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ABSTRACT 

A controller of a network control system for configuring 
several middlebox instances is described. The middlebox 
instances implement a middlebox in a distributed manner in 
several hosts. The controller assigns a first set of identifiers to 
a first middlebox instance that associates an identifier in the 
first set with a first packet. The controller assigns a second set 
of identifiers to a second middlebox instance that associates 
an identifier in the second set with a second packet. 
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CONNECTION IDENTIFIER ASSIGNMENT 
AND SOURCE NETWORKADDRESS 

TRANSLATON 

CLAIM OF BENEFIT TO PRIORAPPLICATION 

0001. This application claims the benefit of U.S. Provi 
sional Application 61/560,279, entitled “Virtual Middlebox 
Services', filed Nov. 15, 2011. U.S. Application 61/560,279 
is incorporated herein by reference. 

BACKGROUND 

0002 Many enterprises have large and sophisticated net 
works comprising Switches, hubs, routers, middleboxes, 
servers, workstations and other networked devices, which 
Support a variety of connections, applications and systems. 
The increased Sophistication of computer networking, 
including virtual machine migration, dynamic workloads, 
multi-tenancy, and customer-specific quality of service and 
security configurations require a better paradigm for network 
control. Networks have traditionally been managed through 
low-level configuration of individual network components. 
Network configurations often depend on the underlying net 
work: for example, blocking a user's access with an access 
controllist (ACL) entry requires knowing the user's current 
IP address. More complicated tasks require more extensive 
network knowledge: for example, forcing guest users’ port 80 
traffic to traverse an HTTP proxy requires knowing the cur 
rent network topology and the location of each guest. This 
process is of increased difficulty where the network switching 
elements are shared across multiple users. 
0003. In response, there is a growing movement towards a 
new network control paradigm called Software-Defined Net 
working (SDN). In the SDN paradigm, a network controller, 
running on one or more servers in a network, controls, main 
tains, and implements control logic that governs the forward 
ing behavior of shared network Switching elements on a per 
user basis. Making network management decisions often 
requires knowledge of the network State. To facilitate man 
agement decision-making, the network controller creates and 
maintains a view of the network State and provides an appli 
cation programming interface upon which management 
applications may access a view of the network State. 
0004 Some of the primary goals of maintaining large 
networks (including both datacenters and enterprise net 
works) are scalability, mobility, and multi-tenancy. Many 
approaches taken to address one of these goals results in 
hampering at least one of the others. For instance, one can 
easily provide network mobility for virtual machines within 
an L2 domain, but L2 domains cannot scale to large sizes. 
Furthermore, retaining user isolation greatly complicates 
mobility. As such, improved solutions that can satisfy the 
Scalability, mobility, and multi-tenancy goals are needed. 

BRIEF SUMMARY 

0005. Some embodiments of the invention provide a net 
work control system that allows a user to specify a logical 
network that includes one or more logical forwarding ele 
ments (e.g., logical Switches, logical routers, etc.) and one or 
more middleboxes (e.g., firewalls, load balancers, network 
address translators, intrusion detection systems (IDS), wide 
area network (WAN) optimizers, etc.). The system imple 
ments the user-specified logical forwarding elements across 
numerous managed Switching elements on numerous physi 
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cal machines that also host virtual machines of the logical 
network. The system implements the user-specified middle 
boxes across the numerous physical machines. Typically, the 
system of some embodiments configures, in one physical 
machine, a managed Switching element that implements at 
least part of the logical Switching elements and a distributed 
middlebox instance that provides a middlebox service to the 
packets forwarded by the managed Switching element. 
0006. In some embodiments, a managed switching ele 
ment that receives a packet from a VM that is hosted in the 
same physical machine performs all or most of the logical 
forwarding processing of the logical forwarding elements on 
the received packet. Because the managed Switching element 
receives the packet from the VM and performs forwarding 
processing on the packet, the managed Switching element is 
the first-hop managed Switching element with respect to the 
packet. While the first-hop managed Switching element is 
performing the logical forwarding of the packet, the first-hop 
managed Switching element has the distributed middlebox 
instance that is running in the same host to process the packet 
according to the middlebox service that the distributed 
middlebox instance provides. 
0007 Since the distributed middlebox instances provide 
middlebox services to the packets forwarded by the managed 
Switching elements that are running in the same hosts in 
which the distributed middlebox instances runs, possibly 
using the same algorithm or mechanism, packets processed 
by these distributed middlebox instances that are heading to 
the same destination may look identical from the viewpoint of 
the destination. For instance, packets sent out by virtual 
machines in different physical machines to establish connec 
tions with other virtual machines may be processed by the 
distributed middlebox instances hosted in the different physi 
cal machines. The distributed middlebox instances provide a 
source network address translation (SNAT) service to the 
packets (e.g., by translating the Source network addresses of 
the packets into different network addresses to hide the real 
Source network addresses). These packets then may have the 
same network address as the Source network addresses of the 
packets. When these packets are heading to the same desti 
nation, these packets may be identical in terms of the five 
tuples that the packets have (e.g., Source and destination 
network addresses, source and destination port numbers, 
transport protocol type), even though these packets originate 
from different virtual machines. Consequently, the packets 
may appear to be packets of the same connection even though 
the packets should each be packets of their own connections. 
0008. The network control system of some embodiments 
configures the distributed middlebox instances in Such away 
that the distributed middlebox instances assign identifiers to 
the packets having the same five-tuple so that the connections 
established by the packets are distinguishable. Different 
embodiments assign the connection identifiers differently. 
For instance, in Some embodiments, the system assigns a 
non-overlapping range of connection identifiers to each of the 
distributed middlebox instances that implement a middlebox. 
The distributed middlebox instances use identifiers within the 
range and the packets processed by these distributed middle 
box instance can be uniquely identified by the identifier that is 
not used for other live connections. Alternatively or conjunc 
tively, the network control system of some embodiments pro 
vides a set of application programming protocols (APIs) that 
each distributed middlebox instance can use to obtain and 
release a range of connection identifiers on demand. In these 
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embodiments, the network control system maintains the 
available (i.e., not being used) and unavailable (i.e., being 
used) ranges of connection identifiers. 
0009. In some embodiments, the network control system 

lets each distributed middlebox maintain the entire available 
range of connection identifiers and assign connection identi 
fiers to the packets forwarded by the managed Switching 
element that are last-hop managed Switching elements with 
respect to the packets. A managed Switching element is a 
last-hop managed Switching element with respect to a packet 
when the managed Switching element forwards the packet to 
a destination virtual machine that runs in the same host in 
which the managed Switching element runs. 
0010. The network control system of some embodiments 
implements a middlebox that provides a SNAT service in a 
distributed manner. The network control system receives, 
from a user, configuration data for configuring the middlebox, 
including SNAT rules to use to translate source addresses of 
incoming packets. The network control system configures the 
distributed middlebox instances that implement the middle 
box to provide SNAT service in a similar way in to how the 
network control system configures the managed Switching 
elements to perform logical forwarding processing of the 
logical Switching elements of the user. 
0011. In some embodiments, the network control system 
has several controllers including logical controllers and 
physical controllers. A logical controller is a master of logical 
Switching elements of a user. A logical controller of some 
embodiments receives a specification of the logical switching 
elements from the user, in the form of logical control plane 
(LCP) data. A logical controller translates the LCP data into 
logical forwarding plane (LFP) data, which define control 
plane and forwarding plane of the logical Switching elements. 
A logical controller then translates the LFP data to the uni 
Versal physical control plane data. A logical controller then 
identifies a set of physical controllers, each of which is 
responsible for managing a managed Switching element. A 
logical controller sends the universal control plane data only 
to the identified set of physical controllers that manages man 
aged Switching elements, each of which at least partially 
implements the logical Switching elements of the user. 
0012 A physical controller translates the universal physi 
cal control plane data into customized physical control plane 
data, which is control plane data for the managed Switching 
elements that implement the logical Switching elements. The 
physical controller sends the customized physical control 
plane data to the managed Switching element. The managed 
Switching element then translates the customized control 
plane to perform the logical forwarding processing of the 
logical Switching elements specified by the user. 
0013 Similarly, a logical controller receives configuration 
data for configuring the middlebox. The logical controller 
identifies the same set of physical controllers which are mas 
ters of the managed Switching elements that implement, at 
least partially, the logical Switching elements specified by the 
user. The logical controller sends the middlebox configura 
tion data to the identified set of physical controllers. The 
physical controller of some embodiments then sends the 
middlebox configuration data to the managed Switching ele 
ments so that the managed Switching elements can send the 
middlebox configuration data to the distributed middlebox 
instances that run in the same host in which the managed 
Switching elements run. Alternatively, the physical controller 
sends the middlebox configuration data directly to the distrib 
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uted middlebox instance, which runs in the same host with the 
managed Switching elements, of which the physical control 
ler is the master. 
0014. The preceding Summary is intended to serve as a 
brief introduction to some embodiments of the invention. It is 
not meant to be an introduction or overview of all inventive 
subject matter disclosed in this document. The Detailed 
Description that follows and the Drawings that are referred to 
in the Detailed Description will further describe the embodi 
ments described in the Summary as well as other embodi 
ments. Accordingly, to understand all the embodiments 
described by this document, a full review of the Summary, 
Detailed Description and the Drawings is needed. Moreover, 
the claimed subject matters are not to be limited by the illus 
trative details in the Summary, Detailed Description and the 
Drawing, but rather are to be defined by the appended claims, 
because the claimed subject matters can be embodied in other 
specific forms without departing from the spirit of the subject 
matterS. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0015 The novel features of the invention are set forth in 
the appended claims. However, for purpose of explanation, 
several embodiments of the invention are set forth in the 
following figures. 
0016 FIG. 1 illustrates an example network structure of a 
logical network of a user that is implemented in the infra 
structure of a physical network. 
0017 FIG. 2 illustrates a processing pipeline that is per 
formed by the MSEs of some embodiments. 
0018 FIG. 3 illustrates an example controller cluster. 
0019 FIG. 4 illustrates example architecture of a network 
controller. 
(0020 FIG. 5 conceptually illustrates several different 
ways of assigning connection identifiers to several distributed 
middlebox instances. 
0021 FIG. 6 illustrates a logical network and a physical 
network. 
0022 FIG. 7 conceptually illustrates a process that some 
embodiments perform to provide SNAT service. 
0023 FIG. 8 conceptually illustrates an example opera 
tion of a MSE that is a first-hop MSE with respect to a data 
packet. 
0024 FIG. 9 conceptually illustrates an example opera 
tion of a MSE that is a first-hop MSE with respect to a data 
packet. 
0025 FIG. 10 conceptually illustrates an example opera 
tion of a MSE that is a first-hop MSE with respect to a 
particular packet and is a last-hop MSE with respect to a 
response packet that was sent in response to the particular 
packet. 
0026 FIG. 11 conceptually illustrates a process that some 
embodiments perform to set up forward and reverse sanitiza 
tion flow entries at a MSE that is a last-hop MSE. 
0027 FIG. 12 conceptually illustrates example operations 
of a MSE that is a last-hop MSE with respect to packets. 
0028 FIG. 13 conceptually illustrates example operations 
of a MSE that is a last-hop MSE with respect to packets. 
0029 FIG. 14 conceptually illustrates an example opera 
tion of a MSE that is a last-hop MSE with respect to a 
particular packet and is a first-hop MSE with respect to a 
response packet that is sent in response to the particular 
packet. 
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0030 FIG. 15 conceptually illustrates an electronic sys 
tem with which some embodiments of the invention are 
implemented. 

DETAILED DESCRIPTION 

0031. In the following detailed description of the inven 
tion, numerous details, examples, and embodiments of the 
invention are set forth and described. However, it will be clear 
and apparent to one skilled in the art that the invention is not 
limited to the embodiments set forth and that the invention 
may be practiced without Some of the specific details and 
examples discussed. 
0032 Some embodiments of the invention provide a net 
work control system that allows the logical datapath sets of 
different users to be implemented by switching elements of a 
physical network. These switching elements are referred to 
below as managed Switching elements (MSEs) or managed 
forwarding elements as they are managed by the network 
control system in order to implement the logical datapath sets. 
Examples of Such Switching elements include virtual or 
physical network Switches, Software Switches (e.g., Open 
vSwitch), routers, etc. In some embodiments, the logical 
datapath sets are implemented in the managed Switching ele 
ment in a manner that prevents the different users from view 
ing or controlling each other's logical datapath sets (i.e., each 
other's Switching logic) while sharing the same Switching 
elements. 

0033. To implement logical datapath sets, the network 
control system of some embodiments generates physical con 
trol plane data from logical datapath set data specified by the 
users. The physical control plane data is then downloaded to 
the MSEs. The MSEs convert the physical control plane data 
into physical forwarding plane data that allows the MSEs to 
perform forwarding of the packets that these MSEs receive. 
Based on the physical forwarding data, the MSEs can process 
data packets in accordance with the logical processing rules 
specified within the physical control plane data. 
0034. In some embodiments, each of the logical datapath 
sets defines a logical network that includes one or more logi 
cal Switching elements. A logical Switching element can pro 
cess incoming packets in layer 2 (L2) or layer 3 (L3). That is, 
a logical Switching element can function as a logical Switch 
for Switching packets at L2 and/or as a logical router for 
routing packets at L3. The network control system imple 
ments the logical Switching elements of different users across 
the MSEs. 

0035. In addition to the logical switching elements, the 
network control system of some embodiments allows the 
users to specify middleboxes. As known in the art, middle 
boxes perform data processing other than forwarding the data 
(e.g., network address translation, load balance, firewall, 
intrusion detection and prevention, wide area network opti 
mization, etc.). The middleboxes provide these middlebox 
services to the users’ respective logical Switching elements. 
The network control system implements the specified 
middleboxes in the physical infrastructure of the physical 
network, including the hosts in which the MSEs operate. 
0036) Several examples of such systems are described 
below in Section I. Section II then describes distributed 
middlebox instances that provide SNAT service. Section III 
describes an electronic system that implements some 
embodiments of the invention. 
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I. Implementing Logical Switching Elements And 
Middleboxes in a Distributed Manner 

0037 A. Logical Switching Elements and Middleboxes 
0038 FIG. 1 illustrates an example network structure of a 
logical network of a user that is implemented in the infra 
structure of a physical network. Specifically, this figure illus 
trates that the logical network includes a middlebox and that 
the middlebox is implemented in the physical network in a 
distributed manner. The top half of the figure shows a logical 
network 105 while the bottom half of the figure shows a 
physical network 110 in which the logical network 105 is 
implemented. 
0039. As shown in the top half of the figure, the logical 
network 105 includes two logical switches 1 and 2, a logical 
router 115, and a middlebox 120. The logical switch 1 is 
connected to virtual machines (VMs) 1 and 2 and the logical 
router 115. There may be many other VMs connected to the 
logical switch 1 but they are not depicted in this figure for the 
simplicity of illustration and description. The logical switch 1 
forwards data betweenVMs connected to the logical switchat 
L2 (e.g., by using MAC addresses) and between the VMs and 
the logical router 115 when the data needs routing at L3 (e.g., 
by using IP addresses). Like the logical Switch 1, the logical 
switch 2 forwards data between the logical router 115 and the 
VMs connected to the logical switch 2. 
0040. The logical router 115 routes data at L3, among the 
logical Switches connected to the logical router and the 
middlebox 120. When the data needs middlebox service (e.g., 
source network address translation), the logical router 115 
sends the data to the middlebox 120 to process and in some 
cases receives the processed data back from the middlebox to 
route the data to the data's destination. The logical router 115 
also routes data to and from the external network, which 
includes network elements that do not belong to the logical 
network 105. 
0041 As shown in the bottom half of FIG. 1, the physical 
network 110 includes hosts 1-4. A host is a machine that is 
managed by an operating system (e.g., LinuxTM, WindowsTM, 
etc.) that is capable of running software applications and 
virtual machines. Each of the hosts has several network ele 
ments running in the host, including several MSEs, several 
distributed middlebox instances, and/or several VMs. Not all 
of these network elements are depicted in each host in this 
figure for the simplicity of illustration and description. In 
some embodiments, a MSE is a software switching element 
that has components running in the user space and/or the 
kernel of the host on which the software is running Also, a 
distributed middlebox instance in some embodiments is a 
Software application that has components running in the user 
space and/or the kernel. In some embodiments, a distributed 
middlebox instance is provisioned inaVM running in the host 
in which the MSE is running 
0042. As shown, the host 1 includes MSE 1, a distributed 
middlebox instance 125, and VM1. The host 2 includes MSE 
2, a distributed middlebox instance 140, and VM2. The host 
3 includes MSE3, a distributed middlebox instance 145, and 
VM3. The host 4 includes MSE 4, and a distributed middle 
box instance 140. 
0043. The MSEs 1-4 implement the logical switches 1 and 
2 and the logical router 115 in a distributed manner. That is, 
the MSEs 1-4 of some embodiments collectively perform the 
data forwarding operations of the logical Switches 1 and 2 and 
the logical router 115. Specifically, the ports (not shown) of 
the logical Switches 1-2 are mapped to physical ports (e.g., 
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virtual interfaces (VIFs)—not shown) of the MSEs 1-3. The 
VMs that send and receive data to and from the logical 
switches 1-2 through the ports of the logical switches actually 
send and receive the data to and from the MSEs through the 
physical ports of the MSEs to which the ports of the logical 
switches are mapped. The MSEs have forwarding tables (not 
shown) that include the physical forwarding plane data in the 
form of flow entries. In some embodiments, a flow entry 
includes a qualifier and an action. The qualifier specifies a 
condition which, when it is met, directs the MSE to perform 
the action. The MSEs perform the data forwarding operations 
of the logical Switching elements (logical Switches and logi 
cal routers) according to the actions specified in the flow 
entries. Forwarding tables and flow entries will be described 
further below by reference to FIG. 8. 
0044. The MSE that receives data from a VM is referred to 
as a first-hop MSE with respect to that data. In some embodi 
ments, the first-hop MSEs performs all or most of the logical 
processing that are to be performed on the received data in 
order for the data to reach the data's destination. For instance, 
when the logical switch 1 receives a data packet from VM 1 
that is addressed to VM3, the logical switch 1 forwards the 
packet to the logical router 115. The logical router 115 then 
routes the packet to the logical switch 2, which will forward 
the packet to VM3. In the physical network 110, the MSE 1 
is the first-hop MSE with respect to this packet and performs 
logical processing to send the packet to VM 3, which is 
connected to the MSE 3. That is, the MSE 1 performs the 
forwarding operations of the logical switch 1, the logical 
router 115, and the logical switch 2 to send the packet from 
VM1 to the VM3. Likewise, for packets from VM 2 to VM 
1 or VM3, the MSE 2, as the first-hop MSE for these packets, 
performs the forwarding operations of the logical Switch 1, 
the logical router 115, and the logical switch 2. The MSE 3 
will also perform the forwarding operations of the logical 
switch 2, the logical router 115, and the logical switch 1 to 
send data packets from VM 3 to VM 1 or VM 2. 
0045. The MSEs exchange data amongst themselves via 
tunnels established between them. These tunnels allow the 
data to be exchanged among the MSEs over the other network 
elements (not shown) of the physical network 110. In some 
embodiments, the network control system does not manage 
these other network elements of the physical network 110. 
These other network elements thus serve as switching fabric 
for the MSEs to use to exchange data. As shown, each of the 
MSEs 1-4 establishes a tunnel to each of the other MSEs. 
0046 Different types of tunneling protocols are supported 
in different embodiments. Examples of tunneling protocols 
include control and provisioning of wireless access points 
(CAPWAP), generic route encapsulation (GRE), GRE Inter 
net Protocol Security (IPsec), among others. 
0047. In some embodiments, the MSEs 1-4 are edge 
switching elements because these MSEs are considered to be 
at the edge of the physical network 110. Being at the edge of 
the network means either (1) the MSEs directly interface with 
virtual machines to send and receive data to and from the 
virtual machines or (2) the MSEs connect the physical net 
work 110 to another physical network which may or may not 
be managed by the network control system. As shown, the 
MSEs 1-3 directly interface with VMs 1-3, respectively. The 
MSE 4 interfaces the external network and functions as an 
integration element to facilitate data exchange between the 
network elements of the physical network 110 and the exter 
nal network. The non-edge MSEs (not shown) may facilitate 
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data exchange between the MSEs and/or other unmanaged 
switching elements (not shown) of the physical network 110. 
0048. The middlebox 120 in the logical network 105 is 
implemented in the physical network 110 in a distributed 
manner, too. In some embodiments, a distributed middlebox 
instance is running in the same host in which a MSE is 
running in order to provide the middlebox service to the 
packets forwarded by the MSE. For instance, the distributed 
middlebox instance 125 running in the host 1 provides the 
middlebox service to the packets forwarded by the MSE 1. 
That is, the distributed middlebox instance 125 receives data 
packets from the MSE 1 and performs middlebox operations 
(e.g., source NAT) to the packets. The distributed middlebox 
instance 125 then returns the packets back to the MSE 1 so 
that the packets are forwarded to the destinations of the pack 
ets. Likewise, the distributed middlebox instances 130 and 
135 running in the hosts 2 and 3, respectively, next to the 
MSEs 2 and 3, respectively, provide the middlebox service to 
the packets coming to and from VMs 2 and 3, respectively. 
The distributed middlebox instance 140 running in the host 4 
next to the MSE 4 provides the middlebox service for the 
packets forwarded by the MSE 4. 
0049. An example operation of the physical network 110 
that implements the logical network 105 is now described by 
reference to FIG. 2. Specifically, FIG. 2 illustrates a process 
ing pipeline 205 that is performed by the MSEs 1 and 3 and 
the distributed middlebox instance 125 in order to send a data 
packet from VM 1 to VM 3 via the distributed middlebox 
instance 125. FIG. 2 shows only VM1 and VM3, the logical 
Switching elements, and hosts that are connected to or include 
VM1 and VM3 to illustrate data being sent from VM1 to VM 
3. The middlebox service that the middlebox 120 provides is 
SNAT in this example. 
0050. When VM 1 that is coupled to the logical switch 1 
sends a packet (not shown) addressed to VM3 that is coupled 
to the logical switch 2, the packet is first sent to the MSE 1. 
The MSE 1 then performs L2 processing 210. The L2 pro 
cessing 210 is a set of operations that define the logical Switch 
1's forwarding processing on the packet. By performing the 
L2 processing 210, the MSE 1 forwards the packet from VM 
1 to the logical router 115. The packet is forwarded to the 
logical router 115 because VM3 is not coupled to the logical 
switch 1 and thus has to be routed by the logical router 115 to 
the logical switch 2 to which VM3 is coupled. 
0051. The MSE 1 then performs the L3 processing 215. 
The L3 processing 215 is a set of operations that define the 
logical router 115’s routing of the packet. The logical router 
115 routes the packet to the middlebox 120 to have the 
middlebox 120 change the packet source address (e.g., source 
IP address) to another address. By performing the L3 pro 
cessing 215, the MSE 1 sends the packet to the distributed 
middlebox instance 125. 

0052. The distributed middlebox instance 125 which 
implements the middlebox 120 then performs SNAT process 
ing 220 on the packet. In some embodiments, the distributed 
middlebox instance 125 changes the received packet's source 
IP address (i.e., VM1's IP address) to a different address. In 
other embodiments, the distributed middlebox instance 125 
creates flow entries and installs in the forwarding table (not 
shown) of the MSE 1 so that when the distributed middlebox 
instance 125 sends a packet back to the MSE 1, this packets 
source IP address is changed by the MSE 1 based on those 
flow entries installed by the distributed middlebox instance 
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125. Creating and installing flow entries will be described 
further below by reference to FIGS. 8 and 12. 
0053. The MSE 1 then receives the packet sent from the 
distributed middlebox instance 125 and performs L3 process 
ing 225 and L2 processing 230 on this packet. This packet has 
the source IP address that is assigned by the distributed 
middlebox instance 125. The L3 processing 225 is a set of 
operations that define the logical router 115’s routing of the 
packet. By performing the L3 processing 225, the MSE 1 
routes the packet from the middlebox 125 to the logical 
switch 2. 
0054) The MSE 1 then performs L2 processing 230. The 
L2 processing 230 is a set of operations that define the logical 
Switch 1's forwarding processing on the packet. By perform 
ing the L2 processing 230, the MSE 1 forwards the packet 
from logical router 115 to VM3. However, because VM3 is 
not physically coupled to the MSE 1, the MSE 1 has to 
identify a MSE to which VM 3 is coupled. The MSE 1 
identifies the MSE 3 (e.g., through address learning process) 
and sends the packet to the MSE 3 over the tunnel established 
between the MSES 1 and 3. 
0055. In some embodiments, the MSE3 performs L2 pro 
cessing 235, which defines a portion of the set of operations 
that define the logical Switch 2's forwarding processing on the 
packet. For instance, the MSE 3 performs an egress access 
controllist (ACL) processing on the packet before forwarding 
the packet to VM3. In other embodiments, the MSE 1 does 
not perform the L2 processing 230 northe L2 processing 215. 
That is, the MSE 3 will perform all L2 processing for the 
logical switch 2. When VM 3 sends a packet to VM 1 in 
response to receiving a packet from VM 1, the 
0056. MSE3, the distributed middlebox instance 125, and 
the MSE 1 perform the processing pipeline 205 in the reverse 
order. Because most or all of the logical processing was 
performed by the MSE 1 for the packet that went to VM 3 
from VM1, most or all of logical processing for the response 
packet from VM3 to VM1 is also performed in the MSE 1. By 
having the MSE 1 perform most orall of logical processing on 
the packets going both ways betweenVM 1 and VM3, some 
embodiments avoid sharing state information (e.g., original 
and translated source IP addresses mapping) between the 
MSEs 1 and 3. More detailed example operations of the 
MSEs 1 and 3 will be described further below by reference to 
FIGS. 6-14. 

0057 B. Configuring MSEs and Middleboxes 
0058 As described above, the MSEs of some embodi 
ments implement logical Switches and logical routers based 
on flow entries supplied to the MSEs by the network control 
system. The network control system of some embodiments is 
a distributed control system that includes several controller 
instances that allow the system to accept logical datapath sets 
from users and to configure the MSEs to implement these 
logical datapath sets (i.e., datapath sets defining the logical 
switching elements of the users). The distributed control sys 
tem also receives middlebox configuration data from the 
users and configures the distributed middlebox instances by 
sending the configuration data to the distributed middlebox 
instances. These controller instances of the distributed con 
trol system form a cluster and thus the network control system 
is referred to as a controller cluster. 
0059 FIG.3 illustrates an example controller cluster 300. 
The controller cluster 300 configures and manages several 
MSEs and several distributed middlebox instances running in 
several hosts. This figure illustrates only the controller cluster 
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300 and a host 305. The controller cluster 300 includes a 
logical controller 310 and a physical controller 315. The 
logical controller 310 and the physical controller 315 are two 
of many controllers (not shown) of the controller cluster 300. 
0060. In some embodiments, the logical controller 310 is a 
device (e.g., a general-purpose computer) that executes one or 
more modules that transform the user input from a LCP to a 
LFP, and then transform the LFP data to universal physical 
control plane data. These modules in Some embodiments 
include a control module and a virtualization module (not 
shown). A control module allows a user to specify and popu 
late a logical datapath set, while a virtualization module 
implements the specified logical datapath set by mapping the 
logical datapath set onto the physical Switching infrastruc 
ture 

0061. As shown on the left side of the logical controller 
310, the logical controller 310 of some embodiments receives 
logical datapath set data from a user in a form of application 
protocol interface (API) calls that are supported by the logical 
controller 310. The API (not shown) of the logical controller 
310 translates the logical datapath set data for configuring 
logical switches and logical routers into LCP data. The LCP 
data is the control plane data for the logical Switching ele 
ments (e.g., logical Switches and logical routers) that the user 
is managing through the controller cluster. The logical con 
troller 310 generates LFP data from the LCP data. The LFP 
data is the forwarding plane data for the logical Switching 
elements of the user. In some embodiments, the logical con 
troller 310 has a set of modules (not shown) including a 
translation engine that translates the LCP data into the LFP 
data. In some Such embodiments, the translation performed 
by the translation engine involves database table mapping. 
0062 From the LFP data for a particular logical datapath 
set of the user, the virtualization module of the logical con 
troller 310 of some embodiments generates universal physi 
cal control plane (UPCP) data that is the control plane data for 
any MSE that implements the logical datapath set. The UPCP 
data does not include specifics of the MSEs (e.g., information 
that is local to the MSE such as a port number, etc.). In some 
embodiments, the translation engine translates the LFP data 
into UPCP data. 

0063. The set of modules of the logical controller 310 also 
includes a module that identifies a set of physical controllers 
that is responsible for controlling a set of MSEs that imple 
ment the logical datapath set (i.e., that implement the logical 
switching elements of the user). The logical controller 310 
sends the UPCP data only to the identified set of physical 
controllers in some embodiments. The logical controller of 
different embodiments communicates with the physical con 
trollers differently. For instance, in some embodiments, the 
logical controller 310 establishes a communication channel 
(e.g., a remote procedure call (RPC) channel) with each of the 
physical controllers in the identified set. Alternatively or con 
junctively, the logical controller and the physical controller 
use a storage as a medium of communication by placing and 
pulling UPCP data in the storage. 
0064. The physical controller 315 is one of the physical 
controllers of the controller cluster 300. The physical control 
ler 315 is responsible for managing the MSE 320. The physi 
cal controller 315 receives the UPCP data from the logical 
controller 310 and converts the UPCP data into customized 
physical control plane (CPCP) data for the MSE 320. In 
contrast to the UPCP data, the CPCP data for a MSE includes 
the specifics of the MSE. The CPCP data is the control plane 
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data for the MSE. In some embodiments, the physical con 
troller 315 has a set of modules (not shown) including a 
translation engine that translates the UPCP data into the 
CPCP data. In some such embodiment, the translation per 
formed by the translation engine involves database table map 
p1ng. 

0065. The CPCP data includes the attachment data, which 
defines the coupling of the managed Switching element and 
the distributed middlebox instance that implement the logical 
Switching elements (the logical Switches and the logical rout 
ers) of the user. For instance, the attachment data specifies the 
port number of a port of the MSE through which the MSE and 
the distributed middlebox instance exchange packets. 
0066. The physical controller 315 also sends slicing data 

to the MSE. Slicing data in some embodiments includes 
identifiers for identifying different "slices of a distributed 
middlebox instance. In some embodiments, a distributed 
middlebox instance may provide a middlebox service to sev 
eral different VMs that belong to several different users (i.e., 
several different logical domains). The distributed middlebox 
may be "sliced so that each slice of the distributed middle 
box instance provides the middlebox service one of these 
different VMs. When the managed switching element that 
forwards packets for the VMs sends packets to the distributed 
middlebox instance, the MSE uses the slice identifiers to 
indicate to which particular user or logical domain that a 
packet belongs so that the slice for the particular user pro 
cesses the packet. 
0067. In some embodiments, the slicing data includes a 
binding between a long-form slice identifier and a short-form 
slice identifier. The long-form slice identifier is relatively 
long (e.g., 128 bit) and the short-form slice identifier is rela 
tively short (e.g., 16 bit). In some embodiments, the long-term 
slice identifier is used to make an identity of a user unique 
across the numerous MSES that might be implementing 
numerous users' logical domains. The short-form slice iden 
tifier is used for packet exchange between a MSE and a 
distributed middlebox instance running in a host. 
0068. The user also configures the middlebox service for 
the user's logical Switching elements. As shown on the right 
side of the controller cluster 300, the logical controller 310 of 
some embodiments includes a middlebox API for taking API 
calls specifying the configuration of the middlebox service 
(e.g., SNAT rules) from the user. The middlebox API of the 
logical controller 310 extracts the configuration data from the 
middlebox API calls received from the user and sends the 
configuration data to the same set of physical controllers to 
which the logical controller 310 sends the UPCP data. 
0069. The physical controller 315 of some embodiments 
receives the configuration data from the logical controller 310 
and then relays the configuration data to all MSEs, which the 
physical controller 315 manages, that implement at least part 
of the user's logical switching elements, including the MSE 
320. The MSE 320 then sends this configuration data to the 
distributed middlebox instance 325. Alternatively or conjunc 
tively, the physical controller 315 directly sends the middle 
box configuration data to the distributed middlebox instance 
325. 

0070. In some embodiments, the physical controller 315 
also sends the slicing data and the attachment data to the 
distributed middlebox instances that the physical controller 
manages. The distributed middlebox instance 325 performs 
translation of the configuration data using the slicing and 
attachment data to complete the configuration of the distrib 
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uted middlebox instance 325 as specified by the user. The 
distributed middlebox instance also creates a binding of slic 
ing data. Specifically, the distributed middlebox instance of 
Some embodiments creates a binding between short-form 
slice identifiers and internal slice identifiers to use only within 
the distributed middlebox instance 325. An example usage of 
the internal slice identifiers may be for populating a data 
structure that allows only certain lengths for the slice identi 
fiers to have. 

(0071. Each of the controllers illustrated in FIG.3 is shown 
as a single controller. However, each of these controllers may 
actually be a controller cluster that operates in a distributed 
fashion to perform the processing of a logical controller or 
physical controller. 
0072 FIG. 4 illustrates example architecture of a network 
controller (e.g., a logical controller or a physical controller) 
400. The network controller of some embodiments uses a 
table mapping engine to map data from an input set of tables 
to data in an output set of tables. The input set of tables in a 
controller includes LCP data to be mapped to LFP data, LFP 
data to be mapped to UPCP data, and/or UPCP data to be 
mapped to CPCP data. The input set of tables may also 
include middlebox configuration data to be sent to another 
controller and/or a distributed middlebox instance. The net 
work controller 400, as shown, includes input tables 415, an 
rules engine 410, output tables 420, an importer 430, an 
exporter 435, a translator 435, and a persistent data storage 
(PTD) 440. 
0073. In some embodiments, the input tables 415 include 
tables with different types of data depending on the role of the 
controller 400 in the network control system. For instance, 
when the controller 400 functions as a logical controller for a 
user's logical forwarding elements, the input tables 415 
include LCP data and LFP data for the logical forwarding 
elements. When the controller 400 functions as a physical 
controller, the input tables 415 include LFP data. The input 
tables 415 also include middlebox configuration data 
received from the user or another controller. The middlebox 
configuration data is associated with a logical datapath set 
parameter that identifies the logical Switching elements to 
which the middlebox to be is integrated. 
0074. In addition to the input tables 415, the control appli 
cation 400 includes other miscellaneous tables (not shown) 
that the rules engine 410 uses to gather inputs for its table 
mapping operations. These miscellaneous tables tables 
include constant tables that store defined values for constants 
that the rules engine 410 needs to perform its table mapping 
operations (e.g., the value 0, a dispatch port number for resub 
mits, etc.). The miscellaneous tables further include function 
tables that store functions that the rules engine 410 uses to 
calculate values to populate the output tables 425. 
0075. The rules engine 410 performs table mapping opera 
tions that specifies one manner for converting input data to 
output data. Whenever one of the input tables is modified 
(referred to as an input table event), the rules engine performs 
a set of table mapping operations that may result in the modi 
fication of one or more data tuples in one or more output 
tables. 

0076. In some embodiments, the rules engine 410 includes 
an event processor (not shown), several query plans (not 
shown), and a table processor (not shown). Each query plan is 
a set of rules that specifies a set of join operations that are to 
be performed upon the occurrence of an input table event. The 
event processor of the rules engine 410 detects the occurrence 
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of each Such event. In some embodiments, the event processor 
registers for callbacks with the input tables for notification of 
changes to the records in the input tables 415, and detects an 
input table event by receiving a notification from an input 
table when one of its records has changed. 
0077. In response to a detected input table event, the event 
processor (1) selects an appropriate query plan for the 
detected table event, and (2) directs the table processor to 
execute the query plan. To execute the query plan, the table 
processor, in some embodiments, performs the join opera 
tions specified by the query plan to produce one or more 
records that represent one or more sets of data values from one 
or more input and miscellaneous tables. The table processor 
of some embodiments then (1) performs a select operation to 
select a subset of the data values from the record(s) produced 
by the join operations, and (2) writes the selected subset of 
data values in one or more output tables 420. 
0078 Some embodiments use a variation of the datalog 
database language to allow application developers to create 
the rules engine for the controller, and thereby to specify the 
manner by which the controller maps logical datapath sets to 
the controlled physical switching infrastructure. This varia 
tion of the datalog database language is referred to herein as 
nLog. Like datalog, nLog provides a few declaratory rules 
and operators that allow a developer to specify different 
operations that are to be performed upon the occurrence of 
different events. In some embodiments, nLog provides a lim 
ited subset of the operators that are provided by datalog in 
order to increase the operational speed of nLog. For instance, 
in some embodiments, nLog only allows the AND operator to 
be used in any of the declaratory rules. 
007.9 The declaratory rules and operations that are speci 
fied through nLog are then compiled into a much larger set of 
rules by an in log compiler. In some embodiments, this com 
piler translates each rule that is meant to address an event into 
several sets of database join operations. Collectively the 
larger set of rules forms the table mapping rules engine that is 
referred to as the nLog engine. 
0080 Some embodiments designate the first join opera 
tion that is performed by the rules engine for an input event to 
be based on the logical datapath set parameter. This designa 
tion ensures that the rules engine's join operations fail and 
terminate immediately when the rules engine has started a set 
of join operations that relate to a logical datapath set (i.e., to 
a logical network) that is not managed by the controller. 
I0081 Like the input tables 415, the output tables 420 
include tables with different types of data depending on the 
role of the controller 400. When the controller 400 functions 
as a logical controller, the output tables 415 include LFP data 
and UPCP data for the logical switching elements. When the 
controller 400 functions as a physical controller, the output 
tables 420 include CPCP data. Like the input tables, the 
output tables 415 may also include the middlebox configura 
tion data. Furthermore, the output tables 415 may include a 
slice identifier when the controller 400 functions as a physical 
controller. 

0082 In some embodiments, the output tables 420 can be 
grouped into several different categories. For instance, in 
Some embodiments, the output tables 420 can be rules engine 
(RE) input tables and/or RE output tables. An output table is 
a RE input table when a change in the output table causes the 
rules engine to detect an input event that requires the execu 
tion of a query plan. An output table can also be an RE input 
table that generates an event that causes the rules engine to 
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perform another query plan. An output table is a RE output 
table when a change in the output table causes the exporter 
425 to export the change to another controller or a MSE. An 
output table can be an RE input table, a RE output table, or 
both an RE input table and a RE output table. 
I0083. The exporter 425 detects changes to the RE output 
tables of the output tables 420. In some embodiments, the 
exporter registers for callbacks with the RE output tables for 
notification of changes to the records of the RE output tables. 
In such embodiments, the exporter 425 detects an output table 
event when it receives notification from a RE output table that 
one of its records has changed. 
I0084. In response to a detected output table event, the 
exporter 425 takes each modified data tuple in the modified 
RE output tables and propagates this modified data tuple to 
one or more other controllers or to one or more MSEs. When 
sending the output table records to another controller, the 
exporter in Some embodiments uses a single channel of com 
munication (e.g., a RPC channel) to send the data contained in 
the records. When sending the RE output table records to 
MSEs, the exporter in some embodiments uses two channels. 
One channel is established using a Switch control protocol 
(e.g., OpenFlow) for writing flow entries in the control plane 
of the MSE. The other channel is established using a database 
communication protocol (e.g., JSON) to send configuration 
data (e.g., port configuration, tunnel information). 
0085. In some embodiments, the controller 400 does not 
keep in the output tables 420 the data for logical datapath sets 
that the controller is not responsible for managing (i.e., for 
logical networks managed by other logical controllers). How 
ever, such data is translated by the translator 435 into a format 
that can be stored in the PTD 440 and is then stored in the 
PTD. The PTD 440 propagates this data to PTDs of one or 
more other controllers so that those other controllers that are 
responsible for managing the logical datapath sets can pro 
cess the data. 

I0086. In some embodiments, the controller also brings the 
data stored in the output tables 420 to the PTD for resiliency 
of the data. Therefore, in these embodiments, a PTD of a 
controller has all the configuration data for all logical datap 
ath sets managed by the network control system. That is, each 
PTD contains the global view of the configuration of the 
logical networks of all users. 
I0087. The importer 430 interfaces with a number of dif 
ferent sources of input data and uses the input data to modify 
or create the input tables 410. The importer 420 of some 
embodiments receives the input data from another controller. 
The importer 420 also interfaces with the PTD 440 so that 
data received through the PTD from other controller instances 
can be translated and used as input data to modify or create the 
input tables 410. Moreover, the importer 420 also detects 
changes with the RE input tables in the output tables 430. 
I0088 C. Connection Identifiers Assignment 
I0089. As described above by reference to FIGS. 1 and 2. 
the first-hop MSEs performs all or most of the logical pro 
cessing that is to be performed on a data packet in order for the 
data packet to reach the data packet's destination. The packets 
from different VMs may be sent to the same VM. These 
packets are processed by logical Switching elements and 
middleboxes implemented in multiple first-hop MSEs and 
distributed middlebox instances. The multiple first-hop 
MSEs and distributed middlebox instances may apply the 
same processing to these packets heading to the same desti 
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nation. Thus, from the viewpoint of the destination MSE, the 
packets may not be distinguishable from one another. 
0090. For instance, a packet sent from VM 1 to VM 3 of 
FIG. 1 has a source IP address of VM1 and the destination IP 
address of VM 3. When the distributed middlebox instance 
125 applies a middlebox processing (e.g., SNAT) on this 
packet, the packet will have a source IP address assigned by 
the distributed middlebox instance 125 and the destination IP 
address of VM3. Likewise, a packet sent from VM 2 to VM 
3 of FIG. 1 initially has a source IP address of VM2 and the 
destination IP address of VM3. When the distributed middle 
box instance 130 applies the same middlebox processing on 
this packet, this packet will have source IP address assigned 
by the distributed middlebox instance 130 and the destination 
IP address of VM3. However, these two packets may have the 
same source IP address after being processed by the respec 
tive distributed middlebox instance because the middlebox 
processing performed on these two packets by the distributed 
middlebox instances are the same. Hence, from the viewpoint 
of the destination MSE attached to the destination of the 
packets (i.e., the MSE 3 for VM 3 of FIG. 1), these two 
packets from two different VMs have same field values. For 
instance, these two packets may have the same five-tuple 
(e.g., source IP address, Source port number, destination IP 
address, destination port number, and protocol type). 
0091. In order for the destination MSE to forward 
response packets from the destination to the appropriate ori 
gins of the packets with the identical five-tuples, the destina 
tion MSE needs additional information to distinguish 
between those packets. In some embodiments, the MSEs 
assign and use connection identifiers to distinguish between 
those packets with the identical five-tuples from multiple 
different first-hop MSEs. 
0092 FIG. 5 conceptually illustrates several different 
ways of assigning connection identifiers to several distributed 
middlebox instances. Specifically, this figure illustrates three 
different approaches 505-515 of centrally assigning the con 
nection identifiers to the distributed middlebox instances. 
This figure illustrates a controller cluster 525, an identifier 
space 530, and several hosts 535-545 for each of the three 
approaches. Each of the host includes a MSE and a distributed 
middlebox instance. The identifier space 530 includes a set of 
connection identifiers that can be assigned to the distributed 
middlebox instances. 

0093. The first approach 505 shows slicing the identifier 
space 530 in advance. That is, the controller cluster 525 
assigns a non-overlapping range of connection identifiers to 
each distributed middlebox instance as the controller cluster 
configures the distributed middlebox instance. Each middle 
box instance will have a pre-assigned range of identifiers and 
will assign an identifier from the range to a connection for 
which the corresponding MSE is a first-hop MSE. This 
approach can be taken when the number of connection iden 
tifiers is sufficient for the number of the distributed middle 
box instances for which the identifiers should be sliced. 

0094. The second approach 510 shows slicing the identi 
fier space 530 on demand. In this approach, a distributed 
middlebox instance asks for a range of connection identifiers 
from the controller cluster 525 whenever the distributed 
middlebox instance needs more connection identifiers. The 
distributed middlebox instance can release a range of connec 
tion identifiers when the distributed middlebox instance does 
not need the range of connection identifiers. The controller 
cluster 525 maintains the identifier space 530 to keep track of 

Mar. 19, 2015 

the ranges of identifiers that are being used by the distributed 
middlebox instances and the identifiers that are available to be 
assigned to the distributed middlebox instances. Specifically, 
the controller cluster 525 of some embodiments taking this 
approach Supports a connection identifier assignment API 
that enables the distributed middlebox instances to obtain and 
release a range of connection identifiers on demand. An 
example API call for obtaining a range of connection identi 
fiers is: 

0.095 
pose) 

The key specifies the distributed middlebox instance that is 
asking for a range of identifiers. The number of identifiers is 
the number of identifiers that the distributed middlebox 
instance asking for. Purpose indicates whether this range of 
identifiers is going to be used for sanitizing the packets. 
Sanitizing packets will be described further below by refer 
ence to FIG. 12. The controller cluster 525 returns (1) a range 
of connection identifiers which includes the requested num 
ber of connection identifiers and (2) a range identifier for 
identifying the range. 
0096. An example API call for releasing a range of con 
nection identifier is: 

0097 range release (range id) 
The range id is the range identifier for the range of connec 
tion identifiers to release. In response to receiving this API 
call, the controller cluster 525 makes this range of connection 
identifiers available for assigning to the distributed middle 
box instances. 
0098. The third approach 515 shows assigning the entire 
range of connection identifiers to each of the distributed 
middlebox instances. This approach can be taken when the 
identifier assignment to a connection happens at the destina 
tion MSE for the connection, rather than at the first-hop MSE 
for the connection. Because the identifier assignment to the 
connection happens at the destination MSE, the identifier 
assignment is used only by the destination MSE and the 
corresponding middlebox instance. Therefore, there is no 
need to uniquely identify a connection across different MSEs. 

range acquire (key, number of identifiers, pur 

II. Source Network Address Translation (SNAT) 
0099. As mentioned above, one of the middlebox services 
that a middlebox can provide is a SNAT service. When a 
middlebox is providing the SNAT service, the middlebox 
replaces the Source network address (e.g., the source IP 
address) with a different source network address in order to 
hide the real source network address from the recipient of the 
packet. FIGS. 6-14 illustrate example operations of the MSEs 
1-3 and the corresponding distributed middlebox instances 
125-135. The distributed middlebox instances 125-135 pro 
vides SNAT service unless otherwise specified below. 
0100 FIG. 6 illustrates the logical network 105 and the 
physical network 110 that is described above by reference to 
FIG. 1. Specifically, FIG. 6 illustrates the elements of the 
logical network 105 and the physical network 110 with ports. 
The description of these ports will be used in the description 
of the later figures, FIG. 7-14. 
0101. As shown, the logical switch 1 has three ports, ports 
1-3. Port 1 is associated with VM1's L2 address (e.g., a MAC 
address). Port 2 is associated with VM 2's L2 address. Port 3 
is associated with the MAC address of port X of the logical 
router 115. The logical switch 2 has two ports, ports 4-5. Port 
4 is associated with the MAC address of port Y of the logical 
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router 115. In this example, the MAC address of port X is 
01:01:01:01:01:01 and the MAC address of port Y is 01:01: 
O1:01:01:02. 

0102 The logical router has ports X, Y, and N. Port X is 
coupled to port 3 of the logical switch 1. In this example, the 
logical switch 1 forwards packets betweenVMs that have IP 
addresses that belong to a subnet IP address of 10.0.1.0/24. 
Port X is therefore associated with a subnet IP address of 
10.0.1.0/24. Port Y is coupled to port 4 of the logical switch 2. 
In this example, the logical Switch 2 forwards packets 
betweenVMs that have IP addresses that belong to a subnet IP 
address of 10.0.2.0/24. Port Y is therefore associated with a 
subnet IP address of 10.0.2.0/24. Port N is for sending packets 
to the middlebox 120 and is not associated with any IP subnet 
in this example. In some embodiments, a port of the MSE that 
the MSEuses to communicate with the distributed middlebox 
instance (e.g., port N) is a port that does not have a physical 
port (e.g., VIF) to which the port is mapped. Also, VM1 has 
an IP address of 10.0.1.1 and VM 2 has an IP address of 
10.0.1.2. VM3 has an IP address of 10.0.2.1 in this example. 
The middlebox 120 in this example has a set of IP addresses 
11.0.1.1-11.0.1.100 to use to translate source IP addresses of 
packets that originate from the logical Switch 1 (e.g., packets 
having the source IP addresses that belong to the subnet IP 
address of 10.0.1.0/24). 
(0103 Shown in the bottom half of FIG. 6 are hosts 1-3 on 
which the MSEs 1-3 and the distributed middlebox instances 
125-135, respectively, run. The MSE 1 has ports A-C. The 
MSE 2 has ports G-I. The MSE 3 has ports D-F. In this 
example, the tunnel that is established between the MSEs 1 
and 2 terminates at ports B and G. The tunnel that is estab 
lished between the MSEs 1 and 3 terminates at ports A and D. 
The tunnel that is established between the MSEs 2 and 3 
terminates at ports Hand E. Port C of the MSE 1 is mapped to 
port 1 of the logical switch 1 and therefore port C is associated 
with the MAC address of VM 1. Port 1 of the MSE 2 is 
mapped to port 2 of the logical switch 1 and therefore port 1 
is associated with the MAC address of VM 2. Port F of the 
MSE 3 is mapped to port 5 of the logical switch 2 and 
therefore port F is associated with the MAC address of VM3. 
01.04] A. Distributed Middlebox Instance with SNAT Ser 
vice 
0105 FIG. 7 conceptually illustrates a process 700 that 
some embodiments perform to provide SNAT service. In 
some embodiments, the process 700 is performed by a dis 
tributed middlebox instance in order to translate source net 
work addresses of the packets that the distributed middlebox 
instance's corresponding MSE (i.e., the MSE that is running 
in the same host), as a first-hop MSE, processes. The distrib 
uted middlebox instance of some embodiments receives flow 
templates along with the packets, which are flow entries that 
are missing some actual values. In these embodiments, the 
distributed middlebox provides the middlebox service by cre 
ating flow entries by filling in the flow templates with actual 
values and installing the created flow entries in the flow tables 
of the first-hop MSE. The distributed middlebox also sends 
the packets back to the first-hop MSE so that the packets are 
processed by the MSE based on the flow entries installed by 
the distributed middlebox instance. 
0106. The process 700 begins by receiving (at 705) a 
packet and several flow templates from a MSE that is a first 
hop MSE with respect to this packet. That is, the MSE send 
ing the packet has received the packet from a source VM with 
which the MSE directly interfaces. This packets destination 
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IP address is the IP address of a destination VM, which is not 
coupled to the logical switch to which the source VM is 
coupled. The packet has the IP address of the source VM as 
the source IP address. 
0107 Next, the process 700 identifies (at 710) the source 
IP address of the received packet so that the process can 
translate this address into another IP address. The process 700 
then determines (at 715) whether there is an available IP 
address to which to translate the source IP address. In some 
embodiments, the process 700 maintains a set of IP addresses. 
When all IP addresses in the maintained set are used, the 
process 700 determines that no address is available. When 
there is an IP address in the maintained set of addresses that 
the process 700 can use, the process 700 determines that an 
address to which to translate the source IP address of the 
received packet is available. 
0108. When the process 700 determines (at 715) that there 

is no available address to which to translate the source IP 
address of the packet, the process 700 creates (at 730) and 
installs a failure flow entry. In some embodiments, the pro 
cess 700 creates the failure flow entry by filling in a received 
(at 705) flow template with an instruction to drop the packet. 
The MSE will drop the packet according to the failure flow 
entry. The process 700 then proceeds to 735, which will be 
described further below. 
0109. When the process 700 determines (at 715) that there 

is an available address to which to translate the source IP 
address of the packet, the process 700 maps (at 720) the 
source IP address of the packet to the address to which to 
translate the source IP address and stores the mapping. 
0110. Next at 725, the process 700 creates and installs 
forward and reverse flow entries. A forward flow entry is a 
flow entry that directs the first-hop MSE to modify the packet 
by replacing the source IP address with the IP address to 
which the source IP address is mapped (at 720). In some 
embodiments, the process 700 creates the forward flow entry 
by filling in a received (at 705) flow template with the address 
to which the source IP address is mapped (at 720). A reverse 
flow entry is a flow entry that directs the first-hop MSE to 
modify a response packet that is sent from the destination of 
the initial packet (i.e., the packet that is sent to the destination) 
in response to receiving the initial packet. The response 
packet will have a destination IP address, which is the IP 
address to which the source IP address of the initial packet is 
translated. The first-hop MSE translates the destination IP 
address of the response packet so that the response packet can 
reach the source VM of the initial packet. 
0111. Next, the process 700 then sends (at 735) the packet 
back to the first-hop MSE. The process 700 then ends. The 
first-hop MSE will process the packet based on the flow 
entries, which will include the forward and reverse flow 
entries and/or the failure flow entry. 
(O112 B. First-Hop Processing of the First Packet 
0113 FIG. 8 conceptually illustrates an example opera 
tion of a MSE that is a first-hop MSE with respect to a data 
packet. Specifically, this figure illustrates an operation of the 
MSE 1 that processes a packet from VM 1 to VM3. In this 
example, the packet is the very first packet that is sent from 
VM1 to VM3. This figure also illustrates the operation of a 
distributed middlebox instance that receives the packet from 
the first-hop MSE to provide SNAT service. Specifically, the 
top half of this figure illustrates two processing pipelines 800 
and 801 that are performed by the MSE 1. The processing 
pipeline 800 includes L2 processing 820 for the logical 
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switch 1 and L3 processing 845 for the logical router 115, 
which have stages 825-840 and stages 850-860, respectively. 
The processing pipeline 801 includes L3 processing 865 for 
the logical router 115 and L2 processing 895 for the logical 
switch 2, which have stages 870-890 and stages 896-899, 
respectively. 
0114. The bottom half of the figure illustrates the MSEs 1 
and 3, and VM1. As shown, the MSE 1 includes a table 805 
for storing flow entries for the logical switch 1 (not shown), a 
table 810 for storing flow entries for the logical router 115, 
and a table 815 for storing flow entries for the logical switch 
2. Although these tables are depicted as separate tables, the 
tables do not necessarily have to be separate tables. That is, a 
single table may include all the flow entries for the MSE 1 to 
use to perform the logical processing of the logical router 115 
and the logical Switches 1 and 2. 
0115. When VM 1 that is coupled to the logical switch 1 
sends packet 1 to VM3 that is coupled to the logical switch 2, 
the packet is first sent to the MSE 1 through port 1 of the MSE 
1. The MSE 1 performs an L2 processing 820 on packet 1 
based on the forwarding tables 805 of the MSE 1. In this 
example, packet 1 has a destination IP address of 10.0.2.1. 
which is the IP address of VM 3 as described above by 
reference to FIG. 6. Packet 1's Source IP address is 10.0.1.1. 
Packet 1 also has VM 1's MAC address as a source MAC 
address and the MAC address of port X (01:01:01:01:01:01) 
of the logical router 115 as a destination MAC address. 
0116. The MSE 1 identifies a flow entry indicated by an 
encircled 1 (referred to as “record 1') in the forwarding table 
805 that implements the context mapping of the stage 825. 
The record 1 identifies packet 1's logical contextbased on the 
ingress port, which is port 1 through which packet 1 is 
received from VM 1. In addition, the record 1 specifies that 
the MSE 1 stores the logical context of packet 1 in a set of 
fields (e.g., a VLAN id field) of packet 1's header. In some 
embodiments, a logical context represents the State of the 
packet with respect to the logical Switching element. For 
example, some embodiments of the logical context may 
specify the logical Switching element to which the packet 
belongs, the port of the logical Switching element through 
which the packet was received, the port of the logical switch 
ing element through which the packet is to be transmitted, the 
stage of the LFP of the logical switching element the packet is 
at, etc. 
0117 The record 1 also specifies packet 1 is to be further 
processed by the forwarding tables (e.g., by sending packet 1 
to a dispatch port). A dispatch port (not shown) is a port of a 
MSE to send the processed packet back to the ingress port of 
the MSE so that the MSE can further process the packet. 
0118 Based on the logical context and/or other fields 
stored in packet 1's header, the MSE 1 identifies a flow entry 
indicated by an encircled 2 (referred to as “record 2) in the 
forwarding tables that implements the ingress ACL of the 
stage 830. In this example, the record 2 allows packet 1 to be 
further processed and, thus, specifies packet 1 is to be further 
processed by the MSE 1. In addition, the record 2 specifies 
that the MSE 1 stores the logical context (i.e., packet 1 has 
been processed by the stage 830) of packet 1 in the set offields 
of packet 1's header. 
0119) Next, the MSE 1 identifies, based on the logical 
context and/or other fields stored in packet 1's header, a flow 
entry indicated by an encircled 3 (referred to as “record 3') in 
the forwarding tables that implements the logical L2 forward 
ing of the stage 835. The record 3 specifies that a packet with 
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the MAC address of port X of the logical router 115 as a 
destination MAC address is to be sent to port 3 of the logical 
switch 1. 

0.120. The record 3 also specifies that packet 1 is to be 
further processed by the MSE 1. Also, the record 3 specifies 
that the MSE 1 stores the logical context (i.e., packet 1 has 
been processed by the third stage 835) in the set of fields of 
packet 1's header. 
I0121 Next, the MSE 1 identifies, based on the logical 
context and/or other fields stored in packet 1's header, a flow 
entry indicated by an encircled 4 (referred to as “record 4) in 
the forwarding tables that implements the egress ACL of the 
stage 840. In this example, the record 4 allows packet 1 to be 
further processed (e.g., packet 1 can get out of the logical 
switch 1 through port 3 of the logical switch 1) and, thus, 
specifies packet 1 is to be further processed by the MSE 1 
(e.g., by sending packet 1 to the dispatchport). In addition, the 
record 4 specifies that the MSE 1 stores the logical context 
(i.e., packet 1 has been processed by the stage 845 of the 
processing pipeline 800) of packet 1 in the set of fields of 
packet 1's header. (It is to be noted that all records specify that 
a MSE updates the logical context store in the set of fields 
whenever the MSE performs some portion of logical process 
ing based on a record.) 
0.122 The MSE 1 continues processing packet 1 based on 
the flow entries. The MSE 1 identifies, based on the logical 
context and/or other fields stored in packet 1's header, a flow 
entry indicated by an encircled 5 (referred to as “record 5) in 
the L3 entries 810 that implements L3 ingress ACL of the 
logical router 115 by specifying that the MSE 1 should accept 
the packet through port X of the logical router 115 based on 
the information in the header of packet 1. The record 5 also 
specifies that packet 1 is to be further processed by the MSE 
1 (e.g., by sending packet 1 to a dispatch port). In addition, the 
record 5 specifies that the MSE 1 stores the logical context 
(i.e., packet 1 has been processed by the stage 850 of the 
processing pipeline 800) of packet 1 in the set of fields of 
packet 1's header. 
(0123. The MSE 1 then identifies a flow entry indicated by 
an encircled 6 (referred to as “record 6’) in the L3 entries 
table 810 implements the L3 routing 855 by specifying that a 
packet received through port X of the logical router 115 is to 
be sent to the middlebox 120 through port N. That is, the 
record 6 specifies that a packet having a source IP address that 
belongs to the subnet IP address of 10.0.1.0/24 is to be sent to 
the middlebox 120. Because packet 1 has the source IP 
address 10.0.1.1 that belongs to the subnet IP address of 
10.0.1.0/24, the MSE 1 will send the packet to the distributed 
middlebox instance 125. 

(0.124. The MSE 1 then identifies a flow entry indicated by 
an encircled 7 (referred to as “record 7) in the L3 entries 810 
that implements L3 egress ACL 860 by specifying that the 
MSE 1 allows the packet to exit out through port N of the 
logical router 115 based on the information (e.g., source IP 
address) in the header of packet 1. In addition, the record 7 
specifies that the MSE 1 removes the logical context of packet 
1 from the set offields of packet 1's header. The MSE 1 sends 
packet 1 to the distributed middlebox instance 125, which 
implements the middlebox 120. The record 7 also specifies 
that several flow templates are to be sent to the middlebox 120 
along with packet 1. The managed Switching element 1 of 
some embodiments also sends a slice identifier to the distrib 
uted middlebox instance 125 so that the slice of the distrib 
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uted middlebox instance 125 for the user of the logical 
Switching elements in the logical network 1 processes packet 
1 

0.125. Upon receiving packet 1, the distributed middlebox 
instance 125 identifies an IP address to which to translate the 
source IP address (10.0.1.1) of packet 1. In this example, the 
distributed middlebox instance 125 selects 11.0.1.1 from the 
range of IP addresses (11.0.1.1-11.0.1.100) described above 
by reference to FIG. 6. The distributed middlebox instance 
125 also creates a forward flow entry that specifies that the 
MSE 1 modifies a packet that has a source IP address of 
10.0.1.1 by replacing the source IP address (10.0.1.1) with the 
selected IP address (11.0.1.1). The distributed middlebox 
instance 125 also creates a reverse flow entry that specifies 
that the MSE 1 modifies a packet with a destination IP address 
of 11.0.1.1 by replacing the destination IP address of this 
packet with an IP address of the VM1. The reverse flow entry 
ensures that a response packet from VM3 reaches the correct 
destination, VM 1. The distributed middlebox instance 125 
installs the created flow entries and sends packet 1 back to the 
MSE 1. In some embodiments, the MSE 1 treats the packet 
returned from the distributed middlebox instance 125 as a 
new packet to route. Thus, this new packet is referred to as 
packet 2 in this example. As shown, the forward and reverse 
flow entries are installed (e.g., placed) in the table 810 indi 
cated by encircled F and R, respectively. 
0126 Upon receiving packet 2, the MSE 1 performs the L3 
processing 865 on packet 2 based on the table 810. In this 
example, because packet 2 is still same as packet 1, packet 2 
has a destination IP address of 10.0.2.1, which is the IP 
address of VM3. Packet 2's Source IP address is still 10.0.1.1. 
The MSE 1 identifies a flow entry indicated by an encircled 8 
(referred to as “record 8) in the forwarding table 810 that 
implements the context mapping of the stage 870. The record 
1 identifies packet 2's logical context based on the ingress 
port, which is port N through which packet 2 is received from 
the middlebox 120. In addition, the record 8 specifies that the 
MSE 1 stores the logical context of packet 2 in a set of fields 
(e.g., a VLAN idfield) of packet 2's header. The record 8 also 
specifies packet 2 is to be further processed by the MSE 1 
(e.g., by sending packet 2 to a dispatch port). 
0127. The MSE 1 continues processing packet 2 based on 
the flow entries. The MSE 1 identifies, based on the logical 
context and/or other fields stored in packet 2's header, a flow 
entry indicated by an encircled 9 (referred to as “record 9”) in 
the L3 entries 810 that implements L3 ingress ACL875 of the 
logical router 115 by specifying that the MSE 1 should accept 
the packet through port N of the logical router 115 based on 
the information in the header of packet 2. The record 9 also 
specifies that packet 2 is to be further processed by the MSE 
1. In addition, the record 9 specifies that the MSE 1 stores the 
logical context (i.e., packet 2 has been processed by the stage 
875 of the processing pipeline 801) of packet 2 in a set of 
fields of packet 2's header. 
0128. The MSE 1 then identifies a flow entry indicated by 
an encircled 10 (referred to as “record 10') in the L3 entries 
810 that implements L3 routing 880 by specifying that packet 
2 with its destination IP address (10.0.2.1) should exit out of 
port Y of the logical router 115. The record 10 also specifies 
that packet 2 is to be further processed by the MSE 1. In 
addition, the record 10 specifies that the MSE 1 stores the 
logical context (i.e., packet 2 has been processed by the stage 
880 of the processing pipeline 801) of packet 2 in a set of 
fields of packet 2's header. 
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0129. In some embodiments, the flow entries have associ 
ated priority levels. The priority levels are used to select one 
of several flow entries when a packet satisfies the conditions 
specified by the qualifiers of the several flow entries. The 
MSE 1 identifies a flow entry indicated by an encircled F 
(referred to as “record F) in the L3 entries table 810. The 
record F is the forward flow entry that the distributed middle 
box instance has created and installed in the table 810. Packet 
2 meets the condition specified in the record F as well as the 
condition specified in the record 6 because packet 2's source 
IP address is 10.0.1.1 that is specified as a condition in the 
record F and packet 2's source IP address belongs to the 
subnet IP address of 10.0.1.0/24 specified as a condition in the 
record 6. In some embodiments, the record F that is created by 
the distributed middlebox instance has a priority level that is 
higher than that of the record 6, which directs the MSE 1 to 
send the packet to the distributed middlebox instance 125. In 
addition, the record F specifies that the MSE 1 stores the 
logical context (i.e., packet 1 has been processed by the stage 
885 of the processing pipeline 801) of packet 2 in the set of 
fields of packet 2's header. It is to be noted that the record F 
may be identified ahead of the record 10 so that the MSE 1 
replaces the source IP address of the packet before routing the 
packet according to the record 10. 
I0130. The MSE 1 then identifies a flow entry indicated by 
an encircled 11 (referred to as “record 11) in the L3 entries 
810 that implements L3 egress ACL by specifying that the 
MSE 1 allows the packet to exit out through port Y of the 
logical router 115 based on the information (e.g., source IP 
address) in the header of packet 2. Also, the record 11 (or 
another record in the routing table, not shown) indicates that 
the source MAC address for packet 2 is to be rewritten to the 
MAC address of port Y of the logical router 115 (01:01:01: 
01:01:02). Record 11 may also specify that the MSE 1 
resolves the destination IP address of packet 2 in order to 
obtain the MAC address of VM3. In some embodiments, the 
MSE 1 uses address resolution protocol (ARP) to resolve the 
destination IP address into the MAC address of the destina 
tion. Record 11 or another record may specify that the MSE1 
replaces the destination MAC address of the packet (currently 
the MAC address of port 3 of the MSE 1) with the MAC 
address of VM3 to which the destination IP address has been 
resolved. In addition, the record 11 specifies that the MSE 1 
stores the logical context (i.e., packet 2 has been processed by 
the stage 890 of the processing pipeline 801) of packet 2 in the 
set of fields of packet 2's header. 
I0131 Packet 2 has exited the logical router 115 through 
port Yand has entered the logical switch 2 through port 4 of 
the logical switch 2. The MSE 1 then performs L2 processing 
895. Based on the logical context and/or other fields stored in 
packet 2's header, the MSE 1 identifies a flow entry indicated 
by an encircled 12 (referred to as “record 12) in the L2 
entries 815 that implements the ingress ACL of the stage 896. 
In this example, the record 12 specifies that packet 2 is to be 
further processed by the MSE 1. In addition, the record 12 
specifies that the MSE 1 stores the logical context (i.e., packet 
1 has been processed by the stage 896 of the processing 
pipeline 801) of packet 1 in the set of fields of packet 2's 
header. 

(0132) Next, the MSE 1 identifies, based on the logical 
context and/or other fields stored in packet 1's header, a flow 
entry indicated by an encircled 13 (referred to as “record 13) 
in the L2 entries 815 that implements the logical L2 forward 
ing of the stage 897. The record 13 specifies that a packet with 
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the MAC address of VM 3 as the destination MAC address 
should be forwarded through port 5 of the logical switch 2 that 
is connected to VM3. The record 13 also specifies that packet 
2 is to be further processed by the MSE 1. Also, the record 13 
specifies that the MSE 1 stores the logical context (i.e., packet 
2 has been processed by the stage 897 of the processing 
pipeline 801) in the set of fields of packet 2's header. 
0.133 Based on the logical context and/or other fields 
stored in packet 2's header, the MSE 1 identifies a flow entry 
indicated by an encircled 14 (referred to as “record 14) in the 
L2 entries 815 that implements the context mapping of the 
stage 898. In this example, the record 14 identifies the MSE3 
as the MSE to which the packet exiting port 5 of the logical 
switch 2 should be sent. The record 14 additionally specifies 
that packet 2 be further processed by the MSE 1. In addition, 
the record 14 specifies that the MSE 1 stores the logical 
context (i.e., packet 2 has been processed by the stage 898 of 
the processing pipeline 801) of packet 2 in the set of fields of 
packet 2's header. 
0134 Based on the logical context and/or other fields 
stored in packet 2's header, the MSE 1 then identifies a flow 
entry indicated by an encircled 15 (referred to as “record 15) 
in the L2 entries 815 that implements the physical mapping of 
the stage 899. The record 15 specifies port A of the MSE 1 as 
a port through which packet 2 is to be sent in order for packet 
2 to reach the MSE 3. In this case, the MSE 1 is to send packet 
2 out of port A of MSE 1 that is coupled to the MSE3 through 
a tunnel. In addition, the record 15 specifies that the MSE 1 
stores the logical context (i.e., packet 2 has been processed by 
the stage 899 of the processing pipeline 801) of packet 2 in the 
set of fields of packet 2's header. 
0135 B. First-Hop Processing of the Subsequent Packets 
0.136 FIG. 9 conceptually illustrates an example opera 
tion of a MSE that is a first-hop MSE with respect to a data 
packet. Specifically, this figure illustrates an operation of the 
MSE 1 that processes a packet from VM 1 to VM3. In this 
example, the packet is one of the packets that are being sent 
from VM 1 to VM3 after the very first packet that has been 
sent from VM1 to VM3. This subsequent packet has the same 
Source and destination IP addresses because the packet is 
being sent from the same source to the same destination as the 
first packet. The top half of this figure shows a processing 
pipeline 900 that the MSE performs on this packet. The pro 
cessing pipeline 900 includes the L2 processing 820 for the 
logical switch 1, L3 processing 905 for the logical router 115, 
and the L2 processing 895 for the logical switch 2. The L3 
processing 905 has the stages 850, 880, 885, and 890. 
0.137 As shown in FIGS. 8 and 9, the difference between 
the processing of the very first packet (packet 1) and the 
processing of a subsequent packet (packet 3) by the MSE 1 is 
that the MSE 1 does not send the subsequent packet to the 
distributed middlebox instance 125. This is because after the 
stage 850 is performed according to the record 5, the MSE 1 
goes with the record F rather than the record 6, which would 
have directed the MSE 1 to send the subsequent packet to the 
distributed middlebox instance. As described above by refer 
ence to FIG. 8, the record F (i.e., the forward flow entry 
created and installed by the distributed middlebox instance 
125) has a higher priority level than the record 6 has. This 
shows that only the first packet for establishing a connection 
between the source and the destination needs to be sent to the 
distributed middlebox instance and thus makes it faster to 
process the Subsequent packets being sent from the source to 
the destination. 
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0.138 C. Processing Response Packets 
0.139. As mentioned above, in some embodiments, a par 
ticular MSE that is a first-hop with respect to a particular 
packet performs all or most of the logical processing that is to 
be performed on the particular packet in order for the particu 
lar packet to reach the packet's destination. In some Such 
embodiments, the particular MSE also performs all or most of 
the logical processing that is to be performed on a response 
packet that is sent from the destination of the particular packet 
in response to receiving the particular packet. By having the 
particular MSE perform the logical processing on the 
response packet, some embodiments avoid having to share 
state information (e.g., mapping of the source IP address of 
the particular packet and the translated source IP address) 
between MSEs. That is, had the first-hop MSE to the response 
packet performed the logical operation on the response 
packet, that MSE would need the state information in order to 
restore the original Source IP address and send the response 
packet back to the origin of the particular packet. 
0140 FIG. 10 conceptually illustrates an example opera 
tion of a MSE that is a first-hop MSE with respect to a 
particular packet and is a last-hop MSE with respect to a 
response packet that was sent in response to the particular 
packet. Specifically, this figure illustrates an operation of the 
MSE 1 that processes a packet from VM 3 to VM 1. In this 
example, VM3 has sent this packet to VM 1 in response to 
receiving a packet from VM1. In other words, the response 
packet from VM3 is part of data stream originating from VM 
3 and flowing into VM 1 over a connection (e.g., a transport 
layer connection like a TCP connection). This figure also 
illustrates that the response packets are not sent to the distrib 
uted middlebox instance 125 for translating the destination IP 
addresses of the response packets into the IP address of VM1. 
Instead, the MSE 1 performs that translation according to the 
reverse flow entry that is created and installed by the distrib 
uted middlebox instance 125 as described above by reference 
to FIG.8. 
0.141. The top half of FIG. 10 illustrates a processing pipe 
line 1000 that is performed by the MSE 1. The processing 
pipeline 1000 includes L2 processing 1005 for the logical 
switch 2, L3 processing 1010 for the logical router 115, and 
L2 processing 1015 for the logical switch 1, which have 
stages 1020-1035, stages 1040-1055, and stages 1096-1099, 
respectively. The bottom half of the figure illustrates the 
MSEs 1 and 3, and VM1. As shown, the MSE 1 includes the 
tables 805,810, and 815 for storing flow entries for the logical 
switch 1, the logical router 115, and the logical switch 2, 
respectively. 
0142. When the MSE 1 receives from the MSE3 packet 4 
that is originated from VM3 through port A of the MSE, the 
MSE 1 performs the L2 processing 1005 to forward packet 4 
from VM3 to the logical router 115. The MSE 1 performs the 
L2 processing 1005 based on the flow entries indicated by 
encircled 16-19. Packet 4 has VM3’s IP address 10.0.2.1 as 
the source IP address and has the destination IP address of 
11.0.1.1 because packet 4 is a response packet to a packet that 
has the source IP address of 11.0.1.1. 

0143. The MSE 1 then performs the L3 processing 1010 to 
route the packet out of the logical router 115 through port X 
of the logical router 115. Specifically, based on the logical 
context and/or other fields stored in packet 4's header, the 
MSE 1 identifies a flow entry indicated by an encircled 20 
(referred to as “record 20') in the forwarding tables that 
implements the L3 ingress ACL of the stage 1040. In this 
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example, the record 20 allows packet 4 to be further processed 
and, thus, specifies that packet 4 is to be further processed by 
the MSE 1. In addition, the record 20 specifies that the MSE 
1 stores the logical context (i.e., packet 1 has been processed 
by the stage 1040) of packet 4 in the set of fields of packet 4's 
header. 
0144. The MSE 1 then identifies the reverse flow entry 
indicated by encircled R (referred to as “record R”). As men 
tioned above, the reverse flow entry specifies that the MSE 1 
modifies a packet with a destination IP address of 11.0.1.1 by 
replacing the destination IP address of this packet with the IP 
address of the VM 1 (10.0.1.1). 
(0145 The MSE 1 then identifies a flow entry indicated by 
an encircled 21 (referred to as “record 21) in the L3 entries 
810 that implements L3 routing 1050 by specifying that 
packet 4 with its destination IP address (10.0.1.1) should exit 
out of port X of the logical router 115. Also, the record 21 (or 
another record in the routing table, not shown) indicates that 
the source MAC address for packet 4 is to be rewritten to the 
MAC address of port X of the logical router 115 (01:01:01: 
01:01:01). 
0146 The MSE 1 then identifies a flow entry indicated by 
an encircled 22 (referred to as “record 22) in the L3 entries 
810 that implements L3 egress ACL by specifying that the 
MSE 1 allows the packet to exit out through port X of the 
logical router 115 based on the information (e.g., source IP 
address) in the header of packet 4. In addition, the record 22 
specifies that the MSE 1 stores the logical context (i.e., packet 
4 has been processed by the stage 1055 of the processing 
pipeline 1000) of packet 4 in the set of fields of packet 4's 
header. 
0147 The MSE 1 then performs the L2 processing 1015 
for the logical switch 1 according to the flow entries indicated 
by encircled 23-26. The MSE will send packet 4 out of the 
logical Switch 1 through port 1 of the logical Switch. Because 
port C of the MSE 1 is mapped to port 1 of the logical switch, 
the MSE 1 will physical send out packet 1 to VM1 through 
port C of the MSE 1. 
014.8 D. Last-Hop Processing of the First and Subsequent 
Packets 
0149. In some embodiments, sanitizing packets is done at 
the last-hop MSE when the first-hop MSEs sending the pack 
ets to the last-hop MSEs do not assign unique identifiers to the 
packets. When the packets from different first-hop MSEs 
come into the same last-hop MSE without having been 
assigned unique identifiers, the last-hop MSE in Some cases 
would not be able to send response packets to the right first 
hop MSE because the incoming packets may have the same 
five-tuple (e.g., source IP address, destination IP address, 
transport protocol type, Source port number, destination port 
number). Sanitizing packets includes adding a unique identi 
fier to the packets in addition to the 5-tuples or modifying the 
5-tuples of the packets (e.g., changing the Source port num 
ber) to make the 5-tuples distinguishable. 
0150 FIG. 11 conceptually illustrates a process 1100 that 
some embodiments perform to set up forward and reverse 
sanitization flow entries at a MSE that is a last-hop MSE. A 
MSE is a last-hop MSE with respect to a particular packet 
when the MSE is directly interfacing the destination of the 
particular packet. For instance, for a packet that is sent from 
VM1 to VM3 as described above in FIG. 6, the MSE3 is the 
last-hop with respect to the packet because the MSE 3 is 
directly interfacing VM 3, which is the destination of the 
packet. 
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0151. In some embodiments, the process 1100 is per 
formed by a distributed middlebox instance that runs in the 
same host in which a MSE runs. The MSE is the last-hop MSE 
with respect to the packets that the MSE sends to the distrib 
uted middlebox instance. The distributed middlebox instance 
of some embodiments also receives flow templates along with 
the packets. In these embodiments, the distributed middlebox 
provides the middlebox service by creating flow entries by 
filling in the flow templates with actual values and installing 
the created flow entries in the flow tables of the last-hop MSE. 
The distributed middlebox also sends the packets back to the 
last-hop MSE so that the packets are processed by the MSE 
based on the flow entries installed by the distributed middle 
box instance. 

0152 The process 1100 begins by receiving (at 1105) a 
packet and several flow templates from a MSE that is a last 
hop MSE with respect to this packet. That is, the MSE has 
received the packet from another MSE and not from a VM 
with which the receiving MSE directly interfaces. The packet 
has a five-tuple in the header of this packet. The process 1100 
also receives the identification of the other MSE from which 
the receiving MSE received the packet. 
0153. Next, the process 1100 determines (at 1110) 
whether the process 1100 has previously received a packet 
that has the same five-tuple from a different MSE. The pro 
cess 1100 in some embodiments maintains a look up table of 
five-tuples and the identifications of the MSE that has sent the 
packets with the five-tuples to the last-hop MSE. The process 
1100 looks up this table to determine whether a packet with 
the same five-tuple as the received packet has been received 
from a MSE that is different from the MSE that has sent the 
currently received packet to the last-hop MSE. 
0154 When the process determines (at 1110) that the pro 
cess 1100 has not seen a packet with the same five-tuple as 
that of the received packet from a different MSE, the process 
1100 proceeds to 1120 to add the five-tuple and the MSE 
identification of the received packet in the look up table. The 
process 1100 then proceeds to 1125, which will be described 
further below. 

(O155 When the process determines (at 1110) that the pro 
cess 1100 has seen a packet with the same five-tuple as that of 
the received packet from a different MSE, the process 1100 
proceeds to 1115 to create and install a forward sanitization 
flow entry and a reverse sanitization flow entry in the flow 
tables of the last-hop MSE. A forward sanitization flow entry 
is a flow entry that directs the last-hop MSE to modify the 
received packets five-tuple to make the packets five-tuple 
unique (e.g., by replacing the Source port number with a new 
Source port number). A reverse sanitization flow entry is a 
flow entry that directs the last-hop MSE to modify response 
packets that are sent from the received packet's destination to 
the source of the received packet. According to the reverse 
sanitization flow entry, the MSE un-does the sanitization 
performed based on the forward sanitization flow entry. That 
is, for instance, the last-hop MSE replaces the destination port 
number (i.e., the new source port number of the received 
packet) of the response packets with the original source port 
number of the received packet. The process 1100 records the 
new source port number so that the process 1100 does not 
reuse the same new Source port number to sanitize other 
packets. 
0156 Next, the process 1100 then sends (at 1125) the 
received packet back to the last-hop MSE. The process 1100 
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then ends. The last-hop MSE will process the packet based on 
the flow entries, which will include the forward and reverse 
sanitization flow entries. 
0157 FIG. 12 conceptually illustrates example operations 
of a MSE that is a last-hop MSE with respect to packets. That 
is, this MSE receives packets that are being sent to a destina 
tion with which this MSE is directly interfacing. Specifically, 
this figure illustrates operations of the MSE 3 that processes 
packets from VM 1 to VM3. The MSE3 processes packet 2 
that is the first packet going to VM3 from VM1. Packet 2 is 
the packet that the MSE 1 has processed as described above 
by reference to FIG. 8. 
0158. The top side of the figure shows two processing 
pipelines 1205 and 1210 that are performed by the MSE 3. 
The processing pipeline 1205 includes stages 1220 and 1225. 
The processing pipeline 1210 includes stages 1220, 1235, 
1236,1240, and 1245. The bottom side of the figure shows the 
MSEs 1 and 3, and VM3. As shown, the MSE3 includes the 
table 1250 for storing flow entries for the logical switch 2. 
0159. When the MSE3 receives from the MSE 1 packet 2 
that is originated from VM 1 through port D of the MSE, the 
MSE 3 performs the processing pipeline 1205 to forward 
packet 2 to the distributed middlebox instance 135. The MSE 
3 performs the processing pipeline 1205 based on the flow 
entries indicated by encircled 27 and 28. As described above 
by reference to FIG. 8, packet 2 has the source IP address of 
11.0.1.1, which was translated from the IP address of VM 1 
(10.0.1.1) and has the IP address of VM 3, 10.0.2.1 as the 
destination IP address. The packet 2 also has the MAC 
address of portY of the logical router 115, 01:01:01:01:01:02, 
as a source MAC address and has the MAC address of VM3 
as the destination MAC address. 
0160 Based on the logical context stored in packet 2 
header, the MSE3 then identifies a flow entry indicated by an 
encircled 27 (referred to as “record 27) in the L2 entriestable 
1250 that implements the context mapping of the stage 1220. 
The record 27 identifies the packet 2's logical context based 
on the logical context that is stored in packet 2's header. The 
logical context specifies that packet 2 has been processed by 
the stage 897 of the processing pipeline 801, which was 
performed by the MSE 1. As such, the record 27 specifies that 
packet is to be further processed by the MSE 3 (e.g., by 
sending the packet to a dispatch port of the MSE 3). 
(0161 The MSE3 then identifies a flow entry indicated by 
encircled 28 (referred to as “record 28”) in the table 1250 that 
implements the stage 1225. The record 28 specifies that 
packet 2 is to be sent to the distributed middlebox instance 
135. The record 28 also specifies that several flow templates 
for generating forward and reverse sanitization flow entries 
are to be sent to the distributed middlebox instance. The 
record 28 also specifies that the MSE 3 is to send an identi 
fication of the MSE 1 to indicate that packet 2 came from the 
MSE 1. The managed switching element 3 of some embodi 
ments also sends a slice identifier to the distributed middlebox 
instance 135 so that the slice of the distributed middlebox 
instance 135 for the user of the logical switches 1 and 2 and 
the logical router 115 processes packet 1. 
0162. Upon receiving packet 2 and the identification of the 
MSE 1 from the MSE 3, the distributed middlebox instance 
135 identifies the five-tuple of packet 2 and determines 
whether the distributed middlebox instance has received a 
packet that has the same five-tuple from another MSE. In this 
example, the MSE 2 had sent a packet from VM 2 to VM 3 
before. This packet had the same five-tuple as packet 2's 
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because the distributed middlebox instance 130 running in 
host 2 for the MSE 2 and the distributed middlebox instance 
125 running in host 1 for the MSE 1 are configured to imple 
ment the middlebox 120 and thus the distributed middlebox 
instance 130 translated the source IP address of the packet 
from VM2 from the source IP address of VM 2 to 11.0.1.1. 

(0163. In some embodiments, the distributed middlebox 
instance maintains a look up table of five-tuples and the 
identifications of the MSE that has sent the packets with the 
five-tuples to the last-hop MSE. In this example, the look up 
table of the distributed middlebox instance 135 has an entry 
for the packet from VM2 and VM3. The distributed middle 
box instance 135 thus creates a forward sanitization flow 
entry that specifies that the MSE 3 modifies a packet that has 
the five tuple of packet 2 (e.g., source IP address: 11.0.1.1, 
destination IP address: 10.0.2.1, source port number: 1234, 
destination port number: 80, transport protocol: TCP) and the 
identification of the MSE 1 by replacing the source port 
number with a new source port number (e.g., 12340). The new 
Source port number serves as a connection identifier because 
the new Source port number makes the connection over which 
the packet is being sent unique. 
(0164. The distributed middlebox instance 135 also creates 
a reverse sanitization flow entry that specifies that the MSE3 
modifies a packet (not shown), which is sent from VM 3 to 
VM 1 in response to receiving packet 2, by replacing the 
destination port number to the port number of VM 1 from 
which packet 2 came. This reverse sanitization is to restore 
the correct port number so that the response packet from VM 
3 to VM1 reaches the correct port of VM1. In this example, 
the flow entry indicated by encircled RS (“the record RS”) 
specifies that the MSE 3 modifies a packet, which has a 
five-tuple of a packet from VM 3 to VM 1 in response to 
packet 5 (e.g., source IP address: 10.0.2.1, destination IP 
address: 11.0.1.1, source port number: 80, destination port 
number: 12340, transport protocol: TCP), by replacing the 
destination port number with the Source port number (e.g., 
1234) of packet 2 before being sanitized. 
(0165. The distributed middlebox instance 135 installs the 
created flow entries and sends packet 2 back to the MSE 3. In 
some embodiments, the MSE 3 treats the packet returned 
from the distributed middlebox instance 135 as a new packet 
to route. Thus, this new packet is referred to as packet 5 in this 
example. As shown, the forward and reverse sanitization flow 
entries are installed (e.g., placed) in the table 1250 indicated 
by encircled FS and RS, respectively. 
(0166 In some embodiments, the distributed middlebox 
instance may keep separate slices for generating forward and 
reverse flow entries and generating sanitization flow entries. 
That is, the distributed middlebox instance has one slice for 
the packets for which the distributed middlebox instance pro 
vides the SNAT service and has another slice for the packets 
for which the distributed middlebox instance provides sani 
tization even though all these packets belong to the same 
logical domain of a single user. 
(0167. Upon receiving packet 5, the MSE 3 performs the 
processing pipeline 1210 on packet 5 based on the table 1250. 
In this example, because packet 5 is still the same as packet 2. 
packet 5 has the same five-tuple with the source port number 
1234. The MSE 3 identifies a flow entry indicated by an 
encircled 27 (referred to as “record 27) in the forwarding 
table 1250 that implements the context mapping of the stage 
1220, which is described above. The record 27 also specifies 
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packet 5 is to be further processed by the MSE 1 (e.g., by 
sending packet 5 to a dispatch port). 
(0168 The MSE 3 identifies a flow entry indicated by an 
encircled FS (referred to as “record FS) in the table 1250. 
The record FS is the forward sanitization flow entry that the 
distributed middlebox instance 135 has created and installed 
in the table 1250. Packet 5 meets the condition specified in the 
record FS as well as the condition specified in the record 28 
because packet 5's five-tuple is specified as a condition in the 
record FS and in the record 28. In some embodiments, the 
record FS that is created by the distributed middlebox 
instance has a higher priority level than that of the record 28, 
which directs the MSE 3 to send the packet to the distributed 
middlebox instance 135. In addition, the record FS specifies 
that the MSE 3 stores the logical context (i.e., packet 5 has 
been processed by the stage 1230 of the processing pipeline 
1205) of packet 5 in the set of fields of packet 5’s header. 
(0169. The MSE3 then identifies a flow entry indicated by 
an encircled 29 (referred to as “record 29') in the L2 entries 
1250 that implements generating a reverse hint flow entry of 
the stage 1236. In some embodiments, the last-hop MSE 
creates and installs a reverse hint. A reverse hint in some 
embodiments is a flow entry that directs the MSE, which is the 
last-hop MSE with respect to a particular packet, to send a 
response packet to the origin of the particular packet without 
performing logical processing on the response packet. A 
reverse hint is set up in order to allow the first-hop MSE with 
respect to the particular packet to process all or most of the 
logical processing in some embodiments. As shown, the MSE 
has installed a reverse hint flow entry indicated by encircled 
RH (referred to as “record RH”). In this example, the record 
RH specifies that the MSE 3 sends a packet, which has a 
five-tuple of a packet from VM 3 to VM 1 in response to 
receiving the sanitized packet 5 (e.g., source IP address: 10.0. 
2.1, destination IP address: 11.0.1.1, source port number: 80. 
destination port number: 1234, transport protocol: TCP) to 
the MSE 1. 
(0170 Next, the MSE 3 identifies, based on the logical 
context and/or other fields stored in packet 5’s header, a flow 
entry indicated by an encircled 30 (referred to as “record 30') 
in the forwarding tables that implements the egress ACL of 
the stage 1240. In this example, the record 30 allows packet 5 
to be further processed (e.g., packet 5 can get out of the logical 
switch 2 through port 5 of the logical switch 2) and, thus, 
specifies packet 5 is to be further processed by the MSE 3. In 
addition, the record 30 specifies that the MSE 3 stores the 
logical context (i.e., packet 5 has been processed by the stage 
1240 of the processing pipeline 1210) of packet 5 in the set of 
fields of packet 5’s header. 
0171 Based on the logical context and/or other fields 
stored in packet 5's header, the MSE 3 then identifies a flow 
entry indicated by an encircled 31 (referred to as “record 31) 
in the table 1250 that implements the physical mapping of the 
stage 1245. The record 31 specifies port F of the MSE 3 as a 
port through which packet 5 is to be sent in order for packet 5 
to reach VM 3. In addition, the record 31 specifies that the 
MSE3 removes the logical context of packet 5 from the set of 
fields of packet 5's header. The MSE3 sends packet 5 to VM 
3 
0172 FIG. 13 conceptually illustrates example operations 
of a MSE that is a last-hop MSE with respect to packets. 
Specifically, this figure illustrates operations of the MSE 3 
that processes a packet from VM1 to VM3. In this example, 
the MSE processes packet3 that is one of the packets going to 
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VM 3 from VM 1 after the first packet has reached VM3. 
Packet 3 is the packet that the MSE 1 has processed as 
described above by reference to FIG. 9. As shown, the MSE 
processes packet 3 that is one of the packets going to VM3 
from VM 1 after the first packet has reached VM3. Packet 3 
is the packet that the MSE 1 has processed as described above 
by reference to FIG. 9. 
0173 The top half of the figure shows a processing pipe 
line 1215 that the MSE 3 performs on packet 3. The process 
ing pipeline 1215 includes the stages 1220, 1235,1236,1240, 
and 1245, which are described above. As shown in FIGS. 12 
and 13, the difference between the processing of the very first 
packet (packet 2) and the processing a Subsequent packet 
(packet 3) by the MSE 3 (i.e., the last-hop MSE with respect 
to packets 2 and 3) is that the MSE 3 does not send the 
subsequent packet to the distributed middlebox instance 135. 
This is because after the stage 1220 is performed according to 
the record 27, the MSE3 goes with the record FS rather than 
the record 28, which would have directed the MSE 3 to send 
the subsequent packet to the distributed middlebox instance 
135. As described above, the record FS (i.e., the forward 
sanitization flow entry created and installed by the distributed 
middlebox instance 135) has a higher priority level than the 
record 28's priority level. This shows that only the first packet 
for establishing a connection between the Source and the 
destination needs to be sent to the distributed middlebox 
instance and thus makes it faster to process the Subsequent 
packets being sent from the source to the destination. Also, 
the MSE3 regenerates or refreshes the record RH by perform 
ing the stage 1236 for packet 3. 
0.174 E. Last-Hop Processing of Response Packet 
0.175 FIG. 14 conceptually illustrates an example opera 
tion of a MSE that is a last-hop MSE with respect to a 
particular packet and is a first-hop MSE with respect to a 
response packet that is sent in response to the particular 
packet. Specifically, this figure illustrates an operation of the 
MSE 3 that processes a packet from VM 3 to VM 1. In this 
example, VM 3 sends this packet to VM 1 in response to 
receiving a packet from VM1. This figure also illustrates that 
the response packets are not sent to the distributed middlebox 
instance 135 for translating the destination IP addresses of the 
response packets into the IP address of VM 1. Instead, the 
MSE 3 processes the response packets according to the 
reverse hint flow entry and the sanitization flow entry that are 
created and installed by the distributed middlebox instance 
135 as described above by reference to FIG. 12. 
0176 The top half of FIG. 14 illustrates a processing pipe 
line 1400 that is performed by the MSE 3. The processing 
pipeline 1400 includes stages 1405-1420. The bottom half of 
the figure illustrates the MSEs 3 and 1, and VM3. As shown, 
the MSE3 includes the table 1250 for storing flow entries. 
(0177. When the MSE 3 receives packet 4 from VM 3 
through port F of the MSE, the MSE 3 performs the L2 
processing 1400 to forward packet 4 from VM3 to the logical 
router 115. The MSE3 performs the processing pipeline 1400 
based on the flow entries indicated by encircled 32, RH, RS, 
and 33. Packet 4 has a destination port number that is the 
destination port number of the sanitized packet 3 (e.g., 
12340). 
(0178. The MSE 3 identifies a flow entry indicated by an 
encircled 32 (referred to as “record 32) in the forwarding 
table 1250 that implements the context mapping of the stage 
1405. The record 32 identifies packet 4's logical context 
based on the ingress port, which is port F of the MSE 3 
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through which packet 1 is received from VM 3. In addition, 
the record 32 specifies that the MSE 3 stores the logical 
context of packet 4 in a set of fields of packet 4's header. The 
record 32 also specifies packet 4 is to be further processed by 
the forwarding tables 
0179 The MSE 3 then identifies the reverse hint flow 
entry, the record RH. As mentioned above, the record RH 
specifies that the MSE3 sends a packet, which has a five-tuple 
of a packet from VM 3 to VM1 in response to receiving the 
sanitized packet 5 (e.g., source IP address: 10.0.2.1, destina 
tion IP address: 11.0.1.1, source port number: 80, destination 
port number: 1234, transport protocol: TCP) to the MSE 1. 
0180. The MSE 3 then identifies the reverse sanitization 
flow entry, the record RS, which is created and installed by the 
distributed middlebox instance 135. As mentioned above, the 
record RS specifies that the MSE 3 modifies a packet, which 
has a five-tuple of a packet from VM3 to VM1 in response to 
packet 5 (e.g., source IP address: 10.0.2.1, destination IP 
address: 11.0.1.1, source port number: 80, destination port 
number: 12340, transport protocol: TCP), by replacing the 
destination port number with the source port number (e.g., 
1234) of packet 2 before being sanitized. The MSE modifies 
packet 4 accordingly. 
0181 Based on the logical context and/or other fields 
stored in packet 4's header, the MSE 3 then identifies a flow 
entry indicated by an encircled 33 (referred to as “record 33’) 
in the table 1250 that implements the physical mapping of the 
stage 1420. The record 33 specifies port D of the MSE 3 as a 
port through which packet 4 is to be sent in order for packet 4 
to reach VM 1. The MSE 3 sends packet 4 to the MSE 1 
through port D accordingly. 

III. Electronic System 
0182 Many of the above-described features and applica 
tions are implemented as Software processes that are specified 
as a set of instructions recorded on a computer readable 
storage medium (also referred to as computer readable 
medium). When these instructions are executed by one or 
more processing unit(s) (e.g., one or more processors, cores 
of processors, or other processing units), they cause the pro 
cessing unit(s) to perform the actions indicated in the instruc 
tions. Examples of computer readable media include, but are 
not limited to, CD-ROMs, flash drives, RAM chips, hard 
drives, EPROMs, etc. The computer readable media does not 
include carrier waves and electronic signals passing wire 
lessly or over wired connections. 
0183 In this specification, the term “software' is meant to 
include firmware residing in read-only memory or applica 
tions stored in magnetic storage which can be read into 
memory for processing by a processor. Also, in Some embodi 
ments, multiple software inventions can be implemented as 
Sub-parts of a larger program while remaining distinct soft 
ware inventions. In some embodiments, multiple Software 
inventions can also be implemented as separate programs. 
Finally, any combination of separate programs that together 
implement a software invention described here is within the 
Scope of the invention. In some embodiments, the Software 
programs, when installed to operate on one or more electronic 
systems, define one or more specific machine implementa 
tions that execute and perform the operations of the software 
programs. 
0184 FIG. 15 conceptually illustrates an electronic sys 
tem 1500 with which some embodiments of the invention are 
implemented. The electronic system 1500 may be a com 
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puter, server, dedicated Switch, phone, or any other sort of 
electronic device. Such an electronic system includes various 
types of computer readable media and interfaces for various 
other types of computer readable media. Electronic system 
1500 includes a bus 1505, processing unit(s) 1510, a system 
memory 1525, a read-only memory 1530, a permanent stor 
age device 1535, input devices 1540, and output devices 
1545. 

0185. The bus 1505 collectively represents all system, 
peripheral, and chipset buses that communicatively connect 
the numerous internal devices of the electronic system 1500. 
For instance, the bus 1505 communicatively connects the 
processing unit(s) 1510 with the read-only memory 1530, the 
system memory 1525, and the permanent storage device 
1535. 

0186. From these various memory units, the processing 
unit(s) 1510 retrieve instructions to execute and data to pro 
cess in order to execute the processes of the invention. The 
processing unit(s) may be a single processor or a multi-core 
processor in different embodiments. 
0187. The read-only-memory (ROM) 1530 stores static 
data and instructions that are needed by the processing unit(s) 
1510 and other modules of the electronic system. The perma 
nent storage device 1535, on the other hand, is a read-and 
write memory device. This device is a non-volatile memory 
unit that stores instructions and data even when the electronic 
system 1500 is off. Some embodiments of the invention use a 
mass-storage device (Such as a magnetic or optical disk and 
its corresponding disk drive) as the permanent storage device 
1535. 

0188 Other embodiments use a removable storage device 
(such as a floppy disk, flash drive, or ZIPR) disk, and its 
corresponding disk drive) as the permanent storage device. 
Like the permanent storage device 1535, the system memory 
1525 is a read-and-write memory device. However, unlike 
storage device 1535, the system memory is a volatile read 
and-write memory, Such a random access memory. The sys 
tem memory stores some of the instructions and data that the 
processor needs at runtime. In some embodiments, the inven 
tions processes are stored in the system memory 1525, the 
permanent storage device 1535, and/or the read-only memory 
1530. From these various memory units, the processing unit 
(s) 1510 retrieve instructions to execute and data to process in 
order to execute the processes of Some embodiments. 
(0189 The bus 1505 also connects to the input and output 
devices 1540 and 1545. The input devices enable the user to 
communicate information and select commands to the elec 
tronic system. The input devices 1540 include alphanumeric 
keyboards and pointing devices (also called “cursor control 
devices'). The output devices 1545 display images generated 
by the electronic system. The output devices include printers 
and display devices, such as cathode ray tubes (CRT) or liquid 
crystal displays (LCD). Some embodiments include devices 
Such as a touchscreen that function as both input and output 
devices. 

(0190. Finally, as shown in FIG. 15, bus 1505 also couples 
electronic system 1500 to a network 1565 through a network 
adapter (not shown). In this manner, the computer can be a 
part of a network of computers (such as a local area network 
(“LAN”), a wide area network (“WAN”), or an Intranet, or a 
network of networks, such as the Internet. Any or all compo 
nents of electronic system 1500 may be used in conjunction 
with the invention. 
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0191 Some embodiments include electronic components, 
Such as microprocessors, storage and memory that store com 
puter program instructions in a machine-readable or com 
puter-readable medium (alternatively referred to as com 
puter-readable storage media, machine-readable media, or 
machine-readable storage media). Some examples of Such 
computer-readable media include RAM, ROM, read-only 
compact discs (CD-ROM), recordable compact discs (CD 
R), rewritable compact discs (CD-RW), read-only digital ver 
satile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a vari 
ety of recordable/rewritable DVDs (e.g., DVD-RAM, DVD 
RW, DVD+RW, etc.), flash memory (e.g., SD cards, mini-SD 
cards, micro-SD cards, etc.), magnetic and/or Solid state hard 
drives, read-only and recordable Blu-Ray(R) discs, ultra den 
sity optical discs, any other optical or magnetic media, and 
floppy disks. The computer-readable media may store a com 
puter program that is executable by at least one processing 
unit and includes sets of instructions for performing various 
operations. Examples of computer programs or computer 
code include machine code, Such as is produced by a com 
piler, and files including higher-level code that are executed 
by a computer, an electronic component, or a microprocessor 
using an interpreter. 
0.192 While the above discussion primarily refers to 
microprocessor or multi-core processors that execute soft 
ware, some embodiments are performed by one or more inte 
grated circuits, such as application specific integrated circuits 
(ASICs) or field programmable gate arrays (FPGAs). In some 
embodiments, such integrated circuits execute instructions 
that are stored on the circuit itself. 
0193 As used in this specification and any claims of this 
application, the terms “computer”, “server”, “processor, and 
“memory' all refer to electronic or other technological 
devices. These terms exclude people or groups of people. For 
the purposes of the specification, the terms display or display 
ing means displaying on an electronic device. As used in this 
specification and any claims of this application, the terms 
“computer readable medium' and “computer readable 
media” are entirely restricted to tangible, physical objects that 
store information in a form that is readable by a computer. 
These terms exclude any wireless signals, wired download 
signals, and any other ephemeral signals. 
0194 While the invention has been described with refer 
ence to numerous specific details, one of ordinary skill in the 
art will recognize that the invention can be embodied in other 
specific forms without departing from the spirit of the inven 
tion. In addition, a number of the figures (including FIGS. 7 
and 11) conceptually illustrate processes. The specific opera 
tions of these processes may not be performed in the exact 
order shown and described. The specific operations may not 
be performed in one continuous series of operations, and 
different specific operations may be performed in different 
embodiments. Furthermore, the process could be imple 
mented using several Sub-processes, or as part of a larger 
macro process. Thus, one of ordinary skill in the art would 
understand that the invention is not to be limited by the 
foregoing illustrative details, but rather is to be defined by the 
appended claims. 

1-20. (canceled) 
21. A non-transitory machine readable medium of a con 

troller of a network control system for configuring a logical 
middlebox in a plurality of hosts, the network control system 
comprising a plurality of controllers, the non-transitory 
machine readable medium storing sets of instructions for: 

receiving configuration data for configuring, in each host 
of the plurality of hosts, a middlebox instance to provide 
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a source network address translation (SNAT) service to 
a virtual machine operating in the host; 

identifying a set of additional controllers of the network 
control system that manage the plurality of middlebox 
instances for implementing the configuration data; and 

sending the configuration data to the identified set of addi 
tional controllers for the additional controllers to subse 
quently distribute the configuration data to the plurality 
of middlebox instances. 

22. The non-transitory machine readable medium of claim 
21, wherein the controller is a logical controller and the 
additional controllers are physical controllers. 

23. The non-transitory machine readable medium of claim 
21, wherein the network control system is for generating 
physical control plane data for managing a set of managed 
forwarding elements that implements forwarding operations 
associated with a first logical datapath set, wherein the con 
troller further comprises a set of instructions for converting 
logical control plane data for the first logical datapath set to 
physical control plane data. 

24. The non-transitory machine readable medium of claim 
23, wherein the controller is a master controller for the first 
logical datapath set, wherein each of the additional control 
lers is a master controller for a set of managed forwarding 
elements that operate in the plurality of hosts to implement 
the first logical datapath set. 

25. The non-transitory machine readable medium of claim 
21, wherein the configuration data comprise at least one map 
ping of a pair of addresses. 

26. The non-transitory machine readable medium of claim 
21, wherein the configuration data comprise a set of connec 
tion identifiers, wherein the middlebox instance provides the 
SNAT service to the virtual machine operating in the same 
host by assigning the set of connection identifiers to packets 
the middlebox instance receives from the virtual machine. 

27. The non-transitory machine readable medium of claim 
26, wherein the set of connection identifiers is assigned to 
packets in order for managed Switching elements, operating 
in other hosts that receive the packets, to use the set of con 
nection identifiers to send responses to the correct Sources of 
the packets. 

28. The non-transitory machine readable medium of claim 
26, wherein the middlebox instance is configured to associate 
a connection identifier in the set of connection identifiers with 
a first packet originating from the virtual machine operating 
in the host. 

29. The non-transitory machine readable medium of claim 
28, wherein the middlebox instance associates the connection 
identifier with the first packet by replacing a source port 
number of the first packet with the connection identifier. 

30. The non-transitory machine readable medium of claim 
26, wherein the set of connection identifiers is recorded as no 
longer available to prevent other middlebox instances from 
assigning the set of connection identifiers to packets the other 
middlebox instances receive. 

31. For a controller of network control system comprising 
a plurality of controllers, a method for configuring a logical 
middlebox in a plurality of hosts, the method comprising: 

receiving configuration data for configuring, in each host 
of the plurality of hosts, a middlebox instance to provide 
a source network address translation (SNAT) service to 
a virtual machine operating in the host; 

identifying a set of additional controllers of the network 
control system that manage the plurality of middlebox 
instances for implementing the configuration data; and 
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sending the configuration data to the identified set of addi 
tional controllers for the additional controllers to subse 
quently distribute the configuration data to the plurality 
of middlebox instances. 

32. The method of claim 31, wherein the controller is a 
logical controller and the additional controllers are physical 
controllers. 

33. The method of claim 31, wherein the network control 
system is for generating physical control plane data for man 
aging a set of managed forwarding elements that implements 
forwarding operations associated with a first logical datapath 
set, wherein the controller further comprises a set of instruc 
tions for converting logical control plane data for the first 
logical datapath set to physical control plane data. 

34. The method of claim 33, wherein the controller is a 
master controller for the first logical datapath set, wherein 
each of the additional controllers is a master controller for a 
set of managed forwarding elements that operate in the plu 
rality of hosts to implement the first logical datapath set. 

35. The method of claim 31, wherein the configuration data 
comprise at least one mapping of a pair of addresses. 

36. The method of claim 31, wherein the configuration data 
comprise a set of connection identifiers, wherein the middle 
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box instance provides the SNAT service to the virtual 
machine operating in the same host by assigning the set of 
connection identifiers to packets the middlebox instance 
receives from the virtual machine. 

37. The method of claim 36, wherein the set of connection 
identifiers is assigned to packets in order for managed Switch 
ing elements, operating in other hosts that receive the packets, 
to use the set of connection identifiers to send responses to the 
correct sources of the packets. 

38. The method of claim 36, wherein the middlebox 
instance is configured to associate a connection identifier in 
the set of connection identifiers with a first packet originating 
from the virtual machine operating in the host. 

39. The method of claim 38, wherein the middlebox 
instance associates the connection identifier with the first 
packet by replacing a source port number of the first packet 
with the connection identifier. 

40. The method of claim 36, wherein the set of connection 
identifiers is recorded as no longer available to prevent other 
middlebox instances from assigning the set of connection 
identifiers to packets the other middlebox instances receive. 

k k k k k 


