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57 ABSTRACT 

The operation of a stream buffer varies depending on 
whether a normal operation mode or a test mode is 
selected. In the normal operation mode, the stream 
buffer is read from only when the data requested by a 
CPU read has been determined to reside there, and the 
stream buffer location read from is the location deter 
mined to contain the requested data. This determination 
is made by comparing the address of the read request 
with addresses of the data stored in the stream buffer. 
Also, the stream buffer is written with memory data in 
response to a read that misses the stream buffer, and the 
location written to is one that has been allocated to 
receive the incoming memory data. Two different 
buffer allocation methods are shown, first-in-first-out 
(FIFO) and least-recently-used (LRU). During the test 
operation mode, the stream buffer is written to and read 
from directly by the CPU at locations specified in the 
write and read requests, without regard to the data 
presence determination and the allocation that take 
place in the normal operation mode. The method pro 
vides a straightforward way of testing the stream buffer 
during system operation by bypassing some normal 
functions during test mode in favor of direct stream 
buffer access by the CPU. 

4. Claims, 10 Drawing Sheets 
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METHOD OF USNG STREAM BUFFERTO 
PERFORM OPERATION UNDER NORMAL 
OPERATION MODE AND SELECTIVELY 

SWITCHING TO TEST MODE TO CHECK DATA 
INTEGRITY DURING SYSTEM OPERATION 

RELATED CASES 

This application discloses subject matter also dis 
closed in the following copending applications, all filed 
herewith and assigned to the assignee of this applica 
tion: 

Ser. No. 07/874,080, filed Apr. 24, 1992, by Donald 
Wayne Smelser, David A. Tatosian, and Paul Mar 
shall Goodwin, for “Memory Stream Buffer' now 
U.S. Pat. No. 5,371,870; 

Ser. No. 07/874,077, filed Apr. 24, 1992, by Paul Mar 
shall Goodwin, Donald Wayne Smelser, and 
David A. Tatosian, for “Stream Buffer Memory 
Fill Optimization' now pending; 

Ser. No. 07/874,076, filed Apr. 24, 1992, by David A. 
Tatosian, Paul Marshall Goodwin, and Donald 
Wayne Smelser, for “Memory Stream Buffer with 
Appended Fill Operation' now pending; 

Ser. No. 07/874,074, filed Apr. 24, 1992, by David A. 
Tatosian, Donald Wayne Smelser, and Paul Mar 
shall Goodwin, for “Stream Buffer with Error 
Correction and Detection' now abandoned; 

Ser. No. 07/874,074, filed Apr. 24, 1992, by Donald 
Wayne Smelser, Paul Marshall Goodwin, and 
David A. Tatosian, for "Stream Buffer with Allo 
cation and Invalidate Functions' now pending; 
BACKGROUND OF THE INVENTION 

This invention relates to memory system for comput 
ers, and more particularly to a method for buffering 
data for sequential read requests in a memory system. 
As the speed of processors increases, the need for fast 

memory systems becomes more important. For exam 
ple, a high speed RISC processor of the type disclosed 
in copending application Ser. No. 547,630, filed Jun. 29, 
1990 now pending, assigned to Digital Equipment Cor 
poration, may be constructed to operate at a CPU cycle 
time of 5-nsec or less, and execute an instruction during 
each cycle (due to the RISC concepts implemented). If 
the main memory (usually composed of DRAMs) has a 
cycle time of 300-nsec, for example, it can be calculated 
that the CPU could spend much of its time waiting for 
memory, even using a cache with typical cache hit 
rates. In efforts to bring the memory performance more 
in line with the CPU, the cache memory is made hierar 
chical, providing primary, secondary, and, in some 
cases, third level caches, and of course the speed of the 
cache memories is increased as much as is economical. 
In addition, the bandwidth of the memory bus is in 
creased, as by using a wider data path. Nevertheless, 
efforts are still needed to reduce the amount of time the 
CPU spends waiting on memory, to achieve acceptable 
performance for these high-speed CPUs. 
When caching is employed, read accesses to main 

memory are most often for fetching an entire cache line, 
and it is preferable to make the memory data path equal 
to the width of a cache line or a submultiple of a cache 
line. The principal of locality suggests that cache lines 
will often be accessed in sequence, and, when two se 
quential cache lines are accessed, there is a reasonable 
probability that the sequence will be continued. One of 
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2 
the features of this invention is to take advantage of this 
observation in order to increase system performance. 

In constructing main memory for typical computers, 
the most widely used device is the MOS DRAM or 
dynamic RAM. These devices have access times of 
perhaps 70-ns, but cycle times are much longer, perhaps 
200-ns or more. However, most DRAMs now commer 
cially available have a feature called "page mode' in 
which the column address can be changed after a row 
access to the DRAM array, producing a sequence of 
data outputs at a faster rate, so long as the new column 
addresses are in the same “page.' To invoke page mode 
operation, the row address strobe or RAS signal applied 
to the DRAM is held in the asserted condition, and the 
column address strobe or CAS is toggled; a new column 
address is asserted each time CAS is reasserted. This 
mode of operation is about twice as fast as standard 
RAS-CAS reads, so if this mode can be advantageously 
employed, then the average access time can be reduced. 
The advantages obtained by use of various features of 

the invention include providing faster access to sequen 
tial data located in memory modules installed on a mul 
ti-node memory bus. By taking advantage of the fast 
page mode capabilities of dynamic random access mem 
ory (DRAM) devices, the method of the invention 
allows for detection of sequential memory access, and, 
in response, prefetches memory data from the next se 
quential location in advance of the actual request for 
that data by the host computing system, placing the data 
in a high-speed memory device. As a result, when the 
host computing system requests the next piece of mem 
ory data (usually a cache line), the data can be delivered 
to the host computing system much faster than if the 
data had to be delivered directly from the DRAMs of 
the memory module. 
An important feature of one embodiment is the actual 

location of the stream buffer on the memory module 
itself, rather than upstream. By placing the stream 
buffer memory on the memory module, filling the 
stream buffers can be done without utilizing the system 
bus (shared with other resources), thereby conserving 
system memory interconnect bandwidth and through 
put. Also, filling the stream buffers can be done using 
the fast page mode operation of the DRAM devices, a 
significant performance advantage. Finally, by placing 
the stream buffer memory within the logic domain cov 
ered by the memory module error detection and correc 
tion logic, the reliability, availability, and data integrity 
is enhanced. 

SUMMARY OF THE INVENTION 

In accordance with one embodiment of the invention, 
a read buffering system employs a bank of FIFOs to 
hold sequential read data for a number of data streams 
being fetched by a computer. The FIFOs are located in 
the memory controller, so the system bus is not used in 
the memory accesses needed to fill the stream buffer. 
The buffer system stores addresses used for read re 
quests made by a CPU, and if a next sequential address 
is then detected in a subsequent read request, this is 
designated to be a stream (i.e., sequential reads). When 
a stream is thus detected, data is fetched from DRAM 
memory for addresses following the sequential address, 
and this prefetched data is stored in one of the FIFOs. 
A FIFO is selected using a least-recently-used algo 
rithm. When the CPU subsequently makes a read re 
quest for data in a FIFO, this data can be returned 
without making a memory access, and so the access 
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time seen by the CPU is shorter. By taking advantage of 
page mode, access to the DRAM memory for the pre 
fetch operations can be transparent to the CPU, result 
ing in substantial performance improvement if sequen 
tial accesses are frequent. One feature is appending page 5 
mode read cycles to a normal read, in order to fill the 
FIFO. The data is stored in the DRAMs with ECC 
check bits, and error detection and correction (EDC) is 
performed on the read data downstream of the stream 
buffer, so the data in the stream buffer is protected by 
EDC. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The novel features believed characteristic of the in 
vention are set forth in the appended claims. The inven 
tion itself, however, as well as other features and advan 
tages thereof, will be best understood by reference to 
the detailed description of a specific embodiment, when 
read in conjunction with the accompanying drawings, 
wherein: 
FIG. 1 is a diagram of a computer system which may 

employ features of one embodiment of the invention; 
FIG. 2 is a timing diagram showing events vs. time 

for bus cycles in the system of FIG. 1; 
FIG. 3 is an electrical diagram in block form of a 

memory control used in the system of FIG. 1 and em 
ploying features of the invention; 

FIG. 4 is an electrical diagram in block form of 
stream buffer FIFO logic used in the controller of FIG. 
3, according to one embodiment; 

FIG. 5 is an electrical diagram in block form of 
stream detection logic used in the controller of FIG. 3, 
according to one embodiment; 
FIG. 6 is an electrical diagram in block form of 

stream buffer allocation circuit used in the controller of 35 
FIG. 3, according to one embodiment; 
FIG. 7 is an electrical diagram in block form of 

stream buffer invalidate circuit used in the controller of 
FIG. 3, according to one embodiment; 

FIG. 8 is an electrical diagram in block form of 40 
stream buffer hit logic circuit used in the controller of 
FIG. 3, according to one embodiment; 
FIG. 9 is a timing diagram of events vs. time for a 

DRAM implementing a page mode operation; 
FIG. 10 is an electrical diagram in block form of the 

memory control for generating appended fill cycles, 
used in the module of FIG. 3, according to one embodi 
ment; and 
FIG. 11 is an electrical diagram in block form of the 

stream buffer used in the module of FIG. 3, according 
to one embodiment. 

DETAILED DESCRIPTION OF SPECIFIC 
EMBODIMENT 

Referring to FIG. 1, a computer system is illustrated 
which may use a stream buffer having features of the 
invention. A CPU 10 is connected to a system bus 11 for 
access to various system resources. The CPU may be, 
for example, of the VAXTM architecture as described 
by Levy and Eckhouse in "Computer Programming 
and Architecture: The VAX', 2nd Ed., Digital Press, 
1989. A single-chip CPU of the VAX architecture is 
disclosed in U.S. Pat. No. 5,006,980, issued to Sander, 
Uhler & Brown, assigned to Digital Equipment Corpo 
ration, the assignee of this invention. The CPU 10 also 
may be of an advanced 64-bit RISC architecture as 
disclosed in my copending application Ser. No. 547,630, 
filed Jun. 29, 1990, now pending, also assigned to Digi 
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4. 
tal Equipment Corporation. Alternatively, of course, 
the CPU may be of many other types, such as the Intel 
386 or 486 architecture, or MIPS R3000 or R4000 RISC 
architecture. The system bus 11 may be any of the stan 
dard bus specifications used for any of the many com 
monly-used CPUs, but in an example embodiment is a 
VAX bus. 
A main memory 12 is connected to the system bus 11 

by a memory bus 13 and a memory interface or control 
14 containing the stream buffer 15 according to features 
of the invention. The purpose of the stream buffer 15 is 
to hold read data prefetched from addresses following a 
sequential read access received from the CPU 10. That 
is, when a read request for a given address X is received 
by the control 14 from the CPU 10 on the system bus 11, 
this address X is stored to see if a read for the next 
sequential location (cache line) X-1 is soon requested. 
If so, the response is to fetch the data at address X-1 
from the memory 12 and send it back to the CPU 10 on 
the system bus, then to fetch sequential data at addresses 
X--2, X--3, etc., and store this data in the stream buffer 
15. The principle of locality suggests that the CPU will 
send memory requests for the sequential locations X-2, 
X--3, etc., and when this happens, the access time in 
responding to these subsequent requests is much shorter 
when the data is in the buffer 15 than when a read access 
to memory 12 must be made. The bus cycle for the 
system bus 11, and the way the CPU 10 operates, are 
such that the time between read requests from the CPU 
for sequential data will be sufficient to allow for mem 
ory cycles on the memory bus 13 (particularly, page 
mode accesses) to be executed to fill the buffer 15 with 
the desired data stream, before the CPU makes the 
memory requests. The stream buffer 15 is large enough 
to hold a number of data steams, for example, four 
streams. Thus, read accesses for data and instructions 
may be in different pages, and more than one task may 
be executing on the CPU 10, so several streams may be 
working simultaneously; four of these can be accommo 
dated in the stream buffer 15 of the example embodi 
ment. The stream buffer 15 is constructed as a set of 
four FIFOs, with four entries for each FIFO, as will be 
explained. 

In addition to the CPU 10, other CPUs 16 as seen in 
FIG. 1 may be accessing the memory 12 by the system 
bus 11 in a multiprocessor system, so there may be 
streams resident in the stream buffer 15 for more than 
one processor, as well as more than one process. Vari 
ous other system resources such as a disk storage facility 
17 are usually connected to the system bus 11. 
Memory references made by the CPU 10 to the men 

ory 12 are for a cache line, which in typical embodi 
ments is 128-bits or 256-bits, rather than for a word. A 
cache 18 holds a subset of data from memory 12, and is 
accessed in a much shorter cycle than an access to mem 
ory 12. A large percentage of the memory requests 
made by the CPU 10 result in cache hits (perhaps 90% 
or more) and so require no transaction on the bus 11. 
When a cache miss occurs, however, the data from the 
requested location in memory 12 is fetched via the bus 
11, and the entire cache line containing this memory 
location (even if the request is for only a 32-bit word) is 
fetched from memory and used to fill a line of the cache 
18. Memory references are therefore on even cache line 
boundaries, and so when "incrementing by --1' is re 
ferred to herein it is understood that the addresses are 
incremented by -- 16 byte addresses or --32 byte ad 
dresses, or whatever the configuration requires. The 
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address sent out on the bus 11 from the CPU is trun 
cated since some low-order bits of the internal CPU are 
never needed in addressing the memory 12. The cache 
18 may be internal to the microprocessor chip which 
implements the CPU 10, or external; more often, a com 
bination of on-chip (first-level) and external (secondary 
or back-up) caches are used. In a particular embodi 
ment, the cache 18 is direct-mapped, meaning that only 
one cache location is available for a given index num 
ber, i.e., all memory references having the same index 
will map to the same location in the cache. This is mate 
rial to the address transposing mentioned below in ref 
erence to exchange transactions. 

In a particular embodiment, the bus 11 is a multi 
plexed command/address/data bus on which memory 
requests are sent by the CPU 10 in the manner illus 
trated in FIG. 2. A memory request is initiated in cycle 
0 by a command strobe CA, an output from the CPU. In 
cycle-1, the bus 11 is driven by commands and address 
bits labelled CAD (command/address/data) in FIG. 2, 
in the first example representing a read request. If the 
requested data is in the stream buffer 15, the data is 
returned to the bus 11 in cycle-5, but if the requested 
data is not in the stream buffer the data is returned to 
bus 11 in cycle-8. The difference of three cycles repre 
sents the delay in accessing the memory 12, compared 
to getting the data directly from the stream buffer 15. A 
write cycle as illustrated in FIG. 1 is initiated by a CA 
strobe as before, and the write address and write com 
mand is asserted on bus 11 by the CPU in cycle-1, foll 
lowed immediately by the write data in cycle-2. The 
delay before another memory transaction can begin on 
the bus 11 following a write depends upon whether the 
write can be made to a write buffer (not shown) or must 
be sent to memory 12. 
The memory 12, in one embodiment, supports a so 

called “exchange' transaction, which consists of both a 
write and a read in one bus transaction. This is ordinar 
ily used to write back a cache line from the cache 18 to 
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memory 12 and to read a cache line; this can be done, of 40 
course, only if the addresses are appropriate, since only 
one cycle of address information is sent. In FIG. 2, an 
exchange command begins in cycle-0 with a CAstrobe, 
the address and command is asserted by the CPU 10 on 
the bus 11 in cycle-1, and the write data is asserted on 
the bus 11 by the CPU in cycle-2. If the write can be 
done to a write buffer, and the read data is in the fill 
buffer 15, it is returned on bus 11 in cycle-5, or if an 
access to memory 12 for the read is needed then read 
data is returned in cycle-8. An exchange transaction is 
an atomic operation that swaps one cache line from the 
cache 18 with another line read from memory 12 (or 
from buffer 15). This operation is used to enhance per 
formance of the memory system when filling a cache 
location in the instance of a cache miss to a 'dirty' 
cache line (one that has been written to). An exchange 
transaction uses the address fields sent in cycle-1 to send 
the unique cache tag address for the location in memory 
to write back the dirty cache line, and also the cache tag 
for the cache line to be loaded into the cache 18. In 
addition, a single cache index field is sent for an ex 
change transaction. Thus, two cache tag addresses (16 
bits each) and one index (13-bits) are sent on bus 11 in 
cycle-2. Note that the same index is used for both the 
write back and the cache fill data, so the address bits 
must be appropriate. 

Referring to FIG. 3, the control module 14 is shown 
in more detail. The control module of course handles 

6 
write data as well as read data, and write data moves 
from left to right at the upper part of the Figure, from 
system bus 11 to memory bus 13. Read data, on the 
other hand, moves from right to left at the lower part of 
FIG. 3, from memory bus 13 to system bus 11. The 
stream buffer 15 is in the read data path. Abidirectional 
bus interface 20 accepts data and commands (read and 
write requests, including addresses, as in FIG. 2) from 
the system bus 11, and applies the received information 
to a latch 21 clocked by a local clock source 22. The 
output from the latch 21 is applied by lines 23 to a parity 
check circuit 24; if parity does not check then a fault is 
signalled. The information on lines 23 is also applied to 
a command and data queue 25. A read request is held 
for execution, with just the address and commands 
being sent to the memory 12 (if access to memory 12 is 
needed) under control of the controller, but a write 
request has data to be sent on to memory 12. Output 
from the command and data queue on lines 26 for a 
write request is applied to an ECC generator circuit 27 
where ECC bits are calculated and output on lines 28. 
The ECC bits on output 28 are added to the data on 
lines 26, producing a full data word including ECC bits 
on lines 30. If the data width at the output lines 26 is 
128-bits, for example, then the ECC circuit 27 may 
generate a 12-bit ECC field on lines 28, so the total 
width of the output on lines 30 is 140-bits. The latch 31 
provides an output 32 to abidirectional bus interface 33 
which interfaces with the memory bus 13. 
When a read request requiring an access to memory 

12 is being executed, the read data path receives data 
from the memory bus 13 via bidirectional interface 33 
and clocked latch 34. The read data can be applied to 
the stream buffer 15 by lines 35, or can be applied di 
rectly to a multiplexer 36 by lines 37 to bypass the 
stream buffer. In executing a read request where the 
data requested is not in the buffer 15, the read data 
returned to the unit 14 from the memory 12 is sent 
directly back toward the CPU by the path 37 rather 
than being stored in the buffer 15. If requested data is in 
the buffer 15, however, it is applied to the multiplexer 
36 by lines 38, without needing a memory access to 
DRAMs 12. Selection of which input lines 37 or 38 are 
used as the output of the multiplexer 36 is made by a 
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50 
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stream hit input 39. The output 40 of the multiplexer 36 
is applied to an error detection and correction (EDC) 
circuit 41. The circuit 41 accepts the 140-bit wide data 
input on lines 40 and uses the 12-bit ECC field to deter 
mine if the 128-bit data field is correct, and toggles 
incorrect bits if found. If more than two bits are incor 
rect, a fault is signaled and the data is not corrected. 
The output 42 of the EDC circuit 41 is 128-bits wide 
and is applied to a multiplexer 43 for coupling back 
through a clocked latch 44 to the bus interface 20, from 
which read data is sent back to the CPU 10 via system 
bus 11. A controller 45 receives commands loaded to 
the memory control 14 from the CPU 10 via bus 11, and 
generates the hit signals and various control signals for 
the stream buffer, as will be described. 

Referring to FIG. 4, the stream buffer 15 is config 
ured in the example embodiment as four FIFOs 51, 52, 
53 and 54. Each of the FIFOs holds up to four data 
blocks, with each data block containing 128-bits of data 
plus the 12-bit EDC check bit field, as seen in the Fig 
ure. Each FIFO has an associated head address register, 
shown in FIG. 4 as 47, 48, 49 and 50, that maintain the 
effective cache line address of the data currently held in 
the head of the corresponding FIFO. In addition to 
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holding the cache line address, each of the head address 
registers provides a valid bit which indicates whether 
the corresponding FIFO has valid data at its head loca 
tion. The four FIFOs rely on a single control mecha 
nism to perform the loading of read data form the 
DRAMs of memory 12 via lines 35 into the tail of the 
FIFO, and the subsequent extraction of read data from 
the head of the FIFO for delivery via output 38 to the 
system bus 11. A multiplexer 55 selects one of the four 
140-bit outputs 56 from the FIFOs to apply to the lines 
38 when a stream buffer hit is detected. 
The stream detection logic of FIG. 5 is part of the 

controller 45 and is used to determine when a CPU 10 
is in the process of reading contiguous locations in 
memory 12, which is the situation where the beneficial 
effects offered by the prefetching of data can be utilized. 
The intent of the detection logic is to anticipate the 
subsequent need for data from memory 12, prior to the 
actual read command arriving in unit 14 requesting that 
data. The stream detection logic, in essence, simply 
keeps a record of the addresses in memory 12 of the 
previous eight read transactions. This record is kept in 
a history buffer cache 58, which has eight locations 
B1-B8; the first location B1 is loaded from the incoming 
read cache line address through an adder A which adds 
1 to the incoming read cache line address (i.e., incre 
menting) prior to loading into location B1, and when 
the next read request is received the corresponding 
cache line address is incremented by adder A before 
being loaded into location B2, and likewise each subse 
quent read address received from CPU 10 is incre 
mented and loaded into the next location, proceeding 
through location B8, whereupon the ninth read request 
has its cache line address incremented and loaded into 
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location B1, thus overwriting the previous contents of 35 
that element. In this manner the eight locations within 
the history buffer cache are used in a true round robin 
basis, such that at any given time the history buffer 
contains the cache line addresses of the last eight read 
requests. Comparators 59, connected to receive the 
incoming read address on line 60 and the output of one 
of the locations of B1, B2, etc., of the history buffer 58, 
compare each subsequent read transaction address from 
latch 21 of FIG. 3 to see if the new address of an incom 
ing read request is contiguous to any of the recorded 
addresses held in the history buffer. (If cache line ad 
dresses, on even 256-bit boundaries, are sent on bus 11, 
then "contiguous' means X-1). If the new address is 
determined to be "contiguous” to any one of the previ 
ous eight addresses in the history buffer cache 58, a new 
"read stream' is "declared' by the address match signal 
on line 61. This results in one of the stream buffers 
51-54 being allocated to this new stream, to be used to 
store data from the memory 12 to be "prefetched' by 
the controller logic. 

Each location B1-B8 within the history buffer cache 
58 also maintains a single status bit 62, which is referred 
to as the valid bit. Each valid bit is set whenever a new 
read address is loaded into the corresponding history 
buffer location B1-B8. Each valid bit indicates whether 
the contents of the corresponding location B1-B8 was 
loaded during normal system operation, and therefore 
protects against spurious operation as a result of initial 
ization after the system is powered up. If the valid bit 62 
is not set in a history buffer location, that location is 
prevented from making a successful compare against 
any new address, and therefore cannot cause a stream to 
be detected. 
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The re-detection of existing streams is prevented by 

first calculating the effective array address from the 
new address on bus 11, and then comparing that to the 
entries already contained within the head address regis 
ters 47-50 for the four stream buffer FIFOs 51-54. That 
same address generation logic used by the fill logic can 
be used for this purpose. If the head of any of * the 
stream buffer FIFOs 51-54 has an entry that corre 
sponds to the effective array address, the “existing 
stream” signal will inhibit the creation of a new stream. 
The history buffer and stream detection logic cir 

cuitry is illustrated in FIG. 5, for one embodiment of the 
invention. This circuitry is shared by all the stream 
buffers, i.e., only one copy of the stream detection logic 
is required. 
The stream buffers 15 are allocated on a modified 

least-recently-used (LRU) basis, as managed by the 
stream buffer allocation circuitry shown in FIG. 6; this 
circuitry is also part of the controller 45. The allocation 
circuitry is shared by all the stream buffers, i.e., only 
one copy of this allocation logic is required. This cir 
cuitry assures that the stream buffers are utilized in the 
most efficient manner. When a buffer hit is signalled on 
line 83 by the circuitry of FIG. 8, an input 64 to a set of 
six J-K flip-flops 65 causes the A-sel, B-sel, C-sel, etc., 
inputs 66 to be evaluated, and outputs 67 are valid until 
the next hit. These outputs 67 indicate for each pair of 
the four buffers 51-54 which one was more recent. The 
outputs 67 are applied as inputs to a set of four AND 
gates 68, producing outputs 69 in the controller 45 indi 
cating which one of the four buffers 51-54 is LRU. 
When a buffer is selected at the next hit, it will thus be 
the one indicated by the one output 69 that is asserted. 
This one output 69 is then deasserted, and the next LRU 
is asserted (one of the other outputs 69 is asserted). In 
effect, the logic provides a stack 70 of four buffer identi 
ties to indicate the relative time between successful hits 
on each of the four buffers 51-54. When a buffer 51-54 
is allocated upon the event of a hit, the identity of that 
buffer is placed on the bottom of the stack 70, pushing 
the other buffer identities up the stack (i.e., as indicated 
by the order the outputs 69 will be asserted). As time 
progresses, memory read transactions that hit on the 
contents of a buffer 51-54 push the corresponding 
buffer identity to the bottom of the stack 70. The buffer 
identity on the top of the stack is always the LRU 
buffer, and would therefore be the next buffer to be 
allocated when the next new read stream is detected. In 
the event that a stream buffer 51-54 is invalidated as 
discussed below, the identity of that buffer is placed 
immediately at the top of the stack 70, and therefore this 
buffer will be the next buffer to be allocated when the 
next read stream is detected. 

Referring to FIG. 7, the stream buffer invalidate 
circuit is shown in detail. Data in the stream buffer 15 
can become “stale' when a write-to-memory operation 
occurs for a memory location contained in the buffer 15. 
In order to assure that the read data residing in a stream 
buffer 51-54 is always “coherent', all system memory 
write transactions are checked to see whether an ad 
dress of the write operation appearing on the bus 11 
coincides with an existing stream buffer 51-54 entry. 
Each write transaction address on input 70 from the bus 
11 (e.g., from latch 21) is compared in four compare 
circuits 71 with inputs 72 from the four stream buffer 
head address register entries 47-50, producing four 
comparison outputs 73; these outputs 73 are each 
ANDed with a write command signal from the bus 11 in 
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gates 75, producing a "buffer invalid' output 76 for 
each of the four stream buffers; this output 76 is used to 
toggle the valid bit 79 for the corresponding buffer 
location. If a write transaction address on input 70 from 
the bus 11 is equal to any address potentially residing in 
a stream buffer, that entire stream is declared invalid, 
thus preventing any of the data in that stream buffer 
from being erroneously supplied to CPU 10. Once a 
stream buffer is invalidated it is available to be re 
allocated to the next detected read stream. 

In addition to the invalidation of individual streams 
(individual buffers 51-54) due to memory write or mem 
ory exchange commands, all four stream buffers 51-54 
are invalidated at any time the memory configuration 
control register is written, and at any time that a com 
mand parity error is detected. In the case of rewriting 
the configuration register, re-configuration of the men 
ory module address or interleaving assignments makes 
the address relationship of the contents of the stream 
buffers 51-54 incoherent, while in the case of command 
parity error the failed transaction may have been a write 
or exchange to a memory location whose data is cur 
rently resident in a stream buffer entry, and which 
under normal conditions (i.e. no command parity error) 
would have resulted in an invalidation of the appropri 
ate stream buffer. These functions protect against the 
possible reading of “stale' or incoherent data. 
Once a stream buffer 51-54 has been allocated and 

some amount of prefetched data has been placed in the 
FIFO, the stream buffer hit logic of FIG. 8 compares 
incoming read or exchange command addresses to de 
tect a comparison between the requested address and 
the address of the data at the head of each stream buffer 
FIFO entry. If a compare of these two addresses is 
successful, read data may be delivered directly from the 
stream buffer 51-54 to the system bus 11, without per 
forming a (much slower) access to the DRAMs of mem 
ory 12. Read latency should be reduced to the minimum 
architected read transaction delay (i.e., "zero stall 
states') of seven system bus cycles (for an example 
embodiment) upon a successful hit on a stream buffer. 
The circuitry of the hit logic of FIG. 8 shows the 

logic supporting "hit' detection for one embodiment. 
As there are four stream buffers 51-54, four compari 
sons are performed in parallel in the comparators 78. 
The outputs of the comparators 78 are gated by the state 
of their respective valid bits 79 which exist within each 
of the stream head address register entries 47-50. If any 
of the resultant hit signals on lines 81 become asserted 
during a read (or exchange) operation, an OR gate 82 
produces a "hit' signal on line 83 to inform the memory 
control and system bus control logic which will supply 
the appropriate sequencing of the memory 12 to ac 
count for shorter read latency, and will inhibit DRAM 
accessing of the memory 12. Additionally, the four hit 
signals on lines 81 are combined in a coder circuit 84 to 
generate a 2-bit stream select on lines 85. The stream 
select is used to gate the correct FIFO data through a 
4:1 multiplexer 55 to the lines 38 on the way to the 
system bus 11. 
The stream buffer of the invention is particularly 

suitable for use with DRAM memory devices imple 
menting page mode. A DRAM device of the type com 
mercially available in 1-Mbyte and 4-Mbyte sizes has a 
row length of say, 512, 1024 or 2048 cells (depending 
upon layout of the chip), and when a read access is 
made using a row address and RAS, any of the columns 
of this row may then be accessed (without asserting a 
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10 
new row access) by merely toggling CAS and asserting 
a new column address, as illustrated in FIG. 9. The page 
mode access time is much shorter than RAS-CAS ac 
cess time. 
When either a new read stream is detected, or a con 

tinuing read stream causes a stream buffer 51-54 to 
transition to an “empty' condition, the stream buffer fill 
circuit in controller 14 will fetch data from the appro 
priate DRAM address in memory 12 and place it into 
the desired stream buffer FIFO 51-54. The stream 
buffer logic generates the correct DRAM address from 
the incoming memory address, complete with appropri 
ate incrementing, while accounting for interleaved con 
figurations and the effect on the availability of page 
mode accesses of the DRAMs of the memory 12. 

In Tables 1 and 2 the address bits used to address the 
memory 12 are shown in the left-hand column (called 
Logical Signal); these include row address bits 0-9 and 
column address bits 0-9 (called RW Col Bits or read/- 
write column bits) plus read/write bank select bits 0-1 
and board select bits 0-8. For exchange operations, a 
different combination is used for the column address, 
bank select and board select as shown. In the six right 
hand columns the address bits of the bus 11 (CAD or 
command/address/data bits) are shown. Note that 
there is a gap between CAD bits <31> and <64d 
because in the example embodiment the memory system 
is implemented in two slices, using a 128-bit bus 11. The 
command/address/data for each half is sent separately 
on the bus 11, using bits <31:0) and <95:64) for one 
half and bits <63:32) and <127:96> for the other. 
Thus the tables 1 and 2 represent the address bits on bus 
11 for one half, and corresponding numbers would be 
used for the other half. , 
A memory system can be constructed using 1-M, 

4-M, or 16-M DRAM devices, for example, and the 
boards laid out to provide one-way, two-way or four 
way interleaving. In an example embodiment, "by-4' 
DRAM devices are used. Two or four banks of 
DRAMs may be used in the configuration, using the 
address transposition set forth in Tables 1 and 2. This 
provides a memory size for the memory 12 of 16-Mbyte 
or 32-Mbyte if 1-Mbit DRAms are used, or 64-Mbyte or 
128-Mbyte if 4-Mbit DRAMs are used. 
The principle used in selecting the address bit trans 

position in Tables 1 and 2 is that the row address bits 
going to the DRAMs in memory 12 are a subset of the 
index address (i.e., tag bits aren't used as row address 
bits). 

Referring to Table 1 and Table 2 it can be seen that 
when the memory is configured under one-way inter 
leaving, the two least significant column address bits 
correspond to the two memory bus address (bus 11) 
least significant bits, and therefore the array module is 
capable of performing up to four page mode read cy 
cles. This means that, once a DRAM address is estab 
lished when filling a steam buffer entry, successive page 
mode reads can be preformed, filling multiple locations 
in the steam buffer, at substantially higher performance 
than if a corresponding number of entries were to be 
filled using a full RAS-CAS read cycle for each entry. 
From Table 1 and Table 2, it can be also seen that if 

the array module is configured under two-way inter 
leaving, the memory bus LSB becomes part of the 
board select field, leaving only the next higher LSB for 
use as the column address LSB. Therefore, a maximum 
of two page mode cycles may be performed under this 
configuration for the purpose of quickly filling a stream 
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buffer. Further, if the memory module is configured 
under four-way interleaving, neither of the memory bus 
address LSBs correspond to the column address LSBs, 
and therefore no page mode read operations are possi 
ble, Any filling of a stream buffer in this case must be 
done as individual RAS-CAS read operations to the 
DRAMS. 
Table 1 and Table 2 provide the matrices used to 

manipulate the incoming memory bus address to pro 
vide for proper board select, bank select, and DRAM 
address generation, for 1-Mbit and 4-Mbit DRAMs, 
respectively. Additionally, the effects on various con 
figurations on the column address bits involved in the 
stream buffer fill logic are shown. 
There are three methods in which the adaptive look 

ahead buffer fill cycle optimization balances the mem 
ory resources. These are: (1) adjusting the size of the fill 
based on the mode of interleaving, (2) dynamically 
adjusting the size of the fill to minimize read latency as 
seen by the requesting node, and (3) aligning the fill 
address to the beginning of a page. 
The first method uses the interleaving configuration 

mode of the memory module in the system and from 
that information determines the number of look ahead 
locations it should read from memory and store in the 
buffers 51-54. This is based on Table 1. 
For the four-way interleaved module only one fill 

read is performed. This is because there typically will be 
three sequential reads (one read to each of the other 
three modules in the four-way interleaved set) before 
the next time the process comes back to read the data 
that ideally will already be resident in the stream buff 
ers. This means that there are three transaction periods 
that are opportunities for a given module to fulfill the 
look ahead fill read operation, without adding delays to 
the next read operation in the stream to that module. 

In the two-way interleaved case the frequency of 
reads to a single module by a single process can double 
from the four-way interleaved case, because a sequen 
tial read stream will land on a particular module one out 
of two instead of one out of four times. Therefore by 
doubling the number of fills performed for a given 
memory cycle the number of times the memory must be 
accessed is equal to the number of times the memory 
must be accessed for a four-way interleaved module. By 
the same reasoning that the number of reads is doubled 
for a two-way board, the number of reads for the one 
way interleaved configuration is quadrupled, where all 
reads in a stream are to a single memory module. 
The second mode of optimization is the ability to 

dynamically change the number of appended fill read 
cycles depending on the activity on the system bus 11. 
If a fill transaction is already active on a memory mod 
ule and a new transaction is initiated by the CPU that is 
not to the stream buffer being filled, then the control 
logic 45 will truncate the fill operation at the end of the 
current memory cycle although some location(s) within 
the stream buffer may not have been filled yet. This 
allows the new transaction to proceed without incur 
ring the additional delays of completing the entire fill 
operation. 
The third mode of operation is where the fill control 

ler will align the address of the last location to be read 
with the last location available to do page mode reads to 
the DRAMs. In detail, the fill controller will avoid 
generating a fill operation that would cross an address 
boundary corresponding to the size of the maximum fill 
operation (e.g., four blocks if one-way interleaved). 
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Instead, the fill controller will only perform fills that 
end at the appropriate address boundary for the given 
interleave mode. Then, when the next stream buffer fill 
operation is required to refill that stream buffer, the fill 
controller will perform a fill that starts on the appropri 
ate address boundary and proceeds for the appropriate 
number of page mode read cycles before completing the 
fill operation. In this manner, the most efficient page 
mode read operations are used to refill the stream buff 
ers when required. 
Without these methods of optimization the stream 

buffers 51-54 could have a negative impact on system 
performance by delaying memory accesses received 
from the system bus 11 that miss the stream buffers until 
an ongoing fill is completed. This increase in latency 
causes the requesting CPU 10 to wait even longer for 
data to be returned and ties up the system bus 11 so that 
it is unavailable for other system elements. 
The use of these optimization features significantly 

reduces the potential negative impact to the system 
performance by balancing the stream buffer mainte 
nance with the resources required by other system ele 
ments. This results in faster completion of memory 
accesses and consequently and improvement of peak 
memory throughput. 
The appended fill operation used in one embodiment 

of the invention is initiated by a read transaction on the 
bus 11 to an address that does not match the addresses 
of existing prefetched data in the stream buffers 51-54. 
That is, a miss in the stream buffer 15. The address of 
this read is checked to see if there is an opportunity to 
perform page mode read cycles. The page mode oppor 
tunity is defined as having sequential addresses available 
to do page mode cycles. Because the memory module 
supports exchange operations a unique definition of the 
address bits is used as shown in Tables 1 and 2. Without 
this definition support for exchange operations and page 
mode DRAM operations are mutually exclusive. Refer 
ring to FIG. 10, the address from bus 11 for this read is 
applied to the DRAMs via multiplexer 86, and the read 
operation proceeds, accessing memory 12 using RAS 
and CAS generated by address strobe generator 86a, 
resulting in data being sent back to CPU in the usual 
manner for a read. If page mode read locations are 
available then the memory control 86b of FIG. 10 (part 
of controller 45) is notified and makes provisions to 
append page mode read operations to the end. That is, 
before RAS is brought high (deasserted), new column 
addresses will be sent to the memory via input 86c to the 
multiplexer 86, and the generator 86a will apply another 
CAS for each new column address. The address is in 
cremented to the next location by logic 86d and pro 
vided to the DRAM address mux 86 where it is avail 
able when the normal read operation concludes. The 
controller 86b selects the normal address or the page 
mode append address by output 86e to the multiplexer. 

Thus, when the normal read operation concludes, the 
controller selects the appended page mode read address 
and blocks the negation of the RAS strobe to the 
DRAMs, thus keeping the DRAM active for accessing 
any column of the addressed row without a new RAS 
cycle. The CAS strobe is negated normally, but then 
after the appended page mode read access has been 
driven out to the DRAMs via multiplexer 86, the gener 
ator 86a reasserts CAS which reads the next sequential 
location which is selected by the appended page mode 
address. The address is then incremented to point to the 
next sequential location. This operation of providing an 
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address and cycling CAS is repeated until all of the 
available page mode locations have been read. 
The appended fill cycle operation functions to allow 

for the attaching of sequential memory access to the end 
of an existing memory access, thus prefetching memory 
data from the next sequential location. Because this 
access is appended to an existing DRAM read operation 
the data from the next sequential location can be re 
trieved and stored in the faster access buffer 15 before 
the current transaction on the bus 11 is completed. Thus 
the read latency is now a function of the bus protocol 
and not the DRAM read access time, allowing the bus 
11 to run at its peak bandwidth. Without using this 
append operation, in order to read the sequential loca 
tions the controller 14 would have to initiate individual 
DRAM read operations for each location. If this were 
the case the sequence to read sequential locations would 
require that the DRAM operation terminate normally, 
wait for the minimum precharge time between DRAM 
accesses (as specified for the DRAM devices) then 
initiate a new DRAM read operation. In the time 
needed to perform two individual DRAM accesses, the 
appended read can perform four read accesses, since the 
page mode access time is much less than RAS-CAS 
access time, and the precharge part of the cycle time is 
not imposed for each page mode cycle. 

Referring to FIG. 11, the stream buffer 15 is con 
structed as a high-speed RAM, used to store data read 
from the slower memory 12. A dual-port configuration 
is used, having a separate write port 87 and read port 88. 
The RAM is organized as sixteen locations of 140-bits 
each. A write pointer control 89 in the controller 45 
calculates the location within the RAM that the incom 
ing data read from the memory 12 will be written to, as 
discussed above, and produces a 4-bit (1-of-16) selection 
on lines 90, referred to as the write pointer. The write 
pointer on lines 90 is applied to a decoder in the read/- 
write control 91 for the RAM to select one of the six 
teen locations (four buffers 51-54 with four entries per 
buffer). A read pointer control 92 in the controller 45 
calculates the location within the RAM that the data 
read will be read from and supplied to the CPU 10, and 
produces a 4-bit (1-of-16) selection on lines 93, referred 
to as the read pointer. This read pointer on lines 93 is 
applied to the read/write control 91 for the RAM to 
select one of the sixteen locations. 

During normal operation of the stream buffer, neither 
the read or write pointers on lines 90 and 93 have a fixed 
relationship to the physical address sent from the CPU 
10. This makes addressing the RAM buffer 15 for test 
ing a difficult or impossible chore. According to a fea 
ture of the invention, a test mode of operation provides 
a direct-address or fixed relationship between the mem 
ory read and write command addresses and the read and 
write pointers, thus simplifying diagnostic testing of the 
system. A mode control bit 94 is included in the control 
ler 45, implemented by a flip-flop, and this mode control 
is set or reset by a command written to the memory 
controller 14 from the CPU 10. When this status bit 94 
is in the “1” state, the system is in the direct read/write 
mode (test mode) so that addresses sent from the CPU 
10 to the controller 14 will directly select one of the 
sixteen locations of the read buffer 15. When the bit is in 
the “O'” state, direct read/write is disabled (normal 
mode of operation is employed). When direct read/- 
write is enabled, all memory read and write operations 
are directed to the stream buffer 15 (not to the memory 
12) so that all write data is written directly into the 
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14 
stream buffer memory 15 and read data is always ob 
tained from the stream buffer 15. Multiplexers 95 and 96 
are placed between the write and read pointer controls 
89 and 92 and the read/write port control 91. One set of 
inputs to the multiplexers are the lines 90 and 93 (for 
normal operation), while the other set of inputs receive 
the address bits directly from the bus 11 (via latch 21). 
The multiplexers are selected by an output line 97 from 
the mode bit 94. In operation, for a test mode, the mode 
bit 94 is written with a “1” by the CPU 10, placing the 
buffer 15 in the direct read/write mode. All subsequent 
write commands issued by the host computer CPU 10 
cause the write data issued by the CPU 10 to be stored 
directly into the stream buffer 15 at the location speci 
fied by the four address bits taken from the address 
issued by the CPU 10 (other address bits are ignored), 
passed through the multiplexer 95 and applied to the 
read/write control 91 of the RAM 15. All subsequent 
read commands issued by CPU 10 cause the same four 
address bits to be taken from the CPU 10 address on bus 
11, passed through the multiplexer 96, and applied to 
the control 91 from the RAM, where it is used to select 
1-of-16 RAM locations. Data thus accessed in the RAM 
is sent to the CPU 10 as read data. 

Ideally, for greatest flexibility in use, it is desirable to 
use the low-order address bits to select locations within 
the stream buffer 15. However, in order to accommo 
date interleaved operation of system memory modules 
in memory 12 and still maintain a coherent direct ad 
dressing scheme for the stream buffer memory, it is 
necessary to use different bits from the system memory 
address on bus 11 for different interleaving schemes. As 
low-order address bits are typically used to select differ 
ent memory modules while in a two-way or four-way 
interleaving mode, the address bits chosen from the 
system memory address on bus 11 must be shifted 
“higher' one or two bit positions before being applied 
to the decoding logic. By correctly choosing address 
bits, the appropriate stream buffer location can be se 
lected while still respecting the differing interleaving 
schemes. In particular, for one-way interleaving (i.e., no 
interleaving) the address bits <6:3> from the bus 11 
are used to select the locations of the buffer 15 as fol 
lows: 

Memory. Address Bits 
<6> <5> <4 <3> Stream Buffer Entry Selected 

Buffer-0, Entry-O (Head) 
Buffer-0, Entry 
Buffer-0, Entry-2 
Buffer-0, Entry-3 (Tail) 
Buffer-1, Entry-0 (Head) 
Buffer-i, Entry-l 
Buffer-1, Entry-2 
Buffer-l, Entry-3 (Tail) 
Buffer-2, Entry-O (Head) 
Buffer-2, Entry-1 
Buffer-2, Entry-2 
Buffer-2, Entry-3 (Tail) 
Buffer-3, Entry-0 (Head) 
Buffer-3, Entry-l 
Buffer-3, Entry-2 
Buffer-3, Entry-3 (Tail) 

For two-way interleaving, the address bits are decoded 
in the same way, except address bits <7:4) are used 
from the bus 11 instead of <6:3>. In like manner, for 
four-way interleaved memory modules, the address bits 
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used from bus 11 are <8:5>, but the decoding is other 
wise the same as in the table just given. 
Complete diagnostic coverage of the memory ele 

ments used within the stream buffer 15 are thus ob 
tained, using normal memory read and write protocols 5 
provided by the CPU 10 via the memory interconnect 
bus 11. Additionally, isolation of errors is greatly im 
proved because testing of the stream buffer 15 can be 
decoupled from functional usage of the device. Without 
this direct read/write feature of the invention, the test- 10 
ing of such a memory element would be more time 

16 
consuming, and isolation of some failure would not be 
possible. 
While the invention has been described with refer 

ence to a specific embodiment, the description is not 
meant to be construed in a limiting sense. Various modi 
fications of the disclosed embodiment, as well as other 
embodiments of the invention, will be apparent to per 
sons skilled in the art upon reference to this description. 
It is therefore contemplated that the appended claims 
will cover any such modifications or embodiments 
which fall within the true scope of the invention. 

TABLE 1. 
Addressing Matrix For Modules Using 1 MBit DRAMS 

INTERLEAVE FACTOR INTERLEAVE FACTOR 
WITH2 BANKS WITH 4 BANKS 

LOGICAL SIGNAL 1-WAY 2-WAY 4-WAY 1-WAY 2-WAY 4-WAY 

ROW BITO CAD 5 CAD 5 CAD 5 CAD 5 CAD 5 CAD 5 
ROW BIT 1 CAD 6 CAD 6 CAD 6 CAD 6 CAD 6 CAD 6 
ROW BIT2 CAD 7 CAD 7 CAD 7 CAD 7 CAD 7 CAD 7 
ROW BIT 3 CAD 8 CAD 8 CAD 8 CAD 8 CAD 8 CAD 8 
ROW BIT 4 CAD 9 CAD 9 CAD 9 CAD 9 CAD 9 CAD 9 
ROW BIT 5 CAD 10 CAD 10 CAD 10 CAD 10 CAD 10 CAD 10 
ROW BIT 6 CAD 11 CAD 11 CAD 11 CAD 11 CAD 11 CAD 1 
ROW BIT 7 CAD 12 CAD 12 CAD 12 CAD 12 CAD 12 CAD 2 
ROW BIT 8 CAD 13 CAD 13 CAD 13 CAD 13 CAD 13 CAD 3 
ROW BIT 9 NA N/A NA N/A N/A NA 
RW COL BITO CAD 3 CAD 22 CAD 22 CAD 3 CAD 23 CAD 23 
RW COL BIT CAD 4 CAD 4 CAD 23 CAD 4 CAD 4 CAD 24 
RW COL BIT2 CAD 15 CAD 15 CAD 15 CAD 15 CAD 15 CAD 15 
RW COL BIT 3 CAD 18 CAD 18 CAD 18 CAD 18 CAD IS CAd 18 
RW COL BET 4 CAD 19 CAD 19 CAD 19 CAD 19 CAD 19 CAD 19 
RW COL BIT 5 CAD 20 CAD 20 CAD 20 CAD 20 CAD 20 CAD 20 
RW COL BIT 6 CAD 21 CAD 21 CAD 21 CAD 21 CAD 2 CAD 21 
RW COL BIT 7 CAD 14 CAD 14 CAD 14 CAD 14 CAD 14 CAD 14 
RW COL BIT 8 CAD 17 CAD 17 CAD 17 CAD 22 CAD 22 CAD 22 
RW COL BIT 9 N/A N/A NA N/A N/A N/A 
RW BANK SEL BITO CAD 16 CAD 16 CAD 16 CAD 16 CAD 16 CAD 16 
RW BANK SEL BIT NAA N/A NAA CAD 17 CAD 17 CAD 7 
RW BOARD SEL BTO CAD 22 CAD 3 CAD 3 CAD 23 CAD 3 CAD 3 
RW BOARD SEL BT 1 CAD 23 CAD 23 CAD 4 CAD 24 CAD 24 CAD 4 
RW BOARD SEL BIT 2 CAD 24 CAD 24 CAD 24 CAD 25 CAD 25 CAD 25 
RW BOARD SEL BIT 3 CAD 25 CAD 26 CAD 25 CAD 26 CAD 26 CAD 26 
RW BOARD SEL BET 4 CAD 26 CAD 26 CAD 26 CAD 27 CAD 27 CAD 27 
RW BOARD SEL BT5 CAD 27 CAD 27 CAD 27 CAD 28 CAD 28 CAD 28 
RW BOARD SEL BIT 6 CAD 28 CAD 28 CAD 28 CAD 29 CAD 29 CAD 29 
RW BOARD SEL BT 7 CAD 29 CAD 29 CAD 29 CAD 30 CAD 30 CAD 30 
RW BOARD SEL BIT 8 CAD 30 CAD 30 CAD 30 N/A N/A N/A 
EX COL BETO CAD 3 CAD 72 CAD 72 CAD 3 CAD 73 CAD 73 
EX COL BET 1 CAD 4 CAD 4 CAD 73 CAD 4 CAD 4 CAD 74 
EX COL BET 2 CAD 15 CAD 15 CAD 15 CAD 15 CAD 16 CAD 5 
EX COL BIT 3 CAD 68 CAD 68 CAD 68 CAD 68 CAD 68 CAD 68 
EX COL BET 4 CAD 69 CAD 69 CAD 69 CAD 69 CAD 69 CAD 69 
EX COL BIT 5 CAD 70 CAD 70 CAD 70 CAD 70 CAD 70 CAD 70 
EX COL BIT 6 CAD 71 CAD 71 CAD 71 CAD 71 CAD 71 CAD 71 
EX COL BIT 7 CAD 14 CAD 14 CAD 14 CAD 14 CAD 14 CAD 14 
EX COL BIT 8 CAD 67 CAD 67 CAD 67 CAD 72 CAD 72 CAD 72 
EX COL BIT 9 N/A N/A NA NA N/A NA 
EX BANKSEL BIT 0 CAD 66 CAD 66 CAD 66 CAD 66 CAD 66 CAD 66 
EX BANK SEL BIT 1 N/A N/A NA CAD 67 CAD 67 CAD 67 
EX BOARD SEL BITO CAD 72 CAD 3 CAD 3 CAD 73 CAD 3 CAD 3 
EX BOARD SEL SIT 1 CAD 73 CAD 73 CAD 4 CAD 74 CAD 74 CAD 4 
EX BOARD SEL BIT2 CAD 74 CAD 74 CAD 74 CAD 75 CAD 75 CAD 75 
EX BOARD SEL BIT 3 CAD 75 CAD 75 CAD 75 CAD 76 CAD 76 CAD 76 
EX BOARD SEL BIT 4 CAD 76 CAD 76 CAD 76 CAD 77 CAD 77 CAD 77 
EX BOARD SEL BT5 CAD 77 CAD 77 CAD 77 CAD 78 CAD 78 CAD 78 
EX BOARD SEL BIT 6 CAD 78 CAD 78 CAD 78 CAD 79 CAD 79 CAD 79 
EX BOARD SEL BIT 7 CAD 79 CAD 79 CAD 79 CAD 80 CAD 80 CAD 80 
EX BOARD SEL BIT 8 CAD 80 CAD 80 CAD 80 N/A N/A NA 

TABLE 2 

Addressing Matrix For Modules Using 4 MBit DRAMS 
INTERLEAVE FACTOR INTERLEAVE FACTOR 

WITH 2. BANKS WITH 4 BANKS 
LOGICAL SIGNAL 1-WAY 2-WAY 4-WAY 1-WAY 2-WAY 4-WAY 

ROW BIT 0 CAD 5 CAD 5 CAD 5 CAD 5 CAD 5 CAD 5 
ROW BIT CAD 6 CAD 6 CAD 6 CAD 6 CAD 6 CAD 6 
ROW BET 2. CAD 7 CAD 7 CAD 7 CAD 7 CAD 7 CAD 7 
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TABLE 2-continued r 

Addressing Matrix For Modules Using 4 MBit DRAMS 
INTERLEAVE FACTOR INTERLEAVE FACTOR 

WITH 2 BANKS WITH 4 BANKS 
LOGICAL SIGNAL 1-WAY 2-WAY 4-WAY -WAY 2-WAY 4-WAY 

ROW BIT 3 CAD 8 CAD 8 CAD 8 CAD 8 CAD 8 CAD 8 
ROW BIT 4 CAD 9 CAD 9 CAD 9 CAD 9 CAD 9 CAD 9 
ROW BIT 5 CAD 10 CAD 10 CAD 10 CAD 10 CAD 10 CAD 10 
ROW BIT 6 CAD 1 CAD 1 CAD 1 CAD 11 CAD 11 CAD 1 
ROW BIT 7 CAD 12 CAD 12 CAD 12 CAD 12 CAD 12 CAD 12 
ROW B 8 CAD 13 CAD 13 CAD 13 CAD 13 CAD 13 CAD 13 
ROW BIT 9 CAD 14 CAD 14 CAD 14 CAD 14 CAD 14 CAD 14 
RW COL BIT 0 CAD 3 CAD 24 CAD 24 CAD 3 CAD 25 CAD 25 
RW COL BIT 1 CAD 4 CAD 4 CAD 25 CAD 4 CAD 4 CAD 26 
RW COL BIT2 CAD 15 CAD 15 CAD 15 CAD 15 CAD 15 CAD 15 
RW COL BIT 3 CAD 18 CAD 18 CAD 18 CAD IS CAD 18 CAD 18 
RW COL BIT 4 CAD 19 CAD 19 CAD 19 CAD 19 CAD 19 CAD 19 
RW COL BIT 5 CAD 20 CAD 20 CAD 20 CAD 20 CAD 20 CAD 20 
RW COL BIT 6 CAD 21 CAD 21 CAD 21 CAD 21 CAD 21 CAD 21 
RW COL BIT 7 CAD 22 CAD 22 CAD 22 CAD 22 CAD 22 CAD 22 
RW COL BIT 8 CAD 17 CAD 17 CAD 17 CAD 24 CAD 24 CAD 24 
RW COL BIT 9 CAD 23 CAD 23 CAD 23 CAD 23 CAD 23 CAD 23 
RW BANK SEL BIT 0 CAD 16 CAD 16 CAD 16 CAD 16 CAD 16 CAD 16 
RW BANK SEL BIT NA NAA NMA CAD 17 CAD 7 CAD 17 
RW BOARD SEL BIT O CAD 24 CAD 3 CAD 3 CAD 25 CAD 3 CAD 3 
RW BOARD SEL BIT 1 CAD 25 CAD 25 CAD 4 CAD 26 CAD 26 CAD 4 
RW BOARD SEL BIT 2 CAD 26 CAD 26 CAD 26 CAD 27 CAD 27 CAD 27 
RW BOARD SEL BIT 3 CAD 27 CAD 27 CAD 27 CAD 28 CAD 28 CAD 28 
RW BOARD SEL BIT 4 CAD 28 CAD 28 CAD 28 CAD 29 CAD 29 CAD 29 
RW BOARD SEL BITS CAD 29 CAD 29 CAD 29 CAD 30 CAD 30 CAD 30 
RW BOARD SEL BIT 6 CAD 30 CAD 30 CAD 30 N/A NA N/A 
RWBOARD SEL BIT 7 NA N/A N/A N/A N/A N/A 
RW BOARD SEL BIT 8 N/A NA N/A NA NA N/A 
EX COL BIT 0 CAD 3 CAD 74 CAD 74 CAD 3 CAD 75 CAD 75 
EX COL BIT 1 CAD 4 CAD 4 CAD 75 CAD 4 CAD 4 CAD 76 
EX COL BIT2 CAD 5 CAD 15 CAD 15 CAD 15 CAD 15 CAD 15 
EX COL BIT 3 CAD 68 CAD 68 CAD 68 CAD 68 CAD 68 CAD 68 
EX COL BIT 4 CAD 69 CAD 69 CAD 69 CAD 69. CAD 69 CAD 69 
EX COL BIT 5 CAD 70 CAD 70 CAD 70 CAD 70 CAD 70 CAD 70 
EX COL BIT 6 CAD 71 CAD 71 CAD 71 CAD 71 CAD 71 CAD 7 
EX COL BIT 7 CAD 72 CAD 72 CAD 72 CAD 72 CAD 72 CAD 72 
EX COL BIT 8 CAD 67 CAD 67 CAD 67 CAD 74 CAD 74 CAD 74 
EX COL BIT 9 CAD 73 CAD 73 CAD 73 CAD 73 CAD 73 CAD 73 
EX BANK SEL BIT 0 CAD 66 CAD 66 CAD 66 CAD 66 CAD 66 CAD 66 
EX BANK SEL BIT NA NA N/A CAD 67 CAD 67 CAD 67 
EX BOARD SEL BIT 0 CAD 74 CAD 3 CAD 3 CAD 75 CAD 3 CAD 3 
EX BOARD SEL BIT 1 CAD 75 CAD 75 CAD 4 CAD 76 CAD 76 CAD 4 
EX BOARD SEL BIT 2. CAD 76 CAD 76 CAD 76 CAD 77 CAD 77 CAD 77 
EX BOARD SEL BIT 3 CAD 77 CAD 77 CAD 77 CAD 78 CAD 78 CAD 78 
EX BOARD SEL BIT 4 CAD 78 CAD 78 CAD 78 CAD 79 CAD 79 CAD 79 
EX BOARD SEL BIT 5 CAD 79 CAD 79 CAD 79 CAD 80 CAD 80 CAD 80 
EX BOARD SEL BIT 6 CAD 80 CAD 80 CAD 80 N/A N/A NAA 
EXBOARD SEL BIT 7 NA N/A N/A NA N/A N/A 
EX BOARD SEL BIT 8 N/A N/A N/A NA N/A N/A 

What is claimed is: 
1. A method of operating a stream buffer coupled 

between a central processor unit (CPU) and a memory, 
comprising the steps of: 50 

selecting between a normal operation mode and a test 
operation mode and dynamically switching be 
tween said normal operation mode and said test 
mode in various stages of system operation; 

performing the following steps during said normal 55 
operation mode: 
(1) upon receiving a memory write request from 

said CPU, writing data received from said CPU 
into said memory at a location indicated by said 
write request; and 60 

(2) upon receiving a memory read request from 
said CPU, performing the following steps: 
(A) determining whether the requested data re 

sides in said stream buffer, and if so at what 
location therein; 65 

(B) if the requested data is determined to reside 
in said stream buffer, accessing said stream 
buffer at the determined location and return 

ing the data contained therein to said CPU; 
and 

(C) if the requested data is determined not to 
reside in said stream buffer, performing the 
following steps: 
(i) accessing said memory at an address indi 

cated by said read request and returning the 
data contained therein to said CPU; and 

(ii) accessing said memory at an address se 
quentially following the address indicated 
by said read request and writing the data 
contained therein to said stream buffer at an 
allocated location thereof; and 

performing the following steps during said test opera 
tion mode: 
(1) upon receiving a memory write request from 

said CPU, writing data received from said CPU 
into said stream buffer at a location indicated by 
said write request without regard to which loca 
tion of said stream buffer would be allocated if 
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said normal operation mode were presently se- determining, based on which comparison resulted in a 
lected; and match, the location in said stream buffer at which 

s the requested data resides. 
(2) upon receiving a memory read request from 3. A method according to claim 1, further comprising 

said CPU, accessing said stream buffer at an 5 the step of 
address indicated by said read request and re- incrementing an allocation pointer after data is writ 
turning the data contained therein to said CPU ten to said stream buffer from said memory during 
without regard to either (a) whether said stream said normal operation mode, the value of said allo 

cation pointer indicating which location in said 
buffer would be determined to hold the re- 10 stream buffer is allocated to receive memory data 
quested data or (b) the location in said stream upon a subsequent read request for which the re 
buffer that would be determined to hold the quest data is determined not to reside in said stream 
requested data if said normal operation mode buffer. 

4. A method according to claim 1, further comprising 
15 the step of: 

continually determining during said normal operation 
were presently selected. 

2. A method according to claim 1, wherein said deter 
mining step comprises the steps of: mode which location in said stream buffer has least 
comparing a memory address accompanying said recently been used to satisfy a CPU read request, 

read request with the memory addresses of data the determined least-recently used location being 
20 taken as the location in said stream buffer that is blocks stored in said stream buffer; 

determining whether any of the comparisons result in allocated to receive memory data upon a read re 
etermining y p quest for which the request data is determined not 
a match, such a result indicating that the requested to reside in said stream buffer. 
data resides in said stream buffer; and : : x 2k 
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