US 20150082458A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0082458 A1

COOPER et al.

43) Pub. Date: Mar. 19, 2015

(54)

(71)
(72)

@
(22)

(62)

(60)

(1)

METHODS AND SYSTEMS FOR UPGRADE
AND SYNCHRONIZATION OF SECURELY
INSTALLED APPLICATIONS ON A
COMPUTING DEVICE

Applicant: Apple Inc., Cupertino, CA (US)

Inventors: Simon COOPER, Cupertino, CA (US);
Dallas de ATLEY, San Francisco, CA
(US)

Appl. No.: 14/495,554

Filed: Sep. 24, 2014

Related U.S. Application Data

Division of application No. 12/757,009, filed on Apr.
8, 2010, now Pat. No. 8,849,717.

Provisional application No. 61/224,417, filed on Jul. 9,
2009, provisional application No. 61/224,420, filed on
Jul. 9, 2009.

Publication Classification

Int. Cl1.
GO6F 21/12 (2006.01)
GO6F 9/44 (2006.01)

1. RECEIVE REQUEST
FOR SOFTWARE

GOGF 9/445 (2006.01)
HO4L 29/06 (2006.01)
HO4L 29/08 (2006.01)
(52) US.CL
CPC oo GOGF 21/12 (2013.01); HO4L 63/123
(2013.01); HO4L 29/0854 (2013.01); GO6F
8/65 (2013.01); GOGF 8/71 (2013.01)
1613 G 726/27
(57) ABSTRACT

Embodiments of the present disclosure provide for upgrades
and synchronization of applications installed on a device,
such as a mobile device. In one embodiment, a device may
include applications purchased and downloaded via a content
management system. The device maintains a list or database
of applications that are authorized for each device. This list is
also replicated in a remote cache that is maintained by an
archive host. The device may then synchronize and upgrade
these applications across multiple platforms, such as one or
more computers that can be coupled to the device or the
archive host. The archive host allows for files of the applica-
tion be provided back to the device. Upon installation, the
device can then confirm the authorization and identity of the
newly installed application.

4. PROVIDE REQUESTED SOFTWARE.

RESTORE. i

SOFTWARE PACKAGE
(UNIQUE ID = ABCD)

SOFTWARE SOURCE |
102

A,

SOFTWARE PACKAGE
(UNIQUE ID = ABCD)

2. RECEIVE REQUEST FOR
SOFTWARE.

| APPLICATION
ARCHIVE CACHE
HOST 110
108 ol
3. CHECK CACHE: IDENTIFY

SOFTWARE NEEDED FOR
RESTORATION.

5. SOFTWARE PACKAGE PROVIDED
TO DEVICE.

COMPUTING DEVICE 106

6. DETERMINE
DESTINATION PARTITION,

INSTALLER

400 E-G. PARTITION #1

7. DETERMINE RANDOM
IDENTIFIER, E.G., 1AFF2,

9. INSTALL SOFTWAR
IN PARTITION AND
CONTAINER

DIRECTORY
1AFF2 | CONTAINER #1
4

08

FOR CONTAINER
8 CALLTO
INSTALLATION
MEWORK

INSTALLATION
FRAMEWORK 404
10. CONTAINER

IDENTIFIER'STORED IN
TRUSTED GACHE

CONTAINER #n

i—

PARTITION #1

l PARTITION #2

KERNEL 410

OPERATING SYSTEM 402

TRUSTED
CACHE 412

ABCD,1AFF2

L _ STORAGE

406

Patent Application Publication = Mar. 19, 2015 Sheet 1 of 7 US 2015/0082458 A1

ARCHIVE
HOST
108

SOFTWARE SOURCE
102

NETWORK
104

APPLICATION
CACHE
110

FIG. 1

100
106
DEVICE
106
DEVICE —/
106
DEVICE

Patent Application Publication

Mar. 19, 2015 Sheet 2 of 7

FIG. 2A

US 2015/0082458 A1

. 266 274
R
/ o (T e . \
— <280 13 212
-------- = 268 i260 T e
‘;'__..._._...._._._._..__.._.._.‘ —_)"206
{|! sl Carier = 12:31PM P
i]
il Tuesday . 282
il @ D | !f
il N :
HI@IENEN
‘ | Text Calendar Photos Camera l
! ' 230 232 234 236 —.
& @ AAPL \ ! 284
| @8 e} B 13
i 108.74 A :
. Calculator Stocks Address Book Medla EI
! 244
! I
| W |
I I
- V|deo Settmgs
I l
' I
I I 204
[210 212 214 216 -
| T V ¢ -y
/ k_
NS
\
Phone Mail Maps Web Video
P 220 218
\\ o //
: K : N i
L 262 L 290 L 264

Patent Application Publication = Mar. 19, 2015 Sheet 3 of 7 US 2015/0082458 A1

— j 272
. _'f‘:-t'i_iﬁ?_i. w T gpm]
l_‘ Carrier & 12:34 PM - | /5_
H K
l Tuesday I 282
i If
. |
' I Text Calendar Photos Camera g|
i 230 232 236 !
: i 284
lele 108 " .
: Calculator Stocks Address Book Med Sl
! 240 242 !
! "'"— |
15 —— |
! Vdeo Settings Notes I
! 250 252 7|
! l
| |
| (210 8—212 \—214 - f204
] / 7
| (X
“
Phone Mail Maps
P 22;1 218
N //

FIG. 2B

Patent Application Publication

Mar. 19, 2015 Sheet 4 of 7

US 2015/0082458 A1

COMPUTING DEVICE 106
Operating System Instructions iy 352
354 300
Communication Instructions ¢ 356 Aj
GUI Instructions S
- - iy 358
Sensor Processing Instructions 260
Phene Instructions ¢
. - — (7362 316
Electronic Messaging Instructions 364 j
Web Browsing Instructions S 365 > Other Sensor(s)
Media Processing Instructions)
GPS/Navigation Instructions S 368)’_ 310
. _5_ 370 » Motion Sensor
Camera Instructions 372
Other Software Instructions § 374 f 312
Activation RecordIME! S » Light Sensor
314
| Memory }l » Proximity Sensor I
T 350 320
§“) ’ YYYY -"E j
PREIN Camera PN
i | Memory Interface 306 1 T1 | Subsystem [T
7y i , L
: _(P | Peripherals | Wireless 322
i 302 < > Intgrface <«——»{ Communication j‘ 324
i v i Subsystem(s)
j 304 i 328
Processor(s) :
<> Audio Subsystem
_________________ 4 _(I S_ 330
326
A
5— 342 1/0 Subsystem 5‘ 344 f 340
Touch-Screen Controller Other Input Controller(s)
h »
y A 4
Other Input / Control
j Touch Screen Devices \2_
348 348

FIG. 3

Patent Application Publication = Mar. 19, 2015 Sheet S of 7 US 2015/0082458 A1

SOFTWARE PACKAGE

COMPUTING DEVICE 106
Y 400
INSTALLER -/
A D
4
402
OPERATING SYSTEM -
TRUSTED
KERNEL 410 |«—»]
CACHE 412
o 4 \ v
INSTALLATION
DIRECTORY |« o ERAMEWORK
CONTAINER #1 N\ 404
. 408
STORAGE
406 |
CONTAINER #n
PARTITION #1
PARTITION #2
N—
NS 108

FIG. 4

Patent Application Publication = Mar. 19, 2015 Sheet 6 of 7 US 2015/0082458 A1

1. RECEIVE REQUEST

FOR SOFTWARE 4. PROVIDE REQUESTED SOFTWARE.
RESTORE. \' SOFTWARE PACKAGE
(UNIQUE ID = ABCD) APPLICATION |
SOFTWARE SOURCE ARCHIVE CACHE |
- HOST
102 110
‘ . 108
2. RECEIVE REQUEST FOR
oA Ed OR 3 CHECK CACHE: IDENTIFY
' SOFTWARE NEEDED FOR
r RESTORATION.

SOFTWARE PACKAGE | 5 SOFTWARE PACKAGE PROVIDED
(UNIQUE ID = ABCD) | TO DEVICE.

COMPUTING DEVICE 106

6. DETERMINE
DESTINATION PARTITION,
4 200 E-G.,PARTITION #1

INSTALLER / 7. DETERMINE RANDOM
IDENTIFIER, E.G., 1AFF2,
FOR CONTAINER

8. CALLTO

9. INSTALL SOFTWAR INSTALLATION

IN PARTITION AND

MEWORK
CONTAINER
DIRECTORY / B INSTALLATION N
FRAMEWORK 404
1AFF2 | CONTAINER #1
. 10. CONTAINER
. 408 IDENTIFIER\STORED IN
TRUSTED CACHE
CONTAINER #n OPERATING SYSTEM 402\
KERNEL 410 l<—> TRUSTED
PARTITION #1 CACHE 412
PARTITION #2 ABCD,1AFF2
__ STORAGE
406

FIG. 5

Patent Application Publication = Mar. 19, 2015 Sheet 7 of 7 US 2015/0082458 A1

1. RECEIYE EXECUTION
REQUEST FOR
APPLICATION, E.G,,
APPLICATION “ABCD”.

Y
PERIPHERALS INTERFACE 348

2. REQUEST FOR
“ABCD”

\ J
OPERATING SYSTEM 402

| KERNEL410 |e—» TRysTED

A CACHE 412
ABCD,1AFF2
A
3. REQUEST CONTAINER
FOR "ABCD”
INSTALLATION
> FRAMEWORK
4. PROVIDE POSSIBLE \\
5. EXHCUTE FROM CONTAINER IDENTIFIER 404
CONTAINER
y
DIRECTORY

TAFF2 | CONTAINER #1

A08

CONTAINER #n

STORAGE 406

FIG. 6

US 2015/0082458 Al

METHODS AND SYSTEMS FOR UPGRADE
AND SYNCHRONIZATION OF SECURELY
INSTALLED APPLICATIONS ON A
COMPUTING DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a divisional of U.S. application
Ser. No. 12/757,009, filed Apr. 8, 2010, entitled “Methods and
Systems for Upgrade and Synchronization of Securely
Installed Applications on a Computing Device,” which claims
the benefit of U.S. Provisional Application No. 61/224,417,
filed Jul. 9, 2009, entitled “Methods and Systems for
Archiving and Restoring Securely Installed Applications on a
Computing Device,” and U.S. Provisional Application No.
61/224,420, filed Jul. 9, 2009, entitled “Methods and Systems
for Upgrade and Synchronization of Securely Installed Appli-
cations on a Computing Device”, the contents of which are
incorporated herein by reference in their entirety for all pur-
poses.

FIELD

[0002] This application relates to the installation of soft-
ware on a computing device. More particularly, the applica-
tion relates to the secure installation of software.

BACKGROUND

[0003] Computingdevices, especially mobile devices, have
advanced dramatically and now commonly allow for the
installation of new applications to extend the functionality of
the device. However, this openness and variety of available
applications brings security risks and management issues,
such as the risk of malware, as has been seen in the world of
personal computers. These risks can be especially important
to enterprises that allow its employees or users to use their
mobile computing devices for business or work purposes.
[0004] To deal with these risks, many mobile device plat-
forms have introduced various security architectures. Typi-
cally, in these security architectures, the mobile device plat-
form is protected based on granting privileges to software,
usually based on code signing. The access control decision to
assign privileges to software processes is based either on code
signing or on explicit user approval, or a combination thereof.
[0005] Unfortunately, these security features and the large
number of applications can make it difficult for a user or
enterprise to maintain their mobile computing device in
proper working order. For example, if a certain piece of soft-
ware becomes obsolete or has been upgraded, it can be diffi-
cult to efficiently distribute the upgrade. Designing the user
interaction for upgrade or synchronization of applications
without hampering usability and security can be tedious.
Accordingly, it may be desirable to provide methods and
systems that allow for the easy management and upgrade of
securely installed software.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] A better understanding of the present invention can
be obtained from the following detailed description in con-
junction with the following drawings, in which:

[0007] FIG.1 is an example of an environment suitable for
practicing various embodiments described herein.

[0008] FIGS. 2A and 2B illustrate an exemplary mobile
device.

Mar. 19, 2015

[0009] FIG. 3 is a block diagram 300 of an example imple-
mentation of a mobile device.

[0010] FIG. 4 illustrates a conceptual block diagram of an
environment on the computing device 106 that supports
secure installation of software.

[0011] FIG. 5 illustrates an exemplary process for upgrad-
ing or synchronizing software on the computing device.
[0012] FIG. 6 illustrates an exemplary process for execut-
ing securely installed software on the computing device 106.

DETAILED DESCRIPTION

[0013] Embodiments of the present disclosure provide for
upgrades and synchronization of applications installed on a
device, such as a mobile device. In one embodiment, a device
may include applications purchased and downloaded via a
content management system. The device maintains a list or
database of applications that are authorized for each device.
This list is also replicated in a remote cache that is maintained
by an archive host.

[0014] The device may then synchronize and upgrade these
applications across multiple platforms, such as one or more
computers that can be coupled to the device or the archive
host. The archive host can provide a package of files that may
include the code or other data back to the device. The device
may then confirm the authorization and identity of the newly
installed application.

[0015] Alternatively, when applications have been
upgraded, the device may update the list maintained by the
device and/or the archive host may update the remote appli-
cation cache. Applications across multiple devices may be
efficiently upgraded as a consequence. Accordingly, the vari-
ous embodiments allow applications to be installable mul-
tiple times, while maintaining the security of the installation.
[0016] Insomeembodiments, inorder to perform upgrades
and synchronization securely, the device may partition its
application storage into a plurality of partitions. The multiple
partitions allow the device to isolate the different versions of
the application files and, if needed, swap between versions of
an application. Furthermore, using partitions and dynamic
containers, software applications can be maintained very sim-
ply by relying on installation and uninstallation rather than
more complex logic.

[0017] When installing an application in a partition, an
installer configures one or more secure containers for the
software and installs the software exclusively in these con-
tainers. In some embodiments, the installer randomly deter-
mines the identifiers for the containers. These identifiers
remain unknown to the software to be installed. Thus, an
installation framework maintains the correspondence
between an application, its partitions, and its container.
[0018] For example, each software application may have a
unique identifier. This unique identifier may be included in
the installation request or also determined by the installer.
The installer then determines a randomly assigned identifier,
such as a directory name, for one or more containers on the
device in which the application will be installed. The contain-
ers may be a specific area of storage in a partition on the
device or a directory defined on the device. Data specific to
the software application including code storage, documents,
preferences, and other libraries are stored and restricted to
these dynamic containers.

[0019] After installation, an installation framework per-
forms a bind process to correlate the randomly assigned iden-
tifier with the unique identifier of the application. The instal-

US 2015/0082458 Al

lation framework also manages the execution of the
application. For example, when the application is launched,
the installation framework performs a search for that appli-
cation’s randomly assigned identifier and locates the appli-
cation’s container. The application is then allowed to execute
within its container. During execution, the software applica-
tion may also be restricted in various ways by the installation
framework to its dynamic containers. The installer may also
work with a trusted operating system component, such as the
kernel, to help enforce the container restrictions.

[0020] As noted, the installer may use randomly assigned
identifiers for the containers, which are unknown to the soft-
ware being installed. The random identifiers may be based on
various functions, such as a hash function and the like. In
addition, the random identifiers for the containers may be
based on various unique attributes of the software. In some
embodiments, the installer stores this information only in a
trusted cache for access by the installation framework.

[0021] Moreover, if desired, the use of random identifiers
for containers may be used in conjunction with other security
mechanisms. For example, the operating system of the com-
puting device may be configured to determine whether the
code has been authorized by a trusted authority.

[0022] For example, a trusted authority may authorize soft-
ware for installation and/or execution by digitally signing the
software. As is known in the art, a digital signature uses public
key cryptography to ensure the integrity of data. If the code is
authorized and verified as such, it may be generally executed
without any further system or user interaction; if the code is
not authorized, its ability to be executed on the computing
device may be restricted or even prevented.

[0023] In order to help explain the embodiments of these
and other concepts, FIGS. 1-6 are provided in this descrip-
tion. FIG. 1 shows an example of a computing environment in
which the embodiments may be implemented. FIGS. 2A-2B
and FIG. 3 illustrate an exemplary mobile device. FIG. 4
illustrates a conceptual block diagram of an environment on
the computing device 106 that supports secure installation of
software. FIG. 5 illustrates an exemplary process flow for
upgrading and synchronizing securely installed applications.
And, FIG. 6 illustrates an exemplary process for executing a
securely installed application. These figures will now be fur-
ther described below beginning with reference to FIG. 1.

[0024] For purposes of illustration, the present disclosure
provides as an example a mobile computing device that is
capable of securely installing applications. The mobile com-
puting device may obtain these applications from an online
source, such as, Apple’s iTunes App Store. However, one
skilled in the art will recognize that embodiments of the
present invention are not limited to mobile devices.

[0025] Referring now to FIG. 1, an example of an environ-
ment suitable for practicing various embodiments is pro-
vided. As shown, system 100 may comprise a source 102 for
the software and/or program code to be installed, a network
104, a set of computing devices 106, an archive host 108, and
an application cache 110. These entities and components will
now be further described.

[0026] Source 102 serves as the source of the software
program code to be installed. For example, source 102 can be
a website, or service that is accessible to the computing
devices 106. In some embodiments, source 102 is an appli-
cation that runs on the computing device 106 and makes
source 102 accessible via network 104.

Mar. 19, 2015

[0027] For example, the source 102 may be a website or
service, which allows users of the computing devices 106 to
browse and download applications from an online content
and media store. Such media stores may include stores, such
as Apple’s iTunes Store, App Catalog by Palm Inc., Android
Market, Windows Marketplace for Mobile by Microsoft, the
Ovi store by Nokia, and BlackBerry App World by Research
in Motion.

[0028] The applications on source 102 may be available to
purchase or free of charge, depending on the application. The
applications can be downloaded directly to the computing
devices 106 as will be further described.

[0029] Network 104 provides a communication infrastruc-
ture between computing devices 106 and source 102. Net-
work 104 may be any type of network, such as a wide-area
network, metropolitan-area network, or local-area network.
In addition, network 104 may comprise both wired and wire-
less networks.

[0030] Insome embodiments, network 106 may be imple-
mented on the Internet, which is the well-known global net-
work of interconnected computers, enabling users to share
information. The components and protocols employed by
network 106 are well known to those skilled in the art.

[0031] Computing devices 106 may be any computing
device used by a user. Computing devices 106 may be mobile
computing devices, such as mobile telephones, mobile smart-
phones, or some other type of mobile device. Computing
devices 106 may be configured to run an operating system
that requires some or all of its software and code to have been
securely installed. Thus, if software is delivered or installed in
an unauthorized state to computing devices 106, the devices
may be unable to fully execute the code instructions included
in the software because they have not been properly installed.

[0032] Computing devices 106 may be any number of dif-
ferent types of computing devices, including desktop com-
puters, laptop computers, handheld computers, personal digi-
tal assistant (PDA) devices, mobile telephone, media play
device, and the like. For purposes of illustration, various
embodiments related to a mobile device are provided. How-
ever, one skilled in the art will recognize that the embodi-
ments can be applied to any type of computing device.

[0033] Archive host 108 provides a storage location for
program code and related data for applications installed on
mobile devices 106. In particular, archive host 108 serves as
a host that preserves and provides access to software that has
been installed on mobile devices 106. For example, when an
application has been purchased from source 102 and
installed, source 102 may also archive a copy of the applica-
tion to archive host 108. The archive copy may comprise all
the files for an application, such as program code, data, and
other documents, or may comprise a portion of the files, such
as only the data or documents. Archive host 108 may be
implemented on a server using well known components of
hardware or software. In some embodiments, the archive
copies of applications are stored in the form of the well known
.zip file format. Of course, any type of file format for archives
may be employed.

[0034] In some embodiments, the archive copy may be
packaged in installable form to allow for easy reinstallation or
upgrade of the application. The contents of the package may
be configured based on various criteria, such as user configu-
ration settings, settings of archive host, settings requested by
source 102, etc.

US 2015/0082458 Al

[0035] In some embodiments, archive host 108 may
employ various security features, such as secured logins,
authentication, and encryption in order to protect its informa-
tion. For example, archive host 108 may restrict access of a
mobile device 106 to information corresponding to its device
identifier. As another example, an entity may be allowed to
access information for only those mobile devices to which it
manages or to only those devices having software signed by
that entity. Those skilled in the art will recognize that a variety
of security policies and features may be employed to protect
archive host 108.

[0036] Application cache 110 maintains a list or database
of applications that are authorized for each of mobile devices
106. For example, application cache 110 may comprise
respective lists or mappings indicating various aspects of the
configuration of a mobile device, such as an identifier for
mobile device 106, applications installed, version informa-
tion, devices that are related to mobile device 106, and the
like. In other words, any type of information that indicates the
state and configuration of software or firmware installed on a
mobile device 106 may be maintained in cache 110. Those
skilled in the art will recognize that application cache 110
may employ various lists, data structures, and databases to
maintain this information.

[0037] FIG. 2A illustrates an example mobile device 106.
The mobile device 106 can be, for example, a handheld com-
puter, a personal digital assistant, a cellular telephone, a net-
work appliance, a camera, a smart phone, an enhanced gen-
eral packet radio service (EGPRS) mobile phone, a network
base station, a media player, a navigation device, an email
device, a game console, or a combination of any two or more
of these data processing devices or other data processing
devices.

Mobile Device Overview

[0038] In some implementations, the mobile device 106
includes a touch sensitive display 202. The touch-sensitive
display 202 can be implemented with liquid crystal display
(LCD) technology, light emitting polymer display (LPD)
technology, or some other display technology. The touch
sensitive display 202 can be sensitive to haptic and/or tactile
contact with a user.

[0039] In some implementations, the touch-sensitive dis-
play 202 can comprise a multi-touch-sensitive display 202. A
multi-touch-sensitive display 202 can, for example, process
multiple simultaneous touch points, including processing
data related to the pressure, degree, and/or position of each
touch point. Such processing facilitates gestures and interac-
tions with multiple fingers, chording, and other interactions.
Other touch-sensitive display technologies can also be used,
e.g., adisplay in which contact is made using a stylus or other
pointing device. Some examples of multi-touch-sensitive dis-
play technology are described in U.S. Pat. Nos. 6,323,846,
6,570,557, 6,677,932, and 6,888,536, each of which is incor-
porated by reference herein in its entirety.

[0040] In some implementations, the mobile device 106
can display one or more graphical user interfaces on the
touch-sensitive display 202 for providing the user access to
various system objects and for conveying information to the
user. In some implementations, the graphical user interface
can include one or more display objects 204, 206. In the
example shown, the display objects 204, 206, are graphic
representations of system objects. Some examples of system

Mar. 19, 2015

objects include device functions, applications, windows,
files, alerts, events, or other identifiable system objects.

Example Mobile Device Functionality

[0041] In some implementations, the mobile device 106
can implement multiple device functionalities, such as a tele-
phony device, as indicated by a Phone object 210; an e-mail
device, as indicated by the Mail object 212; a map devices, as
indicated by the Maps object 211; a Wi-Fi base station device
(not shown); and a network video transmission and display
device, as indicated by the Web Video object 216. In some
implementations, particular display objects 204, e.g., the
Phone object 210, the Mail object 212, the Maps object 214,
and the Web Video object 216, can be displayed in a menu bar
218. In some implementations, device functionalities can be
accessed from a top-level graphical user interface, such as the
graphical user interface illustrated in FIG. 2A. Touching one
of'the objects 210, 212, 214, or 216 can, for example, invoke
a corresponding functionality.

[0042] In some implementations, the mobile device 106
can implement a network distribution functionality. For
example, the functionality can enable the user to take the
mobile device 106 and provide access to its associated net-
work while traveling. In particular, the mobile device 106 can
extend Internet access (e.g., WiFi) to other wireless devices in
the vicinity. For example, mobile device 106 can be config-
ured as a base station for one or more devices. As such, mobile
device 106 can grant or deny network access to other wireless
devices.

[0043] In some implementations, upon invocation of a
device functionality, the graphical user interface of the
mobile device 106 changes, or is augmented or replaced with
another user interface or user interface elements, to facilitate
user access to particular functions associated with the corre-
sponding device functionality. For example, in response to a
user touching the Phone object 210, the graphical user inter-
face of the touch-sensitive display 202 may present display
objects related to various phone functions; likewise, touching
of'the Mail object 212 may cause the graphical user interface
to present display objects related to various e-mail functions;
touching the Maps object 214 may cause the graphical user
interface to present display objects related to various maps
functions; and touching the Web Video object 216 may cause
the graphical user interface to present display objects related
to various web video functions.

[0044] In some implementations, the top-level graphical
user interface environment or state of FIG. 2A can be restored
by pressing a button 220 located near the bottom of the mobile
device 106. In some implementations, each corresponding
device functionality may have corresponding “home” display
objects displayed on the touch-sensitive display 202, and the
graphical user interface environment of FIG. 2A can be
restored by pressing the “home” display object.

[0045] In some implementations, the top-level graphical
user interface can include additional display objects 206, such
as a short messaging service (SMS) object 230, a Calendar
object 232, a Photos object 234, a Camera object 236, a
Calculator object 238, a Stocks object 240, a Address Book
object 242, a Media object 244, a Web object 246, a Video
object 248, a Settings object 250, and a Notes object (not
shown). Touching the SMS display object 230 can, for
example, invoke an SMS messaging environment and sup-
porting functionality; likewise, each selection of a display

US 2015/0082458 Al

object 232, 234, 236, 238, 240, 242, 244, 246, 248, and 250
can invoke a corresponding object environment and function-
ality.

[0046] Additional and/or different display objects can also
be displayed in the graphical user interface of FIG. 2A. For
example, if the device 106 is functioning as a base station for
other devices, one or more “connection” objects may appear
in the graphical user interface to indicate the connection. In
some implementations, the display objects 206 can be con-
figured by a user, e.g., a user may specify which display
objects 206 are displayed, and/or may download additional
applications or other software that provides other functional-
ities and corresponding display objects.

[0047] In some implementations, the mobile device 106
can include one or more input/output (I/O) devices and/or
sensor devices. For example, a speaker 260 and a microphone
262 can be included to facilitate voice-enabled functional-
ities, such as phone and voice mail functions. In some imple-
mentations, an up/down button 284 for volume control of the
speaker 260 and the microphone 262 can be included. The
mobile device 106 can also include an on/off button 282 fora
ring indicator of incoming phone calls. In some implementa-
tions, a loud speaker 264 can be included to facilitate hands-
free voice functionalities, such as speaker phone functions.
An audio jack 266 can also be included for use of headphones
and/or a microphone.

[0048] In some implementations, a proximity sensor 268
can be included to facilitate the detection of the user position-
ing the mobile device 106 proximate to the user’s ear and, in
response, to disengage the touch-sensitive display 202 to
prevent accidental function invocations. In some implemen-
tations, the touch sensitive display 202 can be turned off to
conserve additional power when the mobile device 106 is
proximate to the user’s ear.

[0049] Other sensors can also be used. For example, in
some implementations, an ambient light sensor 270 can be
utilized to facilitate adjusting the brightness of the touch-
sensitive display 202. In some implementations, an acceler-
ometer 272 can be utilized to detect movement of the mobile
device 106, as indicated by the directional arrow 274. Accord-
ingly, display objects and/or media can be presented accord-
ing to a detected orientation, e.g., portrait or landscape. In
some implementations, the mobile device 106 may include
circuitry and sensors for supporting a location determining
capability, such as that provided by the global positioning
system (GPS) or other positioning systems (e.g., systems
using Wi-Fi access points, television signals, cellular grids,
Uniform Resource Locators (URLs)). In some implementa-
tions, a positioning system (e.g., a GPS receiver) can be
integrated into the mobile device 106 or provided as a sepa-
rate device that can be coupled to the mobile device 106
through an interface (e.g., port device 290) to provide access
to location-based services.

[0050] In some implementations, a port device 290, e.g., a
Universal Serial Bus (USB) port, or a docking port, or some
other wired port connection, can be included. The port device
290 can, for example, be utilized to establish a wired connec-
tion to other computing devices, such as other communica-
tion devices 106, network access devices, a personal com-
puter, a printer, a display screen, or other processing devices
capable of receiving and/or transmitting data. In some imple-
mentations, the port device 290 allows the mobile device 106

Mar. 19, 2015

to synchronize with a host device using one or more proto-
cols, such as, for example, the TCPIIP, HTTP, UDP and any
other known protocol.

[0051] The mobile device 106 can also include a camera
lens and sensor 280. In some implementations, the camera
lens and sensor 280 can be located on the back surface of the
mobile device 106. The camera can capture still images and/
or video.

[0052] The mobile device 106 can also include one or more
wireless communication subsystems, such as an 802.11 b/g
communication device 286, and/or a Bluetooth™ communi-
cation device 288. Other communication protocols can also
be supported, including other 802.x communication proto-
cols (e.g., WiMax, Wi-Fi, 3G), code division multiple access
(CDMA), global system for mobile communications (GSM),
Enhanced Data GSM Environment (EDGE), etc.

Example Configurable Top-Level Graphical User Interface

[0053] FIG. 2B illustrates another example of configurable
top-level graphical user interface of device 106. The device
106 can be configured to display a different set of display
objects.

[0054] Insome implementations, each of one or more sys-
tem objects of device 106 has a set of system object attributes
associated with it; and one of the attributes determines
whether a display object for the system object will be ren-
dered in the top-level graphical user interface. This attribute
can be set by the system automatically, or by a user through
certain programs or system functionalities as described
below. FIG. 2B shows an example of how the Notes object
252 (not shown in FIG. 2A) is added to and the Web Video
object 216 is removed from the top graphical user interface of
device 106 (e.g. such as when the attributes of the Notes
system object and the Web Video system object are modified).

Example Mobile Device Architecture

[0055] FIG. 3 is a block diagram 300 of an example imple-
mentation of a mobile device 106. As shown, the mobile
device can include a memory interface 302, one or more data
processors, image processors and/or central processing units
304, and a peripherals interface 306. The memory interface
302, the one or more processors 304 and/or the peripherals
interface 306 can be separate components or can be integrated
in one or more integrated circuits. The various components in
the mobile device can be coupled by one or more communi-
cation buses or signal lines.

[0056] Sensors, devices, and subsystems can be coupled to
the peripherals interface 306 to facilitate multiple function-
alities. For example, a motion sensor 310, a light sensor 312,
and a proximity sensor 311 can be coupled to the peripherals
interface 306 to facilitate the orientation, lighting, and prox-
imity functions described with respect to FIG. 2A. Other
sensors 316 can also be connected to the peripherals interface
306, such as a positioning system (e.g., GPS receiver), a
temperature sensor, a biometric sensor, or other sensing
device, to facilitate related functionalities.

[0057] A camera subsystem 320 and an optical sensor 322,
e.g., a charged coupled device (CCD) or a complementary
metal-oxide semiconductor (CMOS) optical sensor, can be
utilized to facilitate camera functions, such as recording pho-
tographs and video clips.

[0058] Communication functions can be facilitated
through one or more wireless communication subsystems

US 2015/0082458 Al

324, which can include radio frequency receivers and trans-
mitters and/or optical (e.g., infrared) receivers and transmit-
ters. The specific design and implementation of the commu-
nication subsystem 324 can depend on the communication
network(s) over which the mobile device is intended to oper-
ate. For example, a mobile device can include communication
subsystems 324 designed to operate over a GSM network, a
GPRS network, an EDGE network, a Wi-Fi or WiMax net-
work, and a Bluetooth™ network. In particular, the wireless
communication subsystems 324 may include hosting proto-
cols such that the mobile device may be configured as a base
station for other wireless devices.

[0059] An audio subsystem 326 can be coupled to a speaker
328 and a microphone 330 to facilitate voice-enabled func-
tions, such as voice recognition, voice replication, digital
recording, and telephony functions.

[0060] The I/O subsystem 340 can include a touch screen
controller 342 and/or other input controller(s) 344. The
touch-screen controller 342 can be coupled to a touch screen
346. The touch screen 346 and touch screen controller 342
can, for example, detect contact and movement or break
thereof using any of a plurality of touch sensitivity technolo-
gies, including but not limited to capacitive, resistive, infra-
red, and surface acoustic wave technologies, as well as other
proximity sensor arrays or other elements for determining
one or more points of contact with the touch screen 346.
[0061] The other input controller(s) 344 can be coupled to
other input/control devices 348, such as one or more buttons,
rocker switches, thumbwheel, infrared port, USB port, and/or
apointer device such as a stylus. The one or more buttons (not
shown) can include an up/down button for volume control of
the speaker 328 and/or the microphone 330.

[0062] Inoneimplementation, a pressing of the button fora
first duration may disengage a lock of the touch screen 346;
and a pressing of the button for a second duration that is
longer than the first duration may turn power to the mobile
device on or off. The user may be able to customize a func-
tionality of one or more of the buttons. The touch screen 346
can, for example, also be used to implement virtual or soft
buttons and/or a keyboard.

[0063] In some implementations, the mobile device can
present recorded audio and/or video files, such as MP3, AAC,
and MPEG files. In some implementations, the mobile device
can include the functionality of an MP3 player, such as an
iPod™. The mobile device may, therefore, include a 32-pin
connector that is compatible with the iPod™. Other input/
output and control devices can also be used.

[0064] The memory interface 302 can be coupled to
memory 350. The memory 350 can include high-speed ran-
dom access memory and/or non-volatile memory, such as one
or more magnetic disk storage devices, one or more optical
storage devices, and/or flash memory (e.g., NAND, NOR).
The memory 350 can store an operating system 352, such as
Darwin, RTXC, LINUX, UNIX, OS X, WINDOWS, or an
embedded operating system such as VxWorks. The operating
system 352 may include instructions for handling basic sys-
tem services and for performing hardware dependent tasks. In
some implementations, the operating system 352 can be a
kernel (e.g., UNIX kernel).

[0065] The memory 350 may also store communication
instructions 354 to facilitate communicating with one or more
additional devices, one or more computers and/or one or more
servers. The memory 350 may include graphical user inter-
face instructions 356 to facilitate graphic user interface pro-

Mar. 19, 2015

cessing; sensor processing instructions 358 to facilitate sen-
sor-related processing and functions; phone instructions 360
to facilitate phone-related processes and functions; electronic
messaging instructions 362 to facilitate electronic-messaging
related processes and functions; web browsing instructions
364 to facilitate web browsing-related processes and func-
tions; media processing instructions 366 to facilitate media
processing-related processes and functions; GPS/Navigation
instructions 368 to facilitate GPS and navigation-related pro-
cesses and instructions; camera instructions 370 to facilitate
camera-related processes and functions; and/or other soft-
ware instructions 372 to facilitate other processes and func-
tions, e.g., access control management functions. The
memory 350 may also store other software instructions (not
shown), such as web video instructions to facilitate web
video-related processes and functions; and/or web shopping
instructions to facilitate web shopping-related processes and
functions. In some implementations, the media processing
instructions 366 are divided into audio processing instruc-
tions and video processing instructions to facilitate audio
processing-related processes and functions and video pro-
cessing-related processes and functions, respectively. An
activation record and International Mobile Equipment Iden-
tity (IMEI) 374 or similar hardware identifier can also be
stored in memory 350.

[0066] Each of the above identified instructions and appli-
cations can correspond to a set of instructions for performing
one or more functions described above. These instructions
need not be implemented as separate software programs,
procedures, or modules. The memory 350 can include addi-
tional instructions or fewer instructions. Furthermore, vari-
ous functions of the mobile device may be implemented in
hardware and/or in software, including in one or more signal
processing and/or application specific integrated circuits.
[0067] FIG. 4 illustrates a conceptual block diagram of an
environment on the computing device 106 that supports
secure installation of software. As shown, in order to imple-
ment secure installation of software, the computing device
106 may comprise an installer 400, an operating system 402,
an installation framework 404, storage 406, one or more
containers 408 arranged in a directory structure. These com-
ponents will now be further described.

[0068] Installer 400 is a program or process that installs
files, such as applications, drivers, or other software, on com-
puting device 106. In some embodiments, installer 400 is
configured to read and analyze the contents of a software
package to be installed, such as a software package from
source 102.

[0069] A software package from source 102 may have a
specific format and information that is used by installer 400.
In particular, a software package may include the software’s
full name, a unique identifier for the software, a description of
its purpose, version number, vendor, checksum, and a list of
dependencies necessary for the software to run properly.
Upon installation, installer 400 may also store metadata about
the software.

[0070] In addition, the installer 400 may be interfaced
based on a predetermined application programming interface
(API). In one embodiment, the API comprises functions to
install an application, uninstall an application, archive an
application, and list installed applications. The API can also
provide functions that instruct installer 400 to verify applica-
tion installation and access restrictions at run time. In some
embodiments, the API for the installer 400 may provide

US 2015/0082458 Al

primitives for these functions via a trusted portion of the
operating system 402, such as the kernel 410.

[0071] Operating system 402 generally serves as an inter-
face between hardware and the user. In particular, operating
system 402 may be responsible for the management and
coordination of activities and the sharing of the resources of
the computing device 106. Operating system 402 primarily
acts as a host for applications, and thus, includes instructions
that handle the details of the operation of the hardware of the
computing device 106.

[0072] Inaddition, operating system 402 may offer a num-
ber of services to application programs and users. The appli-
cations running on computing device 106 may access these
services through APIs or system calls. For example, by call-
ing an API function, an application can request a service from
the operating system 402, pass parameters, and receive the
results of the operation.

[0073] In some embodiments, operating system 402 may
be like operating system 352, shown in FIG. 3. Accordingly,
operating system 402 may be an operating system, such as
Darwin, RTXC, LINUX, UNIX, OS X, WINDOWS, or an
embedded operating system such as VxWorks.

[0074] Kernel 410 is the central trusted component of oper-
ating system 402. The functions of kernel 410 responsibilities
include managing the resources, such as the resources shown
in FIGS. 2A-2B and FIG. 3. In particular, kernel 410 provides
access to resources, such as the memory 350, processor(s)
304, and /O subsystems 340 of computing device 106. In
general, kernel 410 may employ API system calls and inter-
process communications to perform its function.

[0075] Trusted cache 412 is a temporary storage area where
frequently accessed data, such as randomly assigned identi-
fiers for containers 408, can be stored for rapid access. For
example, cache 412 may be implemented in memory 350 to
of computing device 106. Furthermore, trusted cache 412
may be maintained in a trusted space of memory 350 in order
to secure its information. In some embodiments, access to
trusted cache 412 may be limited to certain components, such
as kernel 410.

[0076] Installation framework 404 is a library file that con-
trols how applications are securely installed on the computing
device 106 and the management of the securely installed
applications. In some embodiments, the installation frame-
work 404 restricts where and how applications can be
installed on the computing device 106. For example, the
installation framework 404 may contain supporting pro-
grams, libraries, or references to other files.

[0077] Storage 406 may be any data storage device, such as
a hard disk, memory, optical disk, etc. for computing device
106. In some embodiments, information is stored in storage
406 based on a known file system and directory structure.
Such file systems and directory structures are known to those
skilled in the art.

[0078] As shown, storage 406 may comprise multiple par-
titions, such as partitions #1 and #2 depicted in FIG. 4. Par-
titioning of storage 406 allows for the protection and isolation
of the files associated with the applications. For example, a
first version of the application may be stored in partition #1,
but a second version or upgrade of the application may then be
stored in partition #2. This also allows for securely installed
applications to continue to be installed in dynamic containers,
like containers 408, which are self contained. Such dynamic
containers are further described below.

Mar. 19, 2015

[0079] One skilled in the art will recognize that device 106
may comprise any number of partitions of various sizes and
configurations. Furthermore, the use of partitions in storage
406 allows applications to be upgraded independently of the
upgrade processes used elsewhere on device 106. For
example, applications securely installed on device 106 may
be upgraded without having to use the upgrade processes of
operating system 402.

[0080] Within each partition, the various embodiments
may employ various file systems and directories. In some
embodiments, the file systems employ directories having ran-
domly assigned identifiers or names, which are dynamic con-
tainers for an application. In particular, these random identi-
fiers provide a level of indirection that helps allow the
installation framework 404 control the installation and execu-
tion of software within its container. The random identifiers
are unknown to the application itself and known only to the
installation framework 404. This mechanism provides the
operation system 402 a point of control that ensures the
behavior of an application’s installation and execution.

[0081] Containers 408 refer to any collection of resources
that are used store the program code of a software application
and used by the application running on computing device
106, such as disk space on storage 406 and/or memory space
in memory 350. In some embodiments, containers 408 may
comprise a directory that refers to a specific area of storage
406 on the device 106. Data specific to the software applica-
tion including code storage, documents, preferences, and
other libraries are stored and restricted to the containers 408.

[0082] In order to enhance security, containers 408 can
employ randomly assigned identifiers, such as random direc-
tory names, that are unknown to the application. One advan-
tage, among others, is that the application is prevented from
becoming a security risk since the application does not
directly control its resources or directory space. As noted, the
installer 400 may use randomly assigned identifiers for the
containers 408. The random identifiers may be based on vari-
ous functions, such as a hash function of information pro-
vided in the application’s package, some other type of cryp-
tographic function, and the like. In addition, the random
identifiers for the containers 408 may be based on various
unique attributes of the software. For example, unique appli-
cation identifiers in the form of com.domain.email may be
used in determining the random identifier for the container
408. In some embodiments, the installer 400 stores this infor-
mation only in trusted cache 412.

[0083] During execution, a software application may also
be restricted in various ways to its respective partition and
containers 408. For example, containers 408 may comprise a
set of resource limits imposed on programs by kernel 410,
such as 110 bandwidth caps, disk quotas, network access
restrictions, and as noted above a restricted directory
namespace known only to the installation framework 404.

[0084] FIG. Sillustrates an exemplary process for securely
installing software on the computing device 106. As shown,
first, computing device 106 may receive a request to upgrade
or synchronize an application. For example, a user of com-
puting device 106 may access source 102 and select one or
more applications to synchronize them or to check if
upgrades are available. The various applications may be iden-
tified based on information stored on the device.

[0085] Second, source 102 may forward the request to
archive host 108. Source 102 may provide various types of

US 2015/0082458 Al

information in the request, such as one or more identifiers for
the application, the entity that signed the application, etc.
[0086] Third, archive host 108 checks application cache
110 to identify the software that is the subject of the request.
For example, archive host 108 may check whether an appli-
cation has an upgrade that is now available. As another
example, archive host 108 may check whether an application
has been previously authorized for the device and for multiple
installations on other authorized devices of a user. This autho-
rization may depend on authentication of the user and/or
other criteria.

[0087] Fourth, archive host 108 provides a package for the
selected software to be installed on the computing device 106.
As noted, the package may include the software’s full name,
a unique identifier for the software, a description of its pur-
pose, version number, vendor, checksum, and a list of depen-
dencies necessary for the software to run properly. The pack-
age provided from archive host 108 may comprise different
types of files. For example, the package may comprise all the
files needed to install the application. However, the package
may comprise just data used by the application or documents
used by the application. The contents of the package may vary
depending on the application, the nature of the request, set-
tings of archive host 108, etc.

[0088] Inthe example shown in FIG. 5, the requested appli-
cation has a unique identifier of “ABCD.” Upon receiving this
package, operating system 402 may execute installer 402 as a
running process to perform the installation of the requested
software.

[0089] Fifth, source 102 provides the package to the com-
puting device 106. In some embodiments, source 102 may
perform additional activities related to the package. For
example, source 102 may perform various integrity checks,
formatting, and/or add additional data or files to the package.
[0090] Sixth, installer 400 determines a destination parti-
tion, e.g., partition #1, and container 408 for the application.
For example, as shown, installer 400 may select partition #1
as the destination partition.

[0091] Seventh, installer 400 may randomly assign aniden-
tifier or name for a directory thatis to be used as container 408
for the application, e.g., application ABCD. For example,
installer 400 may perform various cryptographic functions to
determine/generate a random identifier for container 408.
Such cryptographic functions are known to those skilled in
the art. In some embodiments, installer 400 may employ a
hashing function that is based on information from the pack-
age in order to determine/generate the random identifier for
container 408. In addition, installer 400 may utilize various
arbitrary attributes of the software to determine the random
identifier. In the example shown in FIG. 5, installer 400 has
generated “1 AFF2” as the random identifier for the container
408.

[0092] Eighth, installer 400 makes a call to installation
framework 404. In response, installation framework 404 may
record the random identifier and associate it with the appli-
cation. In addition, installation framework 404 may deter-
mine various constraints, such as /O limits, storage space,
etc., for the requested application in container 408.

[0093] Ninth, installer 400 and/or installation framework
404 installs the program code, etc. in its partition and con-
tainer 408. In some embodiments, each application is given
one container 408. For example, as shown, installer 400 may
call installation framework 404 and install compiled code in
partition #1 of storage 406.

Mar. 19, 2015

[0094] Tenth, the identifier for container 408 is stored in
trusted cache 412 for later use by operating system 402,
kernel 410 and/or installation framework 404. For example,
installation framework 404 may record an entry in trusted
cache 412 that correlates application “ABCD” with container
identifier “1AFF2” for container 408 and for partition #1 in
storage 406. Of course, the operating system 402, kernel 410
or installation framework 404 may utilize other bind pro-
cesses to correlate the randomly assigned identifier with the
application being installed.

[0095] In addition to the process described above, when a
request to upgrade or synchronize the software is received,
computing device 106 can also check a digital signature of the
software or software package to verify its authenticity and/or
authorization. If the software is verified as being signed by a
trusted authority, installer 400 and/or installation framework
404 may also permit installation of the computing device 106
as additional or alternative criteria for allowing installation.

[0096] FIG. 6 illustrates an exemplary process for execut-
ing securely installed software on the computing device 106.
In general, the installation framework 404 manages the
launching and execution of applications being executed on
the computing device 106. In particular, the installation
framework 404 provides a mechanism by which the operating
system 402 identifies and locates the container 408 for an
application.

[0097] First, computing device 106 receives a request to
launch or execute an application that has been securely
installed on computing device 106. For example, a user of
computing device 106 may select an application installed on
the computing device. In the example shown in FIG. 6, appli-
cation “ABCD” has been selected by the user using a periph-
eral, suchas a touch screen, etc. This information may then be
passed via peripheral interface 348 to operating system 402.
[0098] Second, operating system 402 services this request.
For example, operating system 402 may instruct kernel 410 to
execute the requested application, e.g., application “ABCD.”
Because this application has been securely installed, the loca-
tion of container 408 is unknown or initially beyond the
control of the application.

[0099] Accordingly, third, kernel 410 makes a call to instal-
lation framework 404 requesting the identifier for container
408 for application “ABCD.” Fourth, installation framework
404 may then perform a search for the container 408 for the
requested application and then responds with the identifier for
container 408, e.g., “1AFF2.”

[0100] Forexample, kernel 410 may perform a comparison
of'this unique identifier with the information stored in trusted
cache 412. For example, kernel 410 may perform a text com-
parison to determine whether the identifier matches an entry
that is stored in trusted cache 412.

[0101] If the information does not match what is stored in
trusted cache 412, then operating system 402 may deny the
application and/or prompt the user for a response. For
example, the operating system 402 may provide a warning
message that the application could not be found by installa-
tion framework 404.

[0102] If the information matches what is stored in trusted
cache 412, then, fifth, kernel 410 continues its service of the
application. In particular, the application is allowed to
execute on computing device 106 within the constraints of its
container 408.

[0103] In addition to the process described above, when a
request to execute the software is received, computing device

US 2015/0082458 Al

106 can also check a digital signature of the software to verity
its authenticity and/or authorization. If the software is verified
as being signed by a trusted authority, installation framework
404 may use this verification as additional or alternative cri-
teria for allowing execution.

[0104] Itis pertinent to point out that the specific structures
and sequences described above may be implemented/per-
formed with alternative structures and sequences. Therefore,
the teachings of the above description should not be construed
as being limited to the specific structures and/or sequences
described above.

[0105] Those of skill may recognize that the various illus-
trative logical blocks, modules, circuits, and algorithm steps
described in connection with the embodiments disclosed
herein may be implemented as electronic hardware, computer
software, or combinations of both. To clearly illustrate this
interchangeability of hardware and software, various illustra-
tive components, blocks, modules, circuits, and steps have
been described above generally in terms of their functionality.
Whether such functionality is implemented as hardware or
software depends upon the particular application and design
constraints imposed on the overall system. Skilled artisans
may implement the described functionality in varying ways
for each particular application, but such implementation deci-
sions should not be interpreted as causing a departure from
the scope of the present invention.

[0106] The various illustrative logical blocks, modules, and
circuits described in connection with the embodiments dis-
closed herein may be implemented or performed with a gen-
eral purpose processor, a digital signal processor (DSP), an
application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA) or other programmable logic
device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform
the functions described herein. A general purpose processor
may be a microprocessor, but in the alternative, the processor
may be any conventional processor, controller, microcontrol-
ler, or state machine. A processor may also be implemented as
a combination of computing devices, e.g., a combination of a
DSP and a microprocessor, a plurality of microprocessors,
one or more microprocessors in conjunction with a DSP core,
or any other such configuration.

[0107] The steps of a method or algorithm described in
connection with the embodiments disclosed herein may be
embodied directly in hardware, in a software module
executed by a processor, or in a combination of the two. A
software module may reside in RAM memory, flash memory,
ROM memory, EPROM memory, EEPROM memory, regis-
ters, hard disk, a removable disk, a CD-ROM, or any other
form of storage medium known in the art. An exemplary
storage medium is coupled to the processor such the proces-
sor can read information from, and write information to, the
storage medium. In the alternative, the storage medium may
be integral to the processor. The processor and the storage
medium may reside in an ASIC. The ASIC may reside in a
user terminal. In the alternative, the processor and the storage
medium may reside as discrete components in a user terminal.
[0108] While the above detailed description has shown,
described, and pointed out novel features of the invention as
applied to various embodiments, it may be understood that
various omissions, substitutions, and changes in the form and
details of a device or process illustrated may be made by those
skilled in the art without departing from the spirit of the
invention. As may be recognized, the present invention may

Mar. 19, 2015

be embodied within a form that does not provide all of the
features and benefits set forth herein, as some features may be
used or practiced separately from others. The scope of the
invention is indicated by the appended claims rather than by
the foregoing description. All changes which come within the
meaning and range of equivalency of the claims are to be
embraced within their scope.

1. A method for enabling synchronization of applications
installed across different devices, the method comprising:

at a server device:

receiving, from a first device, authentication informa-
tion associated with a first version of an application
that is installed on the first device;
archiving the authentication information;
receiving, from a second device, a first request to install
the first version of the application on the second
device;
in response to the first request, verifying whether the first
device and the second device are associated with a
same entity; and
in response to verifying that the first device and the
second device are associated with the same entity:
providing, to the second device, the authentication
information, wherein the authentication informa-
tion enables the first version of the application to be
executed on the second device.
2. The method of claim 1, further comprising:
receiving, from the first device, an indication that a second
version of the application has been installed on the first
device;

receiving, from the first device, a second request for the

authentication information; and

providing, to the first device and in response to the second

request, the authentication information, wherein the
authentication information enables the second version
of the application to be executed on the first device.

3. The method of claim 2, wherein the second version ofthe
application is an upgrade to the first version of the applica-
tion.

4. The method of claim 2, wherein the second version ofthe
application is a restoration of the first version of the applica-
tion.

5. The method of claim 1, further comprising:

providing, to one or more of the first device and the second

device, first installation information that corresponds to
the first version of the application.

6. The method of claim 1, wherein each of the first device
and the second device is configured to store the first version of
the application in a respective local storage device partition
that is associated with a unique identifier, and the unique
identifier is not known to the first version of the application.

7. The method of claim 6, wherein each of the first device
and the second device is configured to implement an instal-
lation component that manages the unique identifier and has
access to the respective local storage device partition.

8. A non-transitory computer readable storage medium
configured to store instructions that, when executed by a
processor included in a computing device, cause the comput-
ing device to synchronize applications installed across difter-
ent devices, by carrying out steps that include:

receiving, from a first device, authentication information

associated with a first version of an application that is
installed on the first device;

archiving the authentication information;

US 2015/0082458 Al

receiving, from a second device, a first request to install the

first version of the application on the second device;

in response to the first request, verifying whether the first

device and the second device are associated with a same
entity; and

in response to verifying that the first device and the second

device are associated with the same entity:

providing, to the second device, the authentication infor-
mation, wherein the authentication information
enables the first version of the application to be
executed on the second device.

9. The non-transitory computer readable storage medium
of claim 8, wherein the steps further include:

receiving, from the first device, an indication that a second

version of the application has been installed on the first
device;

receiving, from the first device, a second request for the

authentication information; and

providing, to the first device and in response to the second

request, the authentication information, wherein the
authentication information enables the second version
of the application to be executed on the first device.

10. The non-transitory computer readable storage medium
of'claim 9, wherein the second version of the application is an
upgrade to the first version of the application.

11. The non-transitory computer readable storage medium
of claim 9, wherein the second version of the application is a
restoration of the first version of the application.

12. The non-transitory computer readable storage medium
of claim 8, wherein the steps further include:

providing, to one or more of the first device and the second

device, first installation information that corresponds to
the first version of the application.

13. The non-transitory computer readable storage medium
of claim 8, wherein each of the first device and the second
device is configured to store the first version of the application
in a respective local storage device partition that is associated
with a unique identifier, and the unique identifier is not known
to the first version of the application.

14. The non-transitory computer readable storage medium
of claim 13, wherein each of the first device and the second
device is configured to implement an installation component
that manages the unique identifier and has access to the
respective local storage device partition.

15. A system configured to synchronize applications
installed across different devices, the system comprising:

Mar. 19, 2015

a first device;

a second device; and

a server device, configured to:

receive, from the first device, authentication information
associated with a first version of an application that is
installed on the first device;
archive the authentication information;
receive, from a second device, a first request to install the
first version of the application on the second device;
in response to the first request, verity whether the first
device and the second device are associated with a
same entity; and
in response to verifying that the first device and the
second device are associated with the same entity:
provide, to the second device, the authentication
information, wherein the authentication informa-
tion enables the first version of the application to be
executed on the second device.

16. The system of claim 15, wherein the server device is
further configured to:

receive, from the first device, an indication that a second

version of the application has been installed on the first
device;

receive, from the first device, a second request for the

authentication information; and

provide, to the first device and in response to the second

request, the authentication information, wherein the
authentication information enables the second version
of the application to be executed on the first device.

17. The system of claim 16, wherein the second version of
the application is an upgrade to the first version of the appli-
cation.

18. The system of claim 16, wherein the second version of
the application is a restoration of the first version of the
application.

19. The system of claim 15, wherein the server device is
further configured to:

provide, to one or more of the first device and the second

device, first installation information that corresponds to
the first version of the application.

20. The system of claim 19, wherein each of the first device
and the second device is configured to store the first version of
the application in a respective local storage device partition
that is associated with a unique identifier, and the unique
identifier is not known to the first version of the application.

#* #* #* #* #*

