US 20170075702A1

a2y Patent Application Publication (o) Pub. No.: US 2017/0075702 Al

a9y United States

Balz

43) Pub. Date: Mar. 16, 2017

(54) SYSTEM, METHOD AND APPARATUS FOR
PROVIDING A TOGGLEABLE REMOTING
MODE FOR COMPUTER OPERATING
SYSTEMS

(71) Applicant: Christopher Balz, Palo Alto, CA (US)

(72) Inventor: Christopher Balz, Palo Alto, CA (US)
(21) Appl. No.: 15/267,098
(22) Filed: Sep. 15, 2016

Related U.S. Application Data

(60) Provisional application No. 62/219,023, filed on Sep.

15, 2015.

Publication Classification

(51) Int. CL
GOGF 9/44 (2006.01)
GOGF 9/48 (2006.01)
GO6T 1/60 (2006.01)
HO4L 29/06 (2006.01)
GOGF 3/0484 (2006.01)

(52) US.CL
CPC GOGF 9/4445 (2013.01); HO4L 65/4069
(2013.01); GOGF 3/04842 (2013.01); GO6T
1/60 (2013.01); GOGF 9/4881 (2013.01)

(57) ABSTRACT

Software can also be used via a remote application window,
remote desktop window, or remote graphical windowing
user session window. The present invention describes how
software (application, desktop, or graphical windowing user
session) can know whether or not it is running in local or
remote mode, and control its handling of functionalities
accordingly. The software does this by checking a variable
set in the windowing session by the operating system.
System, method, and apparatus for providing a toggleable
remoting mode for computer operating systems is provided.
The invention provides for dynamically setting an environ-
ment variable, that evaluates in a conditional statement, in
the operating system process of a current windowing display
session hosted by the operating system, upon request from
a remote user to initiate a remote graphical windowing user
session, a remote computer desktop, or a remote graphical
application window, directing a software application to
consult the variable to determine if the operating system is
being used via a remote window or not, and if the environ-
ment variable evaluates to true or not, respectively, perform-
ing a functionality differently.

400

Patent Application Publication Mar. 16,2017 Sheet 1 of 4 US 2017/0075702 A1

Webh Baoweser
324

Forsoat
Compuies 138

Pt

Patent Application Publication Mar. 16,2017 Sheet 2 of 4 US 2017/0075702 A1

200

Patent Application Publication Mar. 16,2017 Sheet 3 of 4 US 2017/0075702 A1

300

F?g}z, 3

Patent Application Publication Mar. 16,2017 Sheet 4 of 4 US 2017/0075702 A1

swtegrephicat deskiop,
e granhics! wingowing

450 S»swr Camputs{ %5 {;,; ovddden 1 mmmn
e it

xitp aadmssi ' /

ERL e m;mtér‘: 445

US 2017/0075702 Al

SYSTEM, METHOD AND APPARATUS FOR
PROVIDING A TOGGLEABLE REMOTING
MODE FOR COMPUTER OPERATING
SYSTEMS

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority from a provisional
U.S. patent application Ser. No. 62/219,023 filed on Sep. 15,
2015.

FIELD OF THE INVENTION

[0002] Embodiments of the invention generally relate to
providing remoting services (including remote desktop envi-
ronments, remote desktop application windows, or remote
graphical windowing user sessions), from a computer, to one
or more other computers. Specifically, embodiments of the
invention relate to software applications running on com-
puters where a single computer may provide both remoting
services and local operation of the same software application
build.

BACKGROUND

[0003] Software is often used by a local user sitting in
front of a computer or holding a mobile device. Computer
software can also be used via a remote application window,
remote desktop window, or remote graphical windowing
user session window. This includes software on mobile
devices as well.

[0004] Performing navigational action on links within a
remote/virtual window traditionally results in successively
nested remote/virtual windows. Links can be specially
marked so as to be recognizable by the remote machine as
pop-out links. The software can be modified so that when
navigational action occurs on a link marked as a pop-out
link, the nesting problem is avoided by refreshing the
session with the content at the inner window, so that it is now
the outermost window. However, when the computer soft-
ware is not being used via a remote application window,
remote desktop window, or remote graphical windowing
user session window, links marked as pop-out links should
not be treated as pop-out links, as there is no remote window
to be refreshed.

[0005] Additionally, remote windowing sessions, espe-
cially those carried out over the Internet, face much greater
latency than local windowing sessions. This latency can
result in significant degradation of the end user’s experience,
especially in graphics support. For example, it can cause the
pointing device pointer to freeze whilst the end user is still
attempting to move pointing device. Further, when content
is streamed in a remote windowing session, such as when the
end user is watching a video or movie from a source that is
not resident on the remoting server, that streaming content
must be drawn twice: It is rendered once on the remoting
server, and once on the end user’s device.

[0006] A need exists to identify if a computer’s software
is being run remotely or locally.

SUMMARY

[0007] Software can also be used via a remote application
window, remote desktop window, or remote graphical win-
dowing user session window. The present invention
describes how software (application, desktop, or graphical

Mar. 16, 2017

windowing user session) can know whether or not it is
running in local or remote mode, and control its handling of
functionalities accordingly. The software does this by check-
ing a variable set in the windowing session by the operating
system. This is useful for the determination of how to handle
pop-out links in order to avoid unnecessary nesting of
remote/virtual windows, imposes significant burdens upon
the producer of the software, the physical resources of a
computer that can be used in both remote and local modes,
and upon the administrators of said computer. If the variable
is present and has a value of boolean “true’, then the software
treats pop-out links specially. If it is not either present or
evaluates in a conditional statement to the boolean value
‘false’, then the software treats pop-out links as regular
links. This avoids the need to produce separate builds,
executables, and installation packages, and supporting the
same. Additionally, the invention offers the operating system
the opportunity to optimize system operations to reduce the
inherently greater latency of remote windowing sessions and
to improve streaming of content.

[0008] System, method, and apparatus for providing a
toggleable remoting mode for computer operating systems is
provided. The invention provides for dynamically setting an
environment variable, that evaluates in a conditional state-
ment, in the operating system process of a current window-
ing display session hosted by the operating system, upon
request from a remote user to initiate a remote graphical
windowing user session, a remote computer desktop, or a
remote graphical application window, directing a software
application to consult the variable to determine if the oper-
ating system is being used via a remote window or not, and
if the environment variable evaluates to true or not, respec-
tively, performing a functionality differently. The environ-
ment variable can be a new custom variable or a preexisting
variable.

[0009] If the environment variable indicates remote mode,
the functionality can be to optimize remote windowing
sessions by proportionally allocating relatively more
memory and/or CPU priority to the graphics operations
required by remote windows, to reduce latency in remote
windowing sessions. If the environment variable indicates
remote mode, the functionality can be, when streaming
content to a client, to send the source information to the
client and to skip rendering the content on the remoting
server. Upon navigational action on a pop-out link, if the
environment variable indicates remote mode, the function-
ality can be to treat the link as a pop-out link

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The accompanying drawings taken in conjunction
with the detailed description will assist in making the
advantages and aspects of the disclosure more apparent.
[0011] FIG. 1 is a block diagram depicting a remote server,
accessible through a network, and providing a view of its
graphical desktop to a remote client personal computer on a
web browser running on the personal computer.

[0012] FIG. 2 is a flowchart depicting a use-case scenario
where a user, using a remote window, navigates a pop-out
link and the pop-out link is handled properly due to the
setting of an environment variable, in this case ‘IN_RE-
MOTING_SESSION’, to ‘true’.

[0013] FIG. 3 is a flowchart depicting a use-case scenario
where a user, using a local window, navigates a pop-out link

US 2017/0075702 Al

and the pop-out link is handled properly due to the fact that
an environment variable, in this case ‘IN_REMOTING _
SESSION’, has not been set.

[0014] FIG. 4 is a block diagram showing how a system
determines, upon navigational action on a pop-out link, if it
should direct the user’s local web browser to refresh the
top-level container that is currently directly displaying the
content presented by the remote computer with the new
content that the link points to or alternatively, handle the link
within the current remoting session.

DETAILED DESCRIPTION

[0015] Reference will now be made in detail to the present
embodiments discussed herein, illustrated in the accompa-
nying drawings. The embodiments are described below to
explain the disclosed system, apparatus, and method by
referring to the Figures using like numerals. It will be
nevertheless be understood that no limitation of the scope is
thereby intended, such alterations and further modifications
in the illustrated device, and such further applications of the
principles as illustrated therein being contemplated as would
normally occur to one skilled in the art to which the
embodiments relate.

[0016] The subject matter is presented in the general
context of systems and program modules. Those skilled in
the art will recognize that other implementations may be
performed that may include different data structures, com-
ponents, or routines that perform similar tasks. The inven-
tion can be practiced using various computer system con-
figurations, such as client server systems.

[0017] System, apparatus and method for providing a
toggleable remoting mode for computer operating systems is
provided. This enables a computer and its associated soft-
ware to be used in both a local and a remote mode with
respect to software applications on the system. The inven-
tion provides for the the ability to identify if the environment
is in a remoting session or is being used by a local user. This
can be utilized with respect to handling navigational links
that may lead, in the remote mode, to undesirable nesting of
remote graphical windows (remote graphical user window-
ing sessions, remote desktops, or remote application win-
dows), so that such undesirable nesting is avoided. Further,
other functionalities, such as optimizations to reduce latency
in remote windowing sessions and improvement of stream-
ing content playback, can utilize the toggleable remote mode
feature.

[0018] FIG. 1 is a block diagram depicting a typical client
server system 100 where the invention would be used. It
consists of a remote server 105, accessible through a net-
work 115 such as the Internet or a local-TCP/IP-based
network. The remote server 105 provides a view of its
graphical desktop (Remote Desktop View 110, seen for
example on the monitor plugged into it in the diagram),
although this could equally be a single application window
such as would commonly run upon a graphical computer
desktop, or in the most general case, a non-application
graphical window, such as a Display Manager program that
is not, strictly defined, an application, but presents a graphi-
cal window to the user for the purpose of logging into the
graphical desktop, upon which run applications. The latter
represents an example of what is known in the art as a
“graphical windowing user session”. The client, Personal
Computer 130, accesses this Remote Desktop View 110 via
Web Browser 120, which shows Remote Desktop View 125.

Mar. 16, 2017

Remote Desktop View 125 shows the exact same content as
Remote Desktop View 110, but runs on the client computer
(Personal Computer 130), and not on the server computer
(Server 105). The user may interact with the application
using the mouse and keyboard shown and/or any other input
device. Additional usable client devices (equally client
devices as Personal Computer 130 is a client device)
include, but are not limited to, smartphones, tablets, con-
nected entertainment devices (such as smart tvs), digital
media players, and wearable/implants (computing devices
integrated with the human body but capable of displaying
desktops, application windows, or other graphical windows
from remote computers so that the wearer or host individual
can interact with the display). Such computer devices may
include one or more processors, data storage in the form of
memory (hard disk, non-volatile solid state memory, random
access memory, cache memory, etc.) or a database, and a
computer operating system (“OS”).

[0019] Software is often used by a local user sitting in
front of a computer or holding a mobile device. For the
purpose of this invention, the means of access (“user agent”)
would likely be a web browser, but the user agent can be any
software application where a user may encounter a naviga-
tional link. When the user clicks on a navigational link, the
navigational agent (such as a web browser) of the local
computing device (such as a desktop computer, or mobile
device) follows the navigational link as is done in the current
state of the art. This is termed the “local mode” of operation
of the computer. Use by a remote application window is
termed the “remote mode” of operation of the computer.
Generally, when the computer is being used via a remote
application window, navigational action by a user tradition-
ally results in successively nested remote/virtual windows.
[0020] Links can be specially marked so as to be recog-
nizable by the remote machine as pop-out links. The soft-
ware (the OS and/or the userland applications running
thereupon) can be modified so that when navigational action
occurs on a link marked as a pop-out link, it does not follow
pop-out navigational links in the traditional manner, so that
the excess nesting problem can be avoided. Instead, the
software forwards the navigational link to the viewer used
by the user as the display for the remote application window,
so that the viewer or a child thereof can be entirely redi-
rected to the resource at the navigational link, thus avoiding
the excess nesting problem.

[0021] The software applications on an OS must be spe-
cially programmed so that they can perform this forwarding
in remote mode. If such programs always forwarded the
navigational links in question, then such programs would
not be properly operable when the OS (including any
programs on it) were not being used via a remote window,
but instead were being used in local mode. They would not
follow the navigational links themselves and would instead
attempt to pass navigational control to a non-existent remote
windowing session.

[0022] Conventionally, a separate application build would
be provided for use in remoting scenarios. The separate
application build for use in remoting scenarios would run the
special code for handling the pop-out links, and the appli-
cation build that did not run this code would be used for local
use scenarios. Such an approach presents the disadvantage
of requiring the software producer (as in the software author,
authoring company, or software creator) to produce two
entirely separate builds and concomitant installation pack-

US 2017/0075702 Al

ages (including the executables) of their software: one for
the local mode, and one for the remote mode. Additionally,
it would require a single computer that could be used by both
remote and local users simultaneously to have special code
to choose which executable to launch when the user (local
or remote) wanted to launch the software.

[0023] That means as well that two installations, each
containing all the complete artifacts for the software, be
resident on such a computer, or that similar schemes be
undertaken. The approaches to accomplish this would rep-
resent either an inefficient use of storage space (such as
non-volatile memory space, as in solid-state or flash
memory, or a hard disk) or an inefficient use of compute
time. The approach of requiring two complete, nearly dupli-
cate installations of a given application offers a clear
example of an inefficient use of storage space.

[0024] Possible approaches to the nesting problem include
but are not limited to a single build (executing from a single
installation) that would be processed at start-time to include
pop-out link handling code where necessary, or compilation
(pre-run or just-in-time) or interpretation (run-time interpre-
tation, via an interpreter) that would include the required
code for handling pop-out links. These similar approaches
would use compute time inefficiently compared to the pres-
ent invention, due to the overhead of this processing. They
would impose unnecessary delay from the extra processing
steps required that must occur at the very same time that the
user would like the software to start up quickly and perform
well in terms of speed of execution.

[0025] Instead, the present invention enables the software
code comprising an application to be either run or not run
depending on the current use-case scenario (respectively,
remote or local) from a single build, installation, and execut-
able of the given software. Because the invention provides
for an environment-level switch for a toggleable remoting
mode, software running in the environment can consult the
switch in order to determine the appropriate course of action.
The software application is coded to perform differently
between remote mode and local mode. The invention can not
only be used to determine if the pop-out link functionality
should be executed but also can be used for other general
uses where an application would want to know if it was
operating in remote or local mode.

[0026] The remoting mode switch enables additional opti-
mization of remote windowing sessions. Remote windowing
sessions, especially those carried out over the Internet, face
much greater latency than local windowing sessions. This
latency can result in significant degradation of the end user’s
experience, especially in graphics support. For example, it
can cause the pointing device (mouse or trackpad) pointer to
freeze whilst the end user is still attempting to move it by
moving the pointing device.

[0027] The optimization can be carried out by allowing
OS processes that support the remote windowing session,
such as those serving the graphics function, priority over
those serving local windowing sessions. This can be done
for either or both fast-access memory (such as random-
access memory) and CPU priority. An OS can allocate a
relatively greater portion of its fast-access memory to pro-
cesses that support remote windowing sessions, so that
latency can be reduced for those sessions. Also, an OS can
assign a higher execution priority to processes that support
remote windowing sessions, so that the latency is reduced
due to the earlier end time of the computational job.

Mar. 16, 2017

[0028] The remoting mode switch can be further used to
optimize streaming content, such as video and audio,
together or singly. When content is streamed in a remote
windowing session, such as when the end user is watching
a video or movie from a source that is not resident on the
remoting server (such as any of the common video or movie
services), that streaming content must be drawn twice: It is
rendered once on the remoting server, and once on the end
user’s device. This is also the case with non-streamed
content. However, streamed content from a source not
located on the remoting server is typically never modified by
the remoting server. So the scenario is one of a simple
pass-through requiring a render operation on the remoting
server that adds no value to the content. Instead, it would be
optimal to only render that content on the client.

[0029] As streaming content players for audio and video
operate quite reliably across different types of computers
and operating systems, an optimization can safely be carried
out where the stream is only rendered once on the client. To
do this, the client must know the location of where the
rendered stream belongs on the screen, it must have a
streaming player, and it must know the address of the
streaming content. With the toggleable remoting mode, the
applications running on the remoting server can know
whether to send the source information to the client (the
screen coordinates, the streaming location, and type of
streamed content) and most importantly whether to skip
rendering the content. By the remoting server skipping the
rendering of the content, the client is freed of having to
constantly process a large amount of incoming data about
the changes that occur to the rendered content. The savings
is great because almost every pixel of a movie or video
changes every moment. Because the client is not thusly
loaded down with processing and executing commands from
the remoting server for excess screen updates, this allows the
client to ensure a very smooth playback experience for the
end user.

[0030] Toggleable remoting mode may be set via a num-
ber of ways, depending on the computer language and OS
used by the remoting engine. However, the general approach
is to create a new environment variable that indicates
boolean ‘true’ or ‘false’ in conditional statements, depending
on if the windowing session will be in remoting mode or not.
Then, in the OS process that spawns the windowing ses-
sions, the environment variable can be set to a value that
evaluates in conditional statements to boolean ‘true’ or
another value that evaluates in conditional statements to
boolean ‘false’. In this scenario, a shell script sets the
environment variable first, and then runs (directly, or indi-
rectly) the windowing session and the desktop and/or appli-
cation(s) requested by the user.

[0031] For example, under a Unix-like system, the remot-
ing engine could launch the requested remoting session for
a user by executing a specific shell script indicating if the
session is a remote one or not. Continuing the example, first
the program handling a request to provide a remote graphi-
cal windowing session for a user could run the standard X
Windows System command ‘startx’ to initiate the provision
of the graphical session. In the case where the windowing
session desired is to be run in remoting mode, a shell script,
such as the X Windows System standard ‘~/Xinitrc’ on a
Unix-like system so equipped, would execute the code,
‘export IN_REMOTING_SESSION=true’ to set the boolean
flag. As indicated by its name, this environment variable

US 2017/0075702 Al

provides, in the present example, the information of whether
or not the current session is a remote one or not to all
graphical applications running in the session.

[0032] Here is an example of the ‘~/Xinitrc’ file, set for
when the session is in remote mode:

export IN_ REMOTING_SESSION=true # Environment variable.
exec openbox & # Window Manager.
exec gnome-session # Desktop.

[0033] The file is located at the user’s home directory, so
that is why it is referred to here with the file path prefix, ‘~/".
The first line of the example file above sets the environment
variable ‘IN_REMOTING_SESSION’. The remaining lines
handle the tasks of providing the user with what could be
desired functionality—in this case, a windowing manager
and a desktop that both work with the X Windows System.
The windowing manager allows the user to move windows
around on the desktop, and the desktop provides common
utilities such as graphical user interface access to common
software applications such as user help for the operating
system, a graphical file system browser, word processing
program, command terminal, and services such as user
logout and software update.

[0034] A user logging in directly to the system as a
non-remote user could run the session with the ‘IN_RE-
MOTING_FLAG’ set to ‘false’ via a simple orchestration
approach. For example, there could be three copies of the
‘~/.xinitrc’ file: One named °.Xxinitrc-remote’, one named
¢ xinitrc-local’, and one named °‘xinitrc’. For simplicity,
they can all be located directly under ‘~/°. The Xinitrc’ file
will be switched to the remote version when a remote
session is desired, such as with the following command:
cp ~/ xinitrc-remote ~/.xinitrc

[0035] Then when the remote session has ended, it will be
switched back to local mode:

cp ~/ xinitrc-local ~/.xinitrc

[0036] The script file ‘-/xinitrc-local” would, in the cur-
rent example, look like this, with the two variants described
directly below:

Environment variable:

export IN_REMOTING_SESSION=

exec openbox & # Window Manager.
exec gnome-session # Desktop.

[0037] Alternatively, the first two lines in ‘~/Xinitrc-
local’, the comment line starting with ‘#’ and the next line,
‘export IN_REMOTING_SESSION=" could be omitted
entirely.

[0038] In the script software code above, the character
following the ‘=" sign is a line break, so that no value (a
symbol for undefined) is assigned to IN_REMOTING_
SESSION, so that any prior value that it held will be
overwritten. This explicitly sets the value of the environment
variable to a value that will evaluate to boolean false’ as
conveniently as possible in client code.

[0039] In some Unix-like systems, an ‘.xsession’ configu-
ration file can optionally be used in a more advanced
configuration than given above, but operating on the same
principles, to switch between different configurations for the
user’s session.

Mar. 16, 2017

[0040] Any graphical applications, such as a word pro-
cessing system, started in the user session are descendent
processes of the X Windows System program, enabling
them access to the environment variable IN._ REMOTING _
SESSION. For example, an Electron App (a graphical
application that was developed using the Electron frame-
work for developing applications that run in an X Windows
System or other analogous type of windowing environment)
can be launched from an X Windows System desktop that
has an ‘xinitrc’ file that sets an environment variable
IN_REMOTING_SESSION to ‘true’. Then, in a script run-
ning at the bottom of the Electron App’s ‘index.html” file, it
can verify (in this case, to the user of the Electron App) the
value of the environment variable with the code below:

<script>
(function () {
var messageContainer = document.getElementByld(’env-var-
for-toggleable-remoting-mode’);
var message;
if (process.env.IN_REMOTING_SESSION) {

message = ’The application is running in remote mode.’
}else {
message = ’The application is not running in remote
mode.’
¥
messageContainer.innerHTML = message;
HO;
<fscript>
[0041] The line “var messageContainer= . . . * obtains the

user interface container in which a message will be shown
to the user that indicates whether the application is running
in remote mode or not. The conditional statement ‘if(pro-
cess.env.IN_REMOTING_SESSION) {. . .’, above, allows
the appropriate message indicating to the user that the
application is running in remote mode or not to be set (in the
code above, it is stored in the variable ‘message’). The
conditional statement is able to do this because the statement
‘process.env.IN_REMOTING_SESSION* accesses the
operating system environment variable IN_REMOTING_
SESSION, if it exists.

[0042] The statement ‘process.env.IN_REMOTING_
SESSION’ is able to access the environment variable
IN_REMOTING_SESSION, if it exists, because the Elec-
tron App graphical application running on the X Windows
System (in this example) allows the underlying code, which
is a Nodel]S program, access to the graphical application
environment held by the Electron App. A NodeJS program
will have access to the environment variables of the oper-
ating system shell that it is running in. Therefore, the code
statement ‘process.env.IN_REMOTING_SESSION’ can be
executed without error in the Electron App graphical appli-
cation running on the X Windows System. Other graphical
application development platforms similarly provide their
own respective access to the local operating system’s pro-
cess environment variables.

[0043] IfIN_REMOTING_SESSION does exist, then the
conditional statement evaluates to boolean ‘true’. If IN_RE-
MOTING_SESSION does not exist, has no defined value, or
is of a value that evaluates to boolean ‘false’, then the
conditional statement will evaluate to boolean ‘false’ and the
code path indicated by the ‘else’ statement will be followed.
[0044] Where IN_REMOTING_SESSION has been set to
a value that evaluates in a conditional statement to the
boolean value ‘true’ as in the example ‘~/ Xinitrc’ above, the

US 2017/0075702 Al

user will see the message, “The application is running in
remote mode.”, displayed by the application logic described
above on the application screen. In any case where IN_RE-
MOTING_SESSION has not been set to the boolean value
‘true’ as in the example ‘~/Xxinitrc’ above, the application
logic will similarly display the message, “The application is
not running in remote mode.” to the user on the application
screen.

[0045] For best practice to avoid any potential problems
stemming from conflict with other environment variables,
this environment variable’s name should be unique in the
space of currently loaded standard and common environ-
ment variables, which IN_REMOTING_SESSION is so
currently, given the state of the art at the time of this writing.
Alternatively, in the OS process that spawns the windowing
session, an existing environment variable can be set to true,
a value that evaluates in conditional statements to boolean
‘true’, or a value that evaluates in conditional statements to
boolean ‘false’ depending on if the windowing session will
be in remoting mode or not. With this approach, one must be
careful to avoid setting an existing variable to an incorrect
value.

[0046] FIG. 2 is a flowchart depicting a use-case scenario
where a user, using a remote window, navigates a pop-out
link and the pop-out link is handled properly because an
environment variable, ‘IN_REMOTING_SESSION’, has
been set. Other functionalities can be performed similarly

[0047] The user directs a client program, such as a web
browser, to the remote computer, using a specific URL. The
remote computer (specifically, the Remote Desktop/Remote
Application Window/Remote Graphical Window Engine,
referred to below as “the remoting engine”) is programmed
to recognize that URL as signifying that the local user is
requesting a remote session 205 for a specific application
(for example, a word processing program).

[0048] The remoting engine begins to fulfill that request,
and in so doing, sets the environment variable ‘IN_REMOT-
ING_SESSION” in the windowing session’s top-level sys-
tem process 210. The user launches a software application
215. The user, upon receiving the remote window containing
the software application, clicks on a navigational link in the
application that is a pop-out link 220. The software appli-
cation then checks its process environment variables and
finds that ‘IN_REMOTING_SESSION’ is boolean ‘true’
225, and handles the link as a pop-out link by running the
appropriate code to refresh the top-level container 230. This
results in a directive being sent to the client web browser to
reload the web browser’s top level container with the
content provided at the pop-out link’s destination URL or
URI.

[0049] FIG. 3 is a flowchart depicting a use-case scenario
where a user, using a local window (not a remote window),
navigates a pop-out link and the pop-out link is handled
properly because an environment variable, ‘IN_REMOT-
ING_SESSION’, has not been set. Other functionalities can
be performed similarly

[0050] The user proceeds to the desired software applica-
tion, in this case a web browser 305. In the course of using
said program, the user clicks on a navigational link in the
application that is a pop-out link 310. The software appli-
cation examines its process environment variables for the
presence of ‘IN_REMOTING_SESSION’, and either fails
to find this environment variable or sees that the environ-
ment variable is set to a value that evaluates in a conditional

Mar. 16, 2017

statement to the boolean value ‘false’ 315. Accordingly, the
software application handles the link as a normal naviga-
tional link 320.

[0051] Setting the environment occurs when a user initi-
ates a remote graphical windowing user session, a remote
computer desktop, or a remote graphical application win-
dow. By consulting and identifying that the environment
variable evaluates to ‘true’, a functionality is performed
differently from the functionality that is performed if the
environment variable is ‘false’. Similarly, when a user
moves the pointing device, after consulting that the envi-
ronment variable is true, the system can be configured to
allocate more memory and/or CPU priority to the graphics
operations required by the remote windows. When stream-
ing content, after consulting that the environment variable is
true, system can be configured to send the source informa-
tion to the client and to skip rendering the content on the
remoting server.

[0052] FIG. 4 is a block diagram showing how naviga-
tional action on a pop-out link is evaluated by a Navigation
Analyzer 425 that, depending on whether or not the OS on
the Server Computer 405 is in local or remote mode,
respectively either returns control to the User Interface
Manager 415 (including by extension any of its children,
such as low-level graphical panels), or directs the user’s
local web browser to refresh the top-level container that is
currently directly displaying the content presented by the
remote computer with the new content that the link points to.
[0053] When a computer program supporting pop-out
links, such as Requested Application 410, encounters a click
on a navigation link, it sends the Click Event Object 420 to
a custom event handler for navigation links that utilizes the
Navigation Analyzer 425 to determine if the navigation link
is a pop-out link that needs to be followed by refreshing a
Top-level Web Container 455 of the Web Browser/Web
Content Viewport 450.

[0054] The Navigation Analyzer 425 determines whether
or not the Server Computer 405 is in remote or local mode
by checking the relevant environment variable as described
above. If the Navigation Analyzer 425 determines that the
OS of Server Computer 405 is in local mode, it does not send
any Pop-out Navigation Event with Data 430. Instead it
makes no modifications and takes no further actions except
for invoking the current program’s standard event handler
(not the custom one for handling possible pop-out links
under remote mode) for navigational links, which allows the
Click Event Object 420 to be handled normally by the User
Interface Manager 415 and/or its subcomponents.

[0055] If the Navigation Analyzer 425 determines that the
OS of Server Computer 405 is in remote mode, then the
Navigation Analyzer 425 must detect if the link is a pop-out
link. It may do this by checking annotations on the link
itself, such as via a parser for the text in the link, or it may,
alternatively or in some combination, use some other ser-
vice, including a networked, local-area-network-based
(LAN-based), or Internet-based service, to do so.

[0056] If the Navigation Analyzer 425 determines that the
OS of Server Computer 405 is in remote mode and that the
link is a pop-out link, it will utilize the Pop-out Link
Navigation Event with Data 430 (transported by a pop-out
link navigation event) to alert the remoting engine (Remote
Desktop/Remote Application Window/Remote Graphical
Window Engine 435). In the Pop-out Link Navigation Event
Data 430, it passes the URL of the pop-out link along with

US 2017/0075702 Al

the value of any other HTML attributes such as ‘target’, to
it. The alerting can be done by use of components that, taken
individually, are well-known to those skilled in the art.
While the specific implementation may vary depending
upon the specific computer languages used by these appli-
cations and graphical computer desktops, and while it may
vary according to the specific application, a basic approach
holds across the variations.
[0057] In the preferred embodiment, a standard web appli-
cation client receives a pop-out link navigation directive
from the remote computer and directs the top-level user-
interface container that currently holds the content served by
the remote computer to the resource specified in the navi-
gation directive. The client can be embodied in client
software that generally or strictly conforms to the specifi-
cations of a web application as defined by the World Wide
Web Consortium, that runs on the end user’s local computer
on a standard web browser or on a web-enabled application,
and that is able to execute by using only building blocks
made from technologies defined by the World Wide Web
Consortium. This is done without plug-ins to the standard
web browser or the web part of the web-enabled application.
A “standard web browser” or a “standard web view” is
equipped to execute a fairly comprehensive suite of program
code for delivering web-based software applications, as
defined in reasonably up-to-date specifications from the
World Wide Web Consortium. “Web-enabled applications”
are applications that can host a “standard web view”.
[0058] The server part of the preferred embodiment would
add to its remoting engine, such as one supporting a Virtual
Network Computing” (“VNC”) server or a Remote Desktop
Protocol (“RDP”) server, or possibly to its OS, the capability
of'accepting and acting upon pop-out link messages, includ-
ing the URL’s or URI’s from pop-out links. Pop-out link-
enabled applications that run on the server machine’s OS
would be capable of differentiating clicks on pop-out links
from clicks on links, and would pass a message to either the
OS or directly to the remoting engine that a pop-out link has
been clicked, with the URL or URI of the pop-out link
contained as data of the message. This kind of message is
sometimes referred to in the art as an “event’. Whether or not
the pop-out link message would pass through the OS and
then to the remoting engine would depend upon the details
of the mechanics of the specific type OS on the server itself.
In either case, the remoting engine will then transmit the
pop-out link navigation command to the client, resulting in
the refreshing of Top-level Web Container 455 with the
content referred to by the URL or URI of the pop-out
navigation link.
[0059] The preceding description contains embodiments
of the invention and no limitation of the scope is thereby
intended.
That which is claimed is:
1. A computer-implemented method comprising:
dynamically setting an environment variable, that evalu-
ates in a conditional statement, in the operating system
process of a current windowing display session hosted
by the operating system, upon request from a remote
user to initiate a remote graphical windowing user
session, a remote computer desktop, or a remote
graphical application window;
directing a software application to consult the variable to
determine if the operating system is being used via a
remote window or not;

Mar. 16, 2017

and if the environment variable evaluates to true or not,
respectively, performing a functionality differently.

2. The method of claim 1, wherein if the environment
variable evaluates to true, the functionality is to optimize
remote windowing sessions by proportionally allocating
relatively more memory and/or CPU priority to the graphics
operations required by remote windows, to reduce latency in
remote windowing sessions.

3. The method of claim 1, wherein if the environment
variable evaluates to true, the functionality is, when stream-
ing content to a client, to send the source information to the
client and to skip rendering the content on the remoting
server.

4. The method of claim 1, wherein the environment
variable is a new custom variable.

5. The method of claim 1, wherein the environment
variable is a pre-existing variable.

6. The method of claim 1, wherein determining if the
operating system is being used via a remote window or not,
occurs upon navigational action on a pop-out link;

and if the environment variable evaluates to true or not,
respectively, treats the link as a pop-out link or not.

7. A system for remote windowing comprising at least one
processor, the at least one processor configured to cause the
system to at least perform:

dynamically setting an environment variable, that evalu-
ates in a conditional statement, in the operating system
process of a current windowing display session hosted
by the operating system, upon request from a remote
user to initiate a remote graphical windowing user
session, a remote computer desktop, or a remote
graphical application window;

directing a software application to consult the variable to
determine if the operating system is being used via a
remote window or not;

and if the environment variable evaluates to true or not,
respectively, performing a functionality differently.

8. The system of claim 7, wherein if the environment
variable evaluates to true, the functionality is to optimize
remote windowing sessions by proportionally allocating
relatively more memory and/or CPU priority to the graphics
operations required by remote windows, to reduce latency in
remote windowing sessions.

9. The system of claim 7, wherein if the environment
variable evaluates to true, the functionality is, when stream-
ing content to a client, to send the source information to the
client and to skip rendering the content on the remoting
server.

10. The system of claim 7, wherein the environment
variable is a new custom variable.

11. The system of claim 7, wherein the environment
variable is a pre-existing variable.

12. The system of claim 7, wherein determining if the
operating system is being used via a remote window or not,
occurs upon navigational action on a pop-out link;

and if the environment variable evaluates to true or not,
respectively, treats the link as a pop-out link or not.

13. An apparatus for remote windowing comprising:

a remoting engine that sets an environment variable, that
evaluates in a conditional statement, upon request from
aremote user to initiate a remote windowing session, in
the process that holds a software application requested

US 2017/0075702 Al

in a remote graphical windowing user session, a remote
computer desktop, or a remote graphical application
window;

a software application that consults the environment vari-
able and if the environment variable evaluates to true or
not, respectively, performs a functionality differently.

14. The apparatus of claim 13, wherein the environment
variable is a new custom variable.

15. The apparatus of claim 13, wherein the environment
variable is a pre-existing variable.

16. The apparatus of claim 13, wherein the software
application functionality is, when streaming content to a
client, to send the source information to the client and to skip
rendering the content on the remoting server.

17. The apparatus of claim 13, wherein the software
application functionality is to optimize remote windowing
sessions by proportionally allocating relatively more
memory and/or CPU priority to the graphics operations
required by remote windows, to reduce latency in remote
windowing sessions.

18. The apparatus of claim 13, wherein the software
application consults the environment variable upon naviga-
tional action on a pop-out link and if the environment
variable evaluates to true or not, respectively treats the link
as a pop-out link or not.

#* #* #* #* #*

Mar. 16, 2017

