
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2005/0038881 A1

Ben-Itzhak

US 2005.0038881A1

(43) Pub. Date: Feb. 17, 2005

(54) METHOD FOR THE AUTOMATIC SETTING
AND UPDATING OF A SECURITY POLICY

(57) ABSTRACT
The invention relates to a method for creating and/or updat
ing a Security policy within a computerized System protected

(76) Inventor: Yuval Ben-Itzhak, Kiron (IL) by at least one Security package, comprising: (a) Providing
C d Address: at least one trusted Source within the System, capable of
MARSFEER & Asso CIATES issuing a report detailing the Structure and/or attributes of
PO BOX 803302 the System and/or Security flaws within the System; (b)

Periodically operating Said at least one trusted Source in
DALLAS, TX 75380-3302 (US) - order to periodically issue said report; (c) Importing each

trusted Source report into a Security correcting unit, and
(21) Appl. No.: 10/433,532 forming OC consolidated file containing the details from all

said reports; (d) Importing into said Security correcting unit
(22) Filed: Nov. 20, 2003 the attributes files of all the security packages; (e) Separately

comparing the content of Said consolidated file with each of
(30) Foreign Application Priority Data the imported attributes files, and updating each attributes file

with the security information included within said consoli
May 9, 2002 (IL)... 149583 dated file, information which is missing from the Said

attributes file, and is relevant to said attributes file; and (f)
Publication Classification Separately exporting Said updated attributes files and effect

ing each of them as the active attributes file of the corre
(51) Int. Cl." ... G06F 15/173 sponding Security package, thereby effecting an updated
(52) U.S. Cl. .. 709/223 Security policy.

2C) 21
— al

Thus cil Set of - 23a
in formation --> --)--C --> logical Tules
SCCS

------- Import 28
Security Y

A s ". ---> -> s Security policy 1
III. DK Consolidation creation

- (A) - J - vir
------ Import 22 ZA

8 Sechlity
SC, --- e -) 45

-N-
Import

23

40
- Formats
Formats transform

transform

26 - lixport
import 3O

32
\ Target Security Package

US 2005/0038881 A1

STILITARIJ.LV

Patent Application Publication Feb. 17, 2005 Sheet 2 of 18

luloj sub]]

].loclul I].todu II

egz --~· JO 19S

Patent Application Publication Feb. 17, 2005 Sheet 3 of 18

Patent Application Publication Feb. 17, 2005 Sheet 4 of 18 US 2005/0038881 A1

Connect to trusted Source

65

Does the component in FOI Inat to N
Common for Inat cominOn FOI mat?

6

o

9
Store in consolidated file

67

More componets
to read?

Patent Application Publication Feb. 17, 2005 Sheet 5 of 18 US 2005/0038881 A1

Get input component from the report fie
in input format

Does format of input
component matches expected

input data Schenna?

Transfor In component to COInmon file
format, based on the Output Schenna

More components to
transfor in?

89

Fig. 5

Patent Application Publication Feb. 17, 2005 Sheet 6 of 18 US 2005/0038881 A1

Go to next
component Update consolidated file with

attribute component?

L3 St
component?

Patent Application Publication Feb. 17, 2005 Sheet 7 of 18 US 2005/0038881 A1

Load Schenna Of the Connon file

184 - v

Get input component fron attributes file
in input format

183

Does format of input
Neaponent matches expected

input data Schema? -

Ignore
component? Transform component to Output, common

format, based on the output Schema

More component
to transfot In?

Patent Application Publication Feb. 17, 2005 Sheet 8 of 18 US 2005/0038881 A1

281 Load input Schena of temporary
attributes file (common foilinat)

le LOad Output Schena of the attributes
(package specific format)

v
284 r

Get input component from temporary
attributes file in input for nat

283

287

More components
to

Patent Application Publication Feb. 17, 2005 Sheet 9 of 18 US 2005/0038881 A1

<z: row Date="2002-01-14T12:52:13' Uri="http://1.0.0.0.2/demo'
Domain="inyserver c7="10.0.0.2' Port='80' CiO='Server: Microsoft-IS/5. O' ProtocoiName="http:'Path=/demo' Action="fad...asp'

CookieName="ASPSESSIONIDGQQQQBWC Cookievalue
='CLKFPSF8FJDKIFPONFIMLAJJ"/>

<2: row Date="2002-01-14T2:52:13' Uri="http://1.0.0.0.2/demo'
Domain="inysarver' c7="10.0.0.2' Port='80' c10='Server: Microsoft-IIS/5. O'

Protocol Name="http:' Path=/AUthentication' Action=' Login.asp"
Cookie Name="ASPSESSIONIDGOQQQBWC Cookievalue
="CLKFPSFBF3DKIFPONFIMIAJJ'/>

Fig. 9a

Patent Application Publication Feb. 17, 2005 Sheet 10 of 18 US 2005/0038881 A1

<Network Tunnel)
<Name> Demo-3/Name>
<Protocold TCPIP</Protocols
<ListenAddress.>10.0.0.15</ListenAddress.>
<listen Po?t280-g/Listen Porto
<Connect OCalAddress>10.0.0.15</ConnectLocalAddress>
<ConnectAddress> 10.0.0.2</ConnectAddress.>
<ConnectPorto 80</ConnectPorta
<ConnectiimeOut>5000</ConnectiimeOut>

</Network Tunnel)
<Application Tunnel)

< Name> App </Name>
<Protocold HTTPS-/Protocola
<Version>1.0</Version>
<Application Paths>

<Application Path)/test</Application Path)
<Application Path>/samples</Application Path)
<Application Pathd/demo-/Application Patnd
<Application Pathd/cgi-bin</Application Pathd

</Application Paths)
- </Application Tunnel>

Fig. 9b

Patent Application Publication Feb. 17, 2005 Sheet 11 of 18 US 2005/0038881 A1

< Records
<Network attributes isnew Faise >
<Protocolso

KProtoCO isNews 7 Ued
<Name> TCPIP</Name>
<Version></Version>
<IP> 10.0.0.2</IP>
< Port> 80-/Ports
<Host> Tyserver-/Host>
< Domaind </Domain)
<ID>ik/ID>
<(Any)></Any}>

</Protocol)
</Protocols.>
</Network attributes>
<Application attributes is New = False >
< ProtOCOIS)

< Protocol is New=True>
<Name>HTTP </Name>.
<Version>1.0</Version)
<Domain>myserver.</Dornaind
<ID>1</ID>
<Any></Any>

</Protocold
< Protocols.>
</ Application attributes.>

<Application Paths isNew =True D
<Virtual Paths isNews-True2

<Virtual Path ID=1, Related Protocols: 12/demo-/Virtual Paths
<Virtual Path ID=2, Related Protocol= 1 > / Authentication </Virtual Paths

</Virtual Paths>
<Physical Paths isNew=Falsed

< Physical Path ID=, Related Protocol=></ Physical Pathd
</ Physical Paths.>

</ Application Paths.>

Fig. 10a

Patent Application Publication Feb. 17, 2005 Sheet 12 of 18 US 2005/0038881 A1

<Application Actions isNew =True >
<Actions>

<Action isNew-True)
< Name>Login.asp.</Name>
<Methodd GE </Methods
< Direction>1</Direction >
< location isNew=TUred

<Related Path ID) </Related Path IDX
</Location>
<ID>1</ID>

</Action>
<Action isNew=Ue>

<Name>faq.asp</Name>
<Methodd-GETZ/Methods
<Direction>1 </Direction>
< Location isNew=Ture>.

<Related. Pat ID></Related Path ID)
</Location>
<ID>2</ID>

</Action>
</Actions.>
<Operations.>

<Operation isNew=>
<Nanned
<Actions>

<Action is New=></Action>
</Actions.>

<ID></ID>
<Operation>

<Operations>
</Application Actions.>

<Action attributes isNew = Trued
<Action restricts order=>

<Action ID>1</Action ID>
< Parameter Na?hed ASPSESSIONIDGQQQQ6WC</Parameter Name>
< Parameter Valued CLKFPSFSFJDKIFPONFIMIAJ</Parameter Values
< Parameter Typed </Parameter Typed
< Parameter Structure></Pararineter Stucture >
< Para?iheter Direction, 2 < Parafineer Direction>
<Eribedded Action i></ Einbedded Action IDD
<Any></Any>

</Action>
</Action attributes.>

Fig. 10a

Patent Application Publication Feb. 17, 2005 Sheet 13 of 18 US 2005/0038881 A1

<Action Fiow isiNews True a
<Action ID=12

<Post Actions
<Action>2</Actions

<POSt Actions
</Actoid
<AOn D=2.

< Pre Actions
<Action> 1 K/Actions

< Pre Actions
</Actional

</Action Flowd
< / Records

Fig. 10a

Patent Application Publication Feb. 17, 2005 Sheet 14 of 18 US 2005/0038881 A1

< Recordd

<Network attributes isNew= > these attributes define the network layer protocols
< Protocols)

<Protocol is Mew=>
<Name></Narned
<Version></Version>
<IP></IP)
< Ports </Ports
<Host></Hostd
<Domaind </Domain>
<ID></ID>
<Any></Any>

</Protocold
</Protocols.>
</Network attributes.>

<Application attributes isNew = D these attributes define the application layer protocols
< Protocols> '.

KProtocol isNew=>
<Name></Name>
<Version></Version>
<Donain></Domaind
<ID ></ID>
<Any></Any>

</Protocol)
< Protocols)
</ Application attributes>

<Application Paths is New = > these attributes define the application's AAI location
<Virtual Paths isNew=>

<Virtual Path ID=, Related Protocol=></Virtual Pathid
</Virtual Paths)
<Physical Paths isNew=> -

< Physical Path ID=, Related Protocol=></ Physical Paths
</ Physical Paths>

</ Application Paths.>

Fig. 10b

Patent Application Publication Feb. 17, 2005 Sheet 15 of 18 US 2005/0038881 A1

<Application Actions is New F these attitutas define lie apolication's supports. AAI
<Actors>

<Action isNew=> these aiibutes define the apolication's supported API messages
<Name></Narine)
<Method) </Method>
< Direction></Direction>
<location is News >

<Related Path IDX </Related Path ID)
</location>
<ID></ID>

</Action>
<f Actions.>
<Operations.>

<Operation isNew=>
<Name>
<Actions)

<Action isNew =></Action>
</Actions> .

<ID></ID)
<Operation>

<Operations.>
</ Application Actions.>

<Action attributes isNew = > tese attributes aefine the aco/?cation's supported AAI
17 essages interface

<Action restricts Order=>
<Action ID></Action ID>
< Paranetar Nanne) </Paarineter Narine)
< Parameter Valued </Parameter Valued
< Pararietar Typed </Parameter Typed
< Parameter Structure></Paarineter Suciure >
< Para?nete? Direction> < Parameter Ciraction >
< Embedded Action ID></ Eibedded Action ID
<Any></Any>

</Action >
</Action attributesd.

<Action Fow islew = > Giese actitutes derine the acpic goori's supported A^i ?nessages fow cros?
<Action ID=>

KPrs Actions.>
<Acjond </Action.>

fe Actions.>
Cs Actions)

<Action></Action>
< Post ACCns

</Action>
</Actic Fow >

</Rseccred

Patent Application Publication Feb. 17, 2005 Sheet 16 of 18 US 2005/0038881 A1

< Recordd

< Network attributes is New=False > these attitutas define the network layer grotocols
< Potocols>

<Protocol isNew=False)
<Name> TCPIP</Nams>
<Version></Version>
<IP> 10.0.0.15</IP>
< Ports 80</Ports.
<Host></Hosta
< Donaina </Domaind
<ID>1</ID>
<Any></Any>

</Protocold
</Protocols.>
</Network attributes
<Application attributes isNew = Faise >
< Protocols>

<Protocol is New=Trued
<Name>HTTPSZ/Name>.
<Version>1.0</Version>
< Domain myserver.</Dornaind
<ID>1</IDX
<(Any)></Any>

</Protocol)
<Protocols.>
</ Application attributes.>

t

<Application Paths is New=False >
<Virtual Paths isNew = Faised

<Virtual Path ID=1, Reiated Protocol=1>/test</Virtual Path>
<Virtual Path ID=2, Related Protocol= 1 >/samples</Virtual Paths
<Virtual Path ID=3, Ralated Protocol = 1 >/demo </Wirtual Pathid
<Virtual Path ID=4, Related Protocol= 1>/cgi-bin</Virtual Pathd

</Virtual Paths>
<Physical Paths is New=False >

< Physical Path ID=, Related Protocol=></ Physical Pathd
</ Physical Paths>

</Application Paths.>
</Racordd

Fig. 11

Patent Application Publication Feb. 17, 2005 Sheet 17 of 18 US 2005/0038881 A1

< Recordd

<Network attributes isNew = Faise > liese stributes gains is network fayer triciccfs <Protocols>
<rotocol is New=False >

<Name> 7 C22-/Name>
< Varsion></Version>
<IP) 10.0.0.2 </IP>
< Ports 80</Po?td
< host></Host)
< Orihain) </Doria in>
<ID> 1 </ID >
<Any></Any>

</Protocoid
</Protocols.>

</ Network attributes>
<Application attributes is New = True &
< Protocols.>

< Protocol isNew=Trued
<Name>HTTP</Name>
<Version>1.0</Version >
< Domaind myserver </Domaind
<ID> 1.</ID>
<Any></Any>

</Protocolad
< Protocolso -

</ Application attributes>
<Application Paths is New =True d

<Virtual Paths isNew=Truex,
<Virtual Path ID=3, Related Protocol=> / deino ~/Virtual Patid </Virtuai Patisc

< Physical Paths is New=Falsex
< Physical Pat D=, Relatad Protocol=></ Physical Pathd

<f Physical Pathsd
</ Application Pathsd
</Record)

Fig. 12

Patent Application Publication Feb. 17, 2005 Sheet 18 of 18 US 2005/0038881 A1

au

<Network infield
<Narine > De?io C/Niaris)

<Protocol > TCPI- </Protocols
<ListenAddress > O.O.O.2</lists Address>
<Listan Port 80</Listan Port.)

> 1. O. C.2</Connecoca Addass> S <Connect localAddres

<ConnectAddress.> 10.0.0.2</ConnectAddress.>
<ConnectPo?t-80</ConnectPorts
K ConnecTimeOut> 5000</ConnectTimeOut>

</Network Tunned
<Application Tunnel>

<Name>.App.4/Name>
<Protocold HTPC/Protocoid
<Version > 1. C</Version>
< Application Paths>
<ApplicationPath >/deno</Application Path)

</Application Pats)
</Application Tunnel>

Fig. 13

US 2005/0038881 A1

METHOD FOR THE AUTOMATIC SETTING AND
UPDATING OF A SECURITY POLICY

FIELD OF THE INVENTION

0001. The present invention relates to the field of secur
ing computer applications, networks and Services. More
particularly, the present invention relates to a method and
System for Simplifying the Setting of a Security policy, and
dynamically amending the same upon introduction of
changes having Security effects within the application, net
work, or Services which the application provides. In a most
preferred embodiment of the invention, Said first Setting, and
the amendments to the same, are carried out in an automatic
manner. Alternatively, Semi-automatic, or manual methods
are also within the Scope of the invention.

BACKGROUND OF THE INVENTION

0002 Connectivity, functionality and security are con
flicting objectives in the application environment of orga
nizations. Typical modern implementation of computer
applications allows users to execute a wide range of appli
cations, and offers various Services, in order to meet the
needs of a modern organization. Unfortunately, the need for
providing a wide range of application Services to many users
can render these Services Vulnerable to attack or misuse by
external entities, Such as hackers, or unauthorized entities.
0.003 Currently, securing computer applications and ser
vices involves the manual setting of a security policy, which
is based on “best practice' guidelines, and prior knowledge
of the applications, or Services, and networks involved.
Special Security applications have been developed in order
to provide the System manager with the ability to enforce the
Security policy, or to detect unauthorized flaws, use, or
operations. Some Security applications are network-ori
ented, with the intention of enforcing Security within the
network domain. Examples of Such network-oriented Secu
rity applications are: The “Firewall” by Checkpoint Inc.,
Symantec Inc. There have been also introduced application
oriented Security packages, which are intended to enforce
and ensure a Security policy within the application domain.
An example of Such an application domain Security pack
ages is, InterDo by KaValDo Inc. Normally, the applied
Security policy heavily depends on, and is affected by, the
administrator's Security skills and knowledge of the appli
cation, the network, the Services and the entire environment.

0004 Means, which hereinafter will be referred to as
"Security Scanners', or more generally, “trusted Sources',
are also known in the art, and are used for checking whether
the computerized environment complies with the Security
policy as Set. Each of these Scanners or trusted Sources is
generally compatible with one Security package. The Scan
ners test and challenge the domain which is protected by the
Security application, and provides a report regarding the
flaws found and the identified attributes. Thereafter, it
remains to the administrator to translate the report, and to
correct whatever is needed. The correction of the reported
flaws and identified attributes heavily depends on the skills
of the System administrator. More particularly, the correction
many times requires programming-oriented Skills, which the
average System administrator lackS.
0005 Another aspect of this problem is the fact that
computerized environments are very dynamic. New users

Feb. 17, 2005

are introduced to the environment, others eliminated, new
applications or hardware introduced or removed, and most
importantly, the applications themselves are in many cases
dynamically amended or changed by programmerS or users
within the environment. The system administrator often
does not have full control over all these rapidly occurring
changes, many of them being reported afterwards, if at all.
AS a result of the above-described Situation, current Security
policies are rather Statically enforced, and the applications
and the environments remain Vulnerable.

0006. It is an object of the present invention to provide a
System and method for constantly or periodically checking
the compliance of the application and its environment to the
Security policy enforced, to detect and Verify incompatible
Security flaws and attributes, and to automatically or Semi
automatically correct and eliminate Said flaws.
0007. It is another object of the present invention to
asSociate Said System and method with the Security appli
cations operating within the computerized environment.
0008. It is still another object of the present invention to
provide means for dynamically checking and correcting
each Specific Security policy which is enforced by any of the
Security applications operating within the computerized
environment.

0009. It is still another object of the present invention to
provide Said tasks in a simple and efficient manner.
0010. It is still another object of the invention to provide
means which can effectively receive indications and reports
of flaws from Security Scanners or other trusted Sources, and
to correct the same in an automatic or Semi-automatic

C.

0011. Other objects and advantages of the invention will
become apparent as the description proceeds.

SUMMARY OF THE INVENTION

0012. The present invention relates to a method for the
updating of a Security policy within a computerized System
protected by at least one Security package, which comprises
the Steps of a. providing at least one trusted Source within
the System, capable of issuing a Security report detailing the
Structure of the System or Security flaws within the System;
b. periodically operating Said at least one trusted Source in
order to periodically issue Said report; c. importing each
trusted Source report into a Security correcting unit, and
forming one consolidated file containing the details from all
Said reports; d. importing into Said Security correcting unit
the attributes files of all the Security packages; e. Separately
comparing the content of Said consolidated file with each of
the imported attributes files, and updating each attributes file
with the security information included within said consoli
dated file, information which is missing from the Said
attributes file, and is relevant to said attributes file; and f.
Separately exporting Said updated attributes files and effect
ing each of them as the active attributes file of the corre
sponding Security package, thereby effecting an updated
Security policy.

0013 Preferably, the method further comprises the steps
of a. the Step of importing each trusted Source report further
comprises the Step of transforming each report into a com
mon format, and forming Said consolidated file in Said

US 2005/0038881 A1

common format; b. the Step of importing into Said Security
correcting unit the attributes files of all the Security packages
further comprises the Step of transforming each attributes
file into Said common format; and c. the Step of Separately
exporting each of Said updated attributes files and effecting
the same as the active attributes file of the corresponding
Security package further comprises the Step of transforming
Said attributes file from a common format into a package
Specific format, prior to Said exporting.
0.014 Preferably, said updating is made by further using
a predefined Set of logical rules, for deciding which update
to effect and which to ignore.
0.015 Preferably, each of said reports comprises at least
one attribute component.
0016 Preferably, each of said issued reports is arranged
in the corresponding trusted Source Specific format.
0017 Preferably, each of said attributes files is arranged
in the corresponding package specific format.
0.018 Preferably, each security package effects a security
policy within its predefined range of responsibility, accord
ing to the content of its attributes file.
0019. In an embodiment of the invention, one or more of
the trusted Sources may be Security Scanners.

0020. In one embodiment of the invention, some or all of
the steps involved in the updating are carried out in a
Semi-automatic manner, requiring the operator's approval.

0021. In an embodiment of the invention, some of the
trusted Sources may be human beings, issuing a manual
report.

0022. In one embodiment of the invention, some of the
attribute components included in the reports are attributes
intended to eliminate known flaw cases, and Some of the
attribute components are attributes intended to eliminate
unpredicted cases.

0023 Preferably, the attributes in the reports intended to
eliminate unexpected cases are attributes relating to the
current structure of the system, which when recorded within
an updated attributes files enforce a Security policy bounded
to Said structure, rejecting activity deviated from Said struc
ture.

0024. The present invention further relates to a system for
updating a Security policy, which comprises: a. at least one
Security package enforcing a. Security policy within a pre
defined range of responsibility, Said policy being defined by
means of a specific attributes file associated with each of
Said packages; b. at least one trusted Source capable of
issuing a Security report detailing the Structure of the System
or Security flaws within the System; c. a Security correcting
unit for: 1. importing Said reports from all the trusted
Sources, and producing a consolidated file including infor
mation from all Said reports, and 2. importing the attributes
files from all the Security packages, Separately comparing
the content of said consolidated file with each of the
imported attributes files, and updating each attributes file
with the security information included within said consoli
dated file, which is missing from the Said attributes file, and
is relevant to Said attributes file, and exporting Said updated
attributes files and effecting each of them as the active

Feb. 17, 2005

attributes file of the corresponding Security package, thereby
effecting an updated Security policy.
0025 Preferably, the security correcting unit comprises:
a. at least one first importing modules for importing reports
from each trusted Source; b. a consolidation module for
receiving each of Said reports and forming one consolidated
file containing information included in all Said reports, c. at
least one Second importing modules for importing into the
correcting unit from each Security package its corresponding
attributes file; d. a Security policy creation module for
comparing the content of Said consolidated file with each of
the imported attributes files, and updating each attributes file
with the security information included within said consoli
dated file, information which is missing from the Said
attributes file, and is relevant to Said attributes file, and e. at
least one exporting module for exporting each updated
attributes file into its corresponding Security package,
thereby effecting an updated Security policy.

0026. In an embodiment of the invention, the system
further comprises at least one first transform modules for
transforming each report from its trusted Source Specific
format into a common format, at least one Second transform
modules for transforming each imported attributes Security
package from its package specific format into a common
format, and at least one third transform modules for trans
forming each updated attributes file from a common format
into its package specific format before its exportation into
the corresponding package, and wherein the consolidated
file is also arranged in Said common format.
0027. In an embodiment of the invention the security
policy creation module may further comprise a Set of
predefined logical decision rules, for use while updating the
attributes files.

0028. In still another embodiment of the invention, one of
the Security packages is an Intrusion Detection System or
Intrusion Prevention Systems, whose Set of Signatures being
Stored within a file, Said file being treated as an attributes file
of a Security package, and is therefore updated accordingly.

0029. In still another embodiment of the invention, one of
the Security packages is an application Switch, whose Set of
attributes that is used for direction being stored within a file,
Said file being treated by the System as an attributes file of
a Security package, and is therefore updated accordingly.

BRIEF DESCRIPTION OF THE DRAWINGS

0030)
0031 FIG. 1 shows a typical security system for securing
a computerized environment, according to the prior art;

In the drawings:

0032 FIG. 2 illustrates the structure of the improved
Security System, according to one embodiment of the inven
tion;

0033 FIG. 3 is a block diagram illustrating in more detail
the operation of the Security correcting unit, according to
one embodiment of the invention;

0034 FIG. 4 illustrates the procedure of importing by the
Security correcting unit the flaw attributes report;

0035 FIG. 5 illustrates the operation of one transforma
tion Step of the correcting unit;

US 2005/0038881 A1

0.036 FIG. 6 illustrates a portion of the process of
producing the consolidated file;
0037 FIG. 7 describes how the attributes files are
imported from the trusted Sources and transformed to cor
responding temporary attributes files in the common format;
0038 FIG. 8 describes how the back-transform from the
common format into the package Specific format is per
formed;
0.039 FIG. 9a shows an example for a report including
two attribute components as obtained from one trusted
Source, Such as a Security application Scanner;
0040 FIG. 9b shows an example for a package (for
example, "firewall gateway') specific attributes file forming
a Security policy of that package;

0041 FIG. 10a shows an example for a consolidated file
while being empty, before consolidation;
0042 FIG. 10b shows the consolidated file, after trans
formation of the report of FIG. 9a into a common format
and consolidation with the skeleton of the consolidated file;

0043 FIG. 11 shows the temporary attributes file in
common format;

0044 FIG. 12 shows the temporary attributes file of FIG.
11, after being updated with information from the consoli
dated file; and
004.5 FIG. 13 shows the final, updated, package specific
attributes file, as amended by the System of the invention;
more particularly, this attributes file of FIG. 13 is essentially
the corresponding temporary attributes file, as amended by
information from the consolidated file of FIG. 10b, and
contains an updated policy.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

0.046 FIG. 1 shows a typical security system for securing
an application environment providing Services to a plurality
of users, according to the prior art. The application 1
provides services to a plurality of users USER-USER. The
rights for properly activating the application, and more
particularly, the activity within the network is Secured by a
network Security package 6. The network Security package
may be, for example, a "Firewall” package, Such as the one
distributed, for example, by Checkpoint Inc. The rights for
activating Specific characteristics within the application
itself, for example, for receiving Specific Services, is Secured
by an application Security package 2, Such as, the “InterDo”
distributed by KaValDo Inc. More applications, security
packages and users may exist in the Secured environments
but these have not been indicated in this figure for the Sake
of brevity. Generally, each Security package enforces and
Supervises a Security policy, as defined by a System admin
istrator within the range (application, network, or both) of its
defined responsibility. The Security policy of each package
comprises a set of distinct constraints, expressed by means
of attributes that are generally Saved in an attributes file
dedicated to that package. In FIG. 1, the attributes file of the
application Security package is indicated by numeral 3, and
the attributes file of the network Security package is indi
cated by numeral 7. Furthermore, there have been developed
programs for checking Security flaws within the application

Feb. 17, 2005

or the network. Such programs are generally called Scanners,
and in this application they will be referred to as "Security
Scanners'. The Security Scanners, that may be provided by
the same manufacturer of the Specific package, are generally
each Specific to each package, and their purpose is to test the
network, the application, or both, whichever is the range of
the responsibility of the package, and to provide a report to
the System manager containing attributes regarding the
detected flaws which have to be properly dealt with. The
Scanners generally operate by means of challenging various
aspects of the network and/or the application. The System
manager, having this report, generally has to introduce
amendments to the corresponding attributes file. This is
usually a complicated procedure, which requires the perfor
mance of tasks which are in many cases beyond the skills of
the average System manager. Moreover, the Vulnerability of
the System, which is dynamic, and may change any moment,
depends on the frequency of performing the Scanner tests by
the System manager, and these cannot be performed in high
repetition rate.
0047 FIG. 2 illustrates the structure of the improved
Security System, according to one embodiment of the inven
tion. According to the present invention, a Security correct
ing unit 10 is provided. The Security application and network
scanners 4 and 8 perform their operation as before. The
content of each of the reports is also imported into the
Security correcting unit 10. The Security correcting unit also
imports (15, 16) each of the existing attributes files. The
security correcting unit analyses the flaw attributes (17, 18)
as received from the application and/or the network Scan
ners, compares the same with each of the existing attributes
files 3 and 7 correspondingly, issues amendments to the
attributes, wherever needed, and outputs either new, cor
rected attribute files, or only amendments to the existing
attribute files 3 and 7. The updated attribute files include the
corrections needed to eliminate the detected flaws. It should
be further noted that flaw reports to the Security correcting
unit may also be provided, in addition to the Scanners
reports, from other trusted Sources 20, i.e., Sources that are
considered as capable of providing reliable flaw and
attribute reports. Moreover, although in the most preferable
embodiment of the invention the operation of the improved
System is performed in a full automatic manner, in Some
embodiments the operation may be semi-automatic, manual,
or a combination thereof.

0048 AS is known and common in the art, each attributes
file has its Specific structure and deals with Specific
attributes. Hereinafter, it will be shown how the security
correcting unit 10 overcomes this drawback, in order to be
able to provide updates to the various attributes files.
0049 FIG. 3 is a block diagram illustrating in more detail
the operation of the Security correcting unit 10. The Security
correcting unit imports flaw attributes reports particularly
from the network and application Scanners 4 and 8, but also
it may receive reports or partial flaw indications from the
other trusted Sources 20. The reports also may contain
information regarding the current general Structure of the
checked System, Such as a tree map of the System. AS each
of the reports generally comes in its package specific format,
and the formats differ one from the other, each of the specific
flow reports is transformed by transform Stages 21, 22, and
23 respectively into a same, common format specific to the
correcting unit 10. The flaw outputs from the transform

US 2005/0038881 A1

Stages 23, 24, and 25, being in a Said common format, are
conveyed into a consolidation unit 40, which consolidates
all the flaw reports into one file, in said common format. The
Security correcting unit further imports from the Security
packages their attributes files. In FIG. 3 only one of target
package 32 is shown for the Sake of brevity, however, as is
clear to those skilled in the art, the correcting unit may
correct and in fact corrects in the same manner illustrated
herein the Security policies of a plurality of Security pack
ages, for example network Security package 6, and applica
tion Security package 2. The Security correcting unit imports
the attributes file 3 or 7 from the corresponding security
package, and then transforms it by unit 27 into Said common
format. The resulting transformed attributes files, being in
Said common format, are conveyed Separately into the
Security policy creation module 28. Then, the Security policy
creation module 28, which as said receives flaw reports from
a plurality of Sources (including the Security Scanners), and
current attributes files from the Security packages, creates
one large attributes file in Said common format. The Said one
large attributes file contains all the attributes Summed from
all the plurality of imported attributes files (reflecting the
current Security policy), plus all the flaws attributes received
from the trusted Sources, including the Security Scanners,
reflecting flaw attributes which have to be added in order to
eliminate flaws. More particularly, the large common file
created by the security policy creation module 28 reflects all
the constraints that should be enforced by all the security
packages existing in the System. Then, the transform unit 29
transforms for each Security package the Said large common
file into the format Specific for each package. Of course, this
transformation involves elimination of Some constraints
existing in the large common file that are irrelevant for the
Specific attributes file of the target package 32. For example,
the large common file may include network attributes that
are irrelevant for the attributes file of the application Security
package, and these are eliminated during the transform
procedure 29. In another example, the application Specific
attributes that are irrelevant to the network Security package
are eliminated, when carrying the format transform 29 for
the network Security package 6. The file created after the
transform 29, being an updated attributes file, is then
exported and Saved as the attributes file of the corresponding
Security package. Preferably, the “old”, previous attributes
file is first Saved, and then replaced by the updated file, in
order to enable returning, if the updated file is found to be
defective or less preferable.
0050. It should be noted that in one embodiment of the
invention, the operation of the Security policy creation
module 28 may be governed by, or associated with a set of
logical rules, defining how the module acts when it faces
Some specific cases. For example, the Set of logical rules
may govern whether a specific attribute, when reported by a
trusted Source, will be applied and effect a new, updated
policy, or not. Existing of Such a set of logical rules is within
the scope of the invention, and it is marked as 28a in FIG.
3.

0051) Any security system may operate in one of the two
approaches, positive, negative, or a combination thereof:

0052 a. Negative Approach: A set of “negative”
attributes relating to any type of action or access that
should not be allowed within the application is
defined and saved within the attributes file. All

Feb. 17, 2005

requested actions or accesses within the application
are verified continuously by the Security System
against Said set of attributes. If a requested action (or
access) is found to meet one of the attributes within
the Set, it is related as illegal, and denied. An
example for a Security System operating in the nega
tive approach is an anti-Virus System. A disadvantage
of this approach is the requirement of the Security
System to be continuously updated by Situations as
learned from other trusted Sources (that previously
faced Such illegal situations, for example a virus), or
for the System manager to predict future, possible
illegal actions (before they occur!), and to add
attributes to the Set accordingly.

0053 b. Positive Approach: All legal actions or
accesses that are allowed within the application are
defined by the System manager, and a corresponding
“positive' attributes set is saved within the attributes
file. Any action or access that does not meet a Saved
attribute within the Saved Set is considered as illegal,
and therefore denied. An advantage of this approach
is that the System manager does not have to predict
any future illegal Situation, as any Such situation
(that does not meet an attribute within the set) is
considered as illegal by default. This System is
therefore Safer. A disadvantage of this approach,
however, is that essentially legal situations may be
denied due to not being reflected in advance by an
attribute within the saved attributes set. This
approach is therefore not preferable for Systems that
are modified frequently.

0054 The present invention may operate with security
Systems that apply one of Said negative or positive
approaches, or with, Systems that combine Said two
approaches. Throughout this application the attributes files
therefore may contain attributes relating to any of Said
negative or positive approaches or a combination thereof.
0055 Following are some examples for attributes types
that may be provided from the trusted Sources, and may be
included within the common file created.

0056 1. Network attributes-For example, network
Protocol names and version, Ports)-Common
Sources: network Security Scanners, routers, firewall
packages, Switches, network Sniffers etc.

0057 2. Application attributes-For example, appli
cation protocol names and version, domains, appli
cation methods. Common Sources: Firewall pack
ages, network Security Scanners, application Security
Scanners, Web Servers intrusion detection Systems.
etc.

0058. 3. Application paths attributes-For example,
page locations, virtual directory names, etc. Com
mon Sources: Application Scanners, Web Servers,
intrusion detection Systems, etc.

0059 4. Application actions attributes-For
example, Supported methods (e.g. GET, SET,
DELETE, POST), directions, parameters, etc. Com
mon Sources: Application Scanners, Web Servers,
Web application, databases, XML Schemas describ
ing the action attributed data Structure.

US 2005/0038881 A1

0060 5. Action Flow attributes-For example,
Sequence of actions, business flow and logic. Com
mon Sources: Application Scanners, Web application,
database

0061. It should be noted that the system of the invention
may face two types of Situations, as follows:
0062 A. Known (Expected) Issues
0.063 1. Detected and/or verified vulnerabilities within
the application, for which the trusted Source (Such as a
Scanner) does not have the capability of providing a Solution.
0064. 2. Detected and/or verified vulnerabilities for
which the trusted Source has the capability of Suggesting a
Solution.

0065 B. Unknown (Unpredictable) Issues
0.066 Application details. The system of the present
invention may face Vulnerable situations which may not be
known or expected during its operation. In order to provide
Security for Such unknown situations, and to eliminate Such
future Vulnerabilities, an additional Security approach is
needed. The approach applied by the present invention is the
restriction of the “valid' operation to only some which meet
predefined attributes, Such as action flow, paths, attributes
(e.g. action="login.cgi”, paths=/demo', attributes="user
name.password); Any access to the application by
attributes which are not included in said redefined attributes
is prohibited (e.g. action="test.cgi”, paths="/sample",
attributes='debug'). Using this approach, future Vulnerabili
ties will be eliminated if they fail to satisfy these predefined
attributes (e.g. if the user requests for the action “register
.cgi” and this action is NOT valid, this action will be denied
as it is not included in, the valid actions list).
0067. The system of the present invention will therefore
use the consolidated file in order to provide an updated
Security policy which includes Solutions not only to known
issues, but also to unknown future vulnerabilities. The
Solutions are provided on-line in an automatic or Semi
automatic manner.

0068 FIG. 4 illustrates the procedure of importing by the
security correcting unit 10 the flaw attributes report which is
essentially a file including components of attributes, from a
trusted Source, for example, an application Security Scanner
4, and formatting the same to a common format, according
to one embodiment of the invention. It should be noted
herein that one “attribute” may span several lines within a
file. Hereinafter, the group of lines within a file that relates
to one attribute will be referred to as an “attribute compo
nent'. In Step 61, the correcting unit connects to a Selected
data Source. In Step 62, the correcting unit requests the report
from the trusted Source. Next, in Step 63, the correcting unit
loads the report from the scanner 4. In step 70, the unit reads
a first attribute component from the loaded report. In Step 64,
the unit checks whether the component is in the common
format. It should be noted that step 64 may be relevant only
if the common format is predefined to be the same as the
format of one of the trusted Sources. In the case that the
common format is defined to be different from any of the
formats of all the trusted information reports, step 64 is
Superfluous, and the procedure automatically continues to
the formatting step 65. If in step 64 it is found that the
component is not in the common format, the component is

Feb. 17, 2005

transformed in step 65 to the common format, and in step 69
it is stored in the consolidated file. Next, in step 67 the unit
checks whether there are more components to read. In the
affirmative case, the procedure returns to Step 63, and repeats
until finally transforming all the report components. The
procedure ends (step 69) when all the report components are
read and transformed. At the end of this procedure, a
consolidated file is formed.

0069. The procedure of FIG. 4 repeats for all the relevant
trusted Sources, while operating to add to a same consoli
dated file.

0070 FIG. 5 illustrates the operation of the transforma
tion step 65 of FIG. 4, as performed by a transform stage 21,
22, or 23 (FIG. 3), whichever is active. In step 81, the stage
65 loads the schema of the input report file, to make it be
available. The term "schema’ relates herein to data describ
ing the Structure or pattern by which data in a file is
organized. In step 82 the stage 65 loads the schema of the
common attributes file. The two Schemas are necessary for
the Stage 65 in order to determine the meaning of the data it
reads from the attributes file, and to transform the read data
according to the Schema of the common file. In Step 83, the
Stage inputs (arrow 84) one attribute component from the
report file, of course in the format of the report file (the input
format). It then checks whether the format of the input
component matches the format of the input Schema of the
report file. If not, that means that the transformation is
impossible. In that case, in Step 90 the procedure decides
whether to terminate the process (step 90) and ignore the
entire report file from that Source, or to ignore only that
inputted component and return to Step 83 to retrieve the next
component from the report file. In Step 87, assuming trans
formation is possible, the component is transformed accord
ing to the Schema of the common output file, and Saved as
an attribute component within the common (consolidated)
file. In step 88 the stage checks whether there are more
components to transform. If positive, the procedure returns
to step 84. If this is the last attribute component, the
procedure terminates (step 89). In one embodiment of the
invention as described, the procedure of FIG. 5 repeats on
all the report files of the various trusted Sources, adding each
performance to a same consolidated file. The product of the
Several performances of the transformation procedures of
FIG. 5 (stages 21, 22, or 23 of FIG. 3) is the common
(consolidated) file.
0071. In another embodiment of the invention, each
performance of the procedure of FIG. 5 creates one tem
porary transformed file. Therefore, at the end of the several
performances of that procedure, the procedure of FIG. 6
follows.

0072. In step 100 of FIG. 6, the process creates askeleton
of the new consolidated file. More particularly, this skeleton
file is essentially an empty table, to which attributes from the
plurality of temporary files are filled. In step 101 the process
gets, or assures the availability of the plurality of the
temporary transformed files as created by the procedure of
FIG. 5. In step 102, the procedure begins by reading a first
component from the first temporary file and updating the
consolidated file by filling corresponding empty attribute
spaces within the skeleton consolidated file (step 104). In
step 107, the procedure checks whether this was the last
component in the temporary file. If not, the procedure

US 2005/0038881 A1

proceeds to the next component (Step 110), and returns to
step 102. If, however, in step 107 it is found that the last
component has been reached, the procedure checks in Step
105 whether there are more temporary files to process. If no,
the procedure terminates. If, however, there are Still unproc
essed files, the procedure proceeds to step 106, in which it
refers to the next file, and returns to step 102. As said, the
product of the procedure of FIG. 6 is a consolidated file.
0073 FIG. 7 describes how the attributes files are
imported from the trusted Sources and transformed to cor
responding temporary attributes files in Said common for
mat. In step 181 the procedure loads the schema of the
relevant attributes file, i.e., the inputschema. In step 182 the
procedure loads the schema of the common file. The two
Schemas are necessary for the procedure to determine the
meaning of the data it reads from the attributes file, and
allow it transform the read data according to the Schema of
the common file. In Step 184, the procedure inputs a com
ponent from the relevant attributes file (in the input format).
In step 183, the procedure inputs (arrow 184) one attribute
component from the attributes file, of course in the format of
the attributes file (the input format). It then checks whether
the format of the input component matches the format of the
inputschema of the attributes file. If not, that means that the
transformation is impossible. In that case, in step 190 the
procedure decides whether to terminate the process (Step
189) and eliminate the possibility of correcting that
attributes file, or to ignore only that inputted component and
return to step 183 to retrieve the next component from the
attributes file. In Step 187, assuming transformation is pos
Sible, the component is transformed according to the Schema
of the common output file, and Saved as an attribute com
ponent within the corresponding temporary attributes file (in
said common format). In step 188, the procedure checks
whether there are more components to transform. If positive,
the procedure returns to Step 184 for retrieving one more
component from the attributes file. If, however, this is the
last attribute component, the procedure terminates (Step
189). The procedure of FIG. 7 is performed a plurality of
times, once for each of the attributes files of the Security
packages. At the end of Said plurality of performances, there
are available to the System a plurality of corresponding
temporary attributes files, all in Said common format Each of
Said temporary attributes files is essentially a file reflecting
the current Security policy enforced by the corresponding
package, however represented in Said common format.
0.074 Next, having the consolidated file on the one hand,
and the plurality of the temporary, transformed attributes
files on the other hand, all being formatted in Same, common
format, the Security policy creation file begins Substituting in
each of Said temporary attributes files corrections, or updates
as included within the Said consolidated file. Of course, Said
corrections are essentially correcting attributes as accumu
lated by the trusted Sources, and included in their various
reports. The procedure begins with updating the first tem
porary attributes file.
0075 Preferably, the attributes are organized within the
consolidated file, within the Separate attributes files, and
within the temporary attributes files in Sections according to
the attributes types. For example, the file may include the
following Sections: Network attributes, Application
attributes, Application paths, etc. The procedure therefore
goes to the first Section of the consolidated file, for example,

Feb. 17, 2005

Network attributes retrieves the first component within the
Section, then it goes to the corresponding Section within the
temporary attributes file to compare whether the same
attribute component exists within the temporary attributes
file. If it finds that a same attribute component exists within
the temporary attributes file, then no update is needed. If,
however, the comparison shows that the retrieved compo
nent does not exist within the temporary attributes file, it
adds the same to that file, within said relevant section (while
operating in the automatic mode). It should be noted that in
a Semi-automatic mode of operation, a decision whether to
update an attribute component within a temporary attributes
file, may be brought to the operator's attention. Next, the
procedure is repeated over all the attribute components
within the consolidated file, until finishing amendment of
the first temporary attributes file. In that respect, it should be
mentioned herein that the consolidated file may include
attribute components that are irrelevant in one or more
temporary attributes files. For example, a network oriented
attribute may not be relevant within an attributes file of an
application Security package. Moreover, there may be cases
that a full attribute-type Section may be missing from an
attribute file. On the other hand, there may be cases in which
an attribute component is found to be relevant in two or
more Separate temporary attribute files. Both of Said cases
are valid, according to the present invention.

0076. The same updating procedure as described above is
repeated for all the temporary attributes files. Then, a
back-transform procedure is performed, in order to trans
form each of Said temporary attributes files (being each in
the common format) into the corresponding, each Security
package specific format. The Said back-transform is per
formed in a similar manner as the above described trans
forms. FIG. 8 describes how said back-transform is per
formed. In step 281 the procedure loads the schema of the
relevant temporary attributes file, i.e., common format. In
step 282 the procedure loads the output schema of the
relevant attributes file, i.e., in package specific format. The
two Schemas are necessary for the procedure to determine
the meaning of the data it reads from the attributes file, and
allow transformation of the read data according to the
Schema of the common file. In Step 284, the procedure inputs
a first component from the relevant temporary attributes file
(in the input format). In step 283, the procedure inputs
(arrow 284) one attribute component from the temporary
attributes file, of course in the format of the temporary
attributes file (the common format). In step 287, the com
ponent is transformed according to the Schema of the output,
package specific format, and Saved as an attribute compo
nent within the corresponding attributes file (in Said package
specific format). In step 288, the procedure checks whether
there are more components to transform. If positive, the
procedure returns to Step 284 for retrieving one more
component from the temporary attributes file. If, however,
this is the last attribute component, the procedure terminates
(step 289). The procedure of FIG. 8 is performed a plurality
of times, once for each of the temporary attributes files. At
the end of Said plurality of performances, there are available
to the System a plurality of corresponding attributes files,
one for each Security package, in its package specific format.
Each of Said attributes files contains an updated Security
policy for its corresponding Security package. The files are

US 2005/0038881 A1

exported each to its destination Security package. Before
replacement, the operator may be asked to confirm replace
ment of the attributes file.

0.077 As said above, a security system may face two
types of cases, which it should handle, as follows:

0078 a. Handling the “known” cases, i.e., cases
which can be predicted.

0079 b. Handling the “unknown” cases, i.e., future
cases that cannot be predicted.

0080. The reports from trusted sources, such as scanners,
generally are intended to provide Solutions to both of Said
two cases. An example for the first case is a report listing one
or more paths to locations, access to which is possible in the
System, although defined as prohibited. A detailed example
to Such a report and the manner by which Such a flaw is
eliminated by the system of the invention is given below.
0.081 Reports from trusted sources which intend to pro
vide means for facing the Second (“unknown”) cases are also
generally provided. Such a report may include a “map' of
the application (or network), i.e., a tree indicating all the
application locations, and their related paths. In other words,
Such a tree may indicate, for example, all the HTML pages
within the application and the manner of accessing them (the
related paths). According to an embodiment of the present
invention, these paths, when included within Said “Second
type report' are defined by the correcting unit as the only
valid locations or paths. When Such a report is received at
the correcting unit of the invention, its content is conveyed
(after carrying out the process as described above, including
the transformations) into the relevant attribute file/s. That
means that if Somebody will try to access locations within
the application (or network), or try to use a path that is not
specifically defined as valid, his access will be denied. This
type is called “unknown as it is hard to predict the almost
indefinite possibilities that a user may try to illegally acceSS
the locations within the application (and network), and a
good Security System should face and handle also these
“facing the unknown” cases.

EXAMPLE 1.

0082 FIG. 9a shows an example for two attribute com
ponents as obtained from one trusted Source, Such as a
Security application Scanner. More particularly, this is the
Scanner attributes report.
0.083 FIG. 9b shows an example for a package (for
example, “a Gateway') specific attributes file forming a
Security policy of that package. AS is Seen, this file contains
at its bottom four allowed application paths, as follows:

<ApplicationPaths/testa/ApplicationPaths
<AppliccZtionPaths/samples</ApplicationPaths
<ApplicationPaths/demoz/ApplicationPaths
<ApplicationPaths/cgi-binz/ApplicationPaths

0084 FIG. 10a shows the consolidated file while empty,
before consolidation. AS Shown, this file is essentially a
skeleton file, which includes fields to be filled with values.
0085 FIG. 10b shows the consolidated file, after trans
formation of the report of FIG. 9a into the common format

Feb. 17, 2005

and consolidation with the skeleton of the consolidated file.
AS is seen, most of the consolidated file remains empty, as
the report of FIG. 9a contains only two components which
are shown in FIG. 10 at the application section, and as only
one trusted Source is used in this example.
0.086 FIG. 11 shows the temporary attributes file in
common format. More particularly, it is the transformation
of the attributes file of FIG. 9b, as transformed into the
common format.

0087 FIG. 12 shows the temporary attributes file of FIG.
11, after being updated with information from the consoli
dated file.

0088 FIG. 13 shows the final, updated, package specific
attributes file, as amended by the System of the invention.
More particularly, this attributes file of FIG. 13 is essentially
the corresponding temporary attributes file, as amended by
information from the consolidated file of FIG. 10, and
contains an updated policy. AS is seen, the following Appli
cationPath Attributes which were originally included in the
attributes file (of FIG.9b) were removed:

<ApplicationPaths/testa/ApplicationPaths
<ApplicationPaths/samples</ApplicationPaths
<ApplicationPaths/cgi-bin-fApplication Paths

0089. The only attributes which remains due to the pro
ceSS of this example is:

<ApplicationPaths/demoz/ApplicationPaths

0090 More particularly, while originally users were per
mitted entry into four path locations, now entry into three of
them is prohibited due to the flaw attributes report from the
SCC.

0091. It should be noted that the transformations of the
report files into a common format, and back into each
package specific format is needed due to the fact that in
many cases the various Security packages and trusted
Sources (such as Scanners) use different file structures and
formats, as they are in many cases manufactured by different
entities. The transformation enables the performance of the
necessary processing in one common format. However,
there may be cases in which all the Said files are given or
Structured in one, common format. In Such cases, the trans
formation modules and the corresponding transformation
operations may be found to be Superfluous, and the System
may be structured and operated without them.
0092. It should be further noted that the system of the
invention may also be used not only for updating a Security
policy, but for creating a Security policy. This creation option
may be used when one or more package attributes files are
empty before the operation of the System, and the updates
essentially create a new Security policy for that package.

EXAMPLE 2

0093. The following example illustrates a real-life sce
nario, in which the present invention is very advantageous.
Imagine the following environment:

US 2005/0038881 A1

0094. An independent, private network segment, is
connected to the Internet, a public network.

0095 Applications running within the private net
work are now accessible to users of the Internet. AS
these users are considered untrusted users, the pri
Vate network uses Several Security packages to elimi
nate unauthorized or potentially damaging use of the
applications by these users.

0096) Security Packages in Use:
0097. The security packages within the private network
include devices and computer programs that inspect the
incoming and outgoing packets and Stream of bytes in order
to provide the needed Security. For example, the private
environment utilizes the following Security packages:
0.098 Network layer Firewall-to handle network layer
Security issues (provided by CheckPoint, Symantec etc.)
0099. Application Layer Firewall-to handle application
layer Security issues (provided by KaValDo, Entercept etc.)
0100 Authentication server-to authenticate remote
users based on specific attributes like UserName & Pass
word (provided by Netegrity, RSA, CheckPoint)
0101 Network scanner-to assess vulnerabilities within
the network layers and to identify and/or verify network
layer attributes (e.g. protocol type, version, etc.)
0102) Application scanner-to assess vulnerabilities
within the application layerS and to identify and/or verify
application layer attributes (e.g. protocol, parameters,
actions, etc.)
0103) Given the above environment description, the pri
Vate network System administrator would like to check,
Verify and update the Application Layer Firewall policy in
an automatic manner.

0104 Based on the present invention, the administrator
has Several trusted Sources which can be utilized:

0105 Network layer Firewall-provides network layer
Security attributes,
0106) Authentication server database-provides autho
rized user attributes (e.g. username & password);
0107 Network scanner vulnerabilities and attributes
reports-provide network layer Security attributes (e.g. pro
tocol name, version, etc.) and known Vulnerabilities;
0108. Application scanner vulnerabilities and attributes
reports-provide application layer Security attributes (e.g.
allowable actions, action flow, action attributes, etc.)
0109 The applications databases-provide the applica
tion's parameter names and values.
0110. According to the present invention, the administra
tor may use the existing Security policy from the Application
Layer Firewall security server.
0111. By applying the consolidated trusted sources data
on the Application Layer Firewall Security policy as
reflected by its attributes file, by a manner as described in
this application, a new or updated Security policy is auto
matically created and can be exported to the Application
Layer Firewall Security Server for use in automatic, Semi
automatic or manual manners.

Feb. 17, 2005

EXAMPLE 3

0112 Intrusion Detection Systems (IDS) are network
type Security Systems known in the art. Such Systems are
Sometimes also called “Host Based Intrusion Detection
Systems, or Intrusion Prevention Systems. Typical IDS
Systems are distributed, for example, by Entercept Inc. and
WebCohort Inc. An IDS generally has an attributes file
containing a list of invalid “signatures”. The IDS detects
hackers by continuously monitoring the network, or more
particularly the communications between the users and the
application, and if Such invalid Signature is detected, the
System terminates the Session or denies access. AS previ
ously said, Such approach is known in the art as a “negative
approach”, as the list of attributes contains only invalid
attributes (“signatures” in this case). A typical IDS operating
in the negative approach Suffers from the drawback of the
need to first face (or to be notified of) a harmful situation
(with all the consequences involved), in order (for the
System manager) to be capable of introducing a Suitable
attribute that defines Such a situation as invalid.

0113. Therefore, understanding the limitations of using
Signatures based Security Systems operating at the negative
approach, IDS vendors are now moving towards a new
Security model operating at the positive approach, where the
Security System learns “the normal behavior of the applica
tion” by profiling the HTTP or SQL communication (or any
other application protocol). In that case, events that deviate
from the “normal” application behavior (“irregular events”
are generally further assessed or evaluated by the System
until a decision is made). This new approach has found to be
very problematic, as it requires a significant learning and
assessment effort, that can not always provide Solutions in
real time.

0114 AS will be shown by this example, the system of the
present invention overcomes Said drawbackS.
0115 According to the following embodiment of the
present example, in FIG. 1, the Network Security Package
6 is an IDS, and the Attributes file 7 contains the signatures
of the IDS.

0116. More particularly, referring to FIG. 2, the IDS is
the Network Security Package 6, and the Signatures are
contained within the attributes file 7. The security control
ling unit 10 transforms the attributes file 10 into the common
format, it also picks up other attributes from various network
(or other) trusted Sources (such as Security Scanners), all the
attributes are transformed into the common format, and a
consolidated file is produced following the process as
described before. The consolidated file is then transformed
into the specific format of the original attributes file (of the
network Security Package) and it replaces the original
attributes (signatures) file. In this manner the attributes file
containing Signatures is continuously updated with data as
received from trusted Sources, Such as Scanners, resulting
with the IDS continuously updated, holding the Signatures
(Negative approach) and the additional updated attributes
received from other trusted Sources (Positive approach), and
therefore providing less false positive and/or negative alerts.

EXAMPLE 4

0117. An application Switch is a unit well known in the
art. An important task of an application Switch is the

US 2005/0038881 A1

direction of incoming traffic to a Specific target Server, using
a predefined set of attributes. More particularly, the direction
is made by comparison of one or more application level
attributes included in the request, with the application
attributes within the set (this is similar to network switches
that do the Same, however, they operate on network level
attributes).
0118. An example for the use of an application Switch is
as follows:

0119) A Web application has a single HTML page
called Login.html, and two image files X.gif and
y.gif.

0120) The Web application has been deployed using
two web servers, a first, HTML files server, holding
the Said Login.html file and a Second, Image files
Server, holding the Said two image files.

0121 An application level Switch is used in front of
the Said two web servers, and is configured to Switch
all requests for images to the Images Server and all
requests for HTML files to the HTML files server.

0.122 Now, for example, if a remote user sends a
request to the Web application, requesting the X.gif
file:

0123 The request arrives the application level
Switch, that extracts the application attributes from
the user request, in this case X.gif, and Switches the
request to the Image files Server, as its final destina
tion. Note that a valid request includes both network
and application attributes.

0.124. The above application Switch performs said
task using an attributes Switching table containing
predefined application levels attributes.

0.125. Any remote user request with application
attributes that do not match a corresponding attribute
within the Switching table (HTML/Images) will be
rejected and Switched, for example, to a pre-defined
default location (or to another Server) for handling
the unidentified request.

0.126 The typical application Switch according to the
prior art, performs only Switching operations per se, and it
lackS any Security capabilities. According to the present
invention, Said application Switch can be modified to per
form Security tasks. In this respect, the attributes table of the
application Switch is used in a same manner as the attributes
files 3 or 7 of FIG.3 are used. Then, the Security Correction
Unit 10 imports the attributes from said table of the appli
cation Switch (the Switch is treated here as a Security
package), and carry out the procedure of the invention, as
described for example in FIG. 3. Then, the consolidated file,
as produced by this procedure (and of course after the
performing of the required format transforms), and contain
ing Security attributes collected from a plurality of trusted
Sources (or Security packages), is exported back to the
attributes table of the application Switch. In Such a manner,
the updated attributes within the table of the Switch, if
referred to according to the positive approach, now can
perform Security capabilities. More particularly, requests
having application attributes that do not match any of the
application attributes contained within the Said updated table
of the application Switch are rejected. Only requests, how

Feb. 17, 2005

ever, that contain one or more application attributes that
match attribute/s within said updated table are directed. In
this manner, the application Switch is provided with a
Security functionality (in the positive approach) in addition
to its natural Switching capabilities.
0127. While some embodiments of the invention have
been described by way of illustration, it will be apparent that
the invention can be carried into practice with many modi
fications, variations and adaptations, and with the use of
numerous equivalents or alternative Solutions that are within
the Scope of perSons skilled in the art, without departing
from the Spirit of the invention or exceeding the Scope of the
claims.

1. A method for creating and/or updating a Security policy
within a computerized System protected by at least one
Security package, comprising:

a. Providing at least one trusted Source within the System,
capable of issuing a report detailing the Structure and/or
attributes of the system and/or security flaws within the
System;

b. Periodically operating Said at least one trusted Source in
order to periodically issue Said report,

c. Importing each trusted Source report into a Security
correcting unit, and forming one consolidated file con
taining the details from all Said reports,

d. Importing into said Security correcting unit the
attributes files of all the Security packages,

e. Separately comparing the content of Said consolidated
file with each of the imported attributes files, and
updating each attributes file with the Security informa
tion included within Said consolidated file, information
which is missing from the Said attributes file, and is
relevant to said attributes file; and

f. Separately exporting Said updated attributes files and
effecting each of them as the active attributes file of the
corresponding Security package, thereby effecting an
updated Security policy.

2. A method according to claim 1, wherein:
a. The Step of importing each trusted Source report further

comprises the Step of transforming each report into a
common format, and forming Said consolidated file in
Said common format,

b. The Step of importing into Said Security correcting unit
the attributes files of all the Security packages further
comprises the Step of transforming each attributes file
into Said common format; and

c. The Step of Separately exporting each of Said updated
attributes files and effecting the same as the active
attributes file of the corresponding Security package
further comprises the Step of transforming Said
attributes file from a common format into a package
Specific format, prior to Said exporting.

3. A method according to claim 1, wherein Said updating
is performed by further using a predefined set of logical
rules, for deciding which update to effect and which to
ignore.

4. A method according to claim 1, wherein each of Said
reports comprises at least one attribute component.

US 2005/0038881 A1

5. A method according to claim 2 wherein each of Said
issued reports is arranged in the corresponding trusted
Source Specific format.

6. A method according to claim 2 wherein each of Said
attributes files is arranged in the corresponding package
Specific format.

7. A method according to claim 1, wherein each Security
package effects a Security policy within its predefined range
of responsibility, according to the content of its attributes
file.

8. A method according to claim 1, wherein one or more of
the trusted Sources is a Security Scanner.

9. A method according to claim 1, wherein Some or all of
the Steps involved in the updating are carried out in a
Semi-automatic manner, requiring the operator's approval.

10. A method according to claim 1, wherein some of the
trusted Sources are human, issuing a manual report.

11. A method according to claim 1, wherein Some of the
attribute components included in the reports are attributes
intended to eliminate known flaw cases, and Some of the
attribute components are attributes intended to eliminate
unpredicted cases.

12. A method according to claim 11, wherein the attributes
in the reports intended to eliminate unexpected cases are
attributes relating to the current Structure of the System,
which when recorded within an updated attributes files
enforce a Security policy bounded to Said structure, rejecting
activity deviated from Said structure.

13. A System for creating and/or updating a Security
policy, comprising:

a. At least one Security package enforcing a Security
policy within a predefined range of responsibility, Said
policy being defined by means of a specific attributes
file associated with each of Said packages,

b. At least one trusted Source capable of issuing a report
detailing the Structure and/or attributes of the System
and/or Security flaws within the System;

c. A Security correcting unit for:
importing Said reports from all the trusted Sources, and

producing a consolidated file including information
from all Said reports, and

importing the attributes files from all the Security
packages, Separately comparing the content of Said
consolidated file with each of the imported attributes
files, and updating each attributes file with the Secu
rity information included within Said consolidated
file, which is missing from the Said attributes file,
and is relevant to Said attributes file, and exporting
Said updated attributes files and effecting each of

Feb. 17, 2005

them as the active attributes file of the corresponding
Security package, thereby effecting an updated Secu
rity policy.

14. A System according to claim 13 wherein the Security
correcting unit comprises:
At least one first importing modules for importing reports

from each trusted Source;
A consolidation module for receiving each of Said reports

and forming one consolidated file containing informa
tion included in all Said reports,

At least one Second importing modules for importing into
the correcting unit from each Security package its
corresponding attributes file;

A Security policy creation module for comparing the
content of said consolidated file with each of the
imported attributes files, and updating each attributes
file with the security information included within said
consolidated file, information which is missing from
the Said attributes file, and is relevant to Said attributes
file; and

At least one exporting module for exporting each updated
attributes file into its corresponding Security package,
thereby effecting an updated Security policy.

15. A System according to claim 14, further comprising at
least one first transform modules for transforming each
report from its trusted Source Specific format into a common
format, at least one Second transform modules for trans
forming each imported attributes Security package from its
package Specific format into a common format, and at least
one third transform modules for transforming each updated
attributes file from a common format into its package
Specific format before its exportation into the corresponding
package, and wherein the consolidated file is also arranged
in Said common format.

16. A System according to claim 14 wherein the Security
policy creation module further comprises a set of predefined
logical decision rules, for use while updating the attributes
files.

17. System according to claim 13, wherein one of the
Security packages is an Intrusion Detection System, whose
Set of Signatures is Stored within a file, Said file being treated
as the attributes file of a Security package, and is therefore
updated accordingly.

18. System according to claim 13, wherein one of the
Security packages is an application Switch, whose Set of
attributes that is used for direction being stored within a file,
Said file being treated by the System as an attributes file of
a Security package, and is therefore updated accordingly.

k k k k k

