherein the
training set is disjoint from the validation set .
[0193] V : The method according to claim M , further
comprising : determining a plurality of partitions of the
training set based at least in part on the signatures , wherein
each partition of the plurality of partitions comprises at least
one of the data streams of the training set ; providing
individual partitions of the plurality of partitions to respec
tive computing nodes of a plurality of computing nodes via
a communications interface communicatively connected
with the processing unit ; receiving respective results from

individual computing nodes of the plurality of computing
nodes ; and determining the computational model based at
least in part on the results .
[0194] W : The method according to claim V , further
comprising determining a first partition of the plurality of
partitions based at least in part on a predetermined similarity
criterion , wherein the respective signatures of a majority of
the data streams in the first partition satisfy the predeter
mined similarity criterion with respect to each other .
[0195] X : The method according to claim V , further com
prising determining a first partition of the plurality of
partitions based at least in part on a predetermined similarity
criterion , wherein , for any majority of the data streams in the
first partition , the respective signatures of the data streams in
the majority do not satisfy the predetermined similarity
criterion with respect to each other .
[0196] Y : The method according to claim V , wherein the
providing comprises transmitting data of at least some of the
individual partitions to the respective computing nodes via
a network interface .
[0197] Z : The method according to claim M , further
comprising : determining respective feature vectors of at
least some of the data streams ; determining sparse LSH
weight vectors ; and determining the signatures as the LSH
values of the respective feature vectors based at least in part
on the sparse LSH weight vectors .
[0198] AA : The method according to claim M , wherein
the computational model comprises at least one of a neural
network (NN) , a decision tree , or a tree ensemble .
[0199] AB : The method according to claim M , further
comprising , before determining the computational model ,
arranging the training set and the validation set in respective ,
different regions of a computer memory communicatively
connected with the processor .
[0200] AC : A method comprising , under control of at least
one processing unit : determining a validation set of data
streams from a candidate set of data streams based at least
in part on a training set of data streams and on a predeter
mined difference criterion between data streams ; and oper
ating a computational model based at least in part on data
stream (s) of the validation set to provide respective model
output (s) ; determining that the model output (s) do not
satisfy a predetermined completion criterion ; and , in
response , updating the computational model based at least in
part on data stream (s) of the training set to provide an
updated computational model .
[0201] AD : The method according to claim AC , wherein :
the predetermined difference criterion applies to at least two
signatures and is satisfied by the at least two signatures
having at least a predetermined threshold difference ; and the
method further comprises : determining respective signatures
of at least some data streams of the candidate set ; determin
ing respective signatures of at least some data streams of the
training set ; and selecting a first data stream of the candidate
set for inclusion in the validation set in response to the
respective signature of the first data stream satisfying the
predetermined difference criterion with respect to the
respective signature of at least one data stream of the
training set .
[0202] AE : The method according to claim AD , further
comprising : determining a feature vector associated with the
first data stream ; and determining the respective signature of
the first data stream as a locality - sensitive hash (LSH) of the
feature vector .

US 2021/0075798 A1 Mar. 11 , 2021
20

CONCLUSION [0203] AF : The method according to claim AD , further
comprising selecting the first data stream further based at
least in part on the first data stream satisfying the predeter
mined difference criterion with respect to a majority of the
respective signatures of the data streams of the training set .
[0204] AG : The method according to claim AD , further
comprising : determining a feature vector associated with the
first data stream ; determining sparse LSH weight vectors ;
and determining the respective signature of the first data
stream as a locality - sensitive hash (LSH) of the feature
vector based at least in part on the sparse LSH weight
vectors .

[0205] AH : The method according to claim AC , further
comprising : determining respective signatures of at least
some data streams of the candidate set ; determining a first
subset of the candidate set and a second subset of the
candidate set based at least in part on at least some of the
signatures and on the predetermined difference criterion ;
determining the training set comprising the first subset ; and
determining the validation set comprising the second subset .
[0206] AI : The method according to claim AH , wherein
the training set and the validation set are disjoint .
[0207] AJ : The method according to claim AC , further
comprising : determining a plurality of partitions of the
training set based at least in part on the signatures , wherein
each partition of the plurality of partitions comprises at least
one of the data streams of the training set ; providing
individual partitions of the plurality of partitions to respec
tive computing nodes of a plurality of computing nodes via
a communications interface communicatively connected
with the at least one processing unit ; receiving respective
results from individual computing nodes of the plurality of
computing nodes ; and updating the computational model
based at least in part on the results .
[0208] AK : The method according to claim AC , further
comprising operating the updated computational model
based at least in part on at least one trial data stream to
provide a trial model output indicating whether the trial data
stream is associated with malware .
[0209] AL : The method according to claim AC , wherein :
the training set comprises at least some , but fewer than all ,
of the data streams of the candidate set ; and the method
further comprises , before updating the computational model ,
packing the training set of data streams in a processor
accessible memory .
[0210] AM : A computer - readable medium , e.g. , a com
puter storage medium , having thereon computer - executable
instructions , the computer - executable instructions upon
execution configuring a computer to perform operations as
any of paragraphs A - AL (e.g. , A - L , M - AB , or AC - AL)
recites .
[0211] AN : A device comprising : a processor ; and a com
puter - readable medium , e.g. , a computer storage medium ,
having thereon computer - executable instructions , the com
puter - executable instructions upon execution by the proces
sor configuring the device to perform operations as any of
paragraphs A - AL (e.g. , A - L , M - AB , or AC - AL) recites .
[0212] AO : A system comprising : means for processing ;
and means for storing having thereon computer - executable
instructions , the computer - executable instructions including
means to configure the system to carry out a method as any
of paragraphs A - AL (e.g. , A - L , M - AB , or AC - AL) recites .

[0213] Various computational - model determination and
operation techniques described herein can permit more
efficiently analyzing data , e.g. , of a data stream , and more
readily determining a signature or classification of the data
stream . Various examples can reduce the time or memory
requirements of software to determine signatures or classi
fications while maintaining or improving the accuracy of
such determinations . Some examples herein permit classi
fying data streams unknown at the time of training , e.g. ,
malware generated using a custom packer specific to that
type of malware or the relevant adversary . Some examples
provide signatures that can then be used by neural networks
or other classifiers in determining classifications of unknown
files . Some examples herein can provide improved accuracy
of classification of malware within a malware family or
across families . This can , in turn , permit more readily
detecting and disabling newly - developed malware variants ,
e.g. , polymorphic malware . Some examples are described
with reference to malware , but techniques described herein
are not limited to files associated with malware . For
example , techniques used herein can be used to classify
media files (e.g. , audio , video , or image) ; productivity files
(e.g. , text documents or spreadsheets) ; data files (e.g. , data
base indexes or tables) ; or other types of files .
[0214] Various examples herein can be used with a variety
of types of data streams , including data streams that have
been compiled or linked , assembled into distribution pack
ages or script packages , combined into self - extractors or
self - installers , packed , or encrypted , e.g. , for content pro
tection . Example trial data streams 116 that can be analyzed
using computational models 112 as described herein include ,
but are not limited to , PE , ELF , Mach - O , JAR , or DEX
executables , or any other executable formats ; PNG , GIF , or
other image formats ; OGG , MP3 , MP4 , Matroska , or other
audio or video container or bitstream formats ; or traces of
network traffic , e.g. , headers or bodies of data packets in
protocols such as IEEE 802.11 , IP , UDP , or TCP . Example
types of trial data streams 116 that can be analyzed using
computational models 112 as described herein include , but
are not limited to , executables , static libraries , dynamic
libraries , data files , compressed files , encrypted files , or
obfuscated files .
[0215] Although the techniques have been described in
language specific to structural features and / or methodologi
cal acts , it is to be understood that the appended claims are
not necessarily limited to the features and / or acts described .
Rather , the features and acts are described as example
implementations of such techniques . For example , network
108 , processing unit (s) 210 , and other structures described
herein for which multiple types of implementing devices or
structures are listed can include any of the listed types ,
and / or multiples and / or combinations thereof .
[0216] The operations of the example processes are illus
trated in individual operations and summarized with refer
ence to those operations . The processes are illustrated as
logical flows of operations , each operation of which can
represent one or more operations that can be implemented in
hardware , software , and / or a combination thereof . In the
context of software , the operations represent computer
executable instructions stored on one or more computer
readable media that , when executed by one or more proces
sors , enable the one or more processors to perform the
recited operations . Generally , computer - executable instruc

US 2021/0075798 A1 Mar. 11 , 2021
21

tions include routines , programs , objects , modules , compo
nents , data structures , and the like that perform particular
functions and / or implement particular abstract data types .
The order in which the operations are described is not
intended to be construed as a limitation , and any number of
the described operations can be executed in any order ,
combined in any order , subdivided into multiple sub - opera
tions , and / or executed in parallel to implement the described
processes . The described processes can be performed by
resources associated with one or more computing device (s)
102 , 104 , and / or 200 such as one or more internal and / or
external CPUs and / or GPUs , and / or one or more pieces of
hardware logic such as FPGAs , DSPs , and / or other types
described above .
[0217] All of the methods and processes described above
can be embodied in , and fully automated via , software code
modules executed by one or more computers and / or proces
sors . The code modules can be embodied in any type of
computer - readable medium . Some and / or all of the methods
can be embodied in specialized computer hardware . As used
herein , the term " module ” is intended to represent example
divisions of the described operations (e.g. , implemented in
software or hardware) for purposes of discussion , and is not
intended to represent any type of requirement or required
method , manner or organization . Accordingly , while various
“ modules ” are discussed , their functionality and / or similar
functionality could be arranged differently (e.g. , combined
into a fewer number of modules , broken into a larger number
of modules , etc.) . Further , while certain functions and mod
ules are described herein as being implemented by software
and / or firmware executable on a processor , in other embodi
ments , any or all of the modules may be implemented in
whole or in part by hardware (e.g. , as an ASIC , a specialized
processing unit , etc.) to execute the described functions . In
some instances , the functionality and / or modules discussed
herein may be implemented as part of the operating system
216. In other instances , the functionality and / or modules
may be implemented as part of a device driver , firmware ,
and so on .
[0218] The word “ or ” and the phrase " and / or ” are used
herein in an inclusive sense unless specifically stated oth
erwise . Accordingly , conjunctive language such as the
phrases “ X , Y , or Z , ” “ at least X , Y , or Z , ” or “ at least one
of X , Y or Z , " unless specifically stated otherwise , is to be
understood as signifying that an item , term , etc. , can be
either X , Y , or Z , or a combination thereof . Conditional
language such as , among others , “ can , ” “ could , " " might ”
and / or " may , " unless specifically stated otherwise , are
understood within the context to present that certain
examples include , while other examples do not include ,
certain features , elements and / or steps . Thus , such condi
tional language is not generally intended to imply that
certain features , elements and / or steps are in any way
required for one or more examples and / or that one or more
examples necessarily include logic for deciding , with and / or
without user input and / or prompting , whether certain fea
tures , elements and / or steps are included and / or are to be
performed in any particular example .
[0219] Any routine descriptions , elements and / or blocks in
the flow diagrams described herein and / or depicted in the
attached figures should be understood as potentially repre
senting modules , segments , and / or portions of code that
include one or more computer - executable instructions for
implementing specific logical functions and / or elements in

the routine . Alternative implementations are included within
the scope of the examples described herein in which ele
ments and / or functions can be deleted and / or executed out of
order from any order shown or discussed , including sub
stantially synchronously and / or in reverse order , depending
on the functionality involved as would be understood by
those skilled in the art . Examples herein are nonlimiting
unless expressly stated otherwise , regardless of whether or
not they are explicitly described as being nonlimiting . It
should be emphasized that many variations and modifica
tions can be made to the above - described examples , the
elements of which are to be understood as being among
other acceptable examples . All such modifications and varia
tions are intended to be included herein within the scope of
this disclosure and protected by the following claims . More
over , in the claims , any reference to a group of items
provided by a preceding claim clause is a reference to at
least some of the items in the group of items , unless
specifically stated otherwise .
What is claimed is :
1. A method comprising , under control of at least one

processing unit :
determining a validation set of data streams from a

candidate set of data streams based at least in part on a
training set of data streams and on a predetermined
difference criterion between data streams ; and

operating a computational model based at least in part on
data stream (s) of the validation set to provide respec
tive model output (s) ;

determining that the model output (s) do not satisfy a
predetermined completion criterion ; and , in response ,

updating the computational model based at least in part on
data stream (s) of the training set to provide an updated
computational model .

2. The method according to claim 1 , wherein :
the predetermined difference criterion applies to at least

two signatures and is satisfied by the at least two
signatures having at least a predetermined threshold
difference ; and the method further comprises :

determining respective signatures of at least some data
streams of the candidate set ;

determining respective signatures of at least some data
streams of the training set ; and

selecting a first data stream of the candidate set for
inclusion in the validation set in response to the respec
tive signature of the first data stream satisfying the
predetermined difference criterion with respect to the
respective signature of at least one data stream of the
training set .

3. The method according to claim 2 , further comprising :
determining a feature vector associated with the first data

stream ; and
determining the respective signature of the first data

stream as a locality - sensitive hash (LSH) of the feature
vector .

4. The method according to claim 2 , further comprising
selecting the first data stream further based at least in part on
the first data stream satisfying the predetermined difference
criterion with respect to a majority of the respective signa
tures of the data streams of the training set .

5. The method according to claim 1 , further comprising :
determining respective signatures of at least some data

streams of the candidate set ;

US 2021/0075798 A1 Mar. 11 , 2021
22

determining a first subset of the candidate set and a second
subset of the candidate set based at least in part on at
least some of the signatures and on the predetermined
difference criterion ;

determining the training set comprising the first subset ;
and

determining the validation set comprising the second
subset .

6. The method according to claim 1 , further comprising :
determining a plurality of partitions of the training set

based at least in part on the signatures , wherein each
partition of the plurality of partitions comprises at least
one of the data streams of the training set ;

providing individual partitions of the plurality of parti
tions to respective computing nodes of a plurality of
computing nodes via a communications interface com
municatively connected with the at least one processing
unit ;

receiving respective results from individual computing
nodes of the plurality of computing nodes ; and

updating the computational model based at least in part on
the results .

7. The method according to claim 1 , further comprising :
operating the updated computational model based at least

in part on at least one trial data stream to provide a trial
model output indicating whether the trial data stream is
associated with malware .

8. A system comprising :
one or more processors ; and
memory communicatively coupled to the one or more

processors , the memory storing instructions executable
by the one or more processors that , when executed by
the one or more processors , cause the system to per
form operations including :
determining a validation set of data streams from a

candidate set of data streams based at least in part on
a training set of data streams and on a predetermined
difference criterion between data streams ; and

operating a computational model based at least in part
on data stream (s) of the validation set to provide
respective model output (s) ;

determining that the model output (s) do not satisfy a
predetermined completion criterion ; and , in
response ,

updating the computational model based at least in part
on data stream (s) of the training set to provide an
updated computational model .

9. The system according to claim 8 , wherein :
the predetermined difference criterion applies to at least

two signatures and is satisfied by the at least two
signatures having at least a predetermined threshold
difference ; and the instructions , when executed by the
one or more processors , cause the system to perform
operations further including :

determining respective signatures of at least some data
streams of the candidate set ;

determining respective signatures of at least some data
streams of the training set ; and

selecting a first data stream of the candidate set for
inclusion in the validation set in response to the respec
tive signature of the first data stream satisfying the
predetermined difference criterion with respect to the
respective signature of at least one data stream of the
training set .

10. The system according to claim 9 , wherein the instruc
tions , when executed by the one or more processors , cause
the system to perform operations further including :

determining a feature vector associated with the first data
stream ; and

determining the respective signature of the first data
stream as a locality - sensitive hash (LSH) of the feature
vector .

11. The system according to claim 9 , wherein the instruc
tions , when executed by the one or more processors , cause
the system to perform operations further including :

selecting the first data stream further based at least in part
on the first data stream satisfying the predetermined
difference criterion with respect to a majority of the
respective signatures of the data streams of the training
set .

12. The system according to claim 8 , wherein the instruc
tions , when executed by the one or more processors , cause
the system to perform operations further including :

determining respective signatures of at least some data
streams of the candidate set ;

determining a first subset of the candidate set and a second
subset of the candidate set based at least in part on at
least some of the signatures and on the predetermined
difference criterion ;

determining the training set comprising the first subset ;
and

determining the validation set comprising the second
subset .

13. The system according to claim 8 , wherein the instruc
tions , when executed by the one or more processors , cause
the system to perform operations further including :

determining a plurality of partitions of the training set
based at least in part on the signatures , wherein each
partition of the plurality of partitions comprises at least
one of the data streams of the training set ;

providing individual partitions of the plurality of parti
tions to respective computing nodes of a plurality of
computing nodes via a communications interface com
municatively connected with the at least one processing
unit ;

receiving respective results from individual computing
nodes of the plurality of computing nodes ; and

updating the computational model based at least in part on
the results .

14. The system according to claim 8 , wherein the instruc
tions , when executed by the one or more processors , cause
the system to perform operations further including :

operating the updated computational model based at least
in part on at least one trial data stream to provide a trial
model output indicating whether the trial data stream is
associated with malware .

15. A computer - readable storage medium storing com
puter - readable instructions executable by one or more pro
cessors , that when executed by the one or more processors ,
cause the one or more processors to perform operations
comprising :

determining a validation set of data streams from a
candidate set of data streams based at least in part on a
training set of data streams and on a predetermined
difference criterion between data streams ; and

operating a computational model based at least in part on
data stream (s) of the validation set to provide respec
tive model output (s) ;

US 2021/0075798 A1 Mar. 11 , 2021
23

determining that the model output (s) do not satisfy a
predetermined completion criterion ; and , in response ,

updating the computational model based at least in part on
data stream (s) of the training set to provide an updated
computational model .

16. The computer - readable storage medium according to
claim 15 , wherein :

the predetermined difference criterion applies to at least
two signatures and is satisfied by the at least two
signatures having at least a predetermined threshold
difference ; and the instructions , when executed by the
one or more processors , cause the one or more proces
sors to perform operations further including :

determining respective signatures of at least some data
streams of the candidate set ;

determining respective signatures of at least some data
streams of the training set ; and

selecting a first data stream of the candidate set for
inclusion in the validation set in response to the respec
tive signature of the first data stream satisfying the
predetermined difference criterion with respect to the
respective signature of at least one data stream of the
training set .

17. The computer - readable storage medium according to
claim 16 , wherein the instructions , when executed by the
one or more processors , cause the one or more processors to
perform operations further including :

determining a feature vector associated with the first data
stream ; and

determining the respective signature of the first data
stream as a locality - sensitive hash (LSH) of the feature
vector .

18. The computer - readable storage medium according to
claim 16 , wherein the instructions , when executed by the
one or more processors , cause the one or more processors to
perform operations further including :

selecting the first data stream further based at least in part
on the first data stream satisfying the predetermined
difference criterion with respect to a majority of the
respective signatures of the data streams of the training
set .

19. The computer - readable storage medium according to
claim 15 , wherein the instructions , when executed by the
one or more processors , cause the one or more processors to
perform operations further including :

determining respective signatures of at least some data
streams of the candidate set ;

determining a first subset of the candidate set and a second
subset of the candidate set based at least in part on at
least some of the signatures and on the predetermined
difference criterion ;

determining the training set comprising the first subset ;
and

determining the validation set comprising the second
subset .

20. The computer - readable storage medium according to
claim 15 , wherein the instructions , when executed by the
one or more processors , cause the one or more processors to
perform operations further including :

determining a plurality of partitions of the training set
based at least in part on the signatures , wherein each
partition of the plurality of partitions comprises at least
one of the data streams of the training set ;

providing individual partitions of the plurality of parti
tions to respective computing nodes of a plurality of
computing nodes via a communications interface com
municatively connected with the at least one processing
unit ;

receiving respective results from individual computing
nodes of the plurality of computing nodes ; and

updating the computational model based at least in part on
the results .

