US 20210081302A1
a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2021/0081302 A1l

REICHER et al. 43) Pub. Date: Mar. 18, 2021
(54) AUTOMATED SOFTWARE TESTING USING GOGF 11/34 (2006.01)
SIMULATED USER PERSONAS GOGF 11/30 (2006.01)
(52) US.CL
(71) Applicant: INTERNATIONAL BUSINESS CPC ... GOGF 11/3664 (2013.01); GO6F 11/3684
MACHINES CORPORATION, (2013.01); GO6F 11/3688 (2013.01); GO6F
Armonk, NY (US) 11/3692 (2013.01); GOGF 11/302 (2013.01);
GOG6N 3/0445 (2013.01); GO6N 3/0454
(72) Inventors: Murray A. REICHER, Rancho Santa (201301), GO6F 11/3438 (201301), GO6N
Fe, CA (US); Puja GUPTA, San 3/08 (2013.01)
Diego, CA (US); Sun Young PARK,
San Diego, CA (US); Dustin Michael (57) ABSTRACT

SARGENT, San Diego, CA (US) Provided are techniques for automated software testing

using simulated user personas. A request to test software is
received. Job roles, user software activities for the software
(22) Filed: Sep. 17, 2019 to.be tested, and o.bjectives. are automatically identiﬁed

using a first machine learning model. A test operation
sequence using the job roles, the user software activities, and
the objectives to test the software is generated using a

(21) Appl. No.: 16/573,626

Publication Classification

(51) Int. CL second machine learning model. The test operation sequence
GOG6F 11/36 (2006.01) is executed to simulate different users having different job
GO6N 3/08 (2006.01) roles using the software with the user software activities to
GO6N 3/04 (2006.01) achieve the objectives.

Computing Device 100
Test Engine Driver 105
Machine Learning Models
130
Product Recurrent Neural
Requirements Network (RNN)
Generator 137
" 110 13
Inputs 7 T
140 P~ ,
\ Generative
| Test Generator Adversarial
120 Network (GAN)
134
[\
/ T\
Data Store 150
Test Operation Performance
Sequences Reports
160 170

Patent Application Publication = Mar. 18,2021 Sheet 1 of 7 US 2021/0081302 A1

Computing Device 100

Test Engine Driver 105

Machine Learning Models

130
Product
- Recurrent Neural
Requirements
"l Generator Network (RNN)
132
/ 110
Inputs P
m - Y .
\ Generative
| Test Generator Adversarial
120 Network (GAN)
134
[\
/ \\
Data Store 150
Test Operation Performance
Sequences Reports
160 170

FIG. 1

US 2021/0081302 A1

Mar. 18, 2021 Sheet 2 of 7

Patent Application Publication

a)Is aij10ads J

aAlJ0alqo

’ ﬁm_g_m%a:%:m%b\ ﬁ pajoipald oy} wouy

10} sjuswalinbal «
ajoJ qol Jsnipy ; ﬁ 9]0J gof wiopad L fc_e qol Jad saniAde

IBM)J0S J9SN 8zl1030187)

22~ -

aA1193lqo ayy Jad mm_u.s_sp

0zz— 1

sishjeue
SAMJIAI. aJemyos :
aouanbas uoijelado
13SN $N0auoLIa yiep 158] JUBIILBUI LA
81z—" | 91z |

ﬁmmzﬁomso a_n_wsm_ﬁbx

81BM)J0S Jasn 8} mﬁn__mcl

bo_ﬂﬁeaﬁs 85:3&‘

ﬁ 150U J01palg ;A

a)Is Jawiojsnd
Jad s3o0) fyaoe

ﬁwm_ﬁ_zzm a1eM)J0s sé‘

91BM)0S Jas()

y17- 2 oz | 807

Y N 0-g:] 8A19el0_Zejoy
pevw—— 027 Buiuses) 0<-D<-¥:I anoalqo Tajoy
DUE SaIALDE pasiuadns-iwag) A<-0-9<-V:¢ annoalgy 1o|0y

IeM}y0s Jasn $S8AI}08[qo pue
pajaqe| ayloads-ajg SOIIAILOR 8JBMYOS

1asn pajaqe’

00¢
¢0¢
—~10¢
¢ O_n_ $9A1393[q0 pue SaIIAIR

a1eM0S Jasn pajaqe| pue

19fe1 Jafe] Jafke]
Indjng uspply induj

»{ YJOMIBU [BINaU JUaLINID) |e
duisn |apow aouanbas
f1n10e a1emYoS Jasn ulel)

90¢

[TTILTTI Soinmoe aiemyos Jasp

US 2021/0081302 A1

Mar. 18, 2021 Sheet 3 of 7

Patent Application Publication

SBI}IAIIL J3SN JUBIBYIP
pue sagueyd asuanbas AARae Jasf

SaAI}0a(qo pue sa|ol qof

€ Il

9ouanbas A)AIJOR 81eMYO0S Jasn Paje|nLuIs B pue [ea) e
usamlaq Sulysingunsip 3981109 SI YIOMISU [RINAU JOJRUIWLIISID
alJ} 10U 10 JAUYIBYM BUILLIB]AP 0] LIONIUN) SSO| B 8Je[nJje)

—¢I¢

r

A

Paje|NLIS JO [Bal SI 3ouan

I9U13UM BUILLI1AP 0] }IOM]aU [RINAU JOJRUILILIISIP BS)

bas fiAijoe a1emyos Jasn e

—01¢

A

A

YIOM)aU |[eInau
anneunLasip uiesp [

$93UaNbas AIANoe 21emYos Jasn [eay

—80¢

A

$89uanbas AIAnoe a1em)os Jasn pajejnwIg

A

7

30|
fIAoe alemyos

SjuIRASU0Y

» Jo0je|nuuis aouanbas asiou wopuey
uoneqnyuad 1§ dems aouanbag - T 90€

Jasn woJj
ejep sulurel)

aJuo

\.

uonnqUisIp jndyno

nbas 0§ 00€

a|qisne|d Jsow ajelauay

\.

|apow asuanbas 1.
Ijoe alemyos Jasn uey) [
Ry 1l leJ] rNom

Patent Application Publication Mar. 18,2021 Sheet 4 of 7 US 2021/0081302 A1

Ve 400

< Receive a request to test software. >

! ~ 402

Automatically identify, for the software to be tested,
job roles, user software activities, and objectives
using a first machine learning model.

! ~ 404
|dentify features of the software
mapped to the objectives.
! -~ 406

Generate a test operation sequence, for testing
the software, using the job roles, the user
software activities, the objectives, and a second
machine learning model.

A 4

~ 408

Execute the test operation sequence to simulate
different users having different job roles using the
software with the user software activities to
achieve the objectives.

! ~ 410

Generate a performance report for the
execution of the test operation sequence.

FIG. 4

US 2021/0081302 A1

Mar. 18, 2021 Sheet 5 of 7

A4

fe|dsiq

Patent Application Publication

. (5)801A8Q
¢ 914 |ewia)xg
19
19)depy yiomay (S)aoepequ] |,
_ o/l
/
0¢6 * \
A4
b1 816
TG YA 4
Ug R EWS Su1ssadoiy
\
914
< I\ L
/
Kioway 0€S
wwm apop Jandwio)
\
AL

1fAY

Patent Application Publication

650

654N

654C
\

|

Mar. 18, 2021 Sheet 6 of 7

Y]
£ 0‘ $
*
’ »,
.,
.,
-
I——
oy [romsevemm—
~,
i »
-
Pl ~.,
'O ’
..... e
g O
g -*
., y A TN
o 4 .,
'
O -
Lo
id
LI Cd
G

654A

US 2021/0081302 A1

6548

I
I
~ I

|
9

FIG. 6

US 2021/0081302 A1

Mar. 18, 2021 Sheet 7 of 7

Patent Application Publication

. 09
[94 81eM)J0S pUB 81empieH

v9L 9L 19
89L 19/ 9L o W €9/ \

0 ® Mw (@ (|

=) & e

/]
YOO

I/ .

uofjezifenyip

US 2021/0081302 Al

AUTOMATED SOFTWARE TESTING USING
SIMULATED USER PERSONAS

BACKGROUND

1. Field of the Invention

[0001] Embodiments of the invention relate to automated
software testing using simulated user personas.

2. Description of the Related Art

[0002] With software development and quality testing,
identification and documentation of user requirements may
have errors of omission due to imperfect understanding of
how users interact with software. Also, for different soft-
ware, and for each released version of a given software, a
test plan is created and executed, which may be a costly and
time consuming process. Moreover, testing is often biased in
reflecting ideal workflows rather than all possible user
workflows.

[0003] Software development and quality testing may be
more difficult with enterprise software, where there may be
many simultaneous users with different job roles and levels
of experience.

SUMMARY

[0004] In accordance with embodiments, a computer-
implemented method is provided for automated software
testing using simulated user personas. The computer-imple-
mented method comprises operations. A request to test
software is received. Job roles, user software activities for
the software to be tested, and objectives are automatically
identified using a first machine learning model. A test
operation sequence using the job roles, the user software
activities, and the objectives to test the software is generated
using a second machine learning model. The test operation
sequence is executed to simulate different users having
different job roles using the software with the user software
activities to achieve the objectives.

[0005] Inaccordance with other embodiments, a computer
program product is provided for automated software testing
using simulated user personas. The computer program prod-
uct comprises a computer readable storage medium having
program code embodied therewith, the program code
executable by at least one processor to perform operations.
A request to test software is received. Job roles, user
software activities for the software to be tested, and objec-
tives are automatically identified using a first machine
learning model. A test operation sequence using the job
roles, the user software activities, and the objectives to test
the software is generated using a second machine learning
model. The test operation sequence is executed to simulate
different users having different job roles using the software
with the user software activities to achieve the objectives.
[0006] In yet other embodiments, a computer system is
provided for automated software testing using simulated
user personas. The computer system comprises one or more
processors, one or more computer-readable memories and
one or more computer-readable, tangible storage devices;
and program instructions, stored on at least one of the one
or more computer-readable, tangible storage devices for
execution by at least one of the one or more processors via
at least one of the one or more memories, to perform
operations. A request to test software is received. Job roles,

Mar. 18, 2021

user software activities for the software to be tested, and
objectives are automatically identified using a first machine
learning model. A test operation sequence using the job
roles, the user software activities, and the objectives to test
the software is generated using a second machine learning
model. The test operation sequence is executed to simulate
different users having different job roles using the software
with the user software activities to achieve the objectives.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0007] Referring now to the drawings in which like ref-
erence numbers represent corresponding parts throughout:
[0008] FIG. 1 illustrates, in a block diagram, a computing
environment in accordance with certain embodiments.
[0009] FIG. 2 illustrates training a user software activity
sequence model using a Recurrent Neural Network (RNN)
model in accordance with certain embodiments.

[0010] FIG. 3 illustrates, in a flowchart, operations for
generating a test operation sequence in accordance with
certain embodiments.

[0011] FIG. 4 illustrates, in a flowchart, operations for
executing a test operation sequence in accordance with
certain embodiments.

[0012] FIG. 5 illustrates a computing node in accordance
with certain embodiments.

[0013] FIG. 6 illustrates a cloud computing environment
in accordance with certain embodiments.

[0014] FIG. 7 illustrates abstraction model layers in accor-
dance with certain embodiments.

DETAILED DESCRIPTION

[0015] The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

[0016] Embodiments intelligently simulate real users
based on the work that the users intend to accomplish
(“objectives”, “goals” or “intended accomplishments™) to
improve identification of software requirements and
completion of automated software testing (“quality test-
ing”). Software may also be referred to as a software
application or computer program.

[0017] FIG. 1 illustrates, in a block diagram, a computing
environment in accordance with certain embodiments. A
computing device 100 includes a test engine driver 105. The
test engine driver 105 includes a product requirements
generator 110 and a test generator 120. The test engine driver
105 may also use machine learning models 130, such as a
Recurrent Neural Network (RNN) model 132 and a Gen-
erative Adversarial Network (GAN) 134.

[0018] The test generator 120 may receive information via
input 140 (e.g., manually from a user) or may receive
information automatically generated by the product require-
ments generator 110. The information includes job roles

US 2021/0081302 Al

(“user roles” or “type of users”), user software activities
(“sequences of user actions™), and objectives. In certain
embodiments, the input 140 includes a description (e.g., a
workbook) of job roles, user software activities, and objec-
tives. In certain embodiments, the product requirements
generator 110 tracks user software activity (e.g., executing
software, entering data into a software user interface, etc.) or
processes user software activity logs and classifies the user
software activity based on objectives and job roles using
Artificial Intelligence (Al) (e.g., using the RN 132).
[0019] The computing device 100 is coupled to a data
store 150. The data store 150 may store test operation
sequences 160 (“test sequences”) and may store perfor-
mance reports 170. The test generator 120 outputs the test
operation sequences 160 and the performance reports 170.
The test generator 120 generates test plans and executes tests
based on an understanding of objectives per each job role. In
certain embodiments, the test operation sequences 160 may
be workflows. In additional embodiments, the test operation
sequences may be test scripts that are executed by a com-
puter.

[0020] The test engine driver 105, with the product
requirements generator 110 and the test generator 120, may
be described as a computerized simulator that determines
and then mimics various job roles based on objectives of
each job role (i.e., mimics user personas). In certain embodi-
ments, this is done by using Al, along with user tracking and
optional expert input, to understand and classify the users’
objectives per job role and levels of expertise and/or expe-
rience. The test engine driver 105 classifies objectives
behind each user’s activities. Using this information, the test
engine driver 150 learns what a user is trying to accomplish
(i.e., the objectives), as well as the association between the
objectives and user software activities. With embodiments,
user software activities are actions taken by a user who is
using software (e.g., starting a workflow, adding informa-
tion, requesting a search, etc.), while computer software
activities are actions performed by the software (e.g.,
executing the workflow, storing information, responding to
the search, etc.).

[0021] The product requirements generator 110 of the test
engine driver 105 may be used to translate the tracked user
software activities into objectives in order to better under-
stand product requirements. The test generator 120 of the
test engine driver 105 may be used to automate creation of
test operation sequences (e.g., test plans and procedures), as
well as to automate software testing and Quality Assurance
(QA) reporting via performance reports.

[0022] For example, a software manufacturer may receive
a list of the various job roles, levels, and associated objec-
tives that have been previously determined. The software
manufacturer may be asked to provide, for each software
feature, a list of the objectives associated with each feature.
Alternatively, the product requirements generator 110 may
monitor the real world use of the software and/or examine
user software activity logs and the code base to complete
such a classification of objectives. In either case, the test
generator 120 may then use simulated job roles to test the
software intelligently without requiring a specific test plan.
[0023] The product requirements generator 110 uses Al to
group and classify tracked user software activities based on
the user’s objectives (e.g., using an RNN model). In certain
embodiments, the product requirements generator 110
includes a classifier, and the classifier learns which user

Mar. 18, 2021

software activities or groups of user software activities are
associated with which objectives per job role.

[0024] By classifying captured data (e.g., from the user
software activity logs, such as timestamps when particular
buttons were selected or fields received input) and test
operation sequences from different customer locations, the
product requirements generator 110 creates an objective/
activity classification from which user requirements per job
role may be derived.

[0025] For example, objectives for a senior radiologist
may include: (1) accessing a worklist, (2) viewing images,
(3) comparing images, (4) viewing clinical information, (5)
marking lesions, (6) creating a clinical report, (7) interrupt-
ing a workflow to view another exam in progress and consult
with a technologist or referring doctor, and (8) completing
peer review tasks. A certain group (e.g., an array) of user
software activities may be clustered in association with each
of these objectives. These user software activities are not
always performed in the same order by any one user or
various users (in one or more job roles), but the product
requirements generator 110 uses Al to derive the associa-
tions between user software activities and objectives and to
simulate various sequential user software activities that may
be classified with one or more objectives.

[0026] The test generator 120 automatically generates a
test plan (i.e., a test operation sequence or a set of test
operation sequences) and, optionally, executes the test
operation sequence or the set of test operation sequences
based on the information provided by the product require-
ments generator 110 and/or the inputs 140.

[0027] In certain embodiments, software is provided for
testing, along with the job roles that need to be tested, and
the range in number of simultaneous users in each job role
(and optionally, per level of expertise or experience in each
job role). In certain embodiments that receive input 140, the
software provider completes a worksheet listing the avail-
able job roles, objectives per job role, and provides lists of
the various user software activities that are directly or
indirectly tied to each of the objectives. In other embodi-
ments, the product requirements generator 110 automatically
creates a table of user software activities for each job role
and each objective. The automatically generated table may
be manually edited.

[0028] In certain embodiments, the test generator 120
automatically generates test operation sequences 160 (e.g.,
in the English language) per each job role and objective. In
certain additional embodiments, the test generator 120 auto-
matically executes one or more test operation sequences
consisting of simulated user software activities in various
sequences that are associated with each objective. In this
manner, the test generator 120 simulates an environment in
which different users (e.g., users unfamiliar with the soft-
ware and users familiar with the software) are simultane-
ously attempting to accomplish various objectives by
exploring various sequences of user software activities.
[0029] The test generator 120 also generates the perfor-
mance reports 170 on the results of the user software
activities, such as whether the objectives were accom-
plished, how successfully the objectives were accomplished
with the least activity or shortest time, system failures,
crashes, timings, etc.

[0030] In certain embodiments, the test requirements gen-
erator 110 and the test generator 120 may model the user
software activities of a user logged into a computer as a time

US 2021/0081302 Al

sequence of user software activities. In certain embodi-
ments, the user software activities may be nodes of a graph
of user software activities. In a time sequence of user
software activities, each user software activity of the user
has a relationship with one or more prior user software
activities. In a graph, nodes representing a sequence of user
software activities along a time line may be used to deter-
mine the user’s objective with a variable length of activities.

[0031] In certain embodiments, the test requirements gen-
erator 110 uses a training set (e.g., generated by a Quality
Assurance team member) of sequences of user software
activities with the objectives by job role. The test engine
driver 150 may use a Recurrent Neural Network (RNN) 132
to predict the user’s objectives by considering the prior
relevant user software activities. Once the RNN is trained
using the training set, the RNN 132 accepts new user
software activity logs of arbitrary length as input and outputs
user software activities corresponding to specific job roles
and objectives. In this manner, the RNN 132 automatically
determines the subsequences of user software activities
corresponding to specific job roles and objectives. With
certain embodiments, in addition to learning from the user
software activity logs, the test requirements generator 110
may also track user software activities (i.e., tracking activi-
ties by the user in operating the software) to gain additional
information on user software activities.

[0032] In certain embodiments, to generate the list of
requirements per job role for each site, the RNN classifies
job roles and objectives from labeled user software activity
logs generated during live use of the software by the user.
Then, the frequently performed objectives for each job role
may be designated as the site-specific requirements for that
job role. This may also be used to determine overlap
between the job roles and objectives that are common to
multiple job roles. The requirements may be designated as
general requirements.

[0033] FIG. 2 illustrates training a user software activity
sequence model using a Recurrent Neural Network (RNN)
in accordance with certain embodiments. A data store 200
stores site-specific labeled user software activities and
objectives. Different sites (e.g., different hospitals) may have
different job roles. Site-specific may be described as refer-
ring to a particular site having particular job roles. For
example, different hospitals and clinics may have different
job roles or allow different privileges to each job role. With
embodiments, the training data includes user software
activities labeled according to the objectives for those user
software activities. The site-specific labeled user software
activities and objectives are routed from that site’s data store
200 to a datastore 202 that stores the labeled user software
activities and objectives. A RNN 204 has an input layer, a
hidden layer, and an output layer. In block 206, the product
requirement generator 110 trains a user software activity
sequence model using the RNN 204 and the labeled user
software activities and objectives from the data store 202.
The user software activity sequence model is a model that is
used to predict job roles and objectives based on the user
software activities.

[0034] The training (block 206) includes user software
activity sequence interpretation (block 210), predicting the
most plausible objectives (block 212), and validating the
user software activities per objective (block 214).

Mar. 18, 2021

[0035] The user software activity sequence interpretation
(block 210) receives user software activity logs per customer
site from data store 208.

[0036] The predicted objectives are used for semi-super-
vised learning (block 226), which is used to further train the
user software activity sequence model (block 206). The
validated user software activities per objective are stored in
data store 200. That is, with embodiments, the site-specific
labeled user software activities and objectives in data store
200 are generated from the user software activity logs per
customer site from data store 208.

[0037] The predicting of the most plausible objectives
(block 212) includes performing inefficient test operation
sequence analysis (time analysis from the user software
activity sequence model) (block 216), marking erroneous
user software activities (block 218), categorizing user soft-
ware activities per job role from the predicted objectives
(block 220), performing job role dependency analysis (over-
lapping metrics) (block 222), and adjusting job role require-
ments for the specific site (block 224).

[0038] With reference to block 218, sometimes the activi-
ties by the user for a certain objective may include mistakes
or unnecessary activities, and the software activity sequence
model learns these mistakes or unnecessary activities so that
the software activity sequence model incorporates these
mistakes or unnecessary activities into the software testing,
instead of just assuming that the user will always perform
activities in the software manufacturer’s intended way.
[0039] With reference to block 222, subsets of objectives
that are common to multiple types of users are determined
and may become general requirements.

[0040] With reference to block 224, the test requirements
generator 110 may be trained on data from multiple sites and
is able produce requirements for each job role specific to
each site.

[0041] Once the RNN model is trained, the test generator
120 generates a test operation sequence. The test generator
120 receives as input a set of recorded sequences of user
software activities, each labeled with the job role and
objective. Optionally, some of the sequences of user soft-
ware activities may not successfully achieve the objective,
corresponding to errors made by the user.

[0042] Although an RNN model is used in certain embodi-
ments, in other embodiments other machine learning clas-
sifiers may be used (e.g., temporal convolution network,
Hidden Markov Model, etc.).

[0043] The test generator 120 trains a Generative Adver-
sarial Network (GAN) 134 to generate test operation
sequences, which are sequences of user software activities
that each job role would likely take when trying to achieve
each objective. The GAN 134 consists of two neural net-
works: 1) the discriminator neural network, which is trained
to recognize true examples of likely activities of a user of
role A trying to accomplish objectives, and 2) the generator
neural network, which generates synthetic user software
activities (i.e., examples of user software activities when
using software) to test the discriminator neural network.
[0044] Once the discriminator neural network is unable to
distinguish synthetic user software activities from real user
software activities, the test generator 120 uses the generator
neural network of the GAN 134 to create sample test
operation sequences for each job role and objective pair.
[0045] FIG. 3 illustrates, in a flowchart, operations for
generating a test operation sequence in accordance with

US 2021/0081302 Al

certain embodiments. In block 302, the test generator 120
trains a user software activity sequence model with training
data from a user software activity log (from data store 300)
and with job roles and objectives. In block 304, the test
generator 120 generates the most plausible sequence output
distribution. In block 306, the test generator 120 uses
constraints, user activity sequence changes, and different
user activities for a random noise sequence simulator.
According to the analysis of erroneous user software activi-
ties (block 218 of FIG. 2), random spurious actions that do
not lead to the desired objective may be introduced into the
generated test operation sequences to simulate a real user. In
block 308, the test generator 120 trains the discriminative
model with simulated user activity sequences and real user
activity sequences. In block 310, the discriminator neural
network of the GAN takes a user software activity sequence
that is either from a real user log or that was generated by
the generator neural network of the GAN, and tries to
determine whether it is real or simulated (“fake”). The
generator neural network training is completed when the
discriminator neural network cannot do better than a random
guess in distinguishing real from simulated. In block 312, a
loss function that is calculated to determine whether or not
the discriminator neural network is correctly distinguishing
real and simulated user software activity sequences. The
discriminator neural network tries to reduce this loss to zero,
which means that it does not make a mistake. The generator
neural network is trying to prevent that from happening.
Once the discriminator neural network is trained, the gen-
erator neural network generates test operation sequences.

[0046] FIG. 4 illustrates, in a flowchart, operations for
executing a test operation sequence in accordance with
certain embodiments. Control begins at block 400 with the
test engine driver 105 receiving a request to test software. In
block 402, the product requirements generator 110 of the test
engine driver 105 automatically identifies job roles, user
software activities for software to be tested, and objectives
using a first machine learning model. In block 404, the
product requirements generator 110 of the test engine driver
105 identifies features of the software mapped to the objec-
tives. In certain embodiments, the features of the software
are found in a requirements document as a list of everything
that the user should be able to do with the software. These
features correspond to the list of objectives that are learned
for each job role.

[0047] In block 406, the test generator 120 of the test
engine driver 105 generates a test operation sequence using
the job roles, the user software activities, and the objectives
to test the software and using a second machine learning
model. In block 408, the test generator 120 of the test engine
driver 105 executes (“runs” or “performs”) the test operation
sequence to simulate different users having different job
roles using the software with the user software activities to
achieve the objectives. In block 410, the test generator 120
of the test engine driver 105 generates a performance report
for the execution of the test operation sequence. Based on
the performance report, the software may be revised to
provide the user software activities to enable the objectives
to be accomplished.

[0048] In certain embodiments, the test engine driver 105
receives as input one or more job roles, one or more
sub-characteristics per role (e.g., levels of expertise), and
objectives (per job role and/or sub-characteristic). The test

Mar. 18, 2021

engine driver 105 also receives software to be tested and
software features of the software cross-indexed to each
objective.

[0049] In certain embodiments, the test engine driver 105
outputs a simulated execution of the software by the desired
number of users in various job roles, mimicking the group
of potential user software activities directed toward achiev-
ing the objectives. In addition, the test engine driver 150
outputs a performance report on the results of the simulated
execution of the software. The performance report may
include any combination of: system crashes, time to achieve
objectives, number of required inputs per objective, etc.
[0050] Certain embodiments identify user requirements
for using software and determine a sequence of user activi-
ties (i.e., a test operation sequence) for testing the software.
The software may be existing software or may be software
that is to-be-developed software. Then, two or more job
roles corresponding with two or more respective users are
received. For each of the two or more job roles, one or more
objectives to be accomplished when using the software are
received. For each of the two or more respective users, user
software activity data is received, where the user software
activity data is obtained by monitoring the use of software
by a user (where the software may be current, existing
software that is to be replaced by the software to-be-
developed). Optionally, for each of the two or more respec-
tive users, one or more characteristics of the user are
received (e.g., is the user an expert). One or more user
requirements per job role are determined by classifying the
user software activity data according to the objective to be
accomplished, where the classifying of the user software
activity data is performed using the RNN. For each job role,
two or more sequences of user software activities are gen-
erated for use of the software to be developed that are likely
to be employed by a user to achieve each objective to be
accomplished, where the generating of the sequences of user
software activities is performed using a GAN. The software
is tested using the generated sequences of user software
activities as test operation sequences.

[0051] The GAN may include a generator neural network
that generates synthetic sequences of user software activities
for use of the software that are likely to be employed by a
user to achieve each objective to be accomplished and a
discriminator neural network that iteratively evaluates the
synthetic sequences of user software activities generated by
the generator neural network to determine whether a syn-
thetic sequence of user software activities is accurate until
the generator neural network is trained (in other words, until
the discriminator neural network determines that each syn-
thetic sequence of user software activities is accurate).
[0052] Embodiments attempt to anticipate and recreate the
full scope of activities encountered in real use, rather than
reflecting ideal (i.e., with no user errors) test operation
sequences alone. This results in avoiding defects and usabil-
ity issues in newly released software, which results in
greater customer satisfaction, more likely adoption of future
versions by the customer, and an improved company repu-
tation.

[0053] Embodiments work well for enterprise software, by
simulating simultaneous users with different job roles and
levels of experience.

[0054] Certain embodiments use machine learning to
automatically determine how the software is actually used
and to generate job roles and test cases from logs of live

US 2021/0081302 Al

software execution. That is, certain embodiments use
machine learning to infer the requirements from the soft-
ware’s usage patterns, rather than requiring them as input.
Embodiments also create test cases based on real usage
patterns.

[0055] FIG. 5 illustrates a computing environment 510 in
accordance with certain embodiments. In certain embodi-
ments, the computing environment is a cloud computing
environment. Referring to FIG. 5, computer node 512 is only
one example of a suitable computing node and is not
intended to suggest any limitation as to the scope of use or
functionality of embodiments of the invention described
herein. Regardless, computer node 512 is capable of being
implemented and/or performing any of the functionality set
forth hereinabove.

[0056] The computer node 512 may be a computer system,
which is operational with numerous other general purpose or
special purpose computing system environments or configu-
rations. Examples of well-known computing systems, envi-
ronments, and/or configurations that may be suitable for use
with computer node 512 include, but are not limited to,
personal computer systems, server computer systems, thin
clients, thick clients, handheld or laptop devices, multipro-
cessor systems, microprocessor-based systems, set top
boxes, programmable consumer electronics, network PCs,
minicomputer systems, mainframe computer systems, and
distributed cloud computing environments that include any
of the above systems or devices, and the like.

[0057] Computer node 512 may be described in the gen-
eral context of computer system executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer node 512 may be practiced in
distributed cloud computing environments where tasks are
performed by remote processing devices that are linked
through a communications network. In a distributed cloud
computing environment, program modules may be located
in both local and remote computer system storage media
including memory storage devices.

[0058] As shown in FIG. 5, computer node 512 is shown
in the form of a general-purpose computing device. The
components of computer node 512 may include, but are not
limited to, one or more processors or processing units 516,
a system memory 528, and a bus 518 that couples various
system components including system memory 528 to one or
more processors or processing units 516.

[0059] Bus 518 represents one or more of any of several
types of bus structures, including a memory bus or memory
controller, a peripheral bus, an accelerated graphics port, and
a processor or local bus using any of a variety of bus
architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnects
(PCI) bus.

[0060] Computer node 512 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer node 512, and
it includes both volatile and non-volatile media, removable
and non-removable media.

Mar. 18, 2021

[0061] System memory 528 can include computer system
readable media in the form of volatile memory, such as
random access memory (RAM) 530 and/or cache memory
532. Computer node 512 may further include other remov-
able/non-removable, volatile/non-volatile computer system
storage media. By way of example only, storage system 534
can be provided for reading from and writing to a non-
removable, non-volatile magnetic media (not shown and
typically called a “hard drive”). Although not shown, a
magnetic disk drive for reading from and writing to a
removable, non-volatile magnetic disk (e.g., a “floppy
disk™), and an optical disk drive for reading from or writing
to a removable, non-volatile optical disk such as a CD-
ROM, DVD-ROM or other optical media can be provided.
In such instances, each can be connected to bus 518 by one
or more data media interfaces. As will be further depicted
and described below, system memory 528 may include at
least one program product having a set (e.g., at least one) of
program modules that are configured to carry out the func-
tions of embodiments of the invention.

[0062] Program/utility 540, having a set (at least one) of
program modules 542, may be stored in system memory 528
by way of example, and not limitation, as well as an
operating system, one or more application programs, other
program modules, and program data. Each of the operating
system, one or more application programs, other program
modules, and program data or some combination thereof,
may include an implementation of a networking environ-
ment. Program modules 542 generally carry out the func-
tions and/or methodologies of embodiments of the invention
as described herein.

[0063] Computer node 512 may also communicate with
one or more external devices 514 such as a keyboard, a
pointing device, a display 524, etc.; one or more devices that
enable a user to interact with computer node 512; and/or any
devices (e.g., network card, modem, etc.) that enable com-
puter node 512 to communicate with one or more other
computing devices. Such communication can occur via
Input/Output (I/0) interfaces 522. Still yet, computer node
512 can communicate with one or more networks such as a
local area network (LLAN), a general wide area network
(WAN), and/or a public network (e.g., the Internet) via
network adapter 520. As depicted, network adapter 520
communicates with the other components of computer node
512 via bus 518. It should be understood that although not
shown, other hardware and/or software components could
be used in conjunction with computer node 512. Examples,
include, but are not limited to: microcode, device drivers,
redundant processing units, external disk drive arrays, RAID
systems, tape drives, and data archival storage systems, etc.
[0064] In certain embodiments, the computing device 100
has the architecture of computer node 512. In certain
embodiments, the computing device 100 is part of a cloud
infrastructure. In certain alternative embodiments, the com-
puting device 100 is not part of a cloud infrastructure.

Cloud Embodiments

[0065] It is to be understood that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

US 2021/0081302 Al

[0066] Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.
[0067] Characteristics are as follows:

[0068] On-demand self-service: a cloud consumer can
unilaterally provision computing capabilities, such as server
time and network storage, as needed automatically without
requiring human interaction with the service’s provider.
[0069] Broad network access: capabilities are available
over a network and accessed through standard mechanisms
that promote use by heterogeneous thin or thick client
platforms (e.g., mobile phones, laptops, and PDAs).
[0070] Resource pooling: the provider’s computing
resources are pooled to serve multiple consumers using a
multi-tenant model, with different physical and virtual
resources dynamically assigned and reassigned according to
demand. There is a sense of location independence in that
the consumer generally has no control or knowledge over
the exact location of the provided resources but may be able
to specify location at a higher level of abstraction (e.g.,
country, state, or datacenter).

[0071] Rapid elasticity: capabilities can be rapidly and
elastically provisioned, in some cases automatically, to
quickly scale out and rapidly released to quickly scale in. To
the consumer, the capabilities available for provisioning
often appear to be unlimited and can be purchased in any
quantity at any time.

[0072] Measured service: cloud systems automatically
control and optimize resource use by leveraging a metering
capability at some level of abstraction appropriate to the
type of service (e.g., storage, processing, bandwidth, and
active user accounts). Resource usage can be monitored,
controlled, and reported, providing transparency for both the
provider and consumer of the utilized service.

[0073] Service Models are as follows:

[0074] Software as a Service (SaaS): the capability pro-
vided to the consumer is to use the provider’s applications
running on a cloud infrastructure. The applications are
accessible from various client devices through a thin client
interface such as a web browser (e.g., web-based e-mail).
The consumer does not manage or control the underlying
cloud infrastructure including network, servers, operating
systems, storage, or even individual application capabilities,
with the possible exception of limited user-specific applica-
tion configuration settings.

[0075] Platform as a Service (PaaS): the capability pro-
vided to the consumer is to deploy onto the cloud infra-
structure consumer-created or acquired applications created
using programming languages and tools supported by the
provider. The consumer does not manage or control the
underlying cloud infrastructure including networks, servers,
operating systems, or storage, but has control over the
deployed applications and possibly application hosting envi-
ronment configurations.

[0076] Infrastructure as a Service (laaS): the capability
provided to the consumer is to provision processing, storage,
networks, and other fundamental computing resources
where the consumer is able to deploy and run arbitrary

Mar. 18, 2021

software, which can include operating systems and applica-
tions. The consumer does not manage or control the under-
lying cloud infrastructure but has control over operating
systems, storage, deployed applications, and possibly lim-
ited control of select networking components (e.g., host
firewalls).

[0077] Deployment Models are as follows:

[0078] Private cloud: the cloud infrastructure is operated
solely for an organization. It may be managed by the
organization or a third party and may exist on-premises or
off-premises.

[0079] Community cloud: the cloud infrastructure is
shared by several organizations and supports a specific
community that has shared concerns (e.g., mission, security
requirements, policy, and compliance considerations). It
may be managed by the organizations or a third party and
may exist on-premises or off-premises.

[0080] Public cloud: the cloud infrastructure is made
available to the general public or a large industry group and
is owned by an organization selling cloud services.

[0081] Hybrid cloud: the cloud infrastructure is a compo-
sition of two or more clouds (private, community, or public)
that remain unique entities but are bound together by stan-
dardized or proprietary technology that enables data and
application portability (e.g., cloud bursting for load-balanc-
ing between clouds).

[0082] A cloud computing environment is service oriented
with a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure that includes a network of interconnected
nodes.

[0083] Referring now to FIG. 6, illustrative cloud com-
puting environment 620 is depicted. As shown, cloud com-
puting environment 620 includes one or more cloud com-
puting nodes 610 with which local computing devices used
by cloud consumers, such as, for example, personal digital
assistant (PDA) or cellular telephone 654 A, desktop com-
puter 654B, laptop computer 654C, and/or automobile com-
puter system 654N may communicate. Nodes 610 may
communicate with one another. They may be grouped (not
shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as
described hereinabove, or a combination thereof. This
allows cloud computing environment 620 to offer infrastruc-
ture, platforms and/or software as services for which a cloud
consumer does not need to maintain resources on a local
computing device. It is understood that the types of com-
puting devices 654A-N shown in FIG. 6 are intended to be
illustrative only and that computing nodes 610 and cloud
computing environment 620 can communicate with any type
of computerized device over any type of network and/or
network addressable connection (e.g., using a web browser).
[0084] Referring now to FIG. 7, a set of functional
abstraction layers provided by cloud computing environ-
ment 620 (FIG. 6) is shown. It should be understood in
advance that the components, layers, and functions shown in
FIG. 7 are intended to be illustrative only and embodiments
of the invention are not limited thereto. As depicted, the
following layers and corresponding functions are provided:
[0085] Hardware and software layer 760 includes hard-
ware and software components. Examples of hardware com-
ponents include: mainframes 761; RISC (Reduced Instruc-
tion Set Computer) architecture based servers 762; servers
763; blade servers 764; storage devices 765; and networks

US 2021/0081302 Al

and networking components 766. In some embodiments,
software components include network application server
software 767 and database software 768.

[0086] Virtualization layer 770 provides an abstraction
layer from which the following examples of virtual entities
may be provided: virtual servers 771; virtual storage 772;
virtual networks 773, including virtual private networks;
virtual applications and operating systems 774; and virtual
clients 775.

[0087] In one example, management layer 780 may pro-
vide the functions described below. Resource provisioning
781 provides dynamic procurement of computing resources
and other resources that are utilized to perform tasks within
the cloud computing environment. Metering and Pricing 782
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or invoicing for
consumption of these resources. In one example, these
resources may include application software licenses. Secu-
rity provides identity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 783 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 784 provides cloud computing resource allo-
cation and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 785 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement is
anticipated in accordance with an SLA.

[0088] Workloads layer 790 provides examples of func-
tionality for which the cloud computing environment may be
utilized. Examples of workloads and functions which may
be provided from this layer include: mapping and navigation
791; software development and lifecycle management 792;
virtual classroom education delivery 793; data analytics
processing 794; transaction processing 795; and automated
software testing using simulated user personas 796.

[0089] Thus, in certain embodiments, software or a pro-
gram, implementing automated software testing using simu-
lated user personas in accordance with embodiments
described herein, is provided as a service in a cloud envi-
ronment.

Additional Embodiment Details

[0090] The present invention may be a system, a method,
and/or a computer program product at any possible technical
detail level of integration. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

[0091] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-

Mar. 18, 2021

ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0092] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0093] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

[0094] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

US 2021/0081302 Al

[0095] These computer readable program instructions may
be provided to a processor of a computer, or other program-
mable data processing apparatus to produce a machine, such
that the instructions, which execute via the processor of the
computer or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0096] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0097] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be accomplished as one step,
executed concurrently, substantially concurrently, in a par-
tially or wholly temporally overlapping manner, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
[0098] The terms “an embodiment”, “embodiment”,
“embodiments”, “the embodiment”, “the embodiments”,
“one or more embodiments”, “some embodiments”, and
“one embodiment” mean “one or more (but not all) embodi-
ments of the present invention(s)” unless expressly specified
otherwise.

[0099] The terms “including”, “comprising”, “having”
and variations thereof mean “including but not limited to”,
unless expressly specified otherwise.

[0100] The enumerated listing of items does not imply that
any or all of the items are mutually exclusive, unless
expressly specified otherwise.

[0101] The terms “a”, “an” and “the” mean “one or more”,
unless expressly specified otherwise.

[0102] Devices that are in communication with each other
need not be in continuous communication with each other,
unless expressly specified otherwise. In addition, devices

Mar. 18, 2021

that are in communication with each other may communi-
cate directly or indirectly through one or more intermediar-
ies.

[0103] A description of an embodiment with several com-
ponents in communication with each other does not imply
that all such components are required. On the contrary a
variety of optional components are described to illustrate the
wide variety of possible embodiments of the present inven-
tion.

[0104] When a single device or article is described herein,
it will be readily apparent that more than one device/article
(whether or not they cooperate) may be used in place of a
single device/article. Similarly, where more than one device
or article is described herein (whether or not they cooperate),
it will be readily apparent that a single device/article may be
used in place of the more than one device or article or a
different number of devices/articles may be used instead of
the shown number of devices or programs. The functionality
and/or the features of a device may be alternatively embod-
ied by one or more other devices which are not explicitly
described as having such functionality/features. Thus, other
embodiments of the present invention need not include the
device itself.

[0105] The foregoing description of various embodiments
of the invention has been presented for the purposes of
illustration and description. It is not intended to be exhaus-
tive or to limit the invention to the precise form disclosed.
Many modifications and variations are possible in light of
the above teaching. It is intended that the scope of the
invention be limited not by this detailed description, but
rather by the claims appended hereto. The above specifica-
tion, examples and data provide a complete description of
the manufacture and use of the composition of the invention.
Since many embodiments of the invention can be made
without departing from the spirit and scope of the invention,
embodiments of the invention reside in the claims herein
after appended. The foregoing description provides
examples of embodiments of the invention, and variations
and substitutions may be made in other embodiments.

1. A computer-implemented method, comprising opera-
tions for:
receiving a request to test software;
automatically identifying job roles, user software activi-
ties for the software to be tested, and objectives,
wherein a software activity of the user software activi-
ties does not achieve a corresponding objective of the
objectives;
generating a test operation sequence using the job roles,
the user software activities, and the objectives to test
the software, wherein the test operation sequence tests
the software activity that does not achieve the corre-
sponding objective;
executing the test operation sequence to simulate different
users having different job roles using the software with
the user software activities to achieve the objectives;
and
generating a performance report for the execution of the
test operation sequence, wherein the software is revised
based on the performance report to have the user
software activity achieve the corresponding objective.
2. The computer-implemented method of claim 1,
wherein a first machine learning model is a recurrent neural
network and further comprising operations for:

US 2021/0081302 Al

sending one or more user software activity logs to the first

machine learning model; and

receiving the job roles, the user software activities, and

the objectives.

3. The computer-implemented method of claim 1,
wherein the test operation sequence is generated by a second
machine learning model that is a generative adversarial
network.

4. (canceled)

5. The computer-implemented method of claim 1, further
comprising operations for:

monitoring a plurality of users using the software to

identify the job roles, the user software activities for the
software to be tested, and the objectives.

6. The computer-implemented method of claim 1,
wherein a Software as a Service (SaaS) is configured to
perform the operations of the method.

7. A computer program product, the computer program
product comprising a computer readable storage medium
having program code embodied therewith, the program code
executable by at least one processor to perform operations
for:

receiving a request to test software;

automatically identifying job roles, user software activi-

ties for the software to be tested, and objectives,
wherein a software activity of the user software activi-
ties does not achieve a corresponding objective of the
objectives;

generating a test operation sequence using the job roles,

the user software activities, and the objectives to test
the software, wherein the test operation sequence tests
the software activity that does not achieve the corre-
sponding objective;

executing the test operation sequence to simulate different

users having different job roles using the software with
the user software activities to achieve the objectives;
and

generating a performance report for the execution of the

test operation sequence, wherein the software is revised
based on the performance report to have the user
software activity achieve the corresponding objective.

8. The computer program product of claim 7, wherein a
first machine learning model is a recurrent neural network
and wherein the program code is executable by the at least
one processor to perform operations for:

sending one or more user software activity logs to the first

machine learning model; and

receiving the job roles, the user software activities, and

the objectives.

9. The computer program product of claim 7, wherein the
test operation sequence is generated by a second machine
learning model that is a generative adversarial network.

10. (canceled)

11. The computer program product of claim 7, and
wherein the program code is executable by the at least one
processor to perform operations for:

monitoring a plurality of users using the software to

identify the job roles, the user software activities for the
software to be tested, and the objectives.

12. The computer program product of claim 7, wherein a
Software as a Service (SaaS) is configured to perform the
operations of the computer program product.

Mar. 18, 2021

13. A computer system, comprising:

one or more processors, one or more computer-readable
memories and one or more computer-readable, tangible
storage devices; and

program instructions, stored on at least one of the one or

more computer-readable, tangible storage devices for

execution by at least one of the one or more processors

via at least one of the one or more computer-readable

memories, to perform operations comprising:
receiving a request to test software;

automatically identifying job roles, user software activi-

ties for the software to be tested, and objectives,
wherein a software activity of the user software activi-
ties does not achieve a corresponding objective of the
objectives;

generating a test operation sequence using the job roles,

the user software activities, and the objectives to test
the software, wherein the test operation sequence tests
the software activity that does not achieve the corre-
sponding objective;

executing the test operation sequence to simulate different

users having different job roles using the software with
the user software activities to achieve the objectives;
and

generating a performance report for the execution of the

test operation sequence, wherein the software is revised
based on the performance report to have the user
software activity achieve the corresponding objective.

14. The computer system of claim 13, wherein a first
machine learning model is a recurrent neural network and
wherein the operations further comprise:

sending one or more user software activity logs to the first

machine learning model; and

receiving the job roles, the user software activities, and

the objectives.

15. The computer system of claim 13, wherein the test
operation sequence is generated by a second machine learn-
ing model that is a generative adversarial network.

16. (canceled)

17. The computer system of claim 13, wherein the opera-
tions further comprise:

monitoring a plurality of users using the software to

identify the job roles, the user software activities for the
software to be tested, and the objectives.

18. The computer system of claim 13, wherein a Software
as a Service (SaaS) is configured to perform the operations
of the computer system.

19. The computer-implemented method of claim 1,
wherein the performance report indicates whether the objec-
tives were accomplished and how successfully the objec-
tives were accomplished with one of least activity and
shortest time.

20. The computer program product of claim 7, wherein
the performance report indicates whether the objectives
were accomplished and how successfully the objectives
were accomplished with one of least activity and shortest
time.

21. The computer system of claim 13, wherein the per-
formance report indicates whether the objectives were
accomplished and how successfully the objectives were
accomplished with one of least activity and shortest time.

#* #* #* #* #*

