
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0081861 A1

Koponen et al. (43) Pub. Date:

US 2015 0081861A1

Mar. 19, 2015

(54)

(71)

(72)

(21)

(22)

(62)

(60)

CONNECTION IDENTIFIER ASSIGNMENT
AND SOURCE NETWORKADDRESS
TRANSLATION

Applicant: Nicira, Inc., Palo Alto, CA (US)

Inventors: Teemu Koponen, San Francisco, CA
(US); Ronghua Zhang, San Jose, CA
(US); Pankaj Thakkar, Santa Clara, CA
(US); Martin Casado, Portola Valley,
CA (US)

Appl. No.: 14/549,517

Filed: Nov. 20, 2014

Related U.S. Application Data
Division of application No. 13/678,518, filed on Nov.
15, 2012, now Pat. No. 8,913,611.

Provisional application No. 61/560,279, filed on Nov.
15, 2011.

Externa
Network

Logical

Managed
Switching
Element

Managed
Switching
Element 2

(51)

(52)

(57)

Publication Classification

Int. C.
H04L 12/24 (2006.01)
H04L 29/2 (2006.01)
G06F 9/455 (2006.01)
U.S. C.
CPC H04L 41/0806 (2013.01); G06F 9/45533

(2013.01); H04L 61/256 (2013.01)
USPC .. 709/222

ABSTRACT

A controller of a network control system for configuring
several middlebox instances is described. The middlebox
instances implement a middlebox in a distributed manner in
several hosts. The controller assigns a first set of identifiers to
a first middlebox instance that associates an identifier in the
first set with a first packet. The controller assigns a second set
of identifiers to a second middlebox instance that associates
an identifier in the second set with a second packet.

Y Y- - - - - - - - - Middlebox

V
20

Managed
Switching
Element 3

Distributed
Middlebox

135
Host 3

Distributed
.Viddlebox

40

Managed
Switching
Element 4

Figure 1 Exteria
Network

US 2015/0081861 A1 Mar. 19, 2015 Sheet 1 of 14 Patent Application Publication

US 2015/0081861 A1 Mar. 19, 2015 Sheet 2 of 14 Patent Application Publication

z º.amži?. ?

US 2015/0081861 A1 Mar. 19, 2015 Sheet 3 of 14 Patent Application Publication

- - - - - - - - - -

•

e - as see - rs or as es e a

(IdV

as a as a wa as a -a as as

- - - - - - - - -

US 2015/0081861 A1 Mar. 19, 2015 Sheet 4 of 14 Patent Application Publication

/

JØHolguo)

Patent Application Publication Mar. 19, 2015 Sheet 5 of 14 US 2015/0081861 A1

Managed
Switching
Element

IDistrib.
M-Box

Acquire()
Release()

Acquire()
Release()

Acquire()
Release)

Managed
Switching ->
Element

Managed
Switching -->
Element

Distrib. Distrib.
M-Box A wo M-Box

Distrib.

Host 5

dentifiers

Entire Range Entire Range

Managed
Switching

Managed
Switching -->
Eleanet

Managed Distrib.
M-Box

Distrib, Switching
Element Element

w

Entire Range -

Figure 5

Patent Application Publication Mar. 19, 2015 Sheet 6 of 14 US 2015/0081861 A1

05 Y
Logical Router -

O.O.2. Of 24

OO1:0:0:0:02

Logical Switch 2
5

00:01:0:0:0

Logical Switch

Source P
Addresses

1.O.. -
0.100

O.O. 0.0.1.2

Physical
Tunnel

Managed
Switching
Element 1

Managed
Switching
Element 3

Distributed Distributed

Tunnel

Distributed
SNAT

Switching
Element 2

Figure 6

Patent Application Publication Mar. 19, 2015 Sheet 7 of 14 US 2015/0081861 A1

Receive packet and flow templates
from managed Switching clement

Identify source address

Address to
translate to available

Map addresses and store mapping

Create and instal forward and
reverse flow entries

Send packet to
managed switching element

710

730

Create and install failure flow entry

735

Figure 7

US 2015/0081861 A1 Mar. 19, 2015 Sheet 8 of 14 Patent Application Publication

US 2015/0081861 A1 Mar. 19, 2015 Sheet 9 of 14 Patent Application Publication

@

G)@|W 006

US 2015/0081861 A1 Mar. 19, 2015 Sheet 10 of 14 Patent Application Publication

<!--------- {}{} @

@

@@@

Patent Application Publication Mar. 19, 2015 Sheet 11 of 14 US 2015/0081861 A1

Seen before?

20

Record packet

25

install forward and reverse
sanitization flow entries

Send packet to managed switching 1
element

Figure II

US 2015/0081861 A1 Mar. 19, 2015 Sheet 12 of 14 Patent Application Publication

Patent Application Publication Mar. 19, 2015 Sheet 13 of 14 US 2015/0081861 A1

Ingress L2 Egress Physical
Mapping Context Saniti- ACL

Mapping zation
220 235 245

Element 3 250
--

LS2 Packet
QS -----

Managed CRS
Switching Go
Element -

ba CFS)

- Y

NAT
ingress NAT it is
Context Reverse - Reverse Physical

Saniti- Mapping
Mapping zation
405 45 420

...e.--...sec.e.
400 Vanaged Switching

Element 3 250

Packet
!-----

Switching
Element

Figure 14

US 2015/0081861 A1 Mar. 19, 2015 Sheet 14 of 14 Patent Application Publication

999},

×

US 2015/008 1861 A1

CONNECTION IDENTIFIER ASSIGNMENT
AND SOURCE NETWORKADDRESS

TRANSLATON

CLAIM OF BENEFIT TO PRIORAPPLICATION

0001. This application claims the benefit of U.S. Provi
sional Application 61/560,279, entitled “Virtual Middlebox
Services', filed Nov. 15, 2011. U.S. Application 61/560,279
is incorporated herein by reference.

BACKGROUND

0002 Many enterprises have large and sophisticated net
works comprising Switches, hubs, routers, middleboxes,
servers, workstations and other networked devices, which
Support a variety of connections, applications and systems.
The increased Sophistication of computer networking,
including virtual machine migration, dynamic workloads,
multi-tenancy, and customer-specific quality of service and
security configurations require a better paradigm for network
control. Networks have traditionally been managed through
low-level configuration of individual network components.
Network configurations often depend on the underlying net
work: for example, blocking a user's access with an access
controllist (ACL) entry requires knowing the user's current
IP address. More complicated tasks require more extensive
network knowledge: for example, forcing guest users’ port 80
traffic to traverse an HTTP proxy requires knowing the cur
rent network topology and the location of each guest. This
process is of increased difficulty where the network switching
elements are shared across multiple users.
0003. In response, there is a growing movement towards a
new network control paradigm called Software-Defined Net
working (SDN). In the SDN paradigm, a network controller,
running on one or more servers in a network, controls, main
tains, and implements control logic that governs the forward
ing behavior of shared network Switching elements on a per
user basis. Making network management decisions often
requires knowledge of the network State. To facilitate man
agement decision-making, the network controller creates and
maintains a view of the network State and provides an appli
cation programming interface upon which management
applications may access a view of the network State.
0004 Some of the primary goals of maintaining large
networks (including both datacenters and enterprise net
works) are scalability, mobility, and multi-tenancy. Many
approaches taken to address one of these goals results in
hampering at least one of the others. For instance, one can
easily provide network mobility for virtual machines within
an L2 domain, but L2 domains cannot scale to large sizes.
Furthermore, retaining user isolation greatly complicates
mobility. As such, improved solutions that can satisfy the
Scalability, mobility, and multi-tenancy goals are needed.

BRIEF SUMMARY

0005. Some embodiments of the invention provide a net
work control system that allows a user to specify a logical
network that includes one or more logical forwarding ele
ments (e.g., logical Switches, logical routers, etc.) and one or
more middleboxes (e.g., firewalls, load balancers, network
address translators, intrusion detection systems (IDS), wide
area network (WAN) optimizers, etc.). The system imple
ments the user-specified logical forwarding elements across
numerous managed Switching elements on numerous physi

Mar. 19, 2015

cal machines that also host virtual machines of the logical
network. The system implements the user-specified middle
boxes across the numerous physical machines. Typically, the
system of some embodiments configures, in one physical
machine, a managed Switching element that implements at
least part of the logical Switching elements and a distributed
middlebox instance that provides a middlebox service to the
packets forwarded by the managed Switching element.
0006. In some embodiments, a managed switching ele
ment that receives a packet from a VM that is hosted in the
same physical machine performs all or most of the logical
forwarding processing of the logical forwarding elements on
the received packet. Because the managed Switching element
receives the packet from the VM and performs forwarding
processing on the packet, the managed Switching element is
the first-hop managed Switching element with respect to the
packet. While the first-hop managed Switching element is
performing the logical forwarding of the packet, the first-hop
managed Switching element has the distributed middlebox
instance that is running in the same host to process the packet
according to the middlebox service that the distributed
middlebox instance provides.
0007 Since the distributed middlebox instances provide
middlebox services to the packets forwarded by the managed
Switching elements that are running in the same hosts in
which the distributed middlebox instances runs, possibly
using the same algorithm or mechanism, packets processed
by these distributed middlebox instances that are heading to
the same destination may look identical from the viewpoint of
the destination. For instance, packets sent out by virtual
machines in different physical machines to establish connec
tions with other virtual machines may be processed by the
distributed middlebox instances hosted in the different physi
cal machines. The distributed middlebox instances provide a
source network address translation (SNAT) service to the
packets (e.g., by translating the Source network addresses of
the packets into different network addresses to hide the real
Source network addresses). These packets then may have the
same network address as the Source network addresses of the
packets. When these packets are heading to the same desti
nation, these packets may be identical in terms of the five
tuples that the packets have (e.g., Source and destination
network addresses, source and destination port numbers,
transport protocol type), even though these packets originate
from different virtual machines. Consequently, the packets
may appear to be packets of the same connection even though
the packets should each be packets of their own connections.
0008. The network control system of some embodiments
configures the distributed middlebox instances in Such away
that the distributed middlebox instances assign identifiers to
the packets having the same five-tuple so that the connections
established by the packets are distinguishable. Different
embodiments assign the connection identifiers differently.
For instance, in Some embodiments, the system assigns a
non-overlapping range of connection identifiers to each of the
distributed middlebox instances that implement a middlebox.
The distributed middlebox instances use identifiers within the
range and the packets processed by these distributed middle
box instance can be uniquely identified by the identifier that is
not used for other live connections. Alternatively or conjunc
tively, the network control system of some embodiments pro
vides a set of application programming protocols (APIs) that
each distributed middlebox instance can use to obtain and
release a range of connection identifiers on demand. In these

US 2015/008 1861 A1

embodiments, the network control system maintains the
available (i.e., not being used) and unavailable (i.e., being
used) ranges of connection identifiers.
0009. In some embodiments, the network control system

lets each distributed middlebox maintain the entire available
range of connection identifiers and assign connection identi
fiers to the packets forwarded by the managed Switching
element that are last-hop managed Switching elements with
respect to the packets. A managed Switching element is a
last-hop managed Switching element with respect to a packet
when the managed Switching element forwards the packet to
a destination virtual machine that runs in the same host in
which the managed Switching element runs.
0010. The network control system of some embodiments
implements a middlebox that provides a SNAT service in a
distributed manner. The network control system receives,
from a user, configuration data for configuring the middlebox,
including SNAT rules to use to translate source addresses of
incoming packets. The network control system configures the
distributed middlebox instances that implement the middle
box to provide SNAT service in a similar way in to how the
network control system configures the managed Switching
elements to perform logical forwarding processing of the
logical Switching elements of the user.
0011. In some embodiments, the network control system
has several controllers including logical controllers and
physical controllers. A logical controller is a master of logical
Switching elements of a user. A logical controller of some
embodiments receives a specification of the logical switching
elements from the user, in the form of logical control plane
(LCP) data. A logical controller translates the LCP data into
logical forwarding plane (LFP) data, which define control
plane and forwarding plane of the logical Switching elements.
A logical controller then translates the LFP data to the uni
Versal physical control plane data. A logical controller then
identifies a set of physical controllers, each of which is
responsible for managing a managed Switching element. A
logical controller sends the universal control plane data only
to the identified set of physical controllers that manages man
aged Switching elements, each of which at least partially
implements the logical Switching elements of the user.
0012 A physical controller translates the universal physi
cal control plane data into customized physical control plane
data, which is control plane data for the managed Switching
elements that implement the logical Switching elements. The
physical controller sends the customized physical control
plane data to the managed Switching element. The managed
Switching element then translates the customized control
plane to perform the logical forwarding processing of the
logical Switching elements specified by the user.
0013 Similarly, a logical controller receives configuration
data for configuring the middlebox. The logical controller
identifies the same set of physical controllers which are mas
ters of the managed Switching elements that implement, at
least partially, the logical Switching elements specified by the
user. The logical controller sends the middlebox configura
tion data to the identified set of physical controllers. The
physical controller of some embodiments then sends the
middlebox configuration data to the managed Switching ele
ments so that the managed Switching elements can send the
middlebox configuration data to the distributed middlebox
instances that run in the same host in which the managed
Switching elements run. Alternatively, the physical controller
sends the middlebox configuration data directly to the distrib

Mar. 19, 2015

uted middlebox instance, which runs in the same host with the
managed Switching elements, of which the physical control
ler is the master.
0014. The preceding Summary is intended to serve as a
brief introduction to some embodiments of the invention. It is
not meant to be an introduction or overview of all inventive
subject matter disclosed in this document. The Detailed
Description that follows and the Drawings that are referred to
in the Detailed Description will further describe the embodi
ments described in the Summary as well as other embodi
ments. Accordingly, to understand all the embodiments
described by this document, a full review of the Summary,
Detailed Description and the Drawings is needed. Moreover,
the claimed subject matters are not to be limited by the illus
trative details in the Summary, Detailed Description and the
Drawing, but rather are to be defined by the appended claims,
because the claimed subject matters can be embodied in other
specific forms without departing from the spirit of the subject
matterS.

BRIEF DESCRIPTION OF THE DRAWINGS

0015 The novel features of the invention are set forth in
the appended claims. However, for purpose of explanation,
several embodiments of the invention are set forth in the
following figures.
0016 FIG. 1 illustrates an example network structure of a
logical network of a user that is implemented in the infra
structure of a physical network.
0017 FIG. 2 illustrates a processing pipeline that is per
formed by the MSEs of some embodiments.
0018 FIG. 3 illustrates an example controller cluster.
0019 FIG. 4 illustrates example architecture of a network
controller.
(0020 FIG. 5 conceptually illustrates several different
ways of assigning connection identifiers to several distributed
middlebox instances.
0021 FIG. 6 illustrates a logical network and a physical
network.
0022 FIG. 7 conceptually illustrates a process that some
embodiments perform to provide SNAT service.
0023 FIG. 8 conceptually illustrates an example opera
tion of a MSE that is a first-hop MSE with respect to a data
packet.
0024 FIG. 9 conceptually illustrates an example opera
tion of a MSE that is a first-hop MSE with respect to a data
packet.
0025 FIG. 10 conceptually illustrates an example opera
tion of a MSE that is a first-hop MSE with respect to a
particular packet and is a last-hop MSE with respect to a
response packet that was sent in response to the particular
packet.
0026 FIG. 11 conceptually illustrates a process that some
embodiments perform to set up forward and reverse sanitiza
tion flow entries at a MSE that is a last-hop MSE.
0027 FIG. 12 conceptually illustrates example operations
of a MSE that is a last-hop MSE with respect to packets.
0028 FIG. 13 conceptually illustrates example operations
of a MSE that is a last-hop MSE with respect to packets.
0029 FIG. 14 conceptually illustrates an example opera
tion of a MSE that is a last-hop MSE with respect to a
particular packet and is a first-hop MSE with respect to a
response packet that is sent in response to the particular
packet.

US 2015/008 1861 A1

0030 FIG. 15 conceptually illustrates an electronic sys
tem with which some embodiments of the invention are
implemented.

DETAILED DESCRIPTION

0031. In the following detailed description of the inven
tion, numerous details, examples, and embodiments of the
invention are set forth and described. However, it will be clear
and apparent to one skilled in the art that the invention is not
limited to the embodiments set forth and that the invention
may be practiced without Some of the specific details and
examples discussed.
0032 Some embodiments of the invention provide a net
work control system that allows the logical datapath sets of
different users to be implemented by switching elements of a
physical network. These switching elements are referred to
below as managed Switching elements (MSEs) or managed
forwarding elements as they are managed by the network
control system in order to implement the logical datapath sets.
Examples of Such Switching elements include virtual or
physical network Switches, Software Switches (e.g., Open
vSwitch), routers, etc. In some embodiments, the logical
datapath sets are implemented in the managed Switching ele
ment in a manner that prevents the different users from view
ing or controlling each other's logical datapath sets (i.e., each
other's Switching logic) while sharing the same Switching
elements.

0033. To implement logical datapath sets, the network
control system of some embodiments generates physical con
trol plane data from logical datapath set data specified by the
users. The physical control plane data is then downloaded to
the MSEs. The MSEs convert the physical control plane data
into physical forwarding plane data that allows the MSEs to
perform forwarding of the packets that these MSEs receive.
Based on the physical forwarding data, the MSEs can process
data packets in accordance with the logical processing rules
specified within the physical control plane data.
0034. In some embodiments, each of the logical datapath
sets defines a logical network that includes one or more logi
cal Switching elements. A logical Switching element can pro
cess incoming packets in layer 2 (L2) or layer 3 (L3). That is,
a logical Switching element can function as a logical Switch
for Switching packets at L2 and/or as a logical router for
routing packets at L3. The network control system imple
ments the logical Switching elements of different users across
the MSEs.

0035. In addition to the logical switching elements, the
network control system of some embodiments allows the
users to specify middleboxes. As known in the art, middle
boxes perform data processing other than forwarding the data
(e.g., network address translation, load balance, firewall,
intrusion detection and prevention, wide area network opti
mization, etc.). The middleboxes provide these middlebox
services to the users’ respective logical Switching elements.
The network control system implements the specified
middleboxes in the physical infrastructure of the physical
network, including the hosts in which the MSEs operate.
0036) Several examples of such systems are described
below in Section I. Section II then describes distributed
middlebox instances that provide SNAT service. Section III
describes an electronic system that implements some
embodiments of the invention.

Mar. 19, 2015

I. Implementing Logical Switching Elements And
Middleboxes in a Distributed Manner

0037 A. Logical Switching Elements and Middleboxes
0038 FIG. 1 illustrates an example network structure of a
logical network of a user that is implemented in the infra
structure of a physical network. Specifically, this figure illus
trates that the logical network includes a middlebox and that
the middlebox is implemented in the physical network in a
distributed manner. The top half of the figure shows a logical
network 105 while the bottom half of the figure shows a
physical network 110 in which the logical network 105 is
implemented.
0039. As shown in the top half of the figure, the logical
network 105 includes two logical switches 1 and 2, a logical
router 115, and a middlebox 120. The logical switch 1 is
connected to virtual machines (VMs) 1 and 2 and the logical
router 115. There may be many other VMs connected to the
logical switch 1 but they are not depicted in this figure for the
simplicity of illustration and description. The logical switch 1
forwards data betweenVMs connected to the logical switchat
L2 (e.g., by using MAC addresses) and between the VMs and
the logical router 115 when the data needs routing at L3 (e.g.,
by using IP addresses). Like the logical Switch 1, the logical
switch 2 forwards data between the logical router 115 and the
VMs connected to the logical switch 2.
0040. The logical router 115 routes data at L3, among the
logical Switches connected to the logical router and the
middlebox 120. When the data needs middlebox service (e.g.,
source network address translation), the logical router 115
sends the data to the middlebox 120 to process and in some
cases receives the processed data back from the middlebox to
route the data to the data's destination. The logical router 115
also routes data to and from the external network, which
includes network elements that do not belong to the logical
network 105.
0041 As shown in the bottom half of FIG. 1, the physical
network 110 includes hosts 1-4. A host is a machine that is
managed by an operating system (e.g., LinuxTM, WindowsTM,
etc.) that is capable of running software applications and
virtual machines. Each of the hosts has several network ele
ments running in the host, including several MSEs, several
distributed middlebox instances, and/or several VMs. Not all
of these network elements are depicted in each host in this
figure for the simplicity of illustration and description. In
some embodiments, a MSE is a software switching element
that has components running in the user space and/or the
kernel of the host on which the software is running Also, a
distributed middlebox instance in some embodiments is a
Software application that has components running in the user
space and/or the kernel. In some embodiments, a distributed
middlebox instance is provisioned inaVM running in the host
in which the MSE is running
0042. As shown, the host 1 includes MSE 1, a distributed
middlebox instance 125, and VM1. The host 2 includes MSE
2, a distributed middlebox instance 140, and VM2. The host
3 includes MSE3, a distributed middlebox instance 145, and
VM3. The host 4 includes MSE 4, and a distributed middle
box instance 140.
0043. The MSEs 1-4 implement the logical switches 1 and
2 and the logical router 115 in a distributed manner. That is,
the MSEs 1-4 of some embodiments collectively perform the
data forwarding operations of the logical Switches 1 and 2 and
the logical router 115. Specifically, the ports (not shown) of
the logical Switches 1-2 are mapped to physical ports (e.g.,

US 2015/008 1861 A1

virtual interfaces (VIFs)—not shown) of the MSEs 1-3. The
VMs that send and receive data to and from the logical
switches 1-2 through the ports of the logical switches actually
send and receive the data to and from the MSEs through the
physical ports of the MSEs to which the ports of the logical
switches are mapped. The MSEs have forwarding tables (not
shown) that include the physical forwarding plane data in the
form of flow entries. In some embodiments, a flow entry
includes a qualifier and an action. The qualifier specifies a
condition which, when it is met, directs the MSE to perform
the action. The MSEs perform the data forwarding operations
of the logical Switching elements (logical Switches and logi
cal routers) according to the actions specified in the flow
entries. Forwarding tables and flow entries will be described
further below by reference to FIG. 8.
0044. The MSE that receives data from a VM is referred to
as a first-hop MSE with respect to that data. In some embodi
ments, the first-hop MSEs performs all or most of the logical
processing that are to be performed on the received data in
order for the data to reach the data's destination. For instance,
when the logical switch 1 receives a data packet from VM 1
that is addressed to VM3, the logical switch 1 forwards the
packet to the logical router 115. The logical router 115 then
routes the packet to the logical switch 2, which will forward
the packet to VM3. In the physical network 110, the MSE 1
is the first-hop MSE with respect to this packet and performs
logical processing to send the packet to VM 3, which is
connected to the MSE 3. That is, the MSE 1 performs the
forwarding operations of the logical switch 1, the logical
router 115, and the logical switch 2 to send the packet from
VM1 to the VM3. Likewise, for packets from VM 2 to VM
1 or VM3, the MSE 2, as the first-hop MSE for these packets,
performs the forwarding operations of the logical Switch 1,
the logical router 115, and the logical switch 2. The MSE 3
will also perform the forwarding operations of the logical
switch 2, the logical router 115, and the logical switch 1 to
send data packets from VM 3 to VM 1 or VM 2.
0045. The MSEs exchange data amongst themselves via
tunnels established between them. These tunnels allow the
data to be exchanged among the MSEs over the other network
elements (not shown) of the physical network 110. In some
embodiments, the network control system does not manage
these other network elements of the physical network 110.
These other network elements thus serve as switching fabric
for the MSEs to use to exchange data. As shown, each of the
MSEs 1-4 establishes a tunnel to each of the other MSEs.
0046 Different types of tunneling protocols are supported
in different embodiments. Examples of tunneling protocols
include control and provisioning of wireless access points
(CAPWAP), generic route encapsulation (GRE), GRE Inter
net Protocol Security (IPsec), among others.
0047. In some embodiments, the MSEs 1-4 are edge
switching elements because these MSEs are considered to be
at the edge of the physical network 110. Being at the edge of
the network means either (1) the MSEs directly interface with
virtual machines to send and receive data to and from the
virtual machines or (2) the MSEs connect the physical net
work 110 to another physical network which may or may not
be managed by the network control system. As shown, the
MSEs 1-3 directly interface with VMs 1-3, respectively. The
MSE 4 interfaces the external network and functions as an
integration element to facilitate data exchange between the
network elements of the physical network 110 and the exter
nal network. The non-edge MSEs (not shown) may facilitate

Mar. 19, 2015

data exchange between the MSEs and/or other unmanaged
switching elements (not shown) of the physical network 110.
0048. The middlebox 120 in the logical network 105 is
implemented in the physical network 110 in a distributed
manner, too. In some embodiments, a distributed middlebox
instance is running in the same host in which a MSE is
running in order to provide the middlebox service to the
packets forwarded by the MSE. For instance, the distributed
middlebox instance 125 running in the host 1 provides the
middlebox service to the packets forwarded by the MSE 1.
That is, the distributed middlebox instance 125 receives data
packets from the MSE 1 and performs middlebox operations
(e.g., source NAT) to the packets. The distributed middlebox
instance 125 then returns the packets back to the MSE 1 so
that the packets are forwarded to the destinations of the pack
ets. Likewise, the distributed middlebox instances 130 and
135 running in the hosts 2 and 3, respectively, next to the
MSEs 2 and 3, respectively, provide the middlebox service to
the packets coming to and from VMs 2 and 3, respectively.
The distributed middlebox instance 140 running in the host 4
next to the MSE 4 provides the middlebox service for the
packets forwarded by the MSE 4.
0049. An example operation of the physical network 110
that implements the logical network 105 is now described by
reference to FIG. 2. Specifically, FIG. 2 illustrates a process
ing pipeline 205 that is performed by the MSEs 1 and 3 and
the distributed middlebox instance 125 in order to send a data
packet from VM 1 to VM 3 via the distributed middlebox
instance 125. FIG. 2 shows only VM1 and VM3, the logical
Switching elements, and hosts that are connected to or include
VM1 and VM3 to illustrate data being sent from VM1 to VM
3. The middlebox service that the middlebox 120 provides is
SNAT in this example.
0050. When VM 1 that is coupled to the logical switch 1
sends a packet (not shown) addressed to VM3 that is coupled
to the logical switch 2, the packet is first sent to the MSE 1.
The MSE 1 then performs L2 processing 210. The L2 pro
cessing 210 is a set of operations that define the logical Switch
1's forwarding processing on the packet. By performing the
L2 processing 210, the MSE 1 forwards the packet from VM
1 to the logical router 115. The packet is forwarded to the
logical router 115 because VM3 is not coupled to the logical
switch 1 and thus has to be routed by the logical router 115 to
the logical switch 2 to which VM3 is coupled.
0051. The MSE 1 then performs the L3 processing 215.
The L3 processing 215 is a set of operations that define the
logical router 115’s routing of the packet. The logical router
115 routes the packet to the middlebox 120 to have the
middlebox 120 change the packet source address (e.g., source
IP address) to another address. By performing the L3 pro
cessing 215, the MSE 1 sends the packet to the distributed
middlebox instance 125.

0052. The distributed middlebox instance 125 which
implements the middlebox 120 then performs SNAT process
ing 220 on the packet. In some embodiments, the distributed
middlebox instance 125 changes the received packet's source
IP address (i.e., VM1's IP address) to a different address. In
other embodiments, the distributed middlebox instance 125
creates flow entries and installs in the forwarding table (not
shown) of the MSE 1 so that when the distributed middlebox
instance 125 sends a packet back to the MSE 1, this packets
source IP address is changed by the MSE 1 based on those
flow entries installed by the distributed middlebox instance

US 2015/008 1861 A1

125. Creating and installing flow entries will be described
further below by reference to FIGS. 8 and 12.
0053. The MSE 1 then receives the packet sent from the
distributed middlebox instance 125 and performs L3 process
ing 225 and L2 processing 230 on this packet. This packet has
the source IP address that is assigned by the distributed
middlebox instance 125. The L3 processing 225 is a set of
operations that define the logical router 115’s routing of the
packet. By performing the L3 processing 225, the MSE 1
routes the packet from the middlebox 125 to the logical
switch 2.
0054) The MSE 1 then performs L2 processing 230. The
L2 processing 230 is a set of operations that define the logical
Switch 1's forwarding processing on the packet. By perform
ing the L2 processing 230, the MSE 1 forwards the packet
from logical router 115 to VM3. However, because VM3 is
not physically coupled to the MSE 1, the MSE 1 has to
identify a MSE to which VM 3 is coupled. The MSE 1
identifies the MSE 3 (e.g., through address learning process)
and sends the packet to the MSE 3 over the tunnel established
between the MSES 1 and 3.
0055. In some embodiments, the MSE3 performs L2 pro
cessing 235, which defines a portion of the set of operations
that define the logical Switch 2's forwarding processing on the
packet. For instance, the MSE 3 performs an egress access
controllist (ACL) processing on the packet before forwarding
the packet to VM3. In other embodiments, the MSE 1 does
not perform the L2 processing 230 northe L2 processing 215.
That is, the MSE 3 will perform all L2 processing for the
logical switch 2. When VM 3 sends a packet to VM 1 in
response to receiving a packet from VM 1, the
0056. MSE3, the distributed middlebox instance 125, and
the MSE 1 perform the processing pipeline 205 in the reverse
order. Because most or all of the logical processing was
performed by the MSE 1 for the packet that went to VM 3
from VM1, most or all of logical processing for the response
packet from VM3 to VM1 is also performed in the MSE 1. By
having the MSE 1 perform most orall of logical processing on
the packets going both ways betweenVM 1 and VM3, some
embodiments avoid sharing state information (e.g., original
and translated source IP addresses mapping) between the
MSEs 1 and 3. More detailed example operations of the
MSEs 1 and 3 will be described further below by reference to
FIGS. 6-14.

0057 B. Configuring MSEs and Middleboxes
0058 As described above, the MSEs of some embodi
ments implement logical Switches and logical routers based
on flow entries supplied to the MSEs by the network control
system. The network control system of some embodiments is
a distributed control system that includes several controller
instances that allow the system to accept logical datapath sets
from users and to configure the MSEs to implement these
logical datapath sets (i.e., datapath sets defining the logical
switching elements of the users). The distributed control sys
tem also receives middlebox configuration data from the
users and configures the distributed middlebox instances by
sending the configuration data to the distributed middlebox
instances. These controller instances of the distributed con
trol system form a cluster and thus the network control system
is referred to as a controller cluster.
0059 FIG.3 illustrates an example controller cluster 300.
The controller cluster 300 configures and manages several
MSEs and several distributed middlebox instances running in
several hosts. This figure illustrates only the controller cluster

Mar. 19, 2015

300 and a host 305. The controller cluster 300 includes a
logical controller 310 and a physical controller 315. The
logical controller 310 and the physical controller 315 are two
of many controllers (not shown) of the controller cluster 300.
0060. In some embodiments, the logical controller 310 is a
device (e.g., a general-purpose computer) that executes one or
more modules that transform the user input from a LCP to a
LFP, and then transform the LFP data to universal physical
control plane data. These modules in Some embodiments
include a control module and a virtualization module (not
shown). A control module allows a user to specify and popu
late a logical datapath set, while a virtualization module
implements the specified logical datapath set by mapping the
logical datapath set onto the physical Switching infrastruc
ture

0061. As shown on the left side of the logical controller
310, the logical controller 310 of some embodiments receives
logical datapath set data from a user in a form of application
protocol interface (API) calls that are supported by the logical
controller 310. The API (not shown) of the logical controller
310 translates the logical datapath set data for configuring
logical switches and logical routers into LCP data. The LCP
data is the control plane data for the logical Switching ele
ments (e.g., logical Switches and logical routers) that the user
is managing through the controller cluster. The logical con
troller 310 generates LFP data from the LCP data. The LFP
data is the forwarding plane data for the logical Switching
elements of the user. In some embodiments, the logical con
troller 310 has a set of modules (not shown) including a
translation engine that translates the LCP data into the LFP
data. In some Such embodiments, the translation performed
by the translation engine involves database table mapping.
0062 From the LFP data for a particular logical datapath
set of the user, the virtualization module of the logical con
troller 310 of some embodiments generates universal physi
cal control plane (UPCP) data that is the control plane data for
any MSE that implements the logical datapath set. The UPCP
data does not include specifics of the MSEs (e.g., information
that is local to the MSE such as a port number, etc.). In some
embodiments, the translation engine translates the LFP data
into UPCP data.

0063. The set of modules of the logical controller 310 also
includes a module that identifies a set of physical controllers
that is responsible for controlling a set of MSEs that imple
ment the logical datapath set (i.e., that implement the logical
switching elements of the user). The logical controller 310
sends the UPCP data only to the identified set of physical
controllers in some embodiments. The logical controller of
different embodiments communicates with the physical con
trollers differently. For instance, in some embodiments, the
logical controller 310 establishes a communication channel
(e.g., a remote procedure call (RPC) channel) with each of the
physical controllers in the identified set. Alternatively or con
junctively, the logical controller and the physical controller
use a storage as a medium of communication by placing and
pulling UPCP data in the storage.
0064. The physical controller 315 is one of the physical
controllers of the controller cluster 300. The physical control
ler 315 is responsible for managing the MSE 320. The physi
cal controller 315 receives the UPCP data from the logical
controller 310 and converts the UPCP data into customized
physical control plane (CPCP) data for the MSE 320. In
contrast to the UPCP data, the CPCP data for a MSE includes
the specifics of the MSE. The CPCP data is the control plane

US 2015/008 1861 A1

data for the MSE. In some embodiments, the physical con
troller 315 has a set of modules (not shown) including a
translation engine that translates the UPCP data into the
CPCP data. In some such embodiment, the translation per
formed by the translation engine involves database table map
p1ng.

0065. The CPCP data includes the attachment data, which
defines the coupling of the managed Switching element and
the distributed middlebox instance that implement the logical
Switching elements (the logical Switches and the logical rout
ers) of the user. For instance, the attachment data specifies the
port number of a port of the MSE through which the MSE and
the distributed middlebox instance exchange packets.
0066. The physical controller 315 also sends slicing data

to the MSE. Slicing data in some embodiments includes
identifiers for identifying different "slices of a distributed
middlebox instance. In some embodiments, a distributed
middlebox instance may provide a middlebox service to sev
eral different VMs that belong to several different users (i.e.,
several different logical domains). The distributed middlebox
may be "sliced so that each slice of the distributed middle
box instance provides the middlebox service one of these
different VMs. When the managed switching element that
forwards packets for the VMs sends packets to the distributed
middlebox instance, the MSE uses the slice identifiers to
indicate to which particular user or logical domain that a
packet belongs so that the slice for the particular user pro
cesses the packet.
0067. In some embodiments, the slicing data includes a
binding between a long-form slice identifier and a short-form
slice identifier. The long-form slice identifier is relatively
long (e.g., 128 bit) and the short-form slice identifier is rela
tively short (e.g., 16 bit). In some embodiments, the long-term
slice identifier is used to make an identity of a user unique
across the numerous MSES that might be implementing
numerous users' logical domains. The short-form slice iden
tifier is used for packet exchange between a MSE and a
distributed middlebox instance running in a host.
0068. The user also configures the middlebox service for
the user's logical Switching elements. As shown on the right
side of the controller cluster 300, the logical controller 310 of
some embodiments includes a middlebox API for taking API
calls specifying the configuration of the middlebox service
(e.g., SNAT rules) from the user. The middlebox API of the
logical controller 310 extracts the configuration data from the
middlebox API calls received from the user and sends the
configuration data to the same set of physical controllers to
which the logical controller 310 sends the UPCP data.
0069. The physical controller 315 of some embodiments
receives the configuration data from the logical controller 310
and then relays the configuration data to all MSEs, which the
physical controller 315 manages, that implement at least part
of the user's logical switching elements, including the MSE
320. The MSE 320 then sends this configuration data to the
distributed middlebox instance 325. Alternatively or conjunc
tively, the physical controller 315 directly sends the middle
box configuration data to the distributed middlebox instance
325.

0070. In some embodiments, the physical controller 315
also sends the slicing data and the attachment data to the
distributed middlebox instances that the physical controller
manages. The distributed middlebox instance 325 performs
translation of the configuration data using the slicing and
attachment data to complete the configuration of the distrib

Mar. 19, 2015

uted middlebox instance 325 as specified by the user. The
distributed middlebox instance also creates a binding of slic
ing data. Specifically, the distributed middlebox instance of
Some embodiments creates a binding between short-form
slice identifiers and internal slice identifiers to use only within
the distributed middlebox instance 325. An example usage of
the internal slice identifiers may be for populating a data
structure that allows only certain lengths for the slice identi
fiers to have.

(0071. Each of the controllers illustrated in FIG.3 is shown
as a single controller. However, each of these controllers may
actually be a controller cluster that operates in a distributed
fashion to perform the processing of a logical controller or
physical controller.
0072 FIG. 4 illustrates example architecture of a network
controller (e.g., a logical controller or a physical controller)
400. The network controller of some embodiments uses a
table mapping engine to map data from an input set of tables
to data in an output set of tables. The input set of tables in a
controller includes LCP data to be mapped to LFP data, LFP
data to be mapped to UPCP data, and/or UPCP data to be
mapped to CPCP data. The input set of tables may also
include middlebox configuration data to be sent to another
controller and/or a distributed middlebox instance. The net
work controller 400, as shown, includes input tables 415, an
rules engine 410, output tables 420, an importer 430, an
exporter 435, a translator 435, and a persistent data storage
(PTD) 440.
0073. In some embodiments, the input tables 415 include
tables with different types of data depending on the role of the
controller 400 in the network control system. For instance,
when the controller 400 functions as a logical controller for a
user's logical forwarding elements, the input tables 415
include LCP data and LFP data for the logical forwarding
elements. When the controller 400 functions as a physical
controller, the input tables 415 include LFP data. The input
tables 415 also include middlebox configuration data
received from the user or another controller. The middlebox
configuration data is associated with a logical datapath set
parameter that identifies the logical Switching elements to
which the middlebox to be is integrated.
0074. In addition to the input tables 415, the control appli
cation 400 includes other miscellaneous tables (not shown)
that the rules engine 410 uses to gather inputs for its table
mapping operations. These miscellaneous tables tables
include constant tables that store defined values for constants
that the rules engine 410 needs to perform its table mapping
operations (e.g., the value 0, a dispatch port number for resub
mits, etc.). The miscellaneous tables further include function
tables that store functions that the rules engine 410 uses to
calculate values to populate the output tables 425.
0075. The rules engine 410 performs table mapping opera
tions that specifies one manner for converting input data to
output data. Whenever one of the input tables is modified
(referred to as an input table event), the rules engine performs
a set of table mapping operations that may result in the modi
fication of one or more data tuples in one or more output
tables.

0076. In some embodiments, the rules engine 410 includes
an event processor (not shown), several query plans (not
shown), and a table processor (not shown). Each query plan is
a set of rules that specifies a set of join operations that are to
be performed upon the occurrence of an input table event. The
event processor of the rules engine 410 detects the occurrence

US 2015/008 1861 A1

of each Such event. In some embodiments, the event processor
registers for callbacks with the input tables for notification of
changes to the records in the input tables 415, and detects an
input table event by receiving a notification from an input
table when one of its records has changed.
0077. In response to a detected input table event, the event
processor (1) selects an appropriate query plan for the
detected table event, and (2) directs the table processor to
execute the query plan. To execute the query plan, the table
processor, in some embodiments, performs the join opera
tions specified by the query plan to produce one or more
records that represent one or more sets of data values from one
or more input and miscellaneous tables. The table processor
of some embodiments then (1) performs a select operation to
select a subset of the data values from the record(s) produced
by the join operations, and (2) writes the selected subset of
data values in one or more output tables 420.
0078 Some embodiments use a variation of the datalog
database language to allow application developers to create
the rules engine for the controller, and thereby to specify the
manner by which the controller maps logical datapath sets to
the controlled physical switching infrastructure. This varia
tion of the datalog database language is referred to herein as
nLog. Like datalog, nLog provides a few declaratory rules
and operators that allow a developer to specify different
operations that are to be performed upon the occurrence of
different events. In some embodiments, nLog provides a lim
ited subset of the operators that are provided by datalog in
order to increase the operational speed of nLog. For instance,
in some embodiments, nLog only allows the AND operator to
be used in any of the declaratory rules.
007.9 The declaratory rules and operations that are speci
fied through nLog are then compiled into a much larger set of
rules by an in log compiler. In some embodiments, this com
piler translates each rule that is meant to address an event into
several sets of database join operations. Collectively the
larger set of rules forms the table mapping rules engine that is
referred to as the nLog engine.
0080 Some embodiments designate the first join opera
tion that is performed by the rules engine for an input event to
be based on the logical datapath set parameter. This designa
tion ensures that the rules engine's join operations fail and
terminate immediately when the rules engine has started a set
of join operations that relate to a logical datapath set (i.e., to
a logical network) that is not managed by the controller.
I0081 Like the input tables 415, the output tables 420
include tables with different types of data depending on the
role of the controller 400. When the controller 400 functions
as a logical controller, the output tables 415 include LFP data
and UPCP data for the logical switching elements. When the
controller 400 functions as a physical controller, the output
tables 420 include CPCP data. Like the input tables, the
output tables 415 may also include the middlebox configura
tion data. Furthermore, the output tables 415 may include a
slice identifier when the controller 400 functions as a physical
controller.

0082 In some embodiments, the output tables 420 can be
grouped into several different categories. For instance, in
Some embodiments, the output tables 420 can be rules engine
(RE) input tables and/or RE output tables. An output table is
a RE input table when a change in the output table causes the
rules engine to detect an input event that requires the execu
tion of a query plan. An output table can also be an RE input
table that generates an event that causes the rules engine to

Mar. 19, 2015

perform another query plan. An output table is a RE output
table when a change in the output table causes the exporter
425 to export the change to another controller or a MSE. An
output table can be an RE input table, a RE output table, or
both an RE input table and a RE output table.
I0083. The exporter 425 detects changes to the RE output
tables of the output tables 420. In some embodiments, the
exporter registers for callbacks with the RE output tables for
notification of changes to the records of the RE output tables.
In such embodiments, the exporter 425 detects an output table
event when it receives notification from a RE output table that
one of its records has changed.
I0084. In response to a detected output table event, the
exporter 425 takes each modified data tuple in the modified
RE output tables and propagates this modified data tuple to
one or more other controllers or to one or more MSEs. When
sending the output table records to another controller, the
exporter in Some embodiments uses a single channel of com
munication (e.g., a RPC channel) to send the data contained in
the records. When sending the RE output table records to
MSEs, the exporter in some embodiments uses two channels.
One channel is established using a Switch control protocol
(e.g., OpenFlow) for writing flow entries in the control plane
of the MSE. The other channel is established using a database
communication protocol (e.g., JSON) to send configuration
data (e.g., port configuration, tunnel information).
0085. In some embodiments, the controller 400 does not
keep in the output tables 420 the data for logical datapath sets
that the controller is not responsible for managing (i.e., for
logical networks managed by other logical controllers). How
ever, such data is translated by the translator 435 into a format
that can be stored in the PTD 440 and is then stored in the
PTD. The PTD 440 propagates this data to PTDs of one or
more other controllers so that those other controllers that are
responsible for managing the logical datapath sets can pro
cess the data.

I0086. In some embodiments, the controller also brings the
data stored in the output tables 420 to the PTD for resiliency
of the data. Therefore, in these embodiments, a PTD of a
controller has all the configuration data for all logical datap
ath sets managed by the network control system. That is, each
PTD contains the global view of the configuration of the
logical networks of all users.
I0087. The importer 430 interfaces with a number of dif
ferent sources of input data and uses the input data to modify
or create the input tables 410. The importer 420 of some
embodiments receives the input data from another controller.
The importer 420 also interfaces with the PTD 440 so that
data received through the PTD from other controller instances
can be translated and used as input data to modify or create the
input tables 410. Moreover, the importer 420 also detects
changes with the RE input tables in the output tables 430.
I0088 C. Connection Identifiers Assignment
I0089. As described above by reference to FIGS. 1 and 2.
the first-hop MSEs performs all or most of the logical pro
cessing that is to be performed on a data packet in order for the
data packet to reach the data packet's destination. The packets
from different VMs may be sent to the same VM. These
packets are processed by logical Switching elements and
middleboxes implemented in multiple first-hop MSEs and
distributed middlebox instances. The multiple first-hop
MSEs and distributed middlebox instances may apply the
same processing to these packets heading to the same desti

US 2015/008 1861 A1

nation. Thus, from the viewpoint of the destination MSE, the
packets may not be distinguishable from one another.
0090. For instance, a packet sent from VM 1 to VM 3 of
FIG. 1 has a source IP address of VM1 and the destination IP
address of VM 3. When the distributed middlebox instance
125 applies a middlebox processing (e.g., SNAT) on this
packet, the packet will have a source IP address assigned by
the distributed middlebox instance 125 and the destination IP
address of VM3. Likewise, a packet sent from VM 2 to VM
3 of FIG. 1 initially has a source IP address of VM2 and the
destination IP address of VM3. When the distributed middle
box instance 130 applies the same middlebox processing on
this packet, this packet will have source IP address assigned
by the distributed middlebox instance 130 and the destination
IP address of VM3. However, these two packets may have the
same source IP address after being processed by the respec
tive distributed middlebox instance because the middlebox
processing performed on these two packets by the distributed
middlebox instances are the same. Hence, from the viewpoint
of the destination MSE attached to the destination of the
packets (i.e., the MSE 3 for VM 3 of FIG. 1), these two
packets from two different VMs have same field values. For
instance, these two packets may have the same five-tuple
(e.g., source IP address, Source port number, destination IP
address, destination port number, and protocol type).
0091. In order for the destination MSE to forward
response packets from the destination to the appropriate ori
gins of the packets with the identical five-tuples, the destina
tion MSE needs additional information to distinguish
between those packets. In some embodiments, the MSEs
assign and use connection identifiers to distinguish between
those packets with the identical five-tuples from multiple
different first-hop MSEs.
0092 FIG. 5 conceptually illustrates several different
ways of assigning connection identifiers to several distributed
middlebox instances. Specifically, this figure illustrates three
different approaches 505-515 of centrally assigning the con
nection identifiers to the distributed middlebox instances.
This figure illustrates a controller cluster 525, an identifier
space 530, and several hosts 535-545 for each of the three
approaches. Each of the host includes a MSE and a distributed
middlebox instance. The identifier space 530 includes a set of
connection identifiers that can be assigned to the distributed
middlebox instances.

0093. The first approach 505 shows slicing the identifier
space 530 in advance. That is, the controller cluster 525
assigns a non-overlapping range of connection identifiers to
each distributed middlebox instance as the controller cluster
configures the distributed middlebox instance. Each middle
box instance will have a pre-assigned range of identifiers and
will assign an identifier from the range to a connection for
which the corresponding MSE is a first-hop MSE. This
approach can be taken when the number of connection iden
tifiers is sufficient for the number of the distributed middle
box instances for which the identifiers should be sliced.

0094. The second approach 510 shows slicing the identi
fier space 530 on demand. In this approach, a distributed
middlebox instance asks for a range of connection identifiers
from the controller cluster 525 whenever the distributed
middlebox instance needs more connection identifiers. The
distributed middlebox instance can release a range of connec
tion identifiers when the distributed middlebox instance does
not need the range of connection identifiers. The controller
cluster 525 maintains the identifier space 530 to keep track of

Mar. 19, 2015

the ranges of identifiers that are being used by the distributed
middlebox instances and the identifiers that are available to be
assigned to the distributed middlebox instances. Specifically,
the controller cluster 525 of some embodiments taking this
approach Supports a connection identifier assignment API
that enables the distributed middlebox instances to obtain and
release a range of connection identifiers on demand. An
example API call for obtaining a range of connection identi
fiers is:

0.095
pose)

The key specifies the distributed middlebox instance that is
asking for a range of identifiers. The number of identifiers is
the number of identifiers that the distributed middlebox
instance asking for. Purpose indicates whether this range of
identifiers is going to be used for sanitizing the packets.
Sanitizing packets will be described further below by refer
ence to FIG. 12. The controller cluster 525 returns (1) a range
of connection identifiers which includes the requested num
ber of connection identifiers and (2) a range identifier for
identifying the range.
0096. An example API call for releasing a range of con
nection identifier is:

0097 range release (range id)
The range id is the range identifier for the range of connec
tion identifiers to release. In response to receiving this API
call, the controller cluster 525 makes this range of connection
identifiers available for assigning to the distributed middle
box instances.
0098. The third approach 515 shows assigning the entire
range of connection identifiers to each of the distributed
middlebox instances. This approach can be taken when the
identifier assignment to a connection happens at the destina
tion MSE for the connection, rather than at the first-hop MSE
for the connection. Because the identifier assignment to the
connection happens at the destination MSE, the identifier
assignment is used only by the destination MSE and the
corresponding middlebox instance. Therefore, there is no
need to uniquely identify a connection across different MSEs.

range acquire (key, number of identifiers, pur

II. Source Network Address Translation (SNAT)
0099. As mentioned above, one of the middlebox services
that a middlebox can provide is a SNAT service. When a
middlebox is providing the SNAT service, the middlebox
replaces the Source network address (e.g., the source IP
address) with a different source network address in order to
hide the real source network address from the recipient of the
packet. FIGS. 6-14 illustrate example operations of the MSEs
1-3 and the corresponding distributed middlebox instances
125-135. The distributed middlebox instances 125-135 pro
vides SNAT service unless otherwise specified below.
0100 FIG. 6 illustrates the logical network 105 and the
physical network 110 that is described above by reference to
FIG. 1. Specifically, FIG. 6 illustrates the elements of the
logical network 105 and the physical network 110 with ports.
The description of these ports will be used in the description
of the later figures, FIG. 7-14.
0101. As shown, the logical switch 1 has three ports, ports
1-3. Port 1 is associated with VM1's L2 address (e.g., a MAC
address). Port 2 is associated with VM 2's L2 address. Port 3
is associated with the MAC address of port X of the logical
router 115. The logical switch 2 has two ports, ports 4-5. Port
4 is associated with the MAC address of port Y of the logical

US 2015/008 1861 A1

router 115. In this example, the MAC address of port X is
01:01:01:01:01:01 and the MAC address of port Y is 01:01:
O1:01:01:02.

0102 The logical router has ports X, Y, and N. Port X is
coupled to port 3 of the logical switch 1. In this example, the
logical switch 1 forwards packets betweenVMs that have IP
addresses that belong to a subnet IP address of 10.0.1.0/24.
Port X is therefore associated with a subnet IP address of
10.0.1.0/24. Port Y is coupled to port 4 of the logical switch 2.
In this example, the logical Switch 2 forwards packets
betweenVMs that have IP addresses that belong to a subnet IP
address of 10.0.2.0/24. Port Y is therefore associated with a
subnet IP address of 10.0.2.0/24. Port N is for sending packets
to the middlebox 120 and is not associated with any IP subnet
in this example. In some embodiments, a port of the MSE that
the MSEuses to communicate with the distributed middlebox
instance (e.g., port N) is a port that does not have a physical
port (e.g., VIF) to which the port is mapped. Also, VM1 has
an IP address of 10.0.1.1 and VM 2 has an IP address of
10.0.1.2. VM3 has an IP address of 10.0.2.1 in this example.
The middlebox 120 in this example has a set of IP addresses
11.0.1.1-11.0.1.100 to use to translate source IP addresses of
packets that originate from the logical Switch 1 (e.g., packets
having the source IP addresses that belong to the subnet IP
address of 10.0.1.0/24).
(0103 Shown in the bottom half of FIG. 6 are hosts 1-3 on
which the MSEs 1-3 and the distributed middlebox instances
125-135, respectively, run. The MSE 1 has ports A-C. The
MSE 2 has ports G-I. The MSE 3 has ports D-F. In this
example, the tunnel that is established between the MSEs 1
and 2 terminates at ports B and G. The tunnel that is estab
lished between the MSEs 1 and 3 terminates at ports A and D.
The tunnel that is established between the MSEs 2 and 3
terminates at ports Hand E. Port C of the MSE 1 is mapped to
port 1 of the logical switch 1 and therefore port C is associated
with the MAC address of VM 1. Port 1 of the MSE 2 is
mapped to port 2 of the logical switch 1 and therefore port 1
is associated with the MAC address of VM 2. Port F of the
MSE 3 is mapped to port 5 of the logical switch 2 and
therefore port F is associated with the MAC address of VM3.
01.04] A. Distributed Middlebox Instance with SNAT Ser
vice
0105 FIG. 7 conceptually illustrates a process 700 that
some embodiments perform to provide SNAT service. In
some embodiments, the process 700 is performed by a dis
tributed middlebox instance in order to translate source net
work addresses of the packets that the distributed middlebox
instance's corresponding MSE (i.e., the MSE that is running
in the same host), as a first-hop MSE, processes. The distrib
uted middlebox instance of some embodiments receives flow
templates along with the packets, which are flow entries that
are missing some actual values. In these embodiments, the
distributed middlebox provides the middlebox service by cre
ating flow entries by filling in the flow templates with actual
values and installing the created flow entries in the flow tables
of the first-hop MSE. The distributed middlebox also sends
the packets back to the first-hop MSE so that the packets are
processed by the MSE based on the flow entries installed by
the distributed middlebox instance.
0106. The process 700 begins by receiving (at 705) a
packet and several flow templates from a MSE that is a first
hop MSE with respect to this packet. That is, the MSE send
ing the packet has received the packet from a source VM with
which the MSE directly interfaces. This packets destination

Mar. 19, 2015

IP address is the IP address of a destination VM, which is not
coupled to the logical switch to which the source VM is
coupled. The packet has the IP address of the source VM as
the source IP address.
0107 Next, the process 700 identifies (at 710) the source
IP address of the received packet so that the process can
translate this address into another IP address. The process 700
then determines (at 715) whether there is an available IP
address to which to translate the source IP address. In some
embodiments, the process 700 maintains a set of IP addresses.
When all IP addresses in the maintained set are used, the
process 700 determines that no address is available. When
there is an IP address in the maintained set of addresses that
the process 700 can use, the process 700 determines that an
address to which to translate the source IP address of the
received packet is available.
0108. When the process 700 determines (at 715) that there

is no available address to which to translate the source IP
address of the packet, the process 700 creates (at 730) and
installs a failure flow entry. In some embodiments, the pro
cess 700 creates the failure flow entry by filling in a received
(at 705) flow template with an instruction to drop the packet.
The MSE will drop the packet according to the failure flow
entry. The process 700 then proceeds to 735, which will be
described further below.
0109. When the process 700 determines (at 715) that there

is an available address to which to translate the source IP
address of the packet, the process 700 maps (at 720) the
source IP address of the packet to the address to which to
translate the source IP address and stores the mapping.
0110. Next at 725, the process 700 creates and installs
forward and reverse flow entries. A forward flow entry is a
flow entry that directs the first-hop MSE to modify the packet
by replacing the source IP address with the IP address to
which the source IP address is mapped (at 720). In some
embodiments, the process 700 creates the forward flow entry
by filling in a received (at 705) flow template with the address
to which the source IP address is mapped (at 720). A reverse
flow entry is a flow entry that directs the first-hop MSE to
modify a response packet that is sent from the destination of
the initial packet (i.e., the packet that is sent to the destination)
in response to receiving the initial packet. The response
packet will have a destination IP address, which is the IP
address to which the source IP address of the initial packet is
translated. The first-hop MSE translates the destination IP
address of the response packet so that the response packet can
reach the source VM of the initial packet.
0111. Next, the process 700 then sends (at 735) the packet
back to the first-hop MSE. The process 700 then ends. The
first-hop MSE will process the packet based on the flow
entries, which will include the forward and reverse flow
entries and/or the failure flow entry.
(O112 B. First-Hop Processing of the First Packet
0113 FIG. 8 conceptually illustrates an example opera
tion of a MSE that is a first-hop MSE with respect to a data
packet. Specifically, this figure illustrates an operation of the
MSE 1 that processes a packet from VM 1 to VM3. In this
example, the packet is the very first packet that is sent from
VM1 to VM3. This figure also illustrates the operation of a
distributed middlebox instance that receives the packet from
the first-hop MSE to provide SNAT service. Specifically, the
top half of this figure illustrates two processing pipelines 800
and 801 that are performed by the MSE 1. The processing
pipeline 800 includes L2 processing 820 for the logical

US 2015/008 1861 A1

switch 1 and L3 processing 845 for the logical router 115,
which have stages 825-840 and stages 850-860, respectively.
The processing pipeline 801 includes L3 processing 865 for
the logical router 115 and L2 processing 895 for the logical
switch 2, which have stages 870-890 and stages 896-899,
respectively.
0114. The bottom half of the figure illustrates the MSEs 1
and 3, and VM1. As shown, the MSE 1 includes a table 805
for storing flow entries for the logical switch 1 (not shown), a
table 810 for storing flow entries for the logical router 115,
and a table 815 for storing flow entries for the logical switch
2. Although these tables are depicted as separate tables, the
tables do not necessarily have to be separate tables. That is, a
single table may include all the flow entries for the MSE 1 to
use to perform the logical processing of the logical router 115
and the logical Switches 1 and 2.
0115. When VM 1 that is coupled to the logical switch 1
sends packet 1 to VM3 that is coupled to the logical switch 2,
the packet is first sent to the MSE 1 through port 1 of the MSE
1. The MSE 1 performs an L2 processing 820 on packet 1
based on the forwarding tables 805 of the MSE 1. In this
example, packet 1 has a destination IP address of 10.0.2.1.
which is the IP address of VM 3 as described above by
reference to FIG. 6. Packet 1's Source IP address is 10.0.1.1.
Packet 1 also has VM 1's MAC address as a source MAC
address and the MAC address of port X (01:01:01:01:01:01)
of the logical router 115 as a destination MAC address.
0116. The MSE 1 identifies a flow entry indicated by an
encircled 1 (referred to as “record 1') in the forwarding table
805 that implements the context mapping of the stage 825.
The record 1 identifies packet 1's logical contextbased on the
ingress port, which is port 1 through which packet 1 is
received from VM 1. In addition, the record 1 specifies that
the MSE 1 stores the logical context of packet 1 in a set of
fields (e.g., a VLAN id field) of packet 1's header. In some
embodiments, a logical context represents the State of the
packet with respect to the logical Switching element. For
example, some embodiments of the logical context may
specify the logical Switching element to which the packet
belongs, the port of the logical Switching element through
which the packet was received, the port of the logical switch
ing element through which the packet is to be transmitted, the
stage of the LFP of the logical switching element the packet is
at, etc.
0117 The record 1 also specifies packet 1 is to be further
processed by the forwarding tables (e.g., by sending packet 1
to a dispatch port). A dispatch port (not shown) is a port of a
MSE to send the processed packet back to the ingress port of
the MSE so that the MSE can further process the packet.
0118 Based on the logical context and/or other fields
stored in packet 1's header, the MSE 1 identifies a flow entry
indicated by an encircled 2 (referred to as “record 2) in the
forwarding tables that implements the ingress ACL of the
stage 830. In this example, the record 2 allows packet 1 to be
further processed and, thus, specifies packet 1 is to be further
processed by the MSE 1. In addition, the record 2 specifies
that the MSE 1 stores the logical context (i.e., packet 1 has
been processed by the stage 830) of packet 1 in the set offields
of packet 1's header.
0119) Next, the MSE 1 identifies, based on the logical
context and/or other fields stored in packet 1's header, a flow
entry indicated by an encircled 3 (referred to as “record 3') in
the forwarding tables that implements the logical L2 forward
ing of the stage 835. The record 3 specifies that a packet with

Mar. 19, 2015

the MAC address of port X of the logical router 115 as a
destination MAC address is to be sent to port 3 of the logical
switch 1.

0.120. The record 3 also specifies that packet 1 is to be
further processed by the MSE 1. Also, the record 3 specifies
that the MSE 1 stores the logical context (i.e., packet 1 has
been processed by the third stage 835) in the set of fields of
packet 1's header.
I0121 Next, the MSE 1 identifies, based on the logical
context and/or other fields stored in packet 1's header, a flow
entry indicated by an encircled 4 (referred to as “record 4) in
the forwarding tables that implements the egress ACL of the
stage 840. In this example, the record 4 allows packet 1 to be
further processed (e.g., packet 1 can get out of the logical
switch 1 through port 3 of the logical switch 1) and, thus,
specifies packet 1 is to be further processed by the MSE 1
(e.g., by sending packet 1 to the dispatchport). In addition, the
record 4 specifies that the MSE 1 stores the logical context
(i.e., packet 1 has been processed by the stage 845 of the
processing pipeline 800) of packet 1 in the set of fields of
packet 1's header. (It is to be noted that all records specify that
a MSE updates the logical context store in the set of fields
whenever the MSE performs some portion of logical process
ing based on a record.)
0.122 The MSE 1 continues processing packet 1 based on
the flow entries. The MSE 1 identifies, based on the logical
context and/or other fields stored in packet 1's header, a flow
entry indicated by an encircled 5 (referred to as “record 5) in
the L3 entries 810 that implements L3 ingress ACL of the
logical router 115 by specifying that the MSE 1 should accept
the packet through port X of the logical router 115 based on
the information in the header of packet 1. The record 5 also
specifies that packet 1 is to be further processed by the MSE
1 (e.g., by sending packet 1 to a dispatch port). In addition, the
record 5 specifies that the MSE 1 stores the logical context
(i.e., packet 1 has been processed by the stage 850 of the
processing pipeline 800) of packet 1 in the set of fields of
packet 1's header.
(0123. The MSE 1 then identifies a flow entry indicated by
an encircled 6 (referred to as “record 6’) in the L3 entries
table 810 implements the L3 routing 855 by specifying that a
packet received through port X of the logical router 115 is to
be sent to the middlebox 120 through port N. That is, the
record 6 specifies that a packet having a source IP address that
belongs to the subnet IP address of 10.0.1.0/24 is to be sent to
the middlebox 120. Because packet 1 has the source IP
address 10.0.1.1 that belongs to the subnet IP address of
10.0.1.0/24, the MSE 1 will send the packet to the distributed
middlebox instance 125.

(0.124. The MSE 1 then identifies a flow entry indicated by
an encircled 7 (referred to as “record 7) in the L3 entries 810
that implements L3 egress ACL 860 by specifying that the
MSE 1 allows the packet to exit out through port N of the
logical router 115 based on the information (e.g., source IP
address) in the header of packet 1. In addition, the record 7
specifies that the MSE 1 removes the logical context of packet
1 from the set offields of packet 1's header. The MSE 1 sends
packet 1 to the distributed middlebox instance 125, which
implements the middlebox 120. The record 7 also specifies
that several flow templates are to be sent to the middlebox 120
along with packet 1. The managed Switching element 1 of
some embodiments also sends a slice identifier to the distrib
uted middlebox instance 125 so that the slice of the distrib

US 2015/008 1861 A1

uted middlebox instance 125 for the user of the logical
Switching elements in the logical network 1 processes packet
1

0.125. Upon receiving packet 1, the distributed middlebox
instance 125 identifies an IP address to which to translate the
source IP address (10.0.1.1) of packet 1. In this example, the
distributed middlebox instance 125 selects 11.0.1.1 from the
range of IP addresses (11.0.1.1-11.0.1.100) described above
by reference to FIG. 6. The distributed middlebox instance
125 also creates a forward flow entry that specifies that the
MSE 1 modifies a packet that has a source IP address of
10.0.1.1 by replacing the source IP address (10.0.1.1) with the
selected IP address (11.0.1.1). The distributed middlebox
instance 125 also creates a reverse flow entry that specifies
that the MSE 1 modifies a packet with a destination IP address
of 11.0.1.1 by replacing the destination IP address of this
packet with an IP address of the VM1. The reverse flow entry
ensures that a response packet from VM3 reaches the correct
destination, VM 1. The distributed middlebox instance 125
installs the created flow entries and sends packet 1 back to the
MSE 1. In some embodiments, the MSE 1 treats the packet
returned from the distributed middlebox instance 125 as a
new packet to route. Thus, this new packet is referred to as
packet 2 in this example. As shown, the forward and reverse
flow entries are installed (e.g., placed) in the table 810 indi
cated by encircled F and R, respectively.
0126 Upon receiving packet 2, the MSE 1 performs the L3
processing 865 on packet 2 based on the table 810. In this
example, because packet 2 is still same as packet 1, packet 2
has a destination IP address of 10.0.2.1, which is the IP
address of VM3. Packet 2's Source IP address is still 10.0.1.1.
The MSE 1 identifies a flow entry indicated by an encircled 8
(referred to as “record 8) in the forwarding table 810 that
implements the context mapping of the stage 870. The record
1 identifies packet 2's logical context based on the ingress
port, which is port N through which packet 2 is received from
the middlebox 120. In addition, the record 8 specifies that the
MSE 1 stores the logical context of packet 2 in a set of fields
(e.g., a VLAN idfield) of packet 2's header. The record 8 also
specifies packet 2 is to be further processed by the MSE 1
(e.g., by sending packet 2 to a dispatch port).
0127. The MSE 1 continues processing packet 2 based on
the flow entries. The MSE 1 identifies, based on the logical
context and/or other fields stored in packet 2's header, a flow
entry indicated by an encircled 9 (referred to as “record 9”) in
the L3 entries 810 that implements L3 ingress ACL875 of the
logical router 115 by specifying that the MSE 1 should accept
the packet through port N of the logical router 115 based on
the information in the header of packet 2. The record 9 also
specifies that packet 2 is to be further processed by the MSE
1. In addition, the record 9 specifies that the MSE 1 stores the
logical context (i.e., packet 2 has been processed by the stage
875 of the processing pipeline 801) of packet 2 in a set of
fields of packet 2's header.
0128. The MSE 1 then identifies a flow entry indicated by
an encircled 10 (referred to as “record 10') in the L3 entries
810 that implements L3 routing 880 by specifying that packet
2 with its destination IP address (10.0.2.1) should exit out of
port Y of the logical router 115. The record 10 also specifies
that packet 2 is to be further processed by the MSE 1. In
addition, the record 10 specifies that the MSE 1 stores the
logical context (i.e., packet 2 has been processed by the stage
880 of the processing pipeline 801) of packet 2 in a set of
fields of packet 2's header.

Mar. 19, 2015

0129. In some embodiments, the flow entries have associ
ated priority levels. The priority levels are used to select one
of several flow entries when a packet satisfies the conditions
specified by the qualifiers of the several flow entries. The
MSE 1 identifies a flow entry indicated by an encircled F
(referred to as “record F) in the L3 entries table 810. The
record F is the forward flow entry that the distributed middle
box instance has created and installed in the table 810. Packet
2 meets the condition specified in the record F as well as the
condition specified in the record 6 because packet 2's source
IP address is 10.0.1.1 that is specified as a condition in the
record F and packet 2's source IP address belongs to the
subnet IP address of 10.0.1.0/24 specified as a condition in the
record 6. In some embodiments, the record F that is created by
the distributed middlebox instance has a priority level that is
higher than that of the record 6, which directs the MSE 1 to
send the packet to the distributed middlebox instance 125. In
addition, the record F specifies that the MSE 1 stores the
logical context (i.e., packet 1 has been processed by the stage
885 of the processing pipeline 801) of packet 2 in the set of
fields of packet 2's header. It is to be noted that the record F
may be identified ahead of the record 10 so that the MSE 1
replaces the source IP address of the packet before routing the
packet according to the record 10.
I0130. The MSE 1 then identifies a flow entry indicated by
an encircled 11 (referred to as “record 11) in the L3 entries
810 that implements L3 egress ACL by specifying that the
MSE 1 allows the packet to exit out through port Y of the
logical router 115 based on the information (e.g., source IP
address) in the header of packet 2. Also, the record 11 (or
another record in the routing table, not shown) indicates that
the source MAC address for packet 2 is to be rewritten to the
MAC address of port Y of the logical router 115 (01:01:01:
01:01:02). Record 11 may also specify that the MSE 1
resolves the destination IP address of packet 2 in order to
obtain the MAC address of VM3. In some embodiments, the
MSE 1 uses address resolution protocol (ARP) to resolve the
destination IP address into the MAC address of the destina
tion. Record 11 or another record may specify that the MSE1
replaces the destination MAC address of the packet (currently
the MAC address of port 3 of the MSE 1) with the MAC
address of VM3 to which the destination IP address has been
resolved. In addition, the record 11 specifies that the MSE 1
stores the logical context (i.e., packet 2 has been processed by
the stage 890 of the processing pipeline 801) of packet 2 in the
set of fields of packet 2's header.
I0131 Packet 2 has exited the logical router 115 through
port Yand has entered the logical switch 2 through port 4 of
the logical switch 2. The MSE 1 then performs L2 processing
895. Based on the logical context and/or other fields stored in
packet 2's header, the MSE 1 identifies a flow entry indicated
by an encircled 12 (referred to as “record 12) in the L2
entries 815 that implements the ingress ACL of the stage 896.
In this example, the record 12 specifies that packet 2 is to be
further processed by the MSE 1. In addition, the record 12
specifies that the MSE 1 stores the logical context (i.e., packet
1 has been processed by the stage 896 of the processing
pipeline 801) of packet 1 in the set of fields of packet 2's
header.

(0132) Next, the MSE 1 identifies, based on the logical
context and/or other fields stored in packet 1's header, a flow
entry indicated by an encircled 13 (referred to as “record 13)
in the L2 entries 815 that implements the logical L2 forward
ing of the stage 897. The record 13 specifies that a packet with

US 2015/008 1861 A1

the MAC address of VM 3 as the destination MAC address
should be forwarded through port 5 of the logical switch 2 that
is connected to VM3. The record 13 also specifies that packet
2 is to be further processed by the MSE 1. Also, the record 13
specifies that the MSE 1 stores the logical context (i.e., packet
2 has been processed by the stage 897 of the processing
pipeline 801) in the set of fields of packet 2's header.
0.133 Based on the logical context and/or other fields
stored in packet 2's header, the MSE 1 identifies a flow entry
indicated by an encircled 14 (referred to as “record 14) in the
L2 entries 815 that implements the context mapping of the
stage 898. In this example, the record 14 identifies the MSE3
as the MSE to which the packet exiting port 5 of the logical
switch 2 should be sent. The record 14 additionally specifies
that packet 2 be further processed by the MSE 1. In addition,
the record 14 specifies that the MSE 1 stores the logical
context (i.e., packet 2 has been processed by the stage 898 of
the processing pipeline 801) of packet 2 in the set of fields of
packet 2's header.
0134 Based on the logical context and/or other fields
stored in packet 2's header, the MSE 1 then identifies a flow
entry indicated by an encircled 15 (referred to as “record 15)
in the L2 entries 815 that implements the physical mapping of
the stage 899. The record 15 specifies port A of the MSE 1 as
a port through which packet 2 is to be sent in order for packet
2 to reach the MSE 3. In this case, the MSE 1 is to send packet
2 out of port A of MSE 1 that is coupled to the MSE3 through
a tunnel. In addition, the record 15 specifies that the MSE 1
stores the logical context (i.e., packet 2 has been processed by
the stage 899 of the processing pipeline 801) of packet 2 in the
set of fields of packet 2's header.
0135 B. First-Hop Processing of the Subsequent Packets
0.136 FIG. 9 conceptually illustrates an example opera
tion of a MSE that is a first-hop MSE with respect to a data
packet. Specifically, this figure illustrates an operation of the
MSE 1 that processes a packet from VM 1 to VM3. In this
example, the packet is one of the packets that are being sent
from VM 1 to VM3 after the very first packet that has been
sent from VM1 to VM3. This subsequent packet has the same
Source and destination IP addresses because the packet is
being sent from the same source to the same destination as the
first packet. The top half of this figure shows a processing
pipeline 900 that the MSE performs on this packet. The pro
cessing pipeline 900 includes the L2 processing 820 for the
logical switch 1, L3 processing 905 for the logical router 115,
and the L2 processing 895 for the logical switch 2. The L3
processing 905 has the stages 850, 880, 885, and 890.
0.137 As shown in FIGS. 8 and 9, the difference between
the processing of the very first packet (packet 1) and the
processing of a subsequent packet (packet 3) by the MSE 1 is
that the MSE 1 does not send the subsequent packet to the
distributed middlebox instance 125. This is because after the
stage 850 is performed according to the record 5, the MSE 1
goes with the record F rather than the record 6, which would
have directed the MSE 1 to send the subsequent packet to the
distributed middlebox instance. As described above by refer
ence to FIG. 8, the record F (i.e., the forward flow entry
created and installed by the distributed middlebox instance
125) has a higher priority level than the record 6 has. This
shows that only the first packet for establishing a connection
between the source and the destination needs to be sent to the
distributed middlebox instance and thus makes it faster to
process the Subsequent packets being sent from the source to
the destination.

Mar. 19, 2015

0.138 C. Processing Response Packets
0.139. As mentioned above, in some embodiments, a par
ticular MSE that is a first-hop with respect to a particular
packet performs all or most of the logical processing that is to
be performed on the particular packet in order for the particu
lar packet to reach the packet's destination. In some Such
embodiments, the particular MSE also performs all or most of
the logical processing that is to be performed on a response
packet that is sent from the destination of the particular packet
in response to receiving the particular packet. By having the
particular MSE perform the logical processing on the
response packet, some embodiments avoid having to share
state information (e.g., mapping of the source IP address of
the particular packet and the translated source IP address)
between MSEs. That is, had the first-hop MSE to the response
packet performed the logical operation on the response
packet, that MSE would need the state information in order to
restore the original Source IP address and send the response
packet back to the origin of the particular packet.
0140 FIG. 10 conceptually illustrates an example opera
tion of a MSE that is a first-hop MSE with respect to a
particular packet and is a last-hop MSE with respect to a
response packet that was sent in response to the particular
packet. Specifically, this figure illustrates an operation of the
MSE 1 that processes a packet from VM 3 to VM 1. In this
example, VM3 has sent this packet to VM 1 in response to
receiving a packet from VM1. In other words, the response
packet from VM3 is part of data stream originating from VM
3 and flowing into VM 1 over a connection (e.g., a transport
layer connection like a TCP connection). This figure also
illustrates that the response packets are not sent to the distrib
uted middlebox instance 125 for translating the destination IP
addresses of the response packets into the IP address of VM1.
Instead, the MSE 1 performs that translation according to the
reverse flow entry that is created and installed by the distrib
uted middlebox instance 125 as described above by reference
to FIG.8.
0.141. The top half of FIG. 10 illustrates a processing pipe
line 1000 that is performed by the MSE 1. The processing
pipeline 1000 includes L2 processing 1005 for the logical
switch 2, L3 processing 1010 for the logical router 115, and
L2 processing 1015 for the logical switch 1, which have
stages 1020-1035, stages 1040-1055, and stages 1096-1099,
respectively. The bottom half of the figure illustrates the
MSEs 1 and 3, and VM1. As shown, the MSE 1 includes the
tables 805,810, and 815 for storing flow entries for the logical
switch 1, the logical router 115, and the logical switch 2,
respectively.
0142. When the MSE 1 receives from the MSE3 packet 4
that is originated from VM3 through port A of the MSE, the
MSE 1 performs the L2 processing 1005 to forward packet 4
from VM3 to the logical router 115. The MSE 1 performs the
L2 processing 1005 based on the flow entries indicated by
encircled 16-19. Packet 4 has VM3’s IP address 10.0.2.1 as
the source IP address and has the destination IP address of
11.0.1.1 because packet 4 is a response packet to a packet that
has the source IP address of 11.0.1.1.

0143. The MSE 1 then performs the L3 processing 1010 to
route the packet out of the logical router 115 through port X
of the logical router 115. Specifically, based on the logical
context and/or other fields stored in packet 4's header, the
MSE 1 identifies a flow entry indicated by an encircled 20
(referred to as “record 20') in the forwarding tables that
implements the L3 ingress ACL of the stage 1040. In this

US 2015/008 1861 A1

example, the record 20 allows packet 4 to be further processed
and, thus, specifies that packet 4 is to be further processed by
the MSE 1. In addition, the record 20 specifies that the MSE
1 stores the logical context (i.e., packet 1 has been processed
by the stage 1040) of packet 4 in the set of fields of packet 4's
header.
0144. The MSE 1 then identifies the reverse flow entry
indicated by encircled R (referred to as “record R”). As men
tioned above, the reverse flow entry specifies that the MSE 1
modifies a packet with a destination IP address of 11.0.1.1 by
replacing the destination IP address of this packet with the IP
address of the VM 1 (10.0.1.1).
(0145 The MSE 1 then identifies a flow entry indicated by
an encircled 21 (referred to as “record 21) in the L3 entries
810 that implements L3 routing 1050 by specifying that
packet 4 with its destination IP address (10.0.1.1) should exit
out of port X of the logical router 115. Also, the record 21 (or
another record in the routing table, not shown) indicates that
the source MAC address for packet 4 is to be rewritten to the
MAC address of port X of the logical router 115 (01:01:01:
01:01:01).
0146 The MSE 1 then identifies a flow entry indicated by
an encircled 22 (referred to as “record 22) in the L3 entries
810 that implements L3 egress ACL by specifying that the
MSE 1 allows the packet to exit out through port X of the
logical router 115 based on the information (e.g., source IP
address) in the header of packet 4. In addition, the record 22
specifies that the MSE 1 stores the logical context (i.e., packet
4 has been processed by the stage 1055 of the processing
pipeline 1000) of packet 4 in the set of fields of packet 4's
header.
0147 The MSE 1 then performs the L2 processing 1015
for the logical switch 1 according to the flow entries indicated
by encircled 23-26. The MSE will send packet 4 out of the
logical Switch 1 through port 1 of the logical Switch. Because
port C of the MSE 1 is mapped to port 1 of the logical switch,
the MSE 1 will physical send out packet 1 to VM1 through
port C of the MSE 1.
014.8 D. Last-Hop Processing of the First and Subsequent
Packets
0149. In some embodiments, sanitizing packets is done at
the last-hop MSE when the first-hop MSEs sending the pack
ets to the last-hop MSEs do not assign unique identifiers to the
packets. When the packets from different first-hop MSEs
come into the same last-hop MSE without having been
assigned unique identifiers, the last-hop MSE in Some cases
would not be able to send response packets to the right first
hop MSE because the incoming packets may have the same
five-tuple (e.g., source IP address, destination IP address,
transport protocol type, Source port number, destination port
number). Sanitizing packets includes adding a unique identi
fier to the packets in addition to the 5-tuples or modifying the
5-tuples of the packets (e.g., changing the Source port num
ber) to make the 5-tuples distinguishable.
0150 FIG. 11 conceptually illustrates a process 1100 that
some embodiments perform to set up forward and reverse
sanitization flow entries at a MSE that is a last-hop MSE. A
MSE is a last-hop MSE with respect to a particular packet
when the MSE is directly interfacing the destination of the
particular packet. For instance, for a packet that is sent from
VM1 to VM3 as described above in FIG. 6, the MSE3 is the
last-hop with respect to the packet because the MSE 3 is
directly interfacing VM 3, which is the destination of the
packet.

Mar. 19, 2015

0151. In some embodiments, the process 1100 is per
formed by a distributed middlebox instance that runs in the
same host in which a MSE runs. The MSE is the last-hop MSE
with respect to the packets that the MSE sends to the distrib
uted middlebox instance. The distributed middlebox instance
of some embodiments also receives flow templates along with
the packets. In these embodiments, the distributed middlebox
provides the middlebox service by creating flow entries by
filling in the flow templates with actual values and installing
the created flow entries in the flow tables of the last-hop MSE.
The distributed middlebox also sends the packets back to the
last-hop MSE so that the packets are processed by the MSE
based on the flow entries installed by the distributed middle
box instance.

0152 The process 1100 begins by receiving (at 1105) a
packet and several flow templates from a MSE that is a last
hop MSE with respect to this packet. That is, the MSE has
received the packet from another MSE and not from a VM
with which the receiving MSE directly interfaces. The packet
has a five-tuple in the header of this packet. The process 1100
also receives the identification of the other MSE from which
the receiving MSE received the packet.
0153. Next, the process 1100 determines (at 1110)
whether the process 1100 has previously received a packet
that has the same five-tuple from a different MSE. The pro
cess 1100 in some embodiments maintains a look up table of
five-tuples and the identifications of the MSE that has sent the
packets with the five-tuples to the last-hop MSE. The process
1100 looks up this table to determine whether a packet with
the same five-tuple as the received packet has been received
from a MSE that is different from the MSE that has sent the
currently received packet to the last-hop MSE.
0154 When the process determines (at 1110) that the pro
cess 1100 has not seen a packet with the same five-tuple as
that of the received packet from a different MSE, the process
1100 proceeds to 1120 to add the five-tuple and the MSE
identification of the received packet in the look up table. The
process 1100 then proceeds to 1125, which will be described
further below.

(O155 When the process determines (at 1110) that the pro
cess 1100 has seen a packet with the same five-tuple as that of
the received packet from a different MSE, the process 1100
proceeds to 1115 to create and install a forward sanitization
flow entry and a reverse sanitization flow entry in the flow
tables of the last-hop MSE. A forward sanitization flow entry
is a flow entry that directs the last-hop MSE to modify the
received packets five-tuple to make the packets five-tuple
unique (e.g., by replacing the Source port number with a new
Source port number). A reverse sanitization flow entry is a
flow entry that directs the last-hop MSE to modify response
packets that are sent from the received packet's destination to
the source of the received packet. According to the reverse
sanitization flow entry, the MSE un-does the sanitization
performed based on the forward sanitization flow entry. That
is, for instance, the last-hop MSE replaces the destination port
number (i.e., the new source port number of the received
packet) of the response packets with the original source port
number of the received packet. The process 1100 records the
new source port number so that the process 1100 does not
reuse the same new Source port number to sanitize other
packets.
0156 Next, the process 1100 then sends (at 1125) the
received packet back to the last-hop MSE. The process 1100

US 2015/008 1861 A1

then ends. The last-hop MSE will process the packet based on
the flow entries, which will include the forward and reverse
sanitization flow entries.
0157 FIG. 12 conceptually illustrates example operations
of a MSE that is a last-hop MSE with respect to packets. That
is, this MSE receives packets that are being sent to a destina
tion with which this MSE is directly interfacing. Specifically,
this figure illustrates operations of the MSE 3 that processes
packets from VM 1 to VM3. The MSE3 processes packet 2
that is the first packet going to VM3 from VM1. Packet 2 is
the packet that the MSE 1 has processed as described above
by reference to FIG. 8.
0158. The top side of the figure shows two processing
pipelines 1205 and 1210 that are performed by the MSE 3.
The processing pipeline 1205 includes stages 1220 and 1225.
The processing pipeline 1210 includes stages 1220, 1235,
1236,1240, and 1245. The bottom side of the figure shows the
MSEs 1 and 3, and VM3. As shown, the MSE3 includes the
table 1250 for storing flow entries for the logical switch 2.
0159. When the MSE3 receives from the MSE 1 packet 2
that is originated from VM 1 through port D of the MSE, the
MSE 3 performs the processing pipeline 1205 to forward
packet 2 to the distributed middlebox instance 135. The MSE
3 performs the processing pipeline 1205 based on the flow
entries indicated by encircled 27 and 28. As described above
by reference to FIG. 8, packet 2 has the source IP address of
11.0.1.1, which was translated from the IP address of VM 1
(10.0.1.1) and has the IP address of VM 3, 10.0.2.1 as the
destination IP address. The packet 2 also has the MAC
address of portY of the logical router 115, 01:01:01:01:01:02,
as a source MAC address and has the MAC address of VM3
as the destination MAC address.
0160 Based on the logical context stored in packet 2
header, the MSE3 then identifies a flow entry indicated by an
encircled 27 (referred to as “record 27) in the L2 entriestable
1250 that implements the context mapping of the stage 1220.
The record 27 identifies the packet 2's logical context based
on the logical context that is stored in packet 2's header. The
logical context specifies that packet 2 has been processed by
the stage 897 of the processing pipeline 801, which was
performed by the MSE 1. As such, the record 27 specifies that
packet is to be further processed by the MSE 3 (e.g., by
sending the packet to a dispatch port of the MSE 3).
(0161 The MSE3 then identifies a flow entry indicated by
encircled 28 (referred to as “record 28”) in the table 1250 that
implements the stage 1225. The record 28 specifies that
packet 2 is to be sent to the distributed middlebox instance
135. The record 28 also specifies that several flow templates
for generating forward and reverse sanitization flow entries
are to be sent to the distributed middlebox instance. The
record 28 also specifies that the MSE 3 is to send an identi
fication of the MSE 1 to indicate that packet 2 came from the
MSE 1. The managed switching element 3 of some embodi
ments also sends a slice identifier to the distributed middlebox
instance 135 so that the slice of the distributed middlebox
instance 135 for the user of the logical switches 1 and 2 and
the logical router 115 processes packet 1.
0162. Upon receiving packet 2 and the identification of the
MSE 1 from the MSE 3, the distributed middlebox instance
135 identifies the five-tuple of packet 2 and determines
whether the distributed middlebox instance has received a
packet that has the same five-tuple from another MSE. In this
example, the MSE 2 had sent a packet from VM 2 to VM 3
before. This packet had the same five-tuple as packet 2's

Mar. 19, 2015

because the distributed middlebox instance 130 running in
host 2 for the MSE 2 and the distributed middlebox instance
125 running in host 1 for the MSE 1 are configured to imple
ment the middlebox 120 and thus the distributed middlebox
instance 130 translated the source IP address of the packet
from VM2 from the source IP address of VM 2 to 11.0.1.1.

(0163. In some embodiments, the distributed middlebox
instance maintains a look up table of five-tuples and the
identifications of the MSE that has sent the packets with the
five-tuples to the last-hop MSE. In this example, the look up
table of the distributed middlebox instance 135 has an entry
for the packet from VM2 and VM3. The distributed middle
box instance 135 thus creates a forward sanitization flow
entry that specifies that the MSE 3 modifies a packet that has
the five tuple of packet 2 (e.g., source IP address: 11.0.1.1,
destination IP address: 10.0.2.1, source port number: 1234,
destination port number: 80, transport protocol: TCP) and the
identification of the MSE 1 by replacing the source port
number with a new source port number (e.g., 12340). The new
Source port number serves as a connection identifier because
the new Source port number makes the connection over which
the packet is being sent unique.
(0164. The distributed middlebox instance 135 also creates
a reverse sanitization flow entry that specifies that the MSE3
modifies a packet (not shown), which is sent from VM 3 to
VM 1 in response to receiving packet 2, by replacing the
destination port number to the port number of VM 1 from
which packet 2 came. This reverse sanitization is to restore
the correct port number so that the response packet from VM
3 to VM1 reaches the correct port of VM1. In this example,
the flow entry indicated by encircled RS (“the record RS”)
specifies that the MSE 3 modifies a packet, which has a
five-tuple of a packet from VM 3 to VM 1 in response to
packet 5 (e.g., source IP address: 10.0.2.1, destination IP
address: 11.0.1.1, source port number: 80, destination port
number: 12340, transport protocol: TCP), by replacing the
destination port number with the Source port number (e.g.,
1234) of packet 2 before being sanitized.
(0165. The distributed middlebox instance 135 installs the
created flow entries and sends packet 2 back to the MSE 3. In
some embodiments, the MSE 3 treats the packet returned
from the distributed middlebox instance 135 as a new packet
to route. Thus, this new packet is referred to as packet 5 in this
example. As shown, the forward and reverse sanitization flow
entries are installed (e.g., placed) in the table 1250 indicated
by encircled FS and RS, respectively.
(0166 In some embodiments, the distributed middlebox
instance may keep separate slices for generating forward and
reverse flow entries and generating sanitization flow entries.
That is, the distributed middlebox instance has one slice for
the packets for which the distributed middlebox instance pro
vides the SNAT service and has another slice for the packets
for which the distributed middlebox instance provides sani
tization even though all these packets belong to the same
logical domain of a single user.
(0167. Upon receiving packet 5, the MSE 3 performs the
processing pipeline 1210 on packet 5 based on the table 1250.
In this example, because packet 5 is still the same as packet 2.
packet 5 has the same five-tuple with the source port number
1234. The MSE 3 identifies a flow entry indicated by an
encircled 27 (referred to as “record 27) in the forwarding
table 1250 that implements the context mapping of the stage
1220, which is described above. The record 27 also specifies

US 2015/008 1861 A1

packet 5 is to be further processed by the MSE 1 (e.g., by
sending packet 5 to a dispatch port).
(0168 The MSE 3 identifies a flow entry indicated by an
encircled FS (referred to as “record FS) in the table 1250.
The record FS is the forward sanitization flow entry that the
distributed middlebox instance 135 has created and installed
in the table 1250. Packet 5 meets the condition specified in the
record FS as well as the condition specified in the record 28
because packet 5's five-tuple is specified as a condition in the
record FS and in the record 28. In some embodiments, the
record FS that is created by the distributed middlebox
instance has a higher priority level than that of the record 28,
which directs the MSE 3 to send the packet to the distributed
middlebox instance 135. In addition, the record FS specifies
that the MSE 3 stores the logical context (i.e., packet 5 has
been processed by the stage 1230 of the processing pipeline
1205) of packet 5 in the set of fields of packet 5’s header.
(0169. The MSE3 then identifies a flow entry indicated by
an encircled 29 (referred to as “record 29') in the L2 entries
1250 that implements generating a reverse hint flow entry of
the stage 1236. In some embodiments, the last-hop MSE
creates and installs a reverse hint. A reverse hint in some
embodiments is a flow entry that directs the MSE, which is the
last-hop MSE with respect to a particular packet, to send a
response packet to the origin of the particular packet without
performing logical processing on the response packet. A
reverse hint is set up in order to allow the first-hop MSE with
respect to the particular packet to process all or most of the
logical processing in some embodiments. As shown, the MSE
has installed a reverse hint flow entry indicated by encircled
RH (referred to as “record RH”). In this example, the record
RH specifies that the MSE 3 sends a packet, which has a
five-tuple of a packet from VM 3 to VM 1 in response to
receiving the sanitized packet 5 (e.g., source IP address: 10.0.
2.1, destination IP address: 11.0.1.1, source port number: 80.
destination port number: 1234, transport protocol: TCP) to
the MSE 1.
(0170 Next, the MSE 3 identifies, based on the logical
context and/or other fields stored in packet 5’s header, a flow
entry indicated by an encircled 30 (referred to as “record 30')
in the forwarding tables that implements the egress ACL of
the stage 1240. In this example, the record 30 allows packet 5
to be further processed (e.g., packet 5 can get out of the logical
switch 2 through port 5 of the logical switch 2) and, thus,
specifies packet 5 is to be further processed by the MSE 3. In
addition, the record 30 specifies that the MSE 3 stores the
logical context (i.e., packet 5 has been processed by the stage
1240 of the processing pipeline 1210) of packet 5 in the set of
fields of packet 5’s header.
0171 Based on the logical context and/or other fields
stored in packet 5's header, the MSE 3 then identifies a flow
entry indicated by an encircled 31 (referred to as “record 31)
in the table 1250 that implements the physical mapping of the
stage 1245. The record 31 specifies port F of the MSE 3 as a
port through which packet 5 is to be sent in order for packet 5
to reach VM 3. In addition, the record 31 specifies that the
MSE3 removes the logical context of packet 5 from the set of
fields of packet 5's header. The MSE3 sends packet 5 to VM
3
0172 FIG. 13 conceptually illustrates example operations
of a MSE that is a last-hop MSE with respect to packets.
Specifically, this figure illustrates operations of the MSE 3
that processes a packet from VM1 to VM3. In this example,
the MSE processes packet3 that is one of the packets going to

Mar. 19, 2015

VM 3 from VM 1 after the first packet has reached VM3.
Packet 3 is the packet that the MSE 1 has processed as
described above by reference to FIG. 9. As shown, the MSE
processes packet 3 that is one of the packets going to VM3
from VM 1 after the first packet has reached VM3. Packet 3
is the packet that the MSE 1 has processed as described above
by reference to FIG. 9.
0173 The top half of the figure shows a processing pipe
line 1215 that the MSE 3 performs on packet 3. The process
ing pipeline 1215 includes the stages 1220, 1235,1236,1240,
and 1245, which are described above. As shown in FIGS. 12
and 13, the difference between the processing of the very first
packet (packet 2) and the processing a Subsequent packet
(packet 3) by the MSE 3 (i.e., the last-hop MSE with respect
to packets 2 and 3) is that the MSE 3 does not send the
subsequent packet to the distributed middlebox instance 135.
This is because after the stage 1220 is performed according to
the record 27, the MSE3 goes with the record FS rather than
the record 28, which would have directed the MSE 3 to send
the subsequent packet to the distributed middlebox instance
135. As described above, the record FS (i.e., the forward
sanitization flow entry created and installed by the distributed
middlebox instance 135) has a higher priority level than the
record 28's priority level. This shows that only the first packet
for establishing a connection between the Source and the
destination needs to be sent to the distributed middlebox
instance and thus makes it faster to process the Subsequent
packets being sent from the source to the destination. Also,
the MSE3 regenerates or refreshes the record RH by perform
ing the stage 1236 for packet 3.
0.174 E. Last-Hop Processing of Response Packet
0.175 FIG. 14 conceptually illustrates an example opera
tion of a MSE that is a last-hop MSE with respect to a
particular packet and is a first-hop MSE with respect to a
response packet that is sent in response to the particular
packet. Specifically, this figure illustrates an operation of the
MSE 3 that processes a packet from VM 3 to VM 1. In this
example, VM 3 sends this packet to VM 1 in response to
receiving a packet from VM1. This figure also illustrates that
the response packets are not sent to the distributed middlebox
instance 135 for translating the destination IP addresses of the
response packets into the IP address of VM 1. Instead, the
MSE 3 processes the response packets according to the
reverse hint flow entry and the sanitization flow entry that are
created and installed by the distributed middlebox instance
135 as described above by reference to FIG. 12.
0176 The top half of FIG. 14 illustrates a processing pipe
line 1400 that is performed by the MSE 3. The processing
pipeline 1400 includes stages 1405-1420. The bottom half of
the figure illustrates the MSEs 3 and 1, and VM3. As shown,
the MSE3 includes the table 1250 for storing flow entries.
(0177. When the MSE 3 receives packet 4 from VM 3
through port F of the MSE, the MSE 3 performs the L2
processing 1400 to forward packet 4 from VM3 to the logical
router 115. The MSE3 performs the processing pipeline 1400
based on the flow entries indicated by encircled 32, RH, RS,
and 33. Packet 4 has a destination port number that is the
destination port number of the sanitized packet 3 (e.g.,
12340).
(0178. The MSE 3 identifies a flow entry indicated by an
encircled 32 (referred to as “record 32) in the forwarding
table 1250 that implements the context mapping of the stage
1405. The record 32 identifies packet 4's logical context
based on the ingress port, which is port F of the MSE 3

US 2015/008 1861 A1

through which packet 1 is received from VM 3. In addition,
the record 32 specifies that the MSE 3 stores the logical
context of packet 4 in a set of fields of packet 4's header. The
record 32 also specifies packet 4 is to be further processed by
the forwarding tables
0179 The MSE 3 then identifies the reverse hint flow
entry, the record RH. As mentioned above, the record RH
specifies that the MSE3 sends a packet, which has a five-tuple
of a packet from VM 3 to VM1 in response to receiving the
sanitized packet 5 (e.g., source IP address: 10.0.2.1, destina
tion IP address: 11.0.1.1, source port number: 80, destination
port number: 1234, transport protocol: TCP) to the MSE 1.
0180. The MSE 3 then identifies the reverse sanitization
flow entry, the record RS, which is created and installed by the
distributed middlebox instance 135. As mentioned above, the
record RS specifies that the MSE 3 modifies a packet, which
has a five-tuple of a packet from VM3 to VM1 in response to
packet 5 (e.g., source IP address: 10.0.2.1, destination IP
address: 11.0.1.1, source port number: 80, destination port
number: 12340, transport protocol: TCP), by replacing the
destination port number with the source port number (e.g.,
1234) of packet 2 before being sanitized. The MSE modifies
packet 4 accordingly.
0181 Based on the logical context and/or other fields
stored in packet 4's header, the MSE 3 then identifies a flow
entry indicated by an encircled 33 (referred to as “record 33’)
in the table 1250 that implements the physical mapping of the
stage 1420. The record 33 specifies port D of the MSE 3 as a
port through which packet 4 is to be sent in order for packet 4
to reach VM 1. The MSE 3 sends packet 4 to the MSE 1
through port D accordingly.

III. Electronic System
0182 Many of the above-described features and applica
tions are implemented as Software processes that are specified
as a set of instructions recorded on a computer readable
storage medium (also referred to as computer readable
medium). When these instructions are executed by one or
more processing unit(s) (e.g., one or more processors, cores
of processors, or other processing units), they cause the pro
cessing unit(s) to perform the actions indicated in the instruc
tions. Examples of computer readable media include, but are
not limited to, CD-ROMs, flash drives, RAM chips, hard
drives, EPROMs, etc. The computer readable media does not
include carrier waves and electronic signals passing wire
lessly or over wired connections.
0183 In this specification, the term “software' is meant to
include firmware residing in read-only memory or applica
tions stored in magnetic storage which can be read into
memory for processing by a processor. Also, in Some embodi
ments, multiple software inventions can be implemented as
Sub-parts of a larger program while remaining distinct soft
ware inventions. In some embodiments, multiple Software
inventions can also be implemented as separate programs.
Finally, any combination of separate programs that together
implement a software invention described here is within the
Scope of the invention. In some embodiments, the Software
programs, when installed to operate on one or more electronic
systems, define one or more specific machine implementa
tions that execute and perform the operations of the software
programs.
0184 FIG. 15 conceptually illustrates an electronic sys
tem 1500 with which some embodiments of the invention are
implemented. The electronic system 1500 may be a com

Mar. 19, 2015

puter, server, dedicated Switch, phone, or any other sort of
electronic device. Such an electronic system includes various
types of computer readable media and interfaces for various
other types of computer readable media. Electronic system
1500 includes a bus 1505, processing unit(s) 1510, a system
memory 1525, a read-only memory 1530, a permanent stor
age device 1535, input devices 1540, and output devices
1545.

0185. The bus 1505 collectively represents all system,
peripheral, and chipset buses that communicatively connect
the numerous internal devices of the electronic system 1500.
For instance, the bus 1505 communicatively connects the
processing unit(s) 1510 with the read-only memory 1530, the
system memory 1525, and the permanent storage device
1535.

0186. From these various memory units, the processing
unit(s) 1510 retrieve instructions to execute and data to pro
cess in order to execute the processes of the invention. The
processing unit(s) may be a single processor or a multi-core
processor in different embodiments.
0187. The read-only-memory (ROM) 1530 stores static
data and instructions that are needed by the processing unit(s)
1510 and other modules of the electronic system. The perma
nent storage device 1535, on the other hand, is a read-and
write memory device. This device is a non-volatile memory
unit that stores instructions and data even when the electronic
system 1500 is off. Some embodiments of the invention use a
mass-storage device (Such as a magnetic or optical disk and
its corresponding disk drive) as the permanent storage device
1535.

0188 Other embodiments use a removable storage device
(such as a floppy disk, flash drive, or ZIPR) disk, and its
corresponding disk drive) as the permanent storage device.
Like the permanent storage device 1535, the system memory
1525 is a read-and-write memory device. However, unlike
storage device 1535, the system memory is a volatile read
and-write memory, Such a random access memory. The sys
tem memory stores some of the instructions and data that the
processor needs at runtime. In some embodiments, the inven
tions processes are stored in the system memory 1525, the
permanent storage device 1535, and/or the read-only memory
1530. From these various memory units, the processing unit
(s) 1510 retrieve instructions to execute and data to process in
order to execute the processes of Some embodiments.
(0189 The bus 1505 also connects to the input and output
devices 1540 and 1545. The input devices enable the user to
communicate information and select commands to the elec
tronic system. The input devices 1540 include alphanumeric
keyboards and pointing devices (also called “cursor control
devices'). The output devices 1545 display images generated
by the electronic system. The output devices include printers
and display devices, such as cathode ray tubes (CRT) or liquid
crystal displays (LCD). Some embodiments include devices
Such as a touchscreen that function as both input and output
devices.

(0190. Finally, as shown in FIG. 15, bus 1505 also couples
electronic system 1500 to a network 1565 through a network
adapter (not shown). In this manner, the computer can be a
part of a network of computers (such as a local area network
(“LAN”), a wide area network (“WAN”), or an Intranet, or a
network of networks, such as the Internet. Any or all compo
nents of electronic system 1500 may be used in conjunction
with the invention.

US 2015/008 1861 A1

0191 Some embodiments include electronic components,
Such as microprocessors, storage and memory that store com
puter program instructions in a machine-readable or com
puter-readable medium (alternatively referred to as com
puter-readable storage media, machine-readable media, or
machine-readable storage media). Some examples of Such
computer-readable media include RAM, ROM, read-only
compact discs (CD-ROM), recordable compact discs (CD
R), rewritable compact discs (CD-RW), read-only digital ver
satile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a vari
ety of recordable/rewritable DVDs (e.g., DVD-RAM, DVD
RW, DVD+RW, etc.), flash memory (e.g., SD cards, mini-SD
cards, micro-SD cards, etc.), magnetic and/or Solid state hard
drives, read-only and recordable Blu-Ray(R) discs, ultra den
sity optical discs, any other optical or magnetic media, and
floppy disks. The computer-readable media may store a com
puter program that is executable by at least one processing
unit and includes sets of instructions for performing various
operations. Examples of computer programs or computer
code include machine code, Such as is produced by a com
piler, and files including higher-level code that are executed
by a computer, an electronic component, or a microprocessor
using an interpreter.
0.192 While the above discussion primarily refers to
microprocessor or multi-core processors that execute soft
ware, some embodiments are performed by one or more inte
grated circuits, such as application specific integrated circuits
(ASICs) or field programmable gate arrays (FPGAs). In some
embodiments, such integrated circuits execute instructions
that are stored on the circuit itself.
0193 As used in this specification and any claims of this
application, the terms “computer”, “server”, “processor, and
“memory' all refer to electronic or other technological
devices. These terms exclude people or groups of people. For
the purposes of the specification, the terms display or display
ing means displaying on an electronic device. As used in this
specification and any claims of this application, the terms
“computer readable medium' and “computer readable
media” are entirely restricted to tangible, physical objects that
store information in a form that is readable by a computer.
These terms exclude any wireless signals, wired download
signals, and any other ephemeral signals.
0194 While the invention has been described with refer
ence to numerous specific details, one of ordinary skill in the
art will recognize that the invention can be embodied in other
specific forms without departing from the spirit of the inven
tion. In addition, a number of the figures (including FIGS. 7
and 11) conceptually illustrate processes. The specific opera
tions of these processes may not be performed in the exact
order shown and described. The specific operations may not
be performed in one continuous series of operations, and
different specific operations may be performed in different
embodiments. Furthermore, the process could be imple
mented using several Sub-processes, or as part of a larger
macro process. Thus, one of ordinary skill in the art would
understand that the invention is not to be limited by the
foregoing illustrative details, but rather is to be defined by the
appended claims.

1-20. (canceled)
21. A non-transitory machine readable medium of a con

troller of a network control system for configuring a logical
middlebox in a plurality of hosts, the network control system
comprising a plurality of controllers, the non-transitory
machine readable medium storing sets of instructions for:

receiving configuration data for configuring, in each host
of the plurality of hosts, a middlebox instance to provide

Mar. 19, 2015

a source network address translation (SNAT) service to
a virtual machine operating in the host;

identifying a set of additional controllers of the network
control system that manage the plurality of middlebox
instances for implementing the configuration data; and

sending the configuration data to the identified set of addi
tional controllers for the additional controllers to subse
quently distribute the configuration data to the plurality
of middlebox instances.

22. The non-transitory machine readable medium of claim
21, wherein the controller is a logical controller and the
additional controllers are physical controllers.

23. The non-transitory machine readable medium of claim
21, wherein the network control system is for generating
physical control plane data for managing a set of managed
forwarding elements that implements forwarding operations
associated with a first logical datapath set, wherein the con
troller further comprises a set of instructions for converting
logical control plane data for the first logical datapath set to
physical control plane data.

24. The non-transitory machine readable medium of claim
23, wherein the controller is a master controller for the first
logical datapath set, wherein each of the additional control
lers is a master controller for a set of managed forwarding
elements that operate in the plurality of hosts to implement
the first logical datapath set.

25. The non-transitory machine readable medium of claim
21, wherein the configuration data comprise at least one map
ping of a pair of addresses.

26. The non-transitory machine readable medium of claim
21, wherein the configuration data comprise a set of connec
tion identifiers, wherein the middlebox instance provides the
SNAT service to the virtual machine operating in the same
host by assigning the set of connection identifiers to packets
the middlebox instance receives from the virtual machine.

27. The non-transitory machine readable medium of claim
26, wherein the set of connection identifiers is assigned to
packets in order for managed Switching elements, operating
in other hosts that receive the packets, to use the set of con
nection identifiers to send responses to the correct Sources of
the packets.

28. The non-transitory machine readable medium of claim
26, wherein the middlebox instance is configured to associate
a connection identifier in the set of connection identifiers with
a first packet originating from the virtual machine operating
in the host.

29. The non-transitory machine readable medium of claim
28, wherein the middlebox instance associates the connection
identifier with the first packet by replacing a source port
number of the first packet with the connection identifier.

30. The non-transitory machine readable medium of claim
26, wherein the set of connection identifiers is recorded as no
longer available to prevent other middlebox instances from
assigning the set of connection identifiers to packets the other
middlebox instances receive.

31. For a controller of network control system comprising
a plurality of controllers, a method for configuring a logical
middlebox in a plurality of hosts, the method comprising:

receiving configuration data for configuring, in each host
of the plurality of hosts, a middlebox instance to provide
a source network address translation (SNAT) service to
a virtual machine operating in the host;

identifying a set of additional controllers of the network
control system that manage the plurality of middlebox
instances for implementing the configuration data; and

US 2015/008 1861 A1

sending the configuration data to the identified set of addi
tional controllers for the additional controllers to subse
quently distribute the configuration data to the plurality
of middlebox instances.

32. The method of claim 31, wherein the controller is a
logical controller and the additional controllers are physical
controllers.

33. The method of claim 31, wherein the network control
system is for generating physical control plane data for man
aging a set of managed forwarding elements that implements
forwarding operations associated with a first logical datapath
set, wherein the controller further comprises a set of instruc
tions for converting logical control plane data for the first
logical datapath set to physical control plane data.

34. The method of claim 33, wherein the controller is a
master controller for the first logical datapath set, wherein
each of the additional controllers is a master controller for a
set of managed forwarding elements that operate in the plu
rality of hosts to implement the first logical datapath set.

35. The method of claim 31, wherein the configuration data
comprise at least one mapping of a pair of addresses.

36. The method of claim 31, wherein the configuration data
comprise a set of connection identifiers, wherein the middle

Mar. 19, 2015

box instance provides the SNAT service to the virtual
machine operating in the same host by assigning the set of
connection identifiers to packets the middlebox instance
receives from the virtual machine.

37. The method of claim 36, wherein the set of connection
identifiers is assigned to packets in order for managed Switch
ing elements, operating in other hosts that receive the packets,
to use the set of connection identifiers to send responses to the
correct sources of the packets.

38. The method of claim 36, wherein the middlebox
instance is configured to associate a connection identifier in
the set of connection identifiers with a first packet originating
from the virtual machine operating in the host.

39. The method of claim 38, wherein the middlebox
instance associates the connection identifier with the first
packet by replacing a source port number of the first packet
with the connection identifier.

40. The method of claim 36, wherein the set of connection
identifiers is recorded as no longer available to prevent other
middlebox instances from assigning the set of connection
identifiers to packets the other middlebox instances receive.

k k k k k

