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(57) ABSTRACT 

A method for identifying a potential faultina system includes 
obtaining a set of training data. A first kernel is selected from 
a library of two or more kernels and the first kernel is added to 
a regression network. A next kernel is selected from the 
library of two or more kernels and the next kernel is added to 
the regression network. The regression network is refined. A 
potential fault is identified in the system using the refined 
regression network. 

15 Claims, 6 Drawing Sheets 
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1. 

INCREMENTAL LEARNING OF NONLINEAR 
REGRESSION NETWORKS FOR MACHINE 

CONDITION MONITORING 

CROSS-REFERENCE TO RELATED 
APPLICATION 

The present application is based on provisional application 
Ser. No. 60/849,702 filed Oct. 5, 2006, the entire contents of 
which are herein incorporated by reference. 

BACKGROUND OF THE INVENTION 

1. Technical Field 
The present disclosure relates to machine condition moni 

toring and, more specifically, to incremental learning of non 
linear regression networks for machine condition monitoring. 

2. Discussion of the Related Art 
Condition monitoring relates to the observation and analy 

sis of one or more sensors that sense key parameters of 
machinery. By closely observing the sensor data, a potential 
failure or inefficiency may be detected and remedial action 
may be taken, often before a major system failure occurs. 

Effective condition monitoring may allow for increased 
uptime, reduced costs associated with failures, and a 
decreased need for prophylactic replacement of machine 
components. 

Condition monitoring may be applied to a wide variety of 
industrial machinery such as capitol equipment, factories and 
power plants; however, condition monitoring may also be 
applied to other mechanical equipment such as automobiles 
and nonmechanical equipment Such as computers. In fact, 
principals of condition monitoring may be applied more gen 
erally to any system or organization. For example, principals 
of condition monitoring may be used to monitor the vital 
signs of a patient to detect potential health problems. For 
example, principals of condition monitoring may be applied 
to monitor performance and/or economic indicators to detect 
potential problems with a corporation or an economy. 

In condition monitoring, one or more sensors may be used. 
Examples of commonly used sensors include vibration sen 
sors for analyzing a level of vibration and/or the frequency 
spectrum of vibration. Other examples of sensors include 
temperature sensors, pressure sensors, spectrographic oil 
analysis, ultrasound, and image recognition devices. 
A sensor may be a physical sensory device that may be 

mounted on or near a monitored machine component or a 
sensor may more generally refer to a source of data. 

Conventional techniques for condition monitoring acquire 
data from the one or more sensors and analyze the collected 
data to detect when the data is indicative of a potential fault. 
Inferential sensing is an example of an approach that may be 
used to determine when sensor data is indicative of a potential 
fault. 

In inferential sensing, an expected value for a particular 
sensor is estimated, for example, through the use of other 
sensors, and an actual sensor value is observed. The actual 
sensor value may then be compared to the expected sensor 
value, and the larger the difference between the two values, 
the greater the likelihood of a potential fault. 
As calculating the expected value for a particular sensor 

may involve a large number of inputs, a regression network 
may be used to return one output for M number of inputs. A 
simple example of a regression network is a linear regression 
model. In Such cases, the expected value is calculated based 
on a linear relationship of the Minputs. However, in practical 
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2 
use, a linear regression model may be insufficient to properly 
represent the relationship between the M inputs and the esti 
mated expected value. 

SUMMARY 

A method for identifying a potential fault in a system 
includes obtaining a set of training data. A first kernel is 
selected from a library of two or more kernels and the first 
kernel is added to a regression network. A next kernel is 
selected from the library of two or more kernels and the next 
kernel is added to the regression network. The regression 
network is refined. A potential fault is identified in the system 
using the refined regression network. 

Selecting a next kernel from the library of kernels and 
adding the next kernel to the regression network may be 
repeated until a regression error has been reduced to a prede 
termined level. Alternatively, selecting a next kernel from the 
library of kernels and adding the next kernel to the regression 
network may be repeated until a regression error has been 
minimized. 
The first kernel may be selected from among the library of 

kernels by calculating a cost function for each of the kernels 
of the library and selecting the kernel that results in a lowest 
cost function. The next kernel may be selected from among 
the library of kernels by calculating a cost function for each of 
the kernels of the library and selecting the kernel that results 
in a lowest cost function. 

Refining the regression network may include removing the 
first kernel from the regression network and selecting a 
replacement first kernel from the library of kernels and adding 
the replacement first kernel to the regression network, and 
removing the next kernel from the regression network and 
selecting a replacement next kernel from the library of kernels 
and adding the replacement next kernel to the regression 
network. 

Selecting a next kernel from the library of kernels and 
adding the next kernel to the regression network may be 
repeated until a regression error has been reduced to a prede 
termined level. Removing the next kernel from the regression 
network and selecting a replacement next kernel from the 
library of kernels and adding the replacement next kernel to 
the regression network may be repeated for each next kernel 
that has been added to the regression network. 

Refining the regression network may additionally include 
repeating the steps of removing and replacing the first kernel 
from the regression network and removing and replacing the 
next kernel from the regression network until a cost function 
is minimized. Alternatively, refining the regression network 
may additionally include repeating the steps of removing and 
replacing the first kernel from the regression network and 
sequentially removing and replacing each of the next kernels 
from the regression network until a cost function is mini 
mized. 
The library of kernels may include a linear kernel, a Gaus 

sian kernel, a polynomial kernel, quadratic kernel, or a sig 
moid kernel. 

Identifying a potential fault in the system using the refined 
regression network may include obtaining operational sensor 
data, estimating an expected monitored sensor value based on 
the operational sensor data and the refined regression net 
work, obtaining an actual value from the monitored sensor, 
and identifying a potential fault when the actual value of the 
monitored sensor deviates from the expected monitored sen 
sor value by more than a predetermined tolerance level. 
A system for identifying potential faults in a machine 

includes a training data database including set of training 
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data. A kernel database includes two or more kernels. A 
selection unit selects a kernel from a library of two or more 
kernels and adds the kernel to a regression network. A refining 
unit refines the regression network. A set of sensors monitors 
attributes of the machine. An identification unit identifies a 
potential fault in the machine using the refined regression 
network and data obtained from the set of sensors. 

Selecting a next kernel from the library of kernels and 
adding the next kernel to the regression network may be 
repeated until a regression error has been reduced to a prede 
termined level. Alternatively, selecting a next kernel from the 
library of kernels and adding the next kernel to the regression 
network may be repeated until a regression error has been 
minimized. 
The first kernel is selected from among the library of ker 

nels by calculating a cost function for each of the kernels of 
the library and selecting the kernel that results in a lowest cost 
function. The next kernel may be selected from among the 
library of kernels by calculating a cost function for each of the 
kernels of the library and selecting the kernel that results in a 
lowest cost function. 

Refining the regression network may include removing the 
first kernel from the regression network and selecting a 
replacement first kernel from the library of kernels and adding 
the replacement first kernel to the regression network, and 
removing the next kernel from the regression network and 
selecting a replacement next kernel from the library of kernels 
and adding the replacement next kernel to the regression 
network. 

Selecting a next kernel from the library of kernels and 
adding the next kernel to the regression network may be 
repeated until a regression error has been reduced to a prede 
termined level. Removing the next kernel from the regression 
network and selecting a replacement next kernel from the 
library of kernels and adding the replacement next kernel to 
the regression network may be repeated for each next kernel 
that has been added to the regression network. 

Refining the regression network may additionally include 
repeating the steps of removing and replacing the first kernel 
from the regression network and removing and replacing the 
next kernel from the regression network until a cost function 
is minimized. Alternatively, refining the regression network 
may additionally include repeating the steps of removing and 
replacing the first kernel from the regression network and 
sequentially removing and replacing each of the next kernels 
from the regression network until a cost function is mini 
mized. 
The library of kernels may include a linear kernel, a Gaus 

sian kernel, a polynomial kernel, quadratic kernel, or a sig 
moid kernel. 

Identifying a potential fault in the system using the refined 
regression network may include obtaining operational sensor 
data, estimating an expected monitored sensor value based on 
the operational sensor data and the refined regression net 
work, obtaining an actual value from the monitored sensor, 
and identifying a potential fault when the actual value of the 
monitored sensor deviates from the expected monitored sen 
sor value by more than a predetermined tolerance level. 
A computer system includes a processor and a program 

storage device readable by the computer system, embodying 
a program of instructions executable by the processor to 
perform method steps for identifying a potential fault in a 
system. The method includes obtaining a set of training data, 
selecting a first kernel from a library of two or more kernels 
and adding the first kernel to a regression network, selecting 
a next kernel from the library of two or more kernels and 
adding the next kernel to the regression network, refining the 
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4 
regression network, and identifying a potential fault in the 
system using the refined regression network. 

Selecting a next kernel from the library of kernels and 
adding the next kernel to the regression network may be 
repeated until a regression error has been minimized or 
reduced to a predetermined level. 
The first kernel and the next kernel may each be selected 

from among the library of kernels by calculating a cost func 
tion for each of the kernels of the library and selecting the 
kernel that results in a lowest cost function. 

Refining the regression network may include removing the 
first kernel from the regression network and selecting a 
replacement first kernel from the library of kernels and adding 
the replacement first kernel to the regression network, and 
removing the next kernel from the regression network and 
selecting a replacement next kernel from the library of kernels 
and adding the replacement next kernel to the regression 
network. 

BRIEF DESCRIPTION OF THE DRAWINGS 

A more complete appreciation of the present disclosure 
and many of the attendant advantages thereof will be readily 
obtained as the same becomes better understood by reference 
to the following detailed description when considered in con 
nection with the accompanying drawings, wherein: 

FIG. 1 is a flow chart illustrating a boosting process for 
initially building a nonlinear regression network according to 
an exemplary embodiment of the present invention; 

FIG. 2 illustrate is a plot showing a distribution of normal 
ized training data illustrating the observed relationship 
between shell pressure and turbine power according to an 
exemplary embodiment of the present invention; 

FIG. 3 shows the fit of the network including the linear 
kernel and the Gaussian kernel according to an exemplary 
embodiment of the present invention; 

FIG. 4 shows the fit of the network after boosting has been 
completed according to an exemplary embodiment of the 
present invention; 

FIG.5 shows the fit of the network 57 after refining accord 
ing to an exemplary embodiment of the present invention; and 

FIG. 6 shows an example of a computer system which may 
implement a method and system of the present disclosure. 

DETAILED DESCRIPTION OF THE DRAWINGS 

In describing the exemplary embodiments of the present 
disclosure illustrated in the drawings, specific terminology is 
employed for sake of clarity. However, the present disclosure 
is not intended to be limited to the specific terminology so 
selected, and it is to be understood that each specific element 
includes all technical equivalents which operate in a similar 
a. 

Exemplary embodiments of the present invention provide 
approaches to condition monitoring where an expected sen 
Sor value is estimated based on nonlinear models. An 
observed sensor value may then be compared to the estimated 
sensor value to detect a potential fault in a machine or other 
system under monitoring. 
The relationship between observed sensor values and 

expected sensor values may be established by a set of training 
data. The training data represents sensor values taken during 
the proper function of the system under monitoring. It is thus 
assumed that during the training period, the system under 
monitoring is functioning normally, and the observed sensor 
values are consistent with normal fault-free operation. 
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The training data may be obtained experimentally, for 
example by running the system under monitoring and reading 
sensor data. Alternatively or additionally, training data may 
be imported from external sources. Imported training data 
may have been obtained from a similar system to the system 
under monitoring. Accordingly, similar systems may share 
training data. 

After the training data is obtained, the data may be ana 
lyzed to determine the relationship between the data of the 
various sensors. For example, it may be determined how the 
values of a set of sensors change with respect to a change in a 
particular sensor. This relationship may be instantiated as a 
plot of data points mapping the relationship of the various 
sensors of the training data. The training data plot may then be 
expressed as a mathematical relationship so that Subsequently 
observed sensor values may be used to generate estimated 
expected sensor values. The process offitting a mathematical 
relationship to the shape of the training data plot is known as 
regression. Because we are concerned with estimating an 
expected value for a particular sensor based on an observed 
set of one or more observed sensor values, we may use a 
regression network to establish the mathematical relationship 
for the data of each sensor. The regression network may use 
observed sensor data as an M number of inputs and may 
return an estimated expected sensor value. 

Exemplary embodiments of the present invention are con 
cerned with the regression of the training data to determine 
the generalized relationship of each sensor value with respect 
to one or more inputs. Finding Such a generalized relationship 
may later be used to estimate an expected sensor value. 
One simple approach to performing this regression is to 

utilize a linear model. In such an approach, linear regression 
is performed to fit the data to a line. The correlations among 
the sensors may be nonlinear and thus the simple linear 
regression may not be sufficient to accurately establish the 
generalized relationship that may yield accurate estimation of 
expected sensor values. 

Accordingly, nonlinear models may be used to more 
closely correlate nonlinearity. Examples of suitable nonlinear 
models include kernel regression, multivariate State estima 
tion techniques (MSET), and Support vector regression 
(SVR). In these techniques, the network of generalized rela 
tionships f(X) is expressed as a linear combination of a single 
kernel function: 

where x is the input vector and y is the output. K() is the 
single kernel function and my be, for example, a Gaussian 
kernel, a polynomial kernel, etc. 0, represents the kernel 
parameter. 
When performing kernel regression as a linear combina 

tion of a single kernel, it may be difficult to effectively fit the 
data at various points along the data plot. Accordingly, one 
portion of the plot may be effectively fit, while another por 
tion of the plot may be ineffectively fit. Such a regression may 
lead to poor approximation of expected values under certain 
conditions. Moreover, it may be difficult to obtain the various 
kernel parameters. Without proper parameter selection, a 
regression network may work well for one set of data but may 
work poorly for another set of data. 
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6 
Accordingly, exemplary embodiments of the present 

invention provide an incremental learning strategy for build 
ing a nonlinear regression network from one or more kernels 
of a kernel library. 
The network may initially be built by boosting. FIG. 1 is a 

flow chart illustrating a boosting process for initially building 
a nonlinear regression network according to an exemplary 
embodiment of the present invention. First, training data may 
be obtained (Step S10). The training data may be obtained, for 
example, by operating the machinery under monitoring when 
it is known that no faults exist. Alternatively, the training data 
may be obtained from a training data database 20, for 
example, over a computer network. Then, a first kernel is 
selected from a library of kernels 21 (Step S11) and the 
selected kernel is added to the network 22 (Step S12). The 
first kernel may be selected by determining which of the 
plurality of kernels of the library best fits the training data. 
Then, the next kernel may be selected from the library 21 
(Step S13). The next kernel may be the same kernel as the first 
kernel or the next kernel may be different than the first kernel. 
The next kernel may then be added to the network 22 (Step 
S14). The next kernel may be selected according to which 
kernel of the library of kernels 22 best fits the residues of the 
network after the preceding kernel(s) have been added. The 
residues are those aspects of the network that deviate from the 
training data. Then, the process of selecting an additional 
kernel (Step S13) based on the residues and adding the 
selected kernel to the network 22 (Step S14) may be repeated 
until the network sufficiently represents the generalized rela 
tionships of the training data (Yes, Step S15). 

After the network has been boosted (Steps S10-S15), the 
network may be refined, for example, using a leave-one-out 
method. According to such an approach, the established net 
work is refined by removing one of the kernels from the 
network, and a replacement kernel is selected from the library 
of kernels and added to the network. The replacement kernel 
is selected according to which kernel of the library of kernels 
best fits the residues of the network. If the removed kernel is 
the best fit then the removed kernel may be added back to the 
network. One by one, each kernel in the network may be 
replaced where a better kernel is available. After each kernel 
has been checked for possible replacement, the process may 
be repeated until there is a satisfactory convergence between 
the training data and the network. 
As indicated above, a library of candidate kernels may be 

defined and one or more distinct candidate kernels may be 
selected from the library of kernels and added to the network. 
Each of the candidate kernels may have one or more param 
eters 0 that may be optimized to provide the most effective use 
of the kernel when applied to the network. For example, if the 
kernel is a Gaussian kernel, then the parameter 0 may repre 
sent the width of the Gaussian kernel. Accordingly, a kernel 
may be represented as K(x,0) wherex is the input. The regres 
sion network of the selected kernels may be represented as 
g(x). 
The library may contain any type of known kernel. 

Examples of known kernels that may be used as candidate 
kernels in the library include: 

Linear Kernel: 

Kn(x, fab))-ax+b, where 0(ab, (2) 
Gaussian Kernel: 

Other possible kernels include a quadratic kernel, sigmoid 
kernel, polynomial kernel, etc. Kernels may be included 



US 7,844,558 B2 
7 

within the library of kernels as dictated by the nature of the 
condition monitoring intended to be performed. 

In performing the boosting operation, the regression net 
work g(x) may be trained from a set of training data expressed 
as {xy}, , where N is the number of training data points. 
The regression network may be defined as a linear combina 
tion of M number of kernels: 

i (4) 

g(x) =XK (x, 0,...) 
n=1 

The g(x) of equation (4) may differ from the f(X) of equa 
tion (1) because the kernels of g(x) may belong to different 
types. For example, one kernel may be a linear kernel and 
another kernel may be a Gaussian kernel. Accordingly, g(x) 
may have the flexibility needed to fit training data. 
The residue of the network at the ith training data point is 

defined as: 

(5) 

In boosting the network, a suitable boosting strategy may 
be used. For example, boosting may be performed as dis 
cussed in J. Friedman (1999), “Greedy Function Approxima 
tion: A Gradient Boosting Machine. Technical Report, Dept. 
of Statistics, Stanford University, which is incorporated by 
reference herein. The boosting strategy may be employed to 
incrementally build g(x) by adding kernels from the kernel 
library. In determining at each step which kernel of the kernel 
library is to be added to g(x), each kernel of the library may be 
temporarily added to the network and the quality of the net 
work assessed. The kernel that has the greatestincrease on the 
quality of the network may be selected. The quality of the 
network may be assessed by analyzing a cost function, for 
example, the cost function of equation 6. 

Accordingly, the kernel K(...) that minimizes the following 
cost function may be selected from the kernel library to be 
added to the network g(x): 

where r is the residue produced by the network at its current 
State. 

In determining when boosting may be stopped, it may be 
determined how well the network fits the training data. The 
quality of the network may be ascertained by calculating an 
error value representing how far the network deviates from 
the test data. Any known measure of regression error may be 
used. For example, mean squared error (MSE) may be used to 
represent the fit of the network to the training data: 

(7) 

Accordingly, boosting may be stopped when the MSE is 
sufficiently small, for example, when the MSE falls below a 
predetermined value. Thus the number of kernels i that are 
applied to the network may be determined by the boosting 
operation. 
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8 
As discussed above, in refining the network, a leave-one 

out approach may be used to increase network fit. In this 
approach, one-by-one a kernel may be removed from the 
network. We may call the removed kernel the m” kernel and 
thus the network without the m” kernel may be referred to as 
g(x). Them"kernel may then be replaced with a new kernel 
K selected from the kernel library. The new kernel may be 
selected according to minimizing the following cost function: 

wherey-g(x) is the residue of as g(x) at thei" data point. 
Replacement may be performed for each of the M kernels. 
The leave-one-out process may then be repeated for all ker 
nels until satisfactory convergence is achieved. 

FIGS. 2-5 illustrate an approach to network regression of 
training data according to an exemplary embodiment of the 
present invention. In this example, condition monitoring is 
performed on a gas turbine. Sensor data is provided by a 
pressure sensor configured to observe shell pressure. While 
multiple sensors may be used, here a single sensor is used for 
simplicity. The sensor data is used to predict turbine power. 
Thus condition monitoring would include estimating 
expected turbine power based on the observed shell pressure 
and then the estimated expected turbine power would be 
compared to the actual sensed turbine power to determine 
whether the difference between these two values is indicative 
of a potential fault. 
The training data includes multiple points, with each point 

indicating an observed relationship between a shell pressure 
and a turbine power. In this example, the kernel library 
includes two kernels, a linear kernel and a Gaussian kernel. 

FIG. 2 is a plot showing a distribution of normalized train 
ing data illustrating the observed relationship between shell 
pressure and turbine power. Upon performing a first round of 
boosting, for example, as described above, the linear kernel 
may be selected and added to the network. As can be seen 
form FIG. 2, the linear kernel is fitted to the training data 25 
according to the present example. The training data 25 
includes a series of data points, where each point indicates a 
correlation between a Vale of a first sensor (X-axis) and a 
corresponding value of a second sensor (y-axis). Here, the 
sensors sense shell pressure and turbine power. Accordingly, 
the training data 25 is indicative of a relationship between the 
first sensor and the second sensor. 

The network 27 includes only the linear kernel and thus 
appears as a straight line roughly fitting the training data 25. 
In the next round of boosting, the Gaussian kernel is selected 
and added to the network that already includes the linear 
kernel. 

FIG. 3 shows the fit of the network including the linear 
kernel and the Gaussian kernel according to the present 
example. It is clear from FIG. 3 that there is a closer fit 
between the network 37 and he training data as compared 
with the network 27 of FIG. 2. 

The boosting process may continue as additional kernels 
are added. The same type of kernel may be added more than 
once, either with the same parameters or different parameters 
and/or different types of kernels may be added. 

FIG. 4 shows the fit of the network after boosting has been 
completed according to the present example. It can be seen 
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from FIG. 4 that there may still be misfit areas 40 and 41 
between the network 47 and the training data 25 after boost 
ing has been completed. 

Accordingly, refining may be performed, for example, as 
described above. FIG. 5 shows the fit of the network 57 after 
refining according to the present example. 

FIG. 6 shows an example of a computer system which may 
implement a method and system of the present disclosure. 
The system and method of the present disclosure may be 
implemented in the form of a software application running on 
a computer system, for example, a mainframe, personal com 
puter (PC), handheld computer, server, etc. The software 
application may be stored on a recording media locally acces 
sible by the computer system and accessible via a hard wired 
or wireless connection to a network, for example, a local area 
network, or the Internet. 
The computer system referred to generally as system 1000 

may include, for example, a central processing unit (CPU) 
1001, random access memory (RAM) 1004, a printer inter 
face 1010, a display unit 1011, a local area network (LAN) 
data transmission controller 1005, a LAN interface 1006, a 
network controller 1003, an internal bus 1002, and one or 
more input devices 1009, for example, a keyboard, mouse etc. 
As shown, the system 1000 may be connected to a data 
storage device, for example, a hard disk, 1008 via a link 1007. 
The above specific exemplary embodiments are illustra 

tive, and many variations can be introduced on these embodi 
ments without departing from the spirit of the disclosure or 
from the scope of the appended claims. For example, ele 
ments and/or features of different exemplary embodiments 
may be combined with each other and/or substituted for each 
other within the scope of this disclosure and appended claims. 
What is claimed is: 
1. A method for identifying a potential fault in a system, 

comprising: 
obtaining a set of training data; 
selecting a first kernel from a library of two or more kernels 
and adding the first kernel to a regression network; 

selecting a next kernel from the library of two or more 
kernels and adding the next kernel to the regression 
network; 

refining the regression network using a leave-one-out 
method in which the regression network is iteratively 
improved by removing a single kernel from the regres 
sion network and replacing the removed kernel with a 
replacement kernel from the library of kernels and then 
repeating the removing and replacing steps for the ker 
nels of the regression network until a desired level of 
convergence between the training data and the regres 
sion network is achieved; and 

identifying a potential fault in the system using the refined 
regression network. 

2. The method of claim 1, wherein the step of selecting a 
next kernel from the library of kernels and adding the next 
kernel to the regression network is repeated until a regression 
error has been reduced to a predetermined level. 

3. The method of claim 1, wherein the step of selecting a 
next kernel from the library of kernels and adding the next 
kernel to the regression network is repeated until a regression 
error has been minimized. 

4. The method of claim 1, wherein the first kernel is 
selected from among the library of kernels by calculating a 
cost function for each of the kernels of the library and select 
ing the kernel that results in a lowest cost function. 

5. The method of claim 1, wherein the next kernel is 
selected from among the library of kernels by calculating a 
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cost function for each of the kernels of the library and select 
ing the kernel that results in a lowest cost function. 

6. The method of claim 1, wherein refining the regression 
network additionally comprising repeating the steps of 
removing and replacing a kernel from the regression network 
until a cost function is minimized. 

7. The method of claim 1, wherein the library of kernels 
includes a linear kernel, a Gaussian kernel, a polynomial 
kernel, quadratic kernel, or a sigmoid kernel. 

8. The method of claim 1, wherein the step of identifying a 
potential fault in the system using the refined regression net 
work comprises: 

obtaining operational sensor data; 
estimating an expected monitored sensor value based on 

the operational sensor data and the refined regression 
network; 

obtaining an actual value from the monitored sensor; and 
identifying a potential fault when the actual value of the 

monitored sensor deviates from the expected monitored 
sensor value by more than a predetermined tolerance 
level. 

9. A system for identifying potential faults in a machine, 
comprising: 

a training data database including set of training data; 
a kernel database including two or more kernels; 
a selection unit for selecting a kernel from a library of two 

or more kernels and adding the kernel to a regression 
network; 

a refining unit for refining the regression network using a 
leave-one-out method in which the regression network is 
iteratively improved by removing a single kernel from 
the regression network and replacing the removed kernel 
with a replacement kernel from the library of kernels and 
then repeating the removing and replacing steps for the 
kernels of the regression network until a desired level of 
convergence between the training data and the regres 
sion network is achieved; 

a set of sensors for monitoring attributes of the machine; 
and 

an identification unit for identifying a potential fault in the 
machine using the refined regression network and data 
obtained from the set of sensors. 

10. The system of claim 9, wherein the selection unit 
repeats the selecting of a kernel and adding the selected kernel 
to the regression network until a regression error has been 
minimized or reduced to a predetermined level. 

11. The system of claim 9, wherein the selection unit 
selects a kernel from among the library of kernels by calcu 
lating a cost function for each of the kernels of the library and 
selecting the kernel that results in a lowest cost function. 

12. The system of claim 9, wherein the refining unit repeats 
the refining process until a regression error has been reduced 
to a predetermined level or a cost function is minimized. 

13. A computer system comprising: 
a processor; and 
a program Storage device readable by the computer system, 

embodying a program of instructions executable by the 
processor to perform method steps for identifying a 
potential fault in a system, the method comprising: 

obtaining a set of training data; 
selecting a first kernel from a library of two or more kernels 

and adding the first kernel to a regression network; 
selecting a next kernel from the library of two or more 

kernels and adding the next kernel to the regression 
network; 

refining the regression network using a leave-one-out 
method in which the regression network is iteratively 
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improved by removing a single kernel from the regres 
sion network and replacing the removed kernel with a 
replacement kernel from the library of kernels and then 
repeating the removing and replacing steps for the ker 
nels of the regression network until a desired level of 5 
convergence between the training data and the regres 
sion network is achieved; and 

identifying a potential fault in the system using the refined 
regression network. 

14. The computer system of claim 13, wherein the step of 10 
selecting a next kernel from the library of kernels and adding 

12 
the next kernel to the regression network is repeated until a 
regression error has been minimized or reduced to a prede 
termined level. 

15. The computer system of claim 13, wherein the first 
kernel and the next kernel are each selected from among the 
library of kernels by calculating a cost function for each of the 
kernels of the library and selecting the kernel that results in a 
lowest cost function. 


