US 20210081905A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2021/0081905 A1

Hamilton et al.

43) Pub. Date: Mar. 18, 2021

(54)

(71)

(72)

(73)

@
(22)

(60)

SYSTEM AND METHOD OF SCHEDULING
WORK WITHIN A WORKFLOW WITH
DEFINED PROCESS GOALS

Applicant: Verint Americas Inc., Alpharetta, GA
(US)

Inventors: Edward Hamilton, Mount Hamilton,
CA (US); Kaushik Deka, New York,
NY (US)

Assignee: Verint Americas Inc., Alpharetta, GA

us)

Appl. No.: 17/012,728

Filed: Sep. 4, 2020

Related U.S. Application Data

Continuation of application No. 15/379,271, filed on
Dec. 14, 2016, now Pat. No. 10,769,567, which is a
division of application No. 13/951,011, filed on Jul.
25, 2013, now Pat. No. 10,032,136.

100

b

(60) Provisional application No. 61/677,126, filed on Jul.

30, 2012.

Publication Classification

(51) Int. CL
G06Q 10/10 (2006.01)
G06Q 10/06 (2006.01)
G06Q 10/04 (2006.01)
(52) US.CL
CPC ... G06Q 10/1097 (2013.01); GO6Q 10/06311
(2013.01); GO6Q 10/0633 (2013.01); GO6Q
10/063114 (2013.01); GO6Q 10/04 (2013.01)
(57) ABSTRACT

A system and method schedule work within a workflow with
defined process goals. A plurality of work queues are defined
that comprise work items. The plurality of work queues are
associated with one or more links between a parent work
queue and at least one child work queue to form at least one
work process. At least one work process goal is defined for
each work process. A work schedule to achieve the work
process goals is generated.

GENERATE QUEUES AND WORK
PROCESSES

161

102

DEFINE WORK PROCESS
CONSTRAINTS AND QUEUE
CONSTRAINTS

GENERATE SCHEDULE BASED ON
CONSTRAINTS

103

Mar. 18, 2021 Sheet 1 of 8 US 2021/0081905 A1

Patent Application Publication

Z AN
SWOD
(1 SSA0HC ONY SESSINOU ANILAT
poe
&
SHNIT
4 HLIM SINEN0 MHOM LOINNQOD
202 %
e 53N3N0 HHOM J1LVIHO
20¢ A
- FOVAHIINI IZTVILING
Laz

06¢

I 3HNold

-

SLNIVHISNGO
NO 438v4 3NA03HOS 1vHINGD

£0l

4

3

SINIVHISNOGS
ANEN0 ONY SINIVHLSNOD
S8300Hd MHOM INIHZ

204

t

{
13

S3S5300Hd
MHOM (NV 830300 ZLYHINID

<

US 2021/0081905 A1

Mar. 18, 2021 Sheet 2 of 8

Patent Application Publication

85 UMD \

13

O

SAUMRION

ol

e

LBERMIND O

R

e
w\v Ntsrennspesncoansne 27

pig

e

Y O

S

pie

113

Tzt
g5 3NAN0
Ceanano > Q3nan00 VE N0
¥ MM. Tt T 3NAEND
L 3NIND gw»
VEBUOOH
I
SHLYIAOH
ag IEND
YE 3300
el 7 3000

L ANAn

€ 3N

Patent Application Publication

Y
.ce

¢85 ININD

ST
viE
Cve 3nan CLanano
M« monsarsontreg
9if Y
pie
E0E

= 975
i
u .
< J Q£ Nl
e
&
3 530N
I
< oeee (HG
~ *\\c(:st WL
@ L SSID0H
= CR . S ——
8€ 30300 " W
e m : IO

\x e | “ HYEI00L
» 443 “ o
3 e T (Tt | 963N
- s 3nang 230300 Canant .
= e e T e AEnD
g zn &ﬂ 9i¢ f i “
= #ig y1E e, Z3ANAN0D

w« .‘ = ’ NH_ 4 \..{tt.\ .
S T oz O e Poloyamanp | TIE »
ow 0 7L
s OLE /
: I
2 SHHIAOU
B¢

e Gh

48 3nInt
¥E AnEn0
£ 3a0ano
L3nEnh

US 2021/0081905 A1

Mar. 18, 2021 Sheet 4 of 8

Patent Application Publication

g NS

ey
CEHESS

Tov 55 Doy
LNIVHLNGD INIPHINGD
NG NIGCHH
oLy

Y JHNDI e

[457
LEE e

187
2300

s T R S 4 3EN0D

INIYULNGD
REe

LNIYYINOD
S

Yy

US 2021/0081905 A1

Mar. 18, 2021 Sheet 5 of 8

Patent Application Publication

§ FHNSH
- T gis S6E WALSAS
oz% AN " ONISSIIOYd
NOLLYDddY o 20
o e %
stammeasnns , OEE 31NCOW - =
/ NOILY DI 1ddY = G
505 | o= Sz
. FHYMLIOS |
eI z
Z¥E 3DHNO0S LNIVHISNOD aE — TENG
Sy IOVHOLS

US 2021/0081905 A1

Mar. 18, 2021 Sheet 6 of 8

Patent Application Publication

\ O0L

HAZATYNY

04

W OANYE 1Y

SADEHD 150430

) [y
SNCHLHOHOH | ﬁm%. V05 :
GIMIAOISIO ANIVHISNG
, s AN
\ \ .y
0z a0/
8 NV 1Y
sl SEHD 1SndIg 7
® %

,,,,,,,, /

', 3{\},,,

/
A \/3\

SUAHD AJIEA

A.m\ i

A

%

Yy

Zi

SAOTIANT N340

7

al

A

/

LI E

US 2021/0081905 A1

Mar. 18, 2021 Sheet 7 of 8

Patent Application Publication

HOHHDIEN

§

1d305%

S

ANOG

i!ié
g

{1}
30003

JO8HDHN
AIVHANGD

£ IHNDI
#MOY
4 ~F . -
VIBTTH aivadn j
018~
%
SYTNCGIHDS
P34 N 1SY -~
{L3ADY 908
NOLLY TS
QHYMEOS-HSNd
T Rl
\ 708~
I
3

4

STINWIIHOS & 3N
SINAIEOS L suyows 1538
AL N et ioassnal] siames PO

161 15¥140 (LTM0V QHYMEOAHS EERE

506 M 0161

US 2021/0081905 A1

SN
; 33150V

ALIA .HM i 73
. HAlLYY e mywoa e
rm mfwde)‘wl\r
® VA
m 06
7 0]
m HINGOH
S SHIALL Y IO
® AHOM
- T
-4
=

AUALLDY

pog——] NHOMONDOEND e
Ad ABNOONYY

!

SACTIDIHOM

LT IWOD M
7061 HO4 STLALDY

Dos HHOM CRIGND

Patent Application Publication

US 2021/0081905 Al

SYSTEM AND METHOD OF SCHEDULING
WORK WITHIN A WORKFLOW WITH
DEFINED PROCESS GOALS

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] The present application is a continuation of U.S.
patent application Ser. No. 15/379,271, filed Dec. 14, 2016,
which is a divisional of U.S. patent application Ser. No.
13/951,011, filed Jul. 25, 2013, which claims priority of U.S.
Provisional Patent Application No. 61/677,126, filed Jul. 30,
2012, the contents of which are incorporated herein by
reference in their entireties.

BACKGROUND

[0002] A workflow comprises a sequence of connected
steps called work queues. A work queue is a method of
tracking the individual steps of the workflow, such that the
work queues are smaller divisions of the overall workflow.
Furthermore, a workflow can be divided into intermediate
divisions called work processes. Work processes comprise
two or more linked work queues.

[0003] From these defined workflows, work queues, and
work processes, models can be created and schedules for
employees can be defined. These schedules could take into
account a variety of constraints defined for each portion of
the workflow including the amount of time to complete a
queue or process, the amount of workers available, the
amount of hours available for each worker, and the like.

BRIEF DISCLOSURE

[0004] A method of scheduling work assignments for a
plurality of employees includes defining a plurality of work
queues that include work items. The plurality of work
queues are associated with one or more links between a
parent work queue and at least one child work queue to form
at least one work process. At least one work process goal is
defined for each work process. A work schedule is generated
to achieve the work process goals.

[0005] A method of work force management and includes
defining a plurality of work queues that include work items.
The plurality of work queues are associated with one or
more links between a parent work queue and at least one
child work queue to form at least one work process. At least
one work process goal is defined for each work process. A
schedule of employee work queue assignments is generated
to achieve the work process goals. The performance of the
generated schedule is simulated. At least one performance
metric is calculated from the simulation. The at least one
performance metric is compared to an acceptance criteria. If
the at least one performance metric meets the accepted
criteria, the schedule of employee work queue assignments
is accepted and if the at least one performance metric does
not meet the acceptance criteria, a new schedule employee
work queue assignments is generated.

[0006] A method of scheduling work assignments for a
plurality of employees includes defining a plurality of work
queues, each work queue being representative of a task to
which one or more employee of a plurality of employees can
be assigned. A graphical user interface is presented on a
graphical display. A selection of one or more work queues of
the plurality of work queues is received. A graphical indi-
cation of each of the selected work queues is presented on

Mar. 18, 2021

the graphical user interface. A plurality of links are created,
each link existing between two work queues. At least one
constraint associated with at least one work queues or link
is defined. A selection of at least two work queues is received
and the selected at least two work queues are defined as a
work process. At least one work process goal is defined. A
schedule of assignments of tasks associated with work
queues to be performed by the plurality of employees is
generated. The generated work schedule is defined by the at
least one constraint and the at least one work process goal.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1 is a flowchart that depicts an exemplary
embodiment of a method for scheduling work processes.
[0008] FIG. 2 is a flow chart that depicts an exemplary
embodiment of a method of inputting work queues and work
processes.

[0009] FIGS. 3A-3D illustrates exemplary screenshots for
inputting work queues and work processes.

[0010] FIGS. 4A and 4B are flow chars that depict exem-
plary embodiments of methods of creating and modifying
hidden constraints.

[0011] FIG. 5 depicts an exemplary embodiment of a
computing system for scheduling work processes.

[0012] FIG. 6 depicts an exemplary embodiment of a
workflow.
[0013] FIG. 7 is a flow chart that depicts on exemplary

embodiment of a method of proportion discovery.
[0014] FIG. 8 is a flow char that depicts an exemplary
embodiment of a method of simulated annealing.
[0015] FIG. 9 is a flow chart that depicts an exemplary
embodiment of a method of neighbor generation.

DETAILED DISCLOSURE

[0016] Systems, methods, and software are disclosed
herein to improve workforce management. The method
includes an interface wherein work queues can be created
and combined to create work processes. From these work
processes, and work process goals, the method simulates the
work processes and creates an optimized schedule to com-
plete the work processes.

[0017] FIG. 6 depicts an exemplary embodiment of a
workflow 10, which is used herein for merely exemplary
purposes. While the workflow 10 is a relatively simple
workflow 10 directed to achieving a goal in an exemplary
banking function of obtaining and depositing checks. The
workflow 10 is made up of a plurality of work queues 12.
Each of the work queues represents a task that must be
performed in carrying out the workflow 10. Each work
queue 12 represents a queue of work items that are available
for processing according to the task of the work queue 12.
[0018] The workflow 10 includes the work queues 12 of
opening envelopes, verifying checks, depositing checks at
bank A and depositing checks at bank B. In a non-limiting
example, the open envelopes work queue 12 translates into
the real world as a stack of unopened envelopes. Each
unopened envelope is a work item that must be processed
(open the envelope) in order to fulfill the task of the work
queue 12 and move the resulting work item (the check
contained within the envelope) to the next work queue 12.
[0019] Inthe workflow 10, work queues may be connected
by links 14. The links 14 between the work queues 12
represent the transition of a work item from a completed

US 2021/0081905 Al

work queue to populate the next work queue 12 in the
workflow 10. As noted above, two or more work queues 12
connected by a link 14 may be further connected and defined
as a work process 16. Work processes 16 can represent
sub-processes within the workflow 10. Multiple work pro-
cesses 16 may overlap or partially overlap with one another.
For example, one work process exists resulting in the deposit
of checks at bank A while another work process 16 exists
resulting in the deposit of checks at bank B. Both of these
work processes 16 include the work queues of open enve-
lopes and verify checks. The difference between the work
processes only occurs when the verified checks are to be
deposited at two different banks.

[0020] FIG. 1 is a flowchart illustrating a method 100 for
operating a workforce management system. As shown in
FIG. 1, the method begins at step 101 by inputting work
queues and work processes using an interface. In one
example, the interface could be a user graphical interface as
further exemplarily depicted in FIGS. 3A-3D and described
with respect to FIG. 2. However, other interfaces could
include a command line interface, a touch interface, or the
like.

[0021] Next, at step 102, constraints are placed on the
work queues and work processes defined in step 101. These
constraints could include an overarching time period goal
for the work processes to be completed, the amount of time
a single work process or work queue takes to be completed,
the amount of time a similar work process or work queue
takes to be completed, the workers available, workflow
percentages regarding the flow of work from one queue to
another queue, or any other data that would be beneficial to
determining an optimized schedule. Exemplary embodi-
ments of such constraints will be disclosed in greater detail
herein.

[0022] Furthermore, the constraints of step 102 could
include of both express constraints and hidden constraints.
The express constraints are input prior to any schedule
optimization, and are not subject to change during the
optimization process. However, unlike express constraints,
hidden constraints can be added or modified at any point of
the process. Thus, these constraints could be used to modify
work queue or work process time periods to create a more
optimized schedule.

[0023] Inone example, the express constraints of step 102
could be entered manually using the interface of step 101 or
a different interface. For example, a six-hour overarching
work process goal could be defined for the work processes
or a single work process could be defined as requiring four
hours to complete. Additionally, constraints could be entered
regarding other work processes including the amount of time
to complete a similar work process and the amount of
workers to complete the similar work process. Furthermore,
these constraints could be saved to a storage device, such as
a hard disk, to be used for future constraints on scheduling.

[0024] In another example, the express constraints of step
102 could be entered by an automated system. For example,
a timer could be set to input the time to complete a work
queue or a work process. This information could also be
saved to a storage device, such as a hard disk, to be used for
future constraints on scheduling.

[0025] After placing constraints on the work queues and
work processes at step 102, the method then creates an
optimized schedule based on these constraints at step 103.

Mar. 18, 2021

Here, the method uses the constraints of step 102 and applies
an optimization algorithm to determine an optimized sched-
ule.

[0026] In one example, the optimization method could
include a “Hill-Climbing” method. In an embodiment, the
“Hill-Climbing” optimization method entails creating an
initial work schedule including dates, times, and jobs for
each employee to work. Next, the simulation will attempt to
create a more optimized work schedule by scoring and
comparing a new work schedule with the initial work
schedule. The schedule with the better score will remain and
the other schedule will be eliminated. Thereafter, the com-
parison and simulation of schedules can be done for one or
more iterations to find an optimized schedule.

[0027] In one example, hidden constraints could be added
or modified during the optimization process. These hidden
constraints could include time constraint modifications for
work processes or work queues. Furthermore, the hidden
constraints could then be used in the creation of future
schedules to be compared or, alternatively, used in scoring
the comparisons between schedules.

[0028] FIG. 2 is a flowchart illustrating a method 200 for
modeling work processes using queues. The method 200 of
FIG. 2 may be carried out using a work queue flow editor as
disclosed in greater detail herein to graphically link work
queues and create a workflow model and define one or more
work processes within the workflow. The method begins at
step 201 by initializing a graphical interface. Non-limiting
embodiments of the graphical interface are depicted at FIGS.
3A-3D. Next, at step 202, the user creates different work
queues that are part of the workflow. For example, the
process described above and depicted at FIG. 6 includes
opening the envelopes that contain checks, verifying the
checks, and depositing the checks as one example of a series
of work queues in the banking industry. Thereafter, at step
203, the user can then connect work queues using links to
create a workflow. These links are created directionally such
that one queue goes into another queue. In other words,
using the example above, opening envelopes that contain
checks could have a link directed at verifying checks, and
verifying checks could have a link that is directed at depos-
iting checks. The connection of all of the work queues
creates a workflow. Additionally, work queues can also be
directed to one or more subsequent work queues. For
example, if checks are deposited two different banks after
opening, links are drawn to both banks representing the
workflow to each.

[0029] Furthermore, the user interface can be used at step
204 for defining processes and process goals. For example,
the user can select two or more elements of the workflow
and create a work process. In the graphical user interface,
each work process can be identified by a color and/or a title.
A work process is a collection of linked queues that define
a workflow or constitute a portion of the workflow. Addi-
tionally, a single work queue can belong to multiple work
processes.

[0030] In one example, when a work queue belongs to
multiple work processes, each color identifying the groups
is represented proportionately in the queue.

[0031] In one example, a user can create two work pro-
cesses for two independent workflows. From these two work
processes, an overarching work process goal could be
defined. Such a process goal could be used to define a set

US 2021/0081905 Al

period of time for all processes to be completed and, thus,
could be used as a constraint for step 102.

[0032] Non-limiting embodiments of screen shots of the
above user interface can be found in FIG. 3 and are
described in further detail herein.

[0033] FIGS. 3A-3D depict exemplary screenshots for the
graphical user interface (GUI) 300 of the method 200
described above with respect to FIG. 2. The method 200
begins at step 201 by initializing the user interface exem-
plarily to present the GUI 300 as depicted in FIG. 3A. At
FIG. 3A, the user is presented with a blank canvas 310 and
a toolbar 312 to modify the blank canvas 310. Toolbar 312
includes a listing of potential available work queues that
may be incorporated into a new workflow. The blank canvas
310 can be edited by the user to add work queues 314 to the
canvas (step 202) that represent pieces of the workflow as
depicted at FIG. 3B. The placed work queues 314 are
exemplarily identified as queue 1, queue 2, queue 3A, and
queue 3B. The work queues 312 can exemplarily be placed
on the canvas 310 by dragging and dropping the work queue
identifications from the toolbar 312 to the canvas 310. Next,
in accordance with step 203 described above, and depicted
at FIG. 3C, the user can connect the work queues 314 using
links 316. These links 316 may be created directionally such
that a completed work queue 314 flows into a subsequent
work queue 314. In other words, once completed, work from
work queue 1 could flow into work queue 2, and work from
work queue 2 could flow into work queue 3A. Additionally,
the output of work queues 314 can also be directed to one or
more subsequent work queues 314. For example, completed
work from work queue 2 could flow along link 316 to work
queue 3A and along link 318 to work queue 3B. Once all of
the work queues 313 have connected by links 316, 318, a
workflow 320 has been created.

[0034] As depicted in FIG. 3C, in embodiments wherein
multiple links (e.g. 316, 318) extend from one work queue
314 to multiple subsequent work queues 314, a percentage
322 can be added to link 316 or 318 to denote the appor-
tionment of the workflow volume through that link in the
workflow. In embodiments, these percentages can be
adjusted by the user in constructing the workflow. These
percentages can be used as constrains as described in further
detail herein and in predicting the percent of workflow
apportioned between descendant work queues, in embodi-
ments wherein further work queues exists after the alterna-
tive work queues 3A and 3B.

[0035] After establishing the entire workflow 320, the user
can then associate different queues to create a work process
324 defined within the workflow 320. For example, the user
could select work queue 1 and work queue 2 and designate
them to be Process 1, as seen in the screenshot depicted in
FIG. 3D. The user could then select an alternative combi-
nation of work queues 314 from the workflow 320 and create
other work processes 324. Moreover, with the selection of
work queues 314 to create work processes 324, the user can
define an overarching work process goal to constrain the
scheduling as disclosed in further detail herein. In one such
embodiment, the user may select work queue 314 and enter
one or more work process goals in a properties tab 326
within the GUI 300. In a merely exemplary and non-limiting
embodiment, such a work process goal may exemplarily be
“complete all work in work queue 1 prior to 3 pm through
Process 1”7 or “complete Process 1 by 5 pm.” It will be
recognized that in embodiments, a similar procedure can be

Mar. 18, 2021

used to create goals or edit properties of the work queues
314 or links 316, 318. In at least one example, the goal could
set the amount of hours, days, months, or years to complete
a work process. In turn, the optimization method will use
these constraints to develop an optimized schedule.

[0036] In embodiments as disclosed herein, the work
process 322 is a collection of linked work queues 314 that
define at least a portion of a workflow 320. In embodiments
of the GUI 300, each created work process 322 may be
indicated with a unique color. Those work queues or links
that do not belong to one or more work processes may be
color coded to reflect this status as well. In an embodiment,
an indication of the newly created process 322, “Process 17
appears as an indication in the toolbar 312 that also lists each
of the work queues in the workflow 320. In an embodiment,
a single work queue may belong to multiple work processes.
When a work queue belongs to multiple work processes,
each of the process color indication may be represented in
the work queue icon 314 to reflect this designation.

[0037] As described above, embodiments of the workflow
320 may include the definition of one or more percentages
which may be used as constraints, and predict the percentage
proportions in which work items processed from a work
queue 314 are distributed across multiple alternative subse-
quent work queues 314. As noted above, the percentages
may be established by user input. In an alternative embodi-
ment, the percentages may be calculated in accordance with
embodiments of a method as disclosed herein with respect to
FIG. 7. In embodiments, the completion of a work item in
one work queue (which may be referred to as the perfor-
mance of a step in a work process) drives a new work item
in a subsequent work queue some or all of the time. When
the workflow relationships are simple and easily defined, a
user input of a static percentage may be used. However,
when more complex relationships between two or more
work queues and a process must be molded, a more robust
method of determining the percentages is required.

[0038] As used herein, the average relationship of arrivals
to arrivals consider the ratio of arrivals among one or more
source work queues and one or more subsequent work
queues. In an alternative embodiment an average relation-
ship of completion to arrivals considers the ratio of comple-
tions of work items in one work queue to the arrivals at a
subsequent work queue from that work queue.

[0039] In a complex linking scenario, one or more work
queues may be “cross pollinated” by receiving work item
arrivals from multiple work queues and the outputs of the
work queue may be distributed among multiple subsequent
work queues as well. In such embodiments, the proportion
calculations as identified above may involve complex con-
straint logic. For this reason, a linear constraint solver may
be used to solve for the representative proportions. An
embodiment of a method of proportion discovery 700 ana-
lyzes historical work volume arrivals and check-ins, pro-
duces a minimization function, a set of constraints, and a set
of variables (e.g. the percentage proportions to be discov-
ered), and passes them into a linear constraints solver in
order to discover the proportions at 708.

[0040] The analyzer 704 receives the historical data 702
and identifies the volume for a specified day on an identified
work queue. The analyzer 704 also identifies the proportion
to be discovered between an identified work queue and a
subsequent work queue. The analyzer 704 also identifies the
function to be minimized by the linear constraint solver 706.

US 2021/0081905 Al

The linear constraint solver 706 operates to provide a least
squares (best fit) approximation of the linked work queue
proportions giving the historical data. In an embodiment, the
least squares approximation is determined by squaring the
summation of the daily volume for all work queues times the
proportion to be discovered between the work queue and its
subsequent work queue minus the daily volume for the
subsequent work queues.

[0041] Thus by analyzing the historical relationships
between work queues and subsequent work queues, propor-
tions can be discovered between work queues and complex
workflow.

[0042] FIGS. 4A and 4B illustrate the implantation of
constraints and the introduction and modification of hidden
constraints as referenced above with respect to FIG. 1. The
constraints as used in embodiments of creating an optimized
schedule as disclosed herein include both express constraints
and hidden constraints. Express constraints are input prior to
any schedule optimization, and are not subject to change
during the optimization process. However, unlike express
constraints, hidden constraints can be added or modified at
any point of the schedule optimization process.

[0043] As shown in FIG. 4A, a work process 410 may
include three work queues, queue A 412, queue B 414, and
queue C 416, respectively connected by links 418 and 420.
At each of the work queues 412, 414, 416 and links 418, 420
an express constraint 422, 424 may be determined regarding
the amount of time to complete the queue or link. These
express constraints 422, 424 may be established as a prop-
erty exemplarily of a work queue, or link. Such an express
constraint may exemplarily be an average handling time to
process each work item in a work queue, or alternatively a
lag time associated with each link before a work item is
taken up by a next work queue. Therefore, all of the work
queues 412, 414, 416 and links 418, 420 could have a set
amount of time to be completed, and in an exemplary
embodiment the summation of these set amounts of time
would results in a total time (T) for the work process to be
completed.

[0044] In situations where the scheduling of multiple work
processes is needed to fulfill an overarching work process
goal, it may be impossible to create a schedule that satisfies
each work process’ express constraints. In other words, each
work process may not be able to be completed in their
respective total time (T). For example, if employee X is the
only employee that can perform the tasks associated with
work queue A and work queue B, then it will be impossible
for employee X to simultaneously work on work queue A
and work queue B. Thus, a completely optimized schedule
may become unobtainable. In an alternative example, the
work process 410 may have a work process goal of time (T)
as described above, but this does not account for backlogs at
links 416, 418 or backlogs at one or more of the work queues
412, 414, 416.

[0045] Therefore, as disclosed herein, hidden constraints
are used between the work queues to modify the work
process times. As can be seen in image FIG. 4B, hidden
constraints 462, 464 are added exemplarily to links 458, 460.
It will be understood that hidden constraints may also be
added to work queues 452, 454, 456 in work process 450.
The hidden constraints 462, 464 serve to extend the work
process from a total time T to a total time T+hidden
constraints. These constraints could then allow the comple-

Mar. 18, 2021

tion of the optimization method as described in FIG. 1,
without the optimization becoming unobtainable as
described above.

[0046] In one example, the hidden constraints are added
and modified between iterations of the optimization process
described in FIG. 1. In another example, the hidden con-
straints could be used in creating the schedules for the
optimization process as described in FIG. 1. This modifica-
tion to the generation of schedules could prevent resource
constraints, bottlenecks, and other similar issues by chang-
ing the time periods to complete a work process. In other
words, this constraint modification could schedule a process
for two days instead of one day, if there were improvements
within other areas of the schedule to complete an overarch-
ing goal for the processes.

[0047] Inanother example, the hidden constraints could be
used in the scoring process of the optimization method. In
other words, rather than defining schedules using the hidden
constrains, the hidden constraints could be used in compar-
ing different schedules. This method would be beneficial in
optimization processes where the generated schedules were
not required to follow the express constraints, but were
rather scored better based on their proximity to the express
constraints. In this situation, the hidden constraints could be
used to promote schedules that help further the overall goal,
but violate some of the express constraints for the individual
work processes.

[0048] Referring back to FIG. 1, after the work process
constraints, queue constraints, and work process goals are
defined, then a schedule can be generated based upon these
constraints to simulate the workflow, evaluate the simulated
workflow in order to create an optimized work schedule for
the workflow. In an embodiment, a modified push-forward
simulation is used to simulate work schedules for evaluation
and optimization. In the push-forward simulation, the simu-
lation moves all work queues forward in parallel interval by
interval so that an interval is not “passed” before all of the
volume has been generated on that interval. In an embodi-
ment, it is to be noted that although the incoming volume is
handled in parallel, the interval variables of the next avail-
able resource may move forward in time at different rates.
Such embodiments represent that individual work queues
may process individual work items and therefore exhaust the
work queue at different rates.

[0049] Next, the queue volume of linked work queues is
automatically updated as agent work time is allocated. This
updating of work volume may be dependent upon the link
type or other constraints placed upon a link between work
queues. In an embodiment, a link may be defined as a
“generate volume on arrival” link, while other links may be
identified as “generate volume on check-in” links. If a link
is a “generate volume on arrival” link, then volume is
generated on linked queues (within the workflow) as soon as
volume is generated on the parent work queue. The impli-
cation of this is that if a workflow comprises only “generate
volume on arrival” type links, then all volume in the
workflow is generated at the start of the push-forward
simulation. Alternatively if a workflow includes “generate
volume on check-in” links, when agent work time is allo-
cated to handle the volume on one work queue, volume will
automatically be generated on all subsequent linked queues
(within the workflow) until another “generate volume on
check-in” link is reached. Therefore, the “generate volume

US 2021/0081905 Al

on check-in” links require the additional input of allocated
agent work time before work volume is generated on child
work queues.

[0050] In some embodiments, heuristics are applied in
order to avoid locally optimal states that do not lead to a
globally optimal solution within the simulations. Since
dynamically generating volume generates unmet demand on
the linked work queues the unmet demand on the linked
work queues is scored before the work volume was gener-
ated. Without a score of the unmet demand on linked work
queues, adding an agent activity to handle volume on a
parent queue could look “locally” bad to the search engine,
as this allocation of agent activity would create bottle
necked unmet demand on subsequent child queues, while
the pre-allocated agent activity can satisfy the demand on
the parent queue. In another embodiment, during initializa-
tion of the simulation for each work queue in a workflow, the
total generated volume for the child work queue is com-
puted. The computation of the total generated volume for
child queues additionally help to solve the problem as
identified above where scheduling agent activity on a single
process step (e.g. parent queue) looks “locally” bad due to
the dynamically generated unmet demand on subsequent
child queues, while the additional agent assignment to the
work queue may yield better overall service times.

[0051] In an embodiment, the concern is addressed by
introducing a penalty for unhandled work load (UWpen) and
a measure of total proportion of children (TCP) where c is
a linked child queue of type generate volume on chick-in for
aparent queue g, ¢ is the proportion parameter for this linked
child queue. Thus the service level score (SL) used to
evaluate a push-forward simulation:

SL:=Sum{all g]([Sum[all {/J(PCApen(i,q))*Priority
(PCApen))+Sum|all {)(AQWpen(iq))*Priority
(A0Wpen))+(UWpen(q)*TPC(g,1)*Priority
(UWpen))]*Priority(q))

[0052] In an embodiment, another penalty score is incor-
porated into the simulation representative of a percent of
work not handled in the predetermined service time goal. In
an embodiment as disclosed herein, the simulation calcu-
lates the PCA penalty by first calculating the estimated time
(ET) to finish an item of work belonging to a work process
(P) which arrived at step (Q) at interval (I) and whose step
(Q) is being handled at interval (J). The estimated time (ET)
is provided by the following equation:

ET(,q,p.))=AHT(,q)+Max[all c()|(ETG,cp,j+4AHT
G.O+LAGC+EQW(j+AHT(j,q)+LAGC,c)))

[0053] In the above equation, AHT is the average handle
time which is the time it takes for the average agent to handle
the work on a specified work queue at a specified interval.
LAG is the time interval between when a work item is
completed from a parent work queue to when the work item
will be taken off at a child work queue. EQW is a learned
factor which is a dynamically estimated additional wait
factor that represents a delay in processing in addition to the
handling time and lag before the work item at the child
queue can be handled. The wait represented by the EQW
factor may exemplarily be due to resource constraint or
bottlenecks with in the work schedule. As will be described
herein, the ET and EQW, in addition to the simulated
annealing search, which will be described in more detail
herein, provides a prediction of whether scheduling an agent

Mar. 18, 2021

activity on some work queue in the work process will lead
to the work process being resolved within the service time
goal.

[0054] In an embodiment, a penalty representative of the
percentage of work not handled within the service time goal
(PCApen) is calculated and used in the calculation of the
total service level score (SL) as described above. In the
modified PCApen, the PCA penalty is modified in order to
account for the previous step in the process by subtracting
the previous step in the process from the calculation of
PCApen, double counting of work items is prevented. Logi-
cally, the last step in the workflow handle will provide the
best estimate as to whether the complete process will be
handled within the service time. This is reflected in that the
EQW term falls away as the workflow progresses towards
the final step in the workflow. The uncertainty associated
with the EQW term then similarly falls away with the
calculation of the PCA penalty. In an embodiment, the PCA
penalty can be calculated with the following equation:
PCAppen(i,q,p)=max[Sum(all j:ST(,q,p,/)>SGp](WH
(i;qj)),(l—SG%(i,p))* W(i,q)]-PCAppen(i-1,g-1,
p

[0055] In still further embodiments, the simulation is
designed to avoid being stuck at “locally” optimal solutions
that are not globally optimal solutions. Another cause of this
is a penalty associated with average queue wait times which
results in the search engine scheduling agent activities as
early as possible if all else is equal. In order to capture the
fact that some work queue steps could be handled later than
other work queue steps without hurting the overall service
level, an earliness penalty (Epen) was developed. It is to be
noted that in embodiments, the earliness penalty is turned off
for the final evaluations, but is on for most of the simulation.
In an embodiment, the earliness penalty may be defined as:

Epen(i,q,p):=Sumlall j :ST(,q,p/)<SGt(p)|(WH(,q,
I*(SGHp)-51G.q.p/))

[0056] In the above equation, the earliness penalty is for
an item of work that belongs to process P, arriving at step Q
at internal I, and whose step Q is being handled at interval
J. After calculating the earliness penalty, a service level
score (SL) may be calculated by the following equation:
SL:=Sum{all q][[(UWpen(q)* TPC(g,1)*Priority

(UWpen))+(Sum/[all {]J(PCApen(i,q))*Priority

(PCApen))+(Sumlall 7](Epen(i,q))*Priority

(Epen))+(Sumlall {J(AQWpen(%,q))*Priority

(4QWpen))]*Priority(¢)+Sumlall g](URpen(q))
*Priority(URpen))

[0057] In the above equation priority (UWpen) is greater
than priority (PCApen) is greater than priority (Epen) is
greater than priority (AQWpen) is greater than priority
(URpen). In the above service level scoring function, the
term UWpen ensures (above all else), work gets handled as
the UWpen represents a penalty for final backlog which
represents if work is not handed. The PCA penalty ensures
that, if work is being handled, the work is handled within the
service time goal. The earliness penalty (Epen) captures the
characteristic that some processes have looser service goals
than others and hence can be scheduled later (all else being
equal) without a reduction in service level. Average queue
wait penalty (AQWpen) attempts to maintain schedules
where work items in a work queue is handled early when-

US 2021/0081905 Al

ever possible. The final unused resources penalty (URpen)
ensures that the simulation has not unnecessarily overstaffed
at any work queue.

[0058] In an embodiment, overstaffing may be penalized
below all other terms, whereas in previous simulations over
and under staffing were given the same priority.

[0059] In still further embodiments, the simulation is
modified to dynamically generate volume on linked work
queues and to handle the process service goal as well.
Therefore, the push-forward simulation is modified in order
to dynamically generate volume on linked work queues. The
simulation is modified to avoid the problem of optimizing to
a local optimization, rather than to a global optimization by
introducing an earliness penalty and evaluating unsatisfied
demand between linked work queues. The simulation is also
modified to incorporate process goals not being met with an
additional side effect that over staffing is a lowest priority.
[0060] Within the modified simulation, agent shift and
work activities must be scheduled, across iterations of the
simulation in order to arrive at the schedule that optimizes
the achievement of the process goals. This scheduling may
be performed in embodiments using a simulated annealing
search as referenced above. The simulated annealing search
can be performed by:

T=To
Until T=0

s' = s(N(S)) - s(8))

p(s") = exp(-s'/T) -- the probability that we should except
random move

If (s' <0 or R >p(s"h)

Then accept the move --> S = N(S) reduce T

done

[0061] In the above algorithm, R is a random number
between zero and one. T is a temperature. S' is a delta change
in service level score after a random move. s(S) is the service
level score of schedule S computed by the push-forward
simulation as described above. FIG. 8 is a flow chart that
depicts an embodiment of a method 800 of the simulated
annealing as described above. As can be seen from the
flowchart in FIG. 8, an iterative process is performed
wherein a push-forward simulation 802 is performed based
upon a neighbor generated at 804 and an average queue wait
(AQW) calculated at 806. The push-forward simulation 802
results in a service level score. The service level score is
compared at 808 to determine if the service level score meets
the criteria established to evaluate the service level score for
acceptance of the neighbor. If the criteria is not met then a
next neighbor is generated at 804. If the criteria is met, then
the neighbor is accepted at 810, and the temperature is
reduced at 812 and a new neighbor is generated at 804. The
average queue wait is updated at 814 such that a new
push-forward simulation can be performed at 802 with the
newly generated neighbor and updated average queue wait.
This process is repeated until the temperature is reduced to
Zero.

[0062] FIG. 9 is a flow chart that depicts an embodiment
of a method 900 of generating a neighbor. Exemplarily, an
embodiment of the method 900 may be used in the method
800 as depicted in FIG. 8 and described above, particularly
in implementing an embodiment of 804. The method 900 of
generating a neighbor depicted in FIG. 9 relies upon the
inherent uncertainty in the EQW which as described above,

Mar. 18, 2021

is a dynamically estimated additional wait factor, which
uncertainty is used in the neighbor generation to generate
stochastic neighbors. The error in the EQW is representative
of how close the process is to a final optimized schedule.
Since the uncertainty in the EQW is representative of how
close the process is to the last step in the process of an
optimized schedule, by unbinding the work activities (back-
ing up through a work process chain), introduces more
randomness as there is more inherent uncertainty at each
additional work queue must be completed. At 902, work
activities for N complete workflows are unbound. In an
embodiment, work activities may be unbound until a pre-
determined number of hours of work have been unbound.
Controlling the number of hours of workflow or the number
of work processes unbound will control the uncertainty used
in the neighbor generation as disclosed in greater detail
herein. In an exemplary embodiment, workflow can be
unbound by:

Let S be the current schedule.
Let H be the hours of work to unbind

H=AT)
Let D be the depth that we backup a process chain
D =gT)

Let G be the granularity
Until H hours of work unbound
Select a process interval
Unbind G units of work at workflow end queues or process p
and then forward propagate the unbound resource through all parent
queues in the workflow until depth D is reached or the start of the
workflow.

[0063] Unbound work activity is randomly selected at
904. An activity is scheduled at 906. A push-forward simu-
lation conducted 910 from the attempted activity binding
along with an average queue wait determined at 908 from
the last N accepted schedules. If the push-forward simula-
tion indicates that the schedule is best or optimized at 912,
then the schedule is saved. If the domain of process activity
bindings is not exhausted at 914 then a new activity binding
is tried at 906. This loop is repeated until all of the activity
bindings and domains are exhausted at which point a deter-
mination is made at 916 if all of the unbound work activities
have been bound. If not, then the process continues back at
904 to randomly pick a remaining unbound work activity. If
all of the work activities have been bound at 916, then the
process concluded and the stochastic neighbor has been
generated, exemplarily as found in step 804, of the method
800 depicted in FIG. 8.

[0064] FIG. 5 illustrates a computing system 500 for
scheduling work processes according to one example. Com-
puting system 500 includes processing system 506, storage
system 504, software 502, communication interface 508,
and user interface 510. Processing system 506 loads and
executes software 502 from storage system 504, including
software module 530. When executed by computing system
500, software module 530 directs processing system 506 to
operate as described herein for method 100.

[0065] Although computing system 500 includes one soft-
ware module in the present example, it should be understood
that one or more modules could provide the same operation.
[0066] Additionally, computing system 500 includes com-
munication interface 508 that can be configured to receive
constraint data from constraint source 522. Constraint
source 522 may be any combination of timers, video sur-

US 2021/0081905 Al

veillance cameras, or any device capable of capturing a work
queue or work process constraint.

[0067] Referring still to FIG. 5, processing system 506 can
comprise a microprocessor and other circuitry that retrieves
and executes software 502 from storage system 504. Pro-
cessing system 506 can be implemented within a single
processing device but can also be distributed across multiple
processing devices or sub-systems that cooperate in execut-
ing program instructions. Examples of processing system
506 include general purpose central processing units, appli-
cation specific processors, and logic devices, as well as any
other type of processing device, combinations of processing
devices, or variations thereof.

[0068] Storage system 504 can comprise any storage
media readable by processing system 506, and capable of
storing software 502 and constraint data. Storage system 504
can include volatile and nonvolatile, removable and non-
removable media implemented in any method or technology
for storage of information, such as computer readable
instructions, data structures, program modules, or other data.
Storage system 504 can be implemented as a single storage
device but may also be implemented across multiple storage
devices or sub-systems. Storage system 504 can comprise
additional elements, such as a controller, capable of com-
municating with processing system 506.

[0069] Examples of storage media include random access
memory, read only memory, magnetic disks, optical disks,
flash memory, virtual memory, and non-virtual memory,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium which
can be used to store the desired information and that may be
accessed by an instruction execution system, as well as any
combination or variation thereof, or any other type of
storage media. In some implementations, the storage media
can be a non-transitory storage media. In some implemen-
tations, at least a portion of the storage media may be
transitory. It should be understood that in no case is the
storage media a propagated signal.

[0070] User interface 510 can include a mouse, a key-
board, a voice input device, a touch input device for receiv-
ing a gesture from a user, a motion input device for detecting
non-touch gestures and other motions by a user, and other
comparable input devices and associated processing ele-
ments capable of receiving user input from a user. These
input devices can be used for defining queues, work pro-
cesses, work process goals, queue constraints, and work
process constraints. Output devices such as a video display
or graphical display can display the interface further
described with respect to FIGS. 3A-3D, speakers, printer,
haptic devices, and other types of output devices may also
be included in user interface 210.

[0071] Application interface 520 can include the interface
further described with respect to FIGS. 3A-3D allowing the
user to define and edit queues, work processes, work process
goals, queue constraints, and work process constraints.
Application interface 520 can also display the optimized
schedule.

[0072] It should be understood that although computing
system 500 is shown as one system, the system can comprise
one or more systems to execute process 100.

[0073] The functional block diagrams, operational
sequences, and flow diagrams provided in the Figures are
representative of exemplary architectures, environments,
and methodologies for performing novel aspects of the

Mar. 18, 2021

disclosure. While, for purposes of simplicity of explanation,
the methodologies included herein may be in the form of a
functional diagram, operational sequence, or flow diagram,
and may be described as a series of acts, it is to be
understood and appreciated that the methodologies are not
limited by the order of acts, as some acts may, in accordance
therewith, occur in a different order and/or concurrently with
other acts from that shown and described herein. For
example, those skilled in the art will understand and appre-
ciate that a methodology can alternatively be represented as
a series of interrelated states or events, such as in a state
diagram. Moreover, not all acts illustrated in a methodology
may be required for a novel implementation.
[0074] The included descriptions and figures depict spe-
cific implementations to teach those skilled in the art how to
make and use the best mode. For the purpose of teaching
Inventive principles, some conventional aspects have been
simplified or omitted.
[0075] Those skilled in the art will appreciate variations
from these implementations that fall within the scope of the
invention. Those skilled in the art will also appreciate that
the features described above can be combined in various
ways to form multiple implementations. As a result, the
invention is not limited to the specific implementations
described above, but only by the claims and their equiva-
lents.
[0076] The included descriptions and figures depict spe-
cific embodiments to teach those skilled in the art how to
make and use the best mode. For the purpose of teaching
inventive principles, some conventional aspects have been
simplified or omitted. Those skilled in the art will appreciate
variations from these embodiments that fall within the scope
of'the invention. Those skilled in the art will also appreciate
that the features described above can be combined in various
ways to form multiple embodiments. As a result, the inven-
tion is not limited to the specific embodiments described
above, but only by the claims and their equivalents.
[0077] In the foregoing description, certain terms have
been used for brevity, clearness, and understanding. No
unnecessary limitations are to be inferred therefrom beyond
the requirement of the prior art because such terms are used
for descriptive purposes and are intended to be broadly
construed. The different configurations, systems, and
method steps described herein may be used alone or in
combination with other configurations, systems and method
steps. It is to be expected that various equivalents, alterna-
tives and modifications are possible within the scope of the
appended claims.
1.-20. (canceled)
21. A method of optimizing a workflow for scheduling
work assignments, the method comprising:
defining a plurality of work queues, each work queue
representative of a task to be completed;
displaying the plurality of defined work queues in a
graphical user interface;
receiving, through the graphical user interface, a selection
of at least two work queues of the plurality of defined
work queues;
presenting a graphical indication of each of the selected
work queues on the graphical user interface;
creating, in the graphical user interface, at least one
directional graphical link between two of the at least
two selected work queues, binding two of the at least
two selected work queues;

US 2021/0081905 Al

creating at least one work process in the workflow by
receiving, in the graphical user interface, a selection of
at least two of the selected work queues;

graphically depicting each of the work processes with a

unique color;

defining at least one work process goal for the at least one

work process;

generating, using a processor adapted to optimize a work

schedule, a workflow for scheduling tasks associated
with the graphically depicted work queues, the gener-
ated schedule defined by the at least one work process
goal;

unbinding a plurality of work queues for a predetermined

number of work processes; and

randomly selecting an unbound work queue and itera-

tively binding another unbound work queue to the
selected unbound work queue and simulate the perfor-
mance of the workflow to optimize the workflow
schedule until all unbound work queues are rebound
and the workflow schedule is optimized such that all
work process goals are met.

22. The method of claim 21, the method further compris-
ing defining, with the graphical user interface, at least one
constraint associated with at least one of the selected work
queues.

23. The method of claim 22, wherein the generated
schedule is defined by the at least one constraint and the at
least one work process goal.

24. The method of claim 21, the method further compris-
ing graphically depicting each work queue and each graphi-
cal line that are not part of one of the work processes as a
single unique color.

25. A system for optimizing a workflow for scheduling
work assignments, comprising:

a processor;

a graphical user interface; and

a non-transitory computer readable medium programmed

with computer readable code that upon execution by

the processor causes the processor to:

define a plurality of work queues, each work queue
representative of a task to be completed;

display the plurality of defined work queues in the
graphical user interface;

receive, from the graphical user interface, a selection of
at least two work queues of the plurality of defined
work queues;

present a graphical indication of each of the selected
work queues on the graphical user interface;

create, in the graphical user interface, at least one
directional graphical link between two of the at least
two selected work queues, binding two of the at least
two selected work queues;

create at least one work process in the workflow by
receiving, in the graphical user interface, a selection
of at least two of the selected work queues;

graphically depict each of the work processes with a
unique color;

define at least one work process goal for the at least one
work process;

generate, using a processor adapted to optimize a work
schedule, a workflow for scheduling tasks associated
with the graphically depicted work queues, the gen-
erated schedule defined by the at least one work
process goal;

Mar. 18, 2021

unbind a plurality of work queues for a predetermined
number of work processes; and

randomly select an unbound work queue and iteratively
binding another unbound work queue to the selected
unbound work queue and simulate the performance
of the workflow to optimize the workflow schedule
until all unbound work queues are rebound and the
workflow schedule is optimized such that all work
process goals are met.

26. The system of claim 25, wherein the processor is
further instructed to define, in the graphical user interface, at
least one constraint associated with at least one of the
created graphical directional links.

27. The system of claim 26, wherein the generated sched-
ule is defined by the at least one constraint and the at least
one work process goal.

28. The system of claim 25, wherein the processor is
further instructed to graphically depict each work queue that
is part of at least one of the work processes with the unique
color assigned to each work process to which the work
queue is assigned.

29. A method of optimizing a workflow for scheduling
work assignments, the method comprising:

providing a workforce management system, the work-

force management system including a graphical user
interface and a processor, wherein the graphical user
interface is used to create workflows, further wherein
the processor receives created worktflows and optimizes
the created workflows;

defining a plurality of work queues, each work queue

representative of a task to be completed;

displaying the plurality of defined work queues in the

graphical user interface;

receiving, through the graphical user interface, a selection

of at least two work queues of the plurality of defined
work queues;

presenting a graphical indication of each of the selected

work queues on the graphical user interface;

creating, in the graphical user interface, at least one

directional graphical link between two of the at least
two selected work queues, binding two of the at least
two selected work queues;

creating at least one work process in the workflow by

receiving, in the graphical user interface, a selection of
at least two of the selected work queues;

graphically depicting each of the work processes with a

unique color;

defining at least one work process goal for the at least one

work process;

generating, using the processor adapted to optimize a

work schedule, a workflow for scheduling tasks asso-
ciated with the graphically depicted work queues, the
generated schedule defined by the at least one work
process goal;

unbinding a plurality of work queues for a predetermined

number of work processes; and

randomly selecting an unbound work queue and itera-

tively binding another unbound work queue to the
selected unbound work queue and simulate the perfor-
mance of the workflow to optimize the workflow
schedule until all unbound work queues are rebound
and the workflow schedule is optimized such that all
work process goals are met.

US 2021/0081905 Al

30. The method of claim 29, the method further compris-
ing defining, with the graphical user interface, at least one
constraint associated with at least one of the selected work
queues or at least one of the created graphical directional
links.

31. The method of claim 30, wherein the generated
schedule is defined by the at least one constraint and the at
least one work process goal.

32. A system of optimizing a workflow for scheduling
work assignments, comprising:

a workforce management system, wherein the workforce

management system includes:

a graphical user interface used to create workflows;

a processor that receives workflows from the graphical
user interface and optimizes the created workflows;
and

a non-transitory computer readable medium programmed

with computer readable code that upon execution by

the processor causes the processor to:

define a plurality of work queues, each work queue
representative of a task to be completed;

display the plurality of defined work queues in the
graphical user interface;

receive, through the graphical user interface, a selection
of at least two work queues of the plurality of defined
work queues;

present a graphical indication of each of the selected
work queues on the graphical user interface;

create, in the graphical user interface, at least one
directional graphical link between two of the at least
two selected work queues, binding two of the at least
two selected work queues;

create at least one work process in the workflow by
receiving, in the graphical user interface, a selection
of at least two of the selected work queues;

graphically depict each of the work processes with a
unique color;

define at least one work process goal for the at least one
work process;

generate, using the processor adapted to optimize a
work schedule, a workflow for scheduling tasks
associated with the graphically depicted work
queues, the generated schedule defined by the at least
one work process goal;

unbind a plurality of work queues for a predetermined
number of work processes; and

randomly select an unbound work queue and iteratively
binding another unbound work queue to the selected
unbound work queue and simulate the performance
of the workflow to optimize the workflow schedule
until all unbound work queues are rebound and the
workflow schedule is optimized such that all work
process goals are met.

33. The system of claim 32, wherein the processor is
further instructed to define, with the graphical user interface,
at least one constraint associated with at least one of the
selected work queues or at least one of the created graphical
directional links.

34. The system of claim 33, wherein the generated sched-
ule is defined by the at least one constraint and the at least
one work process goal.

35. A method of optimizing a workflow for scheduling
work assignments, the method comprising:

Mar. 18, 2021

defining a plurality of work queues, each work queue

representative of a task to be completed;

displaying the plurality of defined work queues in a

graphical user interface;

receiving, through the graphical user interface, a selection

of at least two work queues of the plurality of defined
work queues;

presenting a graphical indication of each of the selected

work queues on the graphical user interface;

creating, in the graphical user interface, at least one

directional graphical link between two of the at least
two selected work queues, binding two of the at least
two selected work queues;

defining, with the graphical user interface, at least one

constraint associated with at least one of the selected
work queues or at least one of the created graphical
directional links;

creating at least one work process in the workflow by

receiving, in the graphical user interface, a selection of
at least two of the selected work queues, wherein the
two work queues of the at least two selected work
queues are connected by the at least one directional
graphical link;

graphically depicting each of the work processes with a

unique color;

defining at least one work process goal for the at least one

work process;

generating, using a processor adapted to optimize a work

schedule, a workflow for scheduling tasks associated
with the graphically depicted work queues, the gener-
ated schedule defined by the at least one constraint and
the at least one work process goal; and

simulating, with the processor, the performance of the

generated workflow and optimizing the workflow until
the simulation determines the workflow is optimized
such that all constraints and work process goals are met
by the optimized workflow.

36. The method of claim 35, wherein the simulation
includes unbinding a plurality of work queues for a prede-
termined number of work processes.

37. The method of claim 36, wherein the simulation
includes randomly selecting an unbound work queue and
iteratively binding another unbound work queue to the
selected unbound work queue and simulate the performance
of the workflow to optimize the workflow schedule until all
unbound work queues are rebound.

38. A system for optimizing a workflow for scheduling
work assignments, comprising:

a processor;

a graphical user interface; and

a non-transitory computer readable medium programmed

with computer readable code that upon execution by

the processor causes the processor to:

define a plurality of work queues, each work queue
representative of a task to be completed;

display the plurality of defined work queues in a
graphical user interface;

receive, through the graphical user interface, a selection
of at least two work queues of the plurality of defined
work queues;

present a graphical indication of each of the selected
work queues on the graphical user interface;

create, in the graphical user interface, at least one
directional graphical link between two of the at least

US 2021/0081905 Al Mar. 18, 2021

10

two selected work queues, binding two of the at least with the graphically depicted work queues, the gen-

two selected work queues; erated schedule defined by the at least one constraint
define, with the graphical user interface, at least one and the at least one work process goal;

constraint associated with at least one of the selected simulate, with the processor, the performance of the

work queues or at least one of the created graphical generated workflow and optimizing the workflow

directional links; until the simulation determines the workflow is opti-
create at least one work process in the workflow by mized such that all constraints and work process

receiving, in the graphical user interface, a selection goals are met by the optimized workflow.

of at least two of the selected work queues, wherein 39. The system of claim 38, wherein the simulation

the two work queues of the at least two selected work includes unbinding a plurality of work queues for a prede-

queues are connected by the at least one directional ~ termined number of work processes.

graphical link; 40. The system of claim 39, wherein the simulation
graphically depict each of the work processes with a includes randomly selecting an unbound work queue and

unique color; iteratively binding another unbound work queue to the
define at least one work process goal for the at least one selected unbound work queue and simulate the performance

of the workflow to optimize the workflow schedule until all

work process;
unbound work queues are rebound.

generate, using a processor adapted to optimize a work
schedule, a workflow for scheduling tasks associated * ok k& ok

