US 20140156777A1

a9 United States
a2y Patent Application Publication o) Pub. No.: US 2014/0156777 A1l

Subbiah et al. 43) Pub. Date: Jun. 5, 2014
(54) DYNAMIC CACHING TECHNIQUE FOR (52) US.CL
ADAPTIVELY CONTROLLING DATA BLOCK CPC ..ot HO04L 29/08144 (2013.01)
COPIES IN A DISTRIBUTED DATA L0 GO 709/213
PROCESSING SYSTEM
(71) Applicant: NETAPP, INC., (US) 57) ABSTRACT
(72) Inventors: Sethuraman Subbiah, Santa Clara, CA
(US); Gokul Soundararajan,
Sunnyvale, CA (US); Tanya Shastri, A dynamic caching technique adaptively controls copies of
Sunnyvale, CA (US); Lakshmi data blocks stored within caches (“cached copies™) ofa cach-
Narayanan Bairavasundaram, San ing layer distributed among servers of a distributed data pro-
Jose, CA (US) cessing system. A cache coordinator of the distributed system
implements the dynamic caching technique to increase the
(73) Assignee: NETAPP, INC., Sunnyvale, CA (US) cached copies of the data blocks to improve processing per-
formance of the servers. Alternatively, the technique may
(21) Appl. No.: 13/690,158 decrease the cached copies to reduce storage capacity of the
(22) Filed: Nov. 30, 2012 servers. The technique may increase the cached copies when
it detects local and/or remote cache bottleneck conditions at
Publication Classification the servers, a data popularity condition at the servers, or a
shared storage bottleneck condition at the storage system.
(51) Int.ClL Otherwise, the technique may decrease the cached copies at
HO4L 29/08 (2006.01) the servers.
100 \
MANAGEMENT SERVER
300

bt
Y v !

SERVER-1 ™300 SERVER-2 [™-300 SERVER-3 ™300
CACHE CACHE CACHE i
120 120 120 !
CACHING !
LAYER :
= a

NETWORK
150

/\

\

STORAGE SYSTEM
200

US 2014/0156777 Al

Jun. 5,2014 Sheet 1 0f16

Patent Application Publication

e

00¢

| 'Ol

002
NFLSAS IDVOLS

0zl ozl
JHOVO JHOVO
£-d3Ad3S 00€~ ¢Z-43IN¥3S
» A

A \

00€
YIAYIS INFNIDVNVI

TS
HIAYT |
ONIHOYO !
[|
0z} !
JHOVD |
A A
RYENNELR
t
o0l

US 2014/0156777 Al

Jun. 5,2014 Sheet2 of 16

Patent Application Publication

052 052 052 ¢ 9Ol
MSIa | o o o | MSIO | | MMSIO
< < <
0rz 0€Z
H31dvay 3I9vHOLS Y31dvay YHOMLIN
?
092
== 012
747
NS HOSSIN0Hd
ONILYY3dO
IOVHOLS
02¢
AMOWIN
«/SN

US 2014/0156777 Al

Jun. 5,2014 Sheet 3 0of 16

Patent Application Publication

¢ 9Old
06¢ p—
HO1VNIQH002 3HOVD 00¥

HIOVNVYIN
SOILSILYLS

9c¢ %3

H01No3IXd HO1YNIAHO0D

ASVL qor

82¢ 423
H0SS300V HO1VYNIH00D
Y1iva .m.mﬂ Y.ivavidn
L INFLSAS ONILYH3d0
0ce g
J0V443LNI 0¢e
MAOMLIIN J0IA3d FDVHOLS V01
3 \
/
0re A
ale
H0SS3004d
(/oom

Patent Application Publication Jun. 5,2014 Sheet4 0f 16 US 2014/0156777 A1

400
N

DATA BLOCK
10

RACK 1

VRE SERVER 1 - 3
o (CACHE 120)

STATISTICS STATISTICS
450 450

FIG. 4

Patent Application Publication

Jun. 5,2014 Sheet 5of16

(START b’\ 505

v

US 2014/0156777 Al

P 500

COMPILE LIST OF {SERVER, BLOCK}

TUPLES

510

!

ORDER LIST OF {SERVER, BLOCK}

TUPLES

N-515

A

520

LIST EMPTY?

540
REMOVE SELECT
{SERVER, BLOCK} {SERVER, BLOCK} [~530
TUPLE FROM LIST TUPLE
A
535

NO

A

ANDWIDTH USAGE
> CACHE BANDWIDTH
THRESHOLD?

525

FIND TARGET SERVER

- 600

FIG. 5

Patent Application Publication Jun. 5,2014 Sheet 6 0f 16 US 2014/0156777 A1
600
(" START) g0 r
M
COMPILE LIST OF TARGET SERVERS 1™~610
Y
ORDER LIST OF TARGET SERVERS 615
625 645
/ v 620 | /
ADD NEW REMOVE
TARGET SERVER LISTEMPTY? TARGET SERVER
TO SYSTEM FROMLIST
635)\
SELECT TARGET SERVER
640
CACHE TRAFFIC IN
TARGET SERVER +REMOTE
BLOCK TRAFFIC FROM SOURCE
SERVER < TARGET SERVER
THRE%HOLD
630 '
- 650
COPY BLOCK BLOCK
TO TARGET PRESENT IN TARGET
SERVER SERVER?
- ~JVES
REDIRECT BLOCK TRAFFIC FROM SOURCE - 855
SERVER TO TARGET SERVER
i
UPDATE STATISTICS MANAGER ™ 660

END 665

FIG. 6

US 2014/0156777 Al

Jun. 5,2014 Sheet 7 0f 16

Patent Application Publication

L 9Old

— o i ————— e ———

) W3LSAS IOVHOLS

—_———— e e e —— —— —— —— —— —— —— —— — — — —— — — —— ——— — — — — —— —— —— — —— — — —

¢g -/

SOILSILYLS

O

€3 'sS [4
€S 'sS |
A zS'ss €
1S SS ¢
- 1S ‘sS b Y

NOILYOOT X307 314 / 004

\ J

omv d3OVNVYIN SOILSILYLS

<<|<C|mm|m

US 2014/0156777 Al

Jun. 5,2014 Sheet 8 of 16

Patent Application Publication

8 Ol4

e ———— e e ———— e —— e e —

SOILSILVLS

SOILSILVLS

o _____Iss)naIsAs3oWi0LS |
2oV
|
4 N |
! t
o)y
o e 1—_
|
SYSVL _
ge—_ J
1S~ _
L MOV
D
€S 'SS z g
€S 'SS] g
7S ‘SS ¢ v
28'18'ss ¢ v
1S ‘SS l v
NOILYDO1 0078 T J ™ o0g
o0 ¥IDYNYA SOILSILYLS

US 2014/0156777 Al

Jun. 5,2014 Sheet 9 of 16

Patent Application Publication

6 Old

e e M — — — — — —— — — — o ——— —

EEEEE

SOILSILYLS

e ____~(s8) naISAS3OWMOLS |
20V
|
™ 4 ™ |
|
= ol
< S 1—_
\‘l/ |
(sysvi “
) e—_ J
1S~ _
| MoV
)
€5 'SS K
£5 'S5 R
ZS'SS ¢ v
£5 'S5 A
5SS I
NOLLYDOT 0078 314 06
J
o6 HADYNVI SOILSILYLS

US 2014/0156777 Al

Jun. 5,2014 Sheet 10 of 16

Patent Application Publication

0l Ol4

————— e ———_——————— e — —

e D

-(SS) WILSAS FOVHOLS

|
]
— _
|
|

o e o —— e —— o —————— e ————— e — — — — — — —

SOILSILYLS

SOILSILVYLS

S
G

<

WN\M(

1S~

£S'SS

€S 'Ss

A

¢S €S 'SS

NP |~ | N

< |<t|m|m

1S 'sS

|

Y

NOILYOO1

X201 F1i4

/ooov

J

’
00y

HIOVNVIA SOILSILVLS

US 2014/0156777 Al

Jun. 5,2014 Sheet 11 of 16

Patent Application Publication

o et o — —— — — —— — —— —— — —

| |
. | |
LL 'Ol | !
|
_ |
| |
-----------..-----E@.m@em-
Zovy
R
r _
Ak o oy
- - |
: |
, R J |
¢s- zs” 1S~ _
||]
L MOV
. 7 ™\
SOILSILYLS i €S §S 4 g
. £S ‘SS) q
@ ™| es'ss € v
_ €S 'SS z v
é é A 1S 'SS } v
e NOILYD0T M2078 i «/8:
s . ; /
0oy HIOVNYIN SOLLSILYLS

US 2014/0156777 Al

Jun. 5,2014 Sheet 12 of 16

Patent Application Publication

¢l oOld

—— o o — — — — — — — — — — — — — —— — — — — —— — —

e ___ -lsS) W3LSAS3OYHOLS _ |
2 MOVY
. T e T T T e e e e e e e e T T T T T
[A 4 N 4 Y
EEE Be; mit
“ <AV B S B <A A < 14_
INED (on <> |
&) g)3 J:
_ s s 1S~ |
L oo o o o o — o —— —— — —— ———— e e e I
L MOV
~ . - ~\
SOILSILYLS | { SOILSILVLS €S SS 4 g
€S ‘SS) g
&, ® ®| Es———
. S ‘€S 'SS z %
é % 1S 'SS | v
e e NOILYD0T Y0019 314 «/SN_
_ s _ Y,
omv YIOVYNYI SOILSILYLS

Patent Application Publication

Jun. 5,2014 Sheet 13 of 16

{(START }-\1305
\

US 2014/0156777 Al

COMPILE LIST OF DATA BLOCKS

™ 1310

.
-

Y

1315
LIST EMPTY?

1340
{
REMOVE DATA SELECT DATA §._ 1325
BLOCK FROM LIST BLOCK
a2
1330

NUMBER
OF BLOCK COPIES
> MINIMUM NUMBER OF

REPLICAS? -

1320

PERFORM CONSOLIDATION

™ 1400

FIG. 13

Patent Application Publication Jun. 5,2014 Sheet 14 of 16

{ START }f\ 1405
v

US 2014/0156777 Al

CACHE TRAFFIC IN
TARGET SERVER + REMOTE BLOC
TRAFFIC FROM SOURCE SERVER <
TARGET SERVER
THRESHOLD?

COMPILE LIST OF SERVERS HOLDING
DATA BLOCK 1410
g
ORDER LIST OF SERVERS |x1¢w
V< V
1420
1435
YES"’//QE;;MPTY? /
REMOVE
TARGET
1495 SELECT TARGET SERVER | SERVER
FROM
LIST
1430

2

REMOVE DATA BLOCK FROM SOURCE
SERVER

|’\1440

REDIRECT DATA BLOCK TRAFFIC FROM
SOURCE SERVER TO TARGET SERVER

|'\1445

i

UPDATE STATISTICS MANAGER

™-1450

g

END 1455

FIG. 14

US 2014/0156777 Al

Jun. 5,2014 Sheet 150f 16

Patent Application Publication

] |
Gl Ol | m
" IIDDI_
| i
| |

S §) WILSAS IOVHOLS _ |
€ MOV
nl IIIIIIIIIIIIIIIII .m r—— """ " """”"”"”""/"/"¥"/""¥"/""¥/—"¥7/¥ ¥/ 7/ mmTTT === |
e N | e ™) ~ N |
_ [, I
|
| BEE| B o)
| I SMSYL [
| |
Ry J114% J J |
! £5- | 2~ 157 |
D e eV
. AN e =
SOILSILYLS | | SOILSILYLS | | SOILSILYLS €S SS ¢ g
€3S ‘ss | g
(s () sy (ss) s e v
| £5'78'1S'sS ¢ v
Coon) Qoo Gowow) | M
e NOILYDO1 20149 314 «/ooﬁ
" 4 _ J
om\ HIADOVNYIN SOILSILYLS

US 2014/0156777 Al

Jun. 5,2014 Sheet 16 of 16

Patent Application Publication

. ———— e ——— e ————

| |
9l 'Ol | |
| EEEHEL]
| |

e _____\(ss)paisAsFOVMOLS |
£ MoV
"I IIIIIIIIIIIIIIIII .“ F " " " T T T - === |
_ all)|
I [I
|
| BE | o)
_ Ly
| @ L SYSYL _
S VARRY |
| €5~ || 1S~ |
T T T T o T ove
7 N, 7 ~\
SOILSILYLS | § soILsILvLS €S SS ¢ d
€S ‘sS | g
) (&) () M s e
. _ ZS°1S‘sS Z vy
() NOLVOOT ooT8 T || ool
_)y \ ')
omv YIDYNYI SOILSILYLS

US 2014/0156777 Al

DYNAMIC CACHING TECHNIQUE FOR
ADAPTIVELY CONTROLLING DATA BLOCK
COPIES IN A DISTRIBUTED DATA

PROCESSING SYSTEM
BACKGROUND
[0001] 1. Technical Field
[0002] The present disclosure relates to data processing

systems and, more specifically, to caching of data in a distrib-
uted data processing system.

[0003] 2. Background Information

[0004] In many current analytics frameworks, distributed
data processing systems may be used to process and analyze
large datasets, such as files. An example of such a framework
is Hadoop, which provides data storage services using a dis-
tributed file system and data processing services though a
cluster of commodity servers. The Hadoop based distributed
system partitions the datasets into blocks of data for distribu-
tion and storage among local storage devices coupled to the
servers to enable processing of the data by the servers in
accordance with one or more data analytics processes.
MapReduce is an example of a computational model or para-
digm employed by Apache Hadoop to perform distributed
data analytics processes on large datasets using the servers.
[0005] Broadly stated, a MapReduce process is organized
into a Map step and a Reduce step. In the Map step, an
analytics request or “job” is apportioned into a plurality of
sub-jobs or “tasks” that are distributed to the servers. Each
server performs its tasks independently on its stored data
blocks and produces intermediate results. The servers then
execute the Reduce step to combine all of the intermediate
results into an overall result. Apache Hadoop is a specific
example of a software framework designed for performing
distributed data analytics on large datasets.

[0006] When deployed in an enterprise environment, how-
ever, such distributed systems typically suffer from problems
including reliance on a single storage tier (i.e., the local
storage device tier) for both performance and reliability, as
well as lack of data management features. To address these
problems, the system may be enhanced through the addition
ofa storage system and a caching layer distributed among the
servers that increases the number of storage tiers, e.g., a
shared storage tier and a distributed cache tier. Yet, the
enhanced distributed system may be subjected to congestion
conditions, such as local and remote cache bottlenecks at the
servers, data popularity at the servers, and shared storage
bottleneck at the storage system, that may adversely affect
throughput and performance.

[0007] According to the distributed data analytics process,
ablock of data may reside on a local storage device of a server,
as well as on the shared storage system. Different tasks per-
taining to multiple jobs that require that block of data may be
scheduled on the server. If all the tasks requests the data
block, the local storage device may become a local bottle-
neck, which adversely impacts throughput of the device and
server. Each server may also be assigned a limited number of
“slots” or tasks that may be run in parallel. If the slots are
occupied by existing tasks, new tasks may be scheduled in a
different server, resulting in traffic forwarded from remote
servers and creating a remote bottleneck at the different
server.

[0008] In addition, a failure may occur to a server of the
cluster, requiring that the server’s block of data be accessed
from the shared storage system, e.g., during reconstruction. If

Jun. 5, 2014

multiple servers of the cluster experience failures, there may
be an increase in traffic to the shared storage system to access
multiple blocks. The resulting increase in traffic may effec-
tively reduce the size of the cluster supported by the shared
storage system and create a shared storage bottleneck. More-
over, there may be one or more blocks residing on the local
storage device of a server that are popular in the sense that
multiple requests from other servers are directed to those
blocks. The increased traffic at the server due to popularity of
these data blocks may degrade performance of the server and
its local storage device.

SUMMARY

[0009] Embodiments described herein provide a dynamic
caching technique that adaptively controls anumber of copies
of data blocks stored within caches (“cached copies™) of a
caching layer distributed among servers of a distributed data
processing system. A cache coordinator of the distributed
system illustratively implements the dynamic caching tech-
nique to increase (i.e., replicate) the number of cached copies
of the data blocks to thereby alleviate congestion in the sys-
tem and improve processing performance of the servers.
Alternatively, the technique may decrease (i.e., consolidate)
the number of cached copies to reduce storage capacity and
improve storage efficiency of the servers. In particular, the
technique may increase the number of cached copies when it
detects local and/or remote cache bottleneck conditions at the
servers, a data popularity condition at the servers, or a shared
storage bottleneck condition at the storage system. Other-
wise, the technique may decrease the number of cached cop-
ies at the servers.

[0010] Inone or more embodiments, the cache coordinator
may cooperate with a statistics manager of the distributed
system to maintain statistics pertaining to the data blocks
stored on the servers of the distributed system in order to
render decisions regarding adaptive cache replication/con-
solidation. The cache coordinator may then utilize the statis-
tics to implement the dynamic caching technique to adap-
tively control the number of cached copies of a data block in
the distributed system. To that end, the technique may include
areplication phase and a consolidation phase. The replication
phase is directed to identifying one or more servers, as well as
one or more data blocks, that contribute to congestion in the
system. [llustratively, the server (i.e., a source server) is des-
ignated as congested when the number of data block requests
assigned to the server exceeds the total number of data block
requests that can be processed, in parallel, by the server. In
that case, the technique identifies and selects another server
(i.e., a target server) that is not congested and that can accom-
modate replication of the data block, as well as data block
requests directed to that data block from the congested server.
The data block is then replicated (copied) to the target server
and the data block requests are redirected to the copied data
block. In contrast, the consolidation phase is directed to iden-
tifying copies of a data block that exceed a minimum number
ofreplicas and then consolidating the copies of the data block
in the system. Illustratively, consolidation is achieved by
removing a copy of the data block from a source server and
redirecting data block requests directed to the removed block
at the source server to a target server that stores the data block
and that can accommodate the redirected requests.

[0011] Advantageously, the dynamic caching technique
adaptively controls the cached copies of data blocks stored
within caches of the caching layer to optimize distributed

US 2014/0156777 Al

analytics running on the shared storage infrastructure of the
distributed system. That is, the dynamic caching technique
may increase or decrease the number of cached copies of data
blocks to allow users greater flexibility and address problems
that customers may encounter in an enterprise environment,
such as bottlenecks, failures, and system reconfigurations.
The dynamic technique also allows users to balance between
performance and storage efficiency.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] is The above and further advantages of the embodi-
ments herein may be better understood by referring to the
following description in conjunction with the accompanying
drawings in which like reference numerals indicate identi-
cally or functionally similar elements, of which:

[0013] FIG. 1 is a block diagram of a distributed data pro-
cessing system;
[0014] FIG. 2 is a block diagram of a storage system of the

distributed data processing system;

[0015] FIG. 3 is a block diagram of a server of the distrib-
uted data processing system;

[0016] FIG.4isisablockdiagram ofa statistics manager of
the distributed data processing system;

[0017] FIG. 5 is a flowchart illustrating a replication phase
of'a dynamic caching technique;

[0018] FIG. 6isaflowchartillustrating afind_target_server
routine of the dynamic caching technique;

[0019] FIG. 7 is a block diagram of an example distributed
data processing system illustrating a local cache bottleneck
condition;

[0020] FIG. 8 is a block diagram of an example distributed
data processing system illustrating reduction of the local
cache bottleneck condition in accordance with the dynamic
caching technique;

[0021] FIG. 9 is a block diagram of an example distributed
data processing system illustrating a remote cache bottleneck
condition;

[0022] FIG.101isablock diagram of'an example distributed
data processing system illustrating reduction of the remote
cache bottleneck condition in accordance with the dynamic
caching technique;

[0023] FIG.111isablock diagram of'an example distributed
data processing system illustrating a bottleneck caused by a
data popularity condition;

[0024] FIG.121isablock diagram of'an example distributed
data processing system illustrating reduction of the bottle-
neck caused by the data popularity condition in accordance
with the dynamic caching technique

[0025] FIG. 13 is a flowchart illustrating a consolidation
phase of the dynamic caching technique;

[0026] FIG. 14 is a flowchart illustrating a consolidate_
block routine of the dynamic caching technique;

[0027] FIG.15isablock diagram of'an example distributed
data processing system prior to implementation of the con-
solidation phase of the dynamic caching technique; and
[0028] FIG.161sablock diagram of'an example distributed
data processing system after implementation of the consoli-
dation phase of the dynamic caching technique.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

[0029] FIG. 1 is a block diagram of a distributed data pro-
cessing system 100 that may be advantageously used with one

Jun. 5, 2014

or more embodiments described herein. The distributed sys-
tem 100 may be organized as a plurality of servers 300,
including a master server (“management server”) and a clus-
ter of slave servers (“servers 1-3”), connected to a storage
system 200 by a network 150. The network 150 may include
a point-to-point link, a shared local area network, a wide area
network or a virtual private network implemented over a
public network, such as the well-known Internet. The distrib-
uted system 100 may be used to process and analyze large
datasets by partitioning the datasets into blocks of data for
distribution and storage among local storage devices of the
servers 1-3. The local storage devices may be embodied as
caches 120 configured to provide a caching layer 130 of the
distributed system 100. An example of a distributed system
that is configured to provide a caching layer and that may be
advantageously used with the embodiments herein is
described in U.S. patent application Ser. No. 13/302,306,
filed Nov. 22, 2011 and titled Optimizing Distributed Data
Analytics for Shared Storage, by Gokul Soundararajan, et al.,
which application is hereby incorporated by reference as
though fully set forth herein.

[0030] FIG. 2isablock diagram of storage system 200 that
may be advantageously used with one or more embodiments
described herein. The storage system 200 may be a computer
coupled to a plurality of disks 250 and having features such as
simplicity of storage service management and ease of storage
reconfiguration, including reusable storage space, for users
such as servers 300. In addition, the storage system 200 may
be configured to interact with the servers 300 to enable ser-
vice of data, e.g., stored on the disks 250 or other similar
media adapted to store data, in file system and block formats
with high reliability and integrity through the use of data
protection and management techniques, such as persistent
point-in-time read-only images of the data, and/or Redundant
Array of Independent (or Inexpensive) Disks (RAID) imple-
mentations.

[0031] The storage system illustratively includes a proces-
sor 210, a memory 220, one or more network adapters 230
and a storage adapter 240 interconnected by a bus 260. Each
network adapter 230 includes the mechanical, electrical and
signaling circuitry needed to connect the storage system to
the server 1-3 over network 150. The storage system 200 also
includes a storage operating system 222 that provides a vir-
tualization system to logically organize the data as a hierar-
chical structure of named directory, file and logical unit stor-
age objects on disks 250. The virtualization system may be
configured to provide volume management capabilities for
use in block-based access to the data stored on disks 250.
These capabilites include (i) aggregation of the disks, (ii)
aggregation of storage bandwidth of the disks, and (iii) reli-
ability guarantees, such as synchronous minoring and/or par-
ity (RAID).

[0032] Storage of data on the storage system 200 may be
implemented as one or more storage volumes that comprise a
group of the disks 250, defining an overall logical arrange-
ment of disk space. The disks within a volume are typically
organized as one or more RAID groups. RAID implementa-
tions enhance the reliability/integrity of data storage through
the writing of data “stripes™ across a given number of physical
disks in the RAID group, and the appropriate storing of
redundant information with respect to the striped data. The
redundant information enables recovery of data lost when a
storage device fails.

US 2014/0156777 Al

[0033] In an embodiment, the storage system 200 may
cooperate with the caches 120 of the servers 300 to provide a
shared storage infrastructure of the distributed system 100. To
that end, the storage adapter 240 may cooperate with the
storage operating system 222 to access (e.g., retrieve via a
read operation or store via a write operation) data requested
by the servers. The storage adapter may include [/O interface
circuitry that couples to the disks over an I/O interconnect
arrangement, such as a conventional high-performance, FC
serial link topology. The data may be retrieved or stored on
disk 250 by the storage adapter and, upon completion, either
the retrieved data or an acknowledgement (generated by the
processor 222 or the adapter 240) may be forwarded over the
bus 260 to the network adapter 230, where it is formatted into
one or more packets and forwarded to the servers.

[0034] FIG. 3 is block diagram of server 300 that may be
advantageously used herein as, e.g., the management server
or server 1-3. In one or more embodiments, the server 300
may be embodied as a physical machine, such as computer, or
a virtual machine executing on the computer. However, as
described herein, the server 300 is illustratively embodied as
a computer including a processor 310 coupled to a local
storage device 320 and one or more network interfaces 330 by
a bus 340. The network interface 330 may contain the
mechanical, electrical and signaling circuity for communi-
cating data over physical and/or wireless links coupling the
server to other servers and/or the network 150. The network
interface 330 may be configured to transmit and/or receive
data using a variety of communication protocols including,
inter alia, the Transmission Control Protocol/Internet Proto-
col (TCP/IP), wireless protocols and/or Ethernet protocols.
[0035] As noted, the local storage devices may be embod-
ied as caches 120 configured and organized to provide a
caching layer 130 of the distributed system 100. To that end,
the local storage device 320 may include random access
memory (RAM), read only memory (ROM), flash memory, as
well as one or more hard disk drives (HDD), flash drives, tape
drives, solid state drives (SSD), and/or combinations of the
memories and drives. The local storage device 320 includes a
plurality of storage locations addressable by the processor
310 and/or network interface 330 for storing software pro-
grams (e.g., applications) and data structures associated with
the embodiments described herein. The processor and inter-
face may, in turn, include processing elements and/or logic
circuitry configured to execute the software programs and
manipulate the data structures, such as statistics manager 400.
[0036] An operating system 325, portions of which are
typically resident in the local storage device 320 and executed
by the processor 310, functionally organizes the server by,
inter alia, invoking operations in support of software pro-
cesses and/or services executing on the server. A suitable
operating system 325 may include the UNIX® series of oper-
ating systems, the Microsoft Windows® series of operating
systems or other similar operating system; however, in an
embodiment described herein, the operating system is illus-
tratively the Linux® operating system. The operating system
325 also illustratively implements a distributed file system
that provides data storage services in support of an analytics
framework of the system 100.

[0037] Inthe case of a server embodied as the management
server, the software processes and/or services may include
data analytic processes such as a metadata coordinator 322
and a job coordinator 324, whereas in the case of the server
1-3, the data analytic processes may include a task executor

Jun. 5, 2014

326 and a data accessor 328. It will be apparent to those
skilled in the art that other processor and storage device types,
including various computer readable media, may be used to
store and execute program instructions pertaining to the tech-
nique described herein. Also, while the description illustrates
various processes, it is expressly contemplated that the vari-
ous processes may be embodied as modules configured to
operate in accordance with the technique herein (e.g., accord-
ing to the functionality of a similar process).

[0038] In one or more embodiments, the metadata coordi-
nator 322 contains computer executable instructions executed
by the processor 310 to perform operations that manage the
distributed file system namespace and control access to stor-
age objects, such as datasets and/or partitioned data blocks
thereof, residing on the shared storage system 200 and/or
caches of the servers 1-3. Illustratively, the file system
namespace operations may include, e.g., opening, closing
and renaming of files and directories, as well as retrieving the
partitioned data blocks of a dataset from the storage system
for storage on the caches of the servers and tracking the
locations of those data blocks in the system. The job coordi-
nator 324 contains computer executable instructions executed
by the processor 310 to perform operations that manage each
analytics request (or “job”) received from a client of the
system 100. The job coordinator 324 may further perform
operations to divide the job into sub-jobs (or “tasks™), assign/
schedule the tasks among the servers 1-3, and communicate
with the task executors running on the servers. As used herein,
atask illustratively involves issuing a request for a data block
(i.e., a data block request) that the task may subsequently
process to produce a result.

[0039] Each task executor 326 contains computer execut-
able instructions executed by the processor 310 to perform the
tasks assigned to the server 1-3. The task executor 326 may
communicate the data accessor 328 to retrieve one or more
data blocks needed to process the assigned task. The data
accessor 328 contains computer executable instructions
executed by the processor 310 to perform operations that
manage the local storage device (cache) of the server 1-3.
Tlustratively, the management operations may include access
(e.g., read/write) operations directed to the data blocks stored
on the cache and serviced by the data accessor 328, as well as
data block creation, deletion and replication.

[0040] The distributed data processing system 100 illustra-
tively provides a caching-based architecture that enhances the
system to optimize distributed data analytics wherein mul-
tiple analytics jobs may be run on a dataset. To that end, the
architecture may employ the data analytic processes/modules
to store (a primary copy of) the dataset on the shared storage
system 200 and partition the dataset into blocks of data for
distribution and storage among the caches 120 of the caching
layer 130 to enable processing of the data by the servers 1-3.
In one or more embodiments, the architecture may further
employ a distributed hash algorithm to calculate the locations
of'the data blocks in the system. If'a data block is not available
in a particular calculated location, e.g., in the cache of a
respective server, the data block may be fetched from the
dataset stored on the storage system 200 and forwarded to the
respective server for storage on its cache 120. The data block
may also be forwarded to another server requesting the data
block so that future requests can be satisfied from the cache of
the requesting server.

[0041] Embodiments described herein also provide a
dynamic caching technique that adaptively controls the num-

US 2014/0156777 Al

ber of copies of data blocks stored within the caches (“cached
copies”) of the caching layer distributed among the servers of
the distributed data processing system. A cache coordinator
of the distributed system illustratively implements the
dynamic caching technique to increase (i.e., replicate) the
number of cached copies of the data blocks to thereby allevi-
ate congestion in the system and improve processing perfor-
mance of the servers. Alternatively, the technique may
decrease (i.e., consolidate) the number of cached copies to
thereby reduce excessive storage capacity and improve stor-
age efficiency of the servers. In particular, the technique may
increase the number of cached copies when it detects local
and/or remote cache bottleneck conditions at the servers, a
data popularity condition at the servers, or a shared storage
bottleneck condition at the storage system. Otherwise, the
technique may decrease the number of cached copies at the
servers.

[0042] In an embodiment, the cache coordinator 350 con-
tains computer executable instructions executed by the pro-
cessor 310 to perform operations that, as described herein,
detect bottleneck conditions in the distributed system and
adapt to those conditions by dynamically controlling the
number of the cached copies within the distributed system
100. Although the cache coordinator 350 illustratively imple-
ments the dynamic caching technique, those skilled in the art
will understand that the technique may be implemented
within other distributed data analytics infrastructure that uses
caching for performance optimizations. Illustratively, the
cache coordinator 350 is embodied as a module of the man-
agement server that cooperates with the analytics computa-
tions of the processor and the underlying storage system to
render (i.e., make) decisions to increase or decrease the
cached copies of the data blocks stored in the caching layer
130 of the system. To that end, the cache coordinator 350 may
cooperate with the metadata coordinator 322 and the statistics
manager 400 to collect and maintain attributes and/or statis-
tics pertaining to the data blocks stored on the servers (and
storage system) of the distributed system in order to render
the decisions regarding dynamic replication/consolidation

[0043] FIG. 4 is a block diagram of statistics manager 400
that may be advantageously used with one or more embodi-
ments described herein. Illustratively, the statistics manager
400 may be embodied as a tree data structure stored on the
management server and configured to maintain collected sta-
tistics 450 for efficient decision-making. For example, the
statistics manager may be organized to maintain statistics 450
for a data block 410 located on both the storage system 200
and one or more caches 130 of server 1-3. In an embodiment,
the servers 1-3 are illustratively deployed within a physical
structure or “rack” (e.g., Rack 1) while the storage system 200
is deployed within a different rack (e.g., Rack 2). Organiza-
tion of the statistics manager as a tree structure allows effi-
cient generation of what-if scenarios with the collected sta-
tistics. For instance, if cache 120 of server 1-3 was removed
from the system, then the tree data structure enables efficient
transfer of the removed cache statistics 450 to the storage
system 200 and efficient determination of the amount of
traffic the data block 410 would receive in the absence of the
cache 120. Examples of statistics 450 maintained by the
statistics manager 400 that may be advantageously used with
the dynamic caching technique include, among others:

[0044] The caches/servers, as well as the storage system,
in which each data block is present (“block placement™)

Jun. 5, 2014

[0045] The number of data block requests assigned/
scheduled on each cache/server (“cache bandwidth
usage”)

[0046] The total number of data block requests that can
be processed, in parallel, by a cache/server (“cache
bandwidth threshold™)

[0047] These statistics 450 may be updated either on each
data block access or periodically as a group. For example, if
anew data block is created, then the metadata coordinator 322
may cooperate with the data accessor 328 to update the sta-
tistics manager statistics to indicate creation of the new block.
For accesses that occur in high volume (e.g., a read or write
access of a particular data block), the statistics may be
updated periodically; for example, the total number of
accesses may be incremented by 1000 every 10 seconds if the
particular block was accessed 1000 times in the last 10 sec-
onds.

[0048] As noted, the dynamic caching technique may uti-
lize the statistics to adaptively determine those data blocks
that require additional cached copies to alleviate congestion,
e.g., caused by a bottleneck condition, in the distributed sys-
tem. To that end, the technique includes a replication phase
directed to identifying one or more servers, as well as one or
more data blocks, that contribute to congestion in the system.
In particular, the cache coordinator 350 may utilize the sta-
tistics pertaining to the data blocks to compile a list of con-
gested servers represented as {server, block} tuples. Illustra-
tively, a server is considered congested when the number of
data block requests assigned to the server (i.e., the cache
bandwidth usage) exceeds the total number of data block
requests that can be processed, in parallel, by the server (i.e,
the cache bandwidth threshold). Note that the number of
assigned data block requests may include data block requests
directed to data blocks stored in the cache (i.e., total cache
traffic) of the server, as well as remote data block requests
directed to a data block (i.e., remote block traffic) originating
from one or remote servers. In other words, even though the
total cache traffic of the congested server may be less than the
cache bandwidth threshold, there may be additional remote
block traffic forwarded from one or more other servers that
causes the cache bandwidth usage of the congested server to
exceed the cache bandwidth threshold.

[0049] FIG. 5 is a flowchart illustrating the replication
phase 500 of the dynamic caching technique. The replication
phase starts at step 505 and proceeds to step 510 where a list
of {server, block} tuples is compiled, e.g., from the statistics
maintained by the statistics manager. In step 515, the list of
{server, block} tuples is ordered according to a specified
arrangement. In an embodiment, the list may be initially
arranged in descending order of total cache traffic at each
server on the list, followed by a subsequent arrangement in
descending order of remote block traffic at each server. As a
result, the {server, block} tuples of the compiled list are
arranged in an overall descending order, such that the most
congested server is located at the top of the list and the least
congested server is located at the bottom of the list.

[0050] At step 520, a determination is made as to whether
the compiled list is empty. If so, the routine ends at step 525.
Otherwise, a {server, block} tuple (e.g., the tuple located at
the top of the compiled list) is selected at step 530 and, at step
535, a determination is made as to whether the cache band-
width usage of the server serving the data block of the tuple
(i.e., the source server) is greater than the cache bandwidth
threshold. If not, the sequence proceeds to step 540 where the

US 2014/0156777 Al

{server, block} tuple is removed from the compiled list, and
then returns to step 520. However, if the cache bandwidth
usage is greater than the cache bandwidth threshold, then the
sequence proceeds to a find_target_server routine (step 600)
where a server within the distributed system (i.e., a target
server) is identified and selected for replication of the data
block, as described in connection with FIG. 6. Upon comple-
tion ofthe find_target_server routine, a determination is made
as to whether the compiled list is empty (step 520). If not, the
sequence proceeds to step 530; otherwise, the replication
phase ends at step 525.

[0051] In an embodiment, the find_target_server routine
600 compiles a list of all potential target servers in the system
and orders the servers ofthe list according to statistics such as
number of assigned tasks, block placement of the data block,
and racks of the source and target servers. As noted, the
number of assigned tasks may include the total cache traffic as
well as remote block traffic. Note also that the rack is a
statistic used in the ordering consideration because redirec-
tion of traffic to a target server in a remote rack requires
traversal of multiple intermediate “hops™ (e.g., network
switches).

[0052] Typically, each rack may include a network switch,
while another switch may be needed to connect multiple
racks. Thus, if remote block traffic is redirected from a source
server in a local rack to a target server in a remote rack, the
traffic may traverse three (3) network switches, which intro-
duces network latency into the system. Another statistic that
may be used in the ordering consideration of the routine is to
prefer a potential target server that currently has the data
block in its cache so as to obviate any copying/replication
operation.

[0053] FIG. 6 is a flowchart illustrating the find_target_
server routine 600 of the dynamic caching technique. The
routine starts at step 605 and proceeds to step 610 where a list
of target servers is compiled, e.g., from the statistics main-
tained by the statistics manager. In step 615, the list of target
servers is ordered according to a specified arrangement. In an
embodiment, the list may be initially arranged in ascending
order of total cache traffic such that the target server located at
the top of the list is the least congested server. The list may
then be further ordered by placing all servers that currently
store the data block at the top of the list, followed by a
subsequent placement of all servers in the same rack as the
source server at the top of the list.

[0054] At step 620, a determination is made as to whether
the compiled list is empty. If so, the routine proceeds to step
625 where a new server is added to the system as the target
server, then to step 630 where the data block is copied (e.g.,
from either the source server or storage system) to the target
server and thereafter to step 655 described below. However if
the list is not empty, the routine proceeds to step 635 where a
target server (e.g., the server located at the top of the compiled
list) is selected. At step 640, a determination is made as to
whether the total cache traffic in the target server plus (+) the
remote block traffic from the source server is less than or
equal to the cache bandwidth threshold of the target server
(“target server threshold”). If not, the routine proceeds to step
645 where the target server is removed from the compiled list
and then returns to step 620. Yet if the total cache traffic in the
target server plus the remote block traffic from the source
server is less than or equal to the target server threshold, then
the routine proceeds to step 650 where a determination is
made as to whether the data block is present in the target

Jun. 5, 2014

server. If not, the data block is copied (e.g., from either the
source server or storage system) to the target server at step
630. If the block is present in the target server, the routine
proceeds to step 655 where the data block request (traffic) at
the source server is redirected to the target server and, at step
660, the statistics manager is updated. The routine then ends
at step 665 and returns to step 520 of the replication phase
500.

[0055] In one or more embodiments, the caching-based
architecture of the distributed system may also employ cache
aware scheduling. For example, if a data block is present in
the cache of a server, tasks requiring that block may be sched-
uled on that server. In a distributed analytics framework,
multiple jobs may be run on the same set of information. In
such cases, tasks pertaining to different jobs that require the
same data block may be scheduled on the same server. How-
ever, it is possible that the server may not be able to satisfy all
of the scheduled tasks requiring the data block. Note that
these tasks (including data block requests) may be scheduled
on the same server as the cache (i.e, total cache traffic), they
may originate from a server remote from the cache (i.e.,
remote block traffic), or they may be combination of both
traffic. As a result, the chance of occurrence of a local cache
bottleneck condition at the server is substantially high.

[0056] FIG. 7 is a block diagram of an example distributed
data processing system 700 illustrating a local cache bottle-
neck condition. Assume that a server can process up to three
(3) tasks, in parallel, directed to data blocks stored on its
cache. Also assume that several analytics jobs are running on
the same dataset. The example system 700 illustrates initial
block placements, as well as initial scheduled tasks, among
the servers 1-3 of the system 700 prior to implementation of
the dynamic caching technique. Any server with more than
three scheduled tasks is considered bottlenecked. Here,
server 1 (S1) has four locally scheduled tasks directed to data
blocks Al and A2, server 2 (S2) has one locally scheduled
task directed to data block A3, and server 3 (S3) has two
locally scheduled tasks directed to data blocks B1 and B2.
Thus, the number of scheduled tasks in S1 exceeds the avail-
able cache bandwidth of the server, leading to a local cache
bottleneck. The statistics manager 400 maintains statistics
relating to every block of data; an example of those statistics
is shown in FIG. 7. Referring also to FIGS. 5-6, the replica-
tion phase 500 and the find_target_server routine 600 of the
dynamic caching technique may operate as follows.

[0057] Broadly stated, the replication phase may be
executed to compile and order a list of all congested {server,
block} tuples in the system, resulting in, e.g., [{S1, A2}, {S1,
A1}]. Since the list is not empty, the tuple at the top of the list,
e.g., {S1,A2}, may be selected and a determination made that
the cache bandwidth usage of S1 (4) is greater than the cache
bandwidth threshold (3). Therefore, the find_target_server
routine 600 may be invoked (i.e., activated) to compile and
order a list of possible target servers for block A2 from the
source server S1, resulting in [S2, S3]. Since the list is not
empty, the server at the top of the list (S2) may be selected as
apossible target server. A determination is then made that the
total cache traffic in the target server (1) plus the remote block
traffic from the source server (2) is less than or equal to the
threshold (3). Further, a determination is made that the data
block (A2) is not present in the target server (S2). Thus, data
block (A2) is copied to the target server, the (A2) block traffic
from the source server (S1) is redirected to the target server
(S2), and the statistics manager is updated. The routine 600

US 2014/0156777 Al

then returns to the replication phase 500 where a determina-
tion is made that the list is not empty, the next tuple {S1, A1}
in the list is selected and a determination is made that the
cache bandwidth usage of S1 (2) is not greater than the thresh-
old (3). Since there are no other tuples in the list, the replica-
tion phase ends.

[0058] Accordingly, the dynamic caching technique may
operate to replicate the block of data among one or more
caches of the servers to thereby reduce the local cache bottle-
neck condition in the system. Specifically, data block A2 is
replicated to S2 in the same rack; accordingly, the job coor-
dinator process 324 may choose to schedule tasks directed to
data block A2 in either S1 or S2 to thereby reduce the local
cache bottleneck condition. FIG. 8 is a block diagram of an
example distributed data processing system 800 illustrating
reduction of the local cache bottleneck condition in accor-
dance with the dynamic caching technique. The example
system 800 illustrates block placements, as well as scheduled
tasks, among the servers 1-3 of the system after implementa-
tion of the dynamic caching technique. As can be seen, the
number of scheduled tasks (including data block requests) in
S1 has been reduced from four to three, while the number of
scheduled tasks in S2 has been increased from one to two. In
the presence of a block copy in the local cache, rebalancing
may take place (rather than redirection) to reduce the number
of remote data block requests and, thus, improve perfor-
mance. Notably, the number of scheduled tasks in S1 does not
exceed the available cache bandwidth of the server and the
bottleneck condition at S1 has been reduced. It should be
noted that future tasks requiring data block A2 can be sched-
uled either in S1 or S2 to thereby prevent a future local cache
bottleneck.

[0059] Although the caching-based architecture may
employ cache aware scheduling, i.e., a task may be scheduled
on a server whose cache stores the data block to be processed
by that task, each server can only support a limited number of
tasks (referred to as “slots™). If the slots are already occupied
by existing tasks, new tasks (including data block requests)
may be scheduled in a different server, resulting in remote
cache traffic from the server to the different server. Remote
cache traffic incurs a performance overhead, thereby causing
a remote cache bottleneck condition, as the requested data
block requests (and possibly the data block) traverse a set of
network switches. Typically, there may be a substantial
amount of remote traffic in the system. The dynamic caching
technique may create a copy of the data block in the cache of
anearby server, thereby reducing the remote cache bottleneck
condition.

[0060] FIG.9 is ablock diagram of an example distributed
data processing system 900 illustrating a remote cache bottle-
neck condition. Again, assume that a server can process up to
three tasks, in parallel, directed to data blocks stored on its
cache and that several analytics jobs are running on the same
dataset. The example system 900 illustrates initial block
placements, as well as initial scheduled tasks, among the
servers 1-3 of the system 900 prior to implementation of the
dynamic caching technique. Here, S1 has two locally sched-
uled tasks directed to data block A1 and S2 has one locally
scheduled task directed to data block A3. However, S3 has
two locally scheduled tasks directed to data blocks B1 and
B2, and two remote task requests from S1 directed to data
block A2. As noted, any server with more than three sched-
uled tasks is considered bottlenecked; accordingly, S3 is
bottlenecked. The statistics manager 400 maintains statistics

Jun. 5, 2014

relating to every block of data; an example of those statistics
is shown in FIG. 9. Referring also to FIGS. 5-6, the replica-
tion phase 500 and the find_target_server routine 600 of the
dynamic caching technique may operate as follows.

[0061] Broadly stated, the replication phase may be
executed to compile and order a list of all congested {server,
block} tuples in the system, resulting in, e.g., [{S3, A2}, {S3,
B1}, {83, B2}]. Since the list is not empty, the tuple at the top
ofthelist, e.g., {S3,A2}, may be selected and a determination
made that the cache bandwidth usage of S3 (4) is greater than
the cache bandwidth threshold (3). Accordingly, the find_
target_server routine 600 may be invoked to compile and
order a list of possible target servers for block A2 from the
source server S3, resulting in [S1, S2]. Since the list is not
empty, the server at the top of the list (S1) may be selected as
apossible target server. A determination is then made that the
total cache traffic in the target server (2) plus the remote block
traffic from the source server (2) is not less than or equal to the
threshold (3). Therefore, the possible target server (S1) is
removed from the list and the next server at the top of the list
(S2) may be selected as a possible target server. A determi-
nation is then made that the total cache traffic in the target
server (1) plus the remote block traffic from the source server
(2) is less than or equal to the threshold (3). Furthermore, a
determination is made that the data block (A2) is not present
in the target server (S2). Thus, data block (A2) is copied to the
target server, the (A2) block traffic from the remote server
(S1) to the source server (S3) is redirected to the target server
(S2), and the statistics manager is updated. The routine 600
then returns to the replication phase 500 where a determina-
tion is made that the list is not empty, the next tuple {S3, B1}
in the list is selected and a determination is made that the
cache bandwidth usage of S3 (2) is not greater than the thresh-
old (3). As a result, the next tuple {S3, B2} in the list is
selected and a determination made that the cache bandwidth
usage of S3 (2) is not greater than the cache bandwidth thresh-
old (3). Since there are no other tuples in the list, the replica-
tion phase ends.

[0062] Accordingly, data block A2 is replicated to S2 in the
same rack and tasks from S1 requiring the data block A2 may
be redirected to S2 to thereby reduce the remote cache bottle-
neck condition at S3. FIG. 10 is a block diagram of an
example distributed data processing system 1000 illustrating
reduction of the remote cache bottleneck condition in accor-
dance with the dynamic caching technique. The example
system 1000 illustrates block placements, as well as sched-
uled tasks, among the servers 1-3 of the system after imple-
mentation of the dynamic caching technique. As can be seen,
the number of scheduled tasks in S3 has been reduced from
four to two, while the number of scheduled tasks in S2 has
been increased from one to three. Therefore, the number of
scheduled tasks in S3 does not exceed the available cache
bandwidth of the server and the bottleneck condition at S3 has
been reduced.

[0063] Often, there may be data blocks that are “popular”,
i.e., frequently accessed, in a data analytics system. Data
block popularity may occur because multiple jobs refer to the
data block, the data block may be de-duplicated, and/or the
analytics system speculatively spawns duplicate tasks during
unexpected slowdown in the hope that one of the spawned
tasks may complete successfully. In all of these scenarios, the
data block may attract multiple requests from various servers,
thereby degrading the server’s performance. The dynamic
caching technique may replicate the popular data block in one

US 2014/0156777 Al

or more server locations illustratively close to the servers
requesting the block. Having multiple copies of popular data
blocks balances the request load among the servers of the
distributed system and facilitates performance improvement
of the system.

[0064] FIG.111isablock diagram of'an example distributed
data processing system 1100 illustrating a bottleneck caused
by a data popularity condition. Here, data block A2 is con-
sidered a popular data block because the requests that the data
block attracts from both S3 and S1 exceed the maximum
permissible limit of scheduled tasks (3). In particular, S1 has
two locally scheduled tasks directed to data block A1 and S2
has one locally scheduled task directed to data block A3.
However, S3 has two locally scheduled tasks directed to data
blocks B1 and B2, and one locally scheduled task directed to
data block A2, as well as two remote task requests from S1
directed to data block A2 for a total of five (5) tasks. Accord-
ingly, S3 is bottlenecked. The statistics manager 400 main-
tains statistics relating to every block of data; an example of
those statistics is shown in FIG. 11. Referring also to FIGS.
5-6, the replication phase 500 and the find_target_server rou-
tine 600 of the dynamic caching technique may operate as
follows. Broadly stated, the replication phase may be
executed to compile and order a list of all congested {server,
block} tuples in the system, resulting in, e.g., [{S3, A2}, {S3,
B1}, {S3, B2}]. Since the list is not empty, the tuple at the top
ofthelist, e.g., {S3,A2}, may be selected and a determination
made that the cache bandwidth usage of S3 (5) is greater than
the cache bandwidth threshold (3). Accordingly, the find_
target_server routine 600 may be invoked to compile and
order a list of possible target servers for block A2 from the
source server S3, resulting in [S1, S2]. Since the list is not
empty, the server at the top of the list (S1) may be selected as
apossible target server. A determination is then made that the
total cache traffic in the target server (2) plus the remote block
traffic from the source server (2) is not less than or equal to the
threshold (3). Therefore, the possible target server (S1) is
removed from the list and the next server at the top of the list
(S2) may be selected as a possible target server. A determi-
nation is then made that the total cache traffic in the target
server (1) plus the remote block traffic from the source server
(2) is less than or equal to the threshold (3). Furthermore, a
determination is made that the data block (A2) is not present
in the target server (S2). Thus, data block (A2) is copied to the
target server, the (A2) block traffic from the remote server
(S1) to the source server (S3) is redirected to the target server
(S2), and the statistics manager is updated. The routine 600
then returns to the replication phase 500 where the next tuple
{83, B1} in the list is selected and a determination made that
the cache bandwidth usage of S3 (3) is not greater than the
cache bandwidth threshold (3). As a result, the next tuple {S3,
B2}in the list is selected and a determination made that the
cache bandwidth usage of S3 (3) is not greater than the thresh-
old (3). Since there are no other tuples in the list, the replica-
tion phase ends.

[0065] Accordingly, data block A2 is replicated to S2 in the
same rack as S1, tasks (including data block requests) from
S1 requiring the data block A2 may be redirected to S2, and
tasks from S3 requiring the data block A2 may be satisfied
locally, thereby reducing the bottleneck caused by the data
popularity condition. FIG. 12 is a block diagram of an
example distributed data processing system 1200 illustrating
reduction of the bottleneck caused by the data popularity
condition in accordance with the dynamic caching technique.

Jun. 5, 2014

The example system 1200 illustrates block placements, as
well as scheduled tasks, among the servers 1-3 of the system
after implementation of the dynamic caching technique. As
can be seen, the number of scheduled tasks in S3 has been
reduced from five to three, while the number of scheduled
tasks in S2 has increased from one to three. Therefore, the
number of scheduled tasks in S3 does not exceed the available
cache bandwidth of the server and the bottleneck condition at
S3 has been reduced.

[0066] While there have been shown and described
embodiments that provide a dynamic caching technique to
adaptively control a number of cached copies of data blocks
stored within a caching layer distributed among servers of a
distributed data processing system, it is to be understood that
various other adaptations and modifications may be made
within the spirit and scope of the embodiments herein. For
example, the embodiments have been shown and described
herein with relation to a replication phase of the dynamic
caching technique that may increase the number of cached
copies of a data block at the servers to reduce, e.g., bottleneck
conditions in the system. However, the embodiments in their
broader sense are not so limited, and may, in fact, be used with
a consolidation phase of the dynamic caching technique that
may consolidate cached copies of data blocks without affect-
ing performance of the system. That is, the consolidation
phase may be executed to reduce the number of cached copies
of data blocks that may contribute to excessive storage capac-
ity in the system. Note that the administrator may activate
each of the replication/consolidation phases independently to
correct a specific problem.

[0067] FIG. 13 is a flowchart illustrating the consolidation
phase 1300 of the dynamic caching technique. The consoli-
dation phase starts at step 1305 and proceeds to step 1310
where, after the replication phase, a list of data blocks is
compiled from all servers that hold the same data block in the
distributed system. In an embodiment, the data block of the
{server, block} tuple selected in the replication phase is used
to compile the list of data blocks, e.g., from the statistics
maintained by the statistics manager. At step 1315, a deter-
mination is made as to whether the compiled list is empty. If
so, consolidation phase ends at step 1320. Otherwise, the
sequence proceeds to step 1325 where a data block is
selected, e.g., from the top of the compiled list. At step 1330,
a determination is made as to whether the number of copies of
the data block is greater than a minimum number of replicas
(i.e., copies of the data block). Illustratively, the minimum
number of replicas may be specified by a replication factor,
which is illustratively statically configured by an administra-
tor. For example, the administrator may configure the distrib-
uted system with a replication factor of two (2), which
denotes that, for each data block stored on the shared storage
system 200, there may be a minimum of'two copies of the data
block replicated in two caches 120 of the system. If the
number of copies of the data block is not greater than the
minimum number of replicas, the sequence proceeds to step
1340 where the data block is removed from the compiled list,
and then returns to step 1315. However, if the number of
copies of the data block is greater than the minimum number
of replicas, the sequence proceeds to step 1400 where con-
solidation is performed in accordance with a consolidate_
block routine, as described in connection with FIG. 14. Upon
completion of the consolidate_block routine, a determination
is made as to whether the compiled list is empty (step 1315).

US 2014/0156777 Al

If not, the sequence proceeds to step 1325; otherwise, the
consolidation phase ends at step 1320.

[0068] FIG. 14 is a flowchart illustrating the consolidate_
block routine 1400 of the dynamic caching technique. The
routine starts at step 1405 and proceeds to step 1410 where a
list of servers that hold copies of the data block is compiled,
e.g., from the statistics maintained by the statistics manager.
Note that the compiled list of servers is illustratively derived
from a list of {server, block} tuples, wherein the server hold-
ing a copy of the data block to be consolidated is the source
server. At step 1415, the list of servers is ordered according to
a specified arrangement. In an embodiment, the list may be
initially arranged in ascending order of total traffic accesses
for the data block such that the server located at the top of the
list has the least amount of block accesses during a specified
period of time, e.g., 60 seconds. In addition, the list may be
ordered by placing servers in the same rack at the top of the
list. At step 1420, a determination is made as to whether the
compiled list is empty. If so, the routine ends at step 1455 and
returns to step 1315 ofthe consolidation phase 1300. If the list
is not empty, the routine proceeds to step 1425 where a target
server (e.g., the server located at the top of the compiled list)
is selected. At step 1430, a determination is made as to
whether the total cache traffic in the target server plus (+) the
remote block traffic from the source server is less than or
equal to the cache bandwidth threshold of the target server
(“target server threshold”). If not, the routine proceeds to step
1435 where the target server is removed from the complied
list and then returns to step 1420. Yet if the total cache traffic
in the target server plus the remote block traffic from the
source server is less than or equal to the target server thresh-
old, then the routine proceeds to step 1440 where the data
block is removed from the source server. At step 1445, the
data block traffic (if any) at the source server is redirected to
the target server and, at step 1450, the statistics manager is
updated. The routine then ends at step 1455.

[0069] FIG.15isablock diagram of'an example distributed
data processing system 1500 prior to implementation of the
consolidation phase of the dynamic caching technique.
Assume that the minimum number of replicas is two (2).
Here, there are a total of three (3) copies of datablock A2; thus
data block A2 is chosen for consolidation. FIG. 16 is a block
diagram of an example distributed data processing system
1600 after implementation of the consolidation phase of the
dynamic caching technique. As can be seen, copies of data
block A2 have been consolidated such that are only two (2)
copies of the data block remaining in the caches to thereby
reduce excessive storage capacity in the system.

[0070] In one or more embodiments, the dynamic caching
technique described herein may be triggered: 1) automatically
by the system, ii) manually by an administrator during main-
tenance, and iii) manually by the administrator to correct a
performance problem. Maintenance activities that require
administrator intervention may include backups, hardware
upgrades and software upgrades. The administrator may
choose to manually trigger the dynamic caching technique to
correct a performance bottleneck in the system; the bottle-
neck may occur at either the storage system level, the caching
layer level or the application level. The administrator may
also control the degree of automation by overriding the
parameters of the system, e.g., the administrator may choose
to correct the replication factor for the top 50% of the blocks
currently experiencing a problem.

Jun. 5, 2014

[0071] Advantageously, the dynamic caching technique
adaptively controls the number of copies of data blocks stored
within caches (“cached copies™) of the caching layer to opti-
mize distributed analytics running on the shared storage
infrastructure of the distributed system. That is, the dynamic
caching technique may increase or decrease the number of
cached copies of data blocks to allow users greater flexibility
and address problems that customers may encounter in an
enterprise environment, such as bottlenecks, failures, and
system reconfigurations. The dynamic technique also allows
users to balance between performance and storage efficiency.
[0072] The foregoing description has been directed to spe-
cific embodiments. It will be apparent, however, that other
variations and modifications may be made to the described
embodiments, with the attainment of some or all of their
advantages. For instance, it is expressly contemplated that the
components and/or modules described herein can be imple-
mented as software being stored on a tangible (non-transi-
tory) computer-readable medium (e.g., disks and/or CDs)
having program instructions executing on a computer, hard-
ware, firmware, or a combination thereof. It is further con-
templated that the various processes, modules, architectures
and procedures described herein may be implemented in
hardware, firmware or software. Accordingly this description
is to be taken only by way of example and not to otherwise
limit the scope of the embodiments herein. Therefore, itis the
object of the appended claims to cover all such variations and
modifications as come within the true spirit and scope of the
embodiments herein.
What is claimed is:
1. A system comprising:
aplurality of servers including storage devices, each server
embodied as a computer having a processor;
a statistics manager configured to maintain statistics per-
taining to data blocks stored on the storage devices ofthe
servers; and
a cache coordinator configured to utilize the statistics to
implement one of a replication phase and a consolida-
tion phase of a dynamic caching technique that adap-
tively controls a number of copies of a data block stored
on one or more of the storage devices, the cache coordi-
nator further configured to cooperate with the processor
to execute the replication phase of the dynamic caching
technique to increase the number of copies of the data
block stored on the one or more storage devices, the
replication phase when executed operable to:
determine that a number of data block requests assigned
to a source server of the plurality of servers exceeds a
total number of data block requests that can be pro-
cessed by the source server, the number of data block
requests assigned to the source server including one
or more data block requests directed to the data block;

determine that a number of data block requests assigned
to atarget server of the plurality of servers is less than
or equal to a total number of data block requests that
can be processed by the target server;

copy the data block to the storage device of the target
server; and

redirect the one or more data block requests directed to
the copied data block at the source server to the target
server to alleviate congestion in the system.

2. The system of claim 1 wherein the storage devices are

embodied as caches configured to provide a caching layer of
the system.

US 2014/0156777 Al

3. The system of claim 2 further comprising a storage
system connected to the servers, the storage system config-
ured to cooperate with the caches of the servers to provide a
shared storage infrastructure of the system.

4. The system of claim 3 wherein the storage system is
configured to store a dataset that is partitioned into blocks of
data, including the data block, for storage on the one or more
caches of the caching layer.

5. The system of claim 4 further including one or more data
analytic modules configured to track locations of the parti-
tioned blocks of data stored on the one or more caches.

6. The system of claim 5 wherein the one or more data
analytic modules includes a metadata coordinator module
configured to perform operations that control access to the
dataset and/or partitioned blocks.

7. The system of claim 3 wherein the statistics manager is
embodied as a tree data structure to maintain the statistics
pertaining to the data block located on the storage system and
one or more caches of the servers.

8. The system of claim 1 wherein the cache coordinator is
further configured to execute the consolidation phase of the
dynamic caching technique to decrease the number of copies
of the data block, the consolidation phase when executed
operable to:

determine that the number of copies of the data block is

greater than a minimum number of replicas in the sys-
tem;

determine that the number of data block requests assigned

to the target server is less than or equal to the total
number of data block requests that can be processed by
the target server, the number of data block requests
assigned to the target server including one or more data
block requests directed to the data block at the source
server;

remove the data block from the source server; and

redirect the one or more data block requests directed to the

removed data block at the source server to the target
server to improve storage efficiency in the system.

9. The system of claim 8 wherein the minimum number of
replicas is specified by a replication factor.

10. A method comprising:

maintaining statistics pertaining to data blocks stored on

servers of a distributed processing system, each server
including a processor configured to execute a dynamic
caching technique that adaptively controls a number of
copies of a data block stored on the servers;

utilizing the statistics to implement one of a replication

phase and a consolidation phase of the dynamic caching
technique; and

executing the replication phase of the dynamic caching

technique to increase the number of copies of the data

block, the replication phase when executed operable to:

determine that a number of data block requests assigned
to a source server of the distributed processing system
exceeds a total number of data block requests that can
be processed by the source server, the number of data
block requests assigned to the source server including
one or more data block requests directed to the data
block;

determine that a number of data block requests assigned
to a target server of the distributed processing system
is less than or equal to a total number of data block
requests that can be processed by the target server;

copy the data block to the target server; and

Jun. 5, 2014

redirect the one or more data block requests directed to
the copied data block from the source server to the
target server to alleviate congestion in the distributed
processing system.
11. The method of claim 10 further comprising:
storing the data blocks on storage devices of the servers;
and
embodying the storage devices as caches of the servers.
12. The method of claim 11 further comprising:
organizing the caches of the servers to provide a caching
layer of the distributed processing system.
13. The method of claim 12 further comprising:
coupling a storage system to the servers; and
configuring the storage system to cooperate with the
caches of the servers to provide a shared storage infra-
structure of the system.
14. The method of claim 13 further comprising:
storing a dataset on the storage system;
partitioning the dataset into blocks of data, including the
data block; and
storing the blocks of data on one or more of the caches of
the distributed processing system.
15. The method of claim 14 wherein the maintaining sta-
tistics comprises organizing a tree data structure to maintain
the statistics pertaining to the data block stored on the storage
system and the one or more caches of the servers.
16. The method of claim 10 further comprising:
executing the consolidation phase of the dynamic caching
technique to decrease the number of copies of the data
block, the consolidation phase when executed operable
to:
determine that the number of copies of the data block is
greater than a minimum number of replicas in the
distributed system;

determine that the number of data block requests
assigned to the target server of the distributed system
is less than or equal to the total number of data block
requests that can be processed by the target server, the
number of data block requests assigned to the target
server including one or more data block requests
directed to the data block at the source server;

remove the data block from the source server; and

redirect the one or more data block requests directed to
the removed data block at the source server to the
target server to improve storage efficiency in the dis-
tributed system.

17. The method of claim 16 further comprising:

specifying the minimum number of replicas by a replica-
tion factor.

18. A distributed data processing system comprising:

a plurality of servers including storage devices embodied
as caches configured to provide a caching layer of the
distributed data processing system, each server embod-
ied as a computer having a processor;

a storage system connected to the servers and configured to
cooperate with the caches of the caching layerto provide
a shared storage infrastructure of the distributed data
processing system;

a statistics manager configured to maintain statistics per-
taining to data blocks stored on the caches of the caching
layer; and

a cache coordinator configured to utilize the statistics to
implement one of a replication phase and a consolida-
tion phase of a dynamic caching technique that adap-

US 2014/0156777 Al

tively controls a number of copies of a data block stored
on one or more of the caches of the caching layer, the
cache coordinator further configured to cooperate with
the processor to execute the replication phase of the
dynamic caching technique to increase the number of
copies of the data block stored on the one or more
caches, the replication phase when executed operable to:
determine that a number of data block requests assigned
to a source server of the plurality of servers exceeds a
total number of data block requests that can be pro-
cessed by the source server, the number of data block
requests assigned to the source server including one
or more data block requests directed to the data block;
determine that a number of data block requests assigned
to atarget server of the plurality of servers is less than
or equal to a total number of data block requests that
can be processed by the target server;
copy the data block to the cache of the target server; and
redirect the one or more data block requests directed to
the copied data block at the source server to the target
server to alleviate congestion in the distributed data
processing system.
19. The distributed data processing system of claim 18
wherein the statistics manager is embodied as a tree data

10

Jun. 5, 2014

structure to maintain the statistics pertaining to the data block
located on the storage system and one or more caches of the
caching layer.

20. The distributed data processing system of claim 18
wherein the cache coordinator is further configured to execute
the consolidation phase of the dynamic caching technique to
decrease the number of copies of the data block, the consoli-
dation phase when executed operable to:

s determine that the number of copies of the data block is
greater than a minimum number of replicas in the dis-
tributed data processing system;

determine that the number of data block requests assigned
to the target server is less than or equal to the total
number of data block requests that can be processed by
the target server, the number of data block requests
assigned to the target server including one or more data
block requests directed to the data block at the source
server;

remove the data block from the source server; and

redirect the one or more data block requests directed to the
removed data block at the source server to the target
server to improve storage efficiency in the distributed
data processing system.

#* #* #* #* #*

