
US007 146515B2

(12) United States Patent (10) Patent No.: US 7,146,515 B2
Harrington et al. (45) Date of Patent: Dec. 5, 2006

(54) SYSTEM AND METHOD FOR SELECTIVELY 5,596,759 A 1/1997 Miller et al. 395/750
EXECUTING AREBOOT REQUEST AFTER A 5,724,527 A 3/1998 Karnik et al. 395,308
RESET TO POWER ON STATE FOR A
PARTICULAR PARTITION IN A LOGICALLY
PARTITIONED SYSTEM (Continued)

(75) Inventors: Bradley Ryan Harrington, Austin, TX FOREIGN PATENT DOCUMENTS
(US); Chetan Mehta, Austin, TX (US); JP 3.138753 6, 1991
Milton Devon Miller, II, Austin, TX
(US); Michael Anthony Perez, Cedar
Park, TX (US); David Lee Randall, OTHER PUBLICATIONS
Leander, TX (US); David R.
Willoughby, Austin, TX (US) IBM Technical Disclosure Bulletin, "Recovery from Single Critical

Hardware Resource Unavialability”, vol. 36, No. 08, Aug. 1993, pp.
(73) Assignee: International Business Machines 607-612.

Corporation, Armonk, NY (US) (Continued)

(*) Notice: Subject to any disclaimer, the term of this Primary Examiner Lynne H. Browne
patent is extended or adjusted under 35 Assistant Examiner Tse Chen
U.S.C. 154(b) by 632 days. (74) Attorney, Agent, or Firm—Duke W. Yee: Thomas E.

Tyson; Theodore D. Fay, III
(21) Appl. No.: 10/177,415

(57) ABSTRACT
(22) Filed: Jun. 20, 2002

(65) Prior Publication Data A system, method, and computer program product are
disclosed for executing a reliable warm reboot of one of

US 2003/0236972 A1 Dec. 25, 2003 multiple partitions included in a logically partitioned data
(51) Int. Cl processing System. The data processing System includes

we partition hardware. A request to reboot a particular partition
G06F I/26 (2006.01) is received within the partition where the particular partition

. For C- - - - - - ficati - - - - - -s - - - - - - - h. 713/324; 7.5. includes multiple processors. Prior to executing the reboot
O SSCO ye s request, the partition hardware is set to a predetermined

state. The reboot request is then executed within the par
ticular partition. The predetermined state is preferably

(56) References Cited achieved by resetting the partition hardware to a predeter
mined state.

713/310,324, 300; 714/1, 7
See application file for complete search history.

U.S. PATENT DOCUMENTS

5,497,497 A 3, 1996 Miller et al. 395/800 7 Claims, 4 Drawing Sheets

502 SYSTE POWER-ON

ARDARE INA
504N POWER-ONSTATE. No

PENDING fo OR INTERRUPTS

CENALE BY SERVICE
PROCESSOR CROCODE

IPL MicROCODE, PARTITION
508- MANAGER AND HYPERVISOR

LOADED INSYSE MEMORY
BY SERVICE PROCESSOR

506

B00 ANACER AENT
EACH PARTON'S MORY
Y FARONMANAGER

510

RAS EXECUES ON ONE
PROCESSOR THN

PARTITO TO PROCESS
PARTHON REBOOT REQUEST

520
PARTTTION ACTWED BY

512-1 PARTION MANAGER

PARTON TAZE AN
OPERATING SYSTE AND RTAS
LOADED BY BOOT ROCODE

RAS PASSES PARTTTON
REB00 REQUEST TO

HYPERWISOR WHICH REQUESS
SERVICE PROCESSORTO
RESEAL PROCESSORS IN

HE PARTTON

514-1
522

PERAiNSYSE
RUNN)NG IN PARTTTON 516-1

SERE PROCESSOR
RESES ALL PROCESSORS
AND PASSES CONTROL TO
PARTON ANAGER

PARTITION
WAR REBOf

REUEST RECEIVED
FRO OPRA

SYSEM

524

PARTON ANAGER RESES
ALL Ifo ADAPTERS OWNED

BY PARTTON
518 528

US 7,146.515 B2
Page 2

U.S. PATENT DOCUMENTS 6,795,930 B1* 9/2004 Laurenti et al. T13,324
6,820,207 B1 * 1 1/2004 Dawkins et al. T13,324

5,729,675 A 3, 1998 Miller et al. 395,183.12 2002/O124166 A1* 9, 2002 Lee et al. T13/100
5,737,615 A 4, 1998 Tetrick 395,750.06
5,825,649 A 10, 1998 Yoshimura 364,187 OTHER PUBLICATIONS
5,854,896 A 12/1998 Brenner et al. ... 395.200.51 IBM Technical Disclosure Bulletin, "Coordinating Multiple Server
5,867,658 A 2, 1999 Lee 395.200.52 Partitions to Enter Power-Save State, vol. 39. No. 06, Jun. 1996
5,867,703 A 2f1999 Miller et al. ... 395,651 pp. 235-239
6,158,000 A 12, 2000 Collins - - - - - - - - - - ... 713.1 IBM Research Disclosure 444202, "Methods of Intercommunica
6.253,304 B1 6, 2001 Hewitt et al. 712.6 tion amoung Common Service Processor, Hardware System Con 6,314,515 B1 1 1/2001 Miller et al. 713.1 sole, and Firmware Partition Manager for Logical Partition Man
6,434,696 B1* 8/2002 Kang 713/2 agement, Instantiation, and Termination”, Apr. 2001, pp. 700-701.
6,539,472 B1* 3/2003 Fujishima ... 713/2
6,725,317 B1 * 4/2004 Bouchier et al. T10/312 * cited by examiner

U.S. Patent Dec. 5, 2006 Sheet 1 of 4 US 7,146,515 B2

SERVER

16-1 STORAGE

CLIENT

OPERATING
SYSTEM-PER PARTITION

BOOT RUNTIME ABSTRACTION
MICROCODE-PER SERVICES MICROCODE

PARTITION (RTAS)-PER PARTITION

PARITION MANAGER AND
HYPERVISOR MICROCODE

IPL
MICROCODE

SERVICE PROCESSOR MICROCODE

FIG. 4

U.S. Patent Dec. 5, 2006 Sheet 2 of 4 US 7,146,515 B2

JTAG/120 BUSSES 134
MEMORY

ATTN SIGNAL

SERVICE
PROCESSOR 195

PCI BUS /
MEMORY

108 N. CONTROLLER R.
CACHE

SERVICE PROCESSOR 196
MAILBOX INTERFACE ISA NVRAM
AND ISA BUS ACCESS BUS

PASSTHROUGH
PCI/ISA OP

1931 BRIDGE PANEL

190

160

LOCAL
MEMORY

PCI BUS
131

130 PCI BUS
133 LOCAL -

MEMORY Rigo (P.K.
BRIDGE 132-/BRIDGE ADAPTERN 136

LOCAL PCI BUS E.A.(9 ADAPTER1DEVICE

PC CD PCI 121 120 122
BRIDGE BRIDGE O

115 119 E./8/9 LOCAL FC i? PCI BUS ADAPTER 1DEVICE
MEMORY 114 BUS PCI I/O l/

PCI BUS O
RIO 126 ADAPTERFODEVICE

1 6 1

11 66 32
BUS 101 RIO TO PC 129

BRIDGE BRIDGE
123 127
PC 124 PCI BUS

112 / /
PCI I/O I/O
ADAPTERF DEVICE f

100
DATA PROCESSING

SYSTEM

122 BUS
RIO TO PCI- ADAPTER
PCI D PCI 148

BRIDGE BRIDGE
141

HARD DISK
ADAPTER 149 140 PC 142 145

BUS PCI BUS HARD DISK-- 150
FIC. 2

U.S. Patent Dec. 5, 2006 Sheet 3 of 4 US 7,146,515 B2

LOGICALLY PARTITIONED PATFORM

200
2O2 205

PARTITION PARTITION PARTITION PARTITION

2040

PARTITION MANAGEMENT FIRMWARE (HYPERVISOR)
210

I/O I/O
ADAPTER ADAPTER

248 250

SERVICE PROCESSOR ADAPTER ADAPTER

252 254 291-DRAM
1/O I/O

ADAPTER ADAPTER

256 258

PARTITIONED HARDWARE ADAPTER ADAPTER

260 262 250

FIG. 3

U.S. Patent Dec. 5, 2006 Sheet 4 of 4 US 7,146,515 B2

FIC. 6
500

502 SYSTEM POWER-ON

HARDWARE IN A
“POWER-ON' STATE. NO

PENDING I/O OR INTERRUPTS
504

506 - CEC INITIALIZED BY SERVICE
PROCESSOR MICROCODE

IPL MICROCODE, PARTITION
MANAGER AND HYPERVISOR
LOADED IN SYSTEM MEMORY
BY SERVICE PROCESSOR

508

BOOT MANAGER LOADED INTO
EACH PARTITION'S MEMORY
BY PARTITION MANAGER

510

RTAS EXECUTES ON ONE
PROCESSOR WHIN

PARTITION TO PROCESS
PARTITION REBOOT REQUEST

PARTITION ACTIVATED BY
512 PARTITION MANAGER

PARTITION NIALIZED AND
OPERATING SYSTEM AND RTAS
LOADED BY BOOT MICROCODE

RTAS PASSES PARTION
REBOOT REQUEST TO

HYPERVISOR WHICH REQUESTS
SERVICE PROCESSOR TO

RESE ALL PROCESSORS IN
THE PARTITION

514

OPERATING SYSTEM
516 RUNNING IN PARTION

SERVICE PROCESSOR
RESETS ALL PROCESSORS
AND PASSES CONTROL TO

PARTITION MANAGER
PARTITION

WARM REBOOT
REQUEST RECEIVED
FROM OPERATING

SYSTEM? PARTITION MANAGER RESETS
ALL I/O ADAPTERS OWNED

BY PARTITION
518

US 7,146,515 B2
1.

SYSTEMAND METHOD FOR SELECTIVELY
EXECUTING AREBOOT REQUEST AFTER A

RESET TO POWER ON STATE FOR A
PARTICULAR PARTITION IN A LOGICALLY

PARTITIONED SYSTEM

BACKGROUND OF THE INVENTION

1. Technical Field
The present invention relates generally to the field of

computer systems and, more specifically to a system,
method, and computer program product for executing a
reliable warm reboot of a partition that includes multiple
processors in logically partitioned systems.

2. Description of Related Art
A logical partitioning option (LPAR) within a data pro

cessing system (platform) allows multiple copies of a single
operating system (OS) or multiple heterogeneous operating
systems to be simultaneously run on a single data processing
system hardware platform. A partition, within which an
operating system image runs, may be assigned a non
overlapping Subset of the platforms hardware resources. In
Some implementations, a percentage of system resources is
assigned Such that System resources are essentially time
sliced across partitions. These platform allocable resources
include one or more architecturally distinct processors with
their interrupt management area, regions of system memory,
and input/output (I/O) adapter bus slots. The partitions
resources are represented by its own resources list typically
created and maintained by the systems underlying firmware
and available to the OS image.

Each distinct OS or image of an OS running within the
platform is protected from each other such that software
errors on one logical partition can not affect the correct
operation of any of the other partitions. At a given time, this
is provided by allocating a disjoint set of platform resources
to be directly managed by each OS image and by providing
mechanisms for ensuring that the various images can not
control any resources that have not been allocated to it.
Furthermore, software errors in the control of an operating
system's allocated resources are prevented from affecting
the resources of any other image. Thus at a given time, each
image of the OS, or each different OS, directly controls a
distinct set of allocable resources within the platform.
The ability to reboot one of multiple partitions in a

logically partitioned system is an important requirement in
Such a system. This requirement stems from the fact that
partitions are supposed to act and behave like independent
systems. An independent computer system may be restarted
using either a cold reboot or a warm reboot.
A cold reboot is defined as restarting the computer system

by cycling the power to the computer system off and then
back on. When a cold reboot is executed, the various
hardware components in the system are reset to a particular,
defined state. When a processor is reset, the processor loses
all history of what it had been doing prior to being reset. It
does not continue to transmit I/O requests, and does not
anticipate the receipt of any particular I/O response. When
an I/O adapter is reset, it also does not continue to transmit
I/O responses, and does not anticipate the receipt of any
particular I/O request.
A warm reboot is defined as restarting the computer

system without cycling the power off and then back on. In
a cold boot, System components are tested prior to initial
ization to ensure that the hardware is functioning properly
before control can be passed to the OS. In a warm boot
scenario, since the system is assumed to be operating prior

10

15

25

30

35

40

45

50

55

60

65

2
to the reboot request, testing of certain system components
can be skipped thereby speeding up the boot. Obviously in
an LPAR environment, a cold boot is not an option since it
impacts not only the partition being rebooted but all other
partitions as well because the power to the system is cycled
on and then back off.

Typically, a warm reboot is executed from the operating
system level. During a warm reboot of a partition that
includes multiple processors, I/O activity in the partition
being rebooted may continue. Processors in the partition that
are not the processor that initially received the reboot
request may be transmitting data to an I/O adapter when the
reboot request occurs. In addition, the I/O adapters may be
transmitting data back to the processors.

It is not practical, however, to reboot a partition in a
logically partitioned system using the same, cold reboot
method used in independent systems. When an independent
system is rebooted using a cold, or hard reboot, the power of
the system is cycled off and then back on. When a reboot of
an independent system is executed, in most cases it is treated
in the same way as a cold reboot. Thus, when an operating
system initiates a reboot and the power is cycled off and then
back on for the system. This approach is not practical for
rebooting only one of the multiple partitions of a logically
partitioned system. Power to the logically partitioned hard
ware cannot be cycled for just one partition. Cycling the
power would affect all partitions.
When a reboot request is issued from the OS to reboot a

partition, it is sent to one of the processors in the partition.
This processor can control the processes/tasks running on it
so prior to passing the reboot request to firmware it is able
to cease all I/O activity to and from it. If the partition had
only one processor, there is a mechanism to stop all I/O
activity prior to the start of a partition reboot. In the case
where a partition consists of multiple processors, the other
processors have no knowledge of the reboot request until the
information in conveyed to them by the processor that
received the reboot request. Since there is no way to send a
simultaneous request to all processors in a partition, during
the time that it takes the “receiving processor to inform the
other processors in the partition of the pending reboot
request, they may have already initiated I/O transaction(s).
These pending I/O transactions cause problems when the
system is being rebooted.

Executing a warm reboot in just one partition of a
logically partitioned system can cause unreliable results
when the partition includes multiple processors. In the prior
art, when a warm reboot occurs in a partition that includes
multiple processors, one processor will receive the request
to reboot. That processor will then tell the other processors
to stop processing in preparation for a reboot. A problem
occurs when one or more of these other processors has one
or more outstanding I/O requests as a reboot is initiated.
When the reboot occurs, system firmware is in control. As it
proceeds to reboot the system an I/O adapter may respond to
an I/O request issued prior to the reboot request from one of
the processors. However, the processor that originally trans
mitted the request is not executing the task which produced
the request. The firmware in effect receives an unsolicited
I/O interrupt. Unable to determine if the I/O response is a
result of an I/O problem or a previously issued request, the
reboot fails.

Therefore, a need exists for a method, system, and product
for executing a reliable reboot in a partition in a logically
partitioned system where the partition is comprised of
multiple processors.

US 7,146,515 B2
3

SUMMARY OF THE INVENTION

A system, method, and computer program product are
disclosed for executing a reliable warm reboot of one of
multiple partitions included in a logically partitioned data
processing system. The data processing system includes
partition hardware. A request to reboot a particular partition
is received within the partition where the particular partition
includes multiple processors. Prior to executing the reboot
request, the partition hardware is set to a predetermined
state. The reboot request is then executed within the par
ticular partition. The predetermined state is preferably
achieved by resetting the partition hardware to its power-on
State.

The above as well as additional objectives, features, and
advantages of the present invention will become apparent in
the following detailed written description.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as a preferred mode of use, further objec
tives and advantages thereof, will best be understood by
reference to the following detailed description of an illus
trative embodiment when read in conjunction with the
accompanying drawings, wherein:

FIG. 1 is a pictorial representation which depicts a data
processing system in which the present invention may be
implemented in accordance with a preferred embodiment of
the present invention;

FIG. 2 is a more detailed block diagram of a data
processing system in which the present invention may be
implemented in accordance with the present invention;

FIG. 3 is a block diagram of an exemplary logically
partitioned platform in which the present invention may be
implemented;

FIG. 4 is a block diagram of a time-based view of the
various code components utilized at runtime and during the
execution of a reboot for a logically partitioned system in
accordance with the present invention; and

FIG. 5 depicts a high level flow chart which depicts
setting partition hardware to a predetermined state prior to
executing a warm reboot request in accordance with the
present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A preferred embodiment of the present invention and its
advantages are better understood by referring to the figures,
like numerals being used for like and corresponding parts of
the accompanying figures.

The present invention is a method, system, and product
for providing a reliable warm reboot of a particular partition
in a logically partitioned system where the particular parti
tion includes multiple processors. When a request to execute
a warm reboot of a partition is received, the hardware
allocated to that partition is reset to a predetermined State
before the warm reboot request is executed. The hardware is
reset to a “power-on' state such that the processors are reset
and the I/O adapters are reset. When the processors and I/O
adapters are reset, they lose all execution history, and I/O
processing is halted. Once the processors and I/O adapters
are reset, the warm reboot request is executed.

FIG. 1 depicts a pictorial representation of a network of
data processing systems in which the present invention may

5

10

15

25

30

35

40

45

50

55

60

65

4
be implemented. Network data processing system 10 is a
network of computers in which the present invention may be
implemented. Network data processing system 10 contains
a network 12, which is the medium used to provide com
munications links between various devices and computers
connected together within network data processing system
10. Network 12 may include connections, such as wire,
wireless communication links, or fiber optic cables.

In the depicted example, a server 14 is connected to
network 12 along with storage unit 16. In addition, clients
18, 20, and 22 also are connected to network 12. Network 12
may include permanent connections, such as wire or fiber
optic cables, or temporary connections made through tele
phone connections. The communications network 12 also
can include other public and/or private wide area networks,
local area networks, wireless networks, data communication
networks or connections, intranets, routers, satellite links,
microwave links, cellular or telephone networks, radio links,
fiber optic transmission lines, ISDN lines, T1 lines, DSL,
etc. In some embodiments, a user device may be connected
directly to a server 14 without departing from the scope of
the present invention. Moreover, as used herein, communi
cations include those enabled by wired or wireless technol
Ogy.

Clients 18, 20, and 22 may be, for example, personal
computers, portable computers, mobile or fixed user sta
tions, workstations, network terminals or servers, cellular
telephones, kiosks, dumb terminals, personal digital assis
tants, two-way pagers, Smart phones, information appli
ances, or network computers. For purposes of this applica
tion, a network computer is any computer, coupled to a
network, which receives a program or other application from
another computer coupled to the network.

In the depicted example, server 14 provides data, such as
boot files, operating system images, and applications to
clients 18–22. Clients 18, 20, and 22 are clients to server 14.
Network data processing system 10 may include additional
servers, clients, and other devices not shown. In the depicted
example, network data processing system 10 is the Internet
with network 12 representing a worldwide collection of
networks and gateways that use the TCP/IP suite of proto
cols to communicate with one another. At the heart of the
Internet is a backbone of high-speed data communication
lines between major nodes or host computers, consisting of
thousands of commercial, government, educational and
other computer systems that route data and messages. Of
course, network data processing system 10 also may be
implemented as a number of different types of networks,
Such as for example, an intranet, a local area network
(LAN), or a wide area network (WAN). FIG. 1 is intended
as an example, and not as an architectural limitation for the
present invention.

FIG. 2 is a more detailed block diagram of a data
processing system in which the present invention may be
implemented. Data processing system 100 is a logically
partitioned system. Data processing system 100 includes a
central electronic complex 101 which includes logically
partitioned hardware. CEC 101 includes a plurality of pro
cessors 101, 102, 103, and 104 connected to system bus 106.
Also connected to system bus 106 is memory controller/
cache 108, which provides an interface to a plurality of local
memories 160–163. Remote Input/Output (RIO) hub 110 is
connected to system bus 106 and provides an interface to
RIO bus 112. Memory controller/cache 108 and RIO hub
110 may be integrated as depicted.

Data processing system 100 is a logically partitioned data
processing system. Thus, data processing system 100 may

US 7,146,515 B2
5

have multiple heterogeneous operating systems (or multiple
instances of a single operating system) running simulta
neously. Each of these multiple operating systems may have
any number of Software programs executing within in it.
Data processing system 100 is logically partitioned Such that
different I/O adapters 120–121, 128-129, 136, and 148–149
may be assigned to different logical partitions.

Thus, for example, Suppose data processing system 100 is
divided into three logical partitions, P1, P2, and P3. Each of
I/O adapters 120–121, 128-129, 136, and 148-149, each of
processors 101-104, and each of local memories 160–163 is
assigned to one of the three partitions. For example, pro
cessor 101, memory 160, and I/O adapters 120, 128, and 129
may be assigned to logical partition P1; processors 102–103.
memory 161, and I/O adapters 121 and 136 may be assigned
to partition P2; and processor 104, memories 162–163, and
I/O adapters 148-149 may be assigned to logical partition
P3.

Each operating system executing within data processing
system 100 is assigned to a different logical partition. Thus,
each operating system executing within data processing
system 100 may access only those I/O units that are within
its logical partition.
RIO to Peripheral component interconnect (PCI) Host

bridge 114 connected to I/O bus 112 provides an interface to
PCI local bus 115. A number of Input/Output adapters
120-121 may be connected to PCI bus 115 through the use
of PCI PCI bridge 116. Typical PCI PCI bridge imple
mentations will support between four and eight I/O adapters
(i.e. expansion slots for add-in connectors). Each I/O
Adapter 120–121 provides an interface between data pro
cessing system 100 and input/output devices. An I/O device
120a is coupled to I/O adapter 120, and an I/O device 121a
is coupled to I/O adapter 121.
An additional RIO to PCI host bridge 122 provides an

interface for an additional PCI bus 123. PCI bus 123 through
the use of PCI PCI bridge 124 is connected to a plurality
of PCI I/O adapters 128-129 by a PCI bus 126–127. An I/O
device 128a is coupled to I/O adapter 128, and an I/O device
129a is coupled to I/O adapter 129.
A memory mapped graphics adapter 148 may be con

nected to I/O bus 112 through RIO to PCI Host Bridge 140
and PCI PCI bridge 142 via PCI buses 144 and 145 as
depicted. Also, a hard disk 150 may also be connected to
RIO bus 112 through RIO to PCI Host Bridge 140 and
PCI PCI bridge 142 via PCI buses 141 and 145 as
depicted.
A RIO to PCI host bridge 130 provides an interface for a

PCI bus 131 to connect to I/O bus 112. PCI bus 131 connects
RIO to PCI host bridge 130 to the service processor mailbox
interface and ISA bus access pass-through logic 194 and
PCI PCI bridge 132. The ISA bus access pass-through
logic 194 forwards PCI accesses destined to the PCI/ISA
bridge 193. The NVRAM storage is connected to the ISA
bus 196. The Service processor 135 is coupled to the service
processor mailbox interface 194 through its local PCI bus
195. Service processor 135 is also connected to processors
101–104 via a plurality of JTAG/I°C buses 134. JTAG/I°C
buses 134 are a combination of JTAG/scan busses (see IEEE
1149.1) and Phillips IC busses. However, alternatively,
JTAG/I°C buses 134 may be replaced by only Phillips I’C
busses or only JTAG/scan busses. All SP-ATTN signals of
the host processors 101, 102, 103, and 104 are connected
together to an interrupt input signal of the service processor.
The service processor 135 has its own local memory 191,
and has access to the hardware op-panel 190.

5

10

15

35

40

45

50

55

60

65

6
When data processing system 100 is initially powered up,

service processor 135 uses the JTAG/scan buses 134 to
interrogate the system (Host) processors 101-104, memory
controller 108, and RIO hub 110. At completion of this step,
service processor 135 has an inventory and topology under
standing of data processing system 100. Service processor
135 also executes Built-In-Self-Tests (BISTs), Basic Assur
ance Tests (BATs), and memory tests on all elements found
by interrogating the system processors 101-104, memory
controller 108, and RIO hub 110. Any error information for
failures detected during the BISTs, BATs, and memory tests
are gathered and reported by service processor 135.

If a meaningful/valid configuration of system resources is
still possible after taking out the elements found to be faulty
during the BISTs, BATs, and memory tests, then data
processing system 100 is allowed to proceed to load execut
able code into local (Host) memories 160–163. Service
processor 135 then releases the Host processors 101-104 for
execution of the code loaded into Host memory 160–163.
While the Host processors 101-104 are executing code from
respective operating systems within the data processing
system 100, service processor 135 enters a mode of moni
toring and reporting errors. The type of items monitored by
service processor include, for example, the cooling fan
speed and operation, thermal sensors, power Supply regula
tors, and recoverable and non-recoverable errors reported by
processors 101-104, memories 160–163, and bus-bridge
controller 110.

Service processor 135 is responsible for saving and
reporting error information related to all the monitored items
in data processing system 100. Service processor 135 also
takes action based on the type of errors and defined thresh
olds. For example, service processor 135 may take note of
excessive recoverable errors on a processor's cache memory
and decide that this is predictive of a hard failure. Based on
this determination, service processor 135 may mark that
resource for reconfiguration during the current running
session and future Initial Program Loads (IPLs).
Those of ordinary skill in the art will appreciate that the

hardware depicted in FIG. 2 may vary. For example, other
peripheral devices, such as optical disk drives and the like,
also may be used in addition to or in place of the hardware
depicted. The depicted example is not meant to imply
architectural limitations with respect to the present inven
tion.

FIG. 3 is a block diagram of an exemplary logically
partitioned platform is depicted in which the present inven
tion may be implemented. Logically partitioned platform
200 includes partitioned hardware 230, partition manage
ment firmware, also called a hypervisor, 210, and partitions
201-204. Operating systems 201a–204a exist within parti
tions 201-204. Operating systems 201a 204a may be mul
tiple copies of a single operating system or multiple hetero
geneous operating systems simultaneously run on platform
2OO.

Partitioned hardware 230 includes a plurality of proces
sors 232 238, a plurality of system memory units 240-246,
a plurality of input/output (I/O) adapters 248-262, and a
storage unit 270. Each of the processors 242-248, memory
units 240–246, NVRAM storage 298, and I/O adapters
248-262 may be assigned to one of multiple partitions
201-204.

Partition management firmware (hypervisor) 210 per
forms a number of functions and services for partitions
201-204 to create and enforce the partitioning of logically
partitioned platform 200. Hypervisor 210 is a firmware
implemented virtual machine identical to the underlying

US 7,146,515 B2
7

hardware. Firmware is “software' stored in a memory chip
that holds its content without electrical power, such as, for
example, read-only memory (ROM), programmable ROM
(PROM), erasable programmable ROM (EPROM), electri
cally erasable programmable ROM (EEPROM), and non
volatile random access memory (non-volatile RAM). Thus,
hypervisor 210 allows the simultaneous execution of inde
pendent OS images 201a 204a either through virtualizing of
hardware resources or providing atomic access of shared
system resources of logically partitioned platform 200.
Hypervisor 210 may attach I/O devices through I/O adapters
248-262 to single virtual machines in an exclusive mode for
use by one of OS images 201a–204a.

FIG. 4 is a block diagram of a time-based view of the
various code components utilized during the execution of a
reboot for a logically partitioned system in accordance with
the present invention. When the power is cycled on after
being off all partition hardware components are initialized,
or reset, to their power-on hardware state. This “power-on'
hardware state is a predetermined state. When the partition
hardware components are reset to their power-on state, the
components have no stored history or knowledge of prior
processing. There are no outstanding or pending I/O
requests. Once the components are reset to their power-on
hardware state, there is no unsolicited I/O activity, either
being transmitted to or from a processor or I/O adapter.

The service processor code executes on the service pro
cessor and tests and initializes the partition hardware using
the JTAG/I2C interface. It next loads the IPL microcode and
the partition manager and hypervisor microcode into system
memory, and starts the system processors to begin execution
of the IPL microcode.
The IPL microcode, partition manager and hypervisor

microcode, boot microcode, Runtime Abstraction Services
microcode (RTAS), and operating system execute on the
host processors. There is a separate copy of the boot micro
code, Runtime Abstraction Services Microcode (RTAS), and
operating system for each partition.
The IPL microcode initializes the systems I/O adapters

using the system bus, the RIO bus and PCI bus interfaces.
Next, the IPL microcode transfers control to the partition
manager which assigns system resources to each partition
according to a previously stored user definition. The parti
tion manager then activates the user defined partitions and
passes control to the boot microcode for each activated
partition.

Within each partition, the boot microcode locates and
loads the operating system traversing the partition's I/O.
When a warm reboot of a partition is initiated from the
partition’s operating system, it is forwarded to the partition’s
copy of RTAS microcode for execution.

FIG. 5 illustrates a high level flow chart which depicts
setting partition hardware to a predetermined state prior to
executing a warm reboot request in accordance with the
present invention. The process starts as depicted by block
500 and thereafter passes to block 502 which illustrates the
system being powered-on. Next, block 504 depicts all of the
partition hardware components being in a powered-on state.
Thus, there is no pending I/O activity, either from the host
processors or I/O adapters. There are no pending interrupts.
Thereafter, block 506 illustrates central electronic complex
101 being initialized by the service processor microcode.
The process then passes to block 508 which depicts the

IPL microcode and the partition manager and hypervisor
microcode being loaded into System memory by the service
processor. Next, block 510 illustrates the boot manager
being loaded into each partition's memory by the partition

10

15

25

30

35

40

45

50

55

60

65

8
manager. Block 512 then depicts each partition being acti
vated by the partition manager. The process then passes to
block 514 which illustrates each partition being initialized
and the operating system and RTAS being loaded into the
partition by the boot microcode. Thereafter, block 516
depicts the operating system running in the partition.

Next, block 518 illustrates a determination of whether or
not a partition warm reboot request has been received from
the operating system. If a determination is made that a
partition warm reboot request has not been received from the
operating system, the process passes back to block 516.
Referring again to block 518, if a determination is made that
a partition warm reboot request has been received, the
process passes to block 520 which depicts the operating
system loading the RTAS executing on one processor within
the partition to process the partition warm reboot request
after having stopped all tasks/processes and informed other
processors in the partitions of the pending reboot request So
they may also stop pending tasks/processes.

Thereafter, block 522 illustrates the RTAS passing the
partition warm reboot request to the hypervisor which then
requests the service processor to reset all of the processors
in the partition to a power-on state. Next, block 524 depicts
the service processor resetting all of the processors to a
power-on state and then passing control to the partition
manager which executes on the partition processor which
requested the reboot. At this time, the processors are not
transmitting any I/O communications. Thereafter, block 526
illustrates the partition manager resetting all I/O adapters
owned by the partition to a power-on state. Thus, the I/O
adapters are not transmitting or expecting to receive any I/O
communications. All I/O activity is therefore halted at this
time. The process then passes back to block 510.

It is important to note that while the present invention has
been described in the context of a fully functioning data
processing system, those of ordinary skill in the art will
appreciate that the processes of the present invention are
capable of being distributed in the form of a computer
readable medium of instructions and a variety of forms and
that the present invention applies equally regardless of the
particular type of signal bearing media actually used to carry
out the distribution. Examples of computer readable media
include recordable-type media, Such as a floppy disk, a hard
disk drive, a RAM, CD-ROMs, DVD-ROMs, and transmis
Sion-type media, Such as digital and analog communications
links, wired or wireless communications links using trans
mission forms, such as, for example, radio frequency and
light wave transmissions. The computer readable media may
take the form of coded formats that are decoded for actual
use in a particular data processing system.
The description of the present invention has been pre

sented for purposes of illustration and description, and is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodi
ment was chosen and described in order to best explain the
principles of the invention, the practical application, and to
enable others of ordinary skill in the art to understand the
invention for various embodiments with various modifica
tions as are Suited to the particular use contemplated.
What is claimed is:
1. A method for executing a reliable warm reboot of one

of a plurality of logical partitions included in a logically
partitioned data processing system, said system including
partition hardware that is logically allocated to said plurality
of logical partitions, said method comprising the steps of

US 7,146,515 B2

receiving, within one of said plurality of logical partitions,
a request to reboot said one of said plurality of logical
partitions;

logically allocating a Subset of said partition hardware to
said one of said plurality of logical partitions, said
Subset including multiple processors that are logically
allocated to said one of said plurality of logical parti
tions;

setting said Subset of said partition hardware to a prede
termined State prior to executing said request, said step
of setting said Subset to said predetermined state
including setting said multiple processors to a power
on State prior to executing said request;

executing said request within said one of said plurality of
logical partitions to reboot said one of said plurality of
logical partitions, said one of said plurality of logical
partitions being rebooted without rebooting other ones
of said plurality of logical partitions wherein said entire
data processing system is not rebooted when said one
of said plurality of logical partitions is rebooted,
wherein the step of setting said Subset of said partition
hardware to a predetermined State prior to executing
said request further comprises the step of resetting said
multiple processors included in said one of said plu
rality of logical partitions; and

allocating at least one I/O adapter to said one of said
plurality of logical partitions wherein the step of setting
said subset of said partition hardware to a predeter
mined State prior to executing said request further
comprises the step of resetting said at least one I/O
adapter.

2. The method according to claim 1, wherein the step of
resetting said at least one I/O adapter further comprises the
step of eliminating within said at least one I/O adapter a
history of execution by said at least one I/O adapter.

3. The method according to claim 1, wherein the step of
resetting said multiple processors further comprises the step
of causing said at least one I/O adapter to cease transmitting
I/O requests.

4. A system for executing a reliable warm reboot of one
of a plurality of logical partitions included in a logically
partitioned data processing system, said system including
partition hardware that is logically allocated to said plurality
of logical partitions, comprising:

one of said plurality of logical partitions receiving a
request to reboot said one of said plurality of logical
partitions;

a Subset of said partition hardware being logically allo
cated to said one of said plurality of logical partitions,
said Subset including multiple processors that are logi
cally allocated to said one of said plurality of logical
partitions;

said Subset of said partition hardware being set to a
predetermined state, including said multiple processors
being set to a power-on state, prior to executing said
request;

said one of said plurality of logical partitions executing
said request to reboot said one of said plurality of
logical partitions, said one of said plurality of logical
partitions being rebooted without rebooting other ones
of said plurality of logical partitions wherein said entire
data processing system is not rebooted when said one
of said plurality of logical partitions is rebooted;

5

10

15

25

30

35

40

45

50

55

60

10
at least one I/O adapter being allocated to said one of said

plurality of logical partitions;
said at least one I/O adapter being reset;
said partition hardware including a service processor;
said service processor for resetting said multiple proces

sors included in said one of said plurality of logical
partitions; and

said service processor for resetting said at least one I/O
adapter, said at least one I/O adapter being allocated to
said one of said plurality of logical partitions.

5. A computer program product for executing a reliable
warm reboot of one of a plurality of logical partitions
included in a logically partitioned data processing system,
said system including partition hardware that is logically
allocated to said plurality of logical partitions, said computer
program product comprising:

instruction means for receiving, within one of said plu
rality of logical partitions, a request to reboot said one
of said plurality of logical partitions;

instruction means for logically allocating a Subset of said
partition hardware to said one of said plurality of
logical partitions, said Subset including multiple pro
cessors that are logically allocated to said one of said
plurality of logical partitions;

instruction means for setting said Subset of said partition
hardware to a predetermined State prior to executing
said request, said instruction means for setting said
subset to said predetermined state further including
setting said multiple processors to a power-on state
prior to executing said request;

instruction means for executing said request within said
one of said plurality of logical partitions to reboot said
one of said plurality of logical partitions, said one of
said plurality of logical partitions being rebooted with
out rebooting other ones of said plurality of logical
partitions wherein said entire data processing system is
not rebooted when said one of said plurality of logical
partitions is rebooted:

wherein said instruction means for setting said Subset of
said partition hardware to a predetermined State prior to
executing said request further comprises instruction
means for resetting said multiple processors included in
said one of said plurality of logical partitions;

instruction means for allocating at least one I/O adapter to
said one of said plurality of logical partitions; and

wherein said instruction means for setting said Subset of
said partition hardware to a predetermined State prior to
executing said request further comprises instruction
means for resetting said at least one I/O adapter.

6. The product according to claim 5, wherein said instruc
tion means for resetting said at least one I/O adapter further
comprises instruction means for eliminating within said at
least one I/O adapter a history of execution by said at least
one I/O adapter.

7. The product according to claim 5, wherein said instruc
tion means for resetting said multiple processors further
comprises instruction means for causing said at least one I/O
adapter to cease transmitting I/O requests.

