
(19) J

(12)

~ ™ I I I N M N N I I N I I I N I I I I N N I I
European Patent Office

Office europeen des brevets (11) E P 0 8 0 9 1 8 8 A 1

EUROPEAN PATENT A P P L I C A T I O N

(43) Date of publication: (51) Int. CI.6: G06F 13/10, G06F 3/06,
26.11.1997 Bulletin 1997/48 G06F 9 / 4 4 5

(21) Application number: 97104951.5

(22) Date of filing: 24.03.1997

(84) Designated Contracting States: • Passmore, Dale R.
DE FR GB IT SE Colorado Springs, CO 80919 (US)

• Gittins, Robert S.
(30) Priority: 15.04.1996 US 632006 Woodland Park, CO 80866 (US)

(71) Applicant: SUN MICROSYSTEMS INC. (74) Representative:
Mountain View, California 94043-1 1 00 (US) Hanna, Peter William Derek et al

Tomkins & Co.,
(72) Inventors: 5 Dartmouth Road

• Senator, Steven T. Dublin 6 (IE)
Colorado Springs, CO 80920 (US)

CO
CO

o
CO
o
Q_
LU

(54) Metadevice driver rename/exchange technique for a computer system incorporating a
plurality of independent device drivers

(57) A metadisk driver (30) functionally intermediate
a computer operating system (22) and one or more 22 metadrivers (48, 50, 52, 54) and underlying layered /
drivers (56-86) provides a driver rename/exchange
function which does not depend on any particular driver
having knowledge of the private data structures of any
of the other drivers. The rename/exchange

t e c h n i q u e �

implemented thereby may be conducted while the , f hLf? j „ J ! !bL . ao
underlying devices are on-line and comprise atomic SK^KKKKK^ft^
operations which are, therefore, recoverable inasmuch -̂l°*SE

ovoo i°
as the operation will have either been completed or will Ŝw ^-ss
not be committed in the event of any interruption. men. _ ~~42

^ *U 3CJ

Fig. 2 X ;

Printed by Rank Xerox (UK) Business Services
2.14.23/3.4

1 EP 0 809 188 A1 2

Description

The present invention relates, in general, to the field
of computers and computer operating systems for oper-
ative^ controlling a plurality of device drivers coupled to
a computer operating system through a metadevice, or
metadisk, driver. More particularly, the present invention
relates to a system, method and computer program
product for renaming or exchanging identities of compu-
ter mass storage metadrivers and layered drivers which
allows for the on-line distribution of changes to the
driver hierarchy in a distributed, cooperative manner
without the necessity of any particular driver having
knowledge of the private data structures of others of the
drivers.

Presently available computer mass storage subsys-
tems for computer systems are generally limited in their
overall performance, capacity, ease of administration
and availability of data storage. Moreover, they do not
allow metadrivers or underlying layered drivers to be
renamed or exchanged while the system is on-line to
allow for dynamic reconfiguration of mass storage
devices.

SUMMARY OF THE INVENTION

The present invention advantageously provides a
metadisk driver, (or metastorage device with a disk-like
interface), functionally intermediate a computer operat-
ing system and one or more metadrivers and underlying
layered drivers which provides a driver
rename/exchange function which does not depend on
any particular driver having knowledge of the private
data structures of any of the other drivers.

Information about the configuration and state of all
metadevices is preserved in a replicated state database
to ensure data integrity.

The rename/exchange technique implemented
thereby may be carried out as a multi-stage transaction
and is sufficiently general to be utilized for a family tree
of drivers that is arbitrarily wide or deep. Importantly, the
rename and exchange functions can be conducted
while the underlying devices are on-line and comprise
atomic operations which are, therefore, recoverable
inasmuch as the operation will have either been com-
pleted or will not be committed in the event of any inter-
ruption.

The system and method provided herein allows for
up to three-way mirroring of any file system, database or
other user data, on-line concatenation of physical com-
puter mass storage disk drives, on-line expansion of file
systems, disk striping, hot spares, UNIX™ files system
("UFS") logging and redundant array of inexpensive
disks ("RAID") support.

In a particular embodiment disclosed herein, a
method is provided for altering driver hierarchy in a
computer system including a plurality of drivers having
individual and interrelational attributes with respect to
others of the plurality of drivers. The method comprises

the steps of instructing a particular one of the drivers to
alter its individual attribute and locking service to that
particular one of the drivers and its "relatives" (i.e. those
drivers in a "parent" or "child" relationship thereto.) The

5 method also comprises the steps of altering the individ-
ual attribute of that particular one of the drivers and the
interrelational attributes of each of the relatives and
then unlocking service to that particular one of the driv-
ers and its relatives.

10 In a more specific embodiment disclosed herein, a
method is provided for altering driver hierarchy in a
computer system including a plurality of drivers having
individual and interrelational attributes with respect to
others of the plurality of drivers. The method comprises

15 the steps of compiling a list of available services for at
least a designated one of the plurality of drivers, deter-
mining the individual attribute of the designated driver
and the interrelational attributes of any parent and child
drivers. The method further comprises the steps of lock-

20 ing service for the designated driver and its parent and
child drivers, swapping roles of the designated driver
and its parent and child drivers and unlocking service
for the designated driver and its parent and child drivers.

The aforementioned and other features and objects
of the present invention and the manner of attaining
them will become more apparent and the invention itself
will be best understood by reference to the following
description of a preferred embodiment taken in conjunc-
tion with the accompanying drawings, wherein:

Fig. 1 is a simplified representational drawing of a
general purpose computer forming a portion of the
operating environment of the present invention;
Fig. 2 is a simplified conceptual representation of
an exemplary computer program operating system
incorporating a device driver interface for operative
coupling to a plurality of metadrivers and underlying
layered drivers through a metadisk driver for imple-
menting the rename/exchange technique herein
disclosed;
Fig. 3 is a simplified conceptual representation of a
number of metadrivers and layered drivers as
shown in Fig. 2 useful for illustrating the "self", "par-
ent" and "child" relationships between drivers in
subsequent rename and exchange operations
resulting in changes to the driver hierarchy as
shown in the succeeding figures;
Figs. 4A and 4B illustrate possible changes to the
metadriver and layered driver hierarchy resulting
from a rename of certain of the drivers wherein
changes to "self" and "child" as well as "self", "par-
ent" and "child" relationships occur respectively;
Figs. 5A and 5B illustrate other possible changes to
the metadriver and layered driver hierarchy result-
ing from an exchange of certain of the drivers as
between two drivers, wherein the "self", "parent"

25 BRIEF DESCRIPTION OF THE DRAWINGS

30

35

40

45

50

2

3 EP 0 809 188 A1 4

and "child" relationship is altered, and as between
two other drivers wherein the exchange involves a
"parent" of another driver respectively;
Fig. 6 is a tabular representation of the updates to
metadriver and layered driver hierarchy imple- s
mented by the role swap services of the system and
method of the present invention disclosed herein in
both rename and exchange operations.

DESCRIPTION OF A PREFERRED EMBODIMENT 10

The environment in which the present invention is
used encompasses the general distributed computing
system, wherein general purpose computers, worksta-
tions or personal computers are connected via commu- 15
nication links of various types, in a client-server
arrangement, wherein programs and data, many in the
form of objects, are made available by various members
of the system for execution and access by other mem-
bers of the system. Some of the elements of a general 20
purpose workstation computer are shown in Fig. 1,
wherein a processor 1 is shown, having an input/output
("I/O") section 2, a central processing unit ("CPU") 3
and a memory section 4. The I/O section 2 may be con-
nected to a keyboard 5, a display unit 6, a disk storage 25
unit 9, a CD ROM drive or unit 7 or a computer network
1 1 such as a wide area network ("WAN"), local area net-
work ("LAN") or other network connection such as the
Internet. The CD ROM unit 7 can read a CD ROM or
CDROM medium 8 which typically contains programs 30
1 0 and data. The computer program products contain-
ing mechanisms to effectuate the apparatus and meth-
ods of the present invention may reside in the memory
section 4, or on a disk storage unit 9 or on the CDROM
8 or network 1 1 of such a system. 35

With reference now to Fig. 2, a representative com-
puter system 20 is shown incorporating the
rename/exchange technique of the present invention.
The computer system 20 includes an operating system
22 which, in the context of a UNIX™ based system such 40
as the Solaris™ operating system available from Sun
Microsystems, Inc., assignee of the present invention,
includes a UNIX™ file system ("UFS"). Such UNIX™
based operating systems also include a DDI/DKI inter-
face 26 through which calls from the user application 28 45
may be made via operating system 22 calls and serv-
ices.

A metadisk driver 30 is coupled to the operating
system 22 through the DDI/DKI interface 26 through a
corresponding DDI/DKI interface of the metadisk driver so
30 itself. Representative calls that may be passed
between the operating system 22 and the metadisk
driver 30 include read 32, write 34 and input/output con-
trol ("IOCTL") 36. While not illustrated, other calls
between the operating system 22 and the metadisk 55
driver 30 are possible in accordance with conventional
UNIX™ based operating systems.

As illustrated, the metadisk driver 30 may also
include a portion dedicated to private services 38 as

well as an associated database 40, as will be more fully
described hereinafter. The metadisk driver 30 presents
a metadisk driver interface to lower level metadrivers (or
subdrivers) through, for example, calls such as IOCTL
42, write 44 and read 46. The corresponding metadriv-
ers then also comprise a corresponding metadisk driver
interface as shown.

The metadisk driver 30 is implemented as a set of
loadable, pseudo device drivers and uses other physical
device drivers to pass input/output ("I/O") requests to
and from the underlying devices. The metadisk driver
30 resides between the file system interface and the
device driver interface 26 and interprets information
from both above and below. After passing through the
metadisk driver 30, information is received in the
expected form by both the file system and by the device
drivers. The metadisk driver 30 is a loadable device
driver and has all the same interfaces as any other
device driver. The primary elements of the metadisk
driver 30 include: metadevices, concatenation and strip-
ing, mirroring (including metamirrors and submirrors),
UFS logging (not shown), hot spares (not shown), disk-
sets and RAID devices.

Metadevices are the basic functional unit of the
metadisk driver 30 and can be utilized like physical disk
partitions or "slices". These logical devices can be
made up of one or more component partitions which
may be configured to use a single device, a concatena-
tion of stripes or stripe of devices. Metadevices that
comprise concatenations or stripes provide increased
storage capacity while mirroring and UFS logging pro-
vide higher availability. Striping provides increased per-
formance. In any event, metadevices are transparent to
user application 28 software and to component control-
ler hardware. They may be configured from IPI and
SCSI devices on all SPARC™ systems and on SCSI and
IDE devices on all x86 systems.

Each metadevice is either a concatenation or a
stripe of component partitions. Concatenations and
stripes work together to concatenate two or more slices
together to create one larger slice. When partitions are
concatenated, the addressing of the component blocks
is done sequentially. Operating system 22 services,
such as the file system, can use the entire concatena-
tion.

The database 40 maintains state database replicas
and provides the non-volatile storage necessary to keep
track of configuration and status information for all
metadrivers, metadevices, metamirrors, metatrans
devices, hot spares and RAID devices. The replicas
also keep track of error conditions that have occurred.
After a metadevice is configured, it is necessary for the
metadevice driver to remember its configuration and
status information. The metadevice state database 40 is
the metadevice driver's long term memory. The metade-
vice driver stores all the metadevice configuration infor-
mation in the state database 40, including the
configuration information about mirrors, submirrors,
concatenations, stripes, metatrans devices and hot

3

5 EP 0 809 188 A1 6

spares.
If the replicated metadevice state database 40

where to be lost, the metadevice driver would have no
way of knowing any configuration information resulting
in a loss of all data stored on metadevices. To protect
against losing the metadevice state database 40
because of hardware failures, multiple replicas (or cop-
ies) or the state database 40 are maintained. These
multiple replicas also protect the state database 40
against corruption that can result from a system "crash".
Each replica of the state database 40 contains a check-
sum. When the state database 40 is updated, each rep-
lica is modified one at a time. If a crash occurs while the
database 40 is being updated, only one of the replicas
will be corrupted. When the system reboots, the meta-
device driver uses the checksum embedded in the rep-
licas to determine if a replica has been corrupted. Any
corrupted replicas are then ignored.

If a disk that contains the metadevice state data-
base 40 is turned off, the metadevices remain fully func-
tional because the database is retrieved from one of the
replicas still in operation. Changes made to the configu-
ration following the reboot operation are stored only in
the replicas that are in operation when the system
comes back up. If the disk drive that was turned off is
later turned back on, the data contained in the replica
stored on that disk is ignored following a comparison
with other replicas.

Exemplary of the metadevice drivers, or metadriv-
ers, which may be utilized in conjunction with the
metadisk driver 30 are a stripe metadriver 48, a mirror
metadriver 50, a RAID metadriver 52 and a trans
metadriver 54.

The stripe metadriver 48 presents a DDI/DKI inter-
face to, for example, a slice (or partition) layered driver
56. On the other hand, the mirror metadriver 50 may be
coupled to a pair of underlying stripe layered drivers 58,
60. The stripe layered drivers 58, 60 may be coupled to
a respective slice layered driver 62, 64 through a
DDI/DKI interface.

Striping is similar to concatenation with the excep-
tion that the addressing of the metadevice blocks is
interlaced on the components rather than addressed
sequentially. When stripes are defined, an interlace size
may be specified which determines how much data is
place on a component before moving to the next com-
ponent of the stripe.

Because data is spread across a stripe, increased
performance is realized due to the fact that reads and
writes are spread across multiple disk arms. Moreover,
concurrent I/O requests may use different disk arms as
is the case with concatenation as well.

Mirroring is also supported on separate metade-
vices such as, for example mirror metadriver 50. This
enables the system to tolerate single component fail-
ures with two-way mirroring and double failures with
three-way mirroring. Mirroring may also be utilized for
on-line backups of file systems.

Mirroring is set up by creation of a metamirror which

is a special type of metadevice made up of one or more
other metadevices. Each metadevice within a metamir-
ror is called a submirror. Once a metamirror is defined,
additional submirrors may be added without bringing

5 down the system or disrupting reads and writes to exist-
ing metamirrors. When a submirror is attached, all the
data from another submirror in the metamirror is auto-
matically written to the newly attached submirror in a
process called resynching. Once the resynching is com-

10 plete, the new submirror is readable and writeable.
The RAID metadriver 52 presents a DDI/DKI inter-

face for coupling to a number of underlying slice layered
drivers 66, 68, 70. Although illustrated as comprising in
this representative example only three slice layered

15 drivers 66, 68 and 70, any number of such layered driv-
ers may be included, depending on the RAID set and
RAID level desired.

RAID devices may comprise three or more physical
partitions, or "slices", such as slices 66-70 illustrated.

20 Each partition is generally referred to as a column. The
RAID metadriver 52 can be grown by concatenating
additional partitions to the metadevice. RAID 5 utilizes
multiple physical partitions to simulate a single large
slice. A single sector on one or these physical slices

25 may contain either a sector's worth of contiguous data
or parity information relating to the data on the same
sector of all other slices in the array. A RAID 5 configu-
ration can recover from a single disk failure and is gen-
erally more cost effective that mirroring disks.

30 A trans metadriver 54 may be coupled to an under-
lying mirror layered driver 72 in turn having a pair of
stripe layered drivers 74, 76 and respective slice layered
drivers 78, 80. The trans metadriver 54 may also have
an underlying RAID layered driver 82 as well as one or

35 more underlying slice layered drivers 84. The trans
metadriver 54 may also directly be coupled to an under-
lying slice layered driver 86, as shown.

With reference additionally now to Fig. 3, a simpli-
fied conceptual representation of a number of metadriv-

40 ers and/or layered drivers as illustrated in the preceding
figure is shown. The illustration of Fig. 3 is useful for
illustrating the "self", "parent" and "child" relationship
between drivers and subsequent rename and exchange
operations which result in changes to the driver hierar-

45 chy as will be discussed more fully with respect to the
succeeding figures. In this regard, a metadevice 100
may have a self designation of D100 while a child meta-
device 1 02 of metadevice 1 00 may have a designation
of D10. In turn, an additional child metadevice 104 of

so metadevice 102 may have a designation D1. Concur-
rently, metadevice 1 02 is the parent of metadevice 1 04
and metadevice 100 is the parent of metadevice 102.

In like manner, a relationship between other inde-
pendent metadevices is shown wherein a metadevice

55 106 having a self designation of D20 is in a parental
relationship to a metadevice 1 08 having a designation
D2. Metadevice 108 is then the child or metadevice 106.
A single independent metadevice 1 1 0 having a self des-
ignation of D3 is shown caving neither parent nor child

4

7 EP 0 809 188 A1 8

metadevices associated therewith.
With reference additionally now to Fig. 4A, the sim-

plified conceptual representation of metadevices and
layered drivers shown in Fig. 3 is utilized in a rename
operation wherein the self identification of metadevice
100 has been changed from D100 to D99. Utilizing the
rename/exchange technique herein disclosed, metade-
vice 100 would then update its self designation to D99
and its child metadevice 102 (designated D10) would
then update its parent to reflect the renaming of meta-
device 100 to D99.

With reference additionally now to Fig. 4B, a further
exemplary rename operation is shown based upon the
initial configuration of the driver hierarchy as depicted in
Fig. 3. In this representative example, metadevice 102
has been renamed from D10 to D9 requiring a self
renaming to reflect the change in designation. In this
example, however, metadevice 100 (designated D100)
is in a parental relationship to metadevice 102 and it,
therefore, will update its children to reflect the renaming
of metadevice 102 to D9. Similarly, metadevice 104 is in
a child relationship with respect to metadevice 1 02 and
it will then update its parent designation to reflect the
change of name in metadevice 1 02 to D9.

With reference additionally now to Fig. 5A, a repre-
sentative exchange operation in accordance with the
present invention is shown wherein metadevices 106
(formerly D20) and metadevice 108 (formerly D2) of Fig.
3 have their self identifications exchanged such that
metadevice 106 then becomes D2 (the parent) and
metadevice 108 becomes D20 (the child). Stated
another way, metadevice 106 (Fig. 3) updates its source
down while metadevice 108 (Fig. 3) updates its destina-
tion up.

With reference additionally now to Fig. 5B, an alter-
native exemplary illustration of an exchange operation is
shown wherein metadevices 102, 104 exchange their
self identities such that metadevice 102 assumes the
identity D1 and metadevice 104 assumes the prior iden-
tity of metadevice 102 of D10. In other words, metade-
vice 104 updates its destination up, while metadevice
102 updates its source down. In this illustration, meta-
device 112 (D5) remains a child of metadevice 102 but
its parent designation is now D1 instead of D10.

With reference additionally now to Fig. 6, the role
swap services of the system and method of the present
invention disclosed herein in both rename (designated
by a circled "R") and exchange operations (designated
by a circled "E") are illustrated as used to update the
metadriver and/or layered driver hierarchy. The tabular
representation of Fig. 6 forms the portion 6 of the proc-
ess represented in the following Table 1 :

T a b l e l .

MD Rename / E x c h a n g e
Named S e r v i c e s

1- L i s t P a r e n t
2- L i s t S e l f
3- L i s t C h i l d r e n
4 - L o c k
5- C h e c k

6- U p d a t e :
P a r e n t s
C h i l d r e n
S e l f Up
S e l f Down
S o u r c e Up
D e s t i n a t i o n Up
S o u r c e Down
D e s t i n a t i o n Down

7- U n l o c k

The present invention disclosed herein, therefore,
25 provides a metadisk driver, (or metastorage device with

a disk-like interface), functionally intermediate a compu-
ter operating system and one or more metadrivers and
underlying layered drivers which provides a driver
rename/exchange function which does not depend on

30 any particular driver having knowledge of the private
data structures of any of the other drivers. Information
about the configuration and state of all metadevices is
preserved in a replicated state database to ensure data
integrity.

35 While there have been described above the princi-
ples of the present invention in conjunction with specific
operating systems and drivers it is to be clearly under-
stood that the foregoing description is made only by way
of example and not as a limitation to the scope of the

40 invention. Particularly, it is recognized that the teachings
of the foregoing disclosure will suggest other modifica-
tions to those persons skilled in the relevant art. Such
modifications may involve other features which are
already known per se and which may be used instead of

45 or in addition to features already described herein.
Although claims have been formulated in this applica-
tion to particular combinations of features, it should be
understood that the scope of the disclosure herein also
includes any novel feature or any novel combination of

so features disclosed either explicitly or implicitly or any
generalization or modification thereof which would be
apparent to persons skilled in the relevant art, whether
or not- such relates to the same invention as presently
claimed in any claim and whether or not it mitigates any

55 or all of the same technical problems as confronted by
the present invention. The applicants hereby reserve
the right to formulate new claims to such features and/or
combinations of such features during the prosecution of
the present application or of any further application

5

9 EP 0 809 188 A1 10

derived therefrom.

Claims

1 . A method for altering driver hierarchy in a computer 5
system (20) including a plurality of drivers (48-86)
having individual and interrelational attributes (100,
110) with respect to others of said plurality of driv-
ers, said method comprising the steps of:

10
providing for instructing a particular one of said
drivers to alter its individual attribute;
providing for locking service to said particular
one of said drivers and relatives of said partic-
ular one of said drivers; is
providing for altering said individual attribute of
said particular one of said drivers and said
interrelational attributes of each of said rela-
tives of said particular one of said drivers; and
providing for unlocking service to said particu- 20
lar one of said drivers and said relatives of said
particular one of said drivers.

2. A method for altering driver hierarchy in a computer
system (20) including a plurality of drivers (48-86) 25
having individual and interrelational attributes (100-
110) with respect to others of said plurality of driv-
ers, said method comprising the steps of:

providing for designating a particular one of 30
said drivers to be renamed;
providing for locking service to said renamed
driver and related drivers thereof;
providing for renaming said particular one of
said drivers to constitute a renamed driver; 35
providing for updating said related drivers in a
parental relationship to said renamed driver to
reflect said renamed driver as a child driver and
said related drivers in a child relationship to
said renamed driver to reflect said renamed 40
driver as a parent driver; and
providing for unlocking service to said renamed
driver and said relatives thereof.

3. A method for altering driver hierarchy in a computer 45
system (20) including a plurality of drivers (48-86)
having individual and interrelational attributes (100-
110) with respect to others of said plurality of driv-
ers, said method comprising the steps of:

50
providing for designating at least an unex-
changed first and second of said drivers to
exchange said individual attributes;
providing for locking service to said unex-
changed first and second drivers and related 55
drivers thereof;
providing for exchanging said individual
attributes of said unexchanged first and second
drivers to constitute said individual attributes of

said exchanged second and first drivers
respectively;
providing for updating said related drivers in a
parental relationship to said unexchanged first
driver to reflect said exchanged second driver
as a child driver and said related drivers in a
child relationship to said unexchanged second
driver to reflect said exchanged first driver as a
parent driver; and
providing for unlocking service to said first and
second exchanged drivers and said relatives
thereof.

4. A method for altering driver hierarchy in a computer
system (20) including a plurality of drivers (48-86)
having individual and interrelational attributes (100-
1 1 0) with respect to others of said plurality of driv-
ers, said method comprising the steps of:

providing for compiling a list of available serv-
ices for at least a designated one of said plural-
ity of drivers;
providing for determining said individual
attribute of said designated one of said plurality
of drivers and said interrelational attributes of
parent and child drivers thereof;
providing for locking service for said desig-
nated one of said plurality of drivers and said
parent and child drivers thereof; providing for
swapping roles of said designated one of said
plurality of drivers and said parent and child
drivers thereof; and
providing for unlocking service for said desig-
nated one of said plurality of drivers and said
parent and child drivers thereof.

5. A computer program product comprising:

a computer usable medium having computer
readable code embodied therein for altering
driver hierarchy in a computer system including
a plurality of drivers having individual and inter-
relational attributes with respect to others of
said plurality of drivers, the computer program
product comprising: computer readable pro-
gram code devices configured to cause a com-
puter to effect instructing a particular one of
said drivers to alter its individual attribute; com-
puter readable program code devices config-
ured to cause a computer to effect locking
service to said particular one of said drivers
and relatives of said particular one of said driv-
ers; computer readable program code devices
configured to cause a computer to effect alter-
ing said individual attribute of said particular
one of said drivers and said interrelational
attributes of each of said relatives of said par-
ticular one of said drivers; and computer read-
able program code devices configured to cause

6

11 EP 0 809 188 A1 12

a computer to effect unlocking service to said
particular one of said drivers and said relatives
of said particular one of said drivers.

6. A computer program product comprising: a compu- s
ter usable medium having computer readable code
embodied therein for altering driver hierarchy in a
computer system including a plurality of drivers
having individual and interrelational attributes with
respect to others of said plurality of drivers, the 10
computer program product comprising:

computer readable program code devices con-
figured to cause a computer to effect designat-
ing a particular one of said drivers to be is
renamed;
computer readable program code devices con-
figured to cause a computer to effect locking
service to said renamed driver and related driv-
ers thereof; 20
computer readable program code devices con-
figured to cause a computer to effect renaming
said particular one of said drivers to constitute
a renamed driver;
computer readable program code devices con- 25
figured to cause a computer to effect updating
said related drivers in a parental relationship to
said renamed driver to reflect said renamed
driver as a child driver and said related drivers
in a child relationship to said renamed driver to 30
reflect said renamed driver as a parent driver;
and
computer readable program code devices con-
figured to cause a computer to effect unlocking
service to said renamed driver and said rela- 35
tives thereof.

7. A computer program product comprising:

a computer usable medium having computer 40
readable code embodied therein for altering
driver hierarchy in a computer system including
a program product comprising:

plurality of drivers having individual and 45
interrelational attributes with respect to
others of said plurality of drivers, the com-
puter computer readable program code
devices configured to cause a computer to
effect designating at least an unexchanged so
first and second of said drivers to
exchange said individual attributes;

computer readable program code devices con-
figured to cause a computer to effect locking 55
service to said unexchanged first and second
drivers and related drivers thereof;
computer readable program code devices con-
figured to cause a computer to effect exchang-

ing said individual attributes of said
unexchanged first and second drivers to consti-
tute said individual attributes of said
exchanged second and first drivers respec-
tively;
computer readable program code devices con-
figured to cause a computer to effect updating
said related drivers in a parental relationship to
said unexchanged first driver to reflect said
exchanged second driver as a child driver and
said related drivers in a child relationship to
said unexchanged second driver to reflect said
exchanged first driver as a parent driver; and
computer readable program code devices con-
figured to cause a computer to effect unlocking
service to said first and second exchanged
drivers and said relatives thereof.

8. A computer program product comprising:

a computer usable medium having computer
readable code embodied therein for altering
driver hierarchy in a computer system including
a plurality of drivers having individual and inter-
relational attributes with respect to others of
said plurality of drivers, the computer program
product comprising:

computer readable program code devices
configured to cause a computer to effect
compiling a list of available services for at
least a designated one of said plurality of
drivers;
computer readable program code devices
configured to cause a computer to effect
determining said individual attribute of said
designated one of said plurality of drivers
and said interrelational attributes of parent
and child drivers thereof;
computer readable program code devices
configured to cause a computer to effect
locking service for said designated one of
said plurality of drivers and said parent and
child drivers thereof;
computer readable program code devices
configured to cause a computer to effect
swapping roles of said designated one of
said plurality of drivers and said parent and
child drivers thereof; and
computer readable program code devices
configured to cause a computer to effect
unlocking service for said designated one
of said plurality of drivers and said parent
and child drivers thereof.

9. A system for altering driver hierarchy in a computer
system (20) including a plurality of drivers (48-86)
having individual and interrelational attributes (100-
1 1 0) with respect to others of said plurality of driv-

7

13 EP 0 809 188 A1 14

ers, said system comprising:

a metadisk driver (30) coupling a computer
operating system (22) of said computer system
to said plurality of drivers, said metadisk driver s
for causing a particular one of said drivers to
alter its individual attributes; and
a lock responsive to said metadisk driver hav-
ing a first state thereof for locking service to
said particular one of said drivers and relatives 10
of said particular one of said drivers and a sec-
ond state thereof for unlocking service to said
particular one of said drivers and relatives of
said particular one of said drivers;
said metadisk driver causing said lock to enter is
said first state thereof while said individual
attribute of said particular one of said drivers
and said inter relational attributes of each of
said relatives of said particular one of said driv-
ers are altered and thereafter causing said lock 20
to enter said second state thereof.

25

30

35

40

45

50

8

PO 809 188 A1

30

□ □ □ □
□ □ □ □
□ □ □ □

□ □
□ □
□ □
□ a
□ □
□ a
□ □
□ □
□ □
□ a
□ □
a a

□ □
□ a
□ □
□ r
□
□
□
□
□ L
□ □
□ □
□ □

r

1

u .

>

s 2 i
~ O gj

s

1

9

EP 0 809 188 A1

2 2

OS
UFS

2 4
y

WRITE

34 A

I/OCTL

3 6

L
2 8

USER
APPLICATION

3 0

DATA
BASE

4 0

METADISK DRIVER

4 6 .

l/OCTL

WRITE

READ

Y / / / / / / / / / / / M PRIVATE SVCSj
2 0

■44

4 2

3 8

r
4 8

STRIPE

5 6

s X v w u
r

5 0

MIRROR

>58

SLICE STRIPE

SLICE

5 2

RAID

L
6 0

6 2

STRIPE

SLICE

6 4 ^

SLICE

5 4

TRANS

SLICE

7 0 \
^ 1

SLICE

8 2

MIRROR

X

RAID

66 ^
1 ~
^ 7 2 S

8 6

SLICE

74-

STRIPE

SLICE

F i g . 2 7 8

' ^ 7 2 j

STRIPE £

I
7 6

SLICE

^ 8 0

SLICE

8 4

10

EP 0 809 188 A1

EP 0 809 188 A1

EP 0 809 188 A1

1 0 0

d , 00

d i o - * d i

1 0 4

1

1 0 2

'20

d i d 10

1 1 2

1 0 6

1 0 8

F i g . 5 B

1 1 0

FORMER R O L E

PARENT SELF CHILD

UPDATE
U P D A T E

PARENT
CHILDREN

* ™ E _

© ® ©
D 0 W N

UPDATE i i p d a t f U P D A T E
NEW SELF DESTINATION e p i c D E S T I N A T I O N

ROLE
@

UP @ q U P

U P D A T E
CHILD — S O U R C E

P A R E N T S
0 DOWN 0 P A R E N T S ®

F i g . 6

13

EP 0 809 188 A1

European Patent EUROPEAN SEARCH REPORT Apl"iC"i0n " " ^
Office Ep 97 1Q 4951

DOCUMENTS CONSIDERED TO BE RELEVANT

Category Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE of relevant passages to claim APPLICATION (Int.C1.6)
A EP 0 584 909 A (SUN MICROSYSTEMS) 1-9 G06F13/10 * the whole document * G06F3/06

G06F9/445
A US 5 471 675 A (J. ZIAS) 1-9

* the whole document *

A PATENT ABSTRACTS OF JAPAN 1-9
vol. 12, no. 401 (P-776), 25 October 1988
& JP 63 142451 A (FUJITSU LTD.), 14 June
1988,
* abs t ract *

A PATENT ABSTRACTS OF JAPAN 1-9
vol. 14, no. 508 (P-1128), 7 November 1990
& JP 02 212910 A (NEC CORP), 24 August
1990,
* abs t ract *

A COMPUTER TECHNOLOGY REVIEW, 1-9
vol. 12, no. 14, November 1992, LOS
ANGELES, CA, US, technical fields
paqes 18-19, XP000337069 searched (int.a.6)
D. RATHUNDE: "There Is A Virtual Disk G06F
Type To Satisfy All Data A v a i l a b i l i t y
Needs"
* the whole document *

The present search report has been drawn up for all claims
Place of uarca Date of coaa>letloa of the search Exanlaer

BERLIN 30 June 1997 Abram, R
CATEGORY OF CITED DOCUMENTS T : theory or principle underlying the invention E : earlier patent document, but published on, or X : particularly relevant if taken alone after the filing date Y : particularly relevant if combined with another D : document cited in the application document of the same category L : document cited for other reasons A : technological background O : non-written disclosure & : member of the same patent family, corresponding P : intermediate document document

14

	bibliography
	description
	claims
	drawings
	search report

