
(19) United States
US 20030041173A1

(12) Patent Application Publication (10) Pub. No.: US 2003/0041173 A1
Hoyle (43) Pub. Date: Feb. 27, 2003

(54) SYNCHRONIZATION OBJECTS FOR (52) US. Cl. 709/248
MULTI-COMPUTER SYSTEMS

(76) Inventor: Stephen L. Hoyle, Mountain View, CA (57) ABSTRACT
(Us)

Correspondence Address: Several multiprocessor computer systems, each having its
HEWLETT_PACKARD COMPANY oWn copy of an operating system, are interconnected to form
Intellectual Property Administration a multi-computer system having global memory accessible
P_0_ BOX 272 400 by any processor on any node and including provision for
Fort Collins CO 80527_2400 (Us) spinlock access control. In this environment, a global muteX,

’ and other like synchronization objects, are realized that can

(21) APPI NO. 09 928,115 control the coordination of multiple threads running on
multiple processors and on multiple nodes or platforms.

(22) Filed; Aug 10, 2001 Each global muteX is supported by a local operating system
shadoW muteX on each node or platform Where threads have

Publication Classi?cation opened access to the global muteX. Global muteX function
ality is thus achieved that re?ects and utilizes the local

(51) Int. Cl.7 G06F 15/16 operating system’s muteX system.

T ' ' '
I ' l

I 12'\ CPU 14~ CPU I I 16-» CPU 18"- CPU I
I

|22'~{@ WE . I26 IE] 28 IE I
| l l I I I 321 I
I 4 W0 47 I ' 4 :
l “IE! I am I I “E w I
l 5 LOCAL I I 4 LOCAL l
I MEMORY AND 56\ MEMORY l : MEMORY AND MEMoRY I

|/o ‘IE I 1/0 I CONTROLLER I I CONTROLLER :
| | THREAD | I | IE I
I \ 58 I | I 21
I | 36 I

GLOBAL I GLOBAL I
I 42~ MEMoRY I I 44- MEMoRY I
l 43 I I I

I @EI I I I
I I | |
| 45 I l 51 I

' min I ' @ I I I l l
|_ __ _. .__ _ _ _ _ _ _ _ _ _ _ _ __ __ .1 L. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ .1

50 T /

Patent Application Publication Feb. 27, 2003 Sheet 2 0f 13 US 2003/0041173 A1

/44
/42 GLOBAL MEMORY SEGMENT

SEGMENT HEADER

SPIN LOCK

GLOBAL DATA
RECORD

418/
---> 43 I‘

| 414-’ 416’

Figure 2

Patent Application Publication Feb. 27, 2003 Sheet 3 0f 13 US 2003/0041173 A1

NODE 20 21~ THREAD
LOCAL MEMORY l

61 N SYNC-SFTW / 40

3s

NODE 10 ‘/
LOCAL MEMORY

k/58
THREAD ~56

60
v /

SYNCRHRONIZATION
SOFTWARE (FIGS. 7-17

502

LOCAL DATA /' 500
RECORD

e2\
LOCAL 0s

6'13?“ LDDAL ' LOCAL I
/~ MUTEX - EVENT

64 68 \66 72 \70

Figure 3

Patent Application Publication Feb. 27, 2003 Sheet 4 0f 13 US 2003/0041173 A1

GLOBAL MVTEX DATA RECORD

GLOBAL
OBJECT ID

NODE Q
2

THREADS
WAITING

~416

NODE R
1

THREAD
WAITING

403 w

a E

C

m w D

L Rm R LQ E
E |

mm M% 0% MT rsilr CA W CE OS DT LT OnNu NR LA 00
GS GW NM 4 6 8 w m

w w m 4 4

NODE W
3

THREADS
WAITING

Figure 4

Patent Application Publication Feb. 27, 2003 Sheet 5 0f 13 US 2003/0041173 A1

/ 502
f 500

LOCAL DATA RECORD

GLOBAL
503 OBJECT ID

504% GLOBAL
MEMORY ADDRESS

LOCAL
505 v MVTEX

508 _,_ LOCAL
EVENT

LOCAL
51°“ REF. COUNT

512w LOCAL THREAD
WAIT COUNT

Figure 5

Patent Application Publication Feb. 27, 2003 Sheet 7 0f 13 US 2003/0041173 A1

CREATE A MUTEX

702w CREATE A NEW GLOBAL
OBJECT LD.

l
704% ALLOCATE AND INITIALIZE

A NEW GLOBAL RECORD

i
ON THE NoDE WHERE THE CALLING

706 w THREAD IS RUNNING, CREATE A LOCAL
MUTEX 66 AND A LOCAL EVENT 70 (BY
CALLS TO THE LOCAL OPERATING

SYSTEM 62)

L
ALLOCATE AND INITIALIZE A

508 “‘ NEW LOCAL DATA RECORD,
AND ASSOCIATE IT WITH

THE NEW GLOBAL RECORD.

i
RETURN

Figure 7

Patent Application Publication Feb. 27, 2003 Sheet 8 0f 13 US 2003/0041173 A1

800

\ OPEN A MUTEX

IF THE CALLING THREAD IS THE FIRST TO
802w USE THE GLOBAL MUTEX ON IT'S NODE.

CARRY OUT STEPS 706 AND 708 IN FIG. 7
TO CREATE ON THE NODE A LOCAL

MUTEX AND EVENT

I
804 w INCREMENT THE LOCAL REFERENCE

COUNT 510 (FIG.5) IN THE LOCAL DATA
RECORD 500 OR 502 FOR THE NODE

I
RETURN

Figure 8

Patent Application Publication Feb. 27, 2003 Sheet 9 0f 13 US 2003/0041173 A1

900 91%
ACQUIRE A MUTEX TAKE

9o2\ iv OWNERSHIP BY
\ IS THE MUTEX YES ‘ CHANGING THE

AVAILABLE ? 915 ' GLOBAL STATE
904 I No 404 To "OWNED"

AND PLACING
NO IS THE MUTEX IN DECREMENT THE ACQU|R|NG

TRANSITIOiN? THE THREAD'S NQDE
90s 1 YES Tgggzg'éga ID LOCATION 406

IS THIS THREAD oNE YES OF THE GLOBAL
THAT as COMING OUT ‘ ?ggggg? 'Agggig?g:
OF SUSPENSION ? THE QUEUE 410

NO ‘I

MAKE SURE THAT THE NODE CALL THE LOCAL 0's
‘ I.D. OF THE CALLING 918“ 62 To TAKE

THREADS “ODE '3 OWNERSHIP OF THE
ENTERED INTO THE GLOBAL LOCAL MUTEX 66

WAIT QUEUE 41
910 \ 92o

\ INCREMENT THE 908
LOCAL THREAD WAIT coNgigg?agTlEAo

COUNT 512
912 l 914 \

HAVE THE LOCAL GP.
62 CAUSE THE THREAD THREAD EXECUT'ON

SUSPENDED AWAITING To WAIT ON BOTH THE E
LOCAL MUTEX 66 AND ' LOCAL EVENT AND

EVENT 70 LOCAL MUTEX

RESUME I

Figure 9

Patent Application Publication Feb. 27, 2003 Sheet 10 0f 13 US 2003/0041173 A1

1000

RELEASE A MUTEX

ZERO THE NODE ID 406
WITHIN THE GLOBAL MUTEX

1002*“ DATA RECORD 403

N0 IS THE GLOBAL WAIT YES
QUEUE EMPTY ?

v \1004 v

SET THE GLOBAL STATE 1005 w SET THE GLOBAL STATE
404 TO INDICATE THE \1006 404 To |ND|CATE THE

MUTEX IS IN TRANSITION MUTEX |$ AVNLABLE

l 1010
/1008 W

DETERMINE WHICH SET THE QODEI'EST'?EN
NODE IS TO BE > THE 8" ABL

' ACTIVATED IDENTIFIES THE NODES
NOTIFIED 412.

1012 \
GENERATE A GLOBAL

INTERRUPTION TO CAUSE THE
OPERATING SYSTEM AT THE l
NOTIFIED NODE TO SET THE

TRIGGER FOR THE LOCAL EVENT
70, ETC. (FIG.11)

Figure 70

Patent Application Publication Feb. 27, 2003 Sheet 11 0f 13 US 2003/0041173 A1

1100

MUTEX RELEASE GLOBAL INTERRUPT

l
TRIGGER AND THEN RELEASE THE LOCAL
EVENT TO. DETERMINE WHETHER A THREAD

1102“ ON THE LOCAL NODE 10 HAS ACQUIRED THE
LOCAL MUTEX.

l
THREAD HAS INTERRUPT

1104\ ACQUIRED LOCAL g RETURN
MUTEX ?

lNO
1106 RELEASE ANOTHER
\ NODE (FIG. 14)

Figure 1 7

Patent Application Publication Feb. 27, 2003 Sheet 12 0f 13 US 2003/0041173 A1

1200

CLOSE A MUTEX

l
IF THIS IS NOT THE LAST THREAD ON THE
NODE THAT HAS OPENED THIS MUTEX,

1202“ THEN DECREMENT THE LOCAL
REFERENCE COUNT 510.

l
OTHERWISE DEALLOCATE THE LOCAL

1204 "\ DATA RECORD 500 AND HAVE THE LOCAL
OPERATING SYSTEM 62 CLOSE THE LOCAL

MUTEX 66 AND THE LOCAL EVENT 70

Figure 12

Patent Application Publication Feb. 27, 2003 Sheet 13 0f 13 US 2003/0041173 A1

1300

\ GLOBAL MUTEX ACCESS

1302 FIND GLOBAL
m MEMORY SEGMENT

1304 ACQUIRE HEADER
m WITH SPIN LOCK

1396/N ACCESS/MODIFY THE
GLOBAL DATA RECORD

13% RELEASE THE SPIN LOCK

Figure 13

US 2003/0041173 A1

SYNCHRONIZATION OBJECTS FOR
MULTI-COMPUTER SYSTEMS

BACKGROUND OF THE INVENTION

[0001] The present invention relates generally to the shar
ing of resources by multitasking computer systems, and
more particularly to arrangements for controlling access to
computing resources that should only be used by one task at
a time in a multi-computer environment.

[0002] When computers ?rst came into existence, they
Were operated using single instructions that Were executed
one instruction at a time. As computers became more
poWerful, they greW more ef?cient and eventually Were able
to do many things at once. Today’s computers have the
ability to perform multitasking. Multitasking is the ability to
execute more than one task at the same time. A “process” is
a program that is being executed plus the bookkeeping
information that is used by the operating system to control
that process. A “task” is also a process, but a “task” may be
several processes. Whenever a program is executed, the
operating system creates a neW task or process for the
program. The task or process is analogous to an envelope for
the program. It identi?es the program With a task or process
number, and it attaches other bookkeeping information to
the program.

[0003] Originally, and for a number of years, every com
puter contained only one processor or CPU, and there Was
only one Way to deliver a set of different tasks to the
processor of the computer—one task at a time. First task 1
is processed, then task 2 is processed, and so on. Work on
task 2 can begin before task 1 is completed, but only by
stopping the Work on task 1 Whenever Work on task 2 is
being done, and vice versa.

[0004] NoW computers have become more sophisticated,
and multiple processors are taking the place of single
processors. On such a multiple processor computer, called a
“multiprocessor system” (or just “multiprocessor”), any task
can be assigned to any one of the processors, and Work can
noW actually be done simultaneously upon multiple tasks.
Since more tasks can be completed in less time this Way, a
multiprocessor system delivers better performance than does
a computer having only one processor.

[0005] A task or an individual computer program can
sometimes be vieWed as a collection of “subtasks.” If these
subtasks can be organiZed so that a multiprocessor system
can execute some of them at the same time Without changing
the results computed by the task or program, then the overall
task or program can be completed in less time, even though
the time required to complete each subtask may not have
changed. Thus, multiprocessor systems enable some indi
vidual computer tasks and programs to run faster. Construct
ing a task or program as a collection of subtasks that can be
processed simultaneously is called “parallel programming.”
Running a task or program as separate subtasks that are
actually processed simultaneously is called “parallel pro
cessing.”

[0006] Originally, parallel programming and parallel pro
cessing required that the subtasks of a program or task
actually be tasks that can run as entirely separate, indepen
dent processes. More recently, computer technology has
been developed that alloWs tasks, processes, or programs to

Feb. 27, 2003

be divided into distinct subtasks or subprocesses or subpro
grams, processing units that may be called “threads.” Each
“thread” is a subtask or subprocess that can be delivered
independently to a different processor. Computer programs
organiZed as multiple threads are called “multithreaded
programs.” Although there is a signi?cant technical differ
ence betWeen tasks or processes on the one hand and threads
on the other, the difference is not an important one in the
context of the invention described beloW. No formal dis
tinction Will be made betWeen a task or process on the one
hand and a subtask or thread on the other hand. All such
entities Will be referred to as “threads” in the discussion
Which folloWs.

[0007] “Multi-computer systems” provide an extension
beyond multiprocessor systems as to hoW multiple proces
sors can be organiZed for use by multi-threaded tasks. A
“multi-computer system” (or just multi-computer) is a group
of computers, each running its oWn copy of the operating
system, that Work together to achieve a particular goal. That
goal is to present their collective computing resources, so
that they appear to belong as much as possible to a single
operating system running on a single computer, both to
programs that use the computer’s resources, and also to
human beings that make use of the multi-computer system
in some Way. Typically, there are also hardWare resources
(memory, for example), Which are shared and are directly
accessible by all the computers in the multi-computer sys
tem. Just as multiprocessor systems can deliver better per
formance than single processor systems, multi-computer
systems can often deliver better performance than multipro
cessor systems. HoWever, constructing programs that run
Well on a multi-computer system can be especially difficult
unless the multi-computer system itself does a very good job
of presenting itself to programs as if it Were a single
computer. Most of the time, this means the multi-computer
system must hide the fact that there are actually multiple
operating systems running on the separate computers Which
make up the multi-computer system.

[0008] A multi-threaded task operates in a Way similar to
the Way in Which a small company operates. As an example,
consider a small company With three departments: manu
facturing, sales, and accounting. For the company to run
ef?ciently, the tasks of each department need to be per
formed concurrently. Typically, manufacturing operations
are not shut doWn until the items in a previously manufac
tured batch have all been sold. Thus, manufacturing and
sales proceed at the same time. Although invoices cannot be
prepared for items not yet sold, they can and should be
prepared and processed for previously sold items even While
neW sales are being negotiated and While a neW batch of
items is being manufactured. Although the three tasks have
interdependencies requiring them to coordinate their activi
ties, none can be shut doWn completely While one of the
other tasks is executed from beginning to end.

[0009] Many softWare tasks operate under the same con
ditions as this company example. They have multiple tasks
or subtasks that can be executed at the same time as separate
threads or sets of threads. HoWever, these tasks or subtasks
also have interdependencies that require coordination: por
tions of one task that cannot proceed until portions of one or
more other tasks have been completed. Programming a set
of such tasks so their Work can be properly coordinated
While they all run simultaneously is called “synchroniza

US 2003/0041173 A1

tion.” Speci?c programming constructs are used to imple
ment synchronization. These are called “synchronization
objects.”

[0010] A very simple case requiring coordination occurs
When several tasks need to share a single resource, but the
resource is such that it can only be used by one task at a time.
Avery small business, for example, may have only a single
phone line that needs to be used for different purposes at
different times by the tWo or three people Who run the
business.

[0011] Likewise, in multithreaded computer programs,
multiple threads frequently need to share computing
resources such as data, ?les, communication channels, etc.
that can only be used by one thread at a time. To control this
resource sharing, “synchronization objects” are required that
alloW each thread to take a turn accessing a given resource
and to prevent other threads from accessing the resource
While one thread takes its turn.

[0012] Mechanisms that satisfy this property in some
manner are called “locks.” A particular type of lock often
used is called a “mutex”, Which is a nickname for the Words
“mutual exclusion.” Typically, an operating system, Working
in conjunction With certain hardWare features of a processor,
provides mutex functions that alloW threads to acquire,
release, and Wait for mutexes. Once a thread has acquired a
mutex, other threads cannot acquire the same mutex until the
?rst thread releases it. A given mutex is normally associated
With a particular computing resource, perhaps a speci?c
record in a data ?le. By programming convention, no thread
is alloWed to access the given speci?c record unless it has
?rst “acquired” the associated mutex. In this manner, mul
tiple threads can access the given speci?c record, and each
thread excludes the other threads from access While it takes
its turn.

[0013] The present invention is directed toWards achiev
ing a mutex that is operative in a multi-computer environ
ment Where each separate computer has its oWn separate
copy of the operating system.

[0014] One Way in Which one might create synchroniza
tion objects for multi-computer systems and cause these
synchronization objects to have essentially the same func
tionality and the same programming interfaces as do syn
chronization objects Within a multiprocessing environment
(Which employs only a single copy of an operating system)
Would be to reWrite completely the operating system code
that manages thread synchronization. NeW code Would be
added to the operating system that determines When a mutex
function is called and Whether each call refers to a local
mutex (accessible only by threads running on a single local
computer) or to a global mutex (accessible by threads
running on any computer Within a multi-computer system).
NeW code Would also be inserted into the operating system
to support function calls that refer to the global mutex. In
addition, the different running copies of the operating system
Would need to be modi?ed so that they communicate With
and knoW about each other and to make sure that threads
from all the computers receive a chance to acquire a global
mutex, While also enforcing the required mutex rules of
sharing for all threads on all platforms.

[0015] This approach has several disadvantages. First, this
approach does not leverage the value of the existing oper

Feb. 27, 2003

ating system code for thread synchronization. Secondly, this
approach requires access to, and the legal right to modify,
the operating system source code. Thirdly, because the base
operating system’s code Would have to be modi?ed, the neW
replacement code Would have to be thoroughly tested in all
of the numerous environments that utilize the operating
system, including multi-and single-processor system envi
ronments that gain no bene?t from this neW code. Changes
implemented solely to support multi-computer systems thus
must be tested extensively in non-multi-computer environ
ments. Typically, for modern operating systems, this testing
effort creates a very substantial amount of Work that is
dif?cult to cost justify.

BRIEF SUMMARY OF THE INVENTION

[0016] The present invention provides an effective method
for extending operating system mutex functionality across
multiple copies of an operating system Where each computer
is running a separate copy of the operating system but all are
Working together as a multi-computer system. Mutexes
supported by the present invention are thus usable by any
thread running on any computer Within the multi-computer
system, but the mutexes present themselves through pro
gramming interfaces to the threads just as though each
mutex Was supported only by a single instance of the
operating system running on a single computer.

[0017] Brie?y summarized, the present invention is a
multi-computer system having provision for global synchro
nization objects Which comprises a plurality of multi-pro
cessor nodes each having provision for local memory,
threads, and an operating system having the ability to
manage local synchronization objects, global memory
accessible to the processors on all the nodes and having at
least one spinlock; a data structure in memory accessible by
all the processors Wherein one or more records for global
synchronization objects may be established, said data struc
ture including provision for recording in a queue the identity
of nodes having threads aWaiting access to the synchroni
zation object; and a synchronization softWare system of
programs established in all the nodes Which, at the request
of a thread running on a node, can create, open, request,
release, and close a global synchronization object, using the
above spinlock and data structure and queue of node iden
tities to resolve requests for the synchronization object as
betWeen threads residing on different nodes, and using local
synchronization objects created by the local operating sys
tems on nodes having threads aWaiting access to resolve
requests for the synchronization object betWeen threads
residing on the same node.

[0018] The queue in Which is recorded the identity of the
nodes having threads aWaiting access to the global synchro
nization object may be organized as a FIFO arrangement of
the node identi?ers ordered in the same order in Which
requests for the global synchronization object are received
from the threads. And the node identi?ers may be moved
from the front to the back of the queue each time the threads
on the correspondingly identi?ed node are given an oppor
tunity to gain oWnership of the local and global synchroni
zation objects. Additionally, counts may be maintained for
each node of the number of threads aWaiting a synchroni
zation object, and those counts may be decremented When a
thread on the corresponding node is granted the synchroni
zation object, and the reference to the name of the corre

US 2003/0041173 A1

sponding node in the data structure may be removed When
the count reaches Zero. The global synchronization objects
may be semaphores or mutexes.

[0019] The present invention may also be found in a
method for granting threads running on various multi
processor nodes Within a multi-computer system oWnership
of a global synchroniZation object comprising the steps of
maintaining a record of the state of the global synchroniZa
tion object as free, oWned, or in transition; When a thread
seeks oWnership of the global synchroniZation object, grant
ing the thread, through a spinlock mechanism, access to the
status of the global synchroniZation object, and granting the
thread oWnership if the object is free; but if the object is not
free (oWned or in transition), adding the thread’s node to a
queue of nodes having threads aWaiting oWnership of the
global synchroniZation object and permitting the thread to
seek oWnership of a local synchroniZation object established
on the thread’s node by a local operating system, but
temporarily blocking threads on the thread’s node from
seeking oWnership of the local synchroniZation object and
forcing them into suspension; and When the global synchro
niZation object oWnership is released by a thread, placing the
global synchroniZation object into its transition state, and
then arranging for each node in the queue, in turn, to stop
blocking threads on its node from seeking oWnership of the
local synchroniZation object, and permitting any thread that
then gains oWnership of its local synchroniZation object to
resume execution and to gain oWnership of the global
synchroniZation object if the object is not oWned (free or in
transition), this process continuing until the global synchro
niZation object is oWned or until no more threads seek its
oWnership, at Which point the global synchroniZation object
enters its free state. Again, the synchroniZation objects may
be semaphores or mutexes.

[0020] And ?nally, the invention may be found in a set of
synchroniZation softWare computer programs designed for
use in conjunction With a multi-computer system Where
individual nodes have their oWn copies of an operating
system With local node synchronization softWare included in
the operating system, the synchroniZation softWare com
puter programs being capable of carrying out the steps listed
above.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0021] FIG. 1 is a logical diagram of tWo or more multi
processor computer systems or “nodes” connected in paral
lel to form a multi-computer system, With each node having
both local and global memory, the multi-computer having at
least one global mutex.

[0022] FIG. 2 illustrates in part the content of a global
memory segment of the multi-computer system shoWn in
FIG. 1.

[0023] FIG. 3 illustrates in part the contents of local
memory on tWo nodes of the multi-computer system shoWn
in FIG. 1.

[0024] FIG. 4 illustrates the data structure of a global data
record that resides Within the global memory shoWn in FIG.
2 and that is associated With a global mutex.

[0025] FIG. 5 illustrates the data structures of a local data
record that resides Within the local memory of a node and
that is associated With a global mutex.

Feb. 27, 2003

[0026] FIG. 6 is a diagram illustrating the memory con
tents of the local memories and of one global memory of a
multi-computer system, indicating With arroWs subroutine
calls and data accesses, and illustrating the use of the
synchroniZation softWare (shoWn in the folloWing ?gures) to
create and manage a global mutex.

[0027] FIG. 7 is a flow diagram of the program that
creates a neW global mutex.

[0028] FIG. 8 is a flow diagram of the program that
permits a thread to open and utiliZe a global mutex.

[0029] FIG. 9 is a flow diagram of the program that
permits a thread to Wait for and acquire a global mutex.

[0030] FIG. 10 is a flow diagram of a program that
permits a thread to release a global mutex.

[0031] FIG. 11 is a flow diagram of a program, launched
by a global interrupt directed to a particular node that
attempts to grant a suspended thread access to an available
global mutex.

[0032] FIG. 12 is a flow diagram of a program that
permits a thread to close and stop using a global mutex.

[0033] FIG. 13 is a flow diagram of a program that
controls access to global mutex data records using a spinlock
to coordinate access by multiple threads.

[0034] FIG. 14 is a flow diagram of a routine, called by
the global interrupt program (FIG. 11) When a thread is not
immediately unsuspended, that triggers the release of a
thread on another node to access an available global mutex.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0035] A. Introduction

[0036] Before describing the invention, a brief explanation
of the Way in Which mutexes Work on multi-processors Will
be helpful to provide a reference context for the description
Which folloWs.

[0037] Suppose three threads have requested oWnership of
a given mutex that is already oWned by some other thread,
and suppose each thread is Willing to stop processing further
instructions until it acquires the mutex. Suppose, in addition,
that the threads request oWnership of the mutex in the
folloWing chronological order.

[0038] Thread A1.

[0039] Thread B1.

[0040] Thread A2.

[0041] Normally, A1 Would be expected to gain oWnership
of the mutex When the current oWner releases it. Later, B1
Would be expected to gain oWnership When A1 releases the
mutex, and then A2 When B1 releases it. This behavior
Would be the result of a First-In-First-Out or FIFO policy on
the part of the operating system for managing the outstand
ing thread acquisition requests for a given mutex. An appro
priate experiment With a given operating system Would
typically demonstrate this behavior, but With exceptions
under certain circumstances. For example, if B1 or A2 Were
running With a higher scheduling “priority” than A1, then the
operating system Would normally give oWnership of the
mutex to one of them rather than to A1 When the current

US 2003/0041173 A1

owner releases the mutex. On the other hand, the operating
system might not do this if A1 has been Waiting in the queue
for a very long time. OtherWise, it Would be possible that A1
might never acquire oWnership of the mutex, regardless of
hoW long it Waits in the queue. Thus, operating systems are
usually designed to give priority to some threads but to
insure that every thread is eventually given oWnership of the
mutex.

[0042] Although any given operating system Will probably
have a precise deterministic set of rules de?ning hoW it
departs from a pure FIFO policy for managing mutex Wait
queues, the details of such rules normally Will not be
exposed and Will not be guaranteed to remain unchanged
from one version of the operating system to the next.
Without access to the source code of the operating system,
it Would be extremely dif?cult to knoW these rules precisely,
and even more difficult to duplicate their effect in neW code.
Accordingly, applications cannot be programmed to depend
heavily upon the precise Workings of any given set of rules.
Applications can only expect the folloWing: Mutex acqui
sition requests Will mostly be granted using FIFO queue
ordering, With occasional variations to account for different
thread scheduling priorities; but any thread Willing to Wait
for a long time Will eventually be guaranteed oWnership of
a mutex. The invention described in this disclosure supports
this behavior for multi-computer extensions of the mutexes
provided by a given operating system. It also provides an
architecture that captures the variations in mutex behavior
Which are provided by different operating systems or by
different versions of the same operating system, and it
replicates such behavior as accurately as is feasible and
logical With respect to global mutexes in a multi-computer
environment.

[0043] In the discussion Which folloWs, each of the com
puters forming part of a multi-computer system Will be
referred to as a “node.”

[0044] The folloWing assumptions (set forth in the next
three paragraphs) are made regarding synchroniZation
objects (mutexes, semaphores, etc.) provided by the oper
ating system running upon each node of the multi-computer
system:

[0045] “Mutex objects” are supported, and they include
“Wait for acquisition” functionality. This means the folloW
ing behavior can be speci?ed to the operating system When
a call is made by a thread to acquire a mutex: If the mutex
is already oWned, the calling thread is placed in a Wait
queue, and it is blocked from executing any further instruc
tions until the mutex is available and can be given to the
thread as requested.

[0046] “Event objects” for signaling to threads are also
supported. An “event” has one of tWo possible states:
signaled or non-signaled. Functions are provided to sWitch
betWeen the tWo states. A“Wait for an event” function for an
event is also provided With the folloWing property: When the
function is called referring to a given event, if the event is
in the “non-signaled state,” the operating system Will block
the calling thread from executing any further instructions
until a call is made (by some other thread) that sWitches the
event to the “signaled state.”

[0047] The operating system provides a function that
combines the “Wait” functionality of both events and

Feb. 27, 2003

mutexes. When this function is called, the operating system
blocks the calling thread from executing any further instruc
tions until both the event has been signaled and the mutex
can be given to the thread as requested. (The combination of
functionality set forth in this and the preceding tWo para
graphs are not requirements of the invention. They simplify
the folloWing description, and they Were available on the
operating system Where the prototype version of this inven
tion Was originally implemented.)

[0048] NoW, With reference to FIG. 1, a multi-computer
system 1 is shoWn that includes tWo or more nodes 10 and
20. Each node is a multiprocessor that contains tWo or more
processors or CPUs 12, 14, 16, and 18. Each node also has
a memory and I/O controller 34 and 36, local memory 38
and 40 accessible by a node’s CPUs only, and some provi
sion for input and output or I/O 46 and 48 that provides
access to hard disk drives (not shoWn), to internets and
intranets (not shoWn), to printers (not shoWn), and to other
external devices, computers, and locations. One or more
data and command busses 50 and 52 interconnect the
memory and I/O controllers 34 and 36 such that all the nodes
10 and 20 may access the same shared global memory
segments 42 and 44.

[0049] The folloWing assumptions are made regarding the
resources that are shared by the nodes 10 and 20 of the
multi-computer system 1 shoWn in FIG. 1:

[0050] There is at least some global memory or its equiva
lent, such as at least one of the global memory segments 42
and 44, that is accessible from any node 10 or 20 in the
multi-computer system 1;

[0051] There is at least one primitive global lock such as
the global spinlocks 45 and 51 or their equivalent that are
usable from any node 10 or 20 in the multi-computer system
1 to lock the global memory segment 42 or 44 during, for
example, the “read-modify-Write” or “read, test, and modify
if necessary” CPU hardWare memory access commands that
are used to implement a mutex, a semaphore, or some other
synchroniZation object;

[0052] There is a global interrupt mechanism or its equiva
lent, such as a task scheduler. From any node in the
multi-computer system 1, a processor interrupt or its equiva
lent can be generated and supplied to at least one processor
on any other node or in the same node. For example, the
nodes 10 and 20 are shoWn having the global interrupts 47
and 49; and

[0053] The global resources described in the above
assumptions are supported by hardWare in some manner that
is relatively independent of any particular operating system.
In the absence of such hardWare support, each of these
resources can be emulated purely by softWare, generally
speaking, but With less ef?ciency in performance.

[0054] The above assumptions are not a typical for a
multi-computer system, as de?ned in this disclosure, and
these assumptions are true concerning the Data General
Model multi-computer system upon Which the invention
Was implemented and tested as a prototype. The operating
system installed upon each node Was Microsoft WindoWs
NT, version 4.0.

[0055] Typical examples of multi-computer system archi
tectures are illustrated in Us. Pat. No. 6,047,316 (Apr. 4,

US 2003/0041173 A1

2000) and 5,887,146 (Mar. 23, 1999). The ’316 patent
discusses problems relating to spinlock implementation. The
’146 patent illustrates a hardware con?guration similar to
that illustrated in FIG. 1.

[0056] The global lock referred to in these assumptions
Will be the global spinlock 45 in the remainder of this
description. It is analogous to the spinlock normally pro
vided on single multi-processor computers. Although it
provides globally, over an array of several computers, a form
of mutual exclusion functionality, it is primitive in that it
normally does not provide any form of “Wait for acquisition”
functionality, as described earlier. That kind of functionality
cannot even be described Without referring to objects (such
as mutexes) and to operations that are normally provided by
an operating system (threads and thread scheduling, for
example). A multi-computer system having a spinlock is
thus analogous to a single multiprocessor computer system
having tWo or more CPUs Where spinlocks are used by the
operating system as the basis for building many different
kinds of synchroniZation constructs, including mutexes.

[0057] In this discussion, the terms “local mutex”,
“shadoW mutex”, and “shadoW local mutex” refer to a mutex
fully managed by the unmodi?ed operating system running
on a particular node of a multi-computer system. The term
“global mutex” refers to a multi-computer system managed
scheduling and resource sharing object having the properties
of a mutex. Whenever the context is clear enough to avoid
ambiguity, the term “mutex” may be used to refer to either
a local mutex or to a global mutex.

[0058] B. OvervieW Description of the Invention

[0059] The multi-computer system 1 is shoWn in FIG. 1 to
include a global mutex 43 implemented using the global
memory 42. Access to the global memory 42 is governed by
a global spinlock 45. The global mutex 43 is de?ned, in part
by a global data record 400 shoWn in FIGS. 2 and 4. The
information Within this record 400 includes a global state
value 404 that indicates Whether the global mutex 43 is
“oWned” by a node and thread, or is “available,” or is in
“transition”. This information also includes a global Wait
queue 410, Which is shoWn in FIGS. 4 and 6 including the
node records 414, 416, and 418 of nodes that have threads
suspended and Waiting to acquire the global mutex 43.

[0060] The invention provides a global mutex synchroni
Zation service that runs as a collection of softWare compo
nents, collectively called the global mutex synchroniZation
softWare 60 (FIGS. 3, 6, and 7-14), that is running on each
node 10 and 20 of the multi-computer system 1. The
functions for mutex management are supported as direct
calls into the components of this synchroniZation softWare
60 that are running on the same node 10 or 20 as the calling
thread 56 or 58 or 21 (FIGS. 1, 3 and 6). Thus, When the
global mutex 43 is available, it is possible to satisfy imme
diately a mutex acquisition request issued by any thread 56,
58, or 21 running on any node 10 or 20 by executing a
program (Within the synchroniZation softWare 60) that only
uses processor resources on the node Where the requesting
thread resides.

[0061] This is achieved using processor resources located
only at the node Where the request is made in the folloWing
manner: The global mutex 43 is represented on each node,
for example, the node 10, from Which it Will be accessed by

Feb. 27, 2003

a local mutex 66 located on the node 10. Thus, if the global
mutex 43 is being used by threads running on three different
nodes of a multi-computer system, there Will be three
different local mutexes used to support the single global
mutex 43, one on each node. Each of these local mutexes
Will be called a “shadoW mutex” for the global mutex 43.
When a request is made by the thread 56 running on the node
10 (FIGS. 1 and 6) to acquire the global mutex 43 Which is
already oWned by some other thread, such as the thread 21
running on the node 20 in FIGS. 1 and 6, the node 10 of the
calling thread is inserted into the global Wait queue 410
(FIG. 4) for the global mutex 43 that is maintained in the
global memory 42 (unless the node 10 is already in the Wait
queue 410, because some other thread 58 from the node 10
is already suspended and Waiting to acquire the global
mutex, in Which case the suspended thread count for the
node 10 is incremented instead, as Will be explained). A
request is then made to the operating system 62 at the node
10 Where the requesting thread 56 resides to acquire the
associated shadoW local mutex 66 for the thread 56.

[0062] In the preceding paragraph, it Was tacitly assumed
that the calling thread 56 is Willing to join a suspended
thread Wait queue, such as that shoWn at 602, 604, and 606
in FIG. 6, Which is linked to the shadoW local mutex 66.
Typically, the mutex functionality provided by an operating
system 62 permits mutex acquisition requests specifying an
immediate return, even if the local mutex 66 is not available.
Requests of this type are easily supported: After checking
the global memory mutex data record 400 associated With
the mutex 43, the synchroniZation softWare 60 simply
returns program control to the thread 56 With an indication
that the global mutex 43 is already oWned. For the remainder
of this description, it Will be assumed that all acquisition
requests are those for Which the calling thread 56 is Willing
to join a suspended thread Wait queue such as that shoWn at
602, 604, and 606 in FIG. 6 if the global mutex 43 is not
immediately available.
[0063] When the current oWner of a global mutex (for
example, the thread 21 on the node 20 in FIG. 6) releases it
(by calling the release mutex program 1000 shoWn in FIG.
10), and assuming that other threads 56 are Waiting to
acquire it, program control is transferred to the node 10
Where the ?rst thread 56 to have requested the mutex 43 is
presumed to be Waiting in a suspended state. This transfer to
node 10 is based on the FIFO ordering of the global Wait
queue 410 that is linked to the node records 414, 416, and
418 Which have threads suspended and aWaiting access to
the global mutex 43. This transfer action Will be referred to
as “signaling the next FIFO node.” This action is carried out
using the mutex release global interrupt program 1100
shoWn in FIG. 11. The response to this interrupt is a call to
the operating system 62 at the receiving node 10, causing it
to unblock one of the threads 602, 604, or 606 Waiting there
for access to the associated shadoW local mutex 66. Thus,
this invention uses FIFO ordering in the global Wait queue
410 to pass around control of the global mutex 43 among all
of the nodes 10 and 20, but each operating system 42 is
alloWed to apply its oWn policy for granting oWnership of
local mutexes such as the shadoW local mutex 66 among the
threads 602, 604, and 606 that it may control. For each
global mutex, this design approximates the behavior of a
local mutex among the threads running on different nodes,
and it provides essentially the exact behavior of a local
mutex among any set of threads running on the same node.

US 2003/0041173 A1

[0064] Referring back to the example set forth above:
When the current oWner thread 21 releases the global mutex
43, control Will be given to the node 10 (in the global Wait
queue 410 at position 418) Where the thread 58 is suspended
(in the local Wait queue 602, 604, 606 of the local mutex 66
at position 606), With operating system management of the
shadoW local mutex 66 by the node 10 determining the
observed behavior of the global mutex 43. If the thread 56
and some other thread 58 are running on the same node 10,
the behavior on the node 10 as betWeen the tWo local threads
Will be identical to What Would happen if the tWo local
threads Were actually using only the local mutex 66. If a
third thread (not shoWn) Were instead running on some other
node, it Will not be able to acquire the mutex When the
current oWner releases it to the node 10. Either the thread 56
or the thread 58 Will acquire the global mutex 43, and the
choice betWeen them Will be identical to What Would have
happened if they Were actually using only the local mutex
66.

[0065] When the thread 56 later releases the global mutex
43, it also releases the shadoW local mutex 66 on the node
10 Where it is running so that the shadoW mutex 66 Will be
available When the synchroniZation softWare 60 needs to
acquire it for another thread 58 suspended on that same node
10. The synchroniZation softWare 60 needs to be able to
prevent the operating system 42 from prematurely giving the
shadoW local mutex 66 to some other thread 58 Without ?rst
acquiring the global mutex 43 for the thread 58. After
releasing the shadoW local mutex 42, the synchroniZation
softWare 60 signals to the next node named in record 416 in
the global FIFO Wait queue 410 that the global mutex 43 is
noW available. But While that is happening, if there is
another thread 58 on the ?rst node 10 already suspended and
Waiting for the shadoW local mutex 66, the operating system
62 Would reactivate it, granting it oWnership of the local
shadoW mutex 66, because the local shadoW mutex 66 has
been released. If the next node named in record 416 is a
different node, then tWo different threads on tWo different
nodes could become unblocked, and each Would expect to
gain oWnership of the global mutex 43.

[0066] Again referring back to the example at the begin
ning of this section, suppose A1 and A2 are running on a
node A, B1 is running on a node B, and A1 acquires the
global mutex When the current oWner releases it. Later, When
A1 releases the local shadoW mutex (as part of releasing the
global mutex), the situation described in the preceding
paragraph Would occur: node A, knoWing nothing about B1,
Would unblock A2, and node B, knoWing nothing about A2,
Would unblock B1.

[0067] One of the threads must be blocked, since only one
of them can oWn the global mutex 43. Although most
operating systems Would probably offer several options for
blocking one of the threads, the method used by this
invention as described so far—Waiting to acquire a shadoW
local mutex—appears not to be viable for this situation. The
present invention in its prototype embodiment resolves this
problem by using a local event 70 along With the shadoW
local mutex 66 to help control When the operating system 42
on the node 10 unblocks a thread 56 or 58 that is Waiting for
the global mutex 43. Arequest by any thread 56 or 58 to Wait
for a global mutex 43 is actually transformed into a call to
the local operating system 62 to have the thread Wait for both
the shadoW local mutex 66 and the local event 70 both of

Feb. 27, 2003

Which are associated With the global mutex 43. By main
taining the local event 70 at the node 10 in the non-signaled
state until the appropriate time, the synchroniZation softWare
60 can exert control over When the operating system 42
unblocks a thread 56 or 58 that is Waiting for the shadoW
local mutex 66. Thus, When it receives an interrupt indicat
ing that the global mutex 43 has been released, the synchro
niZation softWare 60 calls upon the local operating system
42 to signal the local event 70. Immediately folloWing that,
it makes a second call to sWitch the local event 70 back to
the non-signaled state (see step 1102 in FIG. 11).

[0068] Typically, any thread Waiting on local synchroni
Zation objects can end its Wait asynchronously, even though
the Wait conditions have not been satis?ed. A timeout may
have expired, or some independent action may have caused
execution of the thread to be terminated. Thus, after the
thread 21 releases the global mutex 43 and starts the
procedure to signal the next node named in record 418 of the
global FIFO Wait queue 410, but before the interrupt driven
synchroniZation softWare 60 (speci?cally, the program 1100
shoWn in FIG. 11) on that next node interrupts and calls
upon the operating system 42 to signal the local event 70
associated With the global mutex 43, the queue of threads
602, 604, 606 Waiting for the shadoW local mutex 66 at that
node 10 may become empty. Therefore, after causing the
local event 70 to be signaled, the synchroniZation softWare
60 tests at (step 1102 in FIG. 11) Whether a thread that Was
Waiting has acquired the shadoW local mutex 66. If not, and
if there are more nodes in the global FIFO Wait queue 410,
then the next node named in record 416 of the queue 410 is
signaled that the global mutex 43 has been released (routine
1106 shoWn in FIG. 14).

[0069] A race condition may develop from events such as
those described in the preceding paragraph. This race con
dition is formally managed by a global state value 404 that
can be set to any one of three mutually exclusive global
states for every global mutex: available, oWned, and in
transition. The mutex 43 can be in the available state only
When there are no threads and no nodes in the global Wait
queue 410. While in the available state, immediate oWner
ship of the mutex 43 is given to any thread requesting it, and
the mutex 43 then enters the oWned state. While the mutex
43 is in the oWned state, any thread requesting oWnership
(other than the oWning thread itself) is placed into the global
and local Wait queues—the synchroniZation softWare 60
places the thread’s node into a record of the global Wait
queue 410 and then calls upon the operating system 42 to
block further execution of the thread requesting the mutex
until the associated local event 70 is signaled. When a thread
oWning the mutex 43 releases it, if there are no nodes in the
global Wait queue 410 Waiting for the mutex 43, the mutex
43 returns to the available state. OtherWise, it enters the third
transition state until a neW thread takes over oWnership.

[0070] Upon entering the transition state, the node Whose
record 418 is at the head of the global FIFO Wait queue 410
(for example, the node 10) is noti?ed that it may give
oWnership of the mutex 43 to the highest priority of its
Waiting threads at the head end of the local mutex 66’s FIFO
Wait queue at 606. Upon receiving such noti?cation, the
node 10 causes the local event 70 associated With the global
mutex 43 to be signaled, and then it determines Whether the
associated shadoW mutex 66 has been acquired by any
threads at that node 10. If the shadoW local mutex 66 is not

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Drawings
	Page 13 - Drawings
	Page 14 - Drawings
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description
	Page 21 - Description
	Page 22 - Description
	Page 23 - Description
	Page 24 - Description
	Page 25 - Description
	Page 26 - Description
	Page 27 - Description/Claims
	Page 28 - Claims

