US 20030041173A1

a9 United States

a2 Patent Application Publication (o) Pub. No.: US 2003/0041173 A1

Feb. 27, 2003

Hoyle (43) Pub. Date:
(549) SYNCHRONIZATION OBJECTS FOR (52) US. Cli vvvcecerecrevneveerecenees 709/248
MULTI-COMPUTER SYSTEMS
(76) Inventor: Stephen L. Hoyle, Mountain View, CA 57) ABSTRACT
(US)
Correspondence Address: Several multiprocessqr computer systems, each having its
HEWLETT-PACKARD COMPANY own copy of an operating system, are interconnected to form
Intellectual Property Administration a multi-computer system having glo.bal memory a(.:c.essible
P.O. Box 272400 by any processor on any node and including provision for
Fort Collins, CO 80527-2400 (US) spinlock access control. .In this enYironment, a g.lobal mutex,
and other like synchronization objects, are realized that can
(21) Appl. No.: 09/928,115 contr.ol the coordination of mult.iple threads running on
multiple processors and on multiple nodes or platforms.
(22) Filed: Aug. 10, 2001 Each global mutex is supported by a local operating system
shadow mutex on each node or platform where threads have
Publication Classification opened access to the global mutex. Global mutex function-
ality is thus achieved that reflects and utilizes the local
(51) Int. CL7 oo GO6F 15/16 operating system’s mutex system.
10’\ 20'\‘
(—r————-—=""-=- == ==—7——-- (r——-""—"=>""=>"">">""~>~>—""—>—7"~——— |
| | | '
: 12~ cCrU 14~ CcPU I I~ cru 18~ CPU [
[|
| 22— CACHE | | 244 CACHE I | 26 CACHE | | 28 CACHE :
'I \3’0 = I | : I 33 I I
| 46 34 GLOBALINT : |48 JoosanT] !
| 38T I 40— |
LOCAL [LOCAL I
| |MEMORY AND|56~] MEMORY | | |meEmory AnD MEMORY |
I o | 1o
THREAD | |
| CONTROLLER | CONTROLLER
I [THREAD | ' '
| = [: ‘ THREAD) |
[36 |
I' GLOBAL | ' GLOBAL |
| 42~ 4!;/|EMORY I : 44~ MEMORY |
l I
: MUTEX ! : |
|
| 45 | | 51 :
I |
' SPINLOCK : | SPINLOCK :
L 4 S J

US 2003/0041173 A1

Patent Application Publication Feb. 27,2003 Sheet 1 of 13

| ainbly

26/
o [
r--H--""———"—_—_—— I._ r-—-———————=- - — |_
|

MDOINIJS “ | MOOTNIAS "
1S _ “ P |
| |
_ | X3LNW |
_ | ey _
AHOWIN [—~t¥ | _ AHOWIN [—~2¥ _
w8019 o | _ V8019 _
1z | | _ 85 ~ _
avayHl I “ _ QV3IYHL _ |
¥ITIOULNOD I I TIOHINOD |
o/ I | av3adHt fo)] I
AHOW3IN ANV AHOWIW _ _ AHOWIN Ng6] ANV AYOWIN _
1vO01 _ OO0 |
v _. _ W,ML _
[INI V801D _/% O/l | 4 | LiNITvEo1o v om/E v
I e I | | I L _
3HOVD 1—82 | | 3HovD p—9Z | “ IHOVD H—vZ | | aHovo -2z |
| |
ndd ksl ndd P “ Ndd bt ndo 2

_ .

] |

Patent Application Publication Feb. 27,2003 Sheet 2 of 13 US 2003/0041173 A1

/44

42
GLOBAL MEMORY SEGMENT /

SEGMENT HEADER

SPIN LOCK

\ 45

GLOBAL DATA
RECORD

N 400

I

Flgure 2

Patent Application Publication Feb. 27,2003 Sheet 3 of 13 US 2003/0041173 A1

NODE 20 21~{ THREAD
LOCAL MEMORY T
61~ SYNC-SFTW /40
38
NODE 10 1 /
LOCAL MEMORY

|/58

THREAD — 56

60
Y [

SYNCRHRONIZATION
SOFTWARE (FIGS. 7-17

]_/-502
L LOCAL DATA |~—500

RECORD
62
LOCAL OS
G'—ﬁf_’“— [Tocar COCAL
5 Mutex | M EVENT
64 68 66 72 \70

Figure 3

Patent Application Publication Feb. 27,2003 Sheet 4 of 13 US 2003/0041173 A1

402
/ 400

e i
GLOBAL MVTEX DATA RECORD

403 GLOBAL

|
| I
] |
: |
]
| OBJECT ID |
43
: 4
| I
| 404~ GLOBAL |
| STATE '
; I
|
' OWNER I
: 406— NODEID |
|
: |
|
NODE
: 408 REFERENCES :
: |
|
' GLOBAL |
: 4101 WAST QUEUE |
i
: |
|
NODES
: 412 NoTIFIED :
I |
- |
| A J |
| |
|
|
| | NopbEw NODE R NODE Q |
| 3 - — — 1] 2
| THREADS THREAD THREADS '
l WAITING WAITING WAITING l
|
: . 418 416 ~414 |
|
e e e e e e J

Figure 4

Patent Application Publication Feb. 27,2003 Sheet 5 of 13 US 2003/0041173 A1

/ 502
/ 500

LOCAL DATA RECORD

GLOBAL
203 OBJECT ID

504— GLOBAL
MEMORY ADDRESS

LOCAL
506 — MVTEX

508 LOCAL

EVENT
LOCAL
5101 REF. COUNT
s1p_| LOCAL THREAD
WAIT COUNT

Fligure 5

US 2003/0041173 A1

Patent Application Publication Feb. 27,2003 Sheet 6 of 13

9 amnbld

T Twmmmmiwews Y FTRE
R Snanool3doNaav |1 _
|t DN] I "INITvEOT1D [T T T T T T T So V0T !
_ ! ILVHINIO BLELERERRIIY 1 |
_ > ALk 1 [_QvIgHL GN3dSNSNN | ||
1, | C I (v} "OI) IAON _ |
_ W Vo Sv_“_ YIHIONY 3sva1ay [“ " _
I _ y < {
_ _“" Loot “ 209 109 909 | “
Y _
! 3N3ND LIVM i . - |
- il (e1-01d) I \ gg!
| vao1o ! $S300V i | 5| X3LAW w001 8_ |
“ (rold) ! X31NW 0og} | r N.gg| !
| qroozmuviva ! vE019 _ 0~ !
L X3LNW TvE0TD __" | T “
K 1 dvadHl _ » IN3AT VOO |
l-4-=——g==—==! RS Tanzasns| | | : ey |
I ST TN ! FooL | |
_ 300N 6 . (b1 old _
(O 20 1 o xm.SM,_ v ww__:c< A _ "LNI V8019 | !
(£1013) NI _“ 2 Noos _ ISVITRY XALW | | “
95 e e e e — —
SS300V vEOT19 | | vy {/ .\wm % m._ _
XALNW . . Ja
WvE019 N39O __ avayHL (oto13) 29 5o _
| " xainw
(01°91d) _ viva vool |l
l 000} _
| ; - -
| (Z1o1d) (so1d) (2'o1d) _
avaHL N\ | 7 awn || xaww N X3LNW >~_ozmw_ JM%%L_ |
1z “_ 00z, Y3800 || VN3do |) |V 3LvaHo ~N\-00; b _

Patent Application Publication Feb. 27,2003 Sheet 7 of 13 US 2003/0041173 A1

CREATE A MUTEX

702~ CREATE A NEW GLOBAL
OBJECT I.D.

l

704— ALLOCATE AND INITIALIZE
A NEW GLOBAL RECORD

l

ON THE NODE WHERE THE CALLING
706 — THREAD IS RUNNING, CREATE A LOCAL
MUTEX 66 AND A LOCAL EVENT 70 (BY
CALLS TO THE LOCAL OPERATING
SYSTEM 62)

L

ALLOCATE AND INITIALIZE A

508 1 NEW LOCAL DATA RECORD,
AND ASSOCIATE IT WITH

THE NEW GLOBAL RECORD.

l

RETURN

Flgure 7

Patent Application Publication Feb. 27,2003 Sheet 8 of 13 US 2003/0041173 A1

800

\ OPEN A MUTEX

IF THE CALLING THREAD IS THE FIRST TO
802— USE THE GLOBAL MUTEX ON IT'S NODE,
CARRY OUT STEPS 706 AND 708 IN FIG. 7
TO CREATE ON THE NODE A LOCAL
MUTEX AND EVENT

l

804 — INCREMENT THE LOCAL REFERENCE
COUNT 510 (FIG.5) IN THE LOCAL DATA
RECORD 500 OR 502 FOR THE NODE

l

RETURN

Figure 8

Patent Application Publication Feb. 27,2003 Sheet 9 of 13 US 2003/0041173 A1

916
sqo\4 \
ACQUIRE A MUTEX TAKE
902~ v OWNERSHIP BY
~ IS THE MUTEX YES .| CHANGING THE
AVAILABLE ? 015 ”| GLOBAL STATE
904 NG ~— 404 TO "OWNED"
y AND PLACING
NO IS THE MUTEX IN DECREMENT THE ACQUIRING
TRANSITION ? THE THREAD'S NODE
906] YES SUSPENDED | | |D LOCATION 406
ISTHIS THREAD ONE |yEs || -READ COUNTE | oF THE GLOBAL
» 512FORTHE L, MUTEX DATA
THAT IS COMING OUT NODE FROM RECORD 400
NO 1l
MAKE SURE THAT THE NODE CALL THE LOCAL O.S.
| LD.OF THE CALLING 918— 62 TO TAKE
THREAD'S NODE IS OWNERSHIP OF THE
ENTERED INTO THE GLOBAL LOCAL MUTEX 66
WAIT QUEUE 41
910 << 920
INCREMENT THE 908 \
1 D
LOCAL THREAD WAIT CONET)'(ggETT;iEA
COUNT 512
91 { l 914 \
SUSPENDED AWAITING
TO WAIT ON BOTH THE >~ LOGAL EVENT AND
LOCAL MUTEX 66 AND
EVENT 70 LOCAL MUTEX
RESUME I

Figure 9

Patent Application Publication Feb. 27,2003 Sheet 10 of 13

1000

RELEASE A MUTEX

l

1002~ DATA RECORD 403

ZERO THE NODE ID 406
WITHIN THE GLOBAL MUTEX

:

NO IS THE GLOBAL WAIT
QUEUE EMPTY ?

YES

\ 1004

404 TO INDICATE THE

MUTEX IS IN TRANSITION [~—1006

SET THE GLOBAL STATE 1005 —] SET THE GLOBAL STATE

404 TO INDICATE THE
MUTEX IS AVAILABLE

l 10101

/1008
DETERMINE WHICH
NODE IS TO BE >
ACTIVATED

SET THE NODE'S BIT IN
THE BIT TABLE THAT
IDENTIFIES THE NODES
NOTIFIED 412.

1012
™~

GENERATE A GLOBAL
INTERRUPTION TO CAUSE

70, ETC. (FIG.11)

OPERATING SYSTEM AT THE
NOTIFIED NODE TO SET THE
TRIGGER FOR THE LOCAL EVENT

THE

Flgure 10

US 2003/0041173 A1

Patent Application Publication Feb. 27,2003 Sheet 11 of 13 US 2003/0041173 Al

1100

MUTEX RELEASE GLOBAL INTERRUPT

l

TRIGGER AND THEN RELEASE THE LOCAL
EVENT 70. DETERMINE WHETHER A THREAD
1102~ ON THE LOCAL NODE 10 HAS ACQUIRED THE
LOCAL MUTEX.

'

THREAD HAS INTERRUPT
1104~ ACQUIREDLOCAL =25 RETURN

MUTEX ?

J,No

1106 RELEASE ANOTHER
N\ NODE (FIG. 14)

Figure 171

Patent Application Publication Feb. 27,2003 Sheet 12 of 13 US 2003/0041173 Al

1200

pN

CLOSE A MUTEX

l

IF THIS IS NOT THE LAST THREAD ON THE
NODE THAT HAS OPENED THIS MUTEX,

1202 —— THEN DECREMENT THE LOCAL

REFERENCE COUNT 510.

:

OTHERWISE DEALLOCATE THE LOCAL

1204 — DATA RECORD 500 AND HAVE THE LOCAL

OPERATING SYSTEM 62 CLOSE THE LOCAL
MUTEX 66 AND THE LOCAL EVENT 70

Figure 12

Patent Application Publication Feb. 27,2003 Sheet 13 of 13 US 2003/0041173 A1

1300
\ GLOBAL MUTEX ACCESS

1302 FIND GLOBAL
~ MEMORY SEGMENT
1304 ACQUIRE HEADER
~) WITH SPIN LOCK
1306__ ACCESS/MODIFY THE
GLOBAL DATA RECORD
1308 RELEASE THE SPIN LOCK

Figure 13

US 2003/0041173 Al

SYNCHRONIZATION OBJECTS FOR
MULTI-COMPUTER SYSTEMS

BACKGROUND OF THE INVENTION

[0001] The present invention relates generally to the shar-
ing of resources by multitasking computer systems, and
more particularly to arrangements for controlling access to
computing resources that should only be used by one task at
a time in a multi-computer environment.

[0002] When computers first came into existence, they
were operated using single instructions that were executed
one instruction at a time. As computers became more
powerful, they grew more efficient and eventually were able
to do many things at once. Today’s computers have the
ability to perform multitasking. Multitasking is the ability to
execute more than one task at the same time. A “process” is
a program that is being executed plus the bookkeeping
information that is used by the operating system to control
that process. A “task” is also a process, but a “task” may be
several processes. Whenever a program is executed, the
operating system creates a new task or process for the
program. The task or process is analogous to an envelope for
the program. It identifies the program with a task or process
number, and it attaches other bookkeeping information to
the program.

[0003] Originally, and for a number of years, every com-
puter contained only one processor or CPU, and there was
only one way to deliver a set of different tasks to the
processor of the computer—one task at a time. First task 1
is processed, then task 2 is processed, and so on. Work on
task 2 can begin before task 1 is completed, but only by
stopping the work on task 1 whenever work on task 2 is
being done, and vice versa.

[0004] Now computers have become more sophisticated,
and multiple processors are taking the place of single
processors. On such a multiple processor computer, called a
“multiprocessor system” (or just “multiprocessor”), any task
can be assigned to any one of the processors, and work can
now actually be done simultaneously upon multiple tasks.
Since more tasks can be completed in less time this way, a
multiprocessor system delivers better performance than does
a computer having only one processor.

[0005] A task or an individual computer program can
sometimes be viewed as a collection of “subtasks.” If these
subtasks can be organized so that a multiprocessor system
can execute some of them at the same time without changing
the results computed by the task or program, then the overall
task or program can be completed in less time, even though
the time required to complete each subtask may not have
changed. Thus, multiprocessor systems enable some indi-
vidual computer tasks and programs to run faster. Construct-
ing a task or program as a collection of subtasks that can be
processed simultaneously is called “parallel programming.”
Running a task or program as separate subtasks that are
actually processed simultaneously is called “parallel pro-
cessing.”

[0006] Originally, parallel programming and parallel pro-
cessing required that the subtasks of a program or task
actually be tasks that can run as entirely separate, indepen-
dent processes. More recently, computer technology has
been developed that allows tasks, processes, or programs to

Feb. 27, 2003

be divided into distinct subtasks or subprocesses or subpro-
grams, processing units that may be called “threads.” Each
“thread” 1s a subtask or subprocess that can be delivered
independently to a different processor. Computer programs
organized as multiple threads are called “multithreaded
programs.” Although there is a significant technical differ-
ence between tasks or processes on the one hand and threads
on the other, the difference is not an important one in the
context of the invention described below. No formal dis-
tinction will be made between a task or process on the one
hand and a subtask or thread on the other hand. All such
entities will be referred to as “threads” in the discussion
which follows.

[0007] “Multi-computer systems” provide an extension
beyond multiprocessor systems as to how multiple proces-
sors can be organized for use by multi-threaded tasks. A
“multi-computer system” (or just multi-computer) is a group
of computers, each running its own copy of the operating
system, that work together to achieve a particular goal. That
goal is to present their collective computing resources, so
that they appear to belong as much as possible to a single
operating system running on a single computer, both to
programs that use the computer’s resources, and also to
human beings that make use of the multi-computer system
in some way. Typically, there are also hardware resources
(memory, for example), which are shared and are directly
accessible by all the computers in the multi-computer sys-
tem. Just as multiprocessor systems can deliver better per-
formance than single processor systems, multi-computer
systems can often deliver better performance than multipro-
cessor systems. However, constructing programs that run
well on a multi-computer system can be especially difficult
unless the multi-computer system itself does a very good job
of presenting itself to programs as if it were a single
computer. Most of the time, this means the multi-computer
system must hide the fact that there are actually multiple
operating systems running on the separate computers which
make up the multi-computer system.

[0008] A multi-threaded task operates in a way similar to
the way in which a small company operates. As an example,
consider a small company with three departments: manu-
facturing, sales, and accounting. For the company to run
efficiently, the tasks of each department need to be per-
formed concurrently. Typically, manufacturing operations
are not shut down until the items in a previously manufac-
tured batch have all been sold. Thus, manufacturing and
sales proceed at the same time. Although invoices cannot be
prepared for items not yet sold, they can and should be
prepared and processed for previously sold items even while
new sales are being negotiated and while a new batch of
items is being manufactured. Although the three tasks have
interdependencies requiring them to coordinate their activi-
ties, none can be shut down completely while one of the
other tasks is executed from beginning to end.

[0009] Many software tasks operate under the same con-
ditions as this company example. They have multiple tasks
or subtasks that can be executed at the same time as separate
threads or sets of threads. However, these tasks or subtasks
also have interdependencies that require coordination: por-
tions of one task that cannot proceed until portions of one or
more other tasks have been completed. Programming a set
of such tasks so their work can be properly coordinated
while they all run simultaneously is called “synchroniza-

US 2003/0041173 Al

tion.” Specific programming constructs are used to imple-
ment synchronization. These are called “synchronization
objects.”

[0010] A very simple case requiring coordination occurs
when several tasks need to share a single resource, but the
resource is such that it can only be used by one task at a time.
A very small business, for example, may have only a single
phone line that needs to be used for different purposes at
different times by the two or three people who run the
business.

[0011] Likewise, in multithreaded computer programs,
multiple threads frequently need to share computing
resources such as data, files, communication channels, etc.
that can only be used by one thread at a time. To control this
resource sharing, “synchronization objects” are required that
allow each thread to take a turn accessing a given resource
and to prevent other threads from accessing the resource
while one thread takes its turn.

[0012] Mechanisms that satisfy this property in some
manner are called “locks.” A particular type of lock often
used is called a “mutex”, which is a nickname for the words
“mutual exclusion.” Typically, an operating system, working
in conjunction with certain hardware features of a processor,
provides mutex functions that allow threads to acquire,
release, and wait for mutexes. Once a thread has acquired a
muteX, other threads cannot acquire the same mutex until the
first thread releases it. A given mutex is normally associated
with a particular computing resource, perhaps a specific
record in a data file. By programming convention, no thread
is allowed to access the given specific record unless it has
first “acquired” the associated mutex. In this manner, mul-
tiple threads can access the given specific record, and each
thread excludes the other threads from access while it takes
its turn.

[0013] The present invention is directed towards achiev-
ing a mutex that is operative in a multi-computer environ-
ment where each separate computer has its own separate
copy of the operating system.

[0014] One way in which one might create synchroniza-
tion objects for multi-computer systems and cause these
synchronization objects to have essentially the same func-
tionality and the same programming interfaces as do syn-
chronization objects within a multiprocessing environment
(which employs only a single copy of an operating system)
would be to rewrite completely the operating system code
that manages thread synchronization. New code would be
added to the operating system that determines when a mutex
function is called and whether each call refers to a local
mutex (accessible only by threads running on a single local
computer) or to a global mutex (accessible by threads
running on any computer within a multi-computer system).
New code would also be inserted into the operating system
to support function calls that refer to the global mutex. In
addition, the different running copies of the operating system
would need to be modified so that they communicate with
and know about each other and to make sure that threads
from all the computers receive a chance to acquire a global
mutex, while also enforcing the required mutex rules of
sharing for all threads on all platforms.

[0015] This approach has several disadvantages. First, this
approach does not leverage the value of the existing oper-

Feb. 27, 2003

ating system code for thread synchronization. Secondly, this
approach requires access to, and the legal right to modify,
the operating system source code. Thirdly, because the base
operating system’s code would have to be modified, the new
replacement code would have to be thoroughly tested in all
of the numerous environments that utilize the operating
system, including multi-and single-processor system envi-
ronments that gain no benefit from this new code. Changes
implemented solely to support multi-computer systems thus
must be tested extensively in non-multi-computer environ-
ments. Typically, for modern operating systems, this testing
effort creates a very substantial amount of work that is
difficult to cost justify.

BRIEF SUMMARY OF THE INVENTION

[0016] The present invention provides an effective method
for extending operating system mutex functionality across
multiple copies of an operating system where each computer
is running a separate copy of the operating system but all are
working together as a multi-computer system. Mutexes
supported by the present invention are thus usable by any
thread running on any computer within the multi-computer
system, but the mutexes present themselves through pro-
gramming interfaces to the threads just as though each
mutex was supported only by a single instance of the
operating system running on a single computer.

[0017] Briefly summarized, the present invention is a
multi-computer system having provision for global synchro-
nization objects which comprises a plurality of multi-pro-
cessor nodes each having provision for local memory,
threads, and an operating system having the ability to
manage local synchronization objects, global memory
accessible to the processors on all the nodes and having at
least one spinlock; a data structure in memory accessible by
all the processors wherein one or more records for global
synchronization objects may be established, said data struc-
ture including provision for recording in a queue the identity
of nodes having threads awaiting access to the synchroni-
zation object; and a synchronization software system of
programs established in all the nodes which, at the request
of a thread running on a node, can create, open, request,
release, and close a global synchronization object, using the
above spinlock and data structure and queue of node iden-
tities to resolve requests for the synchronization object as
between threads residing on different nodes, and using local
synchronization objects created by the local operating sys-
tems on nodes having threads awaiting access to resolve
requests for the synchronization object between threads
residing on the same node.

[0018] The queue in which is recorded the identity of the
nodes having threads awaiting access to the global synchro-
nization object may be organized as a FIFO arrangement of
the node identifiers ordered in the same order in which
requests for the global synchronization object are received
from the threads. And the node identifiers may be moved
from the front to the back of the queue each time the threads
on the correspondingly identified node are given an oppor-
tunity to gain ownership of the local and global synchroni-
zation objects. Additionally, counts may be maintained for
each node of the number of threads awaiting a synchroni-
zation object, and those counts may be decremented when a
thread on the corresponding node is granted the synchroni-
zation object, and the reference to the name of the corre-

US 2003/0041173 Al

sponding node in the data structure may be removed when
the count reaches zero. The global synchronization objects
may be semaphores or mutexes.

[0019] The present invention may also be found in a
method for granting threads running on various multi-
processor nodes within a multi-computer system ownership
of a global synchronization object comprising the steps of
maintaining a record of the state of the global synchroniza-
tion object as free, owned, or in transition; when a thread
seeks ownership of the global synchronization object, grant-
ing the thread, through a spinlock mechanism, access to the
status of the global synchronization object, and granting the
thread ownership if the object is free; but if the object is not
free (owned or in transition), adding the thread’s node to a
queue of nodes having threads awaiting ownership of the
global synchronization object and permitting the thread to
seek ownership of a local synchronization object established
on the thread’s node by a local operating system, but
temporarily blocking threads on the thread’s node from
seeking ownership of the local synchronization object and
forcing them into suspension; and when the global synchro-
nization object ownership is released by a thread, placing the
global synchronization object into its transition state, and
then arranging for each node in the queue, in turn, to stop
blocking threads on its node from seeking ownership of the
local synchronization object, and permitting any thread that
then gains ownership of its local synchronization object to
resume execution and to gain ownership of the global
synchronization object if the object is not owned (free or in
transition), this process continuing until the global synchro-
nization object is owned or until no more threads seek its
ownership, at which point the global synchronization object
enters its free state. Again, the synchronization objects may
be semaphores or mutexes.

[0020] And finally, the invention may be found in a set of
synchronization software computer programs designed for
use in conjunction with a multi-computer system where
individual nodes have their own copies of an operating
system with local node synchronization software included in
the operating system, the synchronization software com-
puter programs being capable of carrying out the steps listed
above.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0021] FIG. 1 is a logical diagram of two or more multi-
processor computer systems or “nodes” connected in paral-
lel to form a multi-computer system, with each node having
both local and global memory, the multi-computer having at
least one global mutex.

[0022] FIG. 2 illustrates in part the content of a global
memory segment of the multi-computer system shown in
FIG. 1.

[0023] FIG. 3 illustrates in part the contents of local
memory on two nodes of the multi-computer system shown
in FIG. 1.

[0024] FIG. 4 illustrates the data structure of a global data
record that resides within the global memory shown in FIG.
2 and that is associated with a global mutex.

[0025] FIG. 5 illustrates the data structures of a local data
record that resides within the local memory of a node and
that is associated with a global mutex.

Feb. 27, 2003

[0026] FIG. 6 is a diagram illustrating the memory con-
tents of the local memories and of one global memory of a
multi-computer system, indicating with arrows subroutine
calls and data accesses, and illustrating the use of the
synchronization software (shown in the following figures) to
create and manage a global mutex.

[0027] FIG. 7 is a flow diagram of the program that
creates a new global mutex.

[0028] FIG. 8 is a flow diagram of the program that
permits a thread to open and utilize a global mutex.

[0029] FIG. 9 is a flow diagram of the program that
permits a thread to wait for and acquire a global mutex.

[0030] FIG. 10 is a flow diagram of a program that
permits a thread to release a global mutex.

[0031] FIG. 11 is a flow diagram of a program, launched
by a global interrupt directed to a particular node that
attempts to grant a suspended thread access to an available
global mutex.

[0032] FIG. 12 is a flow diagram of a program that
permits a thread to close and stop using a global mutex.

[0033] FIG. 13 is a flow diagram of a program that
controls access to global mutex data records using a spinlock
to coordinate access by multiple threads.

[0034] FIG. 14 is a flow diagram of a routine, called by
the global interrupt program (FIG. 11) when a thread is not
immediately unsuspended, that triggers the release of a
thread on another node to access an available global mutex.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0035] A. Introduction

[0036] Before describing the invention, a brief explanation
of the way in which mutexes work on multi-processors will
be helpful to provide a reference context for the description
which follows.

[0037] Suppose three threads have requested ownership of
a given mutex that is already owned by some other thread,
and suppose each thread is willing to stop processing further
instructions until it acquires the mutex. Suppose, in addition,
that the threads request ownership of the mutex in the
following chronological order.

[0038] Thread Al.
[0039] Thread B1.
[0040] Thread A2.
[0041] Normally, A1 would be expected to gain ownership

of the mutex when the current owner releases it. Later, B1
would be expected to gain ownership when Al releases the
mutex, and then A2 when B1 releases it. This behavior
would be the result of a First-In-First-Out or FIFO policy on
the part of the operating system for managing the outstand-
ing thread acquisition requests for a given mutex. An appro-
priate experiment with a given operating system would
typically demonstrate this behavior, but with exceptions
under certain circumstances. For example, if B1 or A2 were
running with a higher scheduling “priority” than Al, then the
operating system would normally give ownership of the
mutex to one of them rather than to A1 when the current

US 2003/0041173 Al

owner releases the mutex. On the other hand, the operating
system might not do this if Al has been waiting in the queue
for a very long time. Otherwise, it would be possible that A1
might never acquire ownership of the mutex, regardless of
how long it waits in the queue. Thus, operating systems are
usually designed to give priority to some threads but to
insure that every thread is eventually given ownership of the
mutex.

[0042] Although any given operating system will probably
have a precise deterministic set of rules defining how it
departs from a pure FIFO policy for managing mutex wait
queues, the details of such rules normally will not be
exposed and will not be guaranteed to remain unchanged
from one version of the operating system to the next.
Without access to the source code of the operating system,
it would be extremely difficult to know these rules precisely,
and even more difficult to duplicate their effect in new code.
Accordingly, applications cannot be programmed to depend
heavily upon the precise workings of any given set of rules.
Applications can only expect the following: Mutex acqui-
sition requests will mostly be granted using FIFO queue
ordering, with occasional variations to account for different
thread scheduling priorities; but any thread willing to wait
for a long time will eventually be guaranteed ownership of
a mutex. The invention described in this disclosure supports
this behavior for multi-computer extensions of the mutexes
provided by a given operating system. It also provides an
architecture that captures the variations in mutex behavior
which are provided by different operating systems or by
different versions of the same operating system, and it
replicates such behavior as accurately as is feasible and
logical with respect to global mutexes in a multi-computer
environment.

[0043] In the discussion which follows, each of the com-
puters forming part of a multi-computer system will be
referred to as a “node.”

[0044] The following assumptions (set forth in the next
three paragraphs) are made regarding synchronization
objects (mutexes, semaphores, etc.) provided by the oper-
ating system running upon each node of the multi-computer
system:

[0045] “Mutex objects” are supported, and they include
“wait for acquisition” functionality. This means the follow-
ing behavior can be specified to the operating system when
a call is made by a thread to acquire a mutex: If the mutex
is already owned, the calling thread is placed in a wait
queue, and it is blocked from executing any further instruc-
tions until the mutex is available and can be given to the
thread as requested.

[0046] “Event objects” for signaling to threads are also
supported. An “event” has one of two possible states:
signaled or non-signaled. Functions are provided to switch
between the two states. A “wait for an event” function for an
event is also provided with the following property: When the
function is called referring to a given event, if the event is
in the “non-signaled state,” the operating system will block
the calling thread from executing any further instructions
until a call is made (by some other thread) that switches the
event to the “signaled state.”

[0047] The operating system provides a function that
combines the “wait” functionality of both events and

Feb. 27, 2003

mutexes. When this function is called, the operating system
blocks the calling thread from executing any further instruc-
tions until both the event has been signaled and the mutex
can be given to the thread as requested. (The combination of
functionality set forth in this and the preceding two para-
graphs are not requirements of the invention. They simplify
the following description, and they were available on the
operating system where the prototype version of this inven-
tion was originally implemented.)

[0048] Now, with reference to FIG. 1, a multi-computer
system 1 is shown that includes two or more nodes 10 and
20. Each node is a multiprocessor that contains two or more
processors or CPUs 12, 14, 16, and 18. Each node also has
a memory and I/O controller 34 and 36, local memory 38
and 40 accessible by a node’s CPUs only, and some provi-
sion for input and output or I/O 46 and 48 that provides
access to hard disk drives (not shown), to internets and
intranets (not shown), to printers (not shown), and to other
external devices, computers, and locations. One or more
data and command busses 50 and 52 interconnect the
memory and I/O controllers 34 and 36 such that all the nodes
10 and 20 may access the same shared global memory
segments 42 and 44.

[0049] The following assumptions are made regarding the
resources that are shared by the nodes 10 and 20 of the
multi-computer system 1 shown in FIG. 1:

[0050] There is at least some global memory or its equiva-
lent, such as at least one of the global memory segments 42
and 44, that is accessible from any node 10 or 20 in the
multi-computer system 1;

[0051] There is at least one primitive global lock such as
the global spinlocks 45 and 51 or their equivalent that are
usable from any node 10 or 20 in the multi-computer system
1 to lock the global memory segment 42 or 44 during, for
example, the “read-modify-write” or “read, test, and modify
if necessary” CPU hardware memory access commands that
are used to implement a mutex, a semaphore, or some other
synchronization object;

[0052] There is a global interrupt mechanism or its equiva-
lent, such as a task scheduler. From any node in the
multi-computer system 1, a processor interrupt or its equiva-
lent can be generated and supplied to at least one processor
on any other node or in the same node. For example, the
nodes 10 and 20 are shown having the global interrupts 47
and 49; and

[0053] The global resources described in the above
assumptions are supported by hardware in some manner that
is relatively independent of any particular operating system.
In the absence of such hardware support, each of these
resources can be emulated purely by software, generally
speaking, but with less efficiency in performance.

[0054] The above assumptions are not a typical for a
multi-computer system, as defined in this disclosure, and
these assumptions are true concerning the Data General
Model multi-computer system upon which the invention
was implemented and tested as a prototype. The operating
system installed upon each node was Microsoft Windows
NT, version 4.0.

[0055] Typical examples of multi-computer system archi-
tectures are illustrated in U.S. Pat. No. 6,047,316 (Apr. 4,

US 2003/0041173 Al

2000) and 5,887,146 (Mar. 23, 1999). The °316 patent
discusses problems relating to spinlock implementation. The

146 patent illustrates a hardware configuration similar to
that illustrated in FIG. 1.

[0056] The global lock referred to in these assumptions
will be the global spinlock 45 in the remainder of this
description. It is analogous to the spinlock normally pro-
vided on single multi-processor computers. Although it
provides globally, over an array of several computers, a form
of mutual exclusion functionality, it is primitive in that it
normally does not provide any form of “wait for acquisition”
functionality, as described earlier. That kind of functionality
cannot even be described without referring to objects (such
as mutexes) and to operations that are normally provided by
an operating system (threads and thread scheduling, for
example). A multi-computer system having a spinlock is
thus analogous to a single multiprocessor computer system
having two or more CPUs where spinlocks are used by the
operating system as the basis for building many different
kinds of synchronization constructs, including mutexes.

[0057] In this discussion, the terms “local mutex”,
“shadow mutex”, and “shadow local mutex” refer to a mutex
fully managed by the unmodified operating system running
on a particular node of a multi-computer system. The term
“global mutex” refers to a multi-computer system managed
scheduling and resource sharing object having the properties
of a mutex. Whenever the context is clear enough to avoid
ambiguity, the term “mutex” may be used to refer to either
a local mutex or to a global mutex.

[0058] B. Overview Description of the Invention

[0059] The multi-computer system 1 is shown in FIG. 1 to
include a global mutex 43 implemented using the global
memory 42. Access to the global memory 42 is governed by
a global spinlock 45. The global mutex 43 is defined, in part
by a global data record 400 shown in FIGS. 2 and 4. The
information within this record 400 includes a global state
value 404 that indicates whether the global mutex 43 is
“owned” by a node and thread, or is “available,” or is in
“transition”. This information also includes a global wait
queue 410, which is shown in FIGS. 4 and 6 including the
node records 414, 416, and 418 of nodes that have threads
suspended and waiting to acquire the global mutex 43.

[0060] The invention provides a global mutex synchroni-
zation service that runs as a collection of software compo-
nents, collectively called the global mutex synchronization
software 60 (FIGS. 3, 6, and 7-14), that is running on each
node 10 and 20 of the multi-computer system 1. The
functions for mutex management are supported as direct
calls into the components of this synchronization software
60 that are running on the same node 10 or 20 as the calling
thread 56 or 58 or 21 (FIGS. 1, 3 and 6). Thus, when the
global mutex 43 is available, it is possible to satisfy imme-
diately a mutex acquisition request issued by any thread 56,
58, or 21 running on any node 10 or 20 by executing a
program (within the synchronization software 60) that only
uses processor resources on the node where the requesting
thread resides.

[0061] This is achieved using processor resources located
only at the node where the request is made in the following
manner: The global mutex 43 is represented on each node,
for example, the node 10, from which it will be accessed by

Feb. 27, 2003

a local mutex 66 located on the node 10. Thus, if the global
mutex 43 is being used by threads running on three different
nodes of a multi-computer system, there will be three
different local mutexes used to support the single global
mutex 43, one on each node. Each of these local mutexes
will be called a “shadow mutex” for the global mutex 43.
When a request is made by the thread 56 running on the node
10 (FIGS. 1 and 6) to acquire the global mutex 43 which is
already owned by some other thread, such as the thread 21
running on the node 20 in FIGS. 1 and 6, the node 10 of the
calling thread is inserted into the global wait queue 410
(FIG. 4) for the global mutex 43 that is maintained in the
global memory 42 (unless the node 10 is already in the wait
queue 410, because some other thread 58 from the node 10
is already suspended and waiting to acquire the global
muteX, in which case the suspended thread count for the
node 10 is incremented instead, as will be explained). A
request is then made to the operating system 62 at the node
10 where the requesting thread 56 resides to acquire the
associated shadow local mutex 66 for the thread 56.

[0062] In the preceding paragraph, it was tacitly assumed
that the calling thread 56 is willing to join a suspended
thread wait queue, such as that shown at 602, 604, and 606
in FIG. 6, which is linked to the shadow local mutex 66.
Typically, the mutex functionality provided by an operating
system 62 permits mutex acquisition requests specifying an
immediate return, even if the local mutex 66 is not available.
Requests of this type are easily supported: After checking
the global memory mutex data record 400 associated with
the mutex 43, the synchronization software 60 simply
returns program control to the thread 56 with an indication
that the global mutex 43 is already owned. For the remainder
of this description, it will be assumed that all acquisition
requests are those for which the calling thread 56 is willing
to join a suspended thread wait queue such as that shown at
602, 604, and 606 in FIG. 6 if the global mutex 43 is not
immediately available.

[0063] When the current owner of a global mutex (for
example, the thread 21 on the node 20 in FIG. 6) releases it
(by calling the release mutex program 1000 shown in FIG.
10), and assuming that other threads 56 are waiting to
acquire it, program control is transferred to the node 10
where the first thread 56 to have requested the mutex 43 is
presumed to be waiting in a suspended state. This transfer to
node 10 is based on the FIFO ordering of the global wait
queue 410 that is linked to the node records 414, 416, and
418 which have threads suspended and awaiting access to
the global mutex 43. This transfer action will be referred to
as “signaling the next FIFO node.” This action is carried out
using the mutex release global interrupt program 1100
shown in FIG. 11. The response to this interrupt is a call to
the operating system 62 at the receiving node 10, causing it
to unblock one of the threads 602, 604, or 606 waiting there
for access to the associated shadow local mutex 66. Thus,
this invention uses FIFO ordering in the global wait queue
410 to pass around control of the global mutex 43 among all
of the nodes 10 and 20, but each operating system 42 is
allowed to apply its own policy for granting ownership of
local mutexes such as the shadow local mutex 66 among the
threads 602, 604, and 606 that it may control. For each
global mutex, this design approximates the behavior of a
local mutex among the threads running on different nodes,
and it provides essentially the exact behavior of a local
mutex among any set of threads running on the same node.

US 2003/0041173 Al

[0064] Referring back to the example set forth above:
When the current owner thread 21 releases the global mutex
43, control will be given to the node 10 (in the global wait
queue 410 at position 418) where the thread 58 is suspended
(in the local wait queue 602, 604, 606 of the local mutex 66
at position 606), with operating system management of the
shadow local mutex 66 by the node 10 determining the
observed behavior of the global mutex 43. If the thread 56
and some other thread 58 are running on the same node 10,
the behavior on the node 10 as between the two local threads
will be identical to what would happen if the two local
threads were actually using only the local mutex 66. If a
third thread (not shown) were instead running on some other
node, it will not be able to acquire the mutex when the
current owner releases it to the node 10. Either the thread 56
or the thread 58 will acquire the global mutex 43, and the
choice between them will be identical to what would have
happened if they were actually using only the local mutex
66.

[0065] When the thread 56 later releases the global mutex
43, it also releases the shadow local mutex 66 on the node
10 where it is running so that the shadow mutex 66 will be
available when the synchronization software 60 needs to
acquire it for another thread 58 suspended on that same node
10. The synchronization software 60 needs to be able to
prevent the operating system 42 from prematurely giving the
shadow local mutex 66 to some other thread 58 without first
acquiring the global mutex 43 for the thread 58. After
releasing the shadow local mutex 42, the synchronization
software 60 signals to the next node named in record 416 in
the global FIFO wait queue 410 that the global mutex 43 is
now available. But while that is happening, if there is
another thread 58 on the first node 10 already suspended and
waiting for the shadow local mutex 66, the operating system
62 would reactivate it, granting it ownership of the local
shadow mutex 66, because the local shadow mutex 66 has
been released. If the next node named in record 416 is a
different node, then two different threads on two different
nodes could become unblocked, and each would expect to
gain ownership of the global mutex 43.

[0066] Again referring back to the example at the begin-
ning of this section, suppose Al and A2 are running on a
node A, Bl is running on a node B, and Al acquires the
global mutex when the current owner releases it. Later, when
Al releases the local shadow mutex (as part of releasing the
global mutex), the situation described in the preceding
paragraph would occur: node A, knowing nothing about Bl,
would unblock A2, and node B, knowing nothing about A2,
would unblock B1.

[0067] One of the threads must be blocked, since only one
of them can own the global mutex 43. Although most
operating systems would probably offer several options for
blocking one of the threads, the method used by this
invention as described so far—waiting to acquire a shadow
local mutex—appears not to be viable for this situation. The
present invention in its prototype embodiment resolves this
problem by using a local event 70 along with the shadow
local mutex 66 to help control when the operating system 42
on the node 10 unblocks a thread 56 or 58 that is waiting for
the global mutex 43. A request by any thread 56 or 58 to wait
for a global mutex 43 is actually transformed into a call to
the local operating system 62 to have the thread wait for both
the shadow local mutex 66 and the local event 70 both of

Feb. 27, 2003

which are associated with the global mutex 43. By main-
taining the local event 70 at the node 10 in the non-signaled
state until the appropriate time, the synchronization software
60 can exert control over when the operating system 42
unblocks a thread 56 or 58 that is waiting for the shadow
local mutex 66. Thus, when it receives an interrupt indicat-
ing that the global mutex 43 has been released, the synchro-
nization software 60 calls upon the local operating system
42 to signal the local event 70. Immediately following that,
it makes a second call to switch the local event 70 back to
the non-signaled state (see step 1102 in FIG. 11).

[0068] Typically, any thread waiting on local synchroni-
zation objects can end its wait asynchronously, even though
the wait conditions have not been satisfied. A timeout may
have expired, or some independent action may have caused
execution of the thread to be terminated. Thus, after the
thread 21 releases the global mutex 43 and starts the
procedure to signal the next node named in record 418 of the
global FIFO wait queue 410, but before the interrupt driven
synchronization software 60 (specifically, the program 1100
shown in FIG. 11) on that next node interrupts and calls
upon the operating system 42 to signal the local event 70
associated with the global mutex 43, the queue of threads
602, 604, 606 waiting for the shadow local mutex 66 at that
node 10 may become empty. Therefore, after causing the
local event 70 to be signaled, the synchronization software
60 tests at (step 1102 in FIG. 11) whether a thread that was
waiting has acquired the shadow local mutex 66. If not, and
if there are more nodes in the global FIFO wait queue 410,
then the next node named in record 416 of the queue 410 is
signaled that the global mutex 43 has been released (routine
1106 shown in FIG. 14).

[0069] A race condition may develop from events such as
those described in the preceding paragraph. This race con-
dition is formally managed by a global state value 404 that
can be set to any one of three mutually exclusive global
states for every global mutex: available, owned, and in
transition. The mutex 43 can be in the available state only
when there are no threads and no nodes in the global wait
queue 410. While in the available state, immediate owner-
ship of the mutex 43 is given to any thread requesting it, and
the mutex 43 then enters the owned state. While the mutex
43 is in the owned state, any thread requesting ownership
(other than the owning thread itself) is placed into the global
and local wait queues—the synchronization software 60
places the thread’s node into a record of the global wait
queue 410 and then calls upon the operating system 42 to
block further execution of the thread requesting the mutex
until the associated local event 70 is signaled. When a thread
owning the mutex 43 releases it, if there are no nodes in the
global wait queue 410 waiting for the mutex 43, the mutex
43 returns to the available state. Otherwise, it enters the third
transition state until a new thread takes over ownership.

[0070] Upon entering the transition state, the node whose
record 418 is at the head of the global FIFO wait queue 410
(for example, the node 10) is notified that it may give
ownership of the mutex 43 to the highest priority of its
waiting threads at the head end of the local mutex 66°s FIFO
wait queue at 606. Upon receiving such notification, the
node 10 causes the local event 70 associated with the global
mutex 43 to be signaled, and then it determines whether the
associated shadow mutex 66 has been acquired by any
threads at that node 10. If the shadow local mutex 66 is not

US 2003/0041173 Al

acquired immediately by the actuated thread, then the sec-
ond node named in record 416 in the global FIFO wait queue
410 is notified that it may give ownership of the mutex 43
to one of its waiting threads. This process may be repeated
multiple times, causing multiple nodes 10, 20, etc. to be
placed into a race to find a thread that is ready to take
ownership of the mutex 43. But new threads seeking own-
ership of the mutex 43 during this race are blocked out of the
competition by the fact that the mutex 43 is in its “transition”
state, not its “available™ state.

[0071] When the mutex 43 is in the transition state, the
first thread (such as the thread 56 on node 10) to unblock and
to acquire the global spinlock 45 guarding the global
memory 42 and the global mutex data record 400 of the
mutex 43 becomes its owner, and the mutex 43 then returns
to the owned state. The record containing the name of the
node 10 where the new global mutex owner thread 56
resides is either removed from the queue 410 or is placed at
the end of the FIFO queue 410 with its number of suspended
threads count decremented, depending upon whether the
node 10 has other threads (such as the thread 58) still waiting
for the mutex 43.

[0072] Whenever the operating system 62 unblocks a
thread 56 that has been waiting for the shadow local mutex
66 and event 70, the unblocked thread 56 causes the syn-
chronization software 60 to check the global data record 402
associated with the mutex 43. If the mutex 43 is already
owned, then it is assumed that the thread 56 has lost an
acquisition race. Thus, the synchronization software 60 calls
upon the operating system 62 first to release the shadow
mutex 66 and then to suspend the thread 56 again to wait for
the shadow local mutex 66 and local event 70.

[0073] The algorithm described in the preceding para-
graphs is used to make certain that any thread waiting on any
node will eventually get a chance to acquire a given global
mutex. When a global mutex is released, it would be simpler
to immediately start an acquisition race among all the nodes
in the wait queue. However, this would lead to many more
processor interrupts and more contention for the global
spinlock among the nodes. It also could lead to access
starvation of one or more of the nodes waiting for any given
mutex. The latter, if it were to occur, could be construed as
a clear failure to properly extend the local mutex function-
ality across all of the nodes of the multi-computer system.

[0074] Referring now to FIG. 6, each global mutex 43 is
supported by a single global data record 400 and multiple
local data records (such as the record 500 shown on the node
10), one for each node 10 and 20 where there is a thread
running that has “opened” the global mutex 43. Each opera-
tion on the global mutex 43 begins with a call into the
synchronization software 60 (calls to the programs 700, 800,
900, 1000, and 1200 in FIG. 6) by a thread 21 or 56 or 58
that runs on one of the nodes 10 or 20. The synchronization
software 60 must find the global memory segment 42 and the
global mutex data record 400, acquire the spin lock 45
within the global memory segment 42°s header 54, access
the global data record 400 as required by the semantics of
the given operation, and then release the spinlock 45. A
unique global object ID 403 (FIG. 4) and 503 (FIG. 5) is
assigned to each global mutex 43 when the mutex is first
created, and this ID is used by the synchronization software
60 at each node 10 and 20 to find first the local data record

Feb. 27, 2003

500 for the mutex 43 and then, using the global memory
address 504 within the local data record 500 (FIG. 5), the
global data record 400 for the mutex 43, as will be explained
more fully below.

[0075] C. Detailed Description of the Hardware

[0076] Having described the invention in overview, the
invention will be described again with specific reference to
each of the drawings. Particular emphasis will be placed
upon presenting a detailed description of the synchroniza-
tion software 60, which is described in detail in FIGS. 7-14.
While the discussion that follows will make reference to all
of the figures, it will focus particularly upon FIG. 6, which
illustrates the process of acquiring and releasing a global
mutex in the context of an exemplary multi-computer sys-
tem 1 configured in a particular way.

[0077] FIG. 1 describes a multi-computer system 1 having
at least two nodes 10 and 20, each of which contains at least
two central processing units, CPUs 12 and 14 in the case of
the node 10 and CPUs 16 and 18 in the case of the node 20.
Each of these CPUs contains an internal cache 22, 24, 26,
and 28. For illustrative purposes, the CPUs may be assumed
to be of the Intel Pentium variety of a type suitable for use
in multiprocessor applications.

[0078] Within each of the nodes 10 and 20 there exists, for
example, a P6 processor local bus 30 and 32 that is attached
to a memory and I/O controller 34 and 36. Input and output
devices, such as disk storage devices, networks, and the like
46 and 48 can interface directly to the controllers 34 and 36,
or there may just be one input/output arrangement that is
shared by all of the computers. The controllers 34 and 36
each connect to node local memory 38 and 40 where active
threads may reside. Illustratively, the local memory 38 of the
node 10 contains two active threads 56 and 58, while the
local memory 40 of the node 20 contains one active thread
21.

[0079] Some global shared memory segment must exist
within the system 1. There may be a single global memory
segment that is shared by all of the nodes and processors, or
each node may provide a piece of global memory, such as
the global memory segments 42 and 44 shown in FIG. 1, to
which all of the processors may gain access over the buses
50 and 52, shown interconnecting the two controllers 34 and
36.

[0080] Each of the nodes 10 and 20 is shown in FIG. 1 to
have a global interrupt mechanism 47 and 49 by which one
node 10 or 20 might interrupt another or itself and command
the performance of some task. In addition, at least one of the
global memory segments 42 and 44 contains some form of
global spinlock 45 or 51 that can be used in conjunction with
the global mutex access program 1300 that is presented in
FIG. 13 and that will be described below. In this example,
the global memory segment 42 is utilized along with the
global spinlock 45 to implement a global mutex 43.

[0081] The global memory segment 42 is shown contain-
ing the global mutex 43, where the mutex is shown in the
drawings as a global data structure, as will be explained. In
reality, of course, the mutex includes not just the global data
structure but also local data structures and mutexes and
events and the associated synchronization software 60.

US 2003/0041173 Al

[0082] D. Detailed Description of the Data Structures

[0083] FIG. 2 presents a more detailed description of the
global memory segment 42 of the node 10. (The other global
memory segment 44 is shown with no details.) The global
memory segment 42 contains a segment header 54 within
which lies the spinlock 45 that is used to coordinate access
to the mutex 43, which also resides within the global
memory segment 42. A typical mutex 43 is shown to contain
a global data record 400 to which is attached (or which
contains) a string or list or (as shown) linked records of
suspended nodes 414, 416, and 418, representing nodes such
as 10 and 20 having threads 56, 58 and 21 that are suspended
and waiting for access to the global mutex 43. Another
global data record 402 is shown in FIG. 2 that may be
associated with some other mutex, the details of which are
not shown.

[0084] The contents of the local memories 38 and 40 for
the nodes 10 and 20 are shown in FIG. 3. The two threads
56 and 58 reside within the local memory 38, while the
thread 21 resides within the local memory 40. Both local
memories 38 and 40 contain copies of the mutex synchro-
nization software 60 and 61, the details of which are shown
in FIGS. 7-13. The local memories 38 and 40 also contain
copies of the local operating system 62 (not shown in the
case of local memory 40). Included within the operating
system 62 are a global interrupt management program 64
which, in the case of global mutexes, launches the mutex
release global interrupt program 1100 shown in FIG. 11. The
local operating system 62 also contains software and data
structures for creating and managing the local mutexes 66
and 68 and the local events 70 and 72. In the description that
follows, the local mutex 66 and the local event 70 are
associated with the global mutex 43. Each global mutex has
associated with it at each node 10 that contains threads,
which have opened the mutex, a local data record such as the
exemplary records 500 and 502 shown in FIG. 5. The local
data record 500 on the node 10 is associated with the global
mutex 43.

[0085] FIG. 4 illustrates the data structure that resides in
the global memory 42 and that is associated with the global
mutex 43. This structure includes a global mutex data record
400. The record 400 includes a global wait queue 410, which
links to (or contains) records 414, 416, and 418 that name
the nodes having suspended threads awaiting the global
mutex 43. Each of the suspended node records 414,416, and
418 includes a node identifier (in FIG. 4, “NODE
Q.”7“NODE R,” and “NODE W”). NODE Q at 414 has two
suspended threads, NODE R at 416 has one suspended
thread, and NODE W at 418 has three suspended threads,
with all of the suspended threads waiting for access to the
global mutex 43. This information (suspended thread
counts) is kept in a distributed fashion in the local data
records. Specifically, it is kept in the data structures repre-
sented by local thread wait count 512 (FIG. 5).

[0086] The global mutex data record 400 includes a global
object identifier 403 that is unique to the global mutex 43
and that also appears at 503 in the local data record 500 in
FIG. 5. The global mutex data record 400 also includes a
global state designation 404 which designates the mutex 43
as “available,”“owned” or “in transition”, as was explained
above, depending upon the activity of the threads and of the
synchronization software. When a global mutex 43 is

Feb. 27, 2003

“owned,” the node identifier (NODE Q,”“NODE R,” or
whatever) of the owner is specified at 406. In addition, node
references 408 records which nodes have an open reference
to the global mutex. Having an open reference means that at
least one thread running on the node has opened but not yet
closed the global mutex. This data field allows the global
memory supporting the global data record to be reclaimed
for other use when there will no longer be any threads in the
multi-computer that need to use the global mutex. The
global wait queue 410 is shown as a linked list, but if there
are only a small number of nodes, it may simply be a double-
or quad-word containing node identifiers. The nodes iden-
tified value 412 is a simple bitmap data structure containing
one bit for each node in which a record may be maintained
of which suspended nodes have been notified that the mutex
43 is in transition and is available to be owned.

[0087] With reference to FIG. 5, the local data record 500
for the global mutex 43 in local memory 38 of the node 10
contains the mutex’s global object ID as the value 503. It
contains at 504 the address in global memory 42 of the
mutex 43 and, in particular, the address of its data record
400. At 506, the local data record 500 contains the name of
the shadow local mutex 66 that corresponds to the global
mutex 43, and at 508 it contains the name of the local event
70 that also corresponds to the global mutex 43. The local
reference count 510 contains the number of threads from the
local node 10 that have opened the mutex 43. The local
thread wait count 512 is a count of the threads suspended
and waiting for the mutex 43, and in particular the number
of threads running on the local node 10 that are represented
by one of the data structures in the linkage of suspended
threads 602, 604, and 606 (the one that contains the ID for
node 10). These threads are associated with the local mutex
66 and the event 70 by the local operating system 62 (see
FIGS. 2 and 6).

[0088] FIG. 6 is a special diagram intended to help
illustrate how the illustrative mutex 43 functions. It contains
depictions of some of the contents of the node 10’s local
memory 38, the node 20’°s local memory 40, and the global
memory segment 42, which, although depicted as residing
within the node 10, could reside within any node, or could
be external to all of the nodes so long as it is accessible by
all of the nodes.

[0089] In FIG. 6, the global memory segment 42 is shown
to contain the mutex 43, and in particular, the global mutex
data record 400, which contains the global link queue 410
that links to one or more suspended nodes 414, 416, and 418.

[0090] In FIG. 6, the local memory 40, on node 20, is
shown to contain an active thread 21.

[0091] Each of the local memories 38 and 40 of the
respective nodes 10 and 20 contains all the programs that
comprise the global mutex synchronization software 60
(described in FIGS. 7 to 14), but in FIG. 6 only the released
mutex program 1000 (FIG. 10) is shown to be present in the
local memory 40 of the node 20. Accordingly, the thread 21
is shown positioned to call upon the release mutex program
1000 to release the global mutex 43.

[0092] The local memory 38 of the node 10 is shown in
FIG. 6 to contain two threads 56 and 58. The thread 56 is
shown with separate subroutine linkages to all of the five
programs that constitute the entry point to the synchroniza-

US 2003/0041173 Al

tion software 60; and in particular, to the create mutex
program 700 (FIG. 7), the open mutex program 800 (FIG.
8), the acquire mutex program 900 (FIG. 9), release mutex
program 1000 (FIG. 10), and the close mutex program 1200
(FIG. 12). The thread 56 is shown positioned to attempt to
acquire the mutex 43 by a call to the acquire mutex program
900 (FIG. 9). Other synchronization software 60 programs
shown in the local memory 38 are the mutex release global
interrupt program 1100 (FIG. 11), shown residing within the
local operating system 62, and the release another node
routine 1106 (FIG. 14).

[0093] The details of the synchronization software 60, in
general, are not shown in FIG. 6. But the programs 900,
1000, and 1106 which need to access the global mutex data
record 400 are shown calling upon a mutex access program
1300 (FIG. 13) which controls access to the data record 400
by means of the global spinlock 45 (shown in FIG. 1; not
shown in FIG. 6). And the programs 1000 and 1106, which
generate global interrupts, are shown in FIG. 6 executing
“global interrupt” steps, respectively steps 1012 and 1112 (in
FIGS. 10 and 11). These steps trigger the mutex release
global interrupt program 1100 within the local operating
system 62.

[0094] E. Detailed Description of the Synchronization
Programs

[0095] The descriptions of the programs that constitute the
synchronization software 60 (FIGS. 7-14) presented below
are best understood with reference to FIG. 6. The arrows in
FIG. 6 show activities, either programs reaching out to
adjust data or else programs making subroutine calls to other
programs, which are explained in conjunction with the
detailed descriptions of the various synchronization pro-
grams and routines set forth below. Accordingly, FIG. 6 is
not a flow chart but rather a diagram of programs and data
residing in memory, with arrows indicating instances where
programs access data or where one program calls upon
another to perform a task.

[0096] 1. Create a Mutex Program

[0097] The present invention commences operation when
a thread, such as the thread 56 shown in FIG. 6 calls upon
the create mutex program 700 to create a new global mutex
43. With reference to FIG. 7, the program 700 begins at step
702 by creating a new, unique global object ID. Then, at step
704, it allocates and initializes a new global record 400 for
the mutex within the global memory segment 42. Initializa-
tion includes recording in node references 408 that the
global mutex has been opened by the node where thread 56
is running. At step 706, on the node 10 where the calling
thread 56 is running, the program 700 creates a local mutex
66 and a local event 70 by calls placed with the local
operating system 62. At step 708, a local data record 500 is
allocated and initialized. The local data record 500 (FIG. 5)
is also associated with the new global record 400 (FIG. 4)
such that both contain the same new global object ID at 403
and 503, and so that the local data record 500, at 504,
contains the address of the global data record 400, as was
described above in conjunction with the description of
FIGS. 4 and 5. This completes the process of creating the
global mutex 43.

[0098] 2. Open a Mutex Program

[0099] A thread may call the open mutex program 800 in
order to use a global mutex that has already been created by

Feb. 27, 2003

some other thread. (The thread that calls the create mutex
program 700 described in the preceding paragraph does not
need to call the open mutex program). The details of the
open a mutex program 800 are shown in FIG. 8. At step 802,
if the thread is the first thread to open the global mutex on
its node, then the steps 706 and 708 (FIG. 7) of allocating
a local mutex and event and creating a local data record are
carried out for its node. If the thread 56 has called the create
mutex program, then this would have to be done by the
thread 21 in order to use the mutex since it resides on a
different node 20. But in the case of the thread 58 (FIG. 3),
residing on the same node as thread 56, the step 802 can be
skipped. Next, at step 804, a local reference count 510
contained within the local data record 500 is incremented so
as to maintain a record of how many threads on the node 10
have opened the mutex 43.

[0100] 3. Acquire a Mutex Program and Global Mutex
Access Program

[0101] Let it now be assumed that the global mutex 43 is
available. With reference to FIG. 4, the global state value
404 would indicate that the mutex 43 is available, and the
owner node ID 406 would be blank.

[0102] Assume that the thread 56 next attempts to acquire
the global mutex 43. It does so by calling the acquire a
mutex program 900, the details of which are shown in FIG.
9. With reference to FIG. 9, the acquire a mutex program
900 begins at step 902 by determining whether or not the
mutex 43 is available. First, it calls upon the global mutex
access program 1300, shown in FIG. 13, to gain access to
the global mutex data record 400. With reference to FIG. 13,
at step 1302, the access program 1300 begins by obtaining
from the local data record 500 of the global mutex 43 the
global memory address 504 of the global mutex data record
400. Next, at step 1304, the access program 1300 acquires
the global spinlock 45. Typically, this is done by means of
a hardware test-end-set primitive that performs an initial test
of a spinlock data value to see whether the global record 400
is currently being accessed by some other processor. If so,
then the software loops on reading the spinlock data value
until the spinlock becomes free, hence “spinning.” This
spinning typically occurs inside of the data cache of the
processor, and this reduces the impact on system resources,
such as memory bandwidth, for the remaining processors.
After the spinlock becomes free, the test-end-set operation is
completed to gain actual ownership of the spinlock, and this
achieves a “lock.”

[0103] Once the spinlock has been acquired, the global
data record 400 is accessed and modified at step 1306.
Referring back to FIG. 9, the step 902 is carried out by
checking the global state 404 (FIG. 4) of the mutex 43 to
determine if it is available. Assuming that it is available, then
at step 916 in FIG. 9, ownership is acquired by changing the
global state 404 to “owned” and by placing the acquiring
program’s node ID in the owner node ID location 406 of the
global mutex data record 400. Then, in step 1308 of FIG. 13,
the spinlock is released. Program control then continues at
step 918 in FIG. 9 with a call to the local operating system
62 to take over ownership of the local mutex 66. Then
execution of the thread 56 continues, with the thread 56
carrying out some operation that is controlled and coordi-
nated by the global mutex 43.

[0104] The acquire a mutex program 900 shown in FIG.
9 will now be described again, this time assuming that the

US 2003/0041173 Al

thread 21 has previously acquired and now owns the global
mutex 43. As an additional assumption, it will be assumed
that the suspended node linkage record 418 shown in FIG.
6 is not present, that being the element corresponding to the
node 10.

[0105] The thread 56 calls upon the program 900, and
program control begins at step 902 with a test for the
availability of the mutex 43. The test reveals that the global
mutex 43 is not available, since it is owned by the thread 21.

[0106] Next, at steps 904 and 906, the state of the mutex
43 is examined. In this case, whether or not the mutex 43 is
in transition (since the thread 56 has been running and is not
just now coming out of suspension), program control con-
tinues at the step 908.

[0107] The process of suspending the thread 56 and of
adding the node 10 to the global wait queue 410 now
commences. First, at step 908, a check of the global wait
queue 410 is carried out, and it is discovered that the node
10 is not presently in the queue 410. Accordingly, a new
record 418 containing the ID of the node 10 is added to the
end of the global wait queue 410. At step 910, the local
thread link count 512 within the local data record 500 is
incremented to show that a thread is being suspended. At
step 912, the local operating system 62 is called upon to
cause the thread 56 to wait upon both the local mutex 66 and
also the local event 70. And at step 914, which is executed
by the operating system 62, thread execution of the thread 56
is suspended awaiting the occurrence of the local event 70.

[0108] The Appendix contains illustrative code from the
actual program listing of the acquire a mutex program used
in the prototype version of the invention.

[0109] 4. Release a Mutex Program

[0110] Next, let us assume that the thread 21 releases the
mutex 43 by executing the release of mutex program 1000
shown in FIG. 10. Let us also assume that in the global wait
queue 410 the record for the node 10 is now the record 418
positioned at the head of the FIFO queue 410. After calling
upon the global mutex access program 1300 to acquire the
spinlock 45 and gain access to the global mutex data record
400, the program 1000 zeroes the node ID field 406 within
the global data mutex record 403 (step 1002). It then checks
to see if the global link queue 410 is empty, at step 1004. If
that is so, then the program 1000 running on the node 20
simply sets the global state 404 within the global mutex data
record 400 to indicate that the mutex is available, after
which the program 1000 releases the spinlock 45 and returns
program control to the thread 21.

[0111] But the queue 410 is not empty. The thread 56 has
been suspended on the node 10, along with other threads
suspended on other nodes, and accordingly the global link
queue 410 is not empty but includes the IDs of the nodes
414, 416, and 418 (which corresponds to the node 10).
Accordingly, program control continues at the step 1006
where the global state 404 within the global mutex data
record 400 is set to the “transition” state.

[0112] At step 1008, the program 1000 checks the global
wait queue 410 and selects the node record 418 for the node
10 that has previously been moved to the head of the FIFO
queue 410. Next, at step 1010, the bit corresponding to the
node 10 is set within the nodes notified bit table 412 that

Feb. 27, 2003

identifies the nodes that have been notified of the availability
of the mutex 43 during this release of the mutex. Finally, at
step 1012, a global interrupt is generated that causes the
operating system 42 at the node 10 to trigger the mutex
release global interrupt program 1100 which triggers the
local event 70 on and off as well as performing other steps.
The release mutex program 1000 then returns program
control to the thread 21, which then continues to execute
normally.

[0113] 5. Mutex Release Global Interrupt Program

[0114] The interrupt triggers the execution of the mutex
release global interrupt program 1100, the details of which
are shown in FIG. 11. First, at step 1102, the local event 70
is first triggered and is then immediately released. Next, a
call to the operating system 62 is performed to determine
whether that triggering of the event 70 actually caused a
thread on the local node 10 to acquire the local mutex 66 that
corresponds to the global mutex 43. If some thread, such as
the thread 56, has acquired the local mutex 66 and has been
placed back into operation, then the mutex release global
interrupt program 1100 is finished, and the interrupt program
execution terminates.

[0115] Normally, the mutex release global interrupt pro-
gram 1100 triggers the local event 70 which causes the
suspended thread 56 to be activated by the local operating
system 62. The activated thread 56 thus captures the local
mutex 66. Program control of the thread 56, which is
executing the acquire a mutex program 900, recommences at
the step 902 in FIG. 9 with a test for the availability of the
mutex 43. In this case, the test at step 902 in the program 900
fails, since the mutex 43 is not in the available state. Then,
at steps 904 and 906, if the mutex is still in the transition
state, and since the thread 56 is coming out of suspension,
then the thread 56 decrements the suspended local thread
wait count for its node 10 at 512 (FIG. 5). The record 418
is moved back to the end of the FIFO global wait queue 410,
or is deleted if no more threads on node 10 are awaiting the
global mutex (step 915). Next, the thread 56 takes ownership
of the global mutex 43 at step 916. The thread then continues
with steps 916 and 920 (step 918 is omitted, since the thread
56 already owns the local mutex 66). Also, the nodes notified
bit mask 412 (FIG. 4) is cleared at this point.

[0116] However, it is possible that some other node’s
thread will gain control of the mutex 43 during the brief time
during and following the interrupt while the operating
system 62 is unsuspending the thread 56. If the mutex 43 is
already owned, then program control is transferred to the
step 908, which recommences the suspension of the thread
56, as was described previously. Some other thread has
gained the mutex 43, and the thread 56 will again have to
await its turn.

[0117] 6. Release Another Node Routine

[0118] Returning to the step 1104 within the mutex release
global interrupt program 1100, the test of whether a thread
has acquired the local mutex 66 may find that the local
mutex 66 has still not been acquired. This could happen, for
example, if for some reason the local operating system 62
fails to unsuspend the thread 56, or if the thread 56 has been
terminated. In that case, the release another node routine
1106, set forth in FIG. 14, is placed into operation by the
mutex release global interrupt program 1100.

US 2003/0041173 Al

[0119] With reference to FIG. 14, the routine 1106 begins
at step 1108 by examining the global wait queue 410, as was
explained above (steps 1008 and 1010 in the program 1000
shown in FIG. 10), to sece which is the appropriate node to
notify next of the availability of the mutex 43. With refer-
ence to the nodes notified bit mask 412, if another node is
available that has not been notified (at step 1110), then at
step 1112 a new global interrupt is generated to notify that
node, and that nodes bit in the nodes notified bit mask 412
is set so that each node is only notified once of any given
transitional state availability of the mutex 43. Then the
mutex release global interrupt program 1100 for the current
node terminates, and program control recommences with the
mutex release global interrupt program 1100 running now on
behalf of the newly-notified node. Hence, program control
may oscillate back and forth between the routines shown in
FIGS. 11 and 14, with a different node being notified and a
different thread on that different node being unsuspended
with each oscillation, until the global mutex 43 is finally
captured by an unsuspended thread. When all of the nodes
in the global wait queue 410 linkage have been notified, this
process halts.

[0120] 7. Close a Mutex Program

[0121] To close and stop using a mutex, a thread calls upon
the close a mutex program 1200 shown in FIG. 12. At step
1202, the local reference count 510 is decremented. At step
1204, if the count reaches zero, then no threads on this node
are using (have opened and have not closed access to) the
mutex. Accordingly, the local data record 500 is released, the
local mutex 66 and event 70 are closed, and the node
references 408 is changed to reflect that this node no longer
has the global mutex open. If the node references 408
indicates there are no nodes at all in the multi-computer
system that still have the global mutex open, then the global
memory used by the global data record is freed so it can be
reused as needed to support other global mutexes yet to be
created.

[0122] While the preferred embodiment of the invention
as implemented in a prototype system has been described, it
will be understood by those skilled in the art to which the
invention pertains that numerous modifications and changes
may be made without departing from the true spirit and
scope of the invention. It is accordingly intended to define
the scope of the invention precisely in the claims appended
to and forming a part of this application.

APPENDIX—MUTEX ACQUISITION
PROGRAM

[0123] /* Check the global state of the mutex to determine
further action. If it it is available, take ownership. Otherwise,
join the global wait queue and call NT to wait on a local NT
mutex representing the global mutex. Upon waking up from
such a wait, again access the global state of the mutex to
record information consistent with the wait results returned
by NT. The detailed implementation is complicated by the
following:

[0124] Ownership as indicated by global state is not
atomically consistent with ownership as indicated through
interactions with the local NT mutexes representing the
global mutex. Specifically, a thread cannot write a global
ownership record and acquire a local mutex using a single
lock.

Feb. 27, 2003

[0125] Faults may occur at any time in the code path. They
must be caught and managed in such a way that correct
mutex semantics are preserved, and the caller does not
experience abnormal behavior. In this context, acquiring
mutex ownership along with an indication that the mutex has
been abandoned is not considered abnormal behavior.

[0126] The circumstances identified by the preceding
paragraphs lead to race conditions that typically do not
occur, but which must be accounted for in the actions taken.

*/

NTSTATUS

MesKiWaitForSingleMutex(PMCS_ GID__ENTRY pGidEntry,
KWAIT_REASON

WaitReason,

BOOLEAN Alertable,

LARGE__INTEGER * TimeoutParm, PVOID * ObjPtrs,
PROCID Pid, THREADID Tid)

{

PMUTEX__GID__INDEX pGidIndex;

PMCS_ MUTEX pMcsMutex;

NODEID ILocation;

GLOBAL__SEMREG SemReg;

PULONG pGMStatus;

KIRQL oldIrq1;

MUTEX__STATE mState;

NTSTATUS Status, LockStatus;

LARGE__INTEGER StartTickCount;

BOOLEAN DoTimeout = TRUE;

BOOLEAN Abandoned = FAILSE;

BOOLEAN UserMutex = TRUE;
PUPROC_MUTEX__DATA pProcData;

pGidindex (PMUTEX_ GID_ INDEX)pGidEntry—>GlobalObjectData;
pProcData = pGidEntry->ProcSpecificData;
if(TimeoutParm) {

DoTimeout = (TimeoutParm->QuadPart != 0);
KeQueryTickCount(&StartTickCount);

y

Retry:

VerifyConnectedNode(pGidIndex—>Location);

// Update variables that may change during recovery.
Location = pGidIndex->Location;

SemReg MutexFindSemReg(Location, &pGMStatus);
pMesMutex = (PMCS_ MUTEX)pGidIndex—>McsObjPtr;
try{

if (LockStatus = XxMutexAcquireSemReg(SemReg,
&oldIrql, pGMStatus)) {

if (oldlrql = DISPATCH_ LEVEL) return LockStatus;
// Can’t wait while running at DISPATCH_LEVEL.
// This is support for kernel mutex only.
MutexWaitForRecovery();

goto Retry;

if ((mState = pMcsMutex—>State) == DEADBEEF) {

// For capturing memory failure errors: DEADBEEF is poison
ExRaiseStatus(GLOBAL_MEMORY_ ERROR);

}else {

// Capture whether the mutex has been abandoned so the caller
// can be informed when it has.

Abandoned =

(inState & MUTEX__ABANDONED FLAG) ? TRUE : FALSE;
inState &= ~MUTEX__ABANDONED_ FLAG;

switch (mState) {

case MCS_MIUTEX__AVAILABLE: {

Status = KeWaitForSingleObj ect(pGidIndex—>MutexObjPtr,
WaitReason, KernelMode, Alertable, &ZeroTimeout);

if (Status == STATUS__TIMEOUT) {

// This is unexpected. The global mutex should not be

// AVAILABLE unless the local representative one is.

// If the caller wants to wait we’ll release the global

// and do a retry in case there is a strange race condition
// that has eluded us.

if(DoTimeout) {

US 2003/0041173 Al

-continued

12

Feb. 27, 2003

-continued

// The client wants to wait. Release SemReg and try again
MutexReleaseSemReg(SemReg, oldIrql);
goto Retry;

b

else if((Status == STATUS__ SUCCESS) ||

(Status & STATUS_ABANDONED)) {

// The status returned by KeWaitForSingleObject is
// consistent with the global state we found. We take
// ownership and change the global state to reflect that.
try {

ScuCarefulOn();

pMcsMutex—>State = MICS_ MUTEX_ OWNED;
pMcsMutex->Owner = MutexMyNodeld;
ScuCareful Off();

texcept (GetExceptionCode() == GLOBAL__MEMORY__ERROR) {

ScuCareful Off();

// DO NOTHING COMMENT

// The memory went down after we acquired the lock and
// found that the mutex was available. Thus, we’ll proceed
// as normal, granting ownership to the client. By placing
// the normal information in the local recovery record,

// we can assume the recovery thread on this node will

// contribute to a proper rebuilding of the global state.

pGidIndex—->OwnerPid = Pid;
pGidIndex—->OwnerTid = Tid;
pGidIndex—>OwnerWaitCount = 1;
KeResetEvent (pGidIndex—>EventObijPtr);

MutexReleaseSemReg(SemReg, oldIrql);
if(Abandoned) {
return STATUS__ ABANDONED;

}else {

return STATUS__ SUCCESS;

¥

}// End MCS_MUTEX__ AVAILABLE case

case MCS_ MUTEX__OWNED:

if ((pGidIndex—>OwnerPid == Pid) &&
(pGidIndex->OwnerTid) == Tid) {

// We’ve already got it. Just increment our wait count.
pGidIndex—>OwnerWaitCount-++;

MutexReleaseSemReg(SemReg, oldIrql);

return STATUS__ SUCCESS;

}// else fall through to TRANSITION case

case MCS_MUTEX_ TRANSITION: {

// If the state is MCS_MUTEX_ TRANSITION (rather than a
// fall through of MCS_MUTEX_OWNED), then the mutex
// subsystem is in the process of changing ownership

// from one thread to another. If the calling thread

// is willing to wait, then it must join the wait queue.

if(!DoTimeout) {

MutexReleaseSemReg(SemReg, oldIrql);

return STATUS__ TIMEOUT;

// Join the wait queue

if (pProcData) {// User space mutex

if (pProcData—>ProcWaitCnt++ == 0) {
MutexJoinWaitQueue(pGidIndex);

} else {// Kernel space mutex
MutexJoinWaitQueue(pGidIndex);

/I We can’t block while holding a spinlock
MutexReleaseSemReg(SemReg, oldIrql);

if (pProcData) {// User space mutex

Status McsCallNtWaitForMultipleObjects(

2, ObjPtrs, WaitAll, Alertable, TimeoutParm);
} else {// Kernel space mutex

Status KeWaitForMultipleObjects(

2, ObjPtrs, WaitAll,

WaitReason, KernelMode,

Alertable, TimeoutParm, NULL);

/I A fault may have occurred during the wait. A recovery
// operation may be underway, or may have completed and

// relocated the global mutex state. Check for this.

if(Location != pGidIndex-»Location) {

// Rehosting must have occurred

Location = pGidIndex->Location;

VerifyConnectedNode(Location);

SemReg = MutexFindSemReg(Location, &pGMStatus);
pMesMutex = (PMCS__MUTEX)pGidIndex—>McsObjPtr;

if (LockStatus = XxMutexAcquireSemReg(SemReg,
&oldIrql, pGMStatus)) {

if(oldIrql == DISPATCH_LEVEL) return LockStatus;
// Can’t wait while running at DISPATCH_LEVEL
// This is support for kernel mutex only.
MutexWaitForRecovery();

goto Retry;

¥

// Leave the wait queue.

if (pProcData) {// User space mutex

if (--pProcData—>ProcWaitCnt == 0) {
MutexLeaveWaitQueue(pGidIndex);

} else {// Kernel space mutex
MutexLeaveWaitQueue(pGidIndex);

¥

if (INT_SUCCESS(Status)) {
MutexReleaseSemReg(SemReg, oldIrql);

return Status;

}else {

// Take action based on the wait status returned by

// NtWaitForMultipleObjects. For the typical cases of
// Timeout and Acquisition we need to update the global
/f state to be consistent with the wait status before

// returning it to the caller.

switch (Status) {

case STATUS_TIMEOUT: {

// Before returning a Timeout to the caller we need to
// make sure the global state properly reflects whether
// threads from this node are still waiting. The call

// to TgmTransitionTimeout does this.

try{

ScuCarefulOn();

if (pGidIndex—>WaitCount == 0) {
TgmTransitionTimeout(pMcsMutex);

¥
ScuCareful Off();

} except (GetExceptionCode() == GLOBAL_MEMORY__ERROR) {

ScuCareful Off();

// See the preceeding DO NOTHING COMMENT. Return
/I STATUS_TIMEOUT as though nothing happed so

// client can go do something else.

MutexReleaseSemReg(SemReg, oldIrql);
return Status;

case STATUS__ALERTED: {
MutexReleaseSemReg(SemReg, oldIrql);
return Status;

case STATUS__USER__APC: {
MutexReleaseSemReg(SemReg, oldIrql);
return Status;

default:

/I We plan to grant ownership to the caller. But we need

// to check the global state. During the transition other

// threads from other nodes may also have become unblocked
// (from waiting on their local mutexes), and may have gotten
// to the global state to take ownership before we get there.

// For the case when we get there first, we need to record

// our claim of ownership in the global state. These actions

// are done by TgmTransitionlDefault.

/

/I We treat abandonment in the same way as the

/I MCS_MUTEX__AVAILABLE case except that we’ll return
// the status value used to indicate abandonment to the

// new owner (STATUS__ ABANDONED). See TgmTransitionDefault

US 2003/0041173 Al

-continued

// which provides the return Status.

ScuCarefulOn();

Status = TgmTransitionDefault(pGidIndex, Pid, Tid);
ScuCareful Off();

MutexReleaseSemReg(SemReg, oldIrql);

if (Status = STATUS_WAIT_0 || Status ==
STATUS_ABANDONED) {

// Ownership has been granted to the caller

return Status;

} else {// Status = STATUS__WAIT__1, TRY again

// Some other thread got there first. Reset the timeout
// value to account for the time already spent waiting.
LARGE__INTEGER NewTickCount;
KeQueryTickCount(&NewTickCount);

try{

TimeoutParm->QuadPart +=
((NewTickCount.QuadPart — StartTickCount.QuadPart)
* (_int64)EvClockIntTickInc);

if (TimeoutParm->QuadPart < 0) {

// The new adjusted tick count is still negative.

// Thus the original timeout has not elapsed, so

/I we’ll try again. First reset the StartTickCount
StartTickCount = NewTickCount;

goto Retry;

}else {

// The timeout has elapsed

return STATUS__ TIMEOUT;

} except (Status = GetExceptionCode()) {
return Status;

}

}// End Switch inside MCS__MUTEX_ TRANSITION

}// End NT_SUCCESS (for NtWaitForMultipleObjects)

}// End case MCS_MUTEX_ TRANSITION

}// End switch on mState

} except (GetExceptionCode() == GLOBAL_MEMORY__ERROR) {
ScuCareful Off();

MutexReleaseSemReg(SemReg, oldIrql);

MutexWaitForRecovery();

goto Retry;

}/ MesKiWaitForSingleMutex

1. A multi-computer system having provision for global
synchronization objects comprising:

a plurality of multi-processor nodes each having provision
for local memory, threads, and an operating system
having the ability to manage local synchronization
objects;

global memory accessible to the processors on all the
nodes and having at least one spinlock;

a data structure in memory accessible by all the proces-
sors wherein one or more records for global synchro-
nization objects may be established, said data structure
including provision for recording in a queue the iden-
tity of nodes having threads awaiting access to the
synchronization object; and

a synchronization software system of programs estab-
lished in all the nodes which, at the request of a thread
running on a node, can create, open, request, release,
and close a global synchronization object, using the
above spinlock and data structure and queue of node
identities to resolve requests for the synchronization
object as between threads residing on different nodes,
and using local synchronization objects created by the
local operating systems on nodes having threads await-

13

Feb. 27, 2003

ing access to resolve requests for the synchronization
object between threads residing on the same node.

2. A multi-computer system in accordance with claim 1
wherein the queue in which is recorded the identity of the
nodes having threads awaiting access to the global synchro-
nization object is organized as a FIFO arrangement of the
node identifiers ordered in the same order in which requests
for the global synchronization object are received from the
threads.

3. A multi-computer system in accordance with claim 2
wherein node identifiers are moved to the end of the queue
each time one of the threads on the correspondingly iden-
tified node gains ownership of the local and global synchro-
nization objects.

4. A multi-computer system in accordance with claim 3
wherein counts are maintained for each node of the number
of threads awaiting a synchronization object, wherein those
counts are decremented when a thread on the corresponding
node is granted the synchronization object, and wherein the
reference to the name of the corresponding node in the data
structure is removed when the count reaches zero.

5. A multi-computer system in accordance with claim 2
wherein counts are maintained for each node of the number
of threads awaiting a synchronization object, wherein those
counts are decremented when a thread on the corresponding
node is granted the synchronization object, and wherein the
reference to the name of the corresponding node in the data
structure is removed when the count reaches zero.

6. A multi-computer system in accordance with claim 1
wherein counts are maintained for each node of the number
of threads awaiting a synchronization object, wherein those
counts are decremented when a thread on the corresponding
node is granted the synchronization object, and wherein the
reference to the name of the corresponding node in the data
structure is removed when the count reaches zero.

7. A multi-computer system in accordance with claim 1
wherein the global synchronization objects are semaphores.

8. A multi-computer system having provision for global
mutexes comprising:

a plurality of multi-processor nodes each having provision
for local memory, threads, and an operating system
having the ability to manage local synchronization
objects;

global memory accessible to the processors on all the
nodes and having at least one spinlock;

a data structure in memory accessible by all the proces-
sors wherein one or more records for global mutexes
may be established, said data structure including pro-
vision for recording in a queue the identity of nodes
having threads awaiting access to the synchronization
object; and

a synchronization software system of programs estab-
lished in all the nodes which, at the request of a thread
running on a node, can create, open, request, release,
and close a global mutex, using the above spinlock and
data structure and queue of node identities to resolve
requests for the global mutex as between threads resid-
ing on different nodes, and using local mutexes created
by the local operating systems on nodes having threads
awaiting access to resolve requests for the global mutex
between the threads residing on the same node.

US 2003/0041173 Al

9. A multi-computer system in accordance with claim 8
wherein the queue in which is recorded the identity of the
nodes having threads awaiting access to the global mutex is
organized as a FIFO arrangement of the node identifiers
ordered in the same order in which requests for the global
mutex are received from the threads.

10. A multi-computer system in accordance with claim 9
wherein the node identifiers are moved to the end of the
queue each time one of the threads on the correspondingly
identified node gains ownership of the local and global
mutexes.

11. A multi-computer system in accordance with claim 10
wherein counts are maintained for each node of the number
of threads awaiting a mutex, wherein those counts are
decremented when a thread on the corresponding node is
granted the mutex, and wherein the reference to the name of
the corresponding node in the data structure is removed
when the count reaches zero.

12. A multi-computer system in accordance with claim 9
wherein counts are maintained for each node of the number
of threads awaiting a mutex, wherein those counts are
decremented when a thread on the corresponding node is
granted the mutex, and wherein the reference to the name of
the corresponding node in the data structure is removed
when the count reaches zero.

13. A multi-computer system in accordance with claim 8
wherein counts are maintained for each node of the number
of threads awaiting a mutex, wherein those counts are
decremented when a thread on the corresponding node is
granted the mutex, and wherein the reference to the name of
the corresponding node in the data structure is removed
when the count reaches zero.

14. A method for granting threads running on various
multi-processor nodes within a multi-computer system own-
ership of a global synchronization object comprising the
steps of:

maintaining a record of the state of the global synchro-
nization object as free, owned, or in transition;

when a thread seeks ownership of the global synchroni-
zation object, granting the thread, through a spinlock
mechanism, access to the status of the global synchro-
nization object, and granting the thread ownership if
the object is free;

if the object is not free (owned or in transition), adding the
thread’s node to a queue of nodes having threads
awaiting ownership of the global synchronization
object, and permitting the thread to seek ownership of
a local synchronization object established on the
thread’s node by a local operating system, but tempo-
rarily blocking threads on the thread’s node from
seeking ownership of the local synchronization object
and forcing them into suspension;

when the global synchronization object ownership is
released by a thread, placing the global synchronization
object into its transition state, and then arranging for
each node in the queue, in turn, to stop blocking threads

Feb. 27, 2003

on its node from seeking ownership of the local syn-
chronization object, and permitting any thread that then
gains ownership of its local synchronization object to
resume execution and to gain ownership of the global
synchronization object if the object is not owned (free
or in transition), this process continuing until the global
synchronization object is owned or until no more
threads seek its ownership, at which point the global
synchronization object enters its free state.

15. A method in accordance with claim 13 wherein the
synchronization objects are mutexes.

16. A method in accordance with claim 13 wherein the
synchronization objects are semaphores.

17. A set of synchronization software computer programs
designed for use in conjunction with a multi-computer
system, where individual nodes have their own copies of an
operating system with local node synchronization software
included in the operating system, said synchronization soft-
ware computer programs being capable of carrying out the
following steps to implement global synchronization
objects:

maintaining a record of the state of each global synchro-
nization object as free, owned, or in transition;

when a thread seeks ownership of a global synchroniza-
tion object, granting the thread, through a spinlock
mechanism, access to the status of the global synchro-
nization object, and granting the thread ownership if
the object is free;

if the object is not free (owned or in transition), adding the
thread’s node to a queue of nodes having threads
awaiting ownership of the global synchronization
object, and permitting the thread to seek ownership of
a local synchronization object established on the
thread’s node by a local operating system, but tempo-
rarily blocking threads on the thread’s node from
seeking ownership of the local synchronization object
and forcing them into suspension;

when the global synchronization object ownership is
released by a thread, placing the global synchronization
object into its transition state, and then arranging for
each node in the queue, in turn, to stop blocking threads
on its node from seeking ownership of the local syn-
chronization object, and permitting any thread that then
gains ownership of its local synchronization object to
resume execution and to gain ownership of the global
synchronization object if the object is not owned (free
or in transition), this process continuing until the global
synchronization object is owned or until no more
threads seek its ownership, at which point the global
synchronization object enters its free state.
18. A method in accordance with claim 13 wherein the
synchronization objects are mutexes.
19. A method in accordance with claim 13 wherein the
synchronization objects are semaphores.

#* #* #* #* #*

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Drawings
	Page 14 - Drawings
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description
	Page 21 - Description
	Page 22 - Description
	Page 23 - Description
	Page 24 - Description
	Page 25 - Description
	Page 26 - Description
	Page 27 - Description/Claims
	Page 28 - Claims

