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(57) ABSTRACT

Techniques are described for sub-prediction unit (PU) based
motion prediction for video coding in HEVC and 3D-HEVC.
In one example, the techniques include an advanced temporal
motion vector prediction (TMVP) mode to predict sub-PUs
of'a PU in single layer coding for which motion vector refine-
ment may be allowed. The advanced TMVP mode includes
determining motion vectors for the PU in at least two stages to
derive motion information for the PU that includes different
motion vectors and reference indices for each of the sub-PUs
of'the PU. In another example, the techniques include storing
separate motion information derived for each sub-PU of a
current PU predicted using a sub-PU backward view synthe-
sis prediction (BVSP) mode even after motion compensation
is performed. The additional motion information stored for
the current PU may be used to predict subsequent PUs for
which the current PU is a neighboring block.
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SUB-PREDICTION UNIT (PU) BASED
TEMPORAL MOTION VECTOR
PREDICTION IN HEVC AND SUB-PU DESIGN
IN 3D-HEVC

[0001] This application claims the benefit of U.S. provi-
sional patent application No. 61/883,111, filed Sep. 26, 2013,
the entire content of which is incorporated herein by refer-
ence.

TECHNICAL FIELD
[0002] This disclosure relates to video coding.
BACKGROUND
[0003] Digital video capabilities can be incorporated into a

wide range of devices, including digital televisions, digital
direct broadcast systems, wireless broadcast systems, per-
sonal digital assistants (PDAs), laptop or desktop computers,
tablet computers, e-book readers, digital cameras, digital
recording devices, digital media players, video gaming
devices, video game consoles, cellular or satellite radio tele-
phones, so-called “smart phones,” video teleconferencing
devices, video streaming devices, and the like. Digital video
devices implement video compression techniques, such as
those described in the standards defined by MPEG-2, MPEG-
4, ITU-T H.263, ITU-T H.264/MPEG-4, Part 10, Advanced
Video Coding (AVC), the High Efficiency Video Coding
(HEVC) standard, and extensions of such standards. The
video devices may transmit, receive, encode, decode, and/or
store digital video information more efficiently by imple-
menting such video compression techniques.

[0004] Video compression techniques perform spatial (in-
tra-picture) prediction and/or temporal (inter-picture) predic-
tion to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (i.e.,
a video frame or a portion of a video frame) may be parti-
tioned into video blocks, which may also be referred to as
treeblocks, coding units (CUs) and/or coding nodes. Video
blocks in an intra-coded (I) slice of a picture are encoded
using spatial prediction with respect to reference samples in
neighboring blocks in the same picture. Video blocks in an
inter-coded (P or B) slice of a picture may use spatial predic-
tion with respect to reference samples in neighboring blocks
in the same picture or temporal prediction with respect to
reference samples in other reference pictures. Pictures may be
referred to as frames, and reference pictures may be referred
to a reference frames.

[0005] Spatial or temporal prediction results in a predictive
block for a block to be coded. Residual data represents pixel
differences between the original block to be coded and the
predictive block. An inter-coded block is encoded according
to a motion vector that points to a block of reference samples
forming the predictive block, and the residual data indicating
the difference between the coded block and the predictive
block. An intra-coded block is encoded according to an intra-
coding mode and the residual data. For further compression,
the residual data may be transformed from the pixel domainto
a transform domain, resulting in residual transform coeffi-
cients, which then may be quantized. The quantized trans-
form coefficients, initially arranged in a two-dimensional
array, may be scanned in order to produce a one-dimensional
vector of transform coefficients, and entropy coding may be
applied to achieve even more compression.
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SUMMARY

[0006] In general, this disclosure describes techniques for
sub-prediction unit (PU) based motion prediction for video
coding in the High Efficiency Video Coding (HEVC) stan-
dard and in the 3D extension to the HEVC standard. In one
example, this disclosure describes techniques for performing
an advanced temporal motion vector prediction (TMVP)
mode to predict sub-PUs of a PU in single layer coding for
which motion vector refinement may be allowed. Conven-
tionally, the sub-PU design is only enabled for inter-layer or
inter-view motion prediction using a merge inter prediction
mode that does not allow further refinement of predicted
motion vectors. The advanced TMVP mode includes deter-
mining motion vectors for the PU in at least two stages to
derive motion information for the PU that includes different
motion vectors and reference indices for each of the sub-PUs
of the PU.

[0007] The 3D-HEVC extension supports the coding of
multiview video plus depth format. In one example, in a
sub-PU backward view synthesis prediction (BVSP) mode,
motion information for a current PU is predicted from a
disparity motion vector and an associated inter-view refer-
ence picture, and the disparity motion vector is refined based
on sub-PU motion information associated with depth blocks
of the inter-view reference picture. In the sub-PU BVSP
mode, motion compensation is performed to predict each of
the sub-PUs of the PU based on the separate sub-PU motion
information. Conventionally, after performing motion com-
pensation to predict each of the sub-PUs, only the disparity
motion vector is stored for the current PU. According to the
techniques of this disclosure, for each PU predicted using the
sub-PU BVSP mode, a video coding device stores the sepa-
rate motion information derived for each of the sub-PUs of
the current PU even after motion compensation is performed.
The additional motion information stored for the current PU
may then be used to predict subsequent PUs for which the
current PU is a neighboring block.

[0008] In addition, this disclosure describe techniques for
applying a deblocking filter to each coding unit (CU) of a
video block to filter transform unit (TU) boundaries and PU
boundaries including sub-PU boundaries within the CU by
creating artificial PU boundaries or artificial TU boundaries
at the sub-PU boundaries.

[0009] In one example, this disclosure is directed to a
method of processing video data comprising determining a
first stage motion vector for a PU of a CU of a video block
from neighboring blocks of the PU as a first stage of an
advanced TMVP mode, wherein the first stage motion vector
identifies a block of a reference picture corresponding to the
PU; partitioning the PU into two or more sub-PUs; determin-
ing second stage motion information for each of the sub-PUs
from the block of the reference picture identified by the first
stage motion vector as a second stage of the advanced TMVP
mode, wherein the second stage motion information for each
of the sub-PUs includes at least one motion vector and an
associated reference index; and performing motion compen-
sation for each of the sub-PUs separately based on the second
stage motion information for each of the sub-PUs.

[0010] In another example, this disclosure is directed to a
video processing device comprising a memory configured to
store video data; and one or more processors in communica-
tion with the memory. The one or more processors are con-
figured to determine a first stage motion vector fora PU of a
CU of a video block from neighboring blocks of the PU as a
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first stage of an advanced TMVP mode, wherein the first stage
motion vector identifies a block of a reference picture corre-
sponding to the PU, partition the PU into two or more sub-
PUs, determine second stage motion information for each of
the sub-PUs from the block of the reference picture identified
by the first stage motion vector as a second stage of the
advanced TMVP mode, wherein the second stage motion
information for each of the sub-PUs includes at least one
motion vector and an associated reference index, and perform
motion compensation for each of the sub-PUs separately
based on the second stage motion information for each of the
sub-PUs.

[0011] In a further example, this disclosure is directed to a
video processing device comprising means for determining a
first stage motion vector for a PU of a CU of a video block
from neighboring blocks of the PU as a first stage of an
advanced TMVP mode, wherein the first stage motion vector
identifies a block of a reference picture corresponding to the
PU; means for partitioning the PU into two or more sub-PUs;
means for determining second stage motion information for
each of the sub-PUs from the block of the reference picture
identified by the first stage motion vector as a second stage of
the advanced TMVP mode, wherein the second stage motion
information for each of the sub-PUs includes at least one
motion vector and an associated reference index; and means
for performing motion compensation for each of the sub-PUs
separately based on the second stage motion information for
each of the sub-PUs.

[0012] In an additional example, this disclosure is directed
to a computer-readable storage medium storing instructions
for processing video data that, when executed, cause one or
more processors to determine a first stage motion vector for a
PU of a CU of a video block from neighboring blocks of the
PU as a first stage of an advanced TMVP mode, wherein the
first stage motion vector identifies a block of a reference
picture corresponding to the PUj; partition the PU into two or
more sub-PUs; determine second stage motion information
for each of the sub-PUs from the block of the reference
picture identified by the first stage motion vector as a second
stage of the advanced TMVP mode, wherein the second stage
motion information for each of the sub-PUs includes at least
one motion vector and an associated reference index; and
perform motion compensation for each of the sub-PUs sepa-
rately based on the second stage motion information for each
of the sub-PUs.

[0013] In another example, this disclosure is directed to a
method of processing video data, the method comprising
determining first motion information for a PU of a CU of a
video block from neighboring blocks of the PU according to
a BVSP mode, wherein the first motion information includes
at least one disparity motion vector and an associated refer-
ence view index that identifies an inter-view reference pic-
ture; partitioning the PU into two or more sub-PUs; determin-
ing second motion information for each of the sub-PUs,
wherein the second motion information includes at least one
disparity motion vector associated with a depth block of the
inter-view reference picture corresponding to each of the
sub-PUs; performing motion compensation to predict each of
the sub-PUs from the inter-view reference picture based on
the second motion information; and storing the second
motion information for each of the sub-PUs of the PU in a
memory to be used for predicting subsequent PUs.

[0014] In a further example, this disclosure is directed to a
video processing device comprising a memory configured to
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store video data, and one or more processors in communica-
tion with the memory. The one or more processors are con-
figured to determine first motion information fora PU ofaCU
of'a video block from neighboring blocks of the PU according
to a BVSP mode, wherein the first motion information
includes at least one disparity motion vector and an associated
reference view index that identifies an inter-view reference
picture, partition the PU into two or more sub-PUs, determine
second motion information for each of the sub-PUs, wherein
the second motion information includes at least one disparity
motion vector associated with a depth block of the inter-view
reference picture corresponding to each of the sub-PUs, and
perform motion compensation to predict each of the sub-PUs
from the inter-view reference picture based on the second
motion information. The memory is configured to store the
second motion information for each of the sub-PUs of the PU
to be used for predicting subsequent PUs.

[0015] Inan additional example, this disclosure is directed
to video processing device comprising means for determining
first motion information for a PU of a CU of a video block
from neighboring blocks of the PU according to a BVSP
mode, wherein the first motion information includes at least
one disparity motion vector and an associated reference view
index that identifies an inter-view reference picture; means
for partitioning the PU into two or more sub-PUs; means for
determining second motion information for each of the sub-
PUs, wherein the second motion information includes at least
one disparity motion vector associated with a depth block of
the inter-view reference picture corresponding to each of the
sub-PUs; means for performing motion compensation to pre-
dicteach of the sub-PUs from the inter-view reference picture
based on the second motion information; and means for stor-
ing the second motion information for each of the sub-PUs of
the PU in a memory to be used for predicting subsequent PUs.
[0016] In another example, this disclosure is directed to
computer-readable storage medium storing instructions for
processing video data that, when executed, cause one or more
processors to determine first motion information for a PU of
a CU of a video block from neighboring blocks of the PU
according to a BVSP mode, wherein the first motion infor-
mation includes at least one disparity motion vector and an
associated reference view index that identifies an inter-view
reference picture; partition the PU into two or more sub-PUs;
determine second motion information for each of the sub-
PUs, wherein the second motion information includes at least
one disparity motion vector associated with a depth block of
the inter-view reference picture corresponding to each of the
sub-PUs; perform motion compensation to predict each of the
sub-PUs from the inter-view reference picture based on the
second motion information; and store the second motion
information for each of the sub-PUs of the PU in a memory to
be used for predicting subsequent PUs.

[0017] The details of one or more examples are set forth in
the accompanying drawings and the description below. Other
features, objects, and advantages will be apparent from the
description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0018] FIG. 1 is a block diagram illustrating an example
video encoding and decoding system that may utilize the
techniques of this disclosure.

[0019] FIG. 2 is a conceptual diagram illustrating eight
partition modes for defining prediction units (PUs) of a cod-
ing unit (CU).



US 2015/0085929 Al

[0020] FIG. 3 is a conceptual diagram illustrating a trans-
form tree structure within a CU.

[0021] FIGS. 4A and 4B are conceptual diagrams illustrat-
ing spatial neighboring candidates for merge mode and
advanced motion vector prediction (AMVP) mode, respec-
tively.

[0022] FIG.5A is a conceptual diagram illustrating tempo-
ral motion vector prediction (TMVP) candidates.

[0023] FIG. 5B is a conceptual diagram illustrating motion
vector (MV) scaling for TMVP.

[0024] FIG. 6 is a flow diagram illustrating an example
processing flow of a deblocking filter process.

[0025] FIG. 7 is a flow diagram illustrating an example
operation of a boundary strength (Bs) calculation for a
deblocking filter process.

[0026] FIG. 8isa conceptual diagram illustrating reused or
referred information for a Bs calculation at a coding tree unit
(CTU) boundary for a de-blocking filter process.

[0027] FIG. 9 is a conceptual diagram illustrating pixels
involved in an on/off filter decision and a strong/weak filter
selection for a deblocking filter process.

[0028] FIG. 10 is a conceptual diagram illustrating a mul-
tiview prediction structure for 3-view cases, where V3
denotes the base view and a picture in a non-base view (i.e.,
V1 orV5) may be predicted from pictures in the base view of
the same time instance.

[0029] FIG. 11 is a conceptual diagram illustrating spatial
neighboring blocks accessed for neighboring block-based
disparity vector (NBDV) derivation, where the spatial neigh-
boring blocks for NBDV derivation are the same as those
accessed for merge mode and AMVP mode.

[0030] FIG. 12 is a conceptual diagram illustrating a back-
ward view synthesis prediction (BVSP) mode that assigns
different motion vectors for different sub-PUs of a PU.
[0031] FIG. 13 is a conceptual diagram illustrating sub-PU
level inter-view motion prediction.

[0032] FIGS. 14A and 14B are conceptual diagrams illus-
trating an advanced TMVP mode to predict sub-PUs in a PU
in single layer coding.

[0033] FIG.151s ablock diagram illustrating an example of
a video encoder that may implement the techniques of this
disclosure.

[0034] FIG.161is ablock diagram illustrating an example of
a video decoder that may implement the techniques of this
disclosure.

[0035] FIG.17 is aflowchart illustrating an example opera-
tion of predicting a current PU using a sub-PU BVSP mode
and storing the determined sub-PU motion information stor-
age.

[0036] FIG. 18 is a flowchart illustrating an example opera-
tion of applying a deblocking filter to each CU of a video
block to filter TU boundaries and PU boundaries including
sub-PU boundaries within the CU.

[0037] FIG. 19 flowchart illustrating an example operation
of an advanced TMVP mode to predict sub-PUs of a PU in
single layer coding.

DETAILED DESCRIPTION

[0038] This disclosure describes techniques for sub-predic-
tion unit (PU) level motion prediction for video coding using
the 3D extension to the High Efficiency Video Coding
(HEVC) standard. The 3D-HEVC extension supports the
coding of multiview video plus depth format. In multiview
video coding, a current video picture may be predicted by
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both temporal reference pictures in a same view and inter-
view reference pictures in a reference view.

[0039] In one example, view synthesis prediction in
3D-HEVC may be performed using a sub-PU backward view
synthesis prediction (BVSP) mode. In the sub-PU BVSP
mode, motion information for a current PU is predicted from
a disparity motion vector and an associated reference view
index that identifies an inter-view reference picture. In the
sub-PU BVSP mode, the current PU is partitioned into two or
more sub-PUs, and the disparity motion vector is refined
based on sub-PU motion information derived for each of the
sub-PUs based on a corresponding depth block of the inter-
view reference picture. Motion compensation is performed to
predict each of the sub-PUs of the PU based on the separate
sub-PU motion information. Conventionally, after perform-
ing motion compensation to predict each of the sub-PUs, only
the disparity motion vector is stored for the current PU.
[0040] According to the techniques of this disclosure, for
each PU predicted using the sub-PU BVSP mode, a video
coding device stores the separate motion information derived
for each of the sub-PUs of the current PU even after motion
compensation is performed. The additional motion informa-
tion stored for the current PU may then be used to predict
subsequent PUs for which the current PU is a neighboring
block.

[0041] As another example, this disclosure describes tech-
niques for performing an advanced temporal motion vector
prediction (TMVP) mode to predict sub-PUs of'a PU in single
layer coding for which motion vector refinement may be
allowed. Conventionally, the sub-PU design is only enabled
for inter-layer or inter-view motion prediction using a merge
inter prediction mode that does not allow further refinement
of predicted motion vectors. The advanced TMVP mode
includes determining motion vectors forthe PU in at least two
stages to derive motion information for the PU that includes
different motion vectors and reference indices for each of the
sub-PUs of the PU. A sub-PU within a PU can be of size NxN
or NxM, wherein N and M can be any integer numbers.
Typical sub-PU sizes can be 4x4, 8x8, 4x8 or 8x4.

[0042] According to the techniques of this disclosure, a first
stage motion vector is determined for a current PU from
neighboring blocks of the PU, where the first stage motion
vector identifies a block of a reference picture corresponding
to the current PU. Similar to sub-PU motion prediction in
3D-HEVC, the size of the corresponding area (e.g., block) of
the reference picture that includes the smaller sub-PUs is the
same as the size of the current PU. In this way, the sub-PUs of
the current PU have corresponding sub-PUs in the corre-
sponding area of the reference picture identified with a unique
motion vector. The first stage motion vector may be identified
based on spatial and/or temporal neighbors. Alternatively, the
first stage motion vector may be set to be constant. e.g., 0 or
another pre-defined value, and is related to the size of the
current PU. In another alternative, each of the sub-PUs of the
PU may identify its corresponding block of the reference
picture with a different motion vector.

[0043] As described above, the current PU is partitioned
into two or more sub-PUs, and second stage motion informa-
tion is determined for each of the sub-PUs from the corre-
sponding area. e.g., block, of the reference picture identified
by the first stage motion vector, where the second stage
motion information for each of the sub-PUs includes at least
one motion vector and an associated reference index. Motion
compensation is performed to predict each of the sub-PUs



US 2015/0085929 Al

separately based on the second stage motion information for
each of the sub-PUs. This advanced TMVP process may be
achieved as activating a merge candidate among all the other
merge candidates, meaning a specific merge candidate is
created to indicate such a process needs to be done for the
current PU. In some examples, instead of operating purely in
the merge mode, a motion vector difference may be deter-
mined to refine the at least one motion vector of the second
stage motion information for each of the sub-PUs.

[0044] As a further example, this disclosure describes tech-
niques related to deblocking filter processes applied to coding
units (CUs) of a video block that include at least one PU with
multiple sub-PUs. Deblocking filters for the HEVC standard
are not designed to filter within a PU, i.e., along sub-PU
boundaries between adjacent sub-PUs of the PU, because for
HEVC blocks it is assumed that motion compensation is the
same for the entire PU. The techniques of this disclosure
enable sub-PU boundaries to be deblocked by converting the
sub-PUs to a deblocking friendly structure so that HEVC
deblocking filters may continue to be used for 3D-HEVC
blocks. The proposed deblocking techniques may be appli-
cable to multi-layer codecs, including 3D-HEVC.

[0045] According to the techniques of this disclosure, prior
to applying a deblocking filter to a CU of the video block that
includes the PU with the sub-PUs, the CU is converted in
order to create artificial PUboundaries or artificial TU bound-
aries at the sub-PU boundaries. In one example, a transform
tree of the CU is converted in order to associate the PU with
a transform tree hierarchy and associate each of the sub-PUs
with a TU such that the sub-PU boundaries are converted to
artificial TU boundaries. In another example, the CU is con-
verted to a coding tree in order to associate the PU with a CU
and associate each of the sub-PUs with a PU such that the
sub-PU boundaries are converted to artificial PU boundaries.
The deblocking filter may then be applied to the PU bound-
aries between two adjacent PUs of the CU and/or the TU
boundaries between two adjacent TUs of the CU, including
the artificial PU boundaries and the artificial TU boundaries.

[0046] Video coding standards include ITU-T H.261, ISO/
IEC MPEG-1 Visual, ITU-T H.262 or ISO/IEC MPEG-2
Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T
H.264 (also known as ISO/IEC MPEG-4 AVC), including its
Scalable Video Coding (SVC) and Multiview Video Coding
(MVC) extensions. The latest joint draft of MVC is described
in ITU-T H.264, Series H: Audiovisual and Multimedia Sys-
tems, Infrastructure of audiovisual services—Coding of mov-
ing video, Advanced video coding for generic audiovisual
services, Telecommunication Standardization Sector of Inter-
national Telecommunication Union (ITU), March 2010.

[0047] In addition, the design of a new video coding stan-
dard, namely High Efficiency Video Coding (HEVC), has
been finalized by the Joint Collaboration Team on Video
Coding (JCT-VC) of ITU-T Video Coding Experts Group
(VCEG) and ISO/IEC Motion Picture Experts Group
(MPEG). A HEVC draft specification, referred to as “HEVC
Working Draft 10” or “WD10,” described in Bross et al.,
“High efficiency video coding (HEVC) text specification
draft 10 (for FDIS & Last Call),” Joint Collaborative Team on
Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, 12th Meeting: Geneva, CH, 14-23 Jan.
2013, JCTVC-L1003v34, is available from http://phenix.int-
evry.fr/jct/doc_end_user/documents/12_Geneva/wgl1/
JCTVC-L1003-v34.zip.
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[0048] The finalized standard document is published as
ITU-T H.265, Series H: Audiovisual and Multimedia Sys-
tems, Infrastructure of audiovisual services—Coding of mov-
ing video, High efficiency video coding, Telecommunication
Standardization Sector of International Telecommunication
Union (ITU), April 2013. A recent encoder description of
HEVC, described in I1-Koo Kim et al., “High Efficiency
Video Coding (HEVC) Test Model 10 (HM10) Encoder
Description, Joint Collaborative Team on Video Coding
(JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/
WG11, 12th Meeting: Geneva, CH, 14-23 Jan. 2013, is avail-
able from: http://phenix.int-evry.fr/jct/doc_end_user/docu-
ments/12_Geneva/wgl 1/JCTVC-L.1002-v3.zip.

[0049] Two extensions of HEVC supporting 3D services
have been under development by the Joint Collaboration
Team on 3D Video coding (JCT-3V) of ITU-T Video Coding
Experts Group (VCEG) and ISO/IEC Motion Picture Experts
Group (MPEG). The two extensions are the multiview exten-
sion to HEVC (MV-HEVC) and the 3D extension to HEVC
(3D-HEVC).

[0050] MV-HEVC supports the coding of multiple texture
views without changing the block level design of HEVC. A
draft specification of MV-HEVC, referred to as MV-HEVC
Working Draft 5 (WDS5) and described in Tech et al., “MV-
HEVC Draft Text 5,” Joint Collaborative Team on 3D Video
Coding Extension Development (JCT-3V) of ITU-T SG16
WP3 and ISO/IEC JTC1/SC29/WG11, Sth Meeting: Vienna,
AT, 27 Jul.-2 Aug. 2013, JCT3V-E1004v6, is available from
http://phenix.it-sudparis.euv/jct2/doc_end_user/documents/
5_Vienna/wgl 1/JCT3V-E1004-v6.zip.

[0051] 3D-HEVC supports the coding of multiview video
plus depth format and includes new coding tools built in
addition to the HEVC coding modules. The newly introduced
coding tools are applicable for both texture coding and depth
coding. A draft specification of 3D-HEVC, referred to as
3D-HEVC Working Draft 1 (WD1) and described in Tech et
al., “3D-HEVC Draft Text 1.” Joint Collaborative Team on
3D Video Coding Extension Development (JCT-3V) of
ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 5th
Meeting: Vienna, AT, 27 Jul.-2 Aug. 2013, JCT3V-E1001v3,
is available from http://phenix.it-sudparis.euw/jet2/doc_end_
user/documents/5_Vienna/wg11/JCT3V-E1001-v3.zip.
[0052] FIG. 1 is a block diagram illustrating an example
video encoding and decoding system 10 that may utilize
techniques of this disclosure. As shown in FIG. 1, system 10
includes a source device 12 that provides encoded video data
to be decoded at a later time by a destination device 14. In
particular, source device 12 provides the video data to desti-
nation device 14 via a computer-readable medium 16. Source
device 12 and destination device 14 may comprise any of a
wide range of devices, including desktop computers, note-
book (i.e., laptop) computers, tablet computers, set-top
boxes, telephone handsets such as so-called “smart” phones,
so-called “smart” pads, televisions, cameras, display devices,
digital media players, video gaming consoles, video stream-
ing device, or the like. In some cases, source device 12 and
destination device 14 may be equipped for wireless commu-
nication.

[0053] Destination device 14 may receive the encoded
video data to be decoded via computer-readable medium 16.
Computer-readable medium 16 may comprise any type of
medium or device capable of moving the encoded video data
from source device 12 to destination device 14. In one
example, computer-readable medium 16 may comprise a
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communication medium to enable source device 12 to trans-
mit encoded video data directly to destination device 14 in
real-time. The encoded video data may be modulated accord-
ing to a communication standard, such as a wireless commu-
nication protocol, and transmitted to destination device 14.
The communication medium may comprise any wireless or
wired communication medium, such as a radio frequency
(RF) spectrum or one or more physical transmission lines.
The communication medium may form part of a packet-based
network, such as a local area network, a wide-area network, or
a global network such as the Internet. The communication
medium may include routers, switches, base stations, or any
other equipment that may be useful to facilitate communica-
tion from source device 12 to destination device 14.

[0054] Insomeexamples,encoded data may be output from
output interface 22 to a storage device. Similarly, encoded
data may be accessed from the storage device by input inter-
face. The storage device may include any of a variety of
distributed or locally accessed data storage media such as a
hard drive, Blu-ray discs, DVDs, CD-ROMs, flash memory,
volatile or non-volatile memory, or any other suitable digital
storage media for storing encoded video data. In a further
example, the storage device may correspond to a file server or
another intermediate storage device that may store the
encoded video generated by source device 12. Destination
device 14 may access stored video data from the storage
device via streaming or download. The file server may be any
type of server capable of storing encoded video data and
transmitting that encoded video data to the destination device
14. Example file servers include a web server (e.g., for a
website), an FTP server, network attached storage (NAS)
devices, or a local disk drive. Destination device 14 may
access the encoded video data through any standard data
connection, including an Internet connection. This may
include a wireless channel (e.g., a Wi-Fi connection), a wired
connection (e.g., DSL, cable modem, etc.), or a combination
of both that is suitable for accessing encoded video data
stored on a file server. The transmission of encoded video data
from the storage device may be a streaming transmission, a
download transmission, or a combination thereof.

[0055] The techniques of this disclosure are not necessarily
limited to wireless applications or settings. The techniques
may be applied to video coding in support of any of a variety
of multimedia applications, such as over-the-air television
broadcasts, cable television transmissions, satellite television
transmissions, Internet streaming video transmissions, such
as dynamic adaptive streaming over HTTP (DASH), digital
video that is encoded onto a data storage medium, decoding
of digital video stored on a data storage medium, or other
applications. In some examples, system 10 may be configured
to support one-way or two-way video transmission to support
applications such as video streaming, video playback, video
broadcasting, and/or video telephony.

[0056] Inthe example of FIG. 1, source device 12 includes
video source 18, depth estimation unit 19, video encoder 20,
and output interface 22. Destination device 14 includes input
interface 28, video decoder 30, depth image based rendering
(DIBR) unit 31, and display device 32. In other examples, a
source device and a destination device may include other
components or arrangements. For example, source device 12
may receive video data from an external video source 18, such
as an external camera. Likewise, destination device 14 may
interface with an external display device, rather than includ-
ing an integrated display device.
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[0057] The illustrated system 10 of FIG. 1 is merely one
example. The techniques of this disclosure may be performed
by any digital video encoding and/or decoding device.
Although generally the techniques of this disclosure are per-
formed by a video encoding device, the techniques may also
be performed by a video encoder/decoder, typically referred
to as a “CODEC.” Moreover, the techniques of this disclosure
may also be performed by a video preprocessor. Source
device 12 and destination device 14 are merely examples of
such coding devices in which source device 12 generates
coded video data for transmission to destination device 14. In
some examples, devices 12, 14 may operate in a substantially
symmetrical manner such that each of devices 12, 14 include
video encoding and decoding components. Hence, system 10
may support one-way or two-way video transmission
between video devices 12, 14. e.g., for video streaming, video
playback, video broadcasting, or video telephony.

[0058] Video source 18 of source device 12 may include a
video capture device, such as a video camera, a video archive
containing previously captured video, and/or a video feed
interface to receive video from a video content provider. As a
further alternative, video source 18 may generate computer
graphics-based data as the source video, or a combination of
live video, archived video, and computer-generated video. In
some cases, if video source 18 is a video camera, source
device 12 and destination device 14 may form so-called cam-
era phones or video phones. As mentioned above, however,
the techniques described in this disclosure may be applicable
to video coding in general, and may be applied to wireless
and/or wired applications. In each case, the captured, pre-
captured, or computer-generated video may be encoded by
video encoder 20. The encoded video information may then
be output by output interface 22 onto a computer-readable
medium 16.

[0059] Video source 18 may provide multiple views of
video data to video encoder 20. For example, video source 18
may correspond to an array of cameras, each having a unique
horizontal position relative to a particular scene being filmed.
Alternatively, video source 18 may generate video data from
disparate horizontal camera perspectives, e.g., using com-
puter graphics. Depth estimation unit 19 may be configured to
determine values for depth pixels corresponding to pixels in a
texture image. For example, depth estimation unit 19 may
represent a Sound Navigation and Ranging (SONAR) unit, a
Light Detection and Ranging (LIDAR) unit, or other unit
capable of directly determining depth values substantially
simultaneously while recording video data of a scene.
[0060] Additionally or alternatively, depth estimation unit
19 may be configured to calculate depth values indirectly by
comparing two or more images that were captured at substan-
tially the same time from different horizontal camera perspec-
tives. By calculating horizontal disparity between substan-
tially similar pixel values in the images, depth estimation unit
19 may approximate depth of various objects in the scene.
Depth estimation unit 19 may be functionally integrated with
video source 18, in some examples. For example, when video
source 18 generates computer graphics images, depth estima-
tion unit 19 may provide actual depth maps for graphical
objects, e.g., using z-coordinates of pixels and objects used to
render texture images.

[0061] Computer-readable medium 16 may include tran-
sient media, such as a wireless broadcast or wired network
transmission, or storage media (that is, non-transitory storage
media), such as a hard disk, flash drive, compact disc, digital
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video disc, Blu-ray disc, or other computer-readable media.
In some examples, a network server (not shown) may receive
encoded video data from source device 12 and provide the
encoded video data to destination device 14, e.g., via network
transmission. Similarly, a computing device of a medium
production facility, such as a disc stamping facility, may
receive encoded video data from source device 12 and pro-
duce a disc containing the encoded video data. Therefore,
computer-readable medium 16 may be understood to include
one or more computer-readable media of various forms, in
various examples.

[0062] Input interface 28 of destination device 14 receives
information from computer-readable medium 16. The infor-
mation of computer-readable medium 16 may include syntax
information defined by video encoder 20, which is also used
by video decoder 30, that includes syntax elements that
describe characteristics and/or processing of blocks and other
coded units, e.g., GOPs. Display device 32 displays the
decoded video data to a user, and may comprise any of a
variety of display devices such as a cathode ray tube (CRT), a
liquid crystal display (LCD), a plasma display, an organic
light emitting diode (OLED) display, or another type of dis-
play device. In some examples, display device 32 may com-
prise a device capable of displaying two or more views simul-
taneously or substantially simultaneously, e.g., to produce a
3D visual effect for a viewer.

[0063] DIBR unit 31 of destination device 14 may render
synthesized views using texture and depth information of
decoded views received from video decoder 30. For example,
DIBR unit 31 may determine horizontal disparity for pixel
data of texture images as a function of values of pixels in
corresponding depth maps. DIBR unit 31 may then generate
asynthesized image by offsetting pixels in a texture image left
or right by the determined horizontal disparity. In this man-
ner, display device 32 may display one or more views, which
may correspond to decoded views and/or synthesized views,
in any combination. Video decoder 30 may provide precision
values for depth ranges and camera parameters to DIBR unit
31, which may use the depth ranges and camera parameters to
properly synthesize views.

[0064] Although not shown in FIG. 1, in some aspects,
video encoder 20 and video decoder 30 may each be inte-
grated with an audio encoder and decoder, and may include
appropriate MUX-DEMUX units, or other hardware and soft-
ware, to handle encoding of both audio and video in a com-
mon data stream or separate data streams. If applicable,
MUX-DEMUX units may conform to the ITU H.223 multi-
plexer protocol, or other protocols such as the user datagram
protocol (UDP).

[0065] Video encoder 20 and video decoder 30 may operate
according to a video coding standard, such as the High Effi-
ciency Video Coding (HEVC) standard presently under
development, and may conform to the HEVC Test Model
(HM). Alternatively, video encoder 20 and video decoder 30
may operate according to other proprietary or industry stan-
dards, such as the ITU-T H.264 standard, alternatively
referred to as MPEG-4, Part 10. Advanced Video Coding
(AVC), or extensions of such standards, such as the MVC
extension of ITU-T H.264/AVC.

[0066] Video encoder 20 and video decoder 30 each may be
implemented as any of a variety of suitable encoder circuitry,
such as one or more microprocessors, digital signal proces-
sors (DSPs), application specific integrated circuits (ASICs),
field programmable gate arrays (FPGAs), discrete logic, soft-
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ware, hardware, firmware or any combinations thereof. When
the techniques are implemented partially in software, a device
may store instructions for the software in a suitable, non-
transitory computer-readable medium and execute the
instructions in hardware using one or more processors to
perform the techniques of this disclosure. Each of video
encoder 20 and video decoder 30 may be included in one or
more encoders or decoders, either of which may be integrated
as part of a combined encoder/decoder (CODEC) in a respec-
tive device. A device including video encoder 20 and/or video
decoder 30 may comprise an integrated circuit, a micropro-
cessor, and/or a wireless communication device, such as a
cellular telephone.

[0067] Initially, example coding techniques of HEVC will
be discussed. The HEVC WD10, referenced above, presumes
several additional capabilities of video coding devices rela-
tive to existing devices according to, e.g., [TU-T H.264/AVC.
For example, whereas H.264 provides nine intra-prediction
encoding modes, the HEVC WD10 may provide as many as
thirty-three angular intra-prediction encoding modes plus DC
and Planar modes.

[0068] In HEVC WDI10 and other video coding standards,
a video sequence typically includes a series of pictures. Pic-
tures may also be referred to as “frames.” A picture may
include three sample arrays, denoted S;, S,, and S,. S; is a
two-dimensional array (i.e., a block) of luma samples. S, is
atwo-dimensional array of Cb chrominance samples. S, is a
two-dimensional array of Cr chrominance samples. Chromi-
nance samples may also be referred to herein as “chroma”
samples. In other instances, a picture may be monochrome
and may only include an array of luma samples.

[0069] The HEVC WDI10 describes that a video frame or
picture may be divided into a sequence of coding tree units
(CTUs) or largest coding units (LCU) that include both luma
and chroma samples. A CTU has a similar purpose as a
macroblock of the H.264 standard. A slice includes a number
of consecutive CTUs in coding order. A video frame or pic-
ture may be partitioned into one or more slices. Each CTU
may be split into coding units (CUs) according to a quadtree.
For example, a CTU, as a root node of the quadtree, may be
split into four child nodes, and each child node may in turn be
a parent node and be split into another four child nodes. A
final, unsplit child node, as a leaf node of the quadtree, com-
prises a coding node, i.e., a coded video block. Syntax data
associated with a coded bitstream may define a maximum
number of times a CTU may be split, and may also define a
minimum size of the coding nodes.

[0070] A CU includes a coding node and prediction units
(PUs) and transform units (TUs) associated with the coding
node. A size of the CU corresponds to a size of the coding
node and must be square in shape. The size of the CU may
range from 8x8 pixels up to the size of the treeblock with a
maximum of 64x64 pixels or greater. Each CU may contain
one or more PUs and one or more TUs. Syntax data associated
with a CU may describe, for example, partitioning of the CU
into one or more PUs. Partitioning modes may differ between
whether the CU is skip or direct mode encoded, intra-predic-
tion mode encoded, or inter-prediction mode encoded. PUs
may be partitioned to be non-square in shape. Syntax data
associated with a CU may also describe, for example, parti-
tioning of the CU into one or more TUs according to a
quadtree. A TU can be square or non-square in shape.
[0071] The HEVC WDI10 allows for transformations
according to TUs, which may be different for different CUs.
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The TUs are typically sized based on the size of PUs within a
given CU defined for a partitioned CTU or LCU, although this
may not always be the case. The TUs are typically the same
size or smaller than the PUs. In some examples, residual
samples corresponding to a CU may be subdivided into
smaller units using a quadtree structure known as “residual
quad tree” (RQT). The leaf nodes of the RQT may be referred
to as TUs. Pixel difference values associated with the TUs
may be transformed to produce transform coefficients, which
may be quantized.

[0072] In general, a PU includes data related to the predic-
tion process. For example, when the PU is intra-mode
encoded, the PU may include data describing an intra-predic-
tion mode for the PU. As another example, when the PU is
inter-mode encoded, the PU may include data defining a
motion vector for the PU. The data defining the motion vector
for a PU may describe, for example, a horizontal component
of the motion vector, a vertical component of the motion
vector, a resolution for the motion vector (e.g., one-quarter
pixel precision or one-eighth pixel precision), a reference
picture to which the motion vector points, and/or a reference
picture list (e.g., List O or List 1) for the motion vector.
[0073] Ingeneral, a TU is used for the transform and quan-
tization processes. A given CU having one or more PUs may
also include one or more TUs. Following prediction, video
encoder 20 may calculate residual values corresponding to
the PU. The residual values comprise pixel difference values
that may be transformed into transform coefficients, quan-
tized, and scanned using the TUs to produce serialized trans-
form coefficients for entropy coding. This disclosure typi-
cally uses the term “video block™ to refer to a coding node of
a CU. In some specific cases, this disclosure may also use the
term “video block” to refer to a CTU, also referred to as a
LCU, or a CU, which includes a coding node and PUs and
TUs.

[0074] A video sequence typically includes a series of
video frames or pictures. A group of pictures (GOP) generally
comprises a series of one or more of the video pictures. A
GOP may include syntax data in aheader of the GOP, a header
of one or more of the pictures, or elsewhere, that describes a
number of pictures included in the GOP. Each slice of a
picture may include slice syntax data that describes an encod-
ing mode for the respective slice. Video encoder 20 typically
operates on video blocks within individual video slices in
order to encode the video data. A video block may correspond
to a coding node within a CU. The video blocks may have
fixed or varying sizes, and may differ in size according to a
specified coding standard.

[0075] As an example, the HEVC WD10 supports predic-
tion in various PU sizes. Assuming that the size of a particular
CU is 2Nx2N, the HEVC WD10 supports intra-prediction in
PU sizes of 2Nx2N or NxN, and inter-prediction in symmet-
ric PU sizes of 2Nx2N, 2NxN, Nx2N, or NxN. The HEVC
WD10 also supports asymmetric partitioning for inter-pre-
diction in PU sizes of 2NxnU, 2NxnD, n[.x2N, and nRx2N.
In asymmetric partitioning, one direction of a CU is not
partitioned, while the other direction is partitioned into 25%
and 75%. The portion of the CU corresponding to the 25%
partition is indicated by an “n” followed by an indication of
“Up”, “Down,” “Left,” or “Right.” Thus, for example, “2Nx
nU” refers to a 2Nx2N CU that is partitioned horizontally
with a 2Nx0.5N PU on top and a 2Nx1.5N PU on bottom.
[0076] Inthisdisclosure, “NxN”and “N by N” may be used
interchangeably to refer to the pixel dimensions of a video
block in terms of vertical and horizontal dimensions, e.g.,
16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will
have 16 pixels in a vertical direction (y=16) and 16 pixels in
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a horizontal direction (x=16). Likewise, an NxN block gen-
erally has N pixels in a vertical direction and N pixels in a
horizontal direction, where N represents a nonnegative inte-
ger value. The pixels in a block may be arranged in rows and
columns. Moreover, blocks need not necessarily have the
same number of pixels in the horizontal direction as in the
vertical direction. For example, blocks may comprise NxM
pixels, where M is not necessarily equal to N.

[0077] Following intra-predictive or inter-predictive cod-
ing using the PUs of a CU, video encoder 20 may calculate
residual data for the TUs of the CU. The PUs may comprise
pixel data in the spatial domain (also referred to as the pixel
domain) and the TUs may comprise coefficients in the trans-
form domain following application of a transform, e.g., a
discrete cosine transform (DCT), an integer transform, a
wavelet transform, or a conceptually similar transform to
residual video data. The residual data may correspond to pixel
differences between pixels of the unencoded picture and pre-
diction values corresponding to the PUs. Video encoder 20
may form the TUs including the residual data for the CU, and
then transform the TUs to produce transform coefficients for
the CU.

[0078] Following any transforms to produce transform
coefficients, video encoder 20 may perform quantization of
the transform coefficients. Quantization generally refers to a
process in which transform coefficients are quantized to pos-
sibly reduce the amount of data used to represent the coeffi-
cients, providing further compression. The quantization pro-
cess may reduce the bit depth associated with some or all of
the coefficients. For example, an n-bit value may be rounded
down to an m-bit value during quantization, where n is greater
than m.

[0079] In some examples, video encoder 20 may utilize a
predefined scan order to scan the quantized transform coeffi-
cients to produce a serialized vector that can be entropy
encoded. In other examples, video encoder 20 may perform
an adaptive scan. After scanning the quantized transform
coefficients to form a one-dimensional vector, video encoder
20 may entropy encode the one-dimensional vector, e.g.,
according to context adaptive variable length coding
(CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic
coding (SBAC), Probability Interval Partitioning Entropy
(PIPE) coding or another entropy encoding methodology.
Video encoder 20 may also entropy encode syntax elements
associated with the encoded video data for use by video
decoder 30 in decoding the video data.

[0080] To perform CABAC, video encoder 20 may assign a
context within a context model to a symbol to be transmitted.
The context may relate to, for example, whether neighboring
values of the symbol are non-zero or not. To perform CAVL.C,
video encoder 20 may select a variable length code for a
symbol to be transmitted. Codewords in VL.C may be con-
structed such that relatively shorter codes correspond to more
probable symbols, while longer codes correspond to less
probable symbols. In this way, the use of VL.C may achieve a
bit savings over, for example, using equal-length codewords
for each symbol to be transmitted. The probability determi-
nation may be based on a context assigned to the symbol.

[0081] Video encoder 20 may output a bitstream that
includes a sequence of bits that forms a representation of
coded pictures and associated data. The bitstream may com-
prise a sequence of network abstraction layer (NAL) units.
Each of the NAL units includes a NAL unit header and encap-
sulates a raw byte sequence payload (RBSP). The NAL unit
header may include a syntax element that indicates a NAL
unit type code. The NAL unit type code specified by the NAL
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unit header of'a NAL unit indicates the type of the NAL unit.
A RBSP may be a syntax structure containing an integer
number of bytes that is encapsulated within a NAL unit. In
some instances, an RBSP includes zero bits.

[0082] Different types of NAL units may encapsulate dif-
ferent types of RBSPs. For example, a first type of NAL unit
may encapsulate a RBSP for a picture parameter set (PPS), a
second type of NAL unit may encapsulate a RBSP for a coded
slice, a third type of NAL unit may encapsulate a RBSP for
Supplemental Enhancement Information (SEI), and so on. A
PPS is a syntax structure that may contain syntax elements
that apply to zero or more entire coded pictures. NAL units
that encapsulate RBSPs for video coding data (as opposed to
RBSPs for parameter sets and SEI messages) may be referred
to as video coding layer (VCL) NAL units. A NAL unit that
encapsulates a coded slice may be referred to herein as a
coded slice NAL unit. A RBSP for a coded slice may include
a slice header and slice data.

[0083] Video decoder 30 may receive a bitstream. In addi-
tion, video decoder 30 may parse the bitstream to decode
syntax elements from the bitstream. Video decoder 30 may
reconstruct the pictures of the video data based at least in part
on the syntax elements decoded from the bitstream. The pro-
cess to reconstruct the video data may be generally reciprocal
to the process performed by video encoder 20. For instance,
video decoder 30 may use motion vectors of PUs to determine
predictive blocks for the PUs of a current CU. Video decoder
30 may use a motion vector or motion vectors of PUs to
generate predictive blocks for the PUs.

[0084] In addition, video decoder 30 may inverse quantize
coefficient blocks associated with TUs of the current CU.
Video decoder 30 may perform inverse transforms on the
coefficient blocks to reconstruct transform blocks associated
with the TUs of the current CU. Video decoder 30 may recon-
struct the coding blocks of the current CU by adding the
predictive samples of the predictive blocks for PUs of the
current CU to corresponding residual samples of the trans-
form blocks of the TUs of the current CU. By reconstructing
the coding blocks for each CU of a picture, video decoder 30
may reconstruct the picture. Video decoder 30 may store
decoded pictures in a decoded picture bufter for output and/or
for use in decoding other pictures.

[0085] In MV-HEVC and 3D-HEVC, video encoder 20
may generate a multi-layer bitstream that comprises a series
of network abstraction layer (NAL) units. Different NAL
units of the bitstream may be associated with different layers
of the bitstream. A layer may be defined as a set of video
coding layer (VCL) NAL units and associated non-VCL NAL
units that have the same layer identifier. A layer may be
equivalent to a view in multi-view video coding. In multi-
view video coding, a layer can contain all view components of
the same layer with different time instances. Each view com-
ponent may be a coded picture of the video scene belonging to
a specific view at a specific time instance. In 3D-HEVC, a
layer may contain either all coded depth pictures of a specific
view or coded texture pictures of a specific view. Similarly, in
the context of scalable video coding, a layer typically corre-
sponds to coded pictures having video characteristics differ-
ent from coded pictures in other layers. Such video charac-
teristics typically include spatial resolution and quality level
(Signal-to-Noise Ratio). In HEVC and its extensions, tempo-
ral scalability may be achieved within one layer by defining a
group of pictures with a particular temporal level as a sub-
layer.

[0086] For each respective layer of the bitstream, data in a
lower layer may be decoded without reference to data in any
higher layer. In scalable video coding, for example, data in a
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base layer may be decoded without reference to data in an
enhancement layer. NAL units only encapsulate data of a
single layer. A view may be referred to as a “base layer” if
video decoder 30 can decode pictures in the view without
reference to data of any other layer. The base layer may
conform to the HEVC base specification. Thus, NAL units
encapsulating data of the highest remaining layer of the bit-
stream may be removed from the bitstream without affecting
the decodability of data in the remaining layers of the bit-
stream. In MV-HEVC and 3D-HEVC, higher layers may
include additional view components.

[0087] Some general features of video coding will now be
discussed more detail. Initially, motion information will be
discussed. For each block, a set of motion information may be
available. A set of motion information includes motion infor-
mation for forward and backward prediction directions. Here,
forward and backward prediction directions are two predic-
tion directions of a bi-directional prediction mode and the
terms “forward” and “backward” do not necessarily have a
geometry meaning; instead, they correspond to reference pic-
ture list 0 (RefPicList0) and reference picture list 1 (RefPi-
cListl) of a current picture. When only one reference picture
list is available for a picture or slice, only RefPicList0 may be
available and the motion information of each block of a slice
is always forward.

[0088] For each prediction direction, the motion informa-
tion includes a reference index and a motion vector. In some
cases, for simplicity, a motion vector itself may be referred to
in a way that it is assumed that it has an associated reference
index. A reference index is used to identify a reference picture
in the current reference picture list (RefPicListO or RefPi-
cListl). A motion vector has a horizontal and a vertical com-
ponent.

[0089] Picture order count (POC) is widely used in video
coding standards to identify a display order of a picture.
Although there are cases where two pictures within one coded
video sequence may have the same POC value, it typically
does not happen within a coded video sequence. When mul-
tiple coded video sequences are present in a bitstream, pic-
tures with a same value of POC may be closer to each other in
terms of decoding order. POC values of pictures are typically
used for reference picture list construction, derivation of a
reference picture set as in HEVC, and motion vector scaling.
[0090] Some specific techniques in H.264/AVC will now
be discussed. Initially, the macroblock structure in AVC will
be discussed. In H.264/AVC, each inter macroblock (MB)
may be partitioned in four different ways: one 16x16 MB
partition, two 16x8 MB partitions, two 8x16 MB partitions,
or four 8x8 MB partitions. Different MB partitions in one MB
may have different reference index values for each direction
(RefPicList0 or RefPicList]). When an MB is not partitioned
into four 8x8 MB partitions, it has only one motion vector for
each MB partition in each direction. When an MB is parti-
tioned into four 8x8 MB partitions, each 8x8 MB partition
can be further partitioned into sub-blocks, each of which can
have a different motion vector in each direction.

[0091] There are four different ways to get sub-blocks from
an 8x8 MB partition: one 8x8 sub-block, two 8x4 sub-blocks,
two 4x8 sub-blocks, or four 4x4 sub-blocks. Each sub-block
can have a different motion vector in each direction. Motion
vectors, therefore, are present at a level equal to or higher than
the sub-block level.

[0092] The temporal direct mode in AVC will now be dis-
cussed. In AVC, temporal direct mode may be enabled at
either the MB level or the MB partition level for skip or direct
modes in B slices. For each MB partition, the motion vectors
of the block co-located with the current MB partition in the
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RefPicList1[0] of the current block are used to derive the
motion vectors. Each motion vector in the co-located block is
scaled based on POC distances.

[0093] Some specific techniques in HEVC will now be
discussed. In HEVC, the largest coding unit (CU) in a slice is
called a coding tree block (CTB). A CTB includes a quad-
tree, and the nodes of the quad-tree are CUs. The size of a
CTB can range from 16x16 to 64x64 in the HEVC main
profile, although technically 8x8 CTB sizes may be sup-
ported. The size of a CU may range from as large as the same
size as the CTB to as small as 8x8. Each CU is coded with one
mode. When a CU is inter coded, the CU may be further
partitioned into two or four prediction units (PUs) or become
just one PU when further partitioning does not apply. When
the CU is inter coded, one set of motion information is present
for each PU of the CU. In addition, each PU of the CU is
coded with a unique inter-prediction mode to derive the asso-
ciated set of motion information.

[0094] FIG. 2 is a conceptual diagram illustrating eight
partition modes 33 A-33H (“partition modes 33”") for defining
PUs of'a CU. A PU is aregion on which prediction is applied
that is defined by partitioning the CU. As shown in FIG. 2, a
PU is not restricted to being square in shape, in order to
facilitate partitioning of the CU to match the boundaries of
real objects in the picture. Each CU includes one, two, or four
PUs depending on the partition mode. In some examples,
when two PUs are present in one CU, the PUs may be half-
size rectangles, as in the PART 2NxN 33B and PART_Nx
2N 33C partition modes. In other examples, when two PUs
are present in one CU, the PUs may be two rectangles with
sizes of one-quarter or three-quarters the size of the CU, as in
the PART 2NxnU 33E, PART 2NxnD 33F, PART_nL.x2N
33G, and PART_nRx2N 33H partition modes. The PART
2Nx2N 33A and PART_NxN 33D partition modes are used
for an intra-coded CU. The PART_NxN 33D partition mode
is allowed only when the corresponding CU size is equal to
the minimum CU size.

[0095] FIG. 3 is a conceptual diagram illustrating a trans-
form tree structure 34 within a CU. Each CU corresponds to
one transform tree, which is a quad-tree, the leaf of which is
a transform unit (TU). Each of the TUs in transform tree
structure 34 is a square region on which transform and quan-
tization processes are applied that is defined by quad-tree
partitioning of the CU. As shown in FIG. 3, a TU is always
square in shape. A TU may be as large as 32x32 samples down
to 4x4 samples. A maximum quad-tree depth, i.e., how far the
transform tree structure 34 may be split to form leaf nodes, is
adjustable and specified in the slice header syntax. For an
inter CU, a TU can be larger than a PU. i.e., the TU may
contain PU boundaries. For an intra CU, however, a TU
cannot cross PU boundaries.

[0096] A syntax element rqt_root_cbf equal to 1 specifies
that a transform_tree syntax structure is present for a current
CU. The syntax element rqt_root_cbf equal to 0 specifies that
the transform_tree syntax structure is not present for the
current CU.

[0097] When the syntax element rqt_root_cbf is not
present, its value is inferred to be equal to 1. When the syntax
element rqt_root_cbf is equal to 0, the transform tree only
contains one node, meaning it is not further split and a split_
transform_flag is equal to 0. For a node inside the transform
tree, ifithas a split_transform_flag equal to 1, it is further split
into four nodes, and a leaf of the transform tree has a split_
transform_flag equal to 0.

[0098] For simplicity, ifa TU or transform tree corresponds
to a block which does not have a transform, it is still consid-
ered to be a TU or transform unit because the hierarchy of the
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transform itself still exists even though the transform is not
applied. Typically, a transform skipped block corresponds to
a transform unit.

[0099] A coded block flag (cbf) of a TU equal to 1 specifies
that the TU contains one or more non-zero transform coeffi-
cient levels, i.e., not equal to 0. A CBF of a TU equal to 0
specifies that all transform coefficient levels of the TU are
equal to 0. A CBF is set for each component of the TU, i.e.,a
CBEF is set for each of luminance (Y) and chrominance (Cb
and Cr) components.

[0100] Inthe HEVC standard, there are two inter prediction
modes, named merge and advanced motion vector prediction
(AMVP) modes, for predicting motion for a current predic-
tion unit (PU). A skip mode is considered a special case of the
merge mode. In either the AMVP or merge mode, a motion
vector (MV) candidate list is maintained that includes mul-
tiple motion vector predictors. The motion vectors, as well as
associated reference indices in the merge mode, are generated
for the current PU by selecting one of the candidates from the
MYV candidate list.

[0101] In the merge mode, the MV candidate list includes
up to five candidates. A merge candidate may contain a set of
motion information, e.g., motion vectors corresponding to
both reference picture lists (list 0 and list 1) and the associated
reference indices. If a merge candidate is identified by a
merge index for the current PU, the motion vectors and asso-
ciated reference pictures are used for the prediction of the
current PU.

[0102] Inthe AMVP mode, the MV candidate list includes
only two candidates. An AMVP candidate contains motion
vectors corresponding to both reference picture lists (list O
and list 1). If an AMVP candidate is identified by an AMVP
index for the current PU, a reference index needs to be explic-
itly signaled for each potential prediction direction from
either list O or list 1 together with the AMVP index since the
AMVP candidate includes only a motion vector. In the
AMVP mode, the predicted motion vectors may be further
refined by signaling a motion vector difference and perform-
ing motion vector scaling.

[0103] As described above, a merge candidate includesto a
full set of motion information while an AMVP candidate
includes just one motion vector for a specific prediction direc-
tion and explicitly signaled reference index. The candidates
for both modes are derived similarly from the same spatial
and temporal neighboring blocks of the current PU.

[0104] FIGS. 4A and 4B are conceptual diagrams illustrat-
ing spatial neighboring candidates for the merge mode and
the AMVP mode, respectively. Spatial MV candidates are
derived from the neighboring blocks shown in FIGS. 4A and
4B, for a current PU (PUO), although the methods for gener-
ating the candidates from the blocks differ for the merge and
AMVP modes.

[0105] Inthe merge mode,up to four spatial MV candidates
may be derived from the neighboring blocks of PUO 90 in the
numbered order shown in FIG. 4A. In the illustrated example
of FIG. 4A, the order is as follows: left block (0), above block
(1), above right block (2), below left block (3), and above left
block (4).

[0106] In the AMVP mode, up to two spatial MV candi-
dates may be derived from the neighboring blocks of PUO 92
in the numbered order shown in FIG. 4B. The neighboring
blocks of PUO 92 are divided into two groups: a left group
including the below left block (0) and the left block (1), and an
above group including the above right block (2), the above
block (3), and the above left block (4), as shown on FIG. 4B.
For each group, a motion vector for a neighboring block that
refers to the same reference picture as the explicitly signaled
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reference index for PUO 92 has the highest priority of being
chosen to form a final MV candidate of the group. In some
examples, it is possible that none of the neighboring blocks
have a motion vector that points to the explicitly signaled
reference picture. If such a MV candidate cannot be found,
the first available motion vector will be scaled to form the
final MV candidate of the group. In this case, any temporal
distance differences will be compensated.

[0107] FIG.5A is aconceptual diagram illustrating tempo-
ral motion vector prediction (TMVP) candidates for a current
PU (PUO) 94. A TMVP candidate, if enabled and available, is
added into the MV candidate list after the spatial MV candi-
dates. The process of motion vector derivation for a TMVP
candidate is the same for both the merge mode and the AMVP
modes. In the merge mode, however, the target reference
index for the TMVP candidate is always set to O.

[0108] The primary block location for TMVP candidate
derivation is the bottom right block outside ofa co-located PU
(PU1) 96 of PUO 94, as shown in FIG. 5A as block T 97.
Bottom right block T 97 is selected to compensate the bias to
the above and left blocks used to generate the spatial neigh-
boring candidates. If, however, the bottom right block T is
located outside of the current LCU 98 of PUO 94 (i.e., in
position 99) or the motion information for the bottom right
block T 97 is not available, the block used for TMVP candi-
date derivation is substituted with a center block T 95 of PUO
94.

[0109] FIG. 5B is a conceptual diagram illustrating MV
scaling for the TMVP mode for a current PU 100 in current
picture 102. A motion vector fora TMVP candidate is derived
from a co-located PU 104 of co-located picture 106, indicated
in the slice level. Similar to temporal direct mode in AVC,
described above, a motion vector of the TMVP candidate may
be generated for current PU 100 using scaling, which is
performed to compensate the differences between the co-
located temporal distance (i.e., the distance between co-lo-
cated picture 106 and co-located reference picture 107) and
the current temporal difference (i.e., between current picture
102 and current reference picture 103), as shown in FIG. 5B.

[0110] Other aspects of motion vector prediction in HEVC
will now be discussed. In motion vector scaling, it is assumed
that the value of motion vectors is proportional to the distance
of pictures in the presentation time. A motion vector associ-
ates two pictures: the reference picture and the picture con-
taining the motion vector (namely the containing picture).
When a motion vector is utilized to predict another motion
vector, the distance of the containing picture and the reference
picture is calculated based on the Picture Order Count (POC)
values of the pictures. For a motion vector to be predicted,
both its containing picture and associated reference picture
may be different. In this case, a new distance (based on POC)
is calculated. The motion vector is scaled based on these two
POC distances. For a spatial neighboring candidate, the con-
taining pictures for the two motion vectors are the same while
the reference pictures are different. In HEVC, motion vector
scaling applies to both TMVP and AMVP for spatial and
temporal neighboring candidates.

[0111] Inartificial motion vector candidate generation, if a
motion vector candidate list is not complete (i.e., less than the
prescribed number of candidates are available), artificial
motion vector candidates may be generated and inserted at the
end of the list until the list includes the prescribed number of
candidates. In the merge mode, there are two types of artificial
MYV candidates: a combined candidate derived only for B
slices, and zero candidates used only for AMVP if the first
type does not provide enough artificial candidates. For each
pair of candidates that are already in the candidate list and
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have the necessary motion information, bi-directional com-
bined motion vector candidates are derived based on a com-
bination of a motion vector of a first candidate referring to a
picture in list 0 and a motion vector of a second candidate
referring to a picture in list 1.

[0112] In the pruning process for candidate insertion, can-
didates from different blocks may happen to be the same,
which decreases the efficiency of a merge/ AMVP candidate
list. A pruning process may be applied to address this prob-
lem. The pruning process compares one candidate against the
others in the current candidate list to avoid inserting an iden-
tical candidate in certain circumstances. To reduce the com-
plexity, only a limited number of pruning processes may be
applied, instead of comparing each potential candidate with
all the other existing candidates.

[0113] A deblocking filter process in HEVC will now be
described. The deblocking filter process is performed for each
CU of a video block in the same order as the decoding pro-
cess. First, vertical edges are filtered (i.e., horizontal filtering)
and then horizontal edges are filtered (i.e., vertical filtering).
Deblocking filtering is applied to block boundaries within the
CU that are determined to be filtered, both for luma and
chroma components. In some examples, 8x8 block bound-
aries are filtered while 4x4 block boundaries are not pro-
cessed in order to reduce complexity. Two kinds of bound-
aries are involved in the deblocking filter process: TU
boundaries and PU boundaries. CU boundaries are also con-
sidered, since CU boundaries are necessarily also TU and PU
boundaries.

[0114] FIG. 6 is a flow diagram illustrating an example
processing flow 108 of a deblocking filter process. A bound-
ary can have three filtering status values: no filtering, weak
filtering, and strong filtering. Each filtering decision is based
on boundary strength, Bs, and threshold values, § and t..
[0115] FIG. 7 is a flow diagram illustrating an example
operation of a boundary strength (Bs) calculation 110 for a
deblocking filter process. The boundary strength (Bs) reflects
how strong a filtering process may be needed for the bound-
ary. For example, a Bs value of 2 indicates strong filtering, a
Bs value of 1 indicates weak filtering, and a Bs value of 0
indicates no deblocking filtering.

[0116] LetP and Qbe defined as blocks that are involved in
the filtering, where P represents the block located to the left
(in the vertical edge case) or above (in the horizontal edge
case) the boundary to be deblocked, and Q represents the
block located to the right (in the vertical edge case) or above
(in the horizontal edge case) the boundary to be deblocked.
The operation illustrated in FIG. 7 indicates how the Bs value
is calculated based on the intra coding mode, the existence of
non-zero transform coefficients, reference pictures, number
of motion vectors, and motion vector differences.

[0117] FIG. 8is a conceptual diagram illustrating reused or
referred information for a Bs calculation between pixels in a
grid 112 at a coding tree unit (CTU) boundary 113 for a
de-blocking filter process. The Bs is calculated on a 4x4 block
basis, but it is re-mapped to an 8x8 grid. The maximum ofthe
two values of Bs that correspond to 8 pixels consisting of a
line in the 4x4 grid is selected as the Bs for boundaries in the
8x8 grid. At CTU boundary 113, information on every second
block (on a 4x4 grid) to the left or above is re-used as depicted
in FIG. 8, in order to reduce the line buffer memory require-
ment.

[0118] Threshold values ' and t' are involved in the filter
on/off decision, strong and weak filter selection, and weak
filtering process. The threshold values are derived from the
value of the luma quantization parameter, QQ, as shown in
Table I below.
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TABLE 1

Derivation of threshold variables from input Q

Q o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

o 0o o0 o0 o0 o0 o o o O O 0O O 0 O
t o 0o o0 o0 o0 o0 o o o O O 0O O 0 O

15 16 17 18
o 6 7 8
0 0 0 1

Q 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

tc 1 1 tr 1r 1 1 1 2 2 2 2 3 3 3 3 4 4 4
Q 38 39 40 41 42 43 4 45 46 47 48 49 50 51 52 53
8 38 40 42 44 46 48 50 52 54 56 58 60 62 64 — —
t 5 5 6 6 7 8 9 10 11 13 14 16 18 20 22 24

The variable f is derived from ' as follows:
p=p"* (1<<(BitDepth~8))

The variable t.. is derived from t.' as follows:

te=tc*(1<<(BitDepth~8))

[0119] FIG. 9 is a conceptual diagram illustrating pixels in
P block 116 and Q block 117 involved in an on/off filter
decision and a strong/weak filter selection for a deblocking
filter process at boundary 114. The filter on/off decision is
made using four lines of pixels that cross boundary 114,
which are each grouped as a unit (shown in FIG. 9 using black
outlined boxes) to reduce computational complexity. The six
pixels included in each of the two boxes in a first set of four
lines 118 are used to determine whether the filter is on or off
for first set of four lines 118. The six pixels included in each
of the two boxes in second set of four lines 119 are used to
determine whether the filter is on or off for the second set of
four lines 119.

[0120] The following variables are defined for the on/off
filter decision:

dpo:‘Pz,o—z*Pl,o*'Po,o‘
dp3:‘P2,3—2*P1,3+P0,3‘
dq0=| qz,o—z*ql,o"'qo,o‘

dq3:\q273—2*q173+q073\

If dp0+dq0+dp3+dq3<p, filtering for the first set of four lines
118 is turned on, and the strong/weak filter selection process
is applied. If this condition is not met, no filtering is done for
the first set of four lines 118.

[0121] Additionally, if the condition is met, the variables
dE, dEp1 and dEp2 are set as follows:

[0122]

If dp0+dp3<(P+(p>>1))>>3, the variable dEp1 is set
equal to 1

dE is set equal to 1

If dq0+dg3<(P+(p>>1))>>3, the variable dEq1 is set
equal to 1

A filter on/off decision is made in a similar manner as
described above for the second set of four lines 119.

[0123] Iffiltering is turned on, a decision is made between
strong and weak filtering. The pixels involved are the same as
those used for the filter on/off decision, as depicted in FI1G. 9.
Ifthe following two sets of conditions are met, a strong filter

is used for filtering of the first set of four lines 118. Otherwise,
a weak filter is used.

2*(dp0+dq0)<(B>>2),1p36-p0o+1g00=¢30 I <(B>>3)

and |p0g=q0|<(5*+1c+1)>>1 (1
2%(dp3+dq3)<(p>>2),1p35-p031+1903-¢35<(B>>3)

and |p03—q031<(5*1c+1)>>1 2
The decision on whether to select strong or weak filtering for
the second set of four lines 119 is made in a similar manner.
[0124] For strong filtering, the filtered pixel values are
obtained by the following equations. Note that three pixels are
modified using four pixels as an input for each of P block 116
and Q block 117.

Po=(Da+2%p +2¥po+2*go+q,+4)>>3
Fo=(P1+°*Po*2¥qo+ 2% q 1 +¢,+4)>>3
P1=(Da+p1+po+qot+2)>>2
91'=(Po+qo+q1+q+2)>>2

Do =(2%p3+3%po+p +pgHqe+4)>>3

92=(Po+qo+qi+3% 4o +2% g3 +4)>>3
[0125] For weak filtering, the filtered pixel values are
obtained by the following equations. Note that two pixels are

modified using three pixels as an input for each of P block 116
and Q block 117.

[0126] Delta (A) is defined as follows.
[0127]  A=(9*(qo-po)-3*(q,=p,)+8)>>4
[0128] When abs(A) is less than t-*10,

A=Clip3(~tctoA)
Po=Clipl y{(po+A)
90=Clip15(g0-A)
[0129] IfdEpl isequalto 1,
Ap=Clip3(=(1c>>1),1c>>1,((pr+po+1)>>1)-p +A)
>>1)
p/'=Clipl{p,+Ap)
[0130] IfdEqlisequalto 1,

Aq:c“f;3(—(lc>>1)alc>>1>(((q2+qo+1)>>1)—‘h—A)
>>

9, =Cliply(g,+Aq)

[0131] The above described deblocking decisions are for
filtering luma components. The boundary strength Bs for
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chroma filtering is inherited from luma. If Bs>1, chroma
filtering is performed. No filter selection process is performed
for chroma, since only one filter can be applied. The filtered
sample values p,' and q,' are derived as follows.

A=Clip3(-16.1c(((46-Po)<<2)+p -4, +4)>>3))
Po=Clipl (potA)

90'=Clipl (go—A)

[0132] Some specific techniques in 3D-HEVC will now be
discussed. The 3D video extension of the HEVC standard
(3D-HEVC) is under development by JCT-3V. The
3D-HEVC extension supports the coding of multiview video
plus depth format.

[0133] FIG. 10 is a conceptual diagram illustrating a mul-
tiview prediction structure 120 for 3-view cases, where V3
denotes the base view and a picture in a non-base view (i.e.,
V1 orV5) may be predicted from pictures in the base view of
the same time instance. Inter-view sample prediction, which
uses the multiview prediction structure 120 illustrated in FIG.
10, is supported by the multiview extension of HEVC (MV-
HEVC). Both MV-HEVC and 3D-HEVC are compatible to
HEVC in a way that the base or texture view (i.e., V3) is
decodable by an HEVC decoder.

[0134] In MV-HEVC, a current picture in a non-base view
(i.e., V1 or V5) may be predicted by both pictures in the same
view and pictures in a reference view of the same time
instance by including all of these pictures in reference picture
lists for the current picture. A reference picture list of the
current picture, therefore, contains both temporal reference
pictures and inter-view reference pictures. A motion vector
associated with a reference index corresponding to a temporal
reference picture is denoted as a temporal motion vector. A
motion vector associated with a reference index correspond-
ing to an inter-view reference picture is denoted as a disparity
motion vector.

[0135] The3D-HEVC extension supports all the features of
MV-HEVC such that inter-view sample prediction is also
supported by 3D-HEVC. In addition, the 3D-HEVC exten-
sion supports more advanced texture-only coding tools and
depth related/dependent coding tools, which are not sup-
ported by the MV-HEVC extension. The texture-only coding
tools may require the identification of the corresponding
blocks between views that belong to the same object. Dispar-
ity vector derivation, therefore, is a basic technology in
3D-HEVC.

[0136] Onekey aspect of multiview coding technology is to
identify the corresponding blocks of different views by pre-
cise and efficient derivation of the disparity vectors. In
3D-HEVC, Neighboring Block based Disparity Vector
(NBDV) derivation is designed in a way similar to the AMVP
and merge modes in HEVC. Disparity vectors, however, are
purely derived from neighboring blocks, so no additional bits
are needed for further refinement or scaling of the disparity
vectors. When inter-view sample prediction is enabled, the
motion vectors corresponding to inter-view reference pic-
tures, namely disparity motion vectors, are already present
together with normal motion vectors, namely temporal
motion vectors, in the motion field for a current block. The
basic idea of NBDV derivation is to make use of the disparity
motion vectors in the motion field, by checking only the
spatial and temporal neighboring blocks.

[0137] FIG. 11 is a conceptual diagram illustrating spatial
neighboring blocks accessed for NBDV derivation for a cur-
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rent block 122, where the spatial neighboring blocks for
NBDV derivation are the same as those accessed for merge
mode and AMVP mode. The spatial neighboring blocks, A0,
Al,B0,B1 and B2, accessed for NBDV are the same as those
accessed for the AMVP and merge modes, as shown in FIGS.
4A and 4B and FIG. 11.

[0138] Itishighly possible, however, that there is no spatial
neighboring block of current block 122 that has any associ-
ated disparity motion vectors. In this case, the temporal
neighboring blocks are also checked. The temporal neighbor-
ing blocks of current block 122 are the blocks in the co-
located picture, as used in the TMVP mode and, in addition,
another picture that may have a better chance to use disparity
motion compensation, e.g., a random access picture or a
picture that has a lowest temporalld. For each temporal pic-
ture, similar to the TMVP mode illustrated in FIG. 5A, the
center and bottom-right blocks are checked. All the spatial
and temporal neighboring blocks of current block 122 are
checked in order. Once a disparity motion vector is identified,
the disparity vector of current block 122 is derived to be the
same as the identified disparity motion vector and the NBDV
derivation process terminates. The disparity vector of current
block 122 is used to identity the inter-view reference block in
the picture of the reference view, as in, e.g., inter-view motion
prediction and inter-view residual prediction.

[0139] In 3D-HEVC, it may be possible to store some
derived disparity vectors as results of NBDV derivation to be
further used for neighboring blocks. Such derived disparity
vectors are named implicit disparity vectors (IDVs). For
example, if NBDV derivation does not identify any disparity
motion vectors from neighboring blocks, the spatial neigh-
boring blocks may be checked again to identify any available
IDVs of the spatial neighboring blocks to be used to derive the
final disparity vector for current block 122. Recently,
3D-HEVC also included simplifications of the NBDV meth-
ods by checking fewer spatial and temporal neighboring
blocks.

[0140] View synthesis prediction (VSP) in 3D-HEVC is
realized by two major technical modules: Depth-Oriented
NBDV (Do-NBDV) and Backward View Synthesis Predic-
tion (BVSP).

[0141] InDo-NBDV derivation, the disparity vector gener-
ated by the NBDV scheme may be further refined using
information in the coded depth map. In this way, the accuracy
of'the disparity vector may be enhanced by taking the benefit
of the information coded in the base view depth map. The
refinement steps are described as follows:

[0142] 1. Locate a corresponding depth block based on
the disparity vector derived by the NBDV scheme for a
current PU in a previously coded reference depth view
picture (such as in the base view) of the same access unit;
the size of the corresponding depth block is the same as
that of current PU.

[0143] 2. Calculate a disparity vector for the current PU
from the corresponding depth block based on the maxi-
mum value of the four corner pixel depth values. The
maximum value is set equal to the horizontal component
of'the calculated disparity vector, while the vertical com-
ponent of the disparity vector is set to zero.

[0144] The disparity vector from the NBDV scheme is then
replaced by this newly derived disparity vector from the Do-
NBDV scheme, and the refined disparity vector (from Do-
NBDV) is used for inter-view motion prediction for the cur-
rent PU. The unrefined disparity vector (from NBDV),
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however, may be used for inter-view residual prediction for
the current PU. In addition, the refined disparity vector may
be stored as the one motion vector of the current PU if it is
coded in BVSP mode.

[0145] The BVSP mode is realized as a special merge mode
candidate that has its starting motion vector set to be a dis-
parity motion vector. Such a candidate is called a BVSP
candidate. When a spatial neighboring block of a current PU
is coded in a BVSP mode, the associated disparity vector and
reference view index from the neighboring block are used to
define an additional BVSP candidate for the current PU. The
spatial merge mode candidate derived from such a spatial
neighboring block is tagged with a BVSP flag equal to 1.
[0146] FIG.12isaconceptual diagram illustrating a BVSP
mode 124 that assigns different motion vectors for different
sub-PUs of a current PU 126 in a current picture 125. In this
disclosure, the current BVSP mode in 3D-HEVC may be
referred to as the sub-PU BVSP mode. In the BVSP mode,
first motion information is determined for current PU 126
from the spatial or temporal neighboring blocks of current PU
126. As described above, the first motion information may be
selected as a BVSP candidate in a merge mode candidate list.
The first motion information includes a disparity motion vec-
tor and an associated reference view index that identifies an
inter-view reference picture 128. This first step of the BVSP
mode may be substantially similar to NBDV derivation
described above.

[0147] The current PU 126 is then further partitioned into
sub-regions or sub-PUs. For example, a PU with its size
denoted by NxM may be further partitioned into several sub-
regions or sub-PUs with sizes equal to KxL (where K and LL
may be 8 or 4, but not both 4). For each sub-region or sub-PU,
second motion information is determined that includes a
separate disparity motion vector derived by accessing a cor-
responding one of depth blocks 130 in a reference depth view
picture 129 associated with inter-view reference picture 128
identified by the reference view index associated with the first
disparity vector. More specifically, for each sub-PU of current
PU 126, a maximum value of the four corner pixels of the
corresponding one of depth blocks 130 is selected and con-
verted to a horizontal component of the disparity motion
vector for the sub-PU; the disparity motion vector has a
vertical component equal to zero. This second step of the
BVSP mode may be substantially similar to Do-NBDV deri-
vation described above.

[0148] After each sub-region or sub-PU of current PU 126
has its motion information predicted, the motion compensa-
tion engine of HEVC may be used to predict each sub-region
or sub-PU of current PU 126 from inter-view reference pic-
ture 128 based on the second motion information for each
sub-PU. In the BVSP mode, after performing motion com-
pensation to predict each sub-PU of current PU 126, only the
first disparity motion vector included in the first motion infor-
mation selected for current PU 126 is stored for current PU
126, and the separate disparity vectors included in the second
motion information for the sub-PUs are discarded.

[0149] With the BVSP mode, each PU may have more than
one set of motion information, meaning that sub-PUs inside a
PU may have different motion vectors. This is different from
HEVC, where each PU only has one set of motion informa-
tion. Typically in the BVSP mode, although the sub-PUs
inside a PU may have different motion vectors, the reference
index values for the sub-PUs are the same. The complexity
increase of the BVSP mode mainly lies on increased power
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consumption, and the worst case complexity is similar to
HEVC motion compensation as long as the size, as well as
bi-prediction status, of the sub-PUs is never smaller than the
size of the motion compensation block enabled in HEVC.
[0150] In3D-HEVC, a depth view is coded after the asso-
ciated texture view. When a PU in the depth view is coded, the
motion information of the texture view within the co-located
region of the PU may create a merge candidate for the current
PU. In this case, the merge candidate may be referred to as the
motion parameter inheritance (MPI) candidate, which con-
tains a full set of motion information.

[0151] In JCT3V-E0184, Jicheng An et al., 3D-CE3.h
related: Sub-PU level inter-view motion prediction,” Joint
Collaborative Team on 3D Video Coding Extensions of
ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 5th
Meeting: Vienna, AT, 27 Jul.-2 Aug. 2013, use of a sub-PU
level inter-view motion prediction method is described for the
inter-view merge candidate, i.e., the candidate derived from a
reference block in an inter-view reference picture.

[0152] FIG. 13 is a conceptual diagram illustrating sub-PU
level inter-view motion prediction 131 for a current PU 134 in
a current view (V1) 132. When inter-view motion prediction
mode is enabled, a current PU 134 may correspond to a
reference area with the same size as the current PU identified
by the disparity vector in a reference view (V0) 136. In some
cases, the reference area may have richer motion information
than needed for generation of only one set of motion infor-
mation for the current PU 134. A sub-PU level inter-view
motion prediction (SPIVMP) method is therefore proposed in
which current PU 134 is partitioned into multiple sub-PUs,
and the disparity vector (DV) is used identify reference
blocks 138 in reference view (V0) 136 for each of the sub-PUs
of current PU 134. In the SPIVMP mode, each of the sub-PUs
of current PU 134 has a full set of motion information copied
from reference blocks 138 such that current PU 134 may
contain multiple sets of motion information. The SPIVMP
mode may be also signaled as a special merge mode candi-
date, similar to the sub-PU BVSP mode described above.
[0153] In U.S. provisional application No. 61/858,089,
filed Jul. 24, 2013, entitled “ADVANCED MOTION PRE-
DICTION FOR 3D VIDEO CODING;” to Ying Chen and Li
Zhang, it is proposed that the MPI candidate can also be
extended in a way similar to sub-PU level inter-view motion
prediction. For example, if the current depth PU has a co-
located region that contains multiple PUs, the current depth
PU may be separated into sub-PUs, each of which may have
a different set of motion information. This method may be
referred to as sub-PU MPI.

[0154] The sub-PU designs in 3D-HEVC, including sub-
PU BVSP, sub-PU inter-view motion prediction and sub-PU
MPI, described above, may experience some issues.

[0155] First, as described above, in the sub-PU BVSP
mode, motion compensation is performed to predict each of
the sub-PUs of a current PU based on separate sub-PU motion
information derived based on corresponding depth blocks of
an inter-view reference picture identified by a disparity
motion vector selected for the current PU. After performing
motion compensation to predict each of the sub-PUs, how-
ever, only the disparity motion vector corresponding to each
reference picture list is stored for the current PU. In this case,
when the current PU is used to predict a subsequent PU, the
sub-PUs of the current PU are viewed as having the same
motion vectors such that the sub-PU BVSP mode has little
impact on improving accuracy of motion vector prediction.
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[0156] Second, the current sub-PU design is only enabled
when inter-layer prediction is enabled. The sub-PU design,
however, may be applicable for improving accuracy of
motion compensation use in single-layer prediction. In addi-
tion, the current sub-PU design is only applicable to the merge
inter prediction mode in which no further refinement of the
candidate motion vectors is allowed. The current sub-PU
design, therefore, cannot be enabled for motion prediction
modes where motion refinement is allowed, e.g., AMVP
mode for HEVC based codecs.

[0157] Third, deblocking filters used in HEVC are typically
kept unchanged in HEVC extensions, including 3D-HEVC.
The current deblocking filter design in HEVC, however, may
not filter boundaries of the sub-PUs because it is assumed in
HEVC that blocks in the same TU inside one PU are motion
compensated as a whole block of one single picture. In this
case, no blocking artifacts are expected to be present or
removed from within a PU. In order to deblock sub-PU
boundaries without changing the deblocking filter design in
the 3D-HEVC extension, this disclosure describes converting
a sub-PU to a de-blocking friendly structure before a deblock-
ing filter process is applied. For example, before de-blocking
filtering process, each PU that utilizes the sub-PU design may
be converted to one or more coding trees, where each sub-PU
may become a PU in a CU that is a node of the respective
coding tree. In this example, the coding tree structure is
compatible to HEVC syntax design.

[0158] However, some additional issues may occur with the
above solution. As a first example, if a prediction unit A (PU
A) has been coded with normal inter prediction, and another
prediction unit (PU B) within the same CU as PU A is coded
with sub-PUs, the PUs will be need converted into two CUs
and filtering may occur inside PU A, which is not sub-parti-
tioned. As a second example, when one TU applies for an
entire CU, which includes at least one PU with sub-PUs, the
CU may be converted to multiple CUs, multiple CUs with the
same TU is not supported by HEVC.

[0159] This disclosure describes several techniques to
address the above described issues.

[0160] With respectto the first issue described above, in the
sub-PU BVSP mode in 3D-HEVC, after performing motion
compensation to predict each of the sub-PUs of the current
PU based on separate sub-PU motion information derived
based on corresponding depth blocks of an inter-view refer-
ence picture identified by a disparity motion vector selected
for the current PU, only the disparity motion vector corre-
sponding to each reference picture list is stored for the current
PU. The single disparity motion vector is stored for each
reference picture list even though the motion compensation of
the PU is based on multiple motion vectors included in the
separate motion information derived for the multiple sub-PUs
of the current PU.

[0161] According to the techniques of this disclosure, for
each PU predicted using the sub-PU BVSP mode, a video
coding device, i.e., video encoder 20 and/or video decoder 30,
preserves, e.g., stores or maintains, the separate motion infor-
mation derived for each of the sub-PUs of the current PU even
after motion compensation is performed. As an example,
video encoder 20 and/or video decoder 30 may store the
disparity motion vector derived for each of the sub-PUs in a
memory, such as a decoded picture buffer, with a reference
picture list that includes the inter-view reference picture iden-
tified by a reference view index associated with the disparity
motion vector for the current PU.
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[0162] The additional, richer motion information stored for
the current PU may then be used to predict subsequent PUs
for which the current PU is a neighboring block. For example,
video encoder 20 and/or video decoder 30 may generate a
merge mode candidate list of motion information for predict-
ing a subsequent PU that includes the stored motion informa-
tion for at least one of the sub-PUs of the current PU as a
sub-PU BVSP candidate in the merge mode candidate list. In
one example, if the subsequent PU is coded in the sub-PU
BVSP mode, video encoder 20 and/or video decoder 30 may
not need to derive the separate motion information for each of
the sub-PUs of the subsequent PU. Instead, video encoder 20
and/or video decoder 30 may instead select the separate
motion information as the sub-PU BVSP candidate from the
merge mode candidate list of motion information for predict-
ing the sub-PUs of the subsequent PU. The operation of
predicting a PU in the sub-PU BVSP mode and storing the
motion information derived for each of the sub-PUs of the PU
is described in more detail below with respect to FIG. 17.

[0163] With respect to the second issue described above,
this disclosure describes techniques for performing an
advanced TMVP mode to predict sub-PUs of a PU in single
layer coding for which motion vector refinement may be
allowed. Video encoder 20 and/or video decoder 30 may be
configured to perform the advanced TMVP mode, which
includes determining motion vectors forthe PU in at least two
stages to derive motion information for the PU that includes
different motion vectors and reference indices for each of the
sub-PUs of the PU.

[0164] FIGS. 14A and 14B are conceptual diagrams illus-
trating the advanced TMVP mode to predict sub-PUs in a PU
in single layer coding. As illustrated in FIG. 14A, the first
stage 170 of the advanced TMVP mode determines a motion
vector that identifies a corresponding block 174 in a reference
picture for the current PU 173 in the current picture, and the
second stage 172 of the advanced TMVP mode extracts mul-
tiple sets of motion information from sub-PUs of correspond-
ing block 174 in the reference picture and assigns each of the
sets of motion information to one of the sub-PUs of current
PU 173 in the current picture. Each sub-PU of the current PU
173, therefore, is motion compensated separately. The motion
vector in the first stage 170 may be derived from spatial and
temporal neighboring blocks of the current PU 173. In one
example, the first stage motion vector may be selected as a
merge mode candidate among all the other merge mode can-
didates, which may or may not include a candidate similar to
the TMVP candidate in HEVC. In another example, the first
stage motion vector may be selected as an AMVP mode
candidate among all the other AMVP mode candidates and
refined. In this example, when a sub-PU encounters an
unavailable motion vector for each prediction direction, a
representative motion vector may be used.

[0165] Applicable to single-layer coding and sub-PU
TMVP, video encoder 20 or video decoder 30 may determine
motion refinement data, e.g., a motion vector difference, for a
PU or CU that is signaled with the motion predictor indices
for the MV candidate lists. In one example, for each predic-
tion direction, a single motion vector difference may be deter-
mined, and is applicable to all motion vectors of the sub-PUs
or PUs. In another example, for each prediction direction,
separate motion vector differences may be determined for
each ofthe sub-PUs or PUs. In addition, for each horizontal or
vertical component, the motion vector difference values may
be transformed, and the resulting transformed coefficients
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may be further quantized or truncated and coded similar to
pixel residuals in video codecs.

[0166] In another example, similar to HEVC, the motion
refinement data for sub-PU motion vectors may be transmit-
ted from video encoder 20 to video decoder 30 when a sub-PU
MYV candidate is added to an AMVP mode candidate list and
not added to a merge mode candidate list. In one alternative
example, a sub-PU MV candidate may apply only if the
reference index values associated with all the motion vectors
of the sub-PUs or PUs are the same. In another alternative
example, a sub-PU MV candidate may always apply and the
reference index values associated with all the motion vectors
of'the sub-PUs are explicitly transmitted. In addition, if quan-
tization or transform of the motion vector difference values
applies, the motion vectors may be scaled toward one fixed
reference picture. After the motion vector differences are
collected, the differences are added to the scaled motion
vectors. Afterwards, the new motion vectors are scaled back
towards their respective different reference pictures identified
by the different reference index values of the sub-PUs or PUs.
[0167] The following section provides example implemen-
tation details regarding the advanced TMVP mode, described
above, for cases where the reference index values associated
with the motion vectors of the sub-PUs or PUs are different.
Identification of the first stage motion vector will be discussed
first. The first stage motion vector is converted from the
spatial neighboring blocks of the current PU, which contain
temporal motion vectors. The spatial neighboring blocks
belong to those used for typical motion vector prediction, e.g.,
the blocks used in AMVP and merge for HEVC.

[0168] When the spatial neighboring blocks have candidate
motion vectors that are associated with different reference
index values, one of the following decision processes is
applied to decide which reference index is used to identify the
reference picture from which to determine the sub-PU level
motion information.

[0169] 1. The blocks with a smallest reference index
value are chosen. Among them, the one that is earlier
accessed is chosen to return the temporal motion vector
to be the “first stage vector.” It is assumed that the blocks
are accessed in a given order based on the relative spatial
locations of the blocks.

[0170] 2. The blocks with a smallest reference index
value are chosen. The motion vectors of these blocks are
averaged (if more than one) to be the “first stage vector,”
alternatively a medium operation may be used.

[0171] 3. The reference index with a highest frequency
among the reference indices of the neighboring blocks is
chosen. Among the blocks having that reference index,
either the motion vector that is first accessed is chosen,
or average (e.g., medium) of the motion vectors is used
to be the “first stage vector.”” Alternatively, other math-
ematic functions may be applied to obtain the first stage
motion vector.

[0172] 4. The reference index with a closest POC dis-
tance to the current picture is chosen.

[0173] Among the blocks having that reference index,
either the motion vector that is first accessed is chosen, or an
average (e.g., medium or other mathematic function) of the
motion vectors is used to be the “first stage vector.”

[0174] 5. A primary reference index is signaled in the
slice header and blocks with a reference index equal to
the primary reference index are chosen to produce the
“first stage vector”” with methods similar to those
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described above. When no block has a reference index

equal to the primary reference index, methods described

above to choose the reference index may be used.

[0175] 6. Since the picture used for TMVP is typically
fixed for each slice, as in AVC and HEVC, the primary
reference index may be the same as the reference index
indicating the TMVP.

[0176] 7. The abovereference index could be an index to
either RefPicListO or RefPicListl. Alternatively, a ref-
erence picture list union (RefPicListU) may generated
by RefPicList0 and RefPicList1, and the reference index
may be the index to the RefPicListU. Note that any
picture identified by RefPicListU belongs to either Ref-
PicListO or RefPicListl or both, and there is no picture
that belongs to RefPicListU but not in RefPicList0 or
RefPicListl. RefPicListU does not have two identical
pictures. Alternatively, and in addition, RefPicListU
may only contain temporal reference pictures within the
same layer or marked as short-term pictures.

[0177] 8. Alternatively, the reference index and the “first
stage vector” may be selected from the merge mode
candidates.

[0178] a. In one example, the reference index and the
“first stage vector” are selected from one spatial
merge mode candidate derived from one relative
block position, e.g., left neighboring block.

[0179] b. Alternatively, the reference index and the
“first stage vector” may be selected from the first
available candidate in the merge mode candidate list.

[0180] c. Furthermore, when the selected merge can-
didate uses bi-prediction, the motion vector and ref-
erence index may be selected from one of the merged
sets of motion information.

[0181] When a reference index and the “first stage vector”
are identified, the reference picture that is used to determine
the sub-PU motion information is identified as well as the
region in the reference picture corresponding to the current
PU. In one case, a reference index may indicate a reference
picture that is different than the picture to be used for TMVP
due to, e.g., the reference index being derived and the picture
used for TMVP being explicitly signaled. In this case, the
reference index may be changed to identify the picture used
for TMVP, and the motion vector may be scaled towards the
picture used for TMVP based on POC distances.

[0182] In the above description, the identification of the
“first stage vector” only utilizes spatial neighboring blocks.
Alternatively, temporal neighboring blocks may be used to
identify the “first stage vector,” where the positions of the
temporal neighboring blocks are similar to the blocks used in
NBDV. Such positions include a center position of the current
PU or a bottom-right position of the current PU, each being
located in an identified reference picture.

[0183] Generation of sub-PU motion for TMVP will now
be discussed. Each sub-PU of a current PU may locate a
corresponding sub-PU within the corresponding block of the
reference picture identified by the “first stage vector.”” A set of
motion information derived from the motion information
within the corresponding sub-PU of the reference picture is
generated for each of the sub-PUs in the current PU, similar to
sub-PU level inter-view motion prediction described above.
If the motion information of the corresponding sub-PUs is
unavailable, the “first stage vector” may be used for the sub-
PUs of the current PU as a substitute. Since each sub-PU may
have a different reference index for each prediction direction,
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several techniques are proposed for scaling the motion vec-
tors to a target reference picture for each reference picture list.
[0184] Asillustrated in FIG. 14B, the reference picture 183
identified by the motion vector 186 inside the corresponding
sub-PU 185 of the motion source reference picture 182 is
PicOri, the reference picture (i.e., motion source picture) 182
containing the corresponding sub-PU 185 is PicT, the current
picture 180 is PicCur and the target reference picture 184 is
PicTarg. It is assumed for purposes of discussion that the
motion vector 186 is MV, and the scaled motion vector is MV"
(i.e., the motion vector predictor 188 for predicting a sub-PU
of PU 181 in current picture 180. Note that when a temporal
motion vector 187 identified in the first stage of the advanced
TMVP mode is associated with a reference picture that is not
the picture from which the sub-PU motion information is
derived, scaling of motion vectors based on POC distance
may be also possible.

[0185] 1. Scale the motion vector towards a fixed refer-
ence index of the current picture: MV'=MV*(POC
(PicTarg)-POC(PicCur))/(POC(PicOri)-POC(PicT)),
wherein the POC( ) function returns the POC value of a
given picture. Note that the above multiplication and
deviation operations can be simplified in a way similar
as in HEVC TMVP.

[0186] a. The fixed reference index may be the same
for the whole slice, e.g., it may be set equal to 0 as in
HEVC.

[0187] b. The fixed reference index may be derived
from the spatial neighboring blocks.

[0188] 2. Scale the motion vector always towards the
reference picture of the corresponding sub-PU, which is
PicOri: MV'=MV*(POC(PicOri)-POC(PicCur))/(POC
(PicOri)-POC(PicT)).

[0189] 3. Scale the motion vector always towards the
co-located picture, which is PicT: MV'=MV*(POC
(PicT)-POC(PicCur))/ (POC(PicOri)-POC(PicT)).

[0190] As indicated above, the target reference picture
from each reference picture list is set to the reference picture
that has a reference index equal to 0 in the reference picture
list. In another example, the target reference picture from
each reference picture list is set to the same reference picture
identified together with the “first stage vector.” as described
above. The operation of the advanced TMVP for sub-PU level
motion vector prediction is described in more detail below
with respect to FIG. 19.

[0191] With respect to the third issue described above, this
disclosure describes techniques related to deblocking filter
processes applied to CUs of a video block that include at least
one PU with multiple sub-PUs. The techniques of this disclo-
sure enable sub-PU boundaries to be deblocked by converting
the sub-PUs to a deblocking friendly structure so that HEVC
deblocking filters may continue to be used for 3D-HEVC
blocks. In this way, the input to the deblocking filter may
change to enable filtering of the blocky artifacts along the
sub-PUs boundaries while keeping the deblocking filter
unchanged. In this disclosure, a CU that is at least partially
coded with sub-PUs is referred to as an advanced CU, and a
PU coded with sub-PUs within an advanced CU coded is
referred to an advanced PU. Other PUs in the advanced CU, if
any, are referred to as normal PUs.

[0192] Several techniques are described in this disclosure
to introduce the edges for the sub-PUs to the deblocking filter
in order to eliminate the artifacts along the sub-PU bound-
aries. A sub-PU conversion process, as described in this dis-
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closure, may be introduced in 3D-HEVC right before a de-
blocking filtering process, i.e., after reconstructing a video
block for storage as a reference picture but before actually
storing the reconstructed video block in a decoded picture
buffer of video encoder 20 and/or video decoder 30.

[0193] In a first example, right before applying a deblock-
ing filter to the CU that includes PUs with sub-PUs, video
encoder 20 and/or video decoder 30 may be configured to
convert each PU that utilizes the sub-PU design into one or
more coding trees such that each of the sub-PUs may become
a PU in the coding units that are the nodes of the coding trees.
In this example, the sub-PU boundaries are converted to arti-
ficial PU boundaries for purposes of the deblocking filter. The
coding tree structure is preferably compatible to HEVC syn-
tax design.

[0194] In other examples, prior to applying a deblocking
filter to a CU of the video block that includes the PU with the
sub-PUs, video encoder 20 and/or video decoder 30 may be
configured to instead convert the CU in order to create artifi-
cial PU boundaries or artificial TU boundaries at the sub-PU
boundaries. In one example, video encoder 20 and/or video
decoder 30 may be configured to convert a transform tree of
the CU in order to associate the PU with a transform tree
hierarchy and associate each of the sub-PUs with a TU. In this
example, the sub-PU boundaries are converted to artificial TU
boundaries for purposes of the deblocking filter. In another
example, video encoder 20 and/or video decoder 30 may be
configured to convert the CU to a coding tree in order to
associate the PU with a CU and associate each of the sub-PUs
with a PU. In this example, the sub-PU boundaries are con-
verted to artificial PU boundaries for purposes of the deblock-
ing filter. The coding tree structure is preferably compatible to
HEVC syntax design.

[0195] In any of the above examples, after converting the
sub-PUs into deblocking friendly structures, the deblocking
filter may be applied to the PU boundaries between two
adjacent PUs of the CU and/or the TU boundaries between
two adjacent TUs of the CU, including the artificial PU
boundaries and the artificial TU boundaries.

[0196] Forthe example described above in which the trans-
form tree of the CU is converted in order to associate the PU
with a transform tree hierarchy and associate each of the
sub-PUs with a TU such that the sub-PU boundaries are
converted to artificial TU boundaries, one or more of the
following decisions processes may be applied.

[0197] 1. When the transform tree has a root with split_
transform_flag equal to 1, the nodes corresponding to
the normal PU (if any) of the advanced CU are not
changed.

[0198] 2. When the transform tree has a root with split_
transform_flag equal to 1, a node in an advanced PU is
changed to introduce a transform tree hierarchy as fol-
lows:

[0199] a. For the current node, if the split_transform_
flagis 0, and the TU size is larger than the sub-PU size,
set the split_transform_flag to 1, and for each of the
four child nodes, the following apply:

[0200] i.Setthecbf luma,cbf_cb,and cbf_crofthe
node to be the same as that of the parent node and
split_transform_flag equal to O;

[0201] ii. Set the current node to the child node, and
go to step a.
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[0202] b. For the current node, if the split_transform_
flagis 1, for each of the four child nodes, the following
applies: set the current node to the child node, and go
to step a.

[0203] 3. Alternatively, when a transform tree hierarchy
is introduced for a PU and cbf_luma, cbf_cb, and cbf _cr
are set to a newly split node, the cbf_luma, cbf_cb, and
cbf _cr of the node are set to 0.

[0204] 4. Alternatively, when a transform tree hierarchy
is introduced for a PU and cbf_luma (or cbf _cb, or
cbf_cr) are set to a newly split node, the cbf_luma (or
cbf_cb, or cbf_cr) of the node is set to any non-zero
positive integer value (e.g., 1) if cbf_luma (or cbf_cb, or
cbf_cr) is unequal to 0, or 0 otherwise.

[0205] 5. When the transform tree has a root with split_
transform_flag equal to 0, a normal PU (if any) is split
into transform units, with the following steps in order.

[0206] a.Thesplit_transform_flag ofthe CU isfirst set
to 1.
[0207] b. Ifthe partition of the CU is NxN, the normal

PU corresponds to one node. If the partition of the CU
is 2NxN or Nx2N, the normal PU corresponds to two
nodes.

[0208] c. Each of the above nodes within a normal PU
is set to have split_transform_flag set to 0 and cbf_
luma, cbf_cb, and cbf_cr set equal to cbf_luma, cbf_
cb, and cbf_cr of the original transform unit covering
the whole advanced CU.

[0209] d.Foreachofthe advanced PUs of the CU, 1 or
2 nodes covering the square region of the PU are first
generated, and, for each node, the transform tree hier-
archy is introduced similar as in step 2, 3 or 4 above.

[0210] 6. Alternatively to step 5 above, for each of the
above nodes within a normal PU, cbf_luma, ¢cbf_cb, and
cbf_cr are set equal to 0.

[0211] 7. Alternatively to step 4 above, for each of the
above nodes within a normal PU, its c¢bf_luma (or cbf_
cborcbf_cr)is set equal to any non-zero positive integer
value (e.g., 1) if cbf _luma (or cbf_cb, or cbf_cr) is
unequal to 0, or 0 otherwise.

[0212] For the example described above in which the CU is
converted to a coding tree in order to associate the PU with a
CU and associate each of the sub-PUs with a PU such that the
sub-PU boundaries are converted to artificial PU boundaries,
one or more of the following decisions processes may be
applied.

[0213] 1. After conversion, the current advanced CU will
become the root of the coding tree, namely the converted
root, which is a quad-tree containing at least four coding
units.

[0214] 2. For any normal PU in an advanced CU, it is set
to be one or more coding units.

[0215] 3. In addition, the CBF value of each component
of'the converted coding units converted from the normal
PUs in an advanced CU is further set to be 0. This way,
the filtering within one normal inter prediction PU is
avoided even if the PU has been converted to two CUs.
[0216] a. For any advanced PU, the CBF value of the

converted coding tree or coding unit that is one-level
below the converted root, is set to be non-zero if the
CBF value of the current advanced CU is non-zero.

[0217] b. Furthermore, for any converted CU or PU or
coding tree inside an advanced PU, if it originally
does not have a CBF value signaled, it is set to be the
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same as the CBF value of its parent node in the quad-

tree, or to the same zero or non-zero status as the CBF

value of its parent node in the quad-tree.

[0218] 4. Alternatively, for an advanced CU, one unique
transform unit cannot be applied for the whole CU,
meaning that if a normal PU is inside the advanced CU,
it must contain a transform unit which is not shared by
another PU of the CU.

[0219] a. Alternatively, or in addition, for each
advanced PU, the leaf nodes of the transform tree are
distributed one level higher than the sub-PU or
deeper, meaning that each of the four sub-PUs within
a converted CU has a unique transform unit signaled.

[0220] 5. More specifically, if a CU with 2L.x2L size
contains a PU that utilizes the sub-PU design, then the
following conversion is performed for all PUs in the CU.
A split flag equal to 1 is set for the current advanced CU
and the following apply and the current node is set to be
the CU:

[0221] a. For each of the one-quarter square areas of
the current node in raster scan order, the following
apply:

[0222] 1. Set this one-quarter area as a child node.

[0223] ii. If the child node is not coded with sub-
PUs, itis set to be a coding unit (with split flag equal
to 0) with 2Nx2N partition.

[0224] 1. Alternatively, or in addition, the CBF
value of each component of the child node is set
to be 0.

[0225] 2. Alternatively, or in addition, the TU
split flag of the coding unit is set to be 0.

[0226] iii. Else, if the child node is coded with sub-
PUs, and contains more than 1 sub-PU, a split flag
is set to 1 for the child node (thus considered as a
coding tree) and the following apply:

[0227] 1. Alternatively, in addition, if the CBF
value is not present for the child node, it is set
equal to be the CBF value of the higher level
current node (the parent node of this child node).

[0228] 2. Set the child node as the current node
and go to step a.

[0229] iv. Else, if the child node contains only 1
sub-PU, the child node is set to be the leaf of the
coding tree, thus a coding unit (with split flag equal
t0 0).

[0230] 1. Partition mode of the child node s set to
be the partition mode of the sub-PU
a. If partition mode of the sub-PU is 2Nx2N, the
sub-PU contains one 2Nx2N block and partition
mode of the coding unit is set to be 2Nx2N.

b. If partition mode of the sub-PU is Nx2N, the
sub-PU contains two Nx2N blocks and partition
mode of the coding unit is set to be Nx2N.
c. If partition mode of the sub-PU is 2NxN, the
sub-PU contains two 2NxN blocks and partition
mode of the coding unit is set to be 2NxN.

[0231] 2. Alternatively, or in addition, ifthe CBF
value is not present for the child node, it is set
equal to be the CBF value of the higher level
current node (the parent node of this child node).

[0232] 3. Alternatively, or in addition, the TU
split flag of the coding unit is set to be 0.

[0233] As another alternative for the example described
above in which the transform tree of the CU is converted in
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order to associate the PU with a transform tree hierarchy and
associate each of the sub-PUs with a TU such that the sub-PU
boundaries are converted to artificial TU boundaries, one or
more of the following decisions processes may be applied for
part of each sub-PU.

[0234] 1. When the transform tree has a root with split_
transform_flag equal to 1, the normal nodes that contain
only normal PUs (or part of normal PUs) of the advanced
CU are not changed.

[0235] 2. When the transform tree has a root with split_
transform_flag equal to 1, an advanced node that con-
tains any sub-PU (or part of sub-PU) is changed to
introduce transform tree hierarchy as follows:

[0236] a. For the current node, if it contains any sub-
PU (or part of sub-PU), and the split_transform_flag
is 0, and the TU size is larger than the sub-PU size, set
the split_transform_flag to 1, and for each of the four
child nodes, the following apply:

[0237] 1i.Setthecbf luma,cbf_cb,and cbf_crofthe
node to be the same as that of the parent node and
split_transform_flag equal to O;

[0238] ii. Set the current node to the child node, and
go to step a.

[0239] b. For the current node, if the split_transform_
flagis 1, for each of the four child nodes, the following
applies: set the current node to the child node, and go
to step a.

[0240] 3. Alternatively, when transform tree hierarchy is
introduced for a node and cbf_luma, cbf _cb, and cbf cr
are set to a newly split node, the cbf_luma, cbf_cb, and
cbf_cr of the newly split node are set to 0.

[0241] 4. Alternatively, when transform tree hierarchy is
introduced for a node and cbf_luma, cbf _cb, and cbf cr
are set to a newly split node, the cbf_luma (or cbf_cb, or
cbf_cr) of the newly split node is set to any non-zero
positive integer value (e.g., 1) if cbf_luma (or cbf_cb, or
cbf_cr) is unequal to 0, or 0 otherwise.

[0242] 5. When the transform tree has a root with split_
transform_flag equal to 0, a normal node that contains
only normal PUs (or part of normal PUs) has to be split
into transform units, with the following steps in order.

[0243] a.Thesplit_transform_flag ofthe CU isfirst set
to 1.
[0244] b. If the partition of the CU is NxN, the normal

PU corresponds to one normal node. If the partition of
the CU is 2NxN or Nx2N, the normal PU corresponds
to two normal nodes. If the partition of the CU is
2NxnU, 2NxnD, nL.x2N or nRx2N, the normal PU
corresponds to O or 2 normal nodes.

[0245] c.Each ofthe above normal nodes is set to have
split_transform_flag setequal to O and cbf_luma, cbf_
cb, and cbf_cr set equal to cbf_luma, cbf_cb, and
cbf_cr of the original transform unit covering the
whole advanced CU.

[0246] d. Foreach ofthe advanced nodes that contains
any sub-PU (or part of sub-PU) of the CU, the trans-
form tree hierarchy is introduced similar as in step 2,
3 or 4 above.

[0247] 6. Alternatively to step 5 above, for each of the
above normal nodes, cbf luma, cbf c¢b, and cbf_cr are
set equal to 0.

[0248] 7. Alternatively to step 4 above, for each of the
above normal nodes, its cbf_luma (or cbf_cb or cbf_cr)
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is set equal to any non-zero positive integer value (e.g.,
1) if cbf_luma (or cbf_cb, or cbf_cr) is unequal to 0, or
0 otherwise.
[0249] Some example implementation details are provided
below. The text below indicates proposed modifications to the
3D-HEVC WDI1 for implementation of some of the tech-
niques described in this disclosure.

Decoding Process

H.8.1 General Decoding Process

[0250] 3. The processes in subclauses 8.4, 8.5, 8.6, 8.7
and 8.8 specify decoding processes using syntax ele-
ments in all syntax structure layers. It is a requirement of
bitstream conformance that the coded slices of the pic-
ture shall contain slice segment data for every coding
tree unit of the picture, such that the division of the
picture into slices, the division of the slices into slice
segments, and the division of the slice segments into
coding tree units each forms a partitioning of the picture.

H.8.5.3.3.2 Reference Picture Selection Process

[0251] Input to this process is a reference index refldx[.X.
Output of this process is a reference picture consisting of a
two-dimensional array of luma samples refPicl.X; and two
two-dimensional arrays of chroma samples refPicL.X ., and
refPicL.X,.

The output reference picture RefPicListX[refldx[.X] consists
of a pic_width_in_luma_samples by pic_height_in_luma_
samples array of luma samples refPicLX, and two Pic-
WidthInSamplesC by PicHeightInSamplesC arrays of
chroma samples refPicL.X ., and refPicL.X .

The reference picture sample arrays refPicL. X, refPicL.X -,
and refPicl. X . correspond to decoded sample arrays S;, S,
and S, derived by subclause 8.7 and subclause 8.8 for a
previously-decoded picture.

H.8.7 Transform Tree Modification Process

H.8.7.1 General

[0252] Input to this process are: split flag array of coding
tree split_cu_flag, partition mode array of coding unit Part-
Mode, split flag of transform tree split_transform_flag, sub
prediction unit flag array of coding unit subPuFlag, sub pre-
diction unit size subPuSize. Output of this process are the
modified split flag array of transform tree split_transform_
flag.
For each coding unit, if it is coded in inter prediction mode
and it contains prediction unit that utilizes sub prediction unit
design, the split flag of transform tree is modified to make sub
prediction unit boundary be transform unit boundary:
[0253] The modification process of transform tree speci-
fied in subclause 8.7.2 is invoked with the luma location
(xCb, yCb), the luma location (xB0, yB0) set equal to (0,
0), luma coding block size nCbS set equal to (1<<Log
2MaxCbSize), coding tree depth cuDepth set equal to O,
split flag array of coding tree split_cu_flag, partition
mode array of coding unit PartMode, split flag array of
transform tree split_transform_flag, sub prediction unit
flag array subPuFlag and sub prediction unit size sub-
PuSize as inputs, and the modified split flag array of
transform tree split_transform_flag as output.
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H.8.7.2 Transform Tree Modification Process of Coding Unit
that Contains Sub Prediction Unit
Inputs to this process are:

[0254] aluma location (xChb, yCb) specifying the top-left
sample of the current luma coding block relative to the
top-left luma sample of the current picture,

[0255] aluma location (xBO, yB0) specifying the top-left
sample of the current luma block relative to the top-left
sample of the current luma coding block,

[0256] Iuma coding block size nCbS,

[0257] a variable specifying coding tree depth cuDepth,

[0258] split flag array of coding tree split_cu_flag,

[0259] split flag array of transform tree split_transform_
flag,

[0260] sub prediction unit flag array subPuFlag,

[0261] sub prediction unit size subPuSize,

Output of this process is the modified:

[0262] split flag array of transform tree split_transform_
flag,

[0263] Depending on the value of split_cu_flag[xCb+xB0]

[yCb+yBO][cuDepth], the following applies:

[0264] If split_cu_flag[xCb+xB0][yCb+yBO][cuDepth]
is equal to 1, the following ordered steps apply:

[0265] 1. The variables xB1 and yB1 are derived as fol-
lows:

[0266] The variable xB1 is set equal to xBO+
(nCbS>>1).

[0267] The variable yB1 is set equal to yBO+
(nCbS>>1).

[0268] 2. The modification process of transform tree as
specified in this subclause is invoked with the luma
location (xCb, yCb), the luma location (xB0, yB0), luma
coding block size nCbS set equal to (nCbS>>1), coding
tree depth cuDepth set equal to cuDepth+1, split flag
array of coding tree split_cu_flag, partition mode array
of coding unit PartMode, split flag array of transform
tree split_transform_flag, sub prediction unit flag array
subPuFlag, sub prediction unit size subPuSize, as
inputs, and the modified split flag array of transform tree
split_transform_flag as output.

[0269] 3. The modification process of transform tree as
specified in this subclause is invoked with the luma
location (xCb, yCb), the luma location (xB1, yB0), luma
coding block size nCbS set equal to (nCbS>>1), coding
tree depth cuDepth set equal to cuDepth+1, split flag
array of coding tree split_cu_flag, partition mode array
of coding unit PartMode, split flag array of transform
tree split_transform_flag, sub prediction unit flag array
subPuFlag, sub prediction unit size subPuSize, as
inputs, and the modified split flag array of transform tree
split_transform_flag as output.

[0270] 4. The modification process of transform tree as
specified in this subclause is invoked with the luma
location (xCb, yCb), the luma location (xB0O, yB1), luma
coding block size nCbS set equal to (nCbS>>1), coding
tree depth cuDepth set equal to cuDepth+1, split flag
array of coding tree split_cu_flag, partition mode array
of coding unit PartMode, split flag array of transform
tree split_transform_flag, sub prediction unit flag array
subPuFlag, sub prediction unit size subPuSize, as
inputs, and the modified split flag array of transform tree
split_transform_flag as output.

[0271] 5. The modification process of transform tree as
specified in this subclause is invoked with the luma
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location (xCb, yCb), the luma location (xB1, yB1), luma
coding block size nCbS set equal to (nCbS>>1), coding
tree depth cuDepth set equal to cuDepth+1, split flag
array of coding tree split_cu_flag, partition mode array
of coding unit PartMode, split flag array of transform
tree split_transform_flag, sub prediction unit flag array
subPuFlag, sub prediction unit size subPuSize, as
inputs, and the modified split flag array of transform tree
split_transform_flag as output.

[0272] Otherwise (split_cu_flag[xCb+xB0][yCb+yBO0]
[cuDepth] is equal to 0), if nCbS is larger than subPU-
Size, following ordered steps apply:

[0273] 1. The variables xB1 and yB1 are derived as fol-
lows:

[0274] Variable xB1 is set equal to xBO+(nCbS>>1).

[0275] Variable yB1 is set equal to yBO+(nCbS>>1).

[0276] 2. Derive variable subPuDeblockingFlag by fol-
lowing order steps:

[0277] subPuDeblockingFlag is set equal to O.

[0278] If subPuFlag [xCb+xB0][yCb+yB0] is equal
to 1, subPuDeblockingFlag is set equal to 1.

[0279] If subPuFlag [xCb+xB1][yCb+yB0] is equal
to 1, subPuDeblockingFlag is set equal to 1.

[0280] If subPuFlag [xCb+xB0][yCb+yB1] is equal
to 1, subPuDeblockingFlag is set equal to 1.

[0281] If subPuFlag [xCb+xB1][yCb+yB1] is equal
to 1, subPuDeblockingFlag is set equal to 1.

[0282] If PartMode[xCb+xB0][yCb+yBO0] is equal to
PART_nl.x2N, or PartMode[xCb+xB0|[yCb+yB0]
is equal to PART_nRx2N, or PartMode[xCb+xB0]
[yCb+yB0] is equal to PART_2NxnU, or PartMode
[xCb+xB0][yCb+yB0] is equal to PART 2NxnD,
subPuDeblockingFlag is set equal to 0.

[0283] 3. If subPuDeblockingFlag is equal to 1, the fol-
lowing ordered steps apply:

[0284] if split_transform_flag[xCb+xBO0][yCb+yBO0]
[cuDepth] is equal to O, set split_transform_flag
[xCb+xB0][yCb+yBO0][cuDepth] to be equal to 1.

[0285] The modification process of transform tree
specified in subclause 8.7.3 is invoked with the luma
location (xCb, yCb), luma location (xB0, yB0), the
coding tree depth cuDepth the block size nCbS, split
flag array of transform tree split_transform_flag, sub
prediction unit flag array of prediction unit subPu-
Flag, sub prediction unit size array of prediction unit
subPuSize as inputs, and the modified split flag array
of coding tree split_transform_flag as output.

H.8.7.3 Transform Tree Modification Process of Luma
Coding Block

[0286] Inputs to this process are:

[0287] alumalocation (xCb, yCb) specifying the top-left
sample of the current luma prediction block relative to
the top-left luma sample of the current picture,

[0288] alumalocation (xB0, yBO) specifying the top-left
sample of the current luma block relative to the top-left
sample of the current luma coding block.

[0289] wvariables specifying block size nCbS,

[0290] a variable specifying the transform tree depth
trafoDepth,

[0291] split flag array of transform tree split_transform_
flag,

[0292] sub prediction unit flag array subPuFlag,

[0293] sub prediction unit size subPuSize,
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Output of this process is the modified:
[0294] split flag array of transform tree split_transform_
flag,
If nCbS is larger than subPUSize, following ordered steps
apply.
[0295]
lows:
[0296] The variable xB1 is set equal to xBO+
(nCbS>>1).
[0297] The variable yB1 is set equal to yBO+
(nCbS>>1).
[0298] For x in xBO, xB1
[0299] Fory in yBO, yB1
[0300] if subPuFlag[xCb+x][yCb+y] is equal to 1
[0301] if split_transform_flag[xCb+x][yCb+y]
[trafoDepth+1] is equal to O

set split_transform_flag[xCb+x][yCb+y]
[trafoDepth+1] to be equal to 1.

The modification process of transform tree
specified in this subclause is invoked with the
luma location (xCb, yCb), luma location (xCb+
X, yCb+y), the transform tree depth trafoDepth is
set equal to trafoDepth+1, the block size nCbS is
set equal to (nCbS>>1), split flag array of trans-
form tree split_transform_flag, sub prediction
unit flag array subPuFlag, sub prediction unit
size subPuSize as inputs, and the modified split
flag array of coding tree split_transform_flag as
output.

[0302] otherwise (if split_transform_flag[xCh+
x]|[yCb+y][trafoDepth+1] is equal to 1),

The modification process of transform tree
specified in this subclause is invoked with the
luma location (xCb, yCb), luma location (xCb+
X, yCb+y), the transform tree depth trafoDepth is
set equal to trafoDepth+1, the block size nCbS is
set equal to (nCbS>>1), split flag array of trans-
form tree split_transform_flag, sub prediction
unit flag array subPuFlag, sub prediction unit
size subPuSize as inputs, and the modified split
flag array of coding tree split_transform_flag as
output.

The variables xB1 and yB1 are derived as fol-

H.8.8 in-Loop Filter Process

[0303] FIG.15is ablock diagram illustrating an example of
video encoder 20 that may be configured to implement the
techniques of this disclosure. Video encoder 20 may perform
intra- and inter-coding (including inter-view coding) of video
blocks within video slices, e.g., slices of both texture images
and depth maps. Texture information generally includes
luminance (brightness or intensity) and chrominance (color,
e.g., red hues and blue hues) information. In some examples,
video encoder 20 may determine coding modes relative to
luminance slices, and reuse prediction information from cod-
ing the luminance information to encode chrominance infor-
mation (e.g., by reusing partitioning information, intra-pre-
diction mode selections, motion vectors, or the like). Intra-
coding relies on spatial prediction to reduce or remove spatial
redundancy in video within a given video frame or picture.
Inter-coding relies on temporal prediction to reduce or
remove temporal redundancy in video within adjacent frames
or pictures of a video sequence. Intra-mode (I mode) may
refer to any of several spatial based coding modes. Inter-
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modes, such as uni-directional prediction (P mode) or bi-
prediction (B mode), may refer to any of several temporal-
based coding modes.

[0304] As shown in FIG. 15, video encoder 20 receives a
current video block (that is, a block of video data, such as a
luminance block, a chrominance block, or a depth block)
within a video frame (e.g., a texture image or a depth map) to
be encoded. In the example of FIG. 15, video encoder 20
includes mode select unit 40, video data memory 41, decoded
picture buffer 64, summer 50, transform processing unit 52,
quantization unit 54, filter unit 63, and entropy encoding unit
56. Filter unit 63 may apply a deblocking filter process as
described in this disclosure. Mode select unit 40, in turn,
includes motion compensation unit 44, motion estimation
unit 42, intra-prediction processing unit 46, and partition unit
48. For video block reconstruction, video encoder 20 also
includes inverse quantization unit 58, inverse transform pro-
cessing unit 60, and summer 62. Filter unit 63 may include a
deblocking filter and/or an SAO filter to filter block bound-
aries to remove blockiness artifacts from reconstructed video.
Additional filters (in loop or post loop) may also be used in
addition to the deblocking filter. Such filters are not shown for
brevity, but if desired, may filter the output of summer 50 (as
an in-loop filter).

[0305] Video data memory 41 may store video data to be
encoded by the components of video encoder 20. The video
data stored in video data memory 41 may be obtained, for
example, from video source 18. Decoded picture buffer 64
may be a reference picture memory that stores reference
video data for use in encoding video data by video encoder
20, e.g., in intra- or inter-coding modes. Video data memory
41 and decoded picture buffer 64 may be formed by any of a
variety of memory devices, such as dynamic random access
memory (DRAM), including synchronous DRAM
(SDRAM), magnetoresistive RAM (MRAM), resistive RAM
(RRAM), or other types of memory devices. Video data
memory 41 and decoded picture buffer 64 may be provided by
the same memory device or separate memory devices. In
various examples, video data memory 41 may be on-chip with
other components of video encoder 20, or off-chip relative to
those components.

[0306] During the encoding process, video encoder 20
receives a video frame or slice to be coded. The frame or slice
may be divided into multiple video blocks. Motion estimation
unit 42 and motion compensation unit 44 perform inter-pre-
dictive coding of the received video block relative to one or
more blocks in one or more reference frames to provide
temporal prediction. Intra-prediction processing unit 46 may
alternatively perform intra-predictive coding of the received
video block relative to one or more neighboring blocks in the
same frame or slice as the block to be coded to provide spatial
prediction. Video encoder 20 may perform multiple coding
passes, e.g., to select an appropriate coding mode for each
block of video data.

[0307] Moreover, partition unit 48 may partition blocks of
video data into sub-blocks, based on evaluation of previous
partitioning schemes in previous coding passes. For example,
partition unit 48 may initially partition a frame or slice into
LCUs, and partition each of the LCUs into sub-CUs based on
rate-distortion analysis (e.g., rate-distortion optimization).
Mode select unit 40 may further produce a quadtree data
structure indicative of partitioning of an LCU into sub-CUs.
Leaf-node CUs of the quadtree may include one or more PUs
and one or more TUs.
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[0308] Mode select unit 40 may select one of the coding
modes, intra or inter, e.g., based on error results, and provides
the resulting intra- or inter-coded block to summer 50 to
generate residual block data and to summer 62 to reconstruct
the encoded block for use as a reference frame. Mode select
unit 40 also provides syntax elements, such as motion vectors,
intra-mode indicators, partition information, and other such
syntax information, to entropy encoding unit 56.

[0309] Motion estimation unit 42 and motion compensa-
tion unit 44 may be highly integrated, but are illustrated
separately for conceptual purposes. Motion estimation, per-
formed by motion estimation unit 42, is the process of gen-
erating motion vectors, which estimate motion for video
blocks. A motion vector, for example, may indicate the dis-
placement of a PU of a video block within a current video
frame or picture relative to a predictive block within a refer-
ence frame (or other coded unit) relative to the current block
being coded within the current frame (or other coded unit).

[0310] A predictive block is a block that is found to closely
match the block to be coded, in terms of pixel difference,
which may be determined by sum of absolute difference
(SAD), sum of square difference (SSD), or other difference
metrics. In some examples, video encoder 20 may calculate
values for sub-integer pixel positions of reference pictures
stored in decoded picture buffer 64. For example, video
encoder 20 may interpolate values of one-quarter pixel posi-
tions, one-eighth pixel positions, or other fractional pixel
positions of the reference picture. Therefore, motion estima-
tion unit 42 may perform a motion search relative to the full
pixel positions and fractional pixel positions and output a
motion vector with fractional pixel precision.

[0311] Motion estimation unit 42 calculates a motion vec-
tor for a PU of a video block in an inter-coded slice by
comparing the position of the PU to the position of a predic-
tive block of a reference picture. The reference picture may be
selected from a first reference picture list (List 0) or a second
reference picture list (List 1), each of which identify one or
more reference pictures stored in decoded picture buffer 64.
The reference picture lists may be constructed using the tech-
niques of this disclosure. Motion estimation unit 42 sends the
calculated motion vector to entropy encoding unit 56 and
motion compensation unit 44.

[0312] Motion compensation, performed by motion com-
pensation unit 44, may involve fetching or generating the
predictive block based on the motion vector determined by
motion estimation unit 42. Again, motion estimation unit 42
and motion compensation unit 44 may be functionally inte-
grated, in some examples. Upon receiving the motion vector
for the PU of the current video block, motion compensation
unit 44 may locate the predictive block to which the motion
vector points in one of the reference picture lists. Summer 50
forms a residual video block by subtracting pixel values of the
predictive block from the pixel values of the current video
block being coded, forming pixel difference values, as dis-
cussed below. In general, motion estimation unit 42 performs
motion estimation relative to luma components, and motion
compensation unit 44 uses motion vectors calculated based
on the luma components for both chroma components and
luma components. In this manner, motion compensation unit
44 may reuse motion information determined for luma com-
ponents to code chroma components such that motion esti-
mation unit 42 need not perform a motion search for the
chroma components. Mode select unit 40 may also generate
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syntax elements associated with the video blocks and the
video slice for use by video decoder 30 in decoding the video
blocks of the video slice.

[0313] Intra-prediction processing unit 46 may intra-pre-
dict a current block, as an alternative to the inter-prediction
performed by motion estimation unit 42 and motion compen-
sation unit 44, as described above. In particular, intra-predic-
tion processing unit 46 may determine an intra-prediction
mode to use to encode a current block. In some examples,
intra-prediction processing unit 46 may encode a current
block using various intra-prediction modes, e.g., during sepa-
rate encoding passes, and intra-prediction processing unit 46
(or mode select unit 40, in some examples) may select an
appropriate intra-prediction mode to use from the tested
modes.

[0314] For example, intra-prediction processing unit 46
may calculate rate-distortion values using a rate-distortion
analysis for the various tested intra-prediction modes, and
select the intra-prediction mode having the best rate-distor-
tion characteristics among the tested modes. Rate-distortion
analysis generally determines an amount of distortion (or
error) between an encoded block and an original, unencoded
block that was encoded to produce the encoded block, as well
as a bit rate (that is, a number of bits) used to produce the
encoded block. Intra-prediction processing unit 46 may cal-
culate ratios from the distortions and rates for the various
encoded blocks to determine which intra-prediction mode
exhibits the best rate-distortion value for the block.

[0315] After selecting an intra-prediction mode for a block,
intra-prediction processing unit 46 may provide information
indicative of the selected intra-prediction mode for the block
to entropy encoding unit 56. Entropy encoding unit 56 may
encode the information indicating the selected intra-predic-
tion mode. Video encoder 20 may include in the transmitted
bitstream configuration data, which may include a plurality of
intra-prediction mode index tables and a plurality of modified
intra-prediction mode index tables (also referred to as code-
word mapping tables), definitions of encoding contexts for
various blocks, and indications of a most probable intra-
prediction mode, an intra-prediction mode index table, and a
modified intra-prediction mode index table to use for each of
the contexts.

[0316] Video encoder 20 forms a residual video block by
subtracting the prediction data from mode select unit 40 from
the original video block being coded. Summer 50 represents
the component or components that perform this subtraction
operation. Transform processing unit 52 applies a transform,
such as a discrete cosine transform (DCT) or a conceptually
similar transform, to the residual block, producing a video
block comprising residual transform coefficient values.
Transform processing unit 52 may perform other transforms
which are conceptually similar to DCT. Wavelet transforms,
integer transforms, sub-band transforms or other types of
transforms could also be used. In any case, transform pro-
cessing unit 52 applies the transform to the residual block,
producing a block of residual transform coefficients.

[0317] The transform may convert the residual information
from a pixel value domain to a transform domain, such as a
frequency domain. Transform processing unit 52 may send
the resulting transform coefficients to quantization unit 54.
Quantization unit 54 quantizes the transform coefficients to
further reduce bit rate. The quantization process may reduce
the bit depth associated with some or all of the coefficients.
The degree of quantization may be modified by adjusting a
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quantization parameter. In some examples, quantization unit
54 may then perform a scan of the matrix including the
quantized transform coefficients. Alternatively, entropy
encoding unit 56 may perform the scan.

[0318] Following quantization, entropy encoding unit 56
entropy codes the quantized transform coefficients. For
example, entropy encoding unit 56 may perform context
adaptive variable length coding (CAVLC), context adaptive
binary arithmetic coding (CABAC), syntax-based context-
adaptive binary arithmetic coding (SBAC), probability inter-
val partitioning entropy (PIPE) coding or another entropy
coding technique. In the case of context-based entropy cod-
ing, context may be based on neighboring blocks. Following
the entropy coding by entropy encoding unit 56, the encoded
bitstream may be transmitted to another device (e.g., video
decoder 30) or archived for later transmission or retrieval.
[0319] Inverse quantization unit 58 and inverse transform
processing unit 60 apply inverse quantization and inverse
transformation, respectively, to reconstruct the residual block
in the pixel domain, e.g., for later use as a reference block.
Motion compensation unit 44 may calculate a reference block
by adding the residual block to a predictive block of one of the
reference pictures stored in decoded picture buffer 64.
Motion compensation unit 44 may also apply one or more
interpolation filters to the reconstructed residual block to
calculate sub-integer pixel values for use in motion estima-
tion. Summer 62 adds the reconstructed residual block to the
motion compensated prediction block produced by motion
compensation unit 44 to produce a reconstructed video block
for storage in decoded picture buffer 64. The reconstructed
video block may be used by motion estimation unit 42 and
motion compensation unit 44 as a reference block to inter-
code a block in a subsequent video frame.

[0320] Video encoder 20 may encode depth maps in a man-
ner that substantially resembles coding techniques for coding
luminance components, albeit without corresponding
chrominance components. For example, intra-prediction pro-
cessing unit 46 may intra-predict blocks of depth maps, while
motion estimation unit 42 and motion compensation unit 44
may inter-predict blocks of depth maps. However, as dis-
cussed above, during inter-prediction of depth maps, motion
compensation unit 44 may scale (that is, adjust) values of
reference depth maps based on differences in depth ranges
and precision values for the depth ranges. For example, if
different maximum depth values in the current depth map and
a reference depth map correspond to the same real-world
depth, video encoder 20 may scale the maximum depth value
of'the reference depth map to be equal to the maximum depth
value in the current depth map, for purposes of prediction.
Additionally or alternatively, video encoder 20 may use the
updated depth range values and precision values to generate a
view synthesis picture for view synthesis prediction, e.g.,
using techniques substantially similar to inter-view predic-
tion.

[0321] Video encoder 20 represents an example of a video
encoder that may be configured to perform any of the tech-
niques described in this disclosure, alone or in any combina-
tion. For example, video encoder 20 may be configured to
perform techniques for sub-PU level motion prediction for
video coding in 3D-HEVC.

[0322] In one example, video encoder 20 may be config-
ured to perform a sub-PU BVSP mode to predict a PU that
includes two or more sub-PUs. In the sub-PU BVSP mode,
motion compensation unit 44 of video encoder 20 determines
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first motion information for a current PU that includes at least
one disparity motion vector and an associated reference view
index that identifies an inter-view reference picture. Motion
compensation unit 44 then partitions the current PU into two
or more sub-PUs, and determines second motion information
for each of the sub-PUs that includes at least one disparity
motion vector associated with a depth block of the inter-view
reference picture corresponding to each of the sub-PUs.
Motion compensation unit 44 performs motion compensation
to predict each of the sub-PUs of the PU based on the second
motion information for each of the sub-PUs. According to the
techniques of this disclosure, for each PU predicted using the
sub-PU BVSP mode, video encoder 20 stores the second
motion information derived for each of the sub-PUs of the
current PU even after motion compensation is performed. The
second motion information may be stored in decoded picture
buffer 64. The additional motion information stored for the
current PU may then be used to predict subsequent PUs for
which the current PU is a neighboring block.

[0323] In another example, video encoder 20 may be con-
figured to perform an advanced TMVP mode to predict sub-
PUs of a PU in single layer coding for which motion vector
refinement may be allowed. In the advanced TMVP mode,
motion compensation unit 44 of video encoder 20 determines
a first stage motion vector for a current PU that identifies a
block of a reference picture corresponding to the current PU.
Motion compensation unit 44 then partitions the current PU
into two or more sub-PUs, and determines second stage
motion information for each of the sub-PUs from the block of
the reference picture identified by the first stage motion vec-
tor, where the second stage motion information for each ofthe
sub-PUs includes at least one motion vector and an associated
reference index. Motion compensation unit 44 performs
motion compensation to predict each of the sub-PUs sepa-
rately based on the second stage motion information for each
of'the sub-PUs. In some examples, motion compensation unit
44 may determine a motion vector difference to refine the at
least one motion vector of the second stage motion informa-
tion for each of the sub-PUs.

[0324] In another example, video encoder 20 may be con-
figured to perform techniques related to deblocking filter
processes applied to CUs of a video block that include at least
one PU with multiple sub-PUs. According to the techniques
of'this disclosure, prior to applying a deblocking filtertoa CU
of the video block that includes the PU with the sub-PUs,
filter unit 63 of video encoder 20 converts the CU in order to
create artificial PU boundaries or artificial TU boundaries at
the sub-PU boundaries. In one example, filter unit 63 converts
a transform tree of the CU in order to associate the PU with a
transform tree hierarchy and associate each of the sub-PUs
with a TU such that the sub-PU boundaries are converted to
artificial TU boundaries. In another example, filter unit 63
converts the CU to a coding tree in order to associate the PU
with a CU and associate each of the sub-PUs with a PU such
that the sub-PU boundaries are converted to artificial PU
boundaries. Filter unit 63 then applies the deblocking filter to
the PU boundaries between two adjacent PUs of the CU
and/or the TU boundaries between two adjacent TUs of the
CU, including the artificial PU boundaries and the artificial
TU boundaries.

[0325] FIG. 16 is a block diagram illustrating an example of
video decoder 30 that may implement the techniques of this
disclosure. In the example of FIG. 16, video decoder 30
includes an entropy decoding unit 70, video data memory 71,
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motion compensation unit 72, intra prediction processing unit
74, inverse quantization unit 76, inverse transform processing
unit 78, decoded picture buffer 82, filter unit 83, and summer
80. Video decoder 30 may, in some examples, perform a
decoding pass generally reciprocal to the encoding pass
described with respect to video encoder 20 (FIG. 15). Motion
compensation unit 72 may generate prediction data based on
motion vectors received from entropy decoding unit 70, while
intra-prediction processing unit 74 may generate prediction
data based on intra-prediction mode indicators received from
entropy decoding unit 70.

[0326] Video data memory 71 may store video data, such as
anencoded video bitstream, to be decoded by the components
of video decoder 30. The video data stored in video data
memory 71 may be obtained, for example, from computer-
readable medium 16, e.g., from a local video source, such as
a camera, via wired or wireless network communication of
video data, or by accessing physical data storage media.
Video data memory 71 may form a coded picture buffer
(CPB) that stores encoded video data from an encoded video
bitstream. Decoded picture buffer 82 may be a reference
picture memory that stores reference video data for use in
decoding video data by video decoder 30, e.g., in intra- or
inter-coding modes. Video data memory 71 and decoded pic-
ture bufter 82 may be formed by any of a variety of memory
devices, such as dynamic random access memory (DRAM),
including synchronous DRAM (SDRAM), magnetoresistive
RAM (MRAM), resistive RAM (RRAM), or other types of
memory devices. Video data memory 71 and decoded picture
buffer 82 may be provided by the same memory device or
separate memory devices. In various examples, video data
memory 71 may be on-chip with other components of video
decoder 30, or off-chip relative to those components.

[0327] During the decoding process, video decoder 30
receives an encoded video bitstream that represents video
blocks of an encoded video slice and associated syntax ele-
ments from video encoder 20. Entropy decoding unit 70 of
video decoder 30 entropy decodes the bitstream to generate
quantized coefficients, motion vectors or intra-prediction
mode indicators, and other syntax elements. Entropy decod-
ing unit 70 forwards the motion vectors to and other syntax
elements to motion compensation unit 72. Video decoder 30
may receive the syntax elements at the video slice level and/or
the video block level.

[0328] When the video slice is coded as an intra-coded (I)
slice, intra prediction processing unit 74 may generate pre-
diction data for a video block of the current video slice based
on a signaled intra prediction mode and data from previously
decoded blocks of the current frame or picture. When the
video frame is coded as an inter-coded (i.e., B or P) slice,
motion compensation unit 72 produces predictive blocks for
a video block of the current video slice based on the motion
vectors and other syntax elements received from entropy
decoding unit 70. The predictive blocks may be produced
from one of the reference pictures within one of the reference
picture lists. Video decoder 30 may construct the reference
frame lists, List O and List 1, using the techniques of this
disclosure based on reference pictures stored in decoded pic-
ture buffer 82. Motion compensation unit 72 determines pre-
diction information for a video block of the current video slice
by parsing the motion vectors and other syntax elements, and
uses the prediction information to produce the predictive
blocks for the current video block being decoded. For
example, motion compensation unit 72 uses some of the
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received syntax elements to determine a prediction mode
(e.g., intra- or inter-prediction) used to code the video blocks
of'the video slice, an inter-prediction slice type (e.g., B slice
or P slice), construction information for one or more of the
reference picture lists for the slice, motion vectors for each
inter-encoded video block of the slice, inter-prediction status
for each inter-coded video block of the slice, and other infor-
mation to decode the video blocks in the current video slice.

[0329] Motion compensation unit 72 may also perform
interpolation based on interpolation filters. Motion compen-
sation unit 72 may use interpolation filters as used by video
encoder 20 during encoding of the video blocks to calculate
interpolated values for sub-integer pixels of reference blocks.
In this case, motion compensation unit 72 may determine the
interpolation filters used by video encoder 20 from the
received syntax elements and use the interpolation filters to
produce predictive blocks.

[0330] Inverse quantization unit 76 inverse quantizes. i.e.,
de-quantizes, the quantized transform coefficients provided
in the bitstream and decoded by entropy decoding unit 70.
The inverse quantization process may include use of a quan-
tization parameter QP calculated by video decoder 30 for
each video block in the video slice to determine a degree of
quantization and, likewise, a degree of inverse quantization
that should be applied. Inverse transform processing unit 78
applies an inverse transform, e.g., an inverse DCT, an inverse
integer transform, or a conceptually similar inverse transform
process, to the transform coefficients in order to produce
residual blocks in the pixel domain.

[0331] After motion compensation unit 72 generates the
predictive block for the current video block based on the
motion vectors and other syntax elements, video decoder 30
forms a decoded video block by summing the residual blocks
from inverse transform processing unit 78 with the corre-
sponding predictive blocks generated by motion compensa-
tion unit 72. Summer 90 represents the component or com-
ponents that perform this summation operation. Filter unit 63
may apply a deblocking filter process. Filter unit 63 may
include a deblocking filter and/or an SAO filter to filter block
boundaries to remove blockiness artifacts from reconstructed
video. Additional filters (in loop or post loop) may also be
used in addition to the deblocking filter. Such filters are not
shown for brevity, but if desired, may filter the output of
summer 80 (as an in-loop filter). The decoded video blocks in
a given frame or picture are then stored in decoded picture
buffer 82, which stores reference pictures used for subsequent
motion compensation. Decoded picture buffer 82 also stores
decoded video for later presentation on a display device, such
as display device 32 of FIG. 1.

[0332] Video decoder 30 may decode depth maps in a man-
ner that substantially resembles decoding techniques for
decoding luminance components, albeit without correspond-
ing chrominance components. For example, intra-prediction
processing unit 74 may intra-predict blocks of depth maps,
while motion compensation unit 72 may inter-predict blocks
of depth maps. However, as discussed above, during inter-
prediction of depth maps, motion compensation unit 72 may
scale (thatis, adjust) values of reference depth maps based on
differences in depth ranges and precision values for the depth
ranges. For example, if different maximum depth values in
the current depth map and a reference depth map correspond
to the same real-world depth, video decoder 30 may scale the
maximum depth value of the reference depth map to be equal
to the maximum depth value in the current depth map, for



US 2015/0085929 Al

purposes of prediction. Additionally or alternatively, video
decoder 30 may use the updated depth range values and
precision values to generate a view synthesis picture for view
synthesis prediction. e.g., using techniques substantially
similar to inter-view prediction.

[0333] Video decoder 30 represents an example of a video
decoder that may be configured to perform any of the tech-
niques described in this disclosure, alone or in any combina-
tion. For example, video decoder 30 may be configured to
perform techniques for sub-PU level motion prediction for
video coding in 3D-HEVC.

[0334] In one example, video decoder 30 may be config-
ured to perform a sub-PU BVSP mode to predict a PU that
includes two or more sub-PUs. In the sub-PU BVSP mode,
motion compensation unit 72 of video decoder 30 determines
first motion information for a current PU that includes at least
one disparity motion vector and an associated reference view
index that identifies an inter-view reference picture. Motion
compensation unit 72 then partitions the current PU into two
or more sub-PUs, and determines second motion information
for each of the sub-PUs that includes at least one disparity
motion vector associated with a depth block of the inter-view
reference picture corresponding to each of the sub-PUs.
Motion compensation unit 72 performs motion compensation
to predict each of the sub-PUs of the PU based on the second
motion information for each of the sub-PUs. According to the
techniques of this disclosure, for each PU predicted using the
sub-PU BVSP mode, video decoder 30 stores the second
motion information derived for each of the sub-PUs of the
current PU even after motion compensation is performed. The
second motion information may be stored in decoded picture
buffer 82. The additional motion information stored for the
current PU may then be used to predict subsequent PUs for
which the current PU is a neighboring block.

[0335] In another example, video decoder 30 may be con-
figured to perform an advanced TMVP mode to predict sub-
PUs of a PU in single layer coding for which motion vector
refinement may be allowed. In the advanced TMVP mode,
motion compensation unit 72 of video decoder 30 determines
a first stage motion vector for a current PU that identifies a
block of a reference picture corresponding to the current PU.
Motion compensation unit 72 then partitions the current PU
into two or more sub-PUs, and determines second stage
motion information for each of the sub-PUs from the block of
the reference picture identified by the first stage motion vec-
tor, where the second stage motion information for each of the
sub-PUs includes at least one motion vector and an associated
reference index. Motion compensation unit 72 performs
motion compensation to predict each of the sub-PUs sepa-
rately based on the second stage motion information for each
of'the sub-PUs. In some examples, motion compensation unit
72 may determine a motion vector difference to refine the at
least one motion vector of the second stage motion informa-
tion for each of the sub-PUs.

[0336] In another example, video decoder 30 may be con-
figured to perform techniques related to deblocking filter
processes applied to CUs of a video block that include at least
one PU with multiple sub-PUs. According to the techniques
of'this disclosure, prior to applying a deblocking filterto a CU
of the video block that includes the PU with the sub-PUs,
filter unit 83 of video decoder 30 converts the CU in order to
create artificial PU boundaries or artificial TU boundaries at
the sub-PU boundaries. In one example, filter unit 83 converts
a transform tree of the CU in order to associate the PU with a
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transform tree hierarchy and associate each of the sub-PUs
with a TU such that the sub-PU boundaries are converted to
artificial TU boundaries. In another example, filter unit 83
converts the CU to a coding tree in order to associate the PU
with a CU and associate each of the sub-PUs with a PU such
that the sub-PU boundaries are converted to artificial PU
boundaries. Filter unit 83 then applies the deblocking filter to
the PU boundaries between two adjacent PUs of the CU
and/or the TU boundaries between two adjacent TUs of the
CU, including the artificial PU boundaries and the artificial
TU boundaries.

[0337] FIG.17is aflowchart illustrating an example opera-
tion of predicting a current PU using a sub-PU BVSP mode
and storing the determined sub-PU motion information stor-
age. The illustrated operation is described in this disclosure
with respect to video decoder 30 of FIG. 16. In other
examples, the illustrated operation may be performed by
video encoder 20 of FIG. 15, or any other encoding or decod-
ing device that operates according to the 3D-HEVC standard.
[0338] Video decoder 30 receives an encoded video bit-
stream that represents video blocks of an encoded video slice
and associated syntax elements. Entropy decoding unit 70 of
video decoder 30 decodes the bitstream to generate quantized
transform coefficients, motion information and prediction
mode indicators, and other syntax elements. Entropy decod-
ing unit 70 sends the decoded quantized transform coefficient
to inverse quantization unit 76 and inverse transform process-
ing unit 78 to reconstruct residual blocks of the video blocks
to be decoded. Entropy decoding unit 70 sends the decoded
motion information and inter prediction mode indicators to
motion compensation unit 72.

[0339] Motion compensation unit 72 predicts each PU of
each CU of the video blocks to be decoded according to the
indicated one of the merge or AMVP inter prediction modes.
For example, in the merge mode, motion compensation unit
72 may generate a merge mode candidate list of motion
information that includes motion information, i.e., motion
vectors and associated reference indices, of spatial and tem-
poral neighboring blocks of the current PU. In this case, the
decoded motion information may include a merge index that
indicates one of the sets of motion information in the merge
mode candidate list for predicting the current PU. In the
BVSP mode, the merge mode candidate list includes a special
BVSP candidate having motion information that includes a
disparity motion vector and an associated reference view
index, and depth information is used to refine the motion
information.

[0340] According to the techniques of this disclosure,
motion compensation unit 72 determines first motion infor-
mation for a current PU from neighboring blocks of the PU
according to the BVSP mode in which the first motion infor-
mation includes at least one disparity motion vector and an
associated reference view index that identifies an inter-view
reference picture (140). As described above, motion compen-
sation unit 72 may select the first motion information for the
current PU as the BVSP candidate from the merge mode
candidate list. In some cases, the first motion information for
the current PU may include a disparity motion vector corre-
sponding to each of the first and second reference picture lists.
[0341] Motion compensation unit 72 then partitions the
current PU into two or more sub-PUs (142). Motion compen-
sation unit 72 determines second motion information for each
of the sub-PUs in which the second motion information
includes at least one disparity motion vector associated a
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depth block of the inter-view reference picture corresponding
to each of the sub-PUs (144). For example, motion compen-
sation unit 72 may select a maximum value of the four corner
pixels for the depth block of the inter-view reference picture
corresponding to each of the sub-PUs, and convert the maxi-
mum value to a horizontal component of the disparity motion
vector for each of the sub-PUs. The vertical component of the
disparity motion vector for each of the sub-PUs is equal to
zero. In some cases, the second motion information for each
of the sub-PUs may include a disparity motion vector corre-
sponding to each of the first and second reference picture lists.
[0342] Motion compensation unit 72 performs motion
compensation to predict each of the sub-PUs of the current
PU from the inter-view reference picture based on the second
motion information (146). After performing motion compen-
sation, video decoder 30 stores the second motion informa-
tion for each of the sub-PUs of the current PU in a memory,
e.g., decoded picture buffer 82 of video decoder 30, to be used
for predicting subsequent PUs (148). For example, video
decoder 30 may store the disparity motion vector derived for
each of the sub-PUs in decoded picture buffer 82 associated
with a reference picture list that includes the inter-view ref-
erence picture identified by the reference view index of the
first motion information for the PU. After generating a pre-
dictive block for each of the sub-PUs of the PU during motion
compensation, video decoder 30 generates a reconstructed
version of the video block based on a reconstructed version of
a corresponding residual block and the predictive block for
each of the sub-PUs.

[0343] Conventionally, in the BVSP mode of 3D-HEVC,
after performing motion compensation to predict each of the
sub-PUs, only a single disparity motion vector corresponding
to each reference picture list is stored for the current PU. The
single disparity motion vector is stored for each reference
picture list even though the motion compensation of the PU is
based on multiple motion vectors for the multiple sub-PUs of
the PU. In this case, when the current PU is used to predict a
subsequent PU, the sub-PUs of the current PU are viewed as
having the same motion vectors such that the sub-PU BVSP
mode has little impact on improving accuracy of motion
vector prediction.

[0344] According to the techniques of this disclosure, for
each PU coded in the sub-PU BVSP mode, video decoder 30
stores the second motion information derived for each of the
sub-PUs ofthe current PU, even after motion compensation is
performed. The additional motion information stored for the
current PU may then be used to predict subsequent PUs for
which the current PU is a neighboring block. For example,
motion compensation unit 72 may generate a merge mode
candidate list of motion information for predicting a subse-
quent PU that includes the second motion information for at
least one of the sub-PUs of the PU stored in decoded picture
buffer 82 as a sub-PU BVSP candidate in the merge mode
candidate list. In one example, if the subsequent PU is coded
in the sub-PU BVSP mode, motion compensation unit 72 may
not need to derive the second motion information for each of
the sub-PUs of the subsequent PU. Instead, motion compen-
sation unit 72 may instead select the second motion informa-
tion as the sub-PU BVSP candidate from the merge mode
candidate list of motion information for predicting the sub-
PUs of the subsequent PU.

[0345] FIG. 18 is a flowchart illustrating an example opera-
tion of applying a deblocking filter to each CU of a video
block to filter TU boundaries and PU boundaries including
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sub-PU boundaries within the CU. The deblocking filter is
applied after reconstructing the video block and before stor-
ing the video block in a decoded picture buffer as a block of
a reference picture. The illustrated operation is described in
this disclosure with respect to video decoder 30 of FIG. 16. In
other examples, the illustrated operation may be performed in
the video block reconstruction loop of video encoder 20 of
FIG. 15, or any other encoding or decoding device that uses a
sub-PU design and deblocking filters.

[0346] Video decoder 30 generates a reconstructed version
of a video block based on a reconstructed version of a corre-
sponding residual block and a predictive block (150). The
video block includes atleast one CU, and the CU may include
at least one PU that is partitioned into two or more sub-PUs.
As described above with respect to FIG. 17, motion compen-
sation unit 72 of video decoder 30 may generate a predictive
block during video compression for each of the sub-PUs of
the PU. Deblocking filters for the HEVC standard are not
designed to filter within a PU. i.e., along sub-PU boundaries,
because for HEVC blocks it is assumed that motion compen-
sation is the same for the entire PU. This disclosure describes
techniques for converting a PU with sub-PUs to a deblocking
friendly structure so that HEVC deblocking filters may con-
tinue to be used for 3D-HEVC blocks.

[0347] Prior to applying a deblocking filter to the CU of the
video block that includes the PU with the two or more sub-
PUs, filter unit 83 of video decoder 30 converts the CU to
create artificial PU boundaries or artificial TU boundaries at
sub-PU boundaries between two adjacent sub-PUs of the PU
(152). In one example, filter unit 83 converts a transform tree
of the CU in order to associate the PU with a transform tree
hierarchy and associate each of the sub-PUs with a TU such
that the sub-PU boundaries are converted to artificial TU
boundaries. In another example, filter unit 83 converts the CU
to a coding tree in order to associate the PU with a CU and
associate each of the sub-PUs with a PU such that the sub-PU
boundaries are converted to artificial PU boundaries.

[0348] Filter unit 83 then applies the deblocking filter to the
PU boundaries between two adjacent PUs of the CU and/or
the TU boundaries between two adjacent TUs of the CU,
including the artificial PU boundaries and the artificial TU
boundaries (154). After filtering each of the CUs of'the recon-
structed version of the video block, filter unit 83 stores the
video block in decoded picture buffer 82 as a block of a
reference picture (156).

[0349] FIG. 19 flowchart illustrating an example operation
of an advanced TMVP mode to predict sub-PUs of a PU in
single layer coding. The illustrated operation is described in
this disclosure with respect to video decoder 30 of FIG. 16. In
other examples, the illustrated operation may be performed
by video encoder 20 of FIG. 15, or any other encoding or
decoding device that uses a sub-PU design.

[0350] Video decoder 30 receives an encoded video bit-
stream that represents video blocks of an encoded video slice
and associated syntax elements. Entropy decoding unit 70 of
video decoder 30 decodes the bitstream to generate quantized
transform coefficients, motion information and prediction
mode indicators, and other syntax elements. Entropy decod-
ing unit 70 sends the decoded quantized transform coefficient
to inverse quantization unit 76 and inverse transform process-
ing unit 78 to reconstruct residual blocks of the video blocks
to be decoded. Entropy decoding unit 70 sends the decoded
motion information and inter prediction mode indicators to
motion compensation unit 72.
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[0351] Motion compensation unit 72 predicts each PU of
each CU of the video blocks to be decoded according to the
indicated one of the merge or AMVP inter prediction modes.
For example, in the merge mode, motion compensation unit
72 may generate a merge mode candidate list of motion
information that includes motion information, i.e., motion
vectors and associated reference indices, of spatial and tem-
poral neighboring blocks of the current PU. In this case, the
decoded motion information may include a merge index that
indicates one of the sets of motion information in the merge
mode candidate list for predicting the current PU. In another
example, in the AMVP mode, motion compensation unit 72
may generate an AMVP mode candidate list that only
includes motion vectors of the spatial and temporal neighbor-
ing blocks of the current PU. In this case, the decoded motion
information may include an AMVP index that indicates one
of the motion vectors in the AMVP mode candidate list, and
also include an explicitly signaled reference index and any
motion vector difference to refine the selected motion vector
for predicting the current PU.

[0352] Conventionally, the sub-PU design is only enabled
for inter-layer or inter-view prediction using the merge inter
prediction mode. This disclosure describes an advanced
TMVP mode to predict sub-PUs of a PU in single layer
coding for which motion vector refinement may be allowed.
In one example, to indicate performance of the advanced
TMVP mode to predict the current PU, motion compensation
unit 72 may generate an advanced TMVP candidate in the
merge mode candidate list for the PU, where selection of the
advanced TMVP candidate indicates performance of the
advanced TMVP mode to predict the PU.

[0353] According to the techniques of this disclosure,
motion compensation unit 72 determines a first stage motion
vector for a current PU from neighboring blocks of the PU
that identifies a block of a reference picture corresponding to
current PU (160). As one example, motion compensation unit
72 may derive the first stage motion vector from the spatial
neighboring blocks and/or the temporal neighboring blocks
of'the current PU. As another example, motion compensation
unit 72 may select the first stage motion vector from a merge
mode candidate list for the current PU. In other examples, the
first stage motion vector may be set to be a constant or pre-
defined value.

[0354] Motion compensation unit 72 then partitions the
current PU into two or more sub-PUs (162). Motion compen-
sation unit 72 determines second stage motion information
for each of the sub-PUs from the block of the reference
picture identified by the first stage motion vector, where the
second stage motion information for each of the sub-PUs
includes at least one motion vector and an associated refer-
ence index (164). In some cases, the second stage motion
information for each of the sub-PUs may include a motion
vector corresponding to each of'the first and second reference
picture lists. In the case where at least one of the motion
vectors of the second stage motion information for one of the
sub-PUs is unavailable, motion compensation unit 72 may
use a representative motion vector, such as the first stage
motion vector, for the one of the sub-PUs.

[0355] Insomeexamples, instead of operating purely in the
merge mode, motion vector refinement similar to the AMVP
mode may be enabled. For example, motion compensation
unit 72 may determine motion refinement data for the current
PU predicted using the advanced TMVP mode. In one case,
motion compensation unit 72 may determine a motion vector
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difference applicable to the second stage motion information
for one or more of the sub-PUs. As described above, the
motion vector difference may be signaled in the motion infor-
mation included in the encoded video bitstream. In this
example, to indicate performance of the advanced TMVP
mode using the motion refinement data to predict the current
PU, motion compensation unit 72 may generate an advanced
TMVP candidate in the AMVP mode candidate list for the
PU, where selection of the advanced TMVP candidate indi-
cates performance of the advanced TMVP mode using the
motion refinement data to predict the PU.

[0356] Motion compensation unit 72 performs motion
compensation to predict each of the sub-PUs separately based
on the second stage motion information for each of the sub-
PUs (166). After generating a predictive block for each of the
sub-PUs of the PU during motion compensation, video
decoder 30 generates a reconstructed version of the video
block based on a reconstructed version of a corresponding
residual block and the predictive block for each of the sub-
PUs.

[0357] In one or more examples, the functions described
may be implemented in hardware, software, firmware, or any
combination thereof. If implemented in software, the func-
tions may be stored on or transmitted over, as one or more
instructions or code, a computer-readable medium and
executed by a hardware-based processing unit. Computer-
readable media may include computer-readable storage
media, which corresponds to a tangible medium such as data
storage media, or communication media including any
medium that facilitates transfer of a computer program from
one place to another, e.g., according to a communication
protocol. In this manner, computer-readable media generally
may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication
medium such as a signal or carrier wave. Data storage media
may be any available media that can be accessed by one or
more computers or one or more processors to retrieve instruc-
tions, code and/or data structures for implementation of the
techniques described in this disclosure. A computer program
product may include a computer-readable medium.

[0358] By way of example, and not limitation, such com-
puter-readable storage media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash
memory, or any other medium that can be used to store
desired program code in the form of instructions or data
structures and that can be accessed by a computer. Also, any
connection is properly termed a computer-readable medium.
For example, if instructions are transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and microwave,
then the coaxial cable, fiber optic cable, twisted pair, DSL, or
wireless technologies such as infrared, radio, and microwave
are included in the definition of medium. It should be under-
stood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves,
signals, or other transient media, but are instead directed to
non-transient, tangible storage media. Disk and disc, as used
herein, includes compact disc (CD), laser disc, optical disc,
digital versatile disc (DVD), floppy disk and Blu-ray disc,
where disks usually reproduce data magnetically, while discs
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reproduce data optically with lasers. Combinations of the
above should also be included within the scope of computer-
readable media.
[0359] Instructions may be executed by one or more pro-
cessors, such as one or more digital signal processors (DSPs),
general purpose microprocessors, application specific inte-
grated circuits (ASICs), field programmable logic arrays (FP-
GAs), or other equivalent integrated or discrete logic cir-
cuitry. Accordingly, the term “processor,” as used herein may
refer to any of the foregoing structure or any other structure
suitable for implementation of the techniques described
herein. In addition, in some aspects, the functionality
described herein may be provided within dedicated hardware
and/or software modules configured for encoding and decod-
ing, or incorporated in a combined codec. Also, the tech-
niques could be fully implemented in one or more circuits or
logic elements.
[0360] The techniques of this disclosure may be imple-
mented in a wide variety of devices or apparatuses, including
a wireless handset, an integrated circuit (IC) or a set of ICs
(e.g., a chip set). Various components, modules, or units are
described in this disclosure to emphasize functional aspects
of devices configured to perform the disclosed techniques,
but do not necessarily require realization by different hard-
ware units. Rather, as described above, various units may be
combined in a codec hardware unit or provided by a collec-
tion of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable
software and/or firmware.
[0361] Various examples have been described. These and
other examples are within the scope of the following claims.
What is claimed is:
1. A method of processing video data comprising:
determining a first stage motion vector for a prediction unit
(PU) of a coding unit (CU) of a video block from neigh-
boring blocks of the PU as a first stage of an advanced
temporal motion vector prediction (TMVP) mode,
wherein the first stage motion vector identifies a block of
a reference picture corresponding to the PU;

partitioning the PU into two or more sub-PUs;

determining second stage motion information for each of
the sub-PUs from the block of the reference picture
identified by the first stage motion vector as a second
stage of the advanced TMVP mode, wherein the second
stage motion information for each of the sub-PUs
includes at least one motion vector and an associated
reference index; and

performing motion compensation for each of the sub-PUs

separately based on the second stage motion information
for each of the sub-PUs.

2. The method of claim 1, wherein determining the first
stage motion vector for the PU comprises deriving the first
stage motion vector from one or more of spatial neighboring
blocks or temporal neighboring blocks of the PU.

3. The method of claim 1, wherein determining the first
stage motion vector for the PU comprises selecting the first
stage motion vector from a merge mode candidate list for the
PU.

4. The method of claim 1, further comprising generating an
advanced TMVP candidate in a merge mode candidate list for
the PU, wherein the advanced TMVP candidate indicates
performance of the advanced TMVP mode to predict the PU.

5. The method of claim 1, further comprising, based on the
at least one motion vector of the second stage motion infor-
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mation for one of the sub-PUs being unavailable, using a
representative motion vector for the one of the sub-PUs.

6. The method of claim 1, further comprising determining
motion refinement data for the PU predicted using the
advanced TMVP mode.

7. The method of claim 6, wherein determining the motion
refinement data comprises determining a single motion vec-
tor difference for the PU that is applicable to the second stage
motion information for each of the sub-PUs of the PU.

8. The method of claim 6, wherein determining the motion
refinement data comprises determining a different motion
vector difference for the second stage motion information for
each of the sub-PUs.

9. The method of claim 6, further comprising generating an
advanced TMVP candidate in an advanced motion vector
prediction (AMVP) mode candidate list for the PU, wherein
the advanced TMVP candidate indicates performance of the
advanced TMVP mode using the motion refinement data to
predict the current PU.

10. The method of claim 1, further comprising:

generating a predictive block for each of the sub-PUs of the

PU based on the second motion information;
generating a residual block based on the video block and
the predictive block for each of the sub-PUs; and
encoding the residual block and an indicator of at least the
first motion stage motion vector for the PU in a video
bitstream.
11. The method of claim 1, further comprising:
decoding a residual block and an indicator of at least the
first stage motion vector for the PU from a received
video bitstream;
generating a predictive block for each of the sub-PUs of the
PU based on the second motion information; and

generating a reconstructed version of the video block based
on the residual block and the predictive block for each of
the sub-PUs.

12. A video processing device comprising:

a memory configured to store video data; and

one or more processors in communication with the

memory and configured to:

determine a first stage motion vector for a prediction unit
(PU) of a coding unit (CU) of a video block from
neighboring blocks of the PU as a first stage of an
advanced temporal motion vector prediction (TMVP)
mode, wherein the first stage motion vector identifies
a block of a reference picture corresponding to the
PU,

partition the PU into two or more sub-PUs,

determine second stage motion information for each of
the sub-PUs from the block of the reference picture
identified by the first stage motion vector as a second
stage of the advanced TMVP mode, wherein the sec-
ond stage motion information for each of the sub-PUs
includes at least one motion vector and an associated
reference index, and

perform motion compensation for each of the sub-PUs
separately based on the second stage motion informa-
tion for each of the sub-PUs.

13. The device of claim 12, wherein the one or more pro-
cessors are configured to derive the first stage motion vector
from one or more of spatial neighboring blocks or temporal
neighboring blocks of the PU.
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14. The device of claim 12, wherein the one or more pro-
cessors at configured to select the first stage motion vector
from a merge mode candidate list for the PU.

15. The device of claim 12, wherein the one or more pro-
cessors are configured to generate an advanced TMVP can-
didate in a merge mode candidate list for the PU, wherein the
advanced TMVP candidate indicates performance of the
advanced TMVP mode to predict the PU.

16. The device of claim 12, wherein, based on the at least
one motion vector of the second stage motion information for
one of the sub-PUs being unavailable, the one or more pro-
cessors are configured to use a representative motion vector
for the one of the sub-PUs.

17. The device of claim 12, wherein the one or more pro-
cessors are configured to determine motion refinement data
for the PU predicted using the advanced TMVP mode.

18. The device of claim 17, wherein the one or more pro-
cessors are configured to determine a single motion vector
difference for the PU that is applicable to the second stage
motion information for each of the sub-PUs of the PU.

19. The device of claim 17, wherein the one or more pro-
cessors are configured to determine a different motion vector
difference for the second stage motion information for each of
the sub-PUs.

20. The device of claim 17, wherein the one or more pro-
cessors are configured to generate an advanced TMVP can-
didate in an advanced motion vector prediction (AMVP)
mode candidate list for the PU, wherein the advanced TMVP
candidate indicates performance of the advanced TMVP
mode using the motion refinement data to predict the current
PU.

21. The device of claim 12, wherein the video processing
device comprises a video encoding device, and wherein the
one or more processors are configured to:

generate a predictive block for each of the sub-PUs of the

PU based on the second motion information;

generate a residual block based on the video block and the

predictive block for each of the sub-PUs; and

encode the residual block and an indicator of at least the

first motion stage motion vector for the PU in a video
bitstream.

22. The device of claim 12, wherein the video processing
device comprises a video decoding device, and wherein the
one or more processors are configured to:

decode a residual block and an indicator of at least the first

stage motion vector for the PU from a received video
bitstream;
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generate a predictive block for each of the sub-PUs of the
PU based on the second motion information; and

generate a reconstructed version of the video block based
on the residual block and the predictive block for each of
the sub-PUs.

23. A video processing device comprising:

means for determining a first stage motion vector for a

prediction unit (PU) of a coding unit (CU) of a video
block from neighboring blocks of the PU as a first stage
of an advanced temporal motion vector prediction
(TMVP) mode, wherein the first stage motion vector
identifies a block of a reference picture corresponding to
the PU;

means for partitioning the PU into two or more sub-PUs;

means for determining second stage motion information

for each of the sub-PUs from the block of the reference
picture identified by the first stage motion vector as a
second stage of the advanced TMVP mode, wherein the
second stage motion information for each of the sub-
PUs includes at least one motion vector and an associ-
ated reference index; and

means for performing motion compensation for each ofthe

sub-PUs separately based on the second stage motion
information for each of the sub-PUs.
24. A computer-readable storage medium storing instruc-
tions for processing video data that, when executed, cause one
Or mMore processors to:
determine a first stage motion vector for a prediction unit
(PU) of a coding unit (CU) of a video block from neigh-
boring blocks of the PU as a first stage of an advanced
temporal motion vector prediction (TMVP) mode,
wherein the first stage motion vector identifies a block of
a reference picture corresponding to the PU;

partition the PU into two or more sub-PUs;

determine second stage motion information for each of'the
sub-PUs from the block of the reference picture identi-
fied by the first stage motion vector as a second stage of
the advanced TMVP mode, wherein the second stage
motion information for each of the sub-PUs includes at
least one motion vector and an associated reference
index; and

perform motion compensation for each of the sub-PUs

separately based on the second stage motion information
for each of the sub-PUs.
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