
United States Patent (19)
Stevens

54)

(75)

(73)

(21)

22)

(51)
(52)

(58)

56)

IIII
USOO5590281A

ASYNCHRONOUS BDIRECTIONAL
APPLICATION PROGRAM PROCESSES
INTERFACE FOR A DISTRIBUTED
HETEROGENEOUS MULTPROCESSOR
SYSTEM

Inventor: Bruce W. Stevens, North Kingstown,
R.I.

Assignee: The United States of Americas as
represented by the Secretary of the
Navy, Washington, D.C.

Appl. No.:783,661
Filed: Oct. 28, 1991

Int. Cl. GO6F 15/16
U.S. Cl. 395/200.01; 395/200.02;

395/200.03; 395/200.1; 395/680
Field of Search 395/200, 32 S,

395/650, 700, 200.01, 200.02, 200.03, 2002;
364/228.9, 230, DIG 1

References Cited

U.S. PATENT DOCUMENTS

2/1988 Chadima et al. 364/200
8/1990 Shorter 364/200
111990 Shorter 364/200
2/1991 Shorter 364,200

4,723,208
4,949,254
4,969,092
4,991,089

ASEl
APAEA

11 Patent Number: 5,590,281
(45. Date of Patent: Dec. 31, 1996

5,062,037 10/1991 Shorter et al. 364/200
5,063,500 1/1991 Shorter et al. 395.200

OTHER PUBLICATIONS

"Standards and Protocols for Communications Networks'
by James W. Conard, 1982 Section III.
Primary Examiner-Kevin A. Kriess
Assistant Examiner-Michael T. Richey
Attorney, Agent, or Firm-Michael J. McGowan; Michael F.
Oglo; Prithvi C. Lall
57) ABSTRACT

A network interface resident on one processor enables
heterogenous processors interconnected by a common net
work to exchange control and data information via virtual
circuits created and maintained by the network interface
between sockets defined at the communicating processors.
Different kinds of messages are discriminated and their
length is determined to enable the same network virtual
circuit to mulitplex data and control information in a manner
that is message specific and conserves network resources.
Data conversion is implemented to enable heterogeneous
processors to communicate over the network virtual circuit.
Asynchronous, bidirectional communication is provided by
the network interface for tightly-coupled, moderately
coupled, and loosely-coupled hardware architecture con
formance types.

14 Claims, 3 Drawing Sheets

SAIAA
IASA
d

AAAAAAA
FASA

92

SAA AAF
FASA
9d

20-1

After WIFACA 9

SAPA,
96

U.S. Patent Dec. 31, 1996 Sheet 3 of 3 5,590,281

SAWAAA
JASA
6.

ASAA/(7
AP(7/AA/AFA

64
(A/AW

t
WF/WP (WiPACA 90

AA/WPA WIAAACA 90

AACA/WAAP
JASA

92
SAPWAA

96

SAA/OAAF
WASA

96
ad

FIG. 5

5,590,281
1.

ASYNCHRONOUS BDRECTIONAL
APPLICATION PROGRAM PROCESSES
INTERFACE FOR A DISTRIBUTED

HETEROGENEOUS MULTIPROCESSOR
SYSTEM

STATEMENT OF GOVERNMENT INTEREST

The invention described herein may be manufactured and
used by or for the government of the United States of
America for governmental purposes without the payment of
any royalties thereon or therefor.

BACKGROUND OF THE INVENTION

(1) Field of the Invention
This invention is directed to the field of data processing,

and more particularly, to a novel asynchronous bidirectional
network interface enabling seamless concurrent processing
in a distributed heterogeneous multiprocessor system.

(2) Description of the Prior Art
Distributed computer systems exist in one of three prin

cipal architecture conformance types, namely, tightly
coupled multiprocessing systems, moderately-coupled mul
tiprocessing systems, and loosely-coupled multiprocessing
systems. The tightly-coupled distributed multiprocessing
architecture conformance type is constituted by plural pro
cessors connected by either a memory bus or a backplane by
which memory is globally shared; the moderately-coupled
type is constituted by plural processors interconnected either
by a backplane or a single-segment LAN with no global
memory and where a standard store-and-forward informa
tion transfer mechanism may be employed, while the
loosely-coupled distributed multiprocessor architecture con
formance type is constituted by plural processors coupled by
multisegmented bridged LAN's (Local Area Networks
including the transmission line thereof) and full WAN's
(Wide Area Networks including the transmission line
thereof) with a store-and-forward information transfer
mechanism. Local memory may be provided to any proces
sor of any of the multiprocessors of any of the three types of
distributed systems. Typical backplanes for the tightly
coupled type advantageously may be the Futurebus+, and
the Scalable Coherent Interface (SCI), and typical network
standards and protocols for the moderately-coupled and
loosely-coupled types may advantageously be the OSI Ref
erence Model, TCP/IP, DECnet and SAFENET networks.
Typical processors may advantageously be the MilVAX,
MIPS R3000, Intel 80486, Motorola 68030, AMD 29000
and the Intel 88000, among others.

In order to utilize the full processing potential of any one
of the distributed multiprocessing architecture conformance
types, provision must be made to accommodate heteroge
neous machines, namely, machines that may differ in data
representation, instruction sets and/or architecture, among
other things. For the tightly-coupled multiprocessor sys
tems, where all of the processors have access to global
memory attached to the common backplane or "bus', and
where it is possible for all of the processors to share data by
placing it in a mutually agreed upon address in global
memory, heterogeneous multiple processor configurations
introduce a number of complications. Whenever the proces
sors are not alike, it becomes difficult to develop a compiler,
such as an Ada compiler, and supporting runtimes across the
entire suite of processors. In fact, there are a limited number
of compiler vendors which produce a single compiler that
targets a number of different processors. In those cases

10

15

20

25

30

35

40

45

50

55

60

65

2
where a single compiler does target a number of different
processors, the runtimes for each targeted processor are
unique and usually do not incorporate the necessary mecha
nisms to interoperate such as support for heterogeneous
cross-processor rendezvous. The problem of data represen
tation at the machine level further complicates matters. One
cannot simply share global data in commonly addressable
memory without consideration of the cooperating target
processors. Byte ordering between processors, for example,
may differ; for instance, the VAX is a "little endian' (i.e., 0
byte being low order) processor while the other above
named exemplary processors are configured as "big endian'
(i.e., 0 byte being high order) processors. If the intent is to
have data shared in commonly addressable memory, the data
producing processor, or the data consuming processor, or
both, would have the responsibility of converting the data.
Mechanisms such as the SUN external Data Representation
(XDR), ISO's Abstract Syntax Notation 1 (ASN.1) or a
unique conversion process could be used to convert the data
from one processor's representation to the other processor's
representation, or to a mutually agreed upon neutral repre
sentation. This, however, requires shadowing the global data
with a similar data structure in the agreed upon representa
tion, undesirably multiplying the memory requirement for
sharing data by the number of processors requiring different
representations. Another disadvantage would result from an
effort to make all of these presentation issues invisible,
which would require extensive modification to the runtime,
such as an Ada runtime. And along with the invisibility
would come questions from the system's designer of what
effect the associated overhead would have on performance.
When building a large embedded distributed system, the
system designer does not want to consume time developing
or modifying the compiler and/or runtime. Rather, it is the
desire of the system designer to implement the application
without distractions.

Moderately-coupled systems, like loosely-coupled sys
tems, do not have global memory, so that mechanisms need
be employed to share data and synchronize actions through
communications protocols over the backplane or single
segment LAN. These mechanisms are similar to those that
would be necessary on loosely-coupled systems. For the
loosely-coupled systems (and moderately-coupled systems)
where the processors neither share global memory nor a
single interconnect medium (i.e. a common backplane, bus
or single segment LAN) but employ store-and-forward
mechanisms to share data and to synchronize actions that are
implemented through communications protocols, such as the
SAFENET1 and SAFENET2 networking standards to be
used in future Navy systems, the complications introduced
by heterogeneous processors are such as to require the
design, development and modification of a compiler,
capable of supporting multiple backends and runtime sys
tems which target each of the heterogeneous processors. For
each processor of the heterogeneous processors, untime
environments would have to be developed/modified to sup
port the level of desired distribution, which restrictions on
the level of distribution would have a large effect on the
resulting runtime overhead, since greater flexibility would
result in a larger runtime overhead and size. Further, mecha
nisms within the runtime would be required to support
memory management, time management, tasks and excep
tions. Other mechanisms would also be needed to support
processor interrupts, I/O, predefined packages, generic units,
and, among other things, compiler/processor independent/
dependent attributes.

There is thus a need to provide a mechanism other than a
single compiler capable of supporting plural heterogeneous

5,590,281
3

processors enabling concurrent processing for distributed
Systems configured in any one of the tightly-coupled, mod
erately-coupled and loosely-coupled hardware architecture
conformance types.

SUMMARY OF THE INVENTION

It is accordingly the principal object of the present inven
tion to provide an asynchronous bidirectional network inter
face enabling seamless concurrent processing in a distrib
uted heterogeneous processing system. In accord therewith,
applications layer means are disclosed for enabling one task
asynchronous to one process run by one processor of one
kind to use another task asynchronous to another process run
by another processor of another kind in such a way that the
use of the used processor is transparent to the using proces
sor as if the distributed processors were seamless. In further
accord therewith, presentation layer means cooperative with
the applications layer means are disclosed for converting
data from the kind of data of the one processor whose
process is to use the other process to another kind of data
corresponding to the other processor whose process is being
used and for determining which of plural, predetermined
ways the used process is to be used. In further accord
there with, a session layer means cooperative with both the
applications layer means and the presentation layer means
are disclosed for providing a network virtual circuit between
Sockets associated with the processes borne by the distrib
uted processors and for providing sending and receiving
tasks along the network virtual circuit defined between the
sockets of the several processes. In further accord therewith,
transport layer means cooperative with the session layer
means are disclosed for providing data reads and data writes
of data-converted and usage-determined information along
the network in accord with the sending and receiving tasks
defined between the sockets of the network virtual circuit. In
this manner, the asynchronous bidirectional network inter
face enabling seamless concurrent processing in a distrib
uted heterogeneous processing system of the present inven
tion is able to be implemented using the compilers and
network protocols and programming languages, such as the
Ada programming language, that are readily available today
without the need to re-design a compiler to support multiple
heterogeneous processors with all its attendant disadvan
tages. The network interface of the invention enables asyn
chronous bidirectional multiple-message passing in each of
the tightly-coupled, moderately-coupled and loosely
coupled architecture conformance types.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system diagram of the asynchronous bidirec
tional interface enabling seamless concurrent processing in
a distributed heterogeneous processing system in accord
with the invention;

FIG. 2 is a diagram illustrating the structure of the
network interface in accord with the present invention;

FIG. 3 is a diagram illustrating portions of the session
layer and transport layer of the network interface in accord
with the invention;

FIG. 4 is a diagram illustrating the presentation layer and
Session layer of the network interface in accord with the
present invention; and

FIG. 5 is a diagram illustrating a remote procedure call
between heterogeneous processors implemented by the net
work interface in accord with the instant invention.

10

5

20

25

30

35

40

45

50

55

60

65

4
DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Referring now to FIG. 1, generally designated at 10 is a
system diagram of the novel asynchronous bidirectional
network interface enabling seamless (i.e., as though run by
a unitary, undistributed application program) concurrent
processing in a distributed heterogeneous processing system
in accord with the instant invention. The interface 10 is
implemented in a distributed heterogeneous multiprocessing
system illustrated by three processors 12, 14, and 16 that
differ in respect of one or more of, among other things,
instruction set and data representation. The processors 12,
14, 16 in the illustrated embodiment are Iris workstations 12,
14, and a VAX machine 16. The heterogeneous processors
12, 14, and 16 may be arranged in any one of three
architecture conformance types, namely, the tightly
coupled, moderately-coupled, and loosely-coupled types as
described above in the description of the prior art, and in the
illustrated embodiment, the processors 12, 14, and 16 are
connected over a local area network (LAN) 18, such as an
Ethernet, in a loosely-coupled architecture conformance
type.

Bidirectional asynchronous communication between each
of the processors 12, 14, 16 with any of the processors 12,
14, 16 over the communications medium 18 is implemented
by a network interface defined by one of the multiproces
sors, the VAX machine 16 in the illustrated embodiment.
Two such distributed processes are illustrated schematically
by rectangles 20, 22, that are respectively borne by any two
processors of the distributed multiprocessing system. Each
of the processes 20, 22 include concurrent tasks illustrated
schematically by parallelograms 24, 26, that may be asyn
chronous to the corresponding processes 20, 22, especially
send and receive tasks described hereinbelow, that are
asynchronous thereto.

Each of the several "Program Asynchronous/Task-Syn
chronous (PATS)” concurrent tasks 24, 26 of the processes
20, 22 are located at different nodes defined between their
corresponding processors 12, 14, 16 along the communica
tion interface 18, and are interconnected by sockets sche
matically illustrated by dots 28, 30 defined by a network
virtual circuit to be described illustrated by loop 32. In the
illustrated embodiment, the network virtual circuit 32 is
implemented by the so-called Transmission Control Proto
cal/Internet Protocal (TCP/IP), although another suitable
mechanisms to communicate between processors, which
establish preselected protocols selected to allow action syn
chronization and data communication, may be implemented
as well without departing from the inventive concept.
By virtue of the network virtual connection defined

between the sockets 28, 30 on the virtual circuit 32, any task
24 of any process 20 at any node may exchange data and
control information with any task 26 of any process 22 at
any other node via the network virtual circuit 32 defined by
the corresponding sockets 28, 30 asynchronously bidirec
tionally without regard to any differences in the correspond
ing processors and in such a way that any one of plural usage
types may be implemented over the same network virtual
circuit. Communication between the processes of the dis
tributed heterogeneous processors on the network is effected
by the network interface of the invention in such manner that
the communicating processes thereof appear to each other as
if the distributed network were seamless.

Referring now to FIG. 2, generally designated at 40 is a
diagram illustrating the layers of the network interface in
accord with the present invention. An cross-processor-task

5,590,281
S

ing-of-application-program-components-layer-means 42 (or
simply applications layer) is provided that is concerned with
an exemplary high-level seamless Remote Procedure Call
(RPC) to be described between heterogeneous processors at
any pair of nodes. The exemplary high-level RPC of the
applications layer 42 enables any task of any process at any
node to call any task of another process at another node of
any other processor, whether of the same or different type as
the calling processor, in such fashion that the called task
appears to locally reside at the processor calling the process
at the other node in a seamless manner. Exemplary ways that
one process may differ from another process on heteroge
neous processors include the different ways that data may be
represented, as for example, strings, integers, floating point
numbers, as so on. Any differentiation between processors
that may be of heterogeneous data types is made transparent
to the calling process, preferably by converting the data to
the format of the called process, although other harmoniza
tion methods, such as conversion to a universal format, may
be employed as well. Conversion of the data is implemented
by a presentation-layer-means 44 (or simply presentation
layer) in a manner to be described that makes the underlying
differences in data representation appear invisible to the
applications layer 42.
Along any virtual circuit defined between sockets by pairs

of cooperating processes borne by the same or heteroge
neous processors at different nodes of a distributed multi
processing system of any of the three architecture conform
ance types described above, which virtual circuit is
preferably though not necessarily a stream-orientated pipe
used for communication, the presentation layer 44 enables to
provide any selected one of plural predetermined message
types. Multiplexing of different message types over the same
virtual circuit is preferably implemented in a manner to be
described by coding network messages as variant record
types, that is, as records with discriminants, where the
discriminant describes the type of and length of message,
and the corresponding portion contains the information for
that message kind, although other mechanisms to distinguish
message types and size, whether explicitly or implicitly, may
be employed as well without departing from the inventive
concept.

10

15

20

25

30

35

40

6
A session layer 46 (or connections-and-task-transport

layer-means) is provided to create virtual circuit connections
to be described between asynchronous tasks of cooperating
processes by defining sockets at the nodes where the corre
sponding processors of the distributed network are located.
The virtual circuits created between peer communicating
entities allow program asynchronous task synchronous mul
tiple concurrent tasks to run without blocking the overall
processes at either ends of any network virtual circuit.
Program asynchronous task synchronous send and receive
tasks to be described are implemented by the session layer
46 which enable data and control information to be
exchanged between tasks of peer processes interconnected
by virtual circuits distributed at different nodes of any of the
multiprocessor architecture conformance types.
A data-and-usage-determined-information-transport

layer-means 48 (or simply transport layer) is provided to
implement reliable end-to-end transport of messages by
means of network primitives to be described including read
and write primitives to be described. The network read and
write primitives enable an underlying network layer, not
shown, to receive information to be sent to its destination
and to accept information in the correct order therefrom at
the destination to form the original message. Any suitable
data link layer and physical layer, not shown, that, on the one
hand, makes the physical layer appear free of transmission
errors to the network layer, and on the other hand, provides
the physical transmission of raw bits, may be employed.

Referring now to FIG. 3 generally designated at 60 is a
diagram illustrating the virtual network connection protocol
of the session layer 46 (FIG. 2), wherein time is represented
by vertical arrow 62, a process having a calling task is
illustrated by left hand column generally designated 64
marked "client process' and a process having a called task
is illustrated by right hand column generally designated 66
marked "server process'. The primitives contained in the
VAX-based network interface are hereinafter briefly
described, along with their exemplary Ada interface. The
primitives represent a subset of all primitives available in
most implementations of TCP/IP that constitute virtual cir
cuit capabilities.

SOCKET This procedure is used to create a socket which is an end point
for communication.

procedure SOCKET (

DOMAIN
S TYPE
PROTOCOL

BIND

procedure BIND (
STATUS
S
NAME
NAMELEN

CONNECT

procedure CONNECT (
STATUS
S
NAME
NAMELEN

LISTEN

out integer, --socket
in integer, --communications domain
in integer, --communication semantics
in integer); --specifies a particular protocol

This procedure is called after a socket has been created. Bind
assigns a port name or number to be used as a reference by other
processes on the network.

out integer, --return Status
in integer, --socket
in SOCKADDRS; --name to assign to socket
in integer); --length of name

This procedure is called by a process to establish a connection to a
remote process. The node name and the port name or number
used in the Bind call by the remote process is used in this call.

out integer, --return status
in integer, --socket
in SOCKADDRS; --remote socket name
in integer); --length of name

This procedure determines the allowable backlog of incoming
connection requests.

procedure LISTEN (
STATUS out integer, --return status

5,590,281

-continued

S : in integer, --socket
BACKLOG : in integer);

--connections
Netcose This procedure is used to close a socket and end the

communication session.
procedure NETCLOSE

S : in
Netread

integer); --socket

been connected to another.
procedure NETREAD (

CC out integer, --return length
S : in integer, --socket
BUF : in SYSTEM.address: --buffer address
NBYTES : in integer), --buffer length

Netread Buffered

--max length of queue of pending

This procedure is used to read messages from a socket that has

This procedure is used to buffer up successive Netread's to result
in a message of a user specified length. A producer process may
send a message of greater length than that which is received by
Netread. Therefore, multiple Nctread's must be performed by the
consumer process. This procedure hides the details of this operation.

procedure NETREAD BUFFERED (
CC : out integer, --return length
S : in integer, --socket
BUF : in SYSTEM.address; --buffer address
NBYTES : in integer); --buffer length

Netwrite This procedure sends a message on the specified socket.
procedure NETWRITE

CC out integer, --return length
S : in integer, --socket
BUF : in SYSTEM.address; --buffer address
NBYTES : in integer), --buffer length

Rhost This procedure is used to look up an Internet host by name and
return a 32-bit Internet address.

procedure RHOST (
IADDR out integer, --32-bit internet address
ANAME in out string); --host name

TCP. Accept This procedure is used to accept inbound connection requests from
a socket. It returns a new socket to be used in communicating to
the requesting process.

procedure TCP-ACCEPT (
NS : out integer, --new socket returned
S in integer, --socket
ADOR out SOCKADDRS; --address of the connecting entity
ADORLEN out integer); --length of address returned

Put Bin Two overloaded procedures are used to print the binary values
of integers or 32 bit array types to the screen. These procedures
are predominantly used for debugging.

procedure PUT BIN (
BUFFER : in integer);

procedure PUT BIN (
BUFFER : in SYSTEM.BIT ARRAY 32);

Htons This function converts the host byte ordering to network byte
ordering for a two byte word.

function HTONS (BUFFER: in short integer)
return short integer,

Hton
network byte ordering for a four byte long word.

function HTONL (BUFFER: in integer)
return integer,

function HTONL (BUFFER: in SYTSTM.BIT ARRAY 32)
return SYSTEM.BIT ARRAY 32;

To establish a network connection between two tasks on
the network, on the one hand, the server process task 66
creates a TCP socket using the procedure SOCKET. This
socket can be thought of as one end of a communication
channel, much like a telephone. To enable other tasks on the
network to connect to this socket, a task makes its socket
known to the network by use of the procedure BIND. This
procedure basically associates the socket with a port on the
node in which the task resides, much like publishing one's
telephone number. This task is referred to herein as the
server. The server task specifies the size of the incoming
request queue before a connection request can be accepted.
This is accomplished through use of the procedure LISTEN.
This determines the number of pending incoming connec
tion requests allowed on the socket. The server task calls

This overloaded function converts the host byte ordering to

55

60

65

TCP ACCEPT. This call blocks the task until an incoming
connection request is initiated by a client for this known TCP
port. This is analogous to a person waiting for the telephone
to ring, but with a PATS implementation. When a request
from a client task is received, a new socket (NS) is auto
matically returned from TCP ACCEPT. This is analogous
to a person answering the telephone. Bidirectional commu
nication is now possible between the server and client tasks
over the new socket. This is analogous to two persons
holding a conversation over the telephone. This is accom
plished through use of the procedures NETREAD,
NETREAD BUFFERED, and NETWRITE. The old socket
still exists and can be used to accept inbound connection
requests from other tasks. When termination of communi
cation is desired, the procedure NETCLOSE is called to

5,590,281
9

close the communications channel, much like hanging up
the telephone.
On the other hand, the client task 64 also creates a TCP

socket by calling SOCKET to establish its end of the
communication channel. The client task 64 then requests a
connection to an existing known TCP port by calling the
procedure CONNECT. This is similar to dialing the tele
phone where the telephone number relates to the network
node address and port number to the server task. If an
unknown node address and port number is specified, an error
condition is returned indicating that a time-out has occurred.
When a successful connection is established, the client and
server tasks are able to communicate with each other. The
client like the server may call NETREAD, NETREAD
BUFFERED, and NETWRITE as if two people were having
a conversation on the telephone. When termination of com
munication is desired, the procedure CLOSE is called to
close the communications channel, much like hanging up
the telephone.

Referring now to FIG. 4, generally designated at 70 is a
diagram illustrating part of the session layer 46 (FIG. 2) as
well as the presentation layer 44 (FIG. 2) whereby the
cooperative send/receive tasks of peer communicating pro
cesses exchange control and data bidirectionally along the
network virtual circuit are established therebetween. A
sender task is illustrated by rectangle 72, and a receiver task
is illustrated by rectangle 74. The sender and receiver tasks,
concurrent tasks respectively constituting the connected
processes, are interconnected via the network virtual circuit
as schematically illustrated by region 76. Both the sender
and receiver tasks 72, 74 communicate over the same
network virtual circuit 76, the sender task to send messages
to the receiver task, on either side of the virtual circuit 76.

Messages are coded in the exemplary embodiment as
variant record types where the discriminant specifies the
message type being sent or received as indicated previously.
This makes it possible to invoke multiple types of actions in
a remote process, such as an Ada program, over a single
network circuit. Each cooperating network process residing
within the software system would have both a sender task
and a receiver task.

For the exemplary Ada sender and receiver tasks 72, 74,
the sender task waits to rendezvous with the application
when communication is desired. When the rendezvous
occurs, the sender task determines the message kind. This
allows the sender to implicitly determine the size of the
message and the representation conversion to be performed
on the message before transmitting to the remote process.
Since the exemplary Ada attribute size will return the size of
the largest variant of the network message, it is necessary for
the programmer to maintain the size of each variant com
ponent of the message. This can be accomplished by use of
a discriminator to specify a separate Ada type for each
variant part (i.e., the instruction “type MESSAGEs (KIND
:KINDSs:=ALERT) is record” in the exemplary network
message set forth below). The size attribute will return the
correct length of the variant component type. This size plus
the size of the discriminant itself determines the size of the
entire message to be sent. The network primitive NET
WRITE contains a parameter for specifying the length of the
buffer to send. Specifying the actual length of the message,
the size in bytes of the discriminant plus the size of the type
of the information field, makes it possible to optimize the
use of the network. Once the data representation is converted
and the size is determined, the message is sent over the
network to the receiver task. The sender task then loops
around and waits for another request (rendezvous) from the

5

25

30

35

40

45

50

55

60

65

10
application to send another message, thus repeating the
above-described process.

Since the exemplary TCP circuits are stream-orientated
pipes used for communication, the receiver task 74 operates
a little differently. The receiver task 74 receives the dis
criminant from the network virtual circuit 76 using a call to
NETREAD BUFFERED specifying a message length
which is the size of the discriminant of the message. This
information determines the kind of message to follow and its
implicit size. Once the kind of incoming message is deter
mined, it is then possible for the receiver task to read the
remaining portion of the message using NETREAD
BUFFERED, by specifying a message length which is the
size of the type of the information field for the determined
kind of message. The data representation is converted, as
necessary, and the appropriate actions for the message
received are executed. The receiver task then loops around
to call NETREAD BUFFERED, again specifying a mes
sage length that is the size of the discriminant, and repeats
the above-described process.

Since network messages are coded as variant record types
(records with discriminants) in the exemplary embodiment,
the discriminant is used to describe the type of message, and
the corresponding portion contains the information for that
message kind. An example of a network message coded in
Ada is shown below.

type KINDs is (ALERT, SIGNAL, A, B,C);
type ALERTs is

record
WHICH
ACTION

end record,
type SIGNALS is

record
WHICH
ACTION

end record;
subtype. As is integer,
subtype Bs is float;
subtype Cs is boolean;
type MESSAGEs (KIND :

integer,
ACTIONS:

integer,
SIGNAL ACTIONs;

KINDs :=ALERT) is
record

case KIND is
when ALERT => ALERT INFO ALERTs:
when SIGNAL => SIGNAL INFO SIGNALs;
when A E. A. INFO As;
when B BINFO Bs;
when C > C INFO Cs;

end case; -- KIND
end record; -- MESSAGEs
--declare the actual network message object
NETWORK MESSAGE : MESSAGEs;

Referring now to FIG. 5, generally designated at 80 is a
diagram illustrating a seamless RPC in accord with the
present invention. During the RPC, the client calls a local
procedure to perform a service. The local procedure in turn
calls another procedure to perform a service. The local
procedure in turn calls another procedure which actually
resides on another node of the network to perform the
service required. The goal of RPC is to provide the services
of a procedure to a client regardless of where the procedure
actually resides. The procedure appears local to the client
thus making the RPC mechanism transparent and apparently
seamless.

A client 82 calls a local procedure which is labeled
pseudoprocedure 84. This procedure can be, by way of
example, an Ada Subprogram (procedure or function) or an
Ada task entry (which presents the same semantics as the
procedure). The pseudoprocedure 84 assembles all of the

5,590,281
11

parameters, if any into a message, an operation known as
parameter marshalling. The data in the message is converted
into a form that is usable by the remote system, as depicted
by a convert data box 86. The message is then handed to a
sender task 88, described hereinabove. The sender task 88
calls the facilities of the network interface to send the
message to the remote system via a virtual circuit 32,
described hereinabove.

The message is received by a receiver task 92 on the
remote system through the facilities of the network interface.
The receiver task 92 determines the message kind and thus,
determines which of multiple actions needs to be performed,
as described hereinabove. The data is converted, as neces
sary, by data converter 94 to a locally usable form. A remote
procedure 96 is then called.
The receiver is able, due to the PATS mechanism

described hereinabove, to continue to receive incoming
messages while the RPC is being serviced. The remote
procedure 96 can be, by way of example, an Ada subpro
gram or task entry just as the local procedure was. It is
preferred in the exemplary embodiment to have a one-for
one match between pseudoprocedure and remote procedure
type. Upon completion of the service, the return parameters
are assembled into a message (parameter marshalling),
which is sent back, via the Sender task 98 on the remote
system.

It is possible to have many simultaneous RPCs at various
stages of completion in progress at any moment in time by
any two systems connected via one or more network virtual
circuits. This is depicted by the multiple copies of the client
82, pseudoprocedure 88, and remote procedure 96 boxes. A
call can also be made by a client on either system to the
server on the other.
Many modifications of the presently disclosed system will

become apparent to those skilled in the art having benefitted
from the disclosure of the instant invention.
What is claimed is:
1. For use in a multiprocessing system in which plural and

heterogeneous processors perform distributed processing, a
subsystem for interfacing component processes of applica
tion programs resident in different ones of the plural het
erogeneous processors, which subsystem for interfacing
asynchronously and bidirectionally enables processing in
one and another of at least two heterogeneous processors of
the plurality as though the distributed processing was per
formed under run control of a unitary, undistributed appli
cation program, said heterogeneous one and another proces
sors differing by having at least one difference characteristic
from among (A) plural, predetermined data representation
format characteristics of the plural processors and (B) plural,
predetermined different processor architecture characteris
tics dependent ways of using component processes of an
application program, said plural processors being intercon
nected for multiprocessing by an interprocessor communi
cation subsystem in which signals are borne by a hardware
interconnection means, said subsystem for interfacing appli
cation program processes comprising:

cross-processor-tasking-of-application-program-compo
nents-layer-means residing in the application program
level of software hierarchy coupled to a selected pro
cessor, which cross-processor-tasking-layer-means is
operative to enable one task asynchronous to one
component process run by one processor of one het
erogeneous kind to use another component task asyn
chronous to another process run by another processor
of another heterogeneous kind in such a way that the

5

10

15

20

25

30

35

AO

45

50

55

60

65

12
fact that the another task is being run by the another
processor is transparent to the using processor as if the
distributed processing is being performed under run
control of a unitary, undistributed application program;

presentation-layer-means residing in the application pro
gram level of software hierarchy which is cooperative
with the cross-process-tasking-of-application-program
components-layer-means for converting data from the
data representation format characteristic of the one
processor whose component process is to use the
another component process to another data representa
tion format characteristic corresponding to the another
processor whose component process is being run
thereby and for determining which of plural, predeter
mined ways the used component process is to be used;

connections-and-task-transport-layer-means in part resid
ing in the application program level of software hier
archy and in part facilitated by the hardware intercon
nection means of the interprocessor communications
Subsystem, which connections-and-task-transport
layer-means is cooperative with both the cross-proces
sor-tasking-of-application-program-components-layer
means and the presentation-layer-means for providing
a network virtual circuit between sockets defined
between the processes borne by the distributed proces
sors and for providing sending and receiving tasks
along the network virtual circuit between the sockets of
the several processes thereofthereby facilitating execu
tion of the component processor application programs
resident in different and heterogeneous processors as
though a unitary, undistributed application program
were being executed, the hardware interconnection
means providing the communication path facilitating
unification of execution of the component processes in
the separately resident application programs; and

data-and-usage-determined-information-transport-layer
means resident in the application program level of
software hierarchy cooperative with the connections
and-task-transport-layer-means for providing data
reads and data writes of data representation-format
converted and usage-determined information along the
network virtual circuit by the sending and receiving
tasks between the sockets of the network virtual circuit.

2. The subsystem for interfacing component processes of
application programs in accordance with claim 1, wherein
said interprocessor communication subsystem is of the
tightly-coupled distributed multiprocessor predetermined
architecture conformance type; and

said hardware interconnection means is a set of bus
conductors interconnecting the plural processors with a
globally shared memory.

3. The subsystem for interfacing component processes of
application programs in accordance with claim 1, wherein
said interprocessor communication subsystem is of the
loosely-coupled distributed multiprocessor predetermined
architecture conformance type; and

said interprocessor communication subsystem is of the
type employing a communication protocol which
facilitates both data sharing and synchronization
actions.

4. The subsystem for interfacing component processes of
application programs in accordance with claim 1, wherein
said interprocessor communications subsystem is of the
loosely coupled distributed multiprocessor predetermined
architecture conformance type; and

said interprocessor communication subsystem comprises
an area network including a signal transmission line

5,590,281
13

and having a store-and-forward information transfer
mechanism.

5. The subsystem for interfacing component processes
application programs in accordance with claim 1, wherein
said cross-processor-tasking-of-application-components
layer-means, which enables one task of one processor to use
another task asynchronous to another process of another
processor by means of a remote procedure call.

6. The subsystem for interfacing component processes of
application programs in accordance with claim 1, wherein
that particular function of the presentation-layer-means con
sisting of determining which one of said plural predeter
mined ways of using component processes of an application
program is to be used, is performed by an included means for
representing information to be transferred between proces
sors in in response to both functional-message-kind and
message-length such that particular functional-message
kinds and message-lengths enable the used process to be
used in one of said predetermined ways along the same
network virtual circuit,

7. The subsystem for interfacing component processes of
application programs in accordance with claim 6, wherein
said included means for representing information to be
transferred between processors which represents said func
tional-message-kinds and said message-lengths is a single
Ada computer language instruction of the Ada protocol
discriminator type which will return the correct length of the
variant component type, whereby the entire length of mes
sage to be sent may be determined as the length of the
discriminator itself plus the returned length attribute.

8. The subsystem for interfacing component processes of
application programs in accordance with of claim 1, wherein
said connections-and-task-transport-layer-means providing
said network virtual circuit between said sockets includes
means for defining an input message queue at each of the
processes borne by the processors at corresponding sockets.

9. The subsystem for interfacing component processes of
programs in accordance with claim 1, wherein said connec
tions-and-task-transport-layer-means providing said net
work virtual circuit between sockets further includes means
for returning a new socket in response to receipt thereby of

O

5

20

25

30

35

40

14
a request to use the component process that resides at the
corresponding socket.

10. The subsystem for interfacing component processes of
application programs in accordance with claim 1, wherein
Said sending and receiving tasks of said data-and-usage
determined-information-transport-layer means are asyn
chronous to the processes in which they are embedded.

11. The subsystem for interfacing components processes
of application programs in accordance with claim 1, wherein
the heterogeneous plural, predetermined data representation
formal characteristics include one and another different
numerical data representation formats respectively employ
ing opposite byte orders.

12. The subsystem for interfacing component processes of
application programs in accordance with claim 1 wherein
said ways of using a component process of an application
program of said heterogeneous one and the other processors
differ at least in the processors' employment of different
characteristic instruction sets in their execution of computer
programs, and

said presentation-layer-means determines the way of use
of a used component process on the basis of the
characteristic instruction set of the one processor whose
component process is to use the other process relative
to the characteristic instruction set of the other proces
sor whose component process is being used.

13. The subsystem for interfacing component processes
application programs in accordance with claim 3, wherein
the communication conduit of a predetermined characteris
tic type is an area network loop employing the Transmission
Control/Interest Protocol (TCP/IP) protocol for stream-ori
ented communication along signal pipes.

14. The subsystem for interfacing component processes of
application programs in accordance with claim 4, wherein
the communication conduit of a predetermined type is an
area network loop employing the Transmission Control/
Interest Protocol (TCP/IP) protocol for stream-oriented
communication along signal pipes.

ck k k tie :

