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Figure 1 
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Figure 3 
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Figure S 
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Figure 7 
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Figure 14 
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PROSTHETIC DEVICES AND METHODS AND 
SYSTEMIS RELATED THERETO 

FEDERAL SUPPORT 

This invention was made with U.S. Government support 
under DARPA Grant No. MDA972-00-1-0029, National 
Institutes of Health Grant No. R01 EYO 13337, National Sci 
ence Foundation Grant No. EEC-9402726, and Office of 
Naval Research Grant No. NO0014-01-1-0035. The U.S. 
Government has certain rights in this invention. 

BACKGROUND 

1. Field 
The present disclosure relates to systems, methods, and 

devices for controlling neural prosthetic devices and electro 
physiological recording equipment, and for using the same in 
clinical operation. 

2. Related Art 
All publications herein are incorporated by reference to the 

same extent as if each individual publication or patent appli 
cation was specifically and individually indicated to be incor 
porated by reference. The following description includes 
information that may be useful in understanding the present 
invention. It is not an admission that any of the information 
provided herein is prior art or relevant to the presently 
claimed invention, or that any publication specifically or 
implicitly referenced is prior art. 
The ability to interact directly with the nervous system to 

control a computer cursor or robot arm has been demon 
strated by several researchers. See, e.g., J. Wessberg et al., 
“Real-time prediction of hand trajectory by ensembles of 
cortical neurons in primates.” Nature, 408(6810): 361-365 
(2000); J. M. Carmena et al., “Learning to control a brain 
machine interface for reaching and -grasping by primates.” 
PLOS, 1:193-208 (2003); D. M. Taylor et al., “Direct cortical 
control of 3D neuroprosthetic devices. Science, 296:1829 
1832 (2002); P. R. Kennedy and R. A. Bakay, “Restoration of 
neural output from a paralyzed patient by a direct brain con 
nection.” Neuroreport, 9(8): 1707-11 (1998); and R. A. 
Andersen et al., “Cognitive Neural Prosthetics. Trends in 
Cog. Sci., 8(11):486-493 (November 2004). 

These advances in neural prosthetic systems may provide 
patients with lost motor function due to spinal cord injury, 
stroke, neurodegenerative diseases, and the like with the abil 
ity to regain access to their Surroundings. Despite these break 
throughs, however, many challenges remain. See, e.g., J. P. 
Donoghue, “Connecting cortex to machines: recent advances 
in brain interfaces.” Nature Neurosci, 5:1085-1088A (2002). 
A fundamental problem, for instance, lies in creating inter 
face devices capable of Sustaining interaction with neuronal 
populations for long periods of time in a practical and reliable 
manner. Long-term neural interfacing demands that the over 
all device be implantable, safe, and minimally obtrusive. Fur 
ther, the device should require minimal maintenance. 

Information transfer and processing in the brain occurs 
through the transmission of electrical pulses, called action 
potentials, between neurons. Information about the various 
areas or regions of the brain may be gained by studying 
patterns of action potentials associated with individual neu 
rons while a subject (e.g., a rat, fly, monkey, or human) is 
presented with a stimulus or engages in a behavioral task. 
While noninvasive methods such as fMRI or EEG recordings 
can provide gross estimates of activity levels in a particular 
region of the brain, action potentials of individual neurons 
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2 
must be examined to understand how information is pro 
cessed within local neural networks. 

Action potentials may be recorded extracellularly by 
inserting electrodes (typically sharpened metal wires insu 
lated along their length and exposed at the tip) into the neural 
tissue. Because action potentials emitted by a neuron are 
highly stereotyped in shape and information is encoded in 
their timing, a Successful extracellular recording is one in 
which the firing of action potentials of individual neurons can 
reliably be detected. These neurons are then considered “iso 
lated in the recording. Isolated neural recordings may be 
essential to the proper function of a neural prosthetic. Such 
recordings may also form the basis for fundamental Scientific 
investigations into the function of the brain and the means by 
which information is encoded in neural networks. 

There are two dominant modes of recording: acute and 
chronic. In acute recording, electrodes are inserted and 
removed from the neural tissue during each recording ses 
Sion. In chronic recording, electrodes are Surgically 
implanted and remain in place for weeks, months, or possibly 
years at a time. As used herein, the term semi-chronic record 
ing is used to refer to a recording made by electrodes 
implanted in neural tissue for a period of time longer than a 
single recording session but somewhat shorter than the dura 
tion of implantation used with chronic recordings. For 
example, the implants used to make a semi-chronic recording 
may be implanted several days or weeks. 

For acute recordings, a portion of the skull over the brain 
region of interest is removed and replaced with a sealable 
chamber. During a recording session, a device termed a 
microdrive is affixed to the opened chamber and used to 
advance the electrodes into the neural tissue, usually in a 
motorized fashion. The electrodes are advanced along a 
straight line, with the axis of penetration chosen by an experi 
menter or operator. In conventional practice, the electrode 
motion is controlled manually by the operator until one or 
more neurons is/are sufficiently isolated. This process is com 
monly guided by experience, intuition, and feedback from 
visual and auditory representations of the Voltage signal 
detected by the electrodes. Such acute recordings are typi 
cally used for basic scientific research, but they may also be 
used to implement a neural prosthetic in a semi-chronic fash 
ion. 

Typically, the goal is to position each electrode of the 
microdrive close enough to a single and unique neuron for a 
high quality recording of the electrical activity of the neuron, 
yet far enough away to avoid damaging the neuron. In this 
manner, the number of neurons recorded may correspond to 
the number of electrodes. Normally, the electrical recording 
site must be within a 40 micron to 60 micron radius and 
preferably about a 50 micron radius of the unique neurons 
Soma to obtain an extracellular signal that can be successfully 
differentiated from background noise. See, e.g., C. Gray et al., 
“Tetrodes markedly improve the reliability and yield of mul 
tiple single-unit isolation from multi-unit recordings in cat 
striate cortex,” J. Neurosci. Methods, 63:43-54 (1995). With 
out such successful positioning, an electrode immersed in 
neural tissue may not successfully record any neural signals, 
thereby rendering the electrode useless. During the course of 
a typical recording session, such as may occur during a basic 
Scientific experiment or the simulation of a neural prosthetic, 
each of the electrodes must be repositioned periodically to 
maintain a desired level of signal quality. Repositioning may 
be necessitated by tissue migration and/or decompression 
that occurs naturally. The process of isolating and maintain 
ing neural signals consumes a significant amount of the 
operator's time and focus. The considerable time and effort 
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needed to affect the neural isolations considerably reduces the 
efficiency with which electrophysiological recording experi 
ments can be performed. 

Simultaneous recordings made with many electrodes are 
becoming an increasingly important technique for under 
standing how local networks of neurons process information, 
as well as how brain areas communicate with each other. 
Commercial microdrives (i.e., motorized electrodes that 
receive movement commands provided manually by a human 
operator) with sixteen or more electrodes are currently avail 
able. See, e.g., S. Baker et al., “Multiple single unit recording 
in the cortex of monkeys using independently moveable 
microelectrodes,” J. Neurosci. Methods, 94(1):5-17 (1999). 
As the number of electrodes increases, the task of positioning 
each electrode to maintain a high quality neural signal 
becomes intractable for a single operator to manage. Data 
collection in experiments that use multiple electrodes is lim 
ited by how many neural signal channels the operator can 
effectively monitor. 

In chronic recordings (which are the most conventional 
type of recordings used as the front end of a neural prosthe 
sis), stationary multi-electrode assemblies, which are typi 
cally bundles or arrays of thin wires or silicon probes, are 
Surgically implanted in the region of interest. See, e.g., I. 
Porada et al., “Rabbit and monkey visual cortex: more than a 
year of recording with up to 64 microelectrodes. J. Neurosci. 
Methods, 95:13-28 (2000); J. Williams et al., “Long-term 
neural recording characteristics of wire microelectrode arrays 
implanted in cerebral cortex. Brain Res. Protocols, 4:303 
13(1999); and P. Rousche and R. Normann, “Chronic record 
ing capability of the Utah intracortical electrode array in cat 
sensory cortex. J. Neurosci. Methods, 82:1-15 (1998). 
The signal yield of the implanted array (i.e. the percentage 

of the electrodes of the array that record active neurons) 
depends upon the luck of the initial Surgical placement. As 
mentioned above, it is believed that the electrically active tip 
of a recording electrode must lie within approximately 40-60 
microns of the neuron's Soma to provide a useful signal. The 
neurons close enough to a particular electrode may not 
encode the proper task for the prosthetic system, rendering 
that electrode practically useless. Unfortunately, in some 
cases, one or more of the electrodes may be placed in inactive 
tissue or the wrong brain region. Even if properly placed, the 
active recording site of the electrode may not sit sufficiently 
close to an active neuron. Moreover, even if the electrode is 
initially well placed, tissue migrations (e.g., caused by blood 
pressure variations, breathing, and mechanical shocks), 
inflammation, neuron expiration, reactive gliosis, and other 
local tissue reactions can cause Subsequent loss of signal; 
thereby reducing or disabling the function of the recording 
array over time. 

To date, all practical neuroprosthetic systems have used 
implanted multi-electrode arrays whose electrodes have a 
fixed geometry. These fixed geometries suffer from the prob 
lems outlined above. 
A chronic implant in which the electrodes can be continu 

ally repositioned after implantation may overcome these 
limitations and greatly extend the signal yield and lifetime of 
chronic array implants. Longevity of chronically implanted 
electrode arrays is necessary because repeated and frequent 
Surgical intervention to implant new electrodes is not desir 
able, and may place the Subject (e.g., a neuroprosthetic 
patient) at greater risk for Surgical complications. 

Alternatively, one could use a miniature chronic micro 
drive of the type often used in basic neuroscience research. 
These simple microdrives are typically implanted in non 
human primates, rats, mice, and rabbits to enable chronic 
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4 
recordings. In Such devices, each of the electrodes may be 
repositioned manually by either turning lead screws or tem 
porarily connecting a conventional motorized microdrive (of 
the type typically used in acute recordings) to the array in 
order to adjust the position of each of the electrodes. See, e.g., 
P. D. Wall, J. Freeman, D. Major, “Dorsal horn cells in spinal 
and in freely moving rats.” Exp Neural, 19: 519-529 (1967); 
J. L. Kubie, "A Driveable bundle of microwires for collecting 
single-unit data from freely-moving rats.” Physiology & 
Behavior. 32: 115-118 (1984); B. P. Vos et al., “Miniature 
carrier with six independently moveable electrodes for 
recording of multiple single-units in the cerebellar cortex of 
awake rats. J Neurosci Methods, 94: 19-26 (1999); S. Ven 
katachalam et al., “Ultra-miniature headstage with 6-channel 
drive and vacuum-assisted micro-wire implantation for 
chronic recording from the neocortex. J Neurosci Methods, 
90: 37-46 (1999); J. D. Kralik et al., “Techniques for long 
term multisite neuronal ensemble recordings in behaving ani 
mals.” J. Neurosci. Meth., 25:121-50 (2001); A. S. Tolias et 
al., “Coding visual information at the level of populations of 
neurons.” Program No. 557.5., 2002 Abstract Viewer/Itiner 
ary Planner, Washington, D.C.: Society for Neuroscience 
(2002); J. G. Keating and G. L. Gerstein, “A chronic multi 
electrode microdrive for small animals. J Neurosci Meth., 
117: 201-206 (2002); K. L. Hoffman and B. L. McNaughton, 
“Coordinated reactivation of distributed memory traces in 
primate neocortex,” Science, 297: 2070-2073 (2002); and R. 
C. deCharms, et al., “A multielectrode implant device for the 
cerebral cortex. J Neurosci Meth., 93: 27-35 (1999). 

Even if motorized, chronic microdrives typically face the 
challenge of requiring constant human Supervision to reposi 
tion the electrodes to achieve a desired level of signal quality. 
This process can become tedious and even impractical (par 
ticularly if the array is used as part of neural prosthetic) as the 
number of electrodes increases. See S. N. Baker et al., “Mul 
tiple single unit recording in the cortex of monkeys using 
independently moveable microelectrodes. J. Neurosci. 
Meth., 94:5-17 (1999); and M. S. Fee and A. Leonardo “Min 
iature motorized microdrive and commutator system for 
chronic neural recording in Small animals. J Neurosci Meth 
ods, 112: 83-94 (2001). 
The inventors have earlier described initial steps towards a 

chronic multi-electrode implant in which the electrodes can 
be continually and autonomously repositioned after implan 
tation. See E. Branchaud et al., “A Miniature Robot for 
Autonomous Single Neuron Recordings.” IEEE Conf. On 
Robotics and Automation, Barcelona, Spain (April 2005); 
Cham et al., “Semi-chronic motorized microdrive and control 
algorithm for autonomously isolating and maintaining opti 
mal extracellular action potentials. J. Neurophysiol., 93(1): 
570-579 (January 2005); and C. Pang et al., “A New Multi 
Site Probe Array with Monolithically Integrated Parylene 
Flexible Cable for a Neural Prosthesis.” Proc. 27th Conf. 
IEEE-EMBS (2005). To be useful in a clinical application, 
Such as using neural recordings to generate control signals for 
an external device (e.g., neural prosthetics), the position of 
the electrodes of the chronic multi-electrode implant must be 
autonomously controlled to maintain a desirable level of sig 
nal quality. Additionally, an autonomous control algorithm 
that could position electrodes in a chronic multi-electrode 
implant could also be useful for the control of electrode 
positioning during an acute recording experiment of the type 
used in many neuroscience research laboratories. 

In order for the chronic multi-electrode implant to operate 
autonomously and without the aid of an operator, the neuron 
isolation and signal quality maintenance functions performed 
by the operator must be automated. When isolating a neuron, 
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the operator performs a number of difficult tasks, including 
event detection (i.e., detecting the presence and onset of an 
action potential), unsupervised classification of neural sig 
nals (i.e., classifying neural events without a priori knowl 
edge of their number and structure), and accounting for sto 
chastic neuron activity and complex mechanical interactions 
between the electrode and the neural tissue. Following is a 
brief discussion of several of the major challenges faced in 
automating the isolation process. 

Unsupervised detection, classification, and data associa 
tion can present a challenge. Action potentials of varying 
amplitudes and shapes must be autonomously detected and 
grouped by the neuron from which they originated. In con 
ventional practices, this process is normally performed by the 
operator who manually sets thresholds and identifies distin 
guishing signal features. The data association problem is also 
faced when attempting to track the signals arising from dis 
tinct neurons while moving the electrode. 

Variable firing rates can also present a challenge. A general 
procedure for autonomously isolating a neuron involves Sam 
pling the amplitude of action potentials at several locations 
and searching for the local maximum of the signal quality. 
Depending on the behavioral state of the recording Subject, 
the neuron that is being isolated may stop firing action poten 
tials for one or more sampling periods, leading to false esti 
mates of the signal amplitude at those locations. 

During the initial insertion of the electrodes, neural tissue 
is compressed, and Subsequent decompression causes the 
neurons to drift relative to the electrode. Optimal recording 
positions are moving targets. It is quite common for action 
potentials that have been observed for some time to disap 
pear; presumably, the neuron has either drifted out of range or 
stopped firing. Also, after a neuron has been isolated, the 
electrode must be readjusted periodically to maintain the 
isolation. Often, neurons drift away from the line of travel of 
the electrode and become impossible to isolate or reisolate. 

Local electrode-tissue interactions can be a challenge. In 
addition to the gross tissue relaxation occurring over several 
hours of an experiment, local mechanical coupling between 
the electrode tip and the neural tissue can cause hysteresis in 
the recorded neural signal. It is believed that there may be 
stiction between the electrode tip and the tissue. Additionally, 
because of tissue compression from the electrode insertion, 
when the electrode moves backward, the tissue may relax 
with it, resulting in a smaller relative movement between the 
electrode tip and the tissue than expected. This hysteresis is 
highly variable in magnitude, limits control action, and adds 
uncertainty to the electrode placement. 

Finally, neuron damage can be a challenge. The electrode 
can potentially puncture and damage neurons when the elec 
trode moves to achieve isolation or the neural tissue relaxes 
towards a stationary electrode. 

Creating mechanisms and devices for Small bio-robotic 
devices, such as chronic multi-electrode implants and micro 
drives, poses design and manufacturing challenges that strain 
the capabilities of traditional manufacturing processes even at 
the mesoscale level. Traditional manufacturing techniques 
rely on assemblies of pre-manufactured parts and fasteners 
that can compromise the reliability of the device. Fasteners 
and connectors not only take up a large percentage of the 
design Volume at Small scales, but can often work themselves 
loose or give way to leaks in the wet conditions of living 
tissue. Devices constructed using conventional fastening 
techniques may also lack the durability required to withstand 
frequent sterilization required for their use. 
A chronic or semi-chronic microdrive must have an overall 

size and weight rendering it suitable for implantation in Sub 
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6 
jects without significantly affecting their awake behavior. 
Microdrives include actuators that position the electrodes 
coupled to the microdrive. Generally, each electrode is 
attached to a separate actuator that positions only the elec 
trode attached thereto. Many commercially available prior art 
microdrives include relatively large actuators designed to 
position the electrodes during acute recording. Generally 
speaking, commercially available microdrives (e.g., those 
available from Thomas Recording GmbH, Germany; FHC 
Inc., USA; and Narishige Inc., Japan) are too large to be 
practical for chronic use. Other examples of microdrives that 
are too large for chronic or semi-chronic recording applica 
tions include commercially available microdrives (e.g., the 
LSS-8000 system produced by GMP, Lausanne, Switzerland) 
that use very large piezoelectric actuators to position the 
electrode(s). The size of these piezoelectric actuators limit the 
use of the Such microdrives to acute recording experiments. 

Previous work has described mesoscale microdrives 
designed for autonomous semi-chronic operation, while 
more recent work aims to apply MEMS technology to create 
arrays of multi-site electrodes motorized by hydrolysis-based 
actuators. See, e.g., J. G. Cham et al., “A Semi-Chronic 
Motorized Microdrive and Control Algorithm for Autono 
mously Isolating and Maintaining Optimal Extracellular 
Action Potentials. J. Neurophysiol., 93:570-79 (January 
2005); and R. A. Andersen et al., “Cognitive Neural Prosthet 
ics.” Trends in Cog. Sci, 8(11):486-493 (November 2004). 

Miniature actuators often have very small force output, and 
require special attention to minimize losses in power from, 
for example, friction due to misalignment. High precision 
movement is necessary to obtain optimal signal quality, given 
that action potentials from a typical neuron may be lost by 
movements as Small as a few microns. Gears and lead screws, 
which are commonly used, often introduce a significant 
amount of imprecision in the microdrive due to gearing back 
lash. A relatively long stroke is also needed, because a range 
of motion of several millimeters, if not centimeters, is often 
required depending on the depth of the target brain structure, 
and the accuracy of the implantation procedure. The micro 
drive must also be able to keep the electrodes stable while 
subjected to significant stresses and vibrations from the freely 
moving Subject. Further, the size requirement may limit the 
number of actuators that can be packaged in the microdrive, 
and the compactness and proximity of all the electrical path 
ways may increase noise and interference in the neural signal 
recorded. 

Non-traditional manufacturing techniques, such as layered 
manufacturing, in which parts and mechanisms are "grown' 
in layers, allow intricate structures to be made with nearly 
arbitrary geometry and few seams. See, e.g., J. G. Cham et al., 
“Layered Manufacturing with Embedded Components: Pro 
cess Planning Issues. ASME Proc., DETC 99, Las Vegas, 
Nev., (September, 1999); and J. G. Cham et al., “Fast and 
Robust: Hexapedal Robots via Shape Deposition Manufac 
turing.” Intl. J. Robotics Res., 21 (10-11):869-882 (2002). 
Many of these processes, however, are limited by the bio 
incompatibility of the materials available through these pro 
CCSSCS. 

Therefore a need in the art exists for neural prosthetic 
devices, and in particular, microdrives, Suitable for chronic, 
implantable use. There is a further need in the art for compu 
tational technology that can isolate a neural signal originating 
from a single neuron within a recording containing one or 
more neural signals. A further need exists for computational 
technology that can maintain a Suitable signal quality of the 
neural signal isolated in the recordings. A need also exists for 
computational technologies that may be used in connection 



US 8,095,210 B2 
7 

with neural interface microdrives capable of positioning elec 
trodes to record signals from active neurons. Similarly, there 
is a need for computational technologies to actively and 
autonomously position electrodes during acute recordings. 
Such technologies may increase the efficiency and/or quality 
of Scientific research and experiments. A need also exists for 
miniature semi-chronic micro-drives capable of tracking the 
plasticity (or adaptability) of individual neurons over days 
and weeks. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The above-mentioned features and aspects of the present 
disclosure will become more apparent with reference to the 
following description taken in conjunction with the accom 
panying drawings wherein like reference numerals denote 
like elements. It is intended that the embodiments and figures 
disclosed herein are to be considered illustrative rather than 
restrictive. 

FIG. 1 shows a block diagram illustrating an exemplary 
autonomous system, in accordance with an embodiment of 
the present invention. 

FIG. 2 shows a system diagram illustrating an alternate 
embodiment of the system of FIG. 1. 

FIG. 3 shows an illustration of a rat pyramidal neuron in 
accordance with an embodiment of the present invention and 
based on morphology described in G. Buzsaki and D. Turner, 
“Dendritic properties of hippocampal CAI pyramidal neu 
rons in the rat: Intracellular staining in vivo and in vitro.J. 
Comp. Neurol. 391:335-52 (1998). The graph to the right of 
the neuron illustrates an idealized plot of signal quality (i.e., 
idealized isolation curve) as observed by an electrode as it 
passes the Soma, the location where extracellular action 
potentials are primarily generated. 

FIG. 4 shows an exemplary embodiment of a finite state 
machine corresponding to an algorithm, in accordance with 
an embodiment of the present invention. Each state is repre 
sented by a box and lines connecting the states show all 
possible transitions. The simplest path between the states 
during an exemplary isolation of a neuron is shown by the 
thick (i.e., bolded) arrows. 

FIG. 5 shows a set of exemplary signal quality thresholds 
that may be used to determine actions taken by or transitions 
between the states of the state machine depicted in FIG. 4. 
The left column shows the relative values of the thresholds. 
The right column shows an interpretation of each of the 
thresholds and an action taken by the state machine depend 
ing upon the value of the current signal quality relative to the 
thresholds. 

FIG. 6 shows an activity diagram for the Isolate Neuron 
state of the finite state machine of FIG. 4. The activity dia 
gram begins at the solid circle located at the top left of the 
figure. Test junctions are illustrated as diamonds, test results 
are shown in brackets, and state transitions are shown by 
ringed circles with the name of the new state provided in a box 
next to each of the ringed circles. 

FIG. 7 shows an alternate embodiment of the finite state 
machine of FIG. 4. Each state is represented by a box and 
lines connecting the states show all possible transitions. 

FIG. 8(A) shows simulated neural activity of two simulated 
neurons. The trace corresponds to 1 s of data. FIG.8(B) shows 
action potentials (spikes) detected using a wavelet detection 
method described in Z. Nenadic and J. Burdick, “Spike detec 
tion using the continuous wavelet transform.” IEEE Trans. On 
Biomed. Eng., 52(1):74-87 (2005). An event vector is a seg 
ment of the neural signal containing a single action potential. 
In FIG. 8(B), the event vectors include about 1.6 ms of the 
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8 
neural signal. The spikes are centered at estimated spike 
arrival times to illustrate the jitter in the estimated arrival 
times, especially with respect to low-amplitude spikes. FIG. 
8(C) shows spikes aligned using the correlation method of the 
present invention. FIG.8(D) shows a plot of the spike features 
(Nf2) extracted using the Haar wavelet. Each dot represents 
a single spike from FIG. 8(C). FIG. 8(E) shows two clusters 
(dark and light gray) identified using a Gaussian mixture 
model in accordance with the present invention. There were 
no outliers illustrated in this figure. FIG. 8(F) shows the 
aligned action potentials drawn in either dark or light gray 
according to the cluster to which they belong. In other words, 
FIG. 8(F) maps the clusters back to event space. 

FIG. 9 shows a diagram illustrating circles that define the 
boundaries of three exemplary clusters, C1, C2, and N. The 
cluster N corresponds to the noise cluster and clusters C1 and 
C2 to clusters of action potentials. The arrows d1 and d2 
illustrate the Euclidean distance between the center of the 
noise cluster and each of the clusters C1 and C2, respectively. 
In FIG.9, the cluster C1 is the dominant cluster and cluster C2 
is a confounding cluster. In this example, because the noise 
cluster N is centered about the origin of the feature space, 
selecting the dominant cluster based upon which cluster has 
the maximum second signal quality metric (e.g., average 
Peak-to-Peak-Amplitude (“PTPA) for the entire cluster) is 
equivalent to selecting the dominant cluster based upon 
which cluster is the furthest from the noise cluster N (or has 
the greatest Signal-to-Noise Ratio (“SNR). 

FIG. 10(A) shows an exemplary isolation curve for a neu 
ron of the parietal reach region of a monkey posterior parietal 
cortex. The second signal quality metric used in this example 
was PTPA. The data was obtained by moving an electrode 
along a straight line in 10 um increments and recording for 
approximately 10 S at each location. The curve was con 
structed by averaging the PTPA of the spikes detected at each 
location. The number of spikes per location varied from 213 
to 478. In the large number of spikes, this curve converges 
(pointwise) to a curve generated by a regression function of 
the PTPA and electrode position. FIG. 10(B) shows a spike 
illustrating the ensemble average at locations marked by dot 
ted lines. Each of the spikes illustrating the ensemble average 
is located between a pair of spikes. The upper curve above 
each spike waveform represents the sum of the ensemble 
average and the standard deviation. The lower curve below 
each spike waveform represents the ensemble average minus 
the standard deviation. In other words, the range between the 
upper and lower curves represent about 68% of the PTPA of 
the spikes at each of the locations marked by the dotted lines. 

FIG. 11 shows a perspective view of one embodiment of a 
microdrive constructed in accordance with an embodiment of 
the present invention. 

FIG. 12A shows a view of the front of the microdrive of 
FIG. 11. FIG.12B shows a view of the back of the microdrive 
of FIG. 11. FIG. 12C shows a view of the bottom of the 
microdrive of FIG. 11. FIG. 12D shows a view of the top of 
the microdrive of FIG.11. FIG.12E shows a sectional view of 
the microdrive of FIG. 11 taken along a plane substantially 
parallel with the front view of FIG. 12A. FIG. 12F shows a 
sectional view of the microdrive of FIG. 11 taken along a 
plane substantially parallel with the front view of FIG. 12A 
and nearer the front of the device than the plane of the view in 
FIG. 12E. FIG.12G shows a sectional view of the microdrive 
of FIG. 11 taken along a plane substantially parallel with the 
top view of FIG. 12D. 

FIG. 13 shows a perspective view of a guide tube and the 
tips of three electrodes of the microdrive of FIG. 11. 
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FIG. 14a depicts a visualization of a neural signal after it 
has been filtered by a high-pass (10 Hz) filter. The dots above 
the neural signal identify events (i.e., action potentials or 
spikes) detected by the method of FIG. 8(B). FIG. 14b depicts 
the event vectors of the spikes detected aligned by their mini 
mum. The black traces are random samples of noise. The 
finite mixture model used to cluster the event vectors has an 
order equal two, i.e., the event vectors have been categorized 
as originating from two distinct neurons. FIG. 14c depicts 
projections of event vectors and noise samples on the first two 
principal components. The neuron firing the events shown in 
blue is not isolated, as its action potentials could be confused 
with noise fluctuations. The other neuron (in green) is far 
from the noise, but is not very well isolated as its action 
potentials could be confused with those in blue. 

FIG. 15 shows the successful isolation of a neuron in a 
macaque parietal cortex in accordance with an embodiment 
of the present invention. FIG. 15a shows the initial isolation. 
The observations of peak-to-peak amplitude at each position 
are shown in black dots with the final observation in magenta, 
the average action potential at each position in green, the 
reconstructed signal quality function in red, and the path of 
the electrode (always advancing in this example) by the black 
arrows. The leftmost observation is probably from another 
neuron, observed before detecting the isolation curve of the 
isolated neuron. The algorithm stopped at the rightmost posi 
tion because the signal quality was high enough that further 
movement was unnecessary and may damage the neuron. 
FIG. 15b shows the maintenance phase of the isolation. Both 
the electrode position (blue) and the average peak-to-peak 
amplitude (red) are plotted against time. At time Zero, the 
neuron is first isolated (which corresponds to the last obser 
vation shown in FIG. 15a). The signal improves and then 
degrades as the neuron drifts by the electrode. The non 
horizontal portions of the electrode position graph depict 
periods during which the autonomous state machine control 
ler attempted to re-isolate the neuron. 

FIG. 16 shows simultaneous recordings of three neural 
signals using a microdrive including three electrodes 
6002A-C in accordance with an embodiment of the present 
invention. Column (a) shows the raw filtered data stream, i.e., 
a visualization of each of the three recorded neural signals. 
Column (b) shows spikes detected in each of the neural sig 
nals after alignment using the method of FIG. 8(B). The 
diagram on the right shows the positions of the electrodes 
(drawn in relative scale) when the recordings of column (b) 
were made, as well as sample spike waveforms recorded 
along the trajectory of an electrode 6002C. 

FIG. 17 shows the SNR recorded by the electrodes 6002A 
and 6002B plotted with the position of the electrode 6002C, 
in accordance with an embodiment of the present invention. 
The left vertical axis corresponds to the SNR ratio and the 
right vertical axis to the depth of the electrode 6002C. The 
horizontal axis corresponds to time measured in seconds. 

FIG. 18 shows a line source approximation for a single 
segment with length. So, in accordance with an embodiment of 
the present invention. 

FIG. 190A) shows a visualization of typical background 
noise recorded in a primate cortex, i.e., a recorded neural 
signal containing no visible spikes. The dashed lines mark the 
4O bounds, i.e., the upper and lower dashed lines represent 
two standard deviations from the mean. FIG. 19CB) shows the 
power spectral density of the recorded noise of FIG. 190A) 
with a characteristic 1/f behavior. FIG. 19CC) shows a histo 
gram of the recorded noise of FIG. 190A) together with a plot 
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10 
of a Gaussian probability density function whose mean and 
variance are equal to the sample mean and sample variance of 
the recorded noise. 

FIG. 200A) shows a two dimensional projection of two 
neural cells in a 2-D space. FIG.20(B) shows a close-up of the 
two Somata (cell 1 drawn in light gray and cell 2 drawn in dark 
gray) and a plot of 12 vertical sampling tracks. For illustrative 
purposes, FIG. 200B) does not depict dendrites. FIG.20(C) 
shows a close-up of the two somata (cell 1 drawn in light gray 
and cell 2 drawn in dark gray) and a plot of six horizontal 
sampling tracks. FIG.20(D) depicts a typical recording track 
traversed by an electrode that records from the bank of the 
Sulcus, where the recording track is perpendicular to the 
apical dendrite. A local coordinate system is shown to the left 
of the recording. FIG.20(E) depicts a typical track traversed 
by the recording electrode in a regular cortical layer where the 
recording track is parallel to the apical dendrite. 

FIG. 21 shows a diagram illustrating tissue movement or 
migration of a neuron relative to the movement of an elec 
trode. The diagram depicts an initial position (solid line) and 
the position at iteration k (dotted line) of the electrode and 
neuron. Neurons farther from the electrode's path of travel 
may undergo Smaller displacement. 

FIG.22 shows a histogram having a bin size of about 8 um 
of error 

ead. - d. 

for each of the 12 vertical tracks of FIG. 200B). The data is 
shown for only successful isolation trials, e.g. the histogram 
of vertical track V11 normalizes to 84%. The value e=0 is 
located next to the dot representing the sampling track. The 
dendrites of cell 1 and cell 2 are in light and dark gray, 
respectively. The two axon hillocks are shown as meshed 
cones adjacent to the Somata. 

FIG. 23 shows a histogram having a bin size of about 8 um 
of error 

ead. – d'. 

for each of the 6 horizontal tracks of FIG.20(C). The data is 
shown for only successful trials. The value e=0 is located next 
to the dot representing the sampling track. The dendrites of 
cell 1 and cell 2 are in light and dark gray, respectively. The 
axon hillocks are shown as two annular regions in the center 
of the Somata. 

FIG. 24 shows two plots. The top most plot plots the aver 
age value of the second signal quality metric (PTPA) over 
several iterations. Note the drift in the second signal quality 
metric due to tissue movement. The dashed vertical lines 
denote the state transitions between the states of the finite 
state machine depicted in FIG. 7: S corresponds to the Search 
state: 0 corresponds to the Optimize state; and M corresponds 
to the Maintain state. The bottom most plot plots the position 
(depth) of the “electrode' as a function of iteration number. 
Despite the drift of the neuron, the objective remains fairly 
constant (-0.5 mV) at the convergence iterations k=21, 111, 
276, 743. 

DETAILED DESCRIPTION 

The following embodiments and aspects thereof are 
described and illustrated in conjunction with systems and 
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methods that are meant to be exemplary and illustrative, not 
limiting in scope. Unless defined otherwise, technical and 
Scientific terms used herein have the same meaning as com 
monly understood by one of ordinary skill in the art to which 
this invention belongs. One skilled in the art will recognize 
many methods and materials similar or equivalent to those 
described herein, which could be used in the practice of the 
present invention. Indeed, the present invention is in no way 
limited to the methods and materials described. 
The invention is based on the concept of autonomously 

positioning electrodes within neural tissue to achieve a 
desired quality of the signal measured by the electrodes. 
Systems, methods including algorithms, and devices for 
achieving autonomous positioning of neural recording elec 
trodes are provided in various embodiments of the present 
invention. As used herein, “autonomous' includes operations 
that are automatic or machine-controlled or without the con 
tinual intervention of a human operator. 
An exemplary application of the invention includes posi 

tioning one or more electrodes in a location in neural tissue 
that optimizes and/or improves the recorded signal according 
to a pre-determined measure of signal quality. In some 
embodiments, the pre-determined measure of signal quality 
may be determined by a user. Another exemplary application 
includes repositioning the electrodes as needed to maintain a 
pre-determined level of signal quality. The pre-determined 
level of signal quality may be determined by the user in some 
embodiments. Without limitation, particular applications of 
the instant invention include recording neural activity for 
Scientific investigation, recording neural activity for neural 
prosthetic systems, positioning electrodes for treatment of 
Parkinson’s disease or other neurological impairments, and 
positioning electrodes to optimize neural stimulation. 
The type of signal that is optimized in various embodi 

ments of the invention may include, but is no way limited to, 
any feature of neural activity, including extracellular action 
potentials (or 'spikes”), local field potentials, any frequency 
sub-band of the signal, and/or selectivity with respect to a 
specific type of information, task, or event. 

Aspects of the invention include (1) a system 10 (see FIG. 
1) for acquiring, recording or storing, and analyzing neural 
signals, (2) an autonomous electrode positioning algorithm 
(“autonomous algorithm”) 1000 (see FIG. 1), and (3) a micro 
drive 6000 (see FIG. 11), which, as used herein, is any device 
capable of positioning one or more electrode(s) 62 with rela 
tively high (e.g., near micron-level) precision. The 
electrode(s) 62 (see FIG. 1) is/are inserted into the neural 
tissue of a subject to detect electrical activity (“neural sig 
nals’) occurring therein. 

In one embodiment, the autonomous algorithm 1000 pro 
duces a control signal that controls and/or directs one or more 
actuators 64 (see FIG. 1) to position the electrode(s) 62 within 
the Subject’s neural tissue. The control signal is based on the 
neural signals detected by the electrode(s) 62. The autono 
mous algorithm 1000 may be implemented with a wide vari 
ety of devices in addition to the microdrive 6000, as will be 
readily appreciated by those of skill in the art. A software 
implementation of the autonomous algorithm 1000 may, with 
minimal effort, be used to control the electrodes of these 
devices and/or microdrive 6000 in a wide variety of experi 
mental, clinical, and therapeutic systems. For example, as 
new chronic repositionable arrays become available, the 
autonomous algorithm 1000 may be readily adapted for use in 
long-term (e.g. years) isolation of neurons and recording of 
neural signals generated thereby in clinical applications. 
The microdrive 6000 may be configured for use with the 

autonomous algorithm 1000 and/or use as a conventional 
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human-guided microdrive. The microdrive 6000 may be con 
structed to have an extremely small size that renders it par 
ticularly suitable for use in clinical applications. The micro 
drive 6000 may be used as a “smart” neural implant device 
that can autonomously optimize neural signals for long-term 
recordings; that is, robotic microdevices that can autono 
mously and individually position arrays of electrodes within 
neural tissue to seek out and continuously optimize signals 
from neurons. Such autonomously controlled electrodes may 
have the ability to break out of encapsulation tissue, or move 
on to other areas to seek better signals. 

System 10 

In one embodiment, as depicted in FIG. 1, the system 10 
may include a programmable central processing unit 
(“CPU”) 30 electrically coupled to the electrode(s) 62 by a 
neural signal interface 50. The CPU 30 may be implemented 
by any known technology, such as a microprocessor, micro 
controller, application-specific integrated circuit (ASIC), 
digital signal processor (DSP), or the like. The CPU 30 may 
be integrated into an electrical circuit, such as a conventional 
circuit board, that supplies power to the CPU 30. 
The CPU 30 may be in electrical communication with a 

memory 20. As is appreciated by those of ordinary skill in the 
art, the memory 20 may include memory components that are 
internal or external to the CPU 30. In some embodiments, the 
memory 20 may be coupled to the CPU 30 by an internal bus. 

Optionally, the memory 20 may include external or remov 
able memory devices such as floppy disk drives and optical 
storage devices (e.g., CD-ROM, R/W CD-ROM, DVD, and 
the like). The CPU 30 may be coupled to one or more I/O 
interfaces such as a serial interface (e.g., RS-232, RS-432, 
and the like), an IEEE-488 interface, a universal serial bus 
(USB) interface, a parallel interface, and the like, for the 
communication with removable memory devices such as 
flash memory drives, external floppy disk drives, and the like. 
The memory 20 may comprise random access memory 

(RAM) and read-only memory (ROM). The memory 20 con 
tains instructions and/or data that control the operation of the 
CPU 30. The memory 20 may also include a basic input/ 
output system (BIOS), which contains the basic routines that 
help transfer information between elements of the system 10. 
The present invention is not limited by the specific hardware 
component(s) used to implement the CPU 30 or memory 20 
of the system 10. 
The neural signal interface 50 receives the analog neural 

signal from the microdrive 60, performs an A/D conversion, 
and buffers or stores the digitized neural signal for use by the 
CPU30. The neural signal interface 50 may store the digitized 
neural signal in the memory 20 and/or in a separate memory 
internal to the neural signal interface 50. 
The memory 20 may include instructions 40 that are 

executable by the CPU 30 and implement aspects of the 
invention. For example, instructions 40 may implement the 
autonomous algorithm 1000. The instructions 40 may include 
computer readable software components or modules 1000 
1500. As is appreciated by those of ordinary skill in the art, 
implementing the autonomous algorithm 1000 may require 
digital and/or analog hardware components, such as an ana 
log to digital converter, amplifiers, filters, and the like and 
Such embodiments are within the scope of the present inven 
tion. In one embodiment, some or all of these components 
may be implemented by the instructions 40. 
The instructions 40 implementing the autonomous algo 

rithm 1000 may analyze the digitized neural signals to pro 
duce the control signal that directs the actuator(s) 64 to move 
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the electrode(s) 62. The CPU 30 may be coupled to the actua 
tor(s) 64 by a control signal interface 70. The CPU 30 may 
execute the instructions 40 implementing the autonomous 
algorithm 1000 and thereby produce the control signal, and 
Subsequently transmit the control signal to the actuators 64 
via the control signal interface 70. After receiving the control 
signal, the actuators 64 may move or reposition the 
electrode(s) 62. 
The CPU 30 may be coupled to a user interface 80 such as 

a standard computer monitor, LCD, colored lights, or other 
visual display. The user interface 80 may also include an 
audio system capable of playing an audible signal. In some 
embodiments, a display driver may provide an interface 
between the CPU 30 and the user interface 80. 

The user interface 80 may permit the user to enter control 
commands into the system 10. For example, the user could 
command the CPU 30 to execute one or more instructions 40 
and/or perform portions of the autonomous algorithm 1000. 
The user interface 80 may include a standard keyboard, 
mouse, track ball, buttons, touch sensitive Screen, wireless 
user input device, and the like. The user interface 80 may be 
coupled to the CPU 30 by an internal bus. 

Optionally, the CPU 30 may be coupled to an antenna or 
other signal receiving device such as an optical sensor for 
receiving a command signal Such as a radio frequency (RF) or 
optical signal from a wireless user interface device such as a 
remote control. The memory 20 may include software com 
ponents for interpreting the command signal and executing 
control commands included in the command signal. 
The various components of the system 10 may be coupled 

together by internal buses and/or cables known in the art for 
transferring electrical signals between components of the 
type described. Each of the internal buses of the system 10 
may be constructed using a data bus, control bus, power bus, 
I/O bus, and the like. 

In one embodiment, the CPU 30, memory 20, neural signal 
interface 50, control signal interface 70, actuator(s) 64, and 
electrode(s) 62 of the system 10 are components of the micro 
drive 6000. Optionally, the user interface 80 may reside in the 
microdrive 6000. In this embodiment, the microdrive 6000 
may be used as an autonomous chronic multi-electrode 
implant for detecting neural signals. The neural signals may 
be used to control or provide input to an external device such 
as a neural prosthetic. 

In an alternate embodiment of the system 10, a system 10' 
depicted in FIG. 2, the CPU 30 and memory 20 reside in a 
workstation803. The instructions 40 stored in the memory 20 
may include the computer executable instructions for MAT 
LAB (available from Mathworks Inc., USA) and the instruc 
tions 40 implementing the autonomous algorithm 1000 may 
include files, e.g. m-files, executable by MATLAB. 

The CPU 30 is coupled to the microdrive 6000' by neural 
signal interface 50'. The neural signal interface 50' may 
include a headstage amplifier 801 that is itself in electronic 
communication with other various amplifiers and filters 802 
that amplify and filter the neural signal detected by the elec 
trode(s) 62. The neural signal interface 50' may include a data 
acquisition card (not shown) capable of receiving the analog 
neural signal from the electrode(s) 62 of the microdrive 
6000", performing an A/D conversion, and buffering or stor 
ing the digitized signal for use by the CPU 30. In one embodi 
ment, the data acquisition card stores the digitized neural 
signal in the memory 20. In another embodiment, the data 
acquisition card stores the digitized neural signal in onboard 
memory accessible by the CPU 30. An example of a suitable 
data acquisition card for use with system 10 may be obtained 
from National Instruments Inc., USA. 
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14 
The instructions 40 implementing the autonomous algo 

rithm 1000 may analyze the digitized neural signals to pro 
duce the control signal that directs the actuators 64 of the 
microdrive 6000' to move the electrode(s) 62. The CPU 30 of 
the workstation 803 may be coupled to the actuators 64 of the 
microdrive 6000' by a control signal interface 70'. The control 
signal interface 70' may include an actuator controller 804 
that issues motor commands to the actuators 64 of the micro 
drive 6000' that direct the actuators 64 to reposition the 
electrode(s) 62. An example of a suitable actuator controller 
for use with system 10 may be obtained from Klocke Nano 
technik, Germany, part NWC. 

Autonomous Algorithm 1000 

Overview 
The autonomous algorithm 1000 may include a Sample 

Neural Signal Module 1100 for receiving one or more signals 
detected by the electrode(s) 62 and recording or storing the 
signal(s) in the memory 20. Typically, the Sample Neural 
Signal Module 1100 will record a separate signal for each of 
the electrode(s) 62. The signal received from each electrode 
62 may be stored for a predetermined duration. In one 
embodiment, the predetermined duration is approximately 20 
seconds. 
A significant problem may occur if the firing rate of a 

neuron being isolated is intermittent, or the neuron stops 
firing altogether, especially in the presence of other nearby 
neurons. Such situations can create extreme outliers in Sam 
pling that can confound the neuron isolation portion of the 
autonomous algorithm 1000. This eventuality may be rem 
edied by increasing the recording time at each sample. Setting 
the predetermined duration equal to approximately 20 sec 
onds may allow activity from intermittent firing neurons to be 
captured consistently. 
The Sample Neural Signal Module 1100 may be executed 

more than once and each time it is executed, a separate signal 
for each of the electrode(s) 62 may be received and stored. For 
example, each time the position of the electrode(s) 62 within 
the neural tissue is/are changed, the Sample Neural Signal 
Module 1100 may be executed. For example, if the system 10 
includes three electrodes 62 and all of the electrodes 62 are 
positioned three times, the Sample Neural Signal Module 
1100 may record nine separate signals. As used herein, the 
term 'sample” refers to a signal received from a single elec 
trode 62 and stored by the Sample Neural Signal Module 
1100. Consequently, referring to previous example, nine 
samples were collected, three for each electrode 62. An 
example of a sample collected may be viewed in FIG. 14a. 
The action potentials of the neurons may appear as spikes 

in the sampled extracellular signal. Numerous spikes appear 
in the example sample depicted in FIG. 14a. These spikes 
may correspond to the action potentials of one or more neu 
rons. Therefore, signal processing techniques may be used to 
analyze the sample and group the spikes into groups repre 
senting separate neurons. The analysis may include detecting 
the spikes, grouping or clustering the detected spikes by the 
neuron producing them, and determining the quality of the 
signal received from each of the neurons. The quality of the 
signal received from each of the neurons may be measured 
using each signals peak-to-peak amplitude (“PTPA). Alter 
natively, the quality may be judged by the amount of isolation 
(as measured in principle component space) between a par 
ticular neuron's signal and the signal of other neurons and/or 
background noise. As is appreciated but those of ordinary 
skill, many other choices of signal quality may be used and 
are within the scope of the present invention. The signal 
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quality of the neurons may be compared to determine a domi 
nant neuron. The dominant neuron may be the neuron from 
which the highest quality signal is received. Spikes generated 
by other neurons may be ignored. 

After the dominant neuron is identified, the electrode 62 
may be moved or repositioned relative to the neuron, and the 
Sample Neural Signal Module 1100 used to capture one or 
more additional samples. After a sufficient number of 
samples are collected, the signal quality of the dominant 
neuron for each electrode 62 position may be used to estimate 
or model an isolation curve. The modeled isolation curve 
models the signal quality along the path of travel of the 
electrode 62. In some embodiments, the actuators(s) 64 posi 
tion the electrode(s) 62 linearly in the vertical direction. In 
other words, the actuators(s) 64 determine the depth of the 
electrode(s) 62 in the neural tissue. 

Referring to FIG.3, an exemplary ideal isolation curve 100 
is provided. The leftmost portion of FIG.3 shows an illustra 
tion of a rat pyramidal neuron 110 based on morphology 
described in G. Buzsaki and D. Turner, “Dendritic properties 
of hippocampal CAI pyramidal neurons in the rat: Intracel 
lular staining in vivo and invitro.J. Comp. Neurol., 391:335 
52 (1998). The ideal isolation curve 100 to the right of the 
neuron 110 illustrates the idealized signal quality observed by 
an electrode traveling in the direction indicated by arrow 120 
alongside the neuron 110. Signal quality increases in the 
direction of arrow 125. The ideal isolation curve 100 may 
have a maximum 130 near a location of the neuron 110 where 
the action potential is initiated. 

While the ideal isolation curve 100 may not be available, as 
described below, it can be modeled from observed signal 
quality values. The modeled isolation curve may be used to 
determine a position that improves and/or optimizes received 
signal quality. The electrode 62 may then be moved to that 
position and the signal quality reevaluated. After the electrode 
62 is located at a satisfactory position, the autonomous algo 
rithm 1000 may provide instructions for repositioning the 
electrode(s) 62 to maintain a satisfactory level of signal qual 
ity. 

State Machine 
Referring to FIG. 4, the autonomous algorithm 1000 may 

be described with respect to a supervisory control state 
machine 2000. The state machine 2000 may include seven 
states: Search for Action Potentials state 2200, Gradient 
Search state 2300, IsolateNeuron state 2400, Neuron Isolated 
state 2500, Back Away state 2600, Resample Gradient state 
2700, and Reisolate Neuron state 2800. Transitions between 
the states 2200-2800 are indicated by arrows between the 
states. To avoid confusion, this state machine 2000 will be 
described with respect to an embodiment of the invention 
having a single electrode 62. However, as is apparent to those 
of ordinary skill, embodiments with more than one electrode 
are within the scope of the present invention. The autonomous 
algorithm 1000 may be executed with respect to each elec 
trode 62 and the state of each electrode 62 determined sepa 
rately. 
The state machine 2000 governs the transitions between 

states 2200, 2300, 2400, 2500, 2600, 2700, and 2800. To 
avoid unexpected behavior arising from an overly complex 
state machine, the relatively “simple” state machine 2000 
may be used. However, it is apparent to those of ordinary skill 
in the art that the autonomous algorithm 1000 may be imple 
mented using a more complex state machine and Such 
embodiments are within the scope of the present invention. As 
is also apparent to those of ordinary skill, whenever the state 
machine 2000 commands a “non-optimal' movement of the 
electrode 62 (i.e., a movement that an experienced operator 
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would not command and/or movement that does not lead to 
isolating a neuron), an adjustment may be made to either a 
parameter or statistical test in one or more of the transitions of 
the state machine 2000, a new transition may be added 
between two existing states, and/or a new state may be added. 
A typical path through the state machine 2000 will now be 

described (the path described is highlighted in FIG. 4). In one 
embodiment, when the autonomous algorithm 1000 begins, 
the electrode 62 is initially and roughly placed in a region of 
neural tissue that is of interest. In an alternate embodiment, an 
optional Move to Target Depth state (not shown) can be used 
to place the electrode 62 within the region of neural tissue of 
interest. Such a state may be useful, for example, when pre 
operative imaging (such as with an MRI machine) Suggests a 
specific neural structure and its specific location, or target 
depth, for optimal recording. After the electrode 62 is placed 
within the region of interest, the autonomous algorithm 1000 
may begin in the Search for Action Potentials state 2200. 

Search for Action Potentials State 2200 

In the Search for Action Potentials state 2200, the Sample 
Neural Signal Module 1100 (described above) may be used to 
receive noisy neural signal(s) from the electrode 62 and 
record the noisy neural signal(s) in the memory 20. The 
Sample Neural Signal Module 1100 may record noisy neural 
signal(s) over a predetermined duration and call a Spike 
Detection Module 1200 to analyze the recorded noisy neural 
signal(s). 
The Spike Detection Module 1200 may determine whether 

action potentials have been detected by the electrode 62. The 
electrode 62 may be moved in steps of a predetermined dis 
tance "As until action potentials are detected. In one embodi 
ment, the electrode 62 is moved at about 4 um/s. In one 
embodiment, the predetermined distance “A” may be about 
10 microns to about 50 microns. The predetermined distance 
“A” may be selected by the user. In one embodiment, the user 
selects the predetermined distance “A” from a list of step 
sizes including 10, 20, 30, 40, and 50 microns. The Spike 
Detection Module 1200 may consider action potentials to be 
detected if the frequency of the spikes detected exceeds a 
minimum firing rate (e.g., about 1.5 Hz, 2 Hz, or 2.5 Hz). 
After action potentials are detected, the state machine 2000 
transitions to the Gradient Search state 2300. 

Gradient Search State 2300 

In the Gradient Search state 2300, the electrode 62 may be 
advanced in steps of a predetermined distance (e.g., about 5. 
10, 15, 20, 25 or 30 microns), and the Sample Neural Signal 
Module 1100 used to obtain sample(s) of the noisy neural 
signal(s) at each step. After each step, for each sample, the 
Spike Detection Module 1200 may be used to detect action 
potentials in the sample collected by the electrode 62 at that 
step. If the firing rate drops below the minimum firing rate, the 
signal may be sampled at that position one more time. If the 
firing rate remains below the minimum firing rate, the state 
machine 2000 may determine the neuron is lost and transition 
to the Search for Action Potentials state 2200. 

After a predetermined number of steps, a Spike Classifica 
tion Module 1300 may be used to classify the action poten 
tials into classes corresponding to distinct neurons or noise. In 
other words, the Spike Classification Module 1300 may help 
to separate and identify the action potentials arising from 
distinct neurons. In one embodiment, the predetermined 
number of steps is five. 
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Because it may be desirable to isolate the dominant neuron 
and ignore the others, if the number of classes corresponding 
to neurons is greater than one, i.e., action potentials from 
more than one neuron were detected by a single electrode, the 
dominant neuron must be identified. A current signal quality 
metric may be determined using a Calculate Signal Quality 
Metric Module 1400 and used to compare the signal quality of 
the classes corresponding to neurons. The current signal qual 
ity metric may be used to identify the class with the best signal 
qualities. The current signal quality metric of each class may 
include the greatest signal-to-noise ratio (“SNR) observed 
for each class. A dominant class within the sample may be the 
class having the greatest current signal quality metric. The 
action potentials of the dominant class are generated by the 
dominant neuron. 
The current signal quality metric may be compared to 

various threshold values and used to determine the transitions 
between two or more of the states of the state machine 2000. 
FIG. 5 depicts an exemplary set of threshold values that may 
be used to determine the transitions between two or more of 
the states of the state machine 2000: “MIN TRACK SNR, 
“MIN SNR. “STOP SNR, and “MAX SNR. In various 
embodiments, each of these threshold values may be selected 
by the operator. In one embodiment, as a non-limiting 
example, the “MIN TRACK SNR may be set equal to 2, 
“MIN SNR may be set equal to 6, “STOP SNR may be set 
equal to 8, and “MAX SNR may be set equal to 12. 
A second signal quality metric may be determined using 

the Calculate Signal Quality Metric Module 1400 and used by 
the Model Isolation Curve Module 1500 to model an isolation 
curve of the dominant neuron. In some embodiments, the 
second signal quality metric includes the peak-to-peak ampli 
tude (“PTPA) of the action potentials of the dominant class. 
The PTPA of the action potentials of the dominant class may 
be average to provide a representative PTPA for the dominant 
class. The modeled isolation curve is an estimate of the signal 
quality along a linear path of travel of the electrode 62 near the 
dominant neuron. As described below, the isolation curve 
may be modeled as a polynomial equation. The Model Isola 
tion Curve Module 1500 may calculate a most likely order of 
the isolation curve. 

If the most likely order of the isolation curve is greater than 
Zero (i.e., the isolation curve is at least a sloped line), then a 
statistically significant gradient has been found. If not, the 
electrode 62 may continue to be advanced in steps of the 
predetermined distance (e.g., about 5, 10, 15, 20, 25 or 30 
microns). At each step, noisy neural signals may be sampled 
using the Sample Neural Signal Module 1100 and analyzed 
by the Spike Detection Module 1200, Spike Classification 
Module 1300, Calculate Signal Quality Metric Module 1400, 
and Model Isolation Curve Module 1500 until a statistically 
significant gradient is detected. 

After the statistically significant gradient is detected, the 
electrode 62 may be considered to be on the isolation curve of 
the dominant neuron and the state machine 2000 may transi 
tion to the Isolate Neuron state 2400. In some embodiments, 
the state machine 2000 may transition to the Isolate Neuron 
state 2400 only if the signal quality metric is above the pre 
determined lower signal quality threshold “MIN TRACK 
SNR, below which the measurements of signal quality may 
be considered unreliable. 

Isolate Neuron State 2400 

Referring to FIG. 6, an activity diagram depicting one 
embodiment of the internal logic of the Isolate Neuron state 
2400 is provided. Upon transitioning into the Isolate Neuron 
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state 2400, a variable “Wait” may be initialized to zero. In this 
state, the electrode 62 may not be moved using a constant step 
size. Instead, the electrode 62 may be moved according to a 
varying step size calculated from the modeled isolation curve 
by the Model Isolation Curve Module 1500. In a block 2402, 
an improved and/or optimum position of the single electrode 
62 is estimated from the modeled isolation curve and a vari 
able “move' is set equal to the distance the electrode must 
move from its current position to be located in the estimated 
optimum position. 

After the electrode 62 is moved, i.e., advanced or with 
drawn, the noisy neural signals in the new position are 
sampled using the Sample Neural Signal Module 1100 and 
analyzed by the Spike Detection Module 1200, Spike Clas 
sification Module 1300, and new current and/or second signal 
quality metrics may be calculated using the Calculate Signal 
Quality Metric Module 1400. The Model Isolation Curve 
Module 1500 may be used to modify or remodel the isolation 
curve based on the newly available data. As described below, 
the Model Isolation Curve Module may use a Bayesian model 
selection criteria to select the lowest order model that statis 
tically fits the available data. This approach may provide a 
reliable means of estimating the local shape of the isolation 
curve from the noisy data. In one non-limiting embodiment, 
the modeled isolation curve is selected from a class of poly 
nomials. 
A variable “Trend’ may provide a measure of the current 

trend of the values of the signal quality metrics of the action 
potentials. Knowledge of the signal quality trend may help 
reduce or eliminate improper movements of the electrode. 
The trend may be determined by comparing the new signal 
quality metric to one or more previously calculated signal 
quality metrics for the neuron. If the new signal quality metric 
is greater than the previously calculated signal quality met 
rics, i.e., the variable “Trend' is greater than Zero, an upward 
trend may have been observed. On the other hand, if the new 
signal quality metric is less than the previously calculated 
signal quality metrics, i.e., the variable "Trend' is less than 
Zero, a downward trend may have been observed. It is appar 
ent to those of ordinary skill that the variable “Trend’ may 
also be determined from the slope of the isolation curve near 
or at the current the position of the electrode 62. 

If the current signal quality metric is less than or equal to a 
predetermined minimum threshold of signal quality 
“MIN TRACK SNR (see FIG.5) and the variable “Wait” is 
less than a predetermined number, the variable “Wait” may be 
incremented at a block 2404 and the state machine 2000 may 
transition to the block 2402. If the variable “Wait' is greater 
than or equal to the predetermined number, the neuron being 
isolated may be considered lost (e.g., it has drifted away, 
become inactive or has been damaged by the electrode) and 
the state machine 2000 may transition to the Search for Action 
Potentials state 2200. The predetermined number may 
include two, three, four, five, etc. In other words, if the current 
signal quality is too low, the state machine 2000 will resample 
the neural signal the predetermined number of times before 
transitioning states. 

Optionally, if the firing rate drops below the minimum 
firing rate, the signal may be sampled at that position one 
more time. If the firing rate remains below the minimum firing 
rate, the state machine 2000 determines the neuron is lost and 
transitions to the Search for Action Potentials state 2200. 

If the signal quality metric is above the threshold “MIN T 
RACK SNR, the variable “Wait” may be reset, e.g., the 
variable “Wait” may be set equal to Zero, at a block 2406. If 
the signal quality metric is greater than the threshold “MAX 
SNR, the state machine 2000 may transition to the Back 
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Away state 2600. On the other hand, if the signal quality 
metric is less than or equal to the threshold “MAX SNR, the 
variable “move' may be compared to a predetermined thresh 
old “MIN MOVE. In various embodiments, the value of the 
threshold “MIN MOVE may be selected by the operator. In 
one non-limiting embodiment, the threshold “MIN MOVE 
may be set equal to approximately 5 microns. 

If the variable “move” is less than “MIN MOVE, the top 
or maximum of the isolation curve may be considered to have 
been reached. If the variable “move' is less than “MIN 
MOVE and the signal quality metric is greater than the 
threshold “MIN SNR (see FIG. 6), i.e., 
((move-MIN MOVE) & (SNR-MIN SNR)), the signal 
quality metric at the maximum of the isolation curve is con 
sidered acceptable and the state machine 2000 transitions to 
the Neuron Isolated state 2500. Alternatively, the state 
machine 2000 may transition to the Neuron Isolated state 
2500 if the signal quality metric is greater than the threshold 
“STOP SNR and less than or equal to the threshold “MAX 
SNR 

If after a predetermined number of samples (each corre 
sponding to an electrode position), e.g., (num obs25), the 
signal quality is showing a consistent downward trend 
(TrendsO) and signal quality metric is less than or equal to 
the threshold “MAX SNR, neuron drift and/or electrode/ 
tissue coupling or the like may be interfering with the isola 
tion process. Such interference may render the modeled iso 
lation curve unreliable. In the embodiment depicted in the 
drawings, the predetermined number of observations (or 
steps) is five. However, as is appreciated by those of ordinary 
skill in the art, the predetermined number of observations 
may include any other desired number of observations. Even 
if something is interfering with isolating the neural signal, 
i.e., (num obs25) & (TrendsO)), the state machine 2000 
may transition to the Neuron Isolated state 2500 if the signal 
quality metric exceeds the threshold “MIN SNR, i.e., 
(SNR-MIN SNR). Otherwise, if the signal quality metric is 
less than or equal to the threshold “MIN SNR, i.e., 
(SNRsMIN SNR), the neuron may be deemed too far from 
the line of travel of the electrode 62 to be isolated and the state 
machine 2000 may transition to the Search for Action Poten 
tials state 2200 to search for another neuron to isolate. 
On the other hand, if the signal quality is showing a con 

sistent upward trend, i.e., (Trend-0), or the number of obser 
vations is fewer than the predetermined number of observa 
tions, e.g., (num obs<5), the maximum of the isolation curve 
may not yet be reached. Under these circumstances, if the 
signal quality metric is not yet too high to fear neuron damage 
by continued movement, i.e., signal quality metric is less than 
or equal to the threshold “MAX SNR, the state machine 
2000 may self-transition to the Isolate Neuron state 2400 to 
continue the optimization. 

Neuron Isolated State 2500 

In the Neuron Isolated state 2500, the electrode 62 may be 
held Stationary and the signal quality monitored periodically 
and/or continuously. The current signal quality metric may be 
determined by Sampling the noisy neural signals using the 
Sample Neural Signal Module 1100 and analyzing the noisy 
neural signals using the Spike Detection Module 1200, Spike 
Classification Module 1300, and Calculate Signal Quality 
Metric Module 1400. Optionally, the Model Isolation Curve 
Module 1500 may also be used to modify or remodel the 
isolation curve. 
The signal quality may degrade if tissue drift causes the 

isolated neuron to move away from the electrode 62 detecting 
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the neural signal of the isolated neuron. When the current 
signal quality metric drops below a predetermined threshold 
(e.g., 90% of its greatest level or the threshold “MIN SNR), 
the state machine 2000 may transition to the Resample Gra 
dient State 2700. 

Resample Gradient State 2700 

In the Resample Gradient state 2700, the autonomous algo 
rithm 1000 tries to re-isolate the neuron. The internal logic of 
the Resample Gradient state 2700 may be substantially simi 
lar to the internal logic of the Gradient Search state 2300 
discussed above. However, the electrode(s) 62 may be 
advanced in steps of a smaller predetermined distance (e.g., 
about 3, 5 or 7 microns). The predetermined distance may be 
determined by the characteristics of the neural tissue in which 
the electrode operates. As is apparent to one skilled in the art, 
the size and/or packing density of neurons located in different 
parts of the cortex may vary. Therefore, it may be desirable to 
consider the size of the neurons and/or the neural packing 
density in the area of interest when selecting the predeter 
mined distance. 

After the statistically significant gradient is re-detected, the 
state machine 2000 transitions to the Reisolate Neuron state 
28OO. 

Reisolate Neuron State 2800 

The internal logic of the Reisolate Neuron state 2800 may 
be substantially similar to the internal logic of the Isolate 
Neuron state 2400. In some embodiments, the value of the 
threshold "MIN SNR' used by the Reisolate Neuron state 
2800 may be set to 90% of the value of the threshold “MIN 
SNR' used by the Isolate Neuron state 2400. If the dominant 
neuron starts to drift away from the electrode 62, current 
signal quality metric may be lower than the current signal 
quality metric realized during the initial isolation. Using the 
same threshold"MIN SNR' value in both the ReisolateNeu 
ron state 2800 and Isolate Neuron state 2400 may make 
reisolation of the dominant neuron difficult because the cur 
rent signal quality metric may fall below the threshold"MIN 
SNR triggering the state machine 2000 to transition to the 
Search for Action Potentials state 2200 instead of attempting 
to reisolate the previously isolated neuron. Because it may be 
desirable to continue tracking the previously isolated neuron, 
the threshold “MIN SNR value used by the Reisolate Neu 
ron state 2800 may be lowered to slightly below the threshold 
“MIN SNR value used by the Isolate Neuron state 2400. 

If the neuron is successfully reisolated, the State machine 
2000 may transition to the Neuron Isolated state 2500. Oth 
erwise, the state machine 2000 may transition to the Search 
for Action Potentials state 2200. 

If, while in any state, the signal quality metric is greater 
than the threshold “MAX SNR, the state machine 2000 may 
transition to the Back Away state 2600 and the electrode 62 
may be retracted a predetermined distance (e.g., about 5, 10. 
15, 20, 25 or 30 microns) to avoid damaging the neuron. After 
retracting the electrode, the Back Away state 2600 may assess 
the current signal quality metric by Sampling the noisy neural 
signal using the Sample Neural Signal Module 1100 and 
analyzing the noisy neural signal using the Spike Detection 
Module 1200, Spike Classification Module 1300, and Calcu 
late Signal Quality Metric Module 1400. The Back Away 
state 2600 will then transition to one of the three states, the 
Gradient Search state 2300, the Isolate Neuron state 2400, or 
the Neuron Isolated state 2500 depending upon the value of 
the current signal quality metric. In one non-limiting embodi 
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ment, if the current signal quality metric is less than the 
threshold “MIN TRACK SNR, the state machine 2000 
may transition to the Gradient Search State 2300. On the other 
hand, if the current signal quality metric is greater than the 
threshold “MIN TRACK SNR, but less than the threshold 
“STOP SNR,” the state machine 2000 may transition to the 
Isolate Neuron state 2400. Finally, if the value of the current 
signal quality metric is greater than the threshold “STOP 
SNR, the state machine 2000 may transition to the Neuron 
Isolated State 2500. 
Alternate Embodiment of the State Machine 
An alternate embodiment of the state machine 4000 may be 

viewed in FIG. 7. The states are represented by boxes and the 
state transitions are denoted by arrows. A search state 4100 
may perform spike detection and spike classification. The 
remaining states, of the state machine 4000 may sample neu 
ral signals for a short period of time and performs a more 
complete analysis of the data (e.g., spike detection, classifi 
cation, and/or signal quality calculation). 

In this embodiment, the state machine 4000 includes only 
three states: a Search state 4100, an Optimize state 4200, and 
a Maintain state 4300. In the Search state 4100, the electrode 
62 may be moved with the predetermined distance As. The 
distance As may be chosen by the user. The state machine 
4000 remains in the Search state 4100 (by virtue of self 
transitions) until spikes are detected, which triggers the tran 
sition to the Optimize state 4200. The Search state 4100 may 
include the functionality of the Search for Action Potentials 
state 2200 described above. In other words, the Search state 
4100, searches for action potentials. The state machine 4000 
may transition from the Search state 4100 to the Optimize 
state 4200 for the same reasons the Search for Action Poten 
tials state 2200 transitions to the Gradient Search state 2300, 
i.e., action potentials are detected. 

In the Optimize state 4200, the electrode 62 is moved 
according to the variable “move” calculated by the Model 
Isolation Curve Module 1500 described in greater detail 
below. The Optimize state 4200 may include the functionality 
of the Gradient Search state 2300, Isolate Neuron state 2400, 
Resample Gradient state 2700, and Reisolate Neuron state 
2800. In other words, the Optimize state 4200 determines 
whether the autonomous algorithm 1000 is on the isolation 
curve of the dominant neuron, models the isolation curve, and 
may move the electrode 62 to improve and/or optimize signal 
quality based on the modeled isolation curve and additional 
signal samples. The state machine 4000 remains in the Opti 
mize State 4200 until acceptable signal quality is attained 
(e.g., until the maximum of the signal quality metric is found), 
at which point the state machine 4000 transitions to the Main 
tain state 4300. The Optimize state 4200 may transition to the 
Maintain state 4300 for the same reasons the Isolate Neuron 
state 2400 transitions to the Neuron Isolated state 2500. The 
Optimize state 4200 may also transition to the Maintain state 
4300 for the same reasons the Reisolate Neuron state 2800 
transitions to the Neuron Isolated state 2500. 

In the Maintain state 4300, the electrode 62 is not moved. 
The Maintain state 4300 may include the functionality of the 
Neuron Isolated state 2500. The Maintain state 4300 may 
transition back to the Optimize state 4200 for the same rea 
sons the Neuron Isolated state 2500 transitions to the Resa 
mple Gradient state 2700. At this state, the autonomous algo 
rithm 1000 checks for the signal quality variations without 
moving the electrode 62. If these variations exceed some 
pre-specified tolerance, the optimality is considered lost, and 
the state machine 4000 transitions back to the Optimize state 
4200. 
The modules introduced above will now be described. 
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Spike Detection Module 1200 

The Spike Detection Module 1200 may detect the presence 
of distinct spikes in a noisy neural signal, estimate the Spike 
arrival time for each spike, and extract a segment (typically 
about 1.5 ms to about 2.0 ms or about 0.5 ms to about 1.0 ms) 
from the neural signal centered at the spike arrival time. These 
signal segments are referred to hereafter as “event vectors.” 

Because of its practical importance to experimental neuro 
Science, the detection of spikes in noisy data is a classic 
problem. Spike detection methods may be classified as 
manual and automated, Supervised and unsupervised. The 
Spike Detection Module 1200 of the autonomous algorithm 
1000 may use a spike detection method that is automated and 
unsupervised. 
The simplest manual detection method is the window dis 

criminator. See J. Welsh et al., “Multielectrode recording 
from the cerebellum. Methods for Neural Ensemble Record 
ings, 5:79-100 (M. Nicolelis, Ed.; Boca Raton: CRC Press, 
1999). Other methods include amplitude detection, power 
detection, matched filtering, principal components and Haar 
transformation. See M. Sahani, "Latent variable models for 
neural data analysis.” Ph.D. dissertation, California Institute 
of Technology (1999), I. Bankman, et al., “Optimal detection, 
classification, and Superposition resolution in neural wave 
form recordings.” IEEE Trans. Biomed. Eng., 40:836-41 
(1993), M. Abeles et al., “Multispike train analysis.” Proc. 
IEEE, 65:762-73 (1977), and X. Yang et al., “A totally auto 
mated system for the detection and classification of neural 
spikes.” IEEE Trans. Biomed. Eng., 35:806-16 (1988). While 
matched filtering provides optimal performance, it is a Super 
vised method, as is the method of principal components. Both 
power and amplitude detection methods can be implemented 
in an unsupervised manner. However, with the large changes 
in SNRs and firing rates that are typically found in movable 
electrode operations, these methods are fraught with incon 
sistent performance. 

Generally, the detection of unknown signal in background 
noise is representation dependent. See M. Frisch et al., “The 
use of the wavelet transform in the detection of an unknown 
transient signal.” IEEE Trans. Info. Theory, 38(2):892-97 
(1992). Because of their excellent time-frequency properties, 
wavelets offer compact representation of signals embedded in 
a background noise, which make them a useful tool in the 
detection of local phenomena Such as spike transients. 
Combining the theory of wavelet transform, statistics, and 

detection theory, the inventors developed a robust unsuper 
vised spike detection algorithm described in Z. Nenadic and 
J. Burdick, “Spike detection using the continuous wavelet 
transform.” IEEE Trans. On Biomed. Eng., 52(1):74-87 
(2005). This approach can be used for unsupervised spike 
detection over a wide range of SNRs and firing rates. FIG.8A 
shows a simulated neural signal for two neurons (the method 
used to simulate the neurons is described below in Example 
3). FIG. 8B shows event vectors corresponding to the spikes 
detected in the neural signal of FIG. 8A by this wavelet 
method. The wavelet method may also be used to detect 
spikes in the neural signals recorded by the Sample Neural 
Signal Module 1100. 

Spike Classification Module 1300 

The Spike Classification Module 1300 includes instruc 
tions for spike alignment and spike clustering. 

Spike Alignment 
After detection, the event vectors may aligned to overcome 

the effects of jitter arising from background noise and finite 
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sampling of the spike waveforms. See M. Sahani, “Latent 
variable models for neural data analysis.” Ph.D. dissertation, 
California Institute of Technology (1999). Methods for align 
ing the event vectors (or spike segments) include alignment 
by the peak of detected spikes, the “center of mass method, 
and the correlation method. See, e.g., K. Harris et al., “Accu 
racy of tetrode spike separation as determined by simulta 
neous intracellular and extracellular measurements. J. Neu 
rophysiol., 84.401-14 (2000), M. Sahani, “Latent variable 
models for neural data analysis.” Ph.D. dissertation, Califor 
nia Institute of Technology (1999), and M. Abeles et al., 
“Multispike train analysis.” Proc. IEEE, 65:762-73 (1977). 
The spikes may also be aligned by their minimums. Calcu 
lating a composite landmark of the spike. Such as its center of 
mass, makes the alignment procedure more effective. This, 
however, is a supervised method that may not be suitable for 
use in connection with the present invention where the spike 
waveforms polarity can change with the electrode position. 

The correlation method of Abeles et al. Supra can be 
adapted to an unsupervised implementation, but a direct 
adaptation of this method, which is based on spike waveform 
averages, experiences problems in the multi-unit setting. To 
avoid such problems, the inventors fixed the first detected 
spike while time-shifting the second spike until its correlation 
with the first spike is maximized. The third spike is then 
time-shifted to maximize its correlation with the first and 
second spike, and so on. Such an optimization scheme 
depends upon the way in which the spikes are ordered (e.g., 
first, second, etc.). Finding a global optimum of this problem 
leads to a combinatorial optimization problem, which may 
not be feasible for on-line applications. The inventors found 
that ordering spikes by their amplitude leads to efficient sub 
optimal Solutions. To account for spikes that are out of phase, 
the inventors use an absolute value of the correlation as an 
objective function. FIG. 8C shows event vectors after align 
ment using the inventive correlation method. Note that spike 
alignment effectively re-estimates the arrival times of 
detected spikes. Once aligned, the spikes are ready for clus 
tering. 

Spike Clustering 
To determine the sources of individual spikes in the neural 

signal containing multi-neuron electrical activity, the inven 
tors use cluster analysis. There are many different clustering 
methods, many of which are based on heuristic criteria. 
Unfortunately, many such methods do not provide a consis 
tent answer regarding the number of classes in a data set. 
Alternatively, cluster analysis can be formulated within a 
probabilistic framework. The inventors used a clustering 
method based on finite mixture models, in which case the 
choice of the number of clusters reduces to a model selection 
problem. See, e.g., G. McLachlan et al., Mixture Models: 
Inference and Applications to Clustering, (Marcel Dekker: 
New York) (1988). Additionally, finite mixture models effi 
ciently handle outliers. The basic steps of the inventive clus 
tering method are summarized below and follow closely that 
of C. Fraley et al., “How many clusters? which clustering 
method? answers via model-based cluster analysis. Com 
puter.J., 41:578-88 (1998) and Univ. of Wash., Dept. of Stats, 
“Model-based clustering, discriminant analysis, and density 
estimation.” Tech. Rep., 380, (October 2000). 

Feature Extraction 
To reduce the number of parameters necessary to describe 

a model, the first step extracts a low-dimensional feature set 
from the event vectors. Let SeR'', be a matrix of Nsaligned 
event vectors, where N, is the number of samples per event. 
For simplicity, the inventors only considered features that are 
linear function of the data, i.e., F-SE, where FeRYY is the 
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feature matrix, EeR^*Y., is the transformation matrix, and N, 
is the dimension of the feature space chosen by the user. The 
merit of this method is that Na-N. However, alternative 
embodiments of this method may also use nonlinear feature 
extraction methods. Choosing the columns of E as the first N, 
principal eigenvectors of the covariance of S, gives rise to 
principal component features. Basis vectors of some canoni 
cal representation (e.g., wavelets) is another popular choice. 
For implementation purposes, the inventors Successfully used 
both principal components and Haar wavelet coefficients as 
event vector features. FIG. 8D shows a two-dimensional fea 
ture space obtained using the first two Haar wavelet coeffi 
cients. 

Finite Mixture Models 
Let f, be a sample of the feature vector (ith row of matrix F) 

corresponding to the ith event. Presumably, this observation 
was sampled from an unknown probability density function 
("PDF). In the finite mixture model framework, it is assumed 
that this density can be modeled as a mixture density (i.e., a 
linear combination of G+1 component densities p.). G corre 
sponds to the number of clusters in the data. Observations 
may be generated by any of the component densities with 
some probability it, according to the following equation: 

7t 2 PIf generated by p(.6) 

where 0, is a parameterization of the density p, The mixing 
parameters , represent the prior probabilities of any obser 
vation belonging to p. Note that X, oat-1. Viewed as a 
function of 

the parameters rather than a function of data, the mixture 
density of a single observation is called the “mixture likeli 
hood” and is given by 

G 

Lux (II, Of) = X tip (f. 19.) 
i=0 

i = 1, 2, ... , N. 

Assuming the observations f, are statistically independent, 
the overall mixture likelihood is given by 

Ws G 

Lux (II, Of) = X tip (f. 19.) 
(1) 

If the functional form of p,(.0) is known, the parameters 
II* and 0* that maximize the mixture likelihood (Eq. 1) can 
be estimated. In the context of clustering, the inventors 
restricted their attention to Gaussian components {p,(.10): 
j=1,2,..., G and a uniform component po(.100)=1/V, where 
V is defined as the hyper-volume of the data. For the sake of 
notational compactness, the inventors keep 0, although 
0-{0}. Under the Gaussian noise assumption, the entries of 
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the event vector matrix S are Gaussian random variables. 
Linear feature extraction further implies that the features are 
also Gaussian. If an observation f, belongs to a well-defined 
cluster, it is generated by one of the Gaussian components. If 
not, it is generated by the more diffuse uniform component po 
and is declared an outlier. 

Expectation-Maximization Algorithm 
In general, the maximization of L(TI, OIF) must be 

performed numerically. For this task, the inventors employed 
the Expectation-Maximization (EM) algorithm, for which 
there is an extensive literature in the case of Gaussian mix 
tures. See, e.g., A. Dempster et al., “Maximum likelihood 
from incomplete data via the em algorithm. J. Royal Stat. 
Soc., 39(1): 1-38 (1977) and J. Bilmes, “Agentle tutorial on 
the EM algorithm and its application to parameter estimation 
for gaussian mixture and hidden markov models. Univ. of 
Cal. Berkeley, Dept. of E. Eng. and Comp. Sci., Tech. Rep. 
(May 1997). Among known limitations of the EM algorithm, 
sensitivity to the choice of initial condition is among the most 
serious. A reasonable initial guess can be obtained by using 
one of the heuristic clustering techniques, as Suggested by C. 
Fraley et al., “How many clusters? which clustering method? 
answers via model-based cluster analysis. Computer J., 
41:578-88 (1998). Once the optimal parameters II* and 0* 
are known, the (hard) clustering rule is enforced via 

fe CF = j = argna. Pi (fl. 9), (2) 

where C, is the label of the j" class, and 0.*={0}. FIG. 8E 
shows features clustered using the EM algorithm followed by 
the rule (Eq. 2), with a mixture of a uniform and two Gauss 
ians (G-2). 
Model Selection 
The model selection step estimates the number of clusters, 

G, in the event vector (spike) data S. Given a family of 
candidate mixture models M. G-1, 2 . . . .N.), the goal is 
to find the order of the model (the number of clusters) that 
optimally fits the data subject to some objective function. A 
straightforward selection of the maximum likelihood (ML) 
Solution (i.e., the candidate that maximizes overall mixture 
likelihood (Eq. 1)), may lead to over-clustering, hence it may 
be desirable to employ other criteria. From Bayes theorem, 
the probability of any candidate model, given the data F and 
a prior knowledge I about the problem, can be written as 
follows: 

P(MFI)op(FIMI)P(MI) G=1,2,...,N. (3) 

where P denotes a probability and p represents a PDF. The 
model that maximizes the posterior (Eq. 3) is to be chosen. 
Assuming that the candidate models have uniform priors 
P(MI)=1/N, the maximization of the posterior reduces to 
the maximization of the term p(FIMI), which is called 
“integrated likelihood' in Bayesian probability theory. As the 
name suggests, the exact evaluation of this quantity involves 
numerical integration in multi-dimensional parameter space 
(e.g., a mixture of uniform and three Gaussian components in 
a 2D feature space requires 19 parameters). The inventors 
used an approximation based on the Bayesian Information 
Criterion (BIC), although other successful approximations 
have been reported as well. See, e.g., G. Schwarz, “Estimat 
ing the dimension of a model.” Annals of Stats., 6(2):461-64 
(1978). The BIC is defined as follows: 
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BICGA2logp(F| Ma, I) (4) 
as 2log fix (II*; O'F) - VologN, 

G = 1, 2, ... , Ng, 

where v is the number of parameters of the mixture M. The 
optimal model corresponds to the mixture with the highest 
BIC. For example, the features from FIG. 8 are tested against 
a family of five candidate models (N5). The highest value 
of BIC corresponds to the mixture of uniform and two Gaus 
sian components. Under the assumption that all candidates 
have equal priors (/s) and that the parameters II* and 0* are 
indeed the global optimum of the mixture likelihood (Eq. 1), 
this is equivalent to saying that two clusters are most likely 
given the data F and prior information I. 

For a successful clustering, the number of observations Ns 
must be sufficiently high with respect to the maximal order of 
the candidate model N. If not, the covariance matrices of 
individual components are typically ill-conditioned or singu 
lar, and may cause the EM algorithm to produce unreliable 
results. Since any number of events may be detected at each 
sampling position, the inventors chose the maximal order 
adaptively N. N.(N). 

Calculate Signal Quality Metric Module 1400 

As described above, the quality of the action potential 
signal may be measured for two purposes: (a.) to determine 
the acceptability of the current isolation and (b.) to measure 
the variation of signal quality around the neuron in order to 
find the optimal recording location. As also described above, 
signal quality metric used for the first purpose is referred to 
herein as the current signal quality metric and the signal 
quality metric used for the first purpose is referred to hereinas 
the second signal quality metric. The current signal quality 
metric may be determined in a different manner from the 
second signal quality metric. 
The signal quality metrics may be determined in several 

ways: (1) peak-to-peak amplitude (“PTPA); (2) signal-to 
noise ratio (“SNR': i.e., the PTPA normalized by the noise 
RMS voltage, or PTPA/NoiseRMS); (3) distance in principal 
components space (“DPCS': i.e., action potentials are pro 
jected onto their first two or three principal components and 
clustered, and then the signal quality metric is any distance 
(e.g., Euclidean, Mahalanobis, etc.) between the mean of the 
cluster furthest from the origin and that of its nearest neigh 
bor, and if there is only one neuron present in the recording, its 
nearest neighbor will be the cluster corresponding to noise 
samples, and DPCS will be similar to PTPA); and (4) normal 
ized distance in principal components space (“NDPCS': i.e., 
the above metric normalized by the noise RMS voltage, or 
DPCS/NoiseRMS). 

In some aspects of the autonomous algorithm 1000, a 
single second signal quality metric, such as the average peak 
to-peak amplitude (“PTPA) of all action potentials within a 
cluster, may be used to representall of the action potentials of 
the cluster. For example, to determine the dominant cluster, 
the second signal quality metric may be averaged over all 
action potentials within the cluster. Other aspects of the 
autonomous algorithm 1000, may consider the peak-to-peak 
amplitude (“PTPA) of each of the action potentials within 
the cluster separately. For example, the regression analysis 
implemented by the Model Isolation Curve Module 1500 
discussed below and used to model the isolation curve may 
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consider the second signal quality metric with respect to each 
of the action potentials within the cluster. 

For constructing the isolation curve, PTPA may present a 
relatively simply choice. Therefore, the PTPA may be used 
for the second signal quality metric. PTPA is usually Success 
ful in isolating neurons and is the metric used to achieve the 
results described in the ensuing Examples. If there are several 
neurons of significant amplitude, however, maximizing the 
peak-to-peak amplitude of one neuron may not "separate’ it 
from the other neuron (i.e., neither neuron will be isolated 
because action potentials cannot be reliably attributed to one 
of the neurons). DPCS is a metric that incorporates this notion 
of separation of multiple neurons. It may provide some 
improvement over PTPA, but it is also sensitive to errors in the 
unsupervised clustering; particularly to the task of determin 
ing the number of neurons present in a recording. The meth 
odology used in connection with any particular embodiment 
of the present invention may thus be selected based on a 
variety of factors, as will be readily appreciated by those of 
skill in the art. 

For determining the current signal quality metric which 
measures the current quality of the isolation (e.g., for deter 
mining the proper state transition as described below), a nor 
malized metric may be used (SNR or NDPCS) to compare the 
signal quality to predetermined threshold levels of isolation 
acceptability (see FIG. 5). The normalization accounts for 
variations in the overall signal level due to differences in the 
electrical characteristics between electrodes. Similarly to the 
above choice between PTPA and DPCS, SNR is a simple and 
generally effective metric, while NDPCS may offer improve 
ment in the multiple neuron case if its sensitivity to errors in 
clustering is reduced. The current signal quality metric used 
in the ensuing examples is the SNR. 

In general, the presence of multi-neuron activity in the 
neural signal has to be accounted for in the definition of the 
second signal quality metric. Otherwise, the second signal 
quality metric may be averaged over different neurons, and 
will underestimate the signal quality of the dominant neuron. 
This, in turn may confound the autonomous algorithm 1000 
to spurious maxima that could be far from optimum. There 
fore, the second signal quality metric is first evaluated for 
each individual cluster. The cluster that provides the largest 
average value of the second signal quality metric is deter 
mined. As mentioned above, this cluster is the dominant class. 
Generally, the dominant class will contain multiple spikes, 
thus providing multiple observations of the second signal 
quality metric, which is important for the stochastic optimi 
Zation scheme discussed below. 

It is possible that by coming closer to the target neuron and 
thereby increasing the corresponding the second signal qual 
ity metric, the inventors could also be increasing the second 
signal quality metric of the spikes from the neighboring neu 
rons. This appears to be a shortcoming of the above definition 
of signal quality. Because this definition relies solely on the 
information from the dominant class, it could lead to a solu 
tion with strongly confounding activity. In fact, the maximi 
zation of the PTPA of the spikes from the dominant cluster 
can be viewed as a maximization of the distance between the 
dominant cluster and a noise cluster (see FIG. 9). Using this 
method, cluster'C1' would be the dominant cluster in FIG.9 
because distance “d 1 is larger than distance “d2. A more 
Sophisticated definition of signal quality metric may also 
incorporate the distance between the dominant cluster and 
other clusters (e.g., distance “d 12). However, such a defini 
tion may be sensitive to misclassification, so the choice of 
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28 
metric may be viewed as a trade-off between the sensitivity to 
misclassification and the possibility of getting confounding 
activity. 

Model Isolation Curve Module 1500 

As described above, along a linear path of electrode travel 
past a neuron, plotting any metric of signal quality (e.g., 
PTPA) approximates the isolation curve (see FIG. 3 for an 
example of an ideal isolation curve). The actual isolation 
curve of any given neuron is not known in advance, nor is it 
necessarily symmetric or unimodal, but neither is required by 
the optimization method described below. The optimization 
method is independent of the metric used to determine the 
second signal quality metric. 
The optimization method seeks to position the electrode 62 

in the region of high and/or acceptable signal quality. When 
manually advancing neural probes, the electrode operator 
primarily relies on experience to interpret the observed sig 
nals and to control the movement of the electrode. However, 
the autonomous algorithm 1000 may treat electrodeposition 
ing as a problem in recursive stochastic optimization, or 
extremum seeking control. For illustrative purposes, the 
Model Isolation Curve Module 1500 will be described with 
respect to one electrode 62. However, it is apparent to those of 
ordinary skill embodiments incorporating multiple elec 
trodes are within the scope of the present invention. 

Let u and y(u) denote the position of the electrode 62 and 
the associated second signal quality metric along a linear 
track with an arbitrary origin, respectively. Because of the 
noise in neural signals, the metricy is a random variable with 
an associated regression function M(u)=E(yu), where E(...) 
denotes the conditional expectation operator. M(u) is the iso 
lation curve of the dominant neuron. Generally, the function 
M(u) is nonlinear. Moreover, it often exhibits unimodal char 
acter. The regression function is unknown; and must be esti 
mated or modeled from noisy observations of the second 
signal quality metric calculated from the dominant class. 
The Model Isolation Curve Module 1500 models the iso 

lation curve M(u) by estimating the regression function and 
determines the position u of the electrode 62 that maximizes 
the estimated regression function. The optimization method 
of the Model Isolation Curve Module 1500 is described below 
and in Z. Nenadic and J. Burdick, “A control algorithm for 
autonomous optimization of extracellular recordings’, IEEE 
Trans. On Biomed. Eng., 22(4):694-710, 2006. 

Kiefer-Wolfowitz Scheme and its Limitations 

The solution to the problem of regression function maxi 
mization, where only its noisy observations are available, was 
first addressed within a framework of recursive stochastic 
optimization. See J. Kiefer and J. Wolfowitz, "Stochastic 
estimation of the maximum of a regression curve. Annals of 
Math. Stat., Vol. 23, pp. 462-466, 1952. Let M(u)=E(yu) be 
an unknown regression function with a (local) maximizer 
u=arg max, M(u). The maximizer u can be found numeri 
cally through the following recursive procedure also known 
as a Kiefer-Wolfowitz (KW) scheme: 

it-i-utp:sk-1,2,..., (5) 

where u and u are the positions of the electrode 62 at 
movement iterations k+1 and k, respectively, p is a variable 
step size and S is a statistical estimate of the derivative of 
M(u) at point u given by: 
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1 5 y(us + sk, coil)-y(uk, a 2-1) (6) 
g = X2 is all 

Here, L represents the number of observations taken at each 
recording position, y(u,(D) is a random sample of the regres 
sion function (e.g., PTPA) at point u, and e determines the 
spacing for the finite difference approximation to the deriva 
tive. The sample variable () signifies that only random 
samples of the regression function are observed, while the 
subscript of () indicates different observations of a random 
variable. Note that Eq. (5) represents a stochastic version of 
the gradient ascent method. Also note that Lacts as a smooth- is 
ing parameter in Eq.(6). 

Under relatively mild regularity conditions on M(u) and for 
appropriate choice of the parameters p and e, it can be 
shown that the sequence generated by the recursion (5) con 
verges with probability 1 to the (local) maximizeru. See Id. 20 
and Y Ermoliev and R.J.-B. Wets, “Stochastic programming, 
an introduction in Numerical Techniques for Stochastic 
Optimization,Y Ermoliev and R. J.-B. Wets, Eds. New York: 
Springer-Verlag, 1988, ch. 1, pp. 1-32. For example, the 
sequences pe=C/k', where CD0 is a constant andXe(0.5,125 
guarantee convergence. In this case, C represents the initial 
step size and T is the rate of decay of the step size. 

Despite proven convergence properties, the KW scheme 
suffers from some practical problems. For example, the vari 
ance of tends to grow with k, resulting in relatively slow 
convergence rates. Assuming that the observations are inde 
pendent, it follows readily from Eq. (6) that lim-Var 
(S)->OO. Eventually, the step size stabilizes and conver 
gence is insured by the fact that lim; p >0, but this comes as 
at a high cost; not only is the convergence slow, but also the 
high variance of translates into excessive dithering of the 
electrode 62 for intermediate values of k. In practical appli 
cations, the unnecessary back-and-forth electrode movement 
inevitably leads to excessive tissue damage and possible 40 
inflammatory reactions. Furthermore, to evaluate the finite 
difference in Eq. (6), the probe must make excursions away 
from u. This again results in undesirable electrode move 
ments. These problems make the KW scheme and related 
difference based recursions ill-suited for use with the autono- 45 
mous algorithm 1000. See J. H. Venter, “On convergence of 
the kiefer-wolfowitz approximation procedure.” Annals of 
Math. Stat., vol. 38, 1967. 
The core of the KW scheme relies upon the statistical 

estimate of the derivative of a regression function from its 50 
noisy observations. In general, taking a difference of noisy 
data amplifies the effect of noise, which is the main reason for 
non-smoothness of difference-based techniques. Therefore, it 
might be worthwhile to estimate the regression function 
itself, rather than its derivative. The derivative of the esti- 55 
mated regression function may provide a smoother, less noisy 
signal that may be used by the neural isolation procedure. 

Adaptive Estimation Of Regression Function Model 
Let {u, u2,..., u} be a sequence of positions of electrode 

62 after kiterations with the corresponding random samples 60 
of the second signal quality metric Y-y(u.co), y(u, 
()), ...,y(u0))}. At each location u, (=1,2,...,k), multiple 
observations of the second signal quality metric are taken, i.e. 
y(u,c))={y(u,1), y(u2), ..., y(um)}, where and m, is the 
total number of observations at u. In general m/zmaz ... m. 65 
A general model for the regression function M(u) after k 

iterations can be expressed in the following form: 
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30 

nk (7) 
M(u, ni, B, 0) = Xb. p. (u, 0) 

i=1 

where (p,(u, 0) are basis functions (which may be chosen 
by the user), B. b. b.A. bel are the corresponding 
expansion coefficients, n is the number of basis functions, 
and 0 is a parameterization of the basis functions. In various 
embodiments, the basis functions are polynomials, while in 
alternate embodiments the basis functions are radial basis 
functions. While the model M depends linearly on B, the 
dependence on 0 is typically nonlinear. For example, in the 
case of radial basis functions, 0 represents a set of means and 
variances. It may be desirable to select basis functions with 
known functional forms that are differentiable. The param 
eters n, B and 0, may be unknown and may be estimated 
from the data. 
The parametern determines the complexity of the model. 

Determining the value of n is a model selection problem. 
Given a family of models {M(un.B.0,):n-1, 2.A. N}, 
where N is the maximal order of the candidate model (a 
number chosen before the experiment begins), the goal is to 
select the model that optimally fits the data. The definition of 
optimality affects the estimate M. For example, maximizing 
the likelihood of the model, leads to the ML solution. The 
problem with this method is that it favors the model of highest 
complexity (n N), which commonly leads to over-fitting. 
Overfit models are likely to be noisy, which may cause exces 
sive dithering of the electrode 62 as it nears the optimal neural 
isolation position. There are many methods that effectively 
prevent over-fitting. Some of them are based on heuristic 
criteria (e.g. cross-validation), while others are based on 
approximations of various statistical quantities (e.g. Akaike 
Information Criterion (AIC) or BIC used above). See M. 
Stone, “Cross-validatory choice and assessment of statistical 
predictions. J. Roy. Statist. Soc., B. Vol. 36, pp. 111-147, 
1974; H. Akaike, 'A new look at the statistical model identi 
fication.” IEEE Trans. Automat. Contr., Vol. AC-19, pp. 716 
723, 1974. 

Bayesian Model Selection 
Another solution to over-fitting is offered by Bayesian 

probability theory. See E. Jaynes, Probability theory: the 
logic of science, G. L. Bretthorst, Ed. New York: Cambridge 
University Press, 2003. Unfortunately, the nonlinear depen 
dence of the model on parameters 0, renders the Bayesian 
model selection computationally unfeasible. However, if the 
basis functions are parameter-free, the solution to the Baye 
sian model selection can be found analytically. To render the 
basis functions are parameter-free, the basis functions are 
assumed to be polynomial basis functions (p,(u)=u''. While 
Such a choice may seem restrictive, isolation curves are often 
simple (see FIG. 10); therefore, they can be accurately mod 
eled using polynomials of low order. To increase the flexibil 
ity of the model and account for modeling of more complex 
regression functions, the maximal order N of the candidate 
model may be increased. Using these basis functions, the 
model proposed by Eq. (7) reduces to a linear function of the 
parameters B, i.e. 

r nk (8) 

M(ii, n., B) = X bu 
i=l 
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Given a family of candidate models {M(u, ni B):n-1,2, 
A, N}, the goal is to select the order of the model that is most 
probable in view of the data Yand any prior information, I. 
The probability of the model M, given Yand I follows from 
Bayes theorem 

p(Y.M., I)PM, II) (9) 

nk = 1, 2, ... N 

where M, is short for M(u, n, B) with fixed n, P is a 
probability mass function and p is a PDF. For successful 
Bayesian model selection, the number of iterations khas to be 
sufficiently high with respect to the maximal order N. The 
smallest admissible number of iterations is denoted by ko. In 
Some embodiments, ko is set equal to five. For iterations up to 
ko, the sampling of data is simply not adequate to reliably 
model the regression function. The order of the model is 
selected that maximizes the posterior probability P(M. Y. 
I), i.e. 

n = arg, say, P.M., Y1.k. I) 

k = ko, ko + 1, ... 

In order to perform the maximization above, the posterior 
P(M, YI) of each candidate model M. must be evaluated. 
To carry out this calculation, the unknown parameters B; 
must be integrated out by a process called marginalization. 
Because of the Gaussian noise assumption and linear depen 
dence of the model on the parameters, the marginalization of 
B may be performed analytically, thus avoiding computa 
tionally expensive numerical integrations in multi-dimen 
sional parameter space. Consequently, the computation of the 
posteriors P(M, Y, I) yields an analytic Solution. See e.g., 
G. L. Bretthorst, “Bayesian analysis. ii. signal detection and 
model selection.” J. Magn. Reson. Vol. 88, pp. 552-570, 
1990. In the spirit of Bayesian probability theory, the poste 
rior P(MI) calculated at iteration k can be used as a guess 
for the prior P(MI) at iteration k+1 in Eq. (9). The recursion 
is initialized as P(MID=1/Natiteration k-ko, which reflects 
complete initial ignorance about the model. Once the order 
nofoptimal model at iteration kis known, the parameters of 
the model M(u, n, B) need to be estimated. 

Parameter Estimation 

Bayesian probability theory can also be used to infer the 
posterior of parameters B. given the observations Yand 
prior information I. Once the posterior is known, the maxi 
mum posterior solution can be found, i.e., B*, arg max, 
p(BY, I). However, it is easier and computationally more 
efficient to use the ML method, which under the linear model 
(8) and Gaussian noise assumption, reduces to the linear least 
squares method. As the number of observations increases, the 
influence of the prior information I on the estimate decreases, 
and the ML solution approaches the maximum posterior solu 
tion. Therefore, the parameter estimation problem can be 
formulated as follows: 
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k (10) 
* - - y.2 B = arg pin XI", B-Y. 

k = ko, ko + 1, 

where Yy(u, 1), y(up 2). . . . . y(u, m) and the matrix 
IeR"*" consists of m, identical rows given by: 1.u.A. 
di'i. The analytical solution to Eq. (10) reduces to finding 

the pseudo-inverse of a matrix. Once the optimal parameters 
B are estimated, the optimal model 

M (k r M"cu) AM (u, n., B.) 

at iteration k is fully specified. 
Recursive Stochastic Optimization with Basis Functions 
From Eq. (8) it follows that at iteration k the derivative 

M'(u) of the regression function can be estimated as: 

n-1 
Sk X ib (i-1) 

k = ko, ko + 1, ... 

n > 2. 

Similarly, M" (u) can be estimated at iteration k, denoted by 
H. Instead of the KW scheme (5) the following equation is 
used: 

u-u-CHI'Sk-koko-1, (11) 

where C0 is an appropriately chosen scale factor, and Sand 
H are the estimates of the first and second derivative of the 
regression function at pointu, respectively. As is apparent to 
those of ordinary skill, the amount the electrode 62 is moved 
each iteration is approximately equal to CIHIS, and upon 
each visit to the block 2402, the variable “move” of the Isolate 
Neuron state 2400 may be set equal to CIH'S 

Note that Eq. (11) represents a stochastic version of New 
ton's method with Superior convergence properties than sto 
chastic gradient ascent method. See L. Ljung and T. Sbder 
strom, Theory and Practice of Recursive Identification, 
Cambridge, Mass.: The MIT Press, 1983, ch. 2, pp. 12-66. 
The convergence is considered attained at iteration k if 
CIHIS*<Toland the position u declared a solution. Tolis 
a predetermined tolerance threshold that may be chosen by 
the user. The threshold “MIN MOVE' of the Isolate Neuron 
state 2400 may be equal to Tol. Tol may assume a wide range 
of values, but typically the value ofTol may be in the range of 
about 1 micron to about 5 microns. AS is apparent to those of 
ordinary skill, the value of Tol may depend upon the physi 
ology of the neural tissue in which the electrode 62 is posi 
tioned. 
The scale factor C may be used to calibrate the step size in 

Eq. (11), although large steps may occur occasionally, espe 
cially in the early iterations when the estimated model M*(u) 
may be far from the true isolation curve M(u). In the context 
of the electrode 62, large steps may be unacceptable, as they 
might introduce unnecessary tissue damage or deformation 
during the execution of the large step. Therefore, it may be 
desirable to limit the maximum step size to a predetermined 
maximum A. This limitation is especially useful for itera 
tions where the optimal model is found to be a straight line 
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(n=2), which results in H=0 and infinitely large step size in 
Eq. (11). Likewise, if for some k>k the estimated model is 
M*(u)=b*, i.e., (n=1) then S=0 and the recursion (11) 
breaks. In this case, the following simple control strategy may 
be used: 

title-A (12) 

where A is a constant step size chosen before the experiment 
initiates. Finally, for iterations kko the control strategy of Eq. 
(12) may be employed. 

Microdrive 

Referring to FIGS. 11-13, one aspect of the invention 
includes the microdrive 6000. The microdrive 6000 includes 
what is believed to be a novel use of one or more small linear 
piezo-electric motors or actuator(s) 6200 to independently 
position the electrode(s) 6002. The piezoelectric actuators 
6200 provide a small step size needed for positioning accu 
racy, and sufficiently fast acceleration of the electrode(s) 
6002 while executing small steps. The fast acceleration and 
Small step size may help minimize tissue damage caused by 
the electrode(s) 6002. One piezo-electric actuator 6200 per 
electrode 6002 may be used to advance or retract the electrode 
6002 into neural tissue. 
The central structure of the microdrive 6000 may include a 

main body 6100, which encases three piezo-electric linear 
actuators 6200. In one non-limiting embodiment, the piezo 
electric actuators 6200 are about 3 millimeters in diameter 
and about 4 centimeters in length. An electrode guide tube 
6450 and circuit board 6120 may be mounted to the main 
body 6100 of the microdrive 6000. The guide tube 6450 may 
provide for precise lateral positioning of the electrode(s) 
6002. The sharpened tip of the guide tube 6450 may help the 
microdrive penetrate the dura, a tough outer membrane Sur 
rounding the brain. In one embodiment, the linear actuators 
6200 are spaced apart horizontally and located in a bottom 
portion of the main body 6100. A portion of the guide tube 
6450 may be located between two or more of the linear 
actuators 6200. 

Each of the linear actuators 6200 may be coupled to a 
single movable carrier 6210 located at the top of the main 
body 6100 by a vertically extending shaft 6230. An end 6004 
of each of the electrodes 6002 is attached both electrically and 
mechanically to one of the movable carriers 6210. The end 
6004 of the electrodes 6002 may be attached to the movable 
carriers 6210 by fixing the end 6004 with a fastener (not 
shown) Such as a screw. The fastener may supply both a 
mechanical and electrical connection between each electrode 
6002 and one of the movable carriers 6210. The electrodes 
6002 may extend downwardly from the movable carriers 
6210 and through the guide tube 6450. Depending upon the 
vertical position of the movable carriers 6210, the electrodes 
6002 may exit the guide tube 6450 into the environment 
outside the microdrive 6000. 

In some embodiments, the linear actuators 6200 provide 
simultaneous high-precision electrode positioning and long 
range of electrode motion without Suffering from gear back 
lash. High-precision electrode positioning may include mov 
ing the electrode(s) 6002 in step sizes smaller than one 
micron. A Suitable long range of electrode motion may be 
about 5 millimeters. In alternate embodiments, the suitable 
long range may be about 1 centimeter as this distance repre 
sents the entire thickness of a human and primate cortex. As 
non-limiting examples, Suitable piezo-electric actuators may 
be obtained from Klocke Nanotechnik, Germany. 
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The electrodes 6002 may be constructed from platinum 

iridium wires 6003 and may be coated with glass along a 
portion of their outside surface. The glass coating 6006 may 
electrically insulate the wires 6003. In one embodiment, the 
platinum-iridium wires 6003 are coated along their length 
with glass except at tip 6008 and end 6004. The tip 6008 may 
remain uncoated to place it in electrical communication with 
neurons in the brain. A portion of the end 6004 may be 
uncoated to allow the neural signals detected by the tip 6008 
to be transmitted to the circuit board 6120. Suitable glass 
coating may be purchased from Alpha Omega Co., USA. In 
one embodiment, flexible, polyimide-shielded copper strips 
(now shown) connect the ends 6004 of each of the electrodes 
6002 to the circuit board 6120. 
The circuit board 6120 may include Hall-effect sensors 

(not shown) that may be used to determine the depth of the 
electrodes 6002. In one embodiment, the Hall-effect sensors 
have a precision of about 1 micron. The circuit board 6120 
may also contain signal conditioning circuitry to amplify and 
filter the output of the Hall-effect sensors. 
The circuit board 6120 may include a connector (not 

shown). Such as a standard multi-pin connector and the like, 
that is connected to the headstage amplifier801 (see FIG. 2). 
The neural signals detected by the tip 6008 and transmitted to 
the circuit board 6120 may be transmitted to the headstage 
amplifier801 by the connector. 
The microdrive 6000 may include a chamber adapter 6300 

that connects the main body 6100 to a standard cranial record 
ing chamber 6400. A portion of a bottom 6410 of the cranial 
recording chamber 6400 is received within the skull of the 
subject and a portion of a top 6420 of the cranial recording 
chamber 6400 is exterior to and extends outwardly from the 
skull. While a generally cylindrical cranial recording cham 
ber 6400 is depicted in the drawings for illustrative purposes, 
those of ordinary skill in the art appreciate that the present 
invention is not limited by the structure of the cranial cham 
ber. 
The microdrive 6000 may include a generally cylindrically 

shaped vertically extending main shaft 6320. The microdrive 
6000 may also include a vertically extending threaded lead 
screw 6322. Optionally, the microdrive 6000 may include a 
generally cylindrically shaped vertically extending second 
ary shaft 6324. The diameter of the secondary shaft 6324 may 
be smaller than the diameter of the main shaft 6320. In one 
embodiment, the diameter of the main shaft 6320 is about 3 
mm to about 5 mm. The diameter of the secondary shaft 6324 
may be about 1 mm to about 2 mm. The main shaft 6320 may 
belonger than the secondary shaft 6324. In one embodiment, 
the main shaft 6320, threaded lead screw 6322, and secondary 
shaft 6324 are spaced laterally from one another and arranged 
to be substantially parallel to one another along their longi 
tudinal axes. 
The microdrive 6000 may include a substantially planar 

support member 6330 having a through-hole 6332 sized and 
shaped to receive one end of the main shaft 6320. The support 
member 6330 may also have a through-hole sized 6334 and 
shaped to receive one end of the secondary shaft 6324. The 
support member 6330 may also have a through-hole sized 
6336 and shaped to receive one end of the threaded lead screw 
6322. The diameter of the through-hole 6336 may be larger 
than the maximum diameter of the threads of the lead screw 
6322 allowing the lead screw 6322 to turn freely within the 
through-hole 6336 without engaging the inside surface of the 
through-hole 6336. 
A top cap 6350 may include through-holes holes 6352, 

6354, and 6354 substantially similar to through-holes 6332. 
6334, and 6334, respectively. A portion of the end of the lead 
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screw 6322 may extend upwardly through the through-hole 
6356. A nut 6326 or similar component may be placed on the 
end of the lead screw 6322 extending upwardly through the 
through-hole 6356 to facilitate turning the lead screw 6322 
and maintain the lead screw 6322 within the through-holes 
6336 and 6356. In embodiments wherein the main shaft 6320 
that is longer than the secondary shaft 6324 and/or lead screw 
6322, a portion 6328 of the main shaft 6320 may exit the 
through-hole 6332 and extend downwardly away from the 
support member 6330. 
The main body 6100 may include a slider 6140 configured 

to slide along the main and secondary shafts 6320 and 6324, 
respectively. The slider 6140 may include a main collar 6150 
configured to longitudinally receive and slid vertically along 
a portion of the main shaft 6320. The slider 6140 may include 
a threaded through-hole 6152 having threading along its 
inside Surface configured to engage the threads of the lead 
screw 6322. The slider 6140 may include a secondary collar 
6154 configured to longitudinally receive and slide vertically 
along a portion of the secondary shaft 6324. When the lead 
screw 6322 is turned (i.e., rotates within through-holes 6336 
and 6356) the threads of the lead screw 6322 engage the 
threads of the threaded through-hole 6152 and exert a verti 
cally directed force upon the slider 6140 of the main body 
6100. Turning the lead screw 6322 in one direction will exert 
an upward force moving the slider 6140 of the main body 
6100 upward and away from the skull along the main and 
secondary shafts 6320 and 6324, respectively. Turning the 
lead screw 6322 in the opposite direction will exert a down 
ward force moving the main body 6100 downwardly and 
toward the skull along the main and secondary shafts 6320 
and 6324, respectively. 
The microdrive 6000 may include a chamber adapter 6300. 

The chamber adapter 6300 may include a ring 6340 and a 
collar 6342. The collar 6342 is sized and shaped to receive the 
portion 6328 of the main shaft 6320 exiting the through-hole 
6332 and extending downwardly away from the support 
member 6330. In some embodiments, the collar 6342 may 
rotate about the longitudinal axis of the main shaft 6320 to 
position the main body 6100 relative to the chamber adapter 
6300. The support member 6330 may include a downwardly 
extending member 6331 having a through-hole 6333 sized 
and shaped to receive a fastener (not shown) such as a bolt or 
screw. The fastener that may be inserted into the through-hole 
6333 and may bear against the outside surface of the collar 
6342 thereby preventing rotation of the main body 6100 about 
the main shaft 6320. Alternatively, the outside surface of the 
collar 6342 may include an aperture (not shown) configured 
to receive the fastener. 

The ring 6340 has a recessed portion 6344 along its bottom 
surface 6346 defined by a downwardly extending sidewall 
6348. The recessed portion 6344 is sized and shaped to 
receive and rest upon a portion of the top 6420 of the cranial 
recording chamber 6400. In embodiments including a gener 
ally cylindrically shaped cranial recording chamber 6400, the 
chamber adapter 6300 may rotate about a vertical longitudi 
nal axis of the cranial recording chamber 6400 when resting 
upon the portion of the top 6420 of the cranial recording 
chamber 6400. One or more fasteners may be used to connect 
the sidewall 6346 of the chamber adapter 6300 to the portion 
of the top 6420 of the cranial recording chamber 6400 
received within the recessed portion 6344. 
Combined rotation of the chamber adapter 6300 about the 

main shaft 6320 and rotation of the chamber adapter 6300 
relative to the top 6420 of the cranial recording chamber 6400 
provides an area of candidate electrode positions. In some 
embodiments, the area of candidate electrode positions 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

36 
includes a generally circular area defined inside the cranial 
recording chamber 6400. The generally circular may have a 
diameter of about 12 mm. The area of candidate electrode 
positions may allow the operator to deploy the electrodes 
6002 within the cranial recording chamber 6400 over mul 
tiple brain areas. 
The electrodes 6002 may be disposed within a guide tube 

6450 that is mounted inside the main body 6100. Referring to 
FIG. 13, the guide tube 6450 may include a bundle of longi 
tudinally arranged tubes 6452. In one embodiment, each of 
the electrodes 6002 is disposed within a single tube 6454. The 
tubes 6454 may be constructed from stainless steel pieces of 
hypodermic tubing. The distal ends of the hypodermic tubing 
may be honed together to a sharp point. 

After selecting a desired planar position from the candidate 
electrode positions within the cranial recording chamber 
6400, the main body 6100 may be lowered with respect to the 
skull by manually turning the vertical lead screw 6322. The 
main body 6100 may be lowered until the tip 6456 of the 
guide tube 6450 pierces the dura, which is a tough layer of 
tissue protecting the brain. The guide tube 6450 may help 
protect the electrodes 6002. This gross vertical lowering of 
the electrodes 6002 is critical and can be challenging, as it is 
often difficult to tell when the dura has been pierced and 
lowering the guide tube 6450 too much may damage brain 
tissue. To this end, the microdrive 6000 was designed to 
maximize visual and tactile feedback during this operation. 
The design allows the operator a rough view of the point of 
insertion and includes clear vertical markings that show inser 
tion depth. 
Once the guide tube 6450 is in the correct position above 

the brain, the electrodes 6002 may be deployed, i.e., extended 
beyond the tip 6456 of the guide tube 6450, by activating the 
linear actuators 6200. As is apparent to those of ordinary skill, 
for semi-chronic use, structural elements may be locked into 
place with the various fasteners described above, and a cover 
(not shown) can be placed over the entire assembly for pro 
tection against impact and tampering by the Subject. 
The electrodes 6002 may be loaded by simply feeding the 

end 6004 (to avoid damage to the tip 6008) through the guide 
tube 6450 and affixing the end 6004 to the appropriate move 
able carrier 6210. The microdrive 6000 may be cleaned by a 
simple bath in a disinfectant solution Such as hydrogen per 
oxide. 

Recently, the use of layered manufacturing technologies 
has been proposed to create functional robotic devices. See, 
e.g., J. G. Cham et al., “Fast and Robust: Hexapedal Robots 
via Shape Deposition Manufacturing.” Intl. J. Robotics Res., 
21 (10-11):869-82 (2002). In layered manufacturing, parts are 
not machined and assembled, but rather build up in layers by 
the repeated deposition of material unto a substrate. These 
processes allow parts to be created with nearly arbitrary 
geometry in relatively short amounts of time. Layered manu 
facturing processes include rapid prototyping technologies 
Such as Stereolithography (SLA) and 3D printing. Another 
layered manufacturing technology with potential for these 
types of applications, Shape Deposition Manufacturing 
(SDM), may allow active components such as actuators and 
sensors to be embedded within solid structures through its 
unique cycle of alternating material depositions and removal. 
See, e.g., J. G. Cham et al., “Layered Manufacturing with 
Embedded Components: Process Planning Issues. ASME 
Proceedings, DETC '99, Las Vegas, Nev., (September, 1999); 
R. Merz et al., “Shape Deposition Manufacturing.” Proc. of 
the Solid Freeform Fabrication Symposium, University of 
Texas at Austin (August, 1994); and S. Rajagopalan, et al., 
“Representation of Heterogeneous Objects during Design, 
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Processing, and Freeform Fabrication.” Materials and 
Design, 22(3):185-97 (2000). Structures can be made that 
combine Soft and hard materials in ways that mimic the 
elegant structures seen in nature. 
One advantage of these processes is that they offer the 5 

ability to create compact designs that are not encumbered by 
fasteners or connectors or that require additional sealing 
between assembled components. Structures with complex 
geometry that would be impossible to make with traditional 
methods can be made as one solid piece. Other advantages 
include the relatively short time between design iterations and 
the ability to custom-modify each device to fit a particular 
patient or implantation site with relative ease. 
The main body 6100, chamber adapter 6300, moveable 

carriers 6210, support member 6330, slider 6140, top cap 
6350 may be constructed from a UV-curable plastic using an 
SLA process. Plastics available for the SLA process may have 
mechanical properties that approximate ABS plastic. If the 
plastic chosen flexes in high stress areas, the geometry of the 20 
components may be designed to reinforce those areas. 
The SLA process used to construct some of the compo 

nents of the microdrive 6000 may provide a layer thicknesses 
of about 0.1 mm. However, the finite beam size of the com 
puter-controlled laser that solidifies the layers of the UV- 25 
curable plastic may cause the actual dimensions of the com 
ponents to vary by approximately 0.1 mm from the specified 
value. In some SLA processes, with a limited choice of mate 
rials, the tolerance may be as low as 0.016 mm. These varia 
tions may pose a problem for the slider 6140 and lead screw 
6322 mechanism for gross XYZadjustment of the microdrive 
6000. In this case, variations in the sliderjoint may cause play 
in the movement of the main body 6100, which may cause 
damage to the tissue when inserting the guide tube 6450 
through the dura. To this end, these joints may be fitted with 
Teflon R bearing inserts. The fit of the Teflon R) bearing inserts 
may be adjusted by one or more set-screws to achieve the 
desired joint precision and Smoothness of motion when 
advancing the guide tube 6450. 40 
The materials used in SLA processes are often not bio 

compatible. Parylene is the generic name for a family of 
thermoplastic polymers that can be deposited using room 
temperature low pressure chemical vapor deposition 
(LPCVD). Parylene is known to be biocompatible (it is a US 45 
Pharmacy class-VI implantable material), and is commonly 
used for coating of biomedical devices such as pacemakers. 
Recently, its potential in creating MEMS neural probes and 
flexible connectors has been explored. See C. Pang et al., “A 
New Muhi-Site Probe Array with Monolithically Integrated 50 
Parylene Flexible Cable for a Neural Prosthesis,” 27th Intl. 
Confof IEEE, EMBS (2005). 
The components made by the SLA process may be ren 

dered biocompatible by coating them with Parylene. In one 
embodiment, a thin film of about 20 microns of Parylene was 55 
coated on the components constructed using the SLA pro 
cesses. The layer of Parylene may be applied using a com 
mercial LPCVD machine (Part number SCS PDS2010E, 
obtained from Labcoter). 

Additional embodiments of the methods and systems can 60 
be envisioned by a person skilled in the art upon reading of the 
present disclosure and in particular the Examples section and 
will not be further described in details. 

The following examples are provided to describe the inven 
tion in further detail. These examples, which set forth modes 65 
Suitable for carrying out the invention, are intended to illus 
trate and not to limit the invention. 
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EXAMPLES 

Example 1 

Experiments with the Autonomous Algorithm 1000 
and Commercially Available Microdrives 

In the first example, the embodiment of the autonomous 
algorithm 1000 implemented includes the state machine 
2000. The current signal quality metric was determined by the 
SNR and the second signal quality metric was determined by 
the PTPA. The event vectors were aligned by their minimums 
and the first two principal components were used for feature 
extraction. 
One embodiment of the autonomous algorithm 1000 was 

implemented in software using MATLAB(R). The software 
can be used with any combination of microdrive (e.g., com 
mercially available from Thomas Recording GmbH, FHC 
Inc., etc.) and data acquisition system (e.g., commercially 
available from Plexon Inc, Tucker-Davis Technologies, etc.) 
by writing MATLAB m-files for moving the electrodes and 
acquiring the data streams, as will be readily appreciated by 
those of skill in the art and as can be readily implemented by 
those of skill with only routine effort. 
The testing of the inventive algorithm was performed using 

a single electrode microdrive (obtained from FHCInc.; Bow 
doinham, Me.) and a data acquisition system (obtained from 
Plexon Inc.; Dallas, Tex.). It is this system from which the 
results illustrated in FIG. 14 were obtained. FIG. 14A pro 
vides an example neural signal sampled using the Sample 
Neural Signal Module 1100. FIG. 14B provides a plurality of 
event vectors aligned by their minimums. The alignment was 
performed by the alignment portion of the Spike Classifica 
tion Module 1300. The color of the event vector corresponds 
to the cluster to which it belongs. FIG.14B shows an example 
action potential recordings (indicated by color green) from an 
isolated neuron and an example of action potential recordings 
(indicated by color blue) from a second neuron that cannot be 
reliably separated from signal fluctuations caused by noise. 
FIG. 14C provides an illustration of the results of the Spike 
Classification Module 1300. 
The autonomous algorithm 1000 was also tested in other 

experimental systems; for instance, controlling a five-channel 
microdrive (obtained from Thomas Recording, Germany), a 
six-channel NAN drive (obtained from Plexon) and the three 
channel microdrive described in Cham et al., “Semi-chronic 
motorized microdrive and control algorithm for autono 
mously isolating and maintaining optimal extracellular action 
potentials,” J. Neurophysiol., 93(1):570-579 (January 2005). 
Each of these systems uses a Plexon data acquisition system. 
The autonomous algorithm 1000 has been used extensively 

to isolate and record dozens of neurons in the Posterior Pari 
etal Cortex in rhesus macaque monkeys. FIG. 15A depicts the 
iterative results of the Model Isolation Curve Module 1500 as 
it moves the electrode 62 to the maximum of the estimated 
isolation curve 7000. The observations of peak-to-peak 
amplitude at each position are shown as black dots 7210 with 
the final observation as magenta dots 7220, the average action 
potential 7200A-F at each position in green, the modeled 
isolation curve 7300 in red, and the path of the electrode 
(always advancing in this example) by the black arrows 
7100A-E. The action potential 7200A is probably from 
another neuron, observed before detecting the isolation curve 
of the isolated neuron. The autonomous algorithm 1000 
stopped at the rightmost position because the signal quality 
was high enough that further movement was unnecessary and 
may damage the neuron. 
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FIG. 15b shows the maintenance phase of the isolation. 
Both the electrode position (blue) 7350 and the average peak 
to-peakamplitude (red) 7500 are plotted against time. At time 
Zero, the neuron is first isolated (which corresponds to the last 
observation shown in FIG. 15a). The signal improves and 
then degrades as the neuron drifts by the electrode 62. The 
non-horizontal portions of the electrode position plot 7350 
depict periods during which the State machine attempted to 
re-isolate the neuron. 

In FIG. 15B, changes in PTPA detected by the electrode 62 
are plotted for a period of about 40 minutes. When the PTPA 
drops below the threshold “MIN SNR, the autonomous 
algorithm 1000 transitions from the Neuron Isolated state 
2500 and attempts to reisolate the neuron, i.e., the Resample 
Gradient state 2700 and possibly the Reisolate Neuron 2800 
states is/are visited. The leftmost portion of the average peak 
to-peak amplitude plot 7500 shows the neuron drifting first 
towards the electrode 62 and then away. The first reisolation 
attempt fails and a new neuron is isolated in band 7520. It is 
believed that the first re-isolation attempt may have been 
unsuccessful because of excessive drift and/or electrode-tis 
Sue coupling. The new neuron is then Successfully re-isolated 
twice in bands 7530 and 7540. This is a relatively short 
isolation example ended when the subjects behavior termi 
nated the experiment. The results clearly demonstrate the 
effect of tissue drift and the success of the inventive autono 
mous algorithm 1000 in maintaining good signal quality. 
Many neurons have been held isolated for several hours using 
the inventive technique. 

Example 2 

An embodiment of the Microdrive 6000 with the 
Autonomous Algorithm 1000 

FIG. 16 illustrates neural data recorded using the Sample 
Neural Signal Module 1100 to simultaneously record neural 
signal from the three electrodes 6002A-C of the microdrive 
6000. Graphs in column (a) plot several seconds of the filtered 
data stream over time, sampled at 20kHz, with dots above the 
Voltage trace at times when spikes (neuron action potentials) 
were detected. Column (b) shows close-up views of these 
detected spikes with their minimum Voltage aligned at 0 ms. 
The spikes are underlaid by noise samples (in gray). 
The diagram on the right side of FIG. 16 indicates the 

relative depths of the three electrodes 6002A-C at the time of 
the recordings. In the rightmost portion of FIG. 16 provides 
example action potentials recorded in consecutive depth posi 
tions of electrode 6002C are also shown near the depths at 
which they were recorded. 

Repositioning one electrode may shift the tissue around 
another electrode and inadvertently alter its signal. It is 
believed that this problem is dependent on the dimensions of 
electrodes and their spacing. The data shown in FIG. 17 
represent an experiment aimed at investigating whether repo 
sitioning one electrode of the microdrive 6000 will shift the 
tissue around another electrode. In the experiment, the posi 
tion (i.e., depth) of the electrodes 6002A and 6002B was held 
constant (each close to an active neuron). The electrode 
6000C was then moved back and forth (at a speed of about 6 
um/s) and data streams were recorded on all three channels at 
each position. 

First, the movement of the electrode 6000C caused no 
change in the position of electrodes 6000A and 6000B, as 
verified by the Hall effect sensors of the microdrive 6000. 
Next, the effects on the signals of electrodes 6000A and 
6000B were inferred by looking for correlation between the 
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40 
signal-to-noise ratios (SNRs) of the signals and the position 
of electrode 6000C. From visual inspection of the data, no 
clear relationship between the SNR detected by the electrodes 
6000A and 6000B and the position of electrode 6000C seems 
apparent. Only a general downward trend is observed in the 
SNR detected by the electrodes 6000A and 6000B, which 
does not correspond to the up and down motion of the elec 
trode 6000C. 
The downward trend in the SNR detected by the electrodes 

6000A and 6000B over the recording period may be 
explained by gross tissue movement (e.g., relaxation follow 
ing initial electrode advance). The trend is consistent with the 
frequently observed loss of signal quality due to tissue migra 
tion in acute experiments. See, e.g., J. G. Cham et al., “A 
Semi-Chronic Motorized Microdrive and Control Algorithm 
for Autonomously Isolating and Maintaining Optimal Extra 
cellular Action Potentials.” J. Neurophysiol., 93:570-79 
(2005). These initial results suggest that it is not a significant 
issue for the electrode separation in the microdrive 6000 (the 
centerlines of the electrodes 6000A-C are about 400 microns 
apart). 

Example 3 

Simulations Results. Using the Autonomous 
Algorithm 1000 

The autonomous algorithm 1000 was developed and tested 
in a simulated environment, whose details are described 
below. The application of the algorithm to acute neurophysi 
ological recording experiments is discussed as well as its 
potential implication to chronic recording electrode arrays. 
The autonomous algorithm 1000 may be useful for both 
acute, chronic, and semi-chronic extracellular recordings. 

Modeling Extracellular Potential 
The inventors developed a detailed computational model 

of the extracellular field around a neuron for several reasons. 
Due to the complex nature of the problem, it was helpful to 
initially test and develop the autonomous algorithm 1000 on 
a simulator. Second, this model provides a biophysical basis 
for the inventive control methodology. Additionally, with this 
model the inventors were able to simulate the recording elec 
trode positioning processes in a repeatable and reliable way. 
The simulator includes two components. In the first com 

ponent, the inventors solve for the time-varying membrane 
currents using a detailed compartmental model of a neuron. In 
the second component, these currents were used as boundary 
conditions for a partial differential equation (PDE) that mod 
els the propagation of the extra-cellular potential. 

Computational Model of a Single Neuron 
A model of a neocortical pyramidal cell from layer 5 of the 

cat visual cortex was used for simulations. See Z. Mainen et 
al., “Influence of dendritic structure on firing pattern in model 
neocortical neurons.” Nature, 382:363-66 (1996). This model 
was selected mainly because of its ability to emulate firing 
properties of real cortical cells. Nothing about the autono 
mous algorithm 1000 depends upon the specific properties of 
this model. A brief account of the model is given here for the 
convenience (see Id. for details). 
The model is developed in the NEURON simulation envi 

ronment. See M. Hines et al., “The neuron simulation envi 
ronment,” Neural Comp., 9:1179-1209 (1997). It consists of 
3720 compartments and captures the complex geometry of 
the dendritic tree. The model has a low density sodium (Na) 
channels in the Soma and dendrites and a high density in the 
axon hillock and initial segment. Fast potassium (K') chan 
nels are present in the axon and Soma, but are excluded from 
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the dendrites. This type of channel distribution is responsible 
for spike initiation at the axon initial segment. See Z. Mainen 
et al., “A model of spike initiation in neocortical pyramidal 
neurons. Neuron (1995). To ensure repetitive firing, slow K" 
channels were added to the Soma and dendrites, along with 
one type of high-threshold calcium (Ca") channel. In the 
original model, the neuron was activated by injection of cur 
rent in the soma. The inventors’ model is based on a modifi 
cation made by Holt, where the injected current in the soma 
was replaced with synapses uniformly distributed throughout 
the dendrites. See G. Holt et al., “Electrical interactions via 
the extracellular potential near cell bodies. J. Comp. Neuro 
sci., 6:169-84 (1999). 
The cable equation, a PDE describing the Voltage changes 

as a function of time and space, is typically used as the basis 
of compartmental neuron models. Depending on the number 
ofassumptions made in the modeling process, the cable equa 
tion can be developed at different levels of complexity. Only 
final results are presented herein. A detailed derivation of the 
results from the first principles and underlying assumptions 
can be reviewed at G. Holt, 'A critical reexamination of some 
assumptions and implications of cable theory in neurobiol 
ogy.” Ph.D. dissertation, California Institute of Technology 
(1998). 

In Summary, the electric potential in the space in and 
around the neuron is governed by a system of Laplace equa 
tions, as described below in system (13), with the boundary 
conditions OVcp,n, J., and OVcpin, J., where p, and (p are 
the intracellular and extracellular potential (respectively), O, 
and O. are the corresponding conductivities per unit length, n, 
and n are normal vectors to the cell membrane (n, -n), and 
J, is the transmembrane current per unit area. The time con 
stants for the extracellular and intracellular space are much 
smaller than those of an active membrane; hence, both the 
extracellular and intracellular space are almost purely resis 
tive and no time derivatives appear in System (13). 

(13) 

For a neuron with complex dendritic structure, system (13) 
is virtually unsolvable. Most neural simulators assume one 
dimensional intracellular space and a weak coupling from 
extracellular to intracellular potential (effectively (p=0). 
Under these conditions, the p-part of the system (13) can be 
viewed as a 1-D PDE driven by the dynamics of the active 
membrane. This PDE is then solved numerically by convert 
ing it to a system of ordinary differential equations through a 
compartmental modeling process, wherein, for each compart 
ment, there is a membrane equation: cdp,(t)/dt-g(cp,(t)- 
E)-i(t), where c.g., and it, are the membrane capacitance, 
conductance, and current per unit length, respectively, and E. 
is so-called reversal potential. Once (p, and J, are known for 
each compartment, it is possible to solve for (p. 

Line Source Approximation 
Despite existing numerical routines for solving PDEs, the 

complexity of the boundary condition renders the solution of 
the p-part of system (13) prohibitively expensive. An 
approximation has been developed that gives a fast and rela 
tively accurate solution. See G. Holt et al., “Electrical inter 
actions via the extracellular potential near cell bodies. J. 
Comp. Neurosci., 6:169-84 (1999). Assuming current is gen 
erated at a point source in an unbounded isotropic Volume. (p. 
(r,t)=I(t)/(4!tor), where I is the source current and r is the 
distance to the source. Furthermore, if the thickness of the 
compartmental model segments is neglected, each segment 
can be treated as a continuous line of point Sources. For a 
single line segment, the potential at a point (r, Z) due to this 
line source approximation is 
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in (, )ds (14) O 

ei, 2., ii) 

where it is the transmembrane current per unit length, r is the 
distance to the line, Z measures distance in the direction of the 
line underlying the segment, and -so and 0 are the endpoints 
of the line segment in a local coordinate system attached to 
the segment (see FIG. 18). Note that this approximation 
implies a radial symmetry of the extracellular potential (p. 
Moreover, for a fixed time t, the transmembrane current is 
constant along the segment (i.(..., t) i(t)) and the solution to 
Eq. (14) can be found in a closed form. The exact form of this 
Solution and the accuracy of the line source approximation for 
this particular model are discussed in G. Holt, “A critical 
reexamination of some assumptions and implications of cable 
theory in neurobiology.” Ph.D. dissertation, California Insti 
tute of Technology (1998). At a fixed time, the potential at any 
point in the extracellular space is found by Summing the 
contributions of all line segments (line source approximation) 
and Soma (which is modeled with a point source approxima 
tion). 

Modeling Noise Field 
Noise was added to the model in order to mimic experi 

mental conditions. Voltage fluctuations (thermal noise) in the 
recording electrode are a major source of uncertainty. Addi 
tional noise sources arise from the recording hardware. The 
activity of neurons relatively distant from the recording site 
imposes biological noise. See, e.g., R. Lemon, Methods for 
Neuronal Recording in Conscious Animal, Wiley (New 
York), ch. 2, pp. 17-38 (1984). Because these signals fall 
below the noise level, they cannot be utilized for further study 
and are treated as noise rather than useful signals. The process 
of analog-to-digital conversion imposes an amplitude quan 
tization noise. 

In the simplest scenario, the observed signal Z, can be 
viewed as a useful signal S corrupted by an additive noise w 
(i.e., Z(t)=S(t)+w(t)), where w subsumes various noise 
Sources such as the electrical noise, the biological noise, the 
quantization noise, etc. To model noisew properly, the inven 
tors made the following observations. First, neural noise is 
non-stationary (i.e., its statistical properties change over 
time). The non-stationarity of neural noise has been reported 
on time scales as small as 20 ms. See M. Fee et al., “Variability 
of extracellular spike waveforms of cortical neurons. J. Neu 
rophysiol., 69: 175-88 (1996). Second, the distribution of neu 
ral noise is non-Gaussian. Several studies have found that the 
density of neural noise has heaviertails (Super-Gaussian) than 
the normal density. See, e.g., Id., M. Sahani, “Latent variable 
models for neural data analysis.” Ph.D. dissertation, Califor 
nia Institute of Technology, 1999, and M. Lewicki. “Bayesian 
modeling and classification of neural signals. Neural Comp., 
6:1005-30 (1994). Furthermore, neural noise exhibits signifi 
cant time correlations with so-called 1/f spectra (ignoring, for 
the moment, an apparent paradox of the spectra of non-sta 
tionary processes). These processes, termed 1/f processes, 
arise in many physical applications and their spectra obey 
S(f)of over a wide range of frequencies, where p-0 and p 
is not necessarily an integer. Since 1/f processes are not 
adequately handled with linear models, such as autoregres 
sive moving average, various modeling attempts have been 
made in the past, although no general Solution exists to date. 
To avoid these problems and to take advantage of recorded 

data at the inventors disposal (a single platinum-iridium 
microelectrode (Frederic Haer Company, Bowdoinham, Me.) 
with the nominal impedance of 2 MC2 at 1 kHz was used for 
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the recording; the electrode was advanced manually using a 
commercial micromanipulator (Narishige International 
USA, Inc., Long Island, N.Y.); the data was acquired through 
a recording system (Plexon Inc, Dallas, Tex.) with a pre 
amplifier and a band-pass filter (band 154 Hz-13 kHz); and 
the signals were amplified and digitized (12 bit A/D converter, 
digitization rate 40 kHz) by a data acquisition card PCI-MIO 
16E-4 with LabView (National Instruments, Austin, Tex.)), 
the inventors sampled neural noise from the Rhesus parietal 
cortex recordings that did not yield any visible spikes. This 
noise, referred to as “recorded noise, is non-stationary, non 
Gaussian and contains all the noise sources listed above. 
These properties together with the abundant number of 
sample paths that can be drawn from recorded data, make the 
recorded noise a suitable noise candidate for the present com 
putational model. A sample path of the recorded noise, its 
power spectral density and histogram are shown in FIG. 19. 
The “modeling of the noise w is completed by scaling the 

recorded noise so that a specific standard deviation O, is met. 
Consistent with typical noise levels in extracellular record 
ings, the inventors selected O,-20 V for the study. Further 
more, as the noise amplitude (peak-to-peak) easily reaches 
five O, (see FIG. 19), most of the traces outside the 120 um 
sphere cannot be reliably detected. This confirms the findings 
of many studies, and additionally justifies the inventors 
choice of O,. 

Although the inventors “model neural noise as a non 
stationary non-Gaussian process, exactly the opposite was 
assumed for purposes of analysis and algorithm development. 
The rationale is that: (a) the analytical tools for mathematical 
treatment of non-stationary processes are not well developed, 
which makes their analysis cumbersome, and (b.) Gaussian 
assumption usually provides tractable calculations often 
resulting in a closed form analytical Solution. The downside is 
that the violation of these assumptions generally produces 
suboptimal solutions. However, the algorithm is sufficiently 
robust with respect to the violation of these assumptions. The 
Success of the algorithm in an experimental environment 
points to a similar conclusion. The inventors define a signal 
to-noise ratio (“SNR) as the energy contained in a spike 
signal divided by the expected noise energy. For a Zero-mean 
wide sense stationary noise with variance O, , this definition 
reduces to: 

A. RMS(s) SNRS (15) 

where RMS(s) is the root-mean-square value of s calculated 
over the Supporting time interval of a single spike. 

Simulations 
The autonomous algorithm 1000 was tested in the simu 

lated environment. To test the autonomous algorithm 1000 in 
a multi-unit context, the inventors simulated the extracellular 
potential of two neurons that were assumed to be decoupled. 
In this manner, the extracellular potential field is simply a 
superposition of the fields induced by the two simulated neu 
OS. 

The two identical neuron models are placed in parallel 
without any rotation (see FIG. 20A) to mimic the parallel 
organization of the neurons in cortical columns. In a local 
coordinate system with Lum units, the Somata of neuron 1 and 
neuron 2 are centered at (0,0,0) and (50,0,0), respectively. 
Rotation of the neurons 1 and 2 around y-axis did not signifi 
cantly affect the results. The 50 um distance between the 
Somata is consistent with the wide range of cell densities in 
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the cerebral cortex. To account for complex non-linearities in 
the kinetics of Voltage-gated channels, the simulations were 
carried out with variable step size in NEURON. The step size 
variedbetween 0.02 mS during the steep rising phase of action 
potentials and 1.0 ms during the steady state phase. See G. 
Holt, 'A critical reexamination of Some assumptions and 
implications of cable theory in neurobiology.” Ph.D. disser 
tation, California Institute of Technology, 1998. The firing 
rate of the neurons was estimated at 58 Hz. 

While the extracellular simulator can work at an arbitrary 
sampling rate, the inventors found a rate of 20 kHz, a good 
compromise between computational speed and accuracy of 
spike representation. Thus, the transmembrane currents were 
re-sampled at 20 kHz in MATLABR). The choice of re-sam 
pling method did not cause any significant differences in the 
results, hence a linear interpolation was used. The inventors 
imposed an 8 ms phase shift between the responses of the two 
neurons to prevent them from firing simultaneously. 
The location of the neurons was determined using the 

following tissue movement model. The extracellular potential 
of the two neurons was calculated as a Superposition of the 
potentials of individual neurons which were obtained as 
described above. 

Modeling Tissue Movement 
The nature of neural tissue movement caused by the move 

ment of a recording electrode is not well understood. The 
understanding of the overall process likely involves a com 
plex mechanical analysis. Based on Some basic observations, 
the inventors developed a simple model of tissue movement. 
The purpose of this model is not to capture the complexity of 
the tissue dynamics, but rather to perturb the neuron's posi 
tion so that the autonomous algorithm 1000 can be tested 
against these types of disturbances, which are commonly 
found in acute extracellular recordings. 

It is believed that the movement of neural tissue in response 
to electrode movement has two significant time scales: fast 
and slow. Due to friction forces, even the sharpest electrode 
will cause tissue compression as the electrode is advanced 
through the neural tissue. The time scale of these movements 
is short (seconds and minutes). Presumably, the energy stored 
through the tissue compression is released through Subse 
quent relaxation, which is a much slower process (time con 
stant /2-1 hour). While the fast (transient) tissue movements 
are more relevant for the convergence of the autonomous 
algorithm 1000 (such as may occur during the Optimize state 
4200 depicted in FIG. 7), the slow (relaxation) movements 
are more relevant for the stability of the optimal solution 
(such as may occur during the Maintain state 4300 depicted in 
FIG. 7). 

Let ep, cpeR denote the position of the electrode tip and 
the position of the neuron (its soma center) at iteration k={0, 
1, }, respectively. The inventors assume that all the seg 
ments of the neuron undergo the same displacement which is 
proportional to the electrode displacement, i.e. 

where C. is a proportionality constant, g is again factor and T 
is a time constant of the tissue relaxation. Let k be the 
iteration at which the convergence is attained. Since k<<T. 
for transient tissue movements (ksk), the last term in Eq. 
(16) can be ignored. In this case, 
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cd-aged, (see FIG. 21), where 

cd A cp - Cpo and ed 2 ep - epo 

are the neuron displacement and the electrode displacement, 
respectively. Under the assumption that the neurons closer to 
the electrode path are affected by the electrode displacement 
more than the neurons that are further away from the elec 
trode path, the following expression may be written: 

where r is the distance between the center of the soma and the 
electrode track, and d is suitably chosen constant. For 
example, C-1 if the center of the soma lies directly in the 
electrode path, and C. approaches 0 for the neurons that are far 
away from the electrode track (see FIG. 21). The rate of the 
decay of a is regulated by the constant d (d=10 um for this 
study). The gain factor ge(0,1) determines what fraction of 
the electrode displacement translates into the neuron dis 
placement (g 0.9 for the present study). For example, the 
displacement of electrode by 100 um, causes the displace 
ment of 30 Lum of the neuron with a soma center that is located 
20 um from the electrode path. 

For relaxation movement (kdk*), cp cp-cd exp(-k/T), 
where cd is a constant vector defined as cd=Og(ep*-epo). 
For very large k, the tissue relaxes back to its original posi 
tion, i.e. cp, ecpo. For the present study, the inventors chose 
T-300, which given the fact that a single iteration takes -5s, 
translates into a time constant of 25 min. 
Due to relatively high firing rates, one second of the simu 

lated neural signals provided enough spikes for Successful 
post-processing (e.g. clustering and objective function evalu 
ation). A one-second subset of the recorded noise seen in FIG. 
19A was selected at random, re-sampled at 20 kHz, scaled to 
O, 20 LV, and added to the simulated neural signals. 

Definition of Sampling Tracks 
The performance of the autonomous algorithm 1000 was 

tested in simulation along many transects, including the two 
principal directions seen in FIGS. 20B and 20O. In the local 
coordinate system of the neurons, these two directions are 
parallel to Z-axis and y-axis, and will be termed the vertical 
direction and the horizontal direction, respectively. These two 
sampling directions mimic the process of recording from a 
sulcus and regular cortical layers, as shown in FIGS. 20D and 
20E. As shown in FIGS. 20Band20C, the inventors simulated 
several individual sampling tracks along each of these two 
principal directions. These tracks are numbered, with the 
tracks in FIG. 20B representing vertical sampling tracks, 
while those in FIG. 20O depict the location of horizontal 
sampling tracks. The tracks of the vertical and horizontal 
directions start in a plane located at Z=100 and y=80, respec 
tively. 

To obtain statistically significant results, 100 trials were 
performed for each sampling track. The allowed range of 
motion of the “electrode' was Z e100-100 for vertical 
tracks and y e80,-20 for horizontal tracks. These values are 
consistent with a relatively small field of the detectable poten 
tials of the model neuron. They may also reduce the time the 
autonomous algorithm 1000 spends in the Search state 4100 
(see FIG. 7), thereby lowering the computational overhead of 
individual trials. If the autonomous algorithm 1000 did not 
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converge to a solution within these ranges, the trials were 
aborted and declared unsuccessful. Depending on their posi 
tion relative to the neurons, individual tracks exhibited a wide 
range of SNRs, where the SNR was defined as: 

A RMS(s) + RMS(s) SNRS (17) 
2O. 

This modification of the definition in Eq. (15) accounts for the 
presence of two neurons. Because both neurons have the same 
firing rates, the two RMS values are weighted equally. 

Choice of Parameters 
The autonomous algorithm 1000 may involve several 

parameters and spike processing methods, and its perfor 
mance may depend on a particular choice of these parameters 
and methods. The choice of parameters and methods used in 
the analysis that follows, is provided by Table I. The inventors 
have found that as long as the parameters are chosen reason 
ably, the autonomous algorithm 1000 may offer consistent 
performance. This is particularly true for parameters related 
to model selection, e.g. ko, N, and N. 

TABLE I 

THE CHOICE OF PARAMETERS AND METHODS 
USED FOR PRESENT ANALYSIS. 

Variable/Operation Value/Type 

W. W. (spike width) (0.5, 1.0 ms 
L (detection sensitivity) O 

N, 2 
Feature Extraction Haar Wavelet 

N. LlogN, -1.J. N > 4 
{O. no clustering, N, < 4 

N 5 
ko 6 
C 1 
Tol 0.5 m 
As 25 m 
A 5 Im 

Anax 10 m 

Performance of the Algorithm 
Because the electrode 62 and the neurons are movable, an 

efficient way to test the performance of the autonomous algo 
rithm 1000 is to measure how close the electrode 62 comes to 
the dominant (closest) neuron upon convergence (at iteration 
k) and compare this distance, denoted by d., to an optimal 
distance, d, across trials. The optimal distance d was cal 
culated off-line through a brute force numerical search over 
the sampling track using very fine (1 um) sampling steps. To 
eliminate the dependence of the solution on the electrode 
movement, the neuron coordinates remained fixed during the 
simulation of the Search State 4100. At each sampling loca 
tion, one second of data is simulated and the spikes corre 
sponding to the dominant neuron used to obtain the second 
signal quality metric. The second signal quality metric was 
defined as the PTPA. Because the precise occurrence times of 
the spikes from the two neurons were known exactly, no 
detection, alignment or clustering was necessary. This elimi 
nates error due to false detection, misclassification, etc., and 
ensures that the second signal quality metric evaluation is 
error-free. The regression function M(u) was estimated as the 
sample average of the second signal quality metric and its 
maximizeru was found. At the pointu, the optimal distance 
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d was found as the distance between the electrode tip and the 
Soma center of the dominant neuron. 

Referring to FIGS. 22 (for vertical tracks) and 23 (for 
horizontal tracks), the majority of the solutions place the 
electrode tip within 4 um of the optimum d. Not surprisingly, 
the performance degrades for sampling tracks that are farther 
from the axon hillock, such as V8 and V9, which exhibit 
relatively modest levels of SNR. Also, it appears that the 
termination condition (Tol=0.5 m) was too large for these 
particular tracks, and that more consistent performance could 
be obtained at the expense of lowering Tol. On the other hand, 
the tracks V11 and V12 had even lower levels of SNR, yet they 
offered more consistent performances than the tracks V8 and 
V9. However, these two tracks did not achieve a 100% suc 
cess rate (defined as a percentage of convergent trials), in 
particular a success rate of 84% and 97% was observed at V11 
and V12, respectively. Additional analysis of unsuccessful 
trials showed that these tracks had critically flat regression 
functions. Coupled with low SNR this resulted in incorrectly 
estimated regression function model Mi(u)=b* Wk-ko, 
which has no maximum and thus prevented convergence. 

Similar behavior was observed for the tracks H5 and H6, 
which had 54% and 92% success rate, respectively. Addition 
ally, the convergence rates of these sampling tracks were 
lower than those of the fully successful sampling tracks. For 
example, the average number of iterations k necessary to 
reach the optimum for the tracks V11 and V12 was about 
16.25 and about 15.56, respectively, versus about 13.15 itera 
tions for the tracks V1-V10. Similarly, the average number of 
iterations k was about 21.25 and about 19.00 for the tracks 
H5 and H6, respectively, versus about 15.56 iterations for the 
tracks H1-H4. 
Once the optimal position u is found, the autonomous 

algorithm 1000 tracks the neuron by monitoring the devia 
tions of the second signal quality metric from the found 
optimum. FIG. 24 shows a typical course of a simulation 
where the optimal signal quality is maintained over a period 
of more than 900 iterations. The sampling track, denoted by 
“V” in FIG. 22, ran vertically approximately 40 um away 
from the soma of neuron 2. The initial position was set 200m 
above the horizontal plane passing through the two somata. 
After several iterations in the Search state 4100 (see FIG. 7), 
spikes were found and the autonomous algorithm 1000 tran 
sitioned to the Optimize state 4200 (see FIG. 7). 
At iteration k=21 the optimum position u-235 um was 

found and the autonomous algorithm 1000 transitioned to the 
Maintain state 4300 (see FIG. 7). Note that if the neurons 
were stationary, u-200/ium is expected to be the optimal 
position. This discrepancy may be mostly a consequence of 
the transient neuron movement, which was modeled as 
described above. 

In the Maintain state 4300 (see FIG. 7), the current signal 
quality metric was monitored and compared to the mean of 
the current signal quality metric of the signal acquired at 
iteration k. Due to slow (relaxation) tissue movements, the 
observed current signal quality metric degraded over time. 
Once the deviation in signal quality exceeded pre-specified 
tolerance (in this study, chosen as three standard deviations of 
the optimal signal quality at iteration k), the optimality was 
considered lost, and all the previous signal quality observa 
tions were cleared. The autonomous algorithm 1000 transi 
tioned back to the Optimize state 4200 (see FIG. 7) and a new 
optimum was found. The optimality was then maintained by 
toggling between the Maintain and Optimize states 4300 and 
4200 (see FIG. 7). The frequency of switching between the 
Maintain and Optimize states 4300 and 4200 may depend on 
how tight the tolerances are set. As the number of iterations 
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increased, the neurons drifted closer to their initial position 
and the autonomous algorithm 1000 remained in the Maintain 
state 4300 for longer periods of time. At the same time the 
newly found optima approached the point u=200 um. The 
average signal quality, however, remained essentially 
unchanged over different optima, as can be seen in FIG. 24. 

Based on the realistic model of extracellular potentials 
described above, the inventors determined the autonomous 
algorithm 1000 may autonomously find the optimal recording 
position along a linear sampling track and maintain the opti 
mality of the Solution by compensating the disturbances due 
to modeled tissue movements. 
The remarkable success rates depicted in FIGS. 22 and 23 

are somewhat expected given the regularity of the responses 
of the two simulated neurons. Such highly repeatable firing 
patterns are rarely found in actual recording experiments. 
Instead, the activity of individual neurons could be highly 
non-stationary, ranging from sporadic firing (less than a few 
HZ) to fairly high firing rates, often related to the task per 
formed by the animal subject. Observing signals for a few 
seconds may not be sufficient to adequately estimate the 
signal quality metric. However, as the examples above show, 
this algorithm has behaved well in actual use with awake 
behaving animals. 

For example, in a successful implementation of the autono 
mous algorithm 1000 in acute single-electrode recording 
experiments involving both rats and monkeys, the firing rate 
was typically very low (a few Hz) and up to 20 seconds of data 
at a single electrode position was necessary to correctly per 
form unsupervised clustering and in turn correctly estimate 
the signal quality metric. See J. G. Cham et al., “A Semi 
Chronic Motorized Microdrive and Control Algorithm for 
Autonomously Isolating and Maintaining Optimal Extracel 
lular Action Potentials. J. Neurophysiol., 93:570-79 (Janu 
ary 2005). Clearly, a neuron with an arbitrarily low firing rate 
can be tracked, but this may result in a large amount of the 
data to be processed, which invariably slows down all the 
computational steps and the time necessary for the autono 
mous algorithm 1000 to converge. This trade-off can be prac 
tically handled by setting a lower bound for the firing rate of 
the neuron to be tracked, for example, a bound of 2 Hz, was 
used in the previously cited article. 

Another practical issue arises when an electrode comes too 
close to the membrane of a neuron, which may damage the 
neuron and cause its Subsequent death. This phenomenon is 
often concurrent with the observations of extremely large 
action potentials. One way to handle this situation is to con 
strain the optimization algorithm to stop when the signal 
quality metric exceeds some Suitably chosen upper bound. 
For example, an upper bound of SNR=12 was used for the 
experiments in the previously cited article. Likewise, solu 
tions with poor signal quality should be abandoned despite 
optimality. For example, the solutions attracks VI 1, V12, H2, 
H3, H5, and H6 would probably be of very little practical use 
because of extremely low SNR that they provide. 
The successful use of the autonomous algorithm 1000 in 

acute recording experiments may significantly improve the 
productivity of recording neuroscientists by freeing them 
from the tasks Such as manual positioning and frequent read 

60 justments of the electrodes 62. The role of operator may be 

65 

reduce to the off-line selection of parameters similar to those 
of Table I by a software implementation of the autonomous 
algorithm 1000. 

While the methods and systems have been described in 
terms of what are presently considered to be particular 
embodiments. It is to be understood that the disclosure need 
not be limited to the disclosed embodiments. It is intended to 
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cover various modifications and similar arrangements 2. The method of claim 1, wherein classifying the action 
included within the spirit and scope of the claims, the scope of potentials of each of the recorded samples into classes com 
which should be accorded the broadest interpretation so as to prises 
encompass all such modifications and similar structures. The representing each of the action potentials by a predeter 
present disclosure includes any and all embodiments of the 5 mined number of features; 
claims. classifying each of the action potentials using the prede 
What is claimed is: termined number of features into one of a predetermined 
1. A method of automatically positioning an electrode dis- number of classes or an outlier class; and 

posed inside a brain, the method comprising: determining the predetermined number of classes by cal 
moving an electrode along a predetermined path of travel 10 culating the Bayesian Information Criterion value for a 

until a neural signal having a current signal quality met- plurality of candidate numbers of classes and setting the 
ric that is greater than or equal to a minimum threshold predetermined number of classes equal to the candidate 
value and comprising action potentials is detected; number of classes that produced the largest Bayesian 

after the neural signal is detected, moving the electrode to Information Criterion value. 
a plurality of locations along the predetermined path and 15 3. The method of claim 1, wherein classifying the action 
after each move, recording a sample of the neural signal; potentials of each of the recorded samples into classes com 

detecting, carried out by a processing means, action poten- prises 
tials in the neural signal of each of the recorded samples; representing each of the action potentials by a predeter 

classifying, carried out by a processing means, the action mined number of principal components; and 
potentials of each of the recorded samples into classes; 20 classifying each of the action potentials using the prede 

calculating, carried out by a processing means, a first signal termined number of principal components into one of a 
quality metric for each of the classes; predetermined number of classes or an outlier class. 

for each of the recorded samples, identifying, carried out 4. The method of claim 1, wherein classifying the action 
by a processing means, a dominant class; potentials of each of the recorded samples into classes com 

for each of the action potentials of the dominant class of 25 prises 
each of the recorded samples, determining, carried out representing each of the action potentials by a predeter 
by a processing means, a second signal quality metric; mined number of Haar wavelet coefficients; and 

modeling, carried out by a processing means, an isolation classifying each of the action potentials using the prede 
curve as a function of the second signal quality metric termined number of Haar wavelet coefficients into one 
for each of the action potentials of the dominant class of 30 of a predetermined number of classes or an outlier class. 
a first portion of the recorded samples and the locations 5. The method of claim 1, wherein classifying the action 
of the plurality of locations where each of the recorded potentials of each of the recorded samples into classes com 
samples of the first portion of the recorded samples were prises for each action potential, extracting a segment of the 
recorded; sample corresponding to the action potential from the sample, 

determining, carried out by a processing means, a move 35 and for each sample, aligning the extracted segments. 
distance from a current electrode position to a location 6. The method of the previous claim, wherein aligning, the 
along the modeled isolation curve that the modeled iso- extracted segments comprises selecting a first segment, 
lation curve indicates will improve signal quality; and selecting a second segment having a first position, determin 

as long as the move distance is greater than a predeter- ing a first correlation between the first segment and the second 
mined minimum move distance threshold, 40 segment in the first position, shifting the second segment 

moving the electrode the move distance to a new electrode from the first position to a second position, determining a 
position along the predetermined path and including the second correlation between the first segment and the second 
new electrode position in the plurality of locations, segment in the second position, determining which of the first 

recording a new sample of the neural signal and including and second correlations is greatest, and placing the second 
the new sample in the recorded samples, 45 segment in the position corresponding to the greatest corre 

detecting, carried out by a processing means, action poten- lation. 
tials in the new sample of the neural signal, 7. The method of claim 1, wherein classifying the action 

classifying, carried out by a processing means, the action potentials of each of the recorded samples into classes com 
potentials of the new sample into classes, prises 

calculating, carried out by a processing means, the first 50 representing each of the action potentials by a predeter 
signal quality metric for each of the classes, mined number of features; 

identifying, carried out by a processing means, the domi- classifying each of the action potentials using the prede 
nant class, termined number of features into one of a predetermined 

for each of the action potentials of the dominant class, number of classes or an outlier class by constructing a 
determining, carried out by a processing means, the 55 finite mixture model to model the probability density 
second signal quality metric, function of action potentials in a feature space defined 

modeling, carried out by a processing means, the isolation by the predetermined number of features used to repre 
curve as a function of the second signal quality metric of sent each of the action potentials, wherein the finite 
each of the action potentials in the dominant class of a mixture model comprises a plurality of component prob 
second portion of the recorded samples and the locations 60 ability density functions, and one of the component 
of the plurality of locations where each of the recorded probability density functions of the plurality corre 
samples of the second portion of the recorded samples sponds to the outlier class and the other component 
were recorded, and probability density functions correspond to the prede 

determining, carried out by a processing means, the move termined number of classes; and 
distance from the new electrode position to a location 65 assigning each of the action potentials to one of the com 
along the modeled isolation curve that the modeled iso- ponent probability density functions based upon the 
lation curve indicates will improve signal quality. probability the action potential as represented by the 
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predetermined number of features belongs to each of the 
component probability density functions. 

8. The method of claim 7, wherein the component prob 
ability density function corresponding to the outlier class is a 
uniform distribution and the component probability density 
functions corresponding to the predetermined number of 
classes are Gaussian distributions. 

9. The method of claim 7, wherein the component prob 
ability density functions corresponding to the predetermined 
number of classes each have a set of parameter values and the 
sets of parameter values are determined by maximizing the 
likelihood the action potentials as represented by the prede 
termined number of features belong to the finite mixture 
model constructed using the sets of parameter values. 

10. The method of claim 1, wherein classifying the action 
potentials of each of the recorded samples into classes com 
prises 

representing each of the action potentials by a predeter 
mined number of features; 

classifying each of the action potentials using the prede 
termined number offeatures into one of a predetermined 
number of classes or an outlier class; and 

determining the predetermined number of classes compris 
ing: 

determining a plurality of candidate predetermined num 
ber of classes; 

for each of the candidate predetermined number of classes, 
constructing a finite mixture model to model the prob 
ability density function of action potentials in a feature 
space defined by the predetermined number of features 
used to represent each of the action potentials, wherein 
the finite mixture model comprises a plurality of com 
ponent probability density functions, and one of the 
component probability density functions of the plurality 
corresponds to the outlier class and the other component 
probability density functions correspond to the candi 
date predetermined number of classes; 

for each of the finite mixture models constructed, deter 
mining a likelihood the action potentials as represented 
by the predetermined number of features belong to the 
finite mixture model constructed; and 

setting the predetermined number of classes equal to the 
candidate predetermined number of classes used to con 
struct the finite mixture model corresponding to the 
greatest likelihood. 

11. The method of claim 1, wherein the modeled isolation 
curve comprises a Sum of a predetermined number of basis 
functions having the formu') whereinu is the position of the 
electrode when the sample was recorded and itakes the value 
of a natural number in a set from one to the predetermined 
number of basis functions. 

12. The method of claim 1, wherein the modeled isolation 
curve comprises a Sum of a predetermined number of basis 
functions, each of the basis functions having a form selected 
by an operator. 

13. The method of claim 1, wherein the modeled isolation 
curve comprises a Sum of a predetermined number of basis 
functions and the predetermined number of basis functions is 
determined using a Bayesian Model Section. 

14. The method of claim 1, wherein the modeled isolation 
curve comprises a Sum of a predetermined number of basis 
functions, each of the basis functions comprises an expansion 
coefficient, and modeling the isolation curve of the neuron 
comprises determining the expansion coefficient of each of 
the basis functions, and determining the expansion coefficient 
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of each of the basis functions comprises using a least squares 
optimization to determine a value for each of the expansion 
coefficients. 

15. The method of claim 1, further comprising, comparing 
the move distance to a maximum move threshold, and if the 
move distance is greater than the maximum move threshold, 
setting the move distance equal to predetermined maximum 
move distance. 

16. The method of claim 1, wherein the action potentials of 
each of the recorded samples are classified into classes using 
unsupervised clustering. 

17. The method of claim 1, wherein the modeled isolation 
curve is modeled using unsupervised regression analysis. 

18. A method of monitoring a neural signal using an elec 
trode disposed inside a brain comprising: 
moving the electrode inside the brain to a plurality of 

locations and at each location, collecting a sample of the 
neural signal to obtain a plurality of samples of the 
neural signal; 

collecting a sample of the neural signal to obtain a new 
sample of the neural signal; 

detecting, carried out by a processing means, action poten 
tials in the new neural signal, each action potential hav 
ing an amplitude; 

using unsupervised clustering to classify the action poten 
tials into clusters; 

identifying, carried out by a processing means, a dominant 
cluster; 

calculating, carried out by a processing means, a current 
signal quality metric as a function of the amplitude of the 
action potentials of the dominant cluster; and 

as long as the current signal quality metric is less than a 
minimum signal quality threshold, 
modifying the plurality of samples to include the new 

sample, 
using a portion of the plurality of samples to create a 

model of an isolation curve of the neural signal, 
determining, carried out by a processing means, a move 

distance to a new location that the model indicates 
will improve signal quality, 

moving the electrode the move distance, 
after moving the electrode, re-sampling the neural signal 

to replace the new sample, 
detecting, carried out by a processing means, action 

potentials in the new neural signal, each action poten 
tial having an amplitude, 

using unsupervised clustering to classifying the action 
potentials into clusters, 

re-identifying, carried out by a processing means, the 
dominant cluster, and 

recalculating, carried out by a processing means, the 
current signal quality metric as a function of the 
amplitude of the action potentials of the dominant 
cluster. 

19. The method of claim 18, wherein using unsupervised 
clustering to classify the action potentials into clusters com 
prises 

representing each of the action potentials by a predeter 
mined number of features; 

clustering each of the action potentials using the predeter 
mined number of features into one of a predetermined 
number of clusters or an outlier cluster; and 

determining the predetermined number of clusters by cal 
culating the Bayesian Information Criterion value for a 
plurality of candidate numbers of clusters and setting the 
predetermined number of clusters equal to the candidate 
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number of clusters that produced the largest Bayesian 
Information Criterion value. 

20. The method of claim 18, wherein using unsupervised 
clustering to classify the action potentials into clusters com 
prises, 

representing each of the action potentials by a predeter 
mined number of principal components; and 

clustering each of the action potentials using the predeter 
mined number of principal components into one of a 
predetermined number of clusters or an outlier cluster. 

21. The method of claim 18, wherein using unsupervised 
clustering to classify the action potentials into clusters com 
prises 

representing each of the action potentials by a predeter 
mined number of Haar wavelet coefficients; and 

clustering each of the action potentials using the predeter 
mined number of Haar wavelet coefficients into one of a 
predetermined number of clusters or an outlier cluster. 

22. The method of claim 18, wherein using unsupervised 
clustering to classify the action potentials into clusters com 
prises 

representing each of the action potentials by a predeter 
mined number of features; and 

clustering each of the action potentials using the predeter 
mined number of features into one of a predetermined 
number of clusters or an outlier cluster by 
constructing a finite mixture model to model the prob 

ability density function of action potentials in a fea 
ture space defined by the predetermined number of 
features used to represent each of the action poten 
tials, wherein the finite mixture model comprises a 
plurality of component probability density functions, 
and one of the component probability density func 
tions of the plurality corresponds to the outlier class 
and the other component probability density func 
tions correspond to the predetermined number of 
classes; and 

assigning each of the action potentials to one of the 
component probability density functions based upon 
the probability the action potential as represented by 
the predetermined number of features belongs to each 
of the component probability density functions. 

23. The method of claim 22, wherein the component prob 
ability density function corresponding to the outlier cluster is 
a uniform distribution and the component probability density 
functions corresponding to the predetermined number of 
clusters are Gaussian distributions. 

24. The method of claim 18, wherein using unsupervised 
clustering to classify the action potentials into clusters com 
prises 

representing each of the action potentials by a predeter 
mined number of features; 

clustering each of the action potentials using the predeter 
mined number of features into one of a predetermined 
number of clusters or an outlier cluster; and 

determining the predetermined number of clusters com 
prising: 

determining a plurality of candidate predetermined num 
ber of clusters; 

for each of the candidate predetermined number of clus 
ters, constructing a finite mixture model to model the 
probability density function of action potentials in a 
feature space defined by the predetermined number of 
features used to represent each of the action potentials, 
wherein the finite mixture model comprises a plurality 
of component probability density functions, and one of 
the component probability density functions of the plu 
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rality corresponds to the outlier cluster and the other 
component probability density functions Correspond to 
the candidate predetermined number of clusters: 

for each of the finite mixture models constructed, deter 
mining a likelihood the action potentials as represented 
by the predetermined number of features belong to the 
finite mixture model constructed; and 

setting the predetermined number of classes equal to the 
candidate predetermined number of classes used to con 
struct the finite mixture model corresponding to the 
greatest likelihood. 

25. The method of claim 18, wherein the model of the 
isolation curve comprises a Sum of a predetermined number 
of basis functions having the form u') wherein u is the 
position of the electrode when the sample was recorded and i 
takes the value of a natural number in a set from one to the 
predetermined number of basis functions. 

26. The method of claim 25, wherein the predetermined 
number of basis functions is determined using a Bayesian 
Model Section. 

27. The method of claim 18, wherein the model of the 
isolation curve is created using unsupervised regression 
analysis. 

28. A system comprising: 
a microdrive comprising an electrode disposed within a 

brain, the electrode being configured to detect a neural 
signal of the brain, and a piezoelectric actuator config 
ured to move the electrode along a predetermined path of 
travel in response to a command signal; 

a memory comprising instructions; and 
a processor coupled to the memory, coupled to the elec 

trode, and configured to execute the instructions and 
provide the command signal to the electrode, 
wherein the instructions comprise instructions directing 

the processor to generate the command signal, the 
instructions comprising: 

instructions for generating the command signal to move 
the electrode a predetermined search distance, after 
the electrode is moved detect action potentials in the 
neural signal detected by the electrode, and until 
action potentials are not detected repeatedly generate 
the command signal to move the electrode the prede 
termined search distance, 

instructions for generating a command signal to move 
the electrode a second predetermined distance a pre 
determined number of times, and after each move, 
record the neural signal, and 

instructions for using the predetermined number of 
recorded neural signals detected by the electrode to 
model an isolation curve, use the isolation curve to 
determine a move distance, and if the move distance is 
greater than a minimum move threshold, generate a 
command signal to move the electrode the move dis 
tance. 

29. A non-transitory computer readable-medium having 
instructions executable by a processor coupled to a micro 
drive comprising a movable electrode, the instructions com 
prising: 

instructions for detecting action potentials comprising: 
instructions for determining a search distance, 
instructions for moving the electrode of the microdrive 

the search distance, 
after the move, instructions for recording the neural 

signal, 
instructions for determining whether action potentials 

are present in the recorded neural signal, and 
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if action potentials are not present in the recorded neural 
signal, instructions directing the processor to execute 
the instructions for detecting action potentials; 

instructions for moving the electrode to a plurality of 
electrodepositions and after each move, recording the 
neural signal to create a plurality of neural signal 
recordings each having a corresponding recorded 
electrode position; 

instructions for modeling an isolation curve of a neuron 
having an order using the neural signal recordings and 
corresponding recorded electrode positions and if the 
order is greater than a predetermined order threshold, 
instructions for using the model of the isolation curve 
to determine a move distance to a new location that the 
model of the isolation curve indicates will improve 
signal quality; and 

instructions for iteratively moving the electrode com 
prising: 

comparing the move distance to a move threshold value, 
if the move distance is greater than the move threshold 
value, moving the electrode of the microdrive the 
move distance to a new electrode position, 

after the move, recording a new neural signal and the 
new electrode position, 

determining a signal quality metric using the new neural 
signal, and 

comparing the signal quality metric to a minimum signal 
quality threshold, if the signal quality metric is below 
the minimum signal quality threshold, modifying the 
plurality of neural signal recordings to include the 
new neural signal, modifying the electrode positions 
corresponding to the plurality of neural signal record 
ings to include the new electrode position, and execut 
ing the instructions for modeling the isolation curve 
of a neuron and the instructions for iteratively moving 
the electrode. 
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30. The computer readable-medium of claim 29, compris 

ing instructions for comparing the signal quality metric to a 
maximum signal quality threshold and if the signal quality 
metric exceeds the maximum signal quality threshold, deter 
mining a back away distance and moving the electrode the 
back away distance. 

31. The computer readable-medium of claim 29, compris 
ing instructions for comparing the signal quality metric to a 
minimum track signal quality threshold and if the signal 
quality metric is less than the minimum track signal quality 
threshold, executing the instructions for detecting action 
potentials. 

32. The computer readable-medium of claim 29, compris 
ing instructions for maintaining neural signal quality com 
prising instructions for periodically recording a sample neu 
ral signal at a sample electrode position, determining a signal 
quality metric using the sample neural signal, comparing the 
signal quality metric to the minimum signal quality threshold, 
if the signal quality metric is below the minimum signal 
quality threshold, modifying the plurality of neural signal 
recordings to include the sample neural signal, modifying the 
electrode positions corresponding with the plurality of neural 
signal recordings to include the sample electrode position, 
and executing the instructions for modeling the isolation 
curve of a neuron and the instructions for iteratively moving 
the electrode. 

33. The computer readable-medium of claim 29, compris 
ing instructions for maintaining neural signal quality com 
prising instructions for periodically recording a sample neu 
ral signal, determining a signal quality metric using the 
sample neural signal, comparing the signal quality metric to a 
minimum track signal quality threshold and if the signal 
quality metric is less than the minimum track signal quality 
threshold, executing the instructions for detecting action 
potentials. 


