
United States Patent (19)
Tatosian et al.

54 METHOD OF USING STREAM BUFFERTO
PERFORM OPERATION UNDER NORMAL
OPERATION MODE AND SELECTIVELY
SWITCHING TO TEST MODE TO CHECK
DATA INTEGRITY OURING SYSTEM
OPERATION

75 Inventors: David A. Tatosian, Stow; Donald W.
Smelser, Bolton; Paul M. Goodwin,
Littleton, all of Mass.

73) Assignee: Digital Equipment Corporation,
Maynard, Mass.

21) Appl. No.: 874,071
22 Filed: Apr. 24, 1992
51) Int. Cl. G06F 12/16; G06F 13/18
52 U.S. Cl. 395/250; 395/444;

371/21.1; 364/971; 364/957.5; 364/964.5;
364/969

58) Field of Search 395/275, 425, 250, 325;
364/200, 900, 251, 252; 371/21.1, 21.2, 21.3

56) References Cited
U.S. PATENT DOCUMENTS

4,292,674 9/1981 Scheuneman 364/200
4,601,034 7/1986 Sridhar 371/25
4,621,320 11/1986 Holste 364/200
4,761,731 8/1988 Webb 364/200
4,835,738 5/1989 Niehaus et al. 364/900
4,951,254 8/1990 Ontrop et al........................ 365/201
5,003,471 3/1991 Gibson 364/200
5,133,062 7/1992 Joshi et al. 395/500
5,146,578 9/1992 Zangenehpour 395/425
5,241,503 8/1993 Cheng 365/205
5,261,066 11/1993 Jouppi............. ... 395/425
5,289,584 2/1994 Thome et al. 395/325

Nao-n k

20

SYSTEM
BUS BD PAC
DATA St
PORT

11 t
- - - - - - - - - - - - - - - - - -

US00545248A

11 Patent Number: 5,452,418
45 Date of Patent: Sep. 19, 1995

5,301,278 4/1994 Bowater et al. 395/275
5,337,318 8/1994 Tsukakoshi et al. 371/5.5

Primary Examiner-Thomas C. Lee
Assistant Examiner-Rehana Krick
Attorney, Agent, or Firm-James F. Thompson; Ronald
C. Hudgens
57 ABSTRACT

The operation of a stream buffer varies depending on
whether a normal operation mode or a test mode is
selected. In the normal operation mode, the stream
buffer is read from only when the data requested by a
CPU read has been determined to reside there, and the
stream buffer location read from is the location deter
mined to contain the requested data. This determination
is made by comparing the address of the read request
with addresses of the data stored in the stream buffer.
Also, the stream buffer is written with memory data in
response to a read that misses the stream buffer, and the
location written to is one that has been allocated to
receive the incoming memory data. Two different
buffer allocation methods are shown, first-in-first-out
(FIFO) and least-recently-used (LRU). During the test
operation mode, the stream buffer is written to and read
from directly by the CPU at locations specified in the
write and read requests, without regard to the data
presence determination and the allocation that take
place in the normal operation mode. The method pro
vides a straightforward way of testing the stream buffer
during system operation by bypassing some normal
functions during test mode in favor of direct stream
buffer access by the CPU.

4. Claims, 10 Drawing Sheets

-

27

1
33 DRAM

FIF-32 DATA
QA BID 9T

BUFFERS7

f
fo A (2 E

St. AD
CLK BUFFERS DAA, CHECKBS

CORRECTED DAA
DATA, CHECKS

Ca

39

o 137 S s: K

U.S. Patent Sep. 19, 1995 Sheet 1 of 10 5,452,418

No

92

SNo
n SN

s

s
ve

Sheet 2 of 10 5,452,418 Sep. 19, 1995 U.S. Patent

SE TOAO

OIWO OWO

E19 NWHOXE Hil?AWA

Sheet 3 of 10 5,452,418 Sep. 19, 1995 U.S. Patent

is ... w to a to d e s is a - - - - -

-?

XITO

| | | |

?e ºffisi
| | | |

-WIWO. SFF=P ?
| | | | |

WEILSAS

• F. No.
| –1*||

|---

U.S. Patent Sep. 19, 1995 Sheet 5 of 10 5,452,418

s

as 2.
a
a

3 Se

S3

Sheet 6 of 10 5,452,418 Sep. 19, 1995 U.S. Patent

mwTq n?To
69 89 69

OTHONISTO GT3 ONIST) GT3 ONISTg 8THONISTO pTHONISTg

QTHONIST)698THONISTG OTHONISTg n?TggTHONISTO O BONIS WgTHONISTW
99 pTHONISTO| 69wTºONISTg OTHONISTg n?TvWTHONIST) DTAONISTWwTaONISTg

L9 [9
99 99 L9 19

99 LI »
|-

99

99

99

103THSTG WTHONISTq 103THSTO QT3ONISTW 10?l?sTQ WTRONISTO 103T?STg pTHONISTW 1OHTEIST) WITHONISTg 105T3STg gTHONISTW
99 L9

OL
103THSTO 103TESTW 10?TasTo 103 TBSTW 1OHTEISTg

SOL

5,452,418 U.S. Patent

U.S. Patent Sep. 19, 1995 Sheet 9 of 10 5,452,418

Fig. 9

STANDARD
READ - \- - - M
CYCLE

PAGE
MODE
READ
CYCLE

ADDRESS FROM BUS

ADDRESS
TO DRAMS

860

Fig. 10

Sheet 10 of 10 5,452,418 Sep. 19, 1995 U.S. Patent

TOMIINOD ONW M3 (10030 AW8

96

TOMIINOD MEINIOd CIWB!!! Z6

TO?I NOO \!HINHOd Ell!!!M 68

06

5,452,418
1.

METHOD OF USNG STREAM BUFFERTO
PERFORM OPERATION UNDER NORMAL
OPERATION MODE AND SELECTIVELY

SWITCHING TO TEST MODE TO CHECK DATA
INTEGRITY DURING SYSTEM OPERATION

RELATED CASES

This application discloses subject matter also dis
closed in the following copending applications, all filed
herewith and assigned to the assignee of this applica
tion:

Ser. No. 07/874,080, filed Apr. 24, 1992, by Donald
Wayne Smelser, David A. Tatosian, and Paul Mar
shall Goodwin, for “Memory Stream Buffer' now
U.S. Pat. No. 5,371,870;

Ser. No. 07/874,077, filed Apr. 24, 1992, by Paul Mar
shall Goodwin, Donald Wayne Smelser, and
David A. Tatosian, for “Stream Buffer Memory
Fill Optimization' now pending;

Ser. No. 07/874,076, filed Apr. 24, 1992, by David A.
Tatosian, Paul Marshall Goodwin, and Donald
Wayne Smelser, for “Memory Stream Buffer with
Appended Fill Operation' now pending;

Ser. No. 07/874,074, filed Apr. 24, 1992, by David A.
Tatosian, Donald Wayne Smelser, and Paul Mar
shall Goodwin, for “Stream Buffer with Error
Correction and Detection' now abandoned;

Ser. No. 07/874,074, filed Apr. 24, 1992, by Donald
Wayne Smelser, Paul Marshall Goodwin, and
David A. Tatosian, for "Stream Buffer with Allo
cation and Invalidate Functions' now pending;
BACKGROUND OF THE INVENTION

This invention relates to memory system for comput
ers, and more particularly to a method for buffering
data for sequential read requests in a memory system.
As the speed of processors increases, the need for fast

memory systems becomes more important. For exam
ple, a high speed RISC processor of the type disclosed
in copending application Ser. No. 547,630, filed Jun. 29,
1990 now pending, assigned to Digital Equipment Cor
poration, may be constructed to operate at a CPU cycle
time of 5-nsec or less, and execute an instruction during
each cycle (due to the RISC concepts implemented). If
the main memory (usually composed of DRAMs) has a
cycle time of 300-nsec, for example, it can be calculated
that the CPU could spend much of its time waiting for
memory, even using a cache with typical cache hit
rates. In efforts to bring the memory performance more
in line with the CPU, the cache memory is made hierar
chical, providing primary, secondary, and, in some
cases, third level caches, and of course the speed of the
cache memories is increased as much as is economical.
In addition, the bandwidth of the memory bus is in
creased, as by using a wider data path. Nevertheless,
efforts are still needed to reduce the amount of time the
CPU spends waiting on memory, to achieve acceptable
performance for these high-speed CPUs.
When caching is employed, read accesses to main

memory are most often for fetching an entire cache line,
and it is preferable to make the memory data path equal
to the width of a cache line or a submultiple of a cache
line. The principal of locality suggests that cache lines
will often be accessed in sequence, and, when two se
quential cache lines are accessed, there is a reasonable
probability that the sequence will be continued. One of

5

10

15

25

30

35

45

50

55

65

2
the features of this invention is to take advantage of this
observation in order to increase system performance.

In constructing main memory for typical computers,
the most widely used device is the MOS DRAM or
dynamic RAM. These devices have access times of
perhaps 70-ns, but cycle times are much longer, perhaps
200-ns or more. However, most DRAMs now commer
cially available have a feature called "page mode' in
which the column address can be changed after a row
access to the DRAM array, producing a sequence of
data outputs at a faster rate, so long as the new column
addresses are in the same “page.' To invoke page mode
operation, the row address strobe or RAS signal applied
to the DRAM is held in the asserted condition, and the
column address strobe or CAS is toggled; a new column
address is asserted each time CAS is reasserted. This
mode of operation is about twice as fast as standard
RAS-CAS reads, so if this mode can be advantageously
employed, then the average access time can be reduced.
The advantages obtained by use of various features of

the invention include providing faster access to sequen
tial data located in memory modules installed on a mul
ti-node memory bus. By taking advantage of the fast
page mode capabilities of dynamic random access mem
ory (DRAM) devices, the method of the invention
allows for detection of sequential memory access, and,
in response, prefetches memory data from the next se
quential location in advance of the actual request for
that data by the host computing system, placing the data
in a high-speed memory device. As a result, when the
host computing system requests the next piece of mem
ory data (usually a cache line), the data can be delivered
to the host computing system much faster than if the
data had to be delivered directly from the DRAMs of
the memory module.
An important feature of one embodiment is the actual

location of the stream buffer on the memory module
itself, rather than upstream. By placing the stream
buffer memory on the memory module, filling the
stream buffers can be done without utilizing the system
bus (shared with other resources), thereby conserving
system memory interconnect bandwidth and through
put. Also, filling the stream buffers can be done using
the fast page mode operation of the DRAM devices, a
significant performance advantage. Finally, by placing
the stream buffer memory within the logic domain cov
ered by the memory module error detection and correc
tion logic, the reliability, availability, and data integrity
is enhanced.

SUMMARY OF THE INVENTION

In accordance with one embodiment of the invention,
a read buffering system employs a bank of FIFOs to
hold sequential read data for a number of data streams
being fetched by a computer. The FIFOs are located in
the memory controller, so the system bus is not used in
the memory accesses needed to fill the stream buffer.
The buffer system stores addresses used for read re
quests made by a CPU, and if a next sequential address
is then detected in a subsequent read request, this is
designated to be a stream (i.e., sequential reads). When
a stream is thus detected, data is fetched from DRAM
memory for addresses following the sequential address,
and this prefetched data is stored in one of the FIFOs.
A FIFO is selected using a least-recently-used algo
rithm. When the CPU subsequently makes a read re
quest for data in a FIFO, this data can be returned
without making a memory access, and so the access

5,452,418
3

time seen by the CPU is shorter. By taking advantage of
page mode, access to the DRAM memory for the pre
fetch operations can be transparent to the CPU, result
ing in substantial performance improvement if sequen
tial accesses are frequent. One feature is appending page 5
mode read cycles to a normal read, in order to fill the
FIFO. The data is stored in the DRAMs with ECC
check bits, and error detection and correction (EDC) is
performed on the read data downstream of the stream
buffer, so the data in the stream buffer is protected by
EDC.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the in
vention are set forth in the appended claims. The inven
tion itself, however, as well as other features and advan
tages thereof, will be best understood by reference to
the detailed description of a specific embodiment, when
read in conjunction with the accompanying drawings,
wherein:
FIG. 1 is a diagram of a computer system which may

employ features of one embodiment of the invention;
FIG. 2 is a timing diagram showing events vs. time

for bus cycles in the system of FIG. 1;
FIG. 3 is an electrical diagram in block form of a

memory control used in the system of FIG. 1 and em
ploying features of the invention;

FIG. 4 is an electrical diagram in block form of
stream buffer FIFO logic used in the controller of FIG.
3, according to one embodiment;

FIG. 5 is an electrical diagram in block form of
stream detection logic used in the controller of FIG. 3,
according to one embodiment;
FIG. 6 is an electrical diagram in block form of

stream buffer allocation circuit used in the controller of 35
FIG. 3, according to one embodiment;
FIG. 7 is an electrical diagram in block form of

stream buffer invalidate circuit used in the controller of
FIG. 3, according to one embodiment;

FIG. 8 is an electrical diagram in block form of 40
stream buffer hit logic circuit used in the controller of
FIG. 3, according to one embodiment;
FIG. 9 is a timing diagram of events vs. time for a

DRAM implementing a page mode operation;
FIG. 10 is an electrical diagram in block form of the

memory control for generating appended fill cycles,
used in the module of FIG. 3, according to one embodi
ment; and
FIG. 11 is an electrical diagram in block form of the

stream buffer used in the module of FIG. 3, according
to one embodiment.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENT

Referring to FIG. 1, a computer system is illustrated
which may use a stream buffer having features of the
invention. A CPU 10 is connected to a system bus 11 for
access to various system resources. The CPU may be,
for example, of the VAXTM architecture as described
by Levy and Eckhouse in "Computer Programming
and Architecture: The VAX', 2nd Ed., Digital Press,
1989. A single-chip CPU of the VAX architecture is
disclosed in U.S. Pat. No. 5,006,980, issued to Sander,
Uhler & Brown, assigned to Digital Equipment Corpo
ration, the assignee of this invention. The CPU 10 also
may be of an advanced 64-bit RISC architecture as
disclosed in my copending application Ser. No. 547,630,
filed Jun. 29, 1990, now pending, also assigned to Digi

10

15

20

25

30

45

50

55

65

4.
tal Equipment Corporation. Alternatively, of course,
the CPU may be of many other types, such as the Intel
386 or 486 architecture, or MIPS R3000 or R4000 RISC
architecture. The system bus 11 may be any of the stan
dard bus specifications used for any of the many com
monly-used CPUs, but in an example embodiment is a
VAX bus.
A main memory 12 is connected to the system bus 11

by a memory bus 13 and a memory interface or control
14 containing the stream buffer 15 according to features
of the invention. The purpose of the stream buffer 15 is
to hold read data prefetched from addresses following a
sequential read access received from the CPU 10. That
is, when a read request for a given address X is received
by the control 14 from the CPU 10 on the system bus 11,
this address X is stored to see if a read for the next
sequential location (cache line) X-1 is soon requested.
If so, the response is to fetch the data at address X-1
from the memory 12 and send it back to the CPU 10 on
the system bus, then to fetch sequential data at addresses
X--2, X--3, etc., and store this data in the stream buffer
15. The principle of locality suggests that the CPU will
send memory requests for the sequential locations X-2,
X--3, etc., and when this happens, the access time in
responding to these subsequent requests is much shorter
when the data is in the buffer 15 than when a read access
to memory 12 must be made. The bus cycle for the
system bus 11, and the way the CPU 10 operates, are
such that the time between read requests from the CPU
for sequential data will be sufficient to allow for mem
ory cycles on the memory bus 13 (particularly, page
mode accesses) to be executed to fill the buffer 15 with
the desired data stream, before the CPU makes the
memory requests. The stream buffer 15 is large enough
to hold a number of data steams, for example, four
streams. Thus, read accesses for data and instructions
may be in different pages, and more than one task may
be executing on the CPU 10, so several streams may be
working simultaneously; four of these can be accommo
dated in the stream buffer 15 of the example embodi
ment. The stream buffer 15 is constructed as a set of
four FIFOs, with four entries for each FIFO, as will be
explained.

In addition to the CPU 10, other CPUs 16 as seen in
FIG. 1 may be accessing the memory 12 by the system
bus 11 in a multiprocessor system, so there may be
streams resident in the stream buffer 15 for more than
one processor, as well as more than one process. Vari
ous other system resources such as a disk storage facility
17 are usually connected to the system bus 11.
Memory references made by the CPU 10 to the men

ory 12 are for a cache line, which in typical embodi
ments is 128-bits or 256-bits, rather than for a word. A
cache 18 holds a subset of data from memory 12, and is
accessed in a much shorter cycle than an access to mem
ory 12. A large percentage of the memory requests
made by the CPU 10 result in cache hits (perhaps 90%
or more) and so require no transaction on the bus 11.
When a cache miss occurs, however, the data from the
requested location in memory 12 is fetched via the bus
11, and the entire cache line containing this memory
location (even if the request is for only a 32-bit word) is
fetched from memory and used to fill a line of the cache
18. Memory references are therefore on even cache line
boundaries, and so when "incrementing by --1' is re
ferred to herein it is understood that the addresses are
incremented by -- 16 byte addresses or --32 byte ad
dresses, or whatever the configuration requires. The

5,452,418
5

address sent out on the bus 11 from the CPU is trun
cated since some low-order bits of the internal CPU are
never needed in addressing the memory 12. The cache
18 may be internal to the microprocessor chip which
implements the CPU 10, or external; more often, a com
bination of on-chip (first-level) and external (secondary
or back-up) caches are used. In a particular embodi
ment, the cache 18 is direct-mapped, meaning that only
one cache location is available for a given index num
ber, i.e., all memory references having the same index
will map to the same location in the cache. This is mate
rial to the address transposing mentioned below in ref
erence to exchange transactions.

In a particular embodiment, the bus 11 is a multi
plexed command/address/data bus on which memory
requests are sent by the CPU 10 in the manner illus
trated in FIG. 2. A memory request is initiated in cycle
0 by a command strobe CA, an output from the CPU. In
cycle-1, the bus 11 is driven by commands and address
bits labelled CAD (command/address/data) in FIG. 2,
in the first example representing a read request. If the
requested data is in the stream buffer 15, the data is
returned to the bus 11 in cycle-5, but if the requested
data is not in the stream buffer the data is returned to
bus 11 in cycle-8. The difference of three cycles repre
sents the delay in accessing the memory 12, compared
to getting the data directly from the stream buffer 15. A
write cycle as illustrated in FIG. 1 is initiated by a CA
strobe as before, and the write address and write com
mand is asserted on bus 11 by the CPU in cycle-1, foll
lowed immediately by the write data in cycle-2. The
delay before another memory transaction can begin on
the bus 11 following a write depends upon whether the
write can be made to a write buffer (not shown) or must
be sent to memory 12.
The memory 12, in one embodiment, supports a so

called “exchange' transaction, which consists of both a
write and a read in one bus transaction. This is ordinar
ily used to write back a cache line from the cache 18 to

5

O

15

25

30

35

memory 12 and to read a cache line; this can be done, of 40
course, only if the addresses are appropriate, since only
one cycle of address information is sent. In FIG. 2, an
exchange command begins in cycle-0 with a CAstrobe,
the address and command is asserted by the CPU 10 on
the bus 11 in cycle-1, and the write data is asserted on
the bus 11 by the CPU in cycle-2. If the write can be
done to a write buffer, and the read data is in the fill
buffer 15, it is returned on bus 11 in cycle-5, or if an
access to memory 12 for the read is needed then read
data is returned in cycle-8. An exchange transaction is
an atomic operation that swaps one cache line from the
cache 18 with another line read from memory 12 (or
from buffer 15). This operation is used to enhance per
formance of the memory system when filling a cache
location in the instance of a cache miss to a 'dirty'
cache line (one that has been written to). An exchange
transaction uses the address fields sent in cycle-1 to send
the unique cache tag address for the location in memory
to write back the dirty cache line, and also the cache tag
for the cache line to be loaded into the cache 18. In
addition, a single cache index field is sent for an ex
change transaction. Thus, two cache tag addresses (16
bits each) and one index (13-bits) are sent on bus 11 in
cycle-2. Note that the same index is used for both the
write back and the cache fill data, so the address bits
must be appropriate.

Referring to FIG. 3, the control module 14 is shown
in more detail. The control module of course handles

6
write data as well as read data, and write data moves
from left to right at the upper part of the Figure, from
system bus 11 to memory bus 13. Read data, on the
other hand, moves from right to left at the lower part of
FIG. 3, from memory bus 13 to system bus 11. The
stream buffer 15 is in the read data path. Abidirectional
bus interface 20 accepts data and commands (read and
write requests, including addresses, as in FIG. 2) from
the system bus 11, and applies the received information
to a latch 21 clocked by a local clock source 22. The
output from the latch 21 is applied by lines 23 to a parity
check circuit 24; if parity does not check then a fault is
signalled. The information on lines 23 is also applied to
a command and data queue 25. A read request is held
for execution, with just the address and commands
being sent to the memory 12 (if access to memory 12 is
needed) under control of the controller, but a write
request has data to be sent on to memory 12. Output
from the command and data queue on lines 26 for a
write request is applied to an ECC generator circuit 27
where ECC bits are calculated and output on lines 28.
The ECC bits on output 28 are added to the data on
lines 26, producing a full data word including ECC bits
on lines 30. If the data width at the output lines 26 is
128-bits, for example, then the ECC circuit 27 may
generate a 12-bit ECC field on lines 28, so the total
width of the output on lines 30 is 140-bits. The latch 31
provides an output 32 to abidirectional bus interface 33
which interfaces with the memory bus 13.
When a read request requiring an access to memory

12 is being executed, the read data path receives data
from the memory bus 13 via bidirectional interface 33
and clocked latch 34. The read data can be applied to
the stream buffer 15 by lines 35, or can be applied di
rectly to a multiplexer 36 by lines 37 to bypass the
stream buffer. In executing a read request where the
data requested is not in the buffer 15, the read data
returned to the unit 14 from the memory 12 is sent
directly back toward the CPU by the path 37 rather
than being stored in the buffer 15. If requested data is in
the buffer 15, however, it is applied to the multiplexer
36 by lines 38, without needing a memory access to
DRAMs 12. Selection of which input lines 37 or 38 are
used as the output of the multiplexer 36 is made by a

45

50

55

stream hit input 39. The output 40 of the multiplexer 36
is applied to an error detection and correction (EDC)
circuit 41. The circuit 41 accepts the 140-bit wide data
input on lines 40 and uses the 12-bit ECC field to deter
mine if the 128-bit data field is correct, and toggles
incorrect bits if found. If more than two bits are incor
rect, a fault is signaled and the data is not corrected.
The output 42 of the EDC circuit 41 is 128-bits wide
and is applied to a multiplexer 43 for coupling back
through a clocked latch 44 to the bus interface 20, from
which read data is sent back to the CPU 10 via system
bus 11. A controller 45 receives commands loaded to
the memory control 14 from the CPU 10 via bus 11, and
generates the hit signals and various control signals for
the stream buffer, as will be described.

Referring to FIG. 4, the stream buffer 15 is config
ured in the example embodiment as four FIFOs 51, 52,
53 and 54. Each of the FIFOs holds up to four data
blocks, with each data block containing 128-bits of data
plus the 12-bit EDC check bit field, as seen in the Fig
ure. Each FIFO has an associated head address register,
shown in FIG. 4 as 47, 48, 49 and 50, that maintain the
effective cache line address of the data currently held in
the head of the corresponding FIFO. In addition to

5,452,418
7

holding the cache line address, each of the head address
registers provides a valid bit which indicates whether
the corresponding FIFO has valid data at its head loca
tion. The four FIFOs rely on a single control mecha
nism to perform the loading of read data form the
DRAMs of memory 12 via lines 35 into the tail of the
FIFO, and the subsequent extraction of read data from
the head of the FIFO for delivery via output 38 to the
system bus 11. A multiplexer 55 selects one of the four
140-bit outputs 56 from the FIFOs to apply to the lines
38 when a stream buffer hit is detected.
The stream detection logic of FIG. 5 is part of the

controller 45 and is used to determine when a CPU 10
is in the process of reading contiguous locations in
memory 12, which is the situation where the beneficial
effects offered by the prefetching of data can be utilized.
The intent of the detection logic is to anticipate the
subsequent need for data from memory 12, prior to the
actual read command arriving in unit 14 requesting that
data. The stream detection logic, in essence, simply
keeps a record of the addresses in memory 12 of the
previous eight read transactions. This record is kept in
a history buffer cache 58, which has eight locations
B1-B8; the first location B1 is loaded from the incoming
read cache line address through an adder A which adds
1 to the incoming read cache line address (i.e., incre
menting) prior to loading into location B1, and when
the next read request is received the corresponding
cache line address is incremented by adder A before
being loaded into location B2, and likewise each subse
quent read address received from CPU 10 is incre
mented and loaded into the next location, proceeding
through location B8, whereupon the ninth read request
has its cache line address incremented and loaded into

10

15

20

25

30

location B1, thus overwriting the previous contents of 35
that element. In this manner the eight locations within
the history buffer cache are used in a true round robin
basis, such that at any given time the history buffer
contains the cache line addresses of the last eight read
requests. Comparators 59, connected to receive the
incoming read address on line 60 and the output of one
of the locations of B1, B2, etc., of the history buffer 58,
compare each subsequent read transaction address from
latch 21 of FIG. 3 to see if the new address of an incom
ing read request is contiguous to any of the recorded
addresses held in the history buffer. (If cache line ad
dresses, on even 256-bit boundaries, are sent on bus 11,
then "contiguous' means X-1). If the new address is
determined to be "contiguous” to any one of the previ
ous eight addresses in the history buffer cache 58, a new
"read stream' is "declared' by the address match signal
on line 61. This results in one of the stream buffers
51-54 being allocated to this new stream, to be used to
store data from the memory 12 to be "prefetched' by
the controller logic.

Each location B1-B8 within the history buffer cache
58 also maintains a single status bit 62, which is referred
to as the valid bit. Each valid bit is set whenever a new
read address is loaded into the corresponding history
buffer location B1-B8. Each valid bit indicates whether
the contents of the corresponding location B1-B8 was
loaded during normal system operation, and therefore
protects against spurious operation as a result of initial
ization after the system is powered up. If the valid bit 62
is not set in a history buffer location, that location is
prevented from making a successful compare against
any new address, and therefore cannot cause a stream to
be detected.

45

50

55

65

8
The re-detection of existing streams is prevented by

first calculating the effective array address from the
new address on bus 11, and then comparing that to the
entries already contained within the head address regis
ters 47-50 for the four stream buffer FIFOs 51-54. That
same address generation logic used by the fill logic can
be used for this purpose. If the head of any of * the
stream buffer FIFOs 51-54 has an entry that corre
sponds to the effective array address, the “existing
stream” signal will inhibit the creation of a new stream.
The history buffer and stream detection logic cir

cuitry is illustrated in FIG. 5, for one embodiment of the
invention. This circuitry is shared by all the stream
buffers, i.e., only one copy of the stream detection logic
is required.
The stream buffers 15 are allocated on a modified

least-recently-used (LRU) basis, as managed by the
stream buffer allocation circuitry shown in FIG. 6; this
circuitry is also part of the controller 45. The allocation
circuitry is shared by all the stream buffers, i.e., only
one copy of this allocation logic is required. This cir
cuitry assures that the stream buffers are utilized in the
most efficient manner. When a buffer hit is signalled on
line 83 by the circuitry of FIG. 8, an input 64 to a set of
six J-K flip-flops 65 causes the A-sel, B-sel, C-sel, etc.,
inputs 66 to be evaluated, and outputs 67 are valid until
the next hit. These outputs 67 indicate for each pair of
the four buffers 51-54 which one was more recent. The
outputs 67 are applied as inputs to a set of four AND
gates 68, producing outputs 69 in the controller 45 indi
cating which one of the four buffers 51-54 is LRU.
When a buffer is selected at the next hit, it will thus be
the one indicated by the one output 69 that is asserted.
This one output 69 is then deasserted, and the next LRU
is asserted (one of the other outputs 69 is asserted). In
effect, the logic provides a stack 70 of four buffer identi
ties to indicate the relative time between successful hits
on each of the four buffers 51-54. When a buffer 51-54
is allocated upon the event of a hit, the identity of that
buffer is placed on the bottom of the stack 70, pushing
the other buffer identities up the stack (i.e., as indicated
by the order the outputs 69 will be asserted). As time
progresses, memory read transactions that hit on the
contents of a buffer 51-54 push the corresponding
buffer identity to the bottom of the stack 70. The buffer
identity on the top of the stack is always the LRU
buffer, and would therefore be the next buffer to be
allocated when the next new read stream is detected. In
the event that a stream buffer 51-54 is invalidated as
discussed below, the identity of that buffer is placed
immediately at the top of the stack 70, and therefore this
buffer will be the next buffer to be allocated when the
next read stream is detected.

Referring to FIG. 7, the stream buffer invalidate
circuit is shown in detail. Data in the stream buffer 15
can become “stale' when a write-to-memory operation
occurs for a memory location contained in the buffer 15.
In order to assure that the read data residing in a stream
buffer 51-54 is always “coherent', all system memory
write transactions are checked to see whether an ad
dress of the write operation appearing on the bus 11
coincides with an existing stream buffer 51-54 entry.
Each write transaction address on input 70 from the bus
11 (e.g., from latch 21) is compared in four compare
circuits 71 with inputs 72 from the four stream buffer
head address register entries 47-50, producing four
comparison outputs 73; these outputs 73 are each
ANDed with a write command signal from the bus 11 in

5,452,418
9

gates 75, producing a "buffer invalid' output 76 for
each of the four stream buffers; this output 76 is used to
toggle the valid bit 79 for the corresponding buffer
location. If a write transaction address on input 70 from
the bus 11 is equal to any address potentially residing in
a stream buffer, that entire stream is declared invalid,
thus preventing any of the data in that stream buffer
from being erroneously supplied to CPU 10. Once a
stream buffer is invalidated it is available to be re
allocated to the next detected read stream.

In addition to the invalidation of individual streams
(individual buffers 51-54) due to memory write or mem
ory exchange commands, all four stream buffers 51-54
are invalidated at any time the memory configuration
control register is written, and at any time that a com
mand parity error is detected. In the case of rewriting
the configuration register, re-configuration of the men
ory module address or interleaving assignments makes
the address relationship of the contents of the stream
buffers 51-54 incoherent, while in the case of command
parity error the failed transaction may have been a write
or exchange to a memory location whose data is cur
rently resident in a stream buffer entry, and which
under normal conditions (i.e. no command parity error)
would have resulted in an invalidation of the appropri
ate stream buffer. These functions protect against the
possible reading of “stale' or incoherent data.
Once a stream buffer 51-54 has been allocated and

some amount of prefetched data has been placed in the
FIFO, the stream buffer hit logic of FIG. 8 compares
incoming read or exchange command addresses to de
tect a comparison between the requested address and
the address of the data at the head of each stream buffer
FIFO entry. If a compare of these two addresses is
successful, read data may be delivered directly from the
stream buffer 51-54 to the system bus 11, without per
forming a (much slower) access to the DRAMs of mem
ory 12. Read latency should be reduced to the minimum
architected read transaction delay (i.e., "zero stall
states') of seven system bus cycles (for an example
embodiment) upon a successful hit on a stream buffer.
The circuitry of the hit logic of FIG. 8 shows the

logic supporting "hit' detection for one embodiment.
As there are four stream buffers 51-54, four compari
sons are performed in parallel in the comparators 78.
The outputs of the comparators 78 are gated by the state
of their respective valid bits 79 which exist within each
of the stream head address register entries 47-50. If any
of the resultant hit signals on lines 81 become asserted
during a read (or exchange) operation, an OR gate 82
produces a "hit' signal on line 83 to inform the memory
control and system bus control logic which will supply
the appropriate sequencing of the memory 12 to ac
count for shorter read latency, and will inhibit DRAM
accessing of the memory 12. Additionally, the four hit
signals on lines 81 are combined in a coder circuit 84 to
generate a 2-bit stream select on lines 85. The stream
select is used to gate the correct FIFO data through a
4:1 multiplexer 55 to the lines 38 on the way to the
system bus 11.
The stream buffer of the invention is particularly

suitable for use with DRAM memory devices imple
menting page mode. A DRAM device of the type com
mercially available in 1-Mbyte and 4-Mbyte sizes has a
row length of say, 512, 1024 or 2048 cells (depending
upon layout of the chip), and when a read access is
made using a row address and RAS, any of the columns
of this row may then be accessed (without asserting a

10

5

20

25

30

35

45

SO

55

65

10
new row access) by merely toggling CAS and asserting
a new column address, as illustrated in FIG. 9. The page
mode access time is much shorter than RAS-CAS ac
cess time.
When either a new read stream is detected, or a con

tinuing read stream causes a stream buffer 51-54 to
transition to an “empty' condition, the stream buffer fill
circuit in controller 14 will fetch data from the appro
priate DRAM address in memory 12 and place it into
the desired stream buffer FIFO 51-54. The stream
buffer logic generates the correct DRAM address from
the incoming memory address, complete with appropri
ate incrementing, while accounting for interleaved con
figurations and the effect on the availability of page
mode accesses of the DRAMs of the memory 12.

In Tables 1 and 2 the address bits used to address the
memory 12 are shown in the left-hand column (called
Logical Signal); these include row address bits 0-9 and
column address bits 0-9 (called RW Col Bits or read/-
write column bits) plus read/write bank select bits 0-1
and board select bits 0-8. For exchange operations, a
different combination is used for the column address,
bank select and board select as shown. In the six right
hand columns the address bits of the bus 11 (CAD or
command/address/data bits) are shown. Note that
there is a gap between CAD bits <31> and <64d
because in the example embodiment the memory system
is implemented in two slices, using a 128-bit bus 11. The
command/address/data for each half is sent separately
on the bus 11, using bits <31:0) and <95:64) for one
half and bits <63:32) and <127:96> for the other.
Thus the tables 1 and 2 represent the address bits on bus
11 for one half, and corresponding numbers would be
used for the other half. ,
A memory system can be constructed using 1-M,

4-M, or 16-M DRAM devices, for example, and the
boards laid out to provide one-way, two-way or four
way interleaving. In an example embodiment, "by-4'
DRAM devices are used. Two or four banks of
DRAMs may be used in the configuration, using the
address transposition set forth in Tables 1 and 2. This
provides a memory size for the memory 12 of 16-Mbyte
or 32-Mbyte if 1-Mbit DRAms are used, or 64-Mbyte or
128-Mbyte if 4-Mbit DRAMs are used.
The principle used in selecting the address bit trans

position in Tables 1 and 2 is that the row address bits
going to the DRAMs in memory 12 are a subset of the
index address (i.e., tag bits aren't used as row address
bits).

Referring to Table 1 and Table 2 it can be seen that
when the memory is configured under one-way inter
leaving, the two least significant column address bits
correspond to the two memory bus address (bus 11)
least significant bits, and therefore the array module is
capable of performing up to four page mode read cy
cles. This means that, once a DRAM address is estab
lished when filling a steam buffer entry, successive page
mode reads can be preformed, filling multiple locations
in the steam buffer, at substantially higher performance
than if a corresponding number of entries were to be
filled using a full RAS-CAS read cycle for each entry.
From Table 1 and Table 2, it can be also seen that if

the array module is configured under two-way inter
leaving, the memory bus LSB becomes part of the
board select field, leaving only the next higher LSB for
use as the column address LSB. Therefore, a maximum
of two page mode cycles may be performed under this
configuration for the purpose of quickly filling a stream

5,452,418
11

buffer. Further, if the memory module is configured
under four-way interleaving, neither of the memory bus
address LSBs correspond to the column address LSBs,
and therefore no page mode read operations are possi
ble, Any filling of a stream buffer in this case must be
done as individual RAS-CAS read operations to the
DRAMS.
Table 1 and Table 2 provide the matrices used to

manipulate the incoming memory bus address to pro
vide for proper board select, bank select, and DRAM
address generation, for 1-Mbit and 4-Mbit DRAMs,
respectively. Additionally, the effects on various con
figurations on the column address bits involved in the
stream buffer fill logic are shown.
There are three methods in which the adaptive look

ahead buffer fill cycle optimization balances the mem
ory resources. These are: (1) adjusting the size of the fill
based on the mode of interleaving, (2) dynamically
adjusting the size of the fill to minimize read latency as
seen by the requesting node, and (3) aligning the fill
address to the beginning of a page.
The first method uses the interleaving configuration

mode of the memory module in the system and from
that information determines the number of look ahead
locations it should read from memory and store in the
buffers 51-54. This is based on Table 1.
For the four-way interleaved module only one fill

read is performed. This is because there typically will be
three sequential reads (one read to each of the other
three modules in the four-way interleaved set) before
the next time the process comes back to read the data
that ideally will already be resident in the stream buff
ers. This means that there are three transaction periods
that are opportunities for a given module to fulfill the
look ahead fill read operation, without adding delays to
the next read operation in the stream to that module.

In the two-way interleaved case the frequency of
reads to a single module by a single process can double
from the four-way interleaved case, because a sequen
tial read stream will land on a particular module one out
of two instead of one out of four times. Therefore by
doubling the number of fills performed for a given
memory cycle the number of times the memory must be
accessed is equal to the number of times the memory
must be accessed for a four-way interleaved module. By
the same reasoning that the number of reads is doubled
for a two-way board, the number of reads for the one
way interleaved configuration is quadrupled, where all
reads in a stream are to a single memory module.
The second mode of optimization is the ability to

dynamically change the number of appended fill read
cycles depending on the activity on the system bus 11.
If a fill transaction is already active on a memory mod
ule and a new transaction is initiated by the CPU that is
not to the stream buffer being filled, then the control
logic 45 will truncate the fill operation at the end of the
current memory cycle although some location(s) within
the stream buffer may not have been filled yet. This
allows the new transaction to proceed without incur
ring the additional delays of completing the entire fill
operation.
The third mode of operation is where the fill control

ler will align the address of the last location to be read
with the last location available to do page mode reads to
the DRAMs. In detail, the fill controller will avoid
generating a fill operation that would cross an address
boundary corresponding to the size of the maximum fill
operation (e.g., four blocks if one-way interleaved).

10

15

20

25

30

35

45

50

55

65

12
Instead, the fill controller will only perform fills that
end at the appropriate address boundary for the given
interleave mode. Then, when the next stream buffer fill
operation is required to refill that stream buffer, the fill
controller will perform a fill that starts on the appropri
ate address boundary and proceeds for the appropriate
number of page mode read cycles before completing the
fill operation. In this manner, the most efficient page
mode read operations are used to refill the stream buff
ers when required.
Without these methods of optimization the stream

buffers 51-54 could have a negative impact on system
performance by delaying memory accesses received
from the system bus 11 that miss the stream buffers until
an ongoing fill is completed. This increase in latency
causes the requesting CPU 10 to wait even longer for
data to be returned and ties up the system bus 11 so that
it is unavailable for other system elements.
The use of these optimization features significantly

reduces the potential negative impact to the system
performance by balancing the stream buffer mainte
nance with the resources required by other system ele
ments. This results in faster completion of memory
accesses and consequently and improvement of peak
memory throughput.
The appended fill operation used in one embodiment

of the invention is initiated by a read transaction on the
bus 11 to an address that does not match the addresses
of existing prefetched data in the stream buffers 51-54.
That is, a miss in the stream buffer 15. The address of
this read is checked to see if there is an opportunity to
perform page mode read cycles. The page mode oppor
tunity is defined as having sequential addresses available
to do page mode cycles. Because the memory module
supports exchange operations a unique definition of the
address bits is used as shown in Tables 1 and 2. Without
this definition support for exchange operations and page
mode DRAM operations are mutually exclusive. Refer
ring to FIG. 10, the address from bus 11 for this read is
applied to the DRAMs via multiplexer 86, and the read
operation proceeds, accessing memory 12 using RAS
and CAS generated by address strobe generator 86a,
resulting in data being sent back to CPU in the usual
manner for a read. If page mode read locations are
available then the memory control 86b of FIG. 10 (part
of controller 45) is notified and makes provisions to
append page mode read operations to the end. That is,
before RAS is brought high (deasserted), new column
addresses will be sent to the memory via input 86c to the
multiplexer 86, and the generator 86a will apply another
CAS for each new column address. The address is in
cremented to the next location by logic 86d and pro
vided to the DRAM address mux 86 where it is avail
able when the normal read operation concludes. The
controller 86b selects the normal address or the page
mode append address by output 86e to the multiplexer.

Thus, when the normal read operation concludes, the
controller selects the appended page mode read address
and blocks the negation of the RAS strobe to the
DRAMs, thus keeping the DRAM active for accessing
any column of the addressed row without a new RAS
cycle. The CAS strobe is negated normally, but then
after the appended page mode read access has been
driven out to the DRAMs via multiplexer 86, the gener
ator 86a reasserts CAS which reads the next sequential
location which is selected by the appended page mode
address. The address is then incremented to point to the
next sequential location. This operation of providing an

5,452,418
13

address and cycling CAS is repeated until all of the
available page mode locations have been read.
The appended fill cycle operation functions to allow

for the attaching of sequential memory access to the end
of an existing memory access, thus prefetching memory
data from the next sequential location. Because this
access is appended to an existing DRAM read operation
the data from the next sequential location can be re
trieved and stored in the faster access buffer 15 before
the current transaction on the bus 11 is completed. Thus
the read latency is now a function of the bus protocol
and not the DRAM read access time, allowing the bus
11 to run at its peak bandwidth. Without using this
append operation, in order to read the sequential loca
tions the controller 14 would have to initiate individual
DRAM read operations for each location. If this were
the case the sequence to read sequential locations would
require that the DRAM operation terminate normally,
wait for the minimum precharge time between DRAM
accesses (as specified for the DRAM devices) then
initiate a new DRAM read operation. In the time
needed to perform two individual DRAM accesses, the
appended read can perform four read accesses, since the
page mode access time is much less than RAS-CAS
access time, and the precharge part of the cycle time is
not imposed for each page mode cycle.

Referring to FIG. 11, the stream buffer 15 is con
structed as a high-speed RAM, used to store data read
from the slower memory 12. A dual-port configuration
is used, having a separate write port 87 and read port 88.
The RAM is organized as sixteen locations of 140-bits
each. A write pointer control 89 in the controller 45
calculates the location within the RAM that the incom
ing data read from the memory 12 will be written to, as
discussed above, and produces a 4-bit (1-of-16) selection
on lines 90, referred to as the write pointer. The write
pointer on lines 90 is applied to a decoder in the read/-
write control 91 for the RAM to select one of the six
teen locations (four buffers 51-54 with four entries per
buffer). A read pointer control 92 in the controller 45
calculates the location within the RAM that the data
read will be read from and supplied to the CPU 10, and
produces a 4-bit (1-of-16) selection on lines 93, referred
to as the read pointer. This read pointer on lines 93 is
applied to the read/write control 91 for the RAM to
select one of the sixteen locations.

During normal operation of the stream buffer, neither
the read or write pointers on lines 90 and 93 have a fixed
relationship to the physical address sent from the CPU
10. This makes addressing the RAM buffer 15 for test
ing a difficult or impossible chore. According to a fea
ture of the invention, a test mode of operation provides
a direct-address or fixed relationship between the mem
ory read and write command addresses and the read and
write pointers, thus simplifying diagnostic testing of the
system. A mode control bit 94 is included in the control
ler 45, implemented by a flip-flop, and this mode control
is set or reset by a command written to the memory
controller 14 from the CPU 10. When this status bit 94
is in the “1” state, the system is in the direct read/write
mode (test mode) so that addresses sent from the CPU
10 to the controller 14 will directly select one of the
sixteen locations of the read buffer 15. When the bit is in
the “O'” state, direct read/write is disabled (normal
mode of operation is employed). When direct read/-
write is enabled, all memory read and write operations
are directed to the stream buffer 15 (not to the memory
12) so that all write data is written directly into the

O

15

20

25

30

35

45

55

65

14
stream buffer memory 15 and read data is always ob
tained from the stream buffer 15. Multiplexers 95 and 96
are placed between the write and read pointer controls
89 and 92 and the read/write port control 91. One set of
inputs to the multiplexers are the lines 90 and 93 (for
normal operation), while the other set of inputs receive
the address bits directly from the bus 11 (via latch 21).
The multiplexers are selected by an output line 97 from
the mode bit 94. In operation, for a test mode, the mode
bit 94 is written with a “1” by the CPU 10, placing the
buffer 15 in the direct read/write mode. All subsequent
write commands issued by the host computer CPU 10
cause the write data issued by the CPU 10 to be stored
directly into the stream buffer 15 at the location speci
fied by the four address bits taken from the address
issued by the CPU 10 (other address bits are ignored),
passed through the multiplexer 95 and applied to the
read/write control 91 of the RAM 15. All subsequent
read commands issued by CPU 10 cause the same four
address bits to be taken from the CPU 10 address on bus
11, passed through the multiplexer 96, and applied to
the control 91 from the RAM, where it is used to select
1-of-16 RAM locations. Data thus accessed in the RAM
is sent to the CPU 10 as read data.

Ideally, for greatest flexibility in use, it is desirable to
use the low-order address bits to select locations within
the stream buffer 15. However, in order to accommo
date interleaved operation of system memory modules
in memory 12 and still maintain a coherent direct ad
dressing scheme for the stream buffer memory, it is
necessary to use different bits from the system memory
address on bus 11 for different interleaving schemes. As
low-order address bits are typically used to select differ
ent memory modules while in a two-way or four-way
interleaving mode, the address bits chosen from the
system memory address on bus 11 must be shifted
“higher' one or two bit positions before being applied
to the decoding logic. By correctly choosing address
bits, the appropriate stream buffer location can be se
lected while still respecting the differing interleaving
schemes. In particular, for one-way interleaving (i.e., no
interleaving) the address bits <6:3> from the bus 11
are used to select the locations of the buffer 15 as fol
lows:

Memory. Address Bits
<6> <5> <4 <3> Stream Buffer Entry Selected

Buffer-0, Entry-O (Head)
Buffer-0, Entry
Buffer-0, Entry-2
Buffer-0, Entry-3 (Tail)
Buffer-1, Entry-0 (Head)
Buffer-i, Entry-l
Buffer-1, Entry-2
Buffer-l, Entry-3 (Tail)
Buffer-2, Entry-O (Head)
Buffer-2, Entry-1
Buffer-2, Entry-2
Buffer-2, Entry-3 (Tail)
Buffer-3, Entry-0 (Head)
Buffer-3, Entry-l
Buffer-3, Entry-2
Buffer-3, Entry-3 (Tail)

For two-way interleaving, the address bits are decoded
in the same way, except address bits <7:4) are used
from the bus 11 instead of <6:3>. In like manner, for
four-way interleaved memory modules, the address bits

5,452,418
15

used from bus 11 are <8:5>, but the decoding is other
wise the same as in the table just given.
Complete diagnostic coverage of the memory ele

ments used within the stream buffer 15 are thus ob
tained, using normal memory read and write protocols 5
provided by the CPU 10 via the memory interconnect
bus 11. Additionally, isolation of errors is greatly im
proved because testing of the stream buffer 15 can be
decoupled from functional usage of the device. Without
this direct read/write feature of the invention, the test- 10
ing of such a memory element would be more time

16
consuming, and isolation of some failure would not be
possible.
While the invention has been described with refer

ence to a specific embodiment, the description is not
meant to be construed in a limiting sense. Various modi
fications of the disclosed embodiment, as well as other
embodiments of the invention, will be apparent to per
sons skilled in the art upon reference to this description.
It is therefore contemplated that the appended claims
will cover any such modifications or embodiments
which fall within the true scope of the invention.

TABLE 1.
Addressing Matrix For Modules Using 1 MBit DRAMS

INTERLEAVE FACTOR INTERLEAVE FACTOR
WITH2 BANKS WITH 4 BANKS

LOGICAL SIGNAL 1-WAY 2-WAY 4-WAY 1-WAY 2-WAY 4-WAY

ROW BITO CAD 5 CAD 5 CAD 5 CAD 5 CAD 5 CAD 5
ROW BIT 1 CAD 6 CAD 6 CAD 6 CAD 6 CAD 6 CAD 6
ROW BIT2 CAD 7 CAD 7 CAD 7 CAD 7 CAD 7 CAD 7
ROW BIT 3 CAD 8 CAD 8 CAD 8 CAD 8 CAD 8 CAD 8
ROW BIT 4 CAD 9 CAD 9 CAD 9 CAD 9 CAD 9 CAD 9
ROW BIT 5 CAD 10 CAD 10 CAD 10 CAD 10 CAD 10 CAD 10
ROW BIT 6 CAD 11 CAD 11 CAD 11 CAD 11 CAD 11 CAD 1
ROW BIT 7 CAD 12 CAD 12 CAD 12 CAD 12 CAD 12 CAD 2
ROW BIT 8 CAD 13 CAD 13 CAD 13 CAD 13 CAD 13 CAD 3
ROW BIT 9 NA N/A NA N/A N/A NA
RW COL BITO CAD 3 CAD 22 CAD 22 CAD 3 CAD 23 CAD 23
RW COL BIT CAD 4 CAD 4 CAD 23 CAD 4 CAD 4 CAD 24
RW COL BIT2 CAD 15 CAD 15 CAD 15 CAD 15 CAD 15 CAD 15
RW COL BIT 3 CAD 18 CAD 18 CAD 18 CAD 18 CAD IS CAd 18
RW COL BET 4 CAD 19 CAD 19 CAD 19 CAD 19 CAD 19 CAD 19
RW COL BIT 5 CAD 20 CAD 20 CAD 20 CAD 20 CAD 20 CAD 20
RW COL BIT 6 CAD 21 CAD 21 CAD 21 CAD 21 CAD 2 CAD 21
RW COL BIT 7 CAD 14 CAD 14 CAD 14 CAD 14 CAD 14 CAD 14
RW COL BIT 8 CAD 17 CAD 17 CAD 17 CAD 22 CAD 22 CAD 22
RW COL BIT 9 N/A N/A NA N/A N/A N/A
RW BANK SEL BITO CAD 16 CAD 16 CAD 16 CAD 16 CAD 16 CAD 16
RW BANK SEL BIT NAA N/A NAA CAD 17 CAD 17 CAD 7
RW BOARD SEL BTO CAD 22 CAD 3 CAD 3 CAD 23 CAD 3 CAD 3
RW BOARD SEL BT 1 CAD 23 CAD 23 CAD 4 CAD 24 CAD 24 CAD 4
RW BOARD SEL BIT 2 CAD 24 CAD 24 CAD 24 CAD 25 CAD 25 CAD 25
RW BOARD SEL BIT 3 CAD 25 CAD 26 CAD 25 CAD 26 CAD 26 CAD 26
RW BOARD SEL BET 4 CAD 26 CAD 26 CAD 26 CAD 27 CAD 27 CAD 27
RW BOARD SEL BT5 CAD 27 CAD 27 CAD 27 CAD 28 CAD 28 CAD 28
RW BOARD SEL BIT 6 CAD 28 CAD 28 CAD 28 CAD 29 CAD 29 CAD 29
RW BOARD SEL BT 7 CAD 29 CAD 29 CAD 29 CAD 30 CAD 30 CAD 30
RW BOARD SEL BIT 8 CAD 30 CAD 30 CAD 30 N/A N/A N/A
EX COL BETO CAD 3 CAD 72 CAD 72 CAD 3 CAD 73 CAD 73
EX COL BET 1 CAD 4 CAD 4 CAD 73 CAD 4 CAD 4 CAD 74
EX COL BET 2 CAD 15 CAD 15 CAD 15 CAD 15 CAD 16 CAD 5
EX COL BIT 3 CAD 68 CAD 68 CAD 68 CAD 68 CAD 68 CAD 68
EX COL BET 4 CAD 69 CAD 69 CAD 69 CAD 69 CAD 69 CAD 69
EX COL BIT 5 CAD 70 CAD 70 CAD 70 CAD 70 CAD 70 CAD 70
EX COL BIT 6 CAD 71 CAD 71 CAD 71 CAD 71 CAD 71 CAD 71
EX COL BIT 7 CAD 14 CAD 14 CAD 14 CAD 14 CAD 14 CAD 14
EX COL BIT 8 CAD 67 CAD 67 CAD 67 CAD 72 CAD 72 CAD 72
EX COL BIT 9 N/A N/A NA NA N/A NA
EX BANKSEL BIT 0 CAD 66 CAD 66 CAD 66 CAD 66 CAD 66 CAD 66
EX BANK SEL BIT 1 N/A N/A NA CAD 67 CAD 67 CAD 67
EX BOARD SEL BITO CAD 72 CAD 3 CAD 3 CAD 73 CAD 3 CAD 3
EX BOARD SEL SIT 1 CAD 73 CAD 73 CAD 4 CAD 74 CAD 74 CAD 4
EX BOARD SEL BIT2 CAD 74 CAD 74 CAD 74 CAD 75 CAD 75 CAD 75
EX BOARD SEL BIT 3 CAD 75 CAD 75 CAD 75 CAD 76 CAD 76 CAD 76
EX BOARD SEL BIT 4 CAD 76 CAD 76 CAD 76 CAD 77 CAD 77 CAD 77
EX BOARD SEL BT5 CAD 77 CAD 77 CAD 77 CAD 78 CAD 78 CAD 78
EX BOARD SEL BIT 6 CAD 78 CAD 78 CAD 78 CAD 79 CAD 79 CAD 79
EX BOARD SEL BIT 7 CAD 79 CAD 79 CAD 79 CAD 80 CAD 80 CAD 80
EX BOARD SEL BIT 8 CAD 80 CAD 80 CAD 80 N/A N/A NA

TABLE 2

Addressing Matrix For Modules Using 4 MBit DRAMS
INTERLEAVE FACTOR INTERLEAVE FACTOR

WITH 2. BANKS WITH 4 BANKS
LOGICAL SIGNAL 1-WAY 2-WAY 4-WAY 1-WAY 2-WAY 4-WAY

ROW BIT 0 CAD 5 CAD 5 CAD 5 CAD 5 CAD 5 CAD 5
ROW BIT CAD 6 CAD 6 CAD 6 CAD 6 CAD 6 CAD 6
ROW BET 2. CAD 7 CAD 7 CAD 7 CAD 7 CAD 7 CAD 7

5,452,418
17 18
TABLE 2-continued r

Addressing Matrix For Modules Using 4 MBit DRAMS
INTERLEAVE FACTOR INTERLEAVE FACTOR

WITH 2 BANKS WITH 4 BANKS
LOGICAL SIGNAL 1-WAY 2-WAY 4-WAY -WAY 2-WAY 4-WAY

ROW BIT 3 CAD 8 CAD 8 CAD 8 CAD 8 CAD 8 CAD 8
ROW BIT 4 CAD 9 CAD 9 CAD 9 CAD 9 CAD 9 CAD 9
ROW BIT 5 CAD 10 CAD 10 CAD 10 CAD 10 CAD 10 CAD 10
ROW BIT 6 CAD 1 CAD 1 CAD 1 CAD 11 CAD 11 CAD 1
ROW BIT 7 CAD 12 CAD 12 CAD 12 CAD 12 CAD 12 CAD 12
ROW B 8 CAD 13 CAD 13 CAD 13 CAD 13 CAD 13 CAD 13
ROW BIT 9 CAD 14 CAD 14 CAD 14 CAD 14 CAD 14 CAD 14
RW COL BIT 0 CAD 3 CAD 24 CAD 24 CAD 3 CAD 25 CAD 25
RW COL BIT 1 CAD 4 CAD 4 CAD 25 CAD 4 CAD 4 CAD 26
RW COL BIT2 CAD 15 CAD 15 CAD 15 CAD 15 CAD 15 CAD 15
RW COL BIT 3 CAD 18 CAD 18 CAD 18 CAD IS CAD 18 CAD 18
RW COL BIT 4 CAD 19 CAD 19 CAD 19 CAD 19 CAD 19 CAD 19
RW COL BIT 5 CAD 20 CAD 20 CAD 20 CAD 20 CAD 20 CAD 20
RW COL BIT 6 CAD 21 CAD 21 CAD 21 CAD 21 CAD 21 CAD 21
RW COL BIT 7 CAD 22 CAD 22 CAD 22 CAD 22 CAD 22 CAD 22
RW COL BIT 8 CAD 17 CAD 17 CAD 17 CAD 24 CAD 24 CAD 24
RW COL BIT 9 CAD 23 CAD 23 CAD 23 CAD 23 CAD 23 CAD 23
RW BANK SEL BIT 0 CAD 16 CAD 16 CAD 16 CAD 16 CAD 16 CAD 16
RW BANK SEL BIT NA NAA NMA CAD 17 CAD 7 CAD 17
RW BOARD SEL BIT O CAD 24 CAD 3 CAD 3 CAD 25 CAD 3 CAD 3
RW BOARD SEL BIT 1 CAD 25 CAD 25 CAD 4 CAD 26 CAD 26 CAD 4
RW BOARD SEL BIT 2 CAD 26 CAD 26 CAD 26 CAD 27 CAD 27 CAD 27
RW BOARD SEL BIT 3 CAD 27 CAD 27 CAD 27 CAD 28 CAD 28 CAD 28
RW BOARD SEL BIT 4 CAD 28 CAD 28 CAD 28 CAD 29 CAD 29 CAD 29
RW BOARD SEL BITS CAD 29 CAD 29 CAD 29 CAD 30 CAD 30 CAD 30
RW BOARD SEL BIT 6 CAD 30 CAD 30 CAD 30 N/A NA N/A
RWBOARD SEL BIT 7 NA N/A N/A N/A N/A N/A
RW BOARD SEL BIT 8 N/A NA N/A NA NA N/A
EX COL BIT 0 CAD 3 CAD 74 CAD 74 CAD 3 CAD 75 CAD 75
EX COL BIT 1 CAD 4 CAD 4 CAD 75 CAD 4 CAD 4 CAD 76
EX COL BIT2 CAD 5 CAD 15 CAD 15 CAD 15 CAD 15 CAD 15
EX COL BIT 3 CAD 68 CAD 68 CAD 68 CAD 68 CAD 68 CAD 68
EX COL BIT 4 CAD 69 CAD 69 CAD 69 CAD 69. CAD 69 CAD 69
EX COL BIT 5 CAD 70 CAD 70 CAD 70 CAD 70 CAD 70 CAD 70
EX COL BIT 6 CAD 71 CAD 71 CAD 71 CAD 71 CAD 71 CAD 7
EX COL BIT 7 CAD 72 CAD 72 CAD 72 CAD 72 CAD 72 CAD 72
EX COL BIT 8 CAD 67 CAD 67 CAD 67 CAD 74 CAD 74 CAD 74
EX COL BIT 9 CAD 73 CAD 73 CAD 73 CAD 73 CAD 73 CAD 73
EX BANK SEL BIT 0 CAD 66 CAD 66 CAD 66 CAD 66 CAD 66 CAD 66
EX BANK SEL BIT NA NA N/A CAD 67 CAD 67 CAD 67
EX BOARD SEL BIT 0 CAD 74 CAD 3 CAD 3 CAD 75 CAD 3 CAD 3
EX BOARD SEL BIT 1 CAD 75 CAD 75 CAD 4 CAD 76 CAD 76 CAD 4
EX BOARD SEL BIT 2. CAD 76 CAD 76 CAD 76 CAD 77 CAD 77 CAD 77
EX BOARD SEL BIT 3 CAD 77 CAD 77 CAD 77 CAD 78 CAD 78 CAD 78
EX BOARD SEL BIT 4 CAD 78 CAD 78 CAD 78 CAD 79 CAD 79 CAD 79
EX BOARD SEL BIT 5 CAD 79 CAD 79 CAD 79 CAD 80 CAD 80 CAD 80
EX BOARD SEL BIT 6 CAD 80 CAD 80 CAD 80 N/A N/A NAA
EXBOARD SEL BIT 7 NA N/A N/A NA N/A N/A
EX BOARD SEL BIT 8 N/A N/A N/A NA N/A N/A

What is claimed is:
1. A method of operating a stream buffer coupled

between a central processor unit (CPU) and a memory,
comprising the steps of: 50

selecting between a normal operation mode and a test
operation mode and dynamically switching be
tween said normal operation mode and said test
mode in various stages of system operation;

performing the following steps during said normal 55
operation mode:
(1) upon receiving a memory write request from

said CPU, writing data received from said CPU
into said memory at a location indicated by said
write request; and 60

(2) upon receiving a memory read request from
said CPU, performing the following steps:
(A) determining whether the requested data re

sides in said stream buffer, and if so at what
location therein; 65

(B) if the requested data is determined to reside
in said stream buffer, accessing said stream
buffer at the determined location and return

ing the data contained therein to said CPU;
and

(C) if the requested data is determined not to
reside in said stream buffer, performing the
following steps:
(i) accessing said memory at an address indi

cated by said read request and returning the
data contained therein to said CPU; and

(ii) accessing said memory at an address se
quentially following the address indicated
by said read request and writing the data
contained therein to said stream buffer at an
allocated location thereof; and

performing the following steps during said test opera
tion mode:
(1) upon receiving a memory write request from

said CPU, writing data received from said CPU
into said stream buffer at a location indicated by
said write request without regard to which loca
tion of said stream buffer would be allocated if

5,452,418
19 20

said normal operation mode were presently se- determining, based on which comparison resulted in a
lected; and match, the location in said stream buffer at which

s the requested data resides.
(2) upon receiving a memory read request from 3. A method according to claim 1, further comprising

said CPU, accessing said stream buffer at an 5 the step of
address indicated by said read request and re- incrementing an allocation pointer after data is writ
turning the data contained therein to said CPU ten to said stream buffer from said memory during
without regard to either (a) whether said stream said normal operation mode, the value of said allo

cation pointer indicating which location in said
buffer would be determined to hold the re- 10 stream buffer is allocated to receive memory data
quested data or (b) the location in said stream upon a subsequent read request for which the re
buffer that would be determined to hold the quest data is determined not to reside in said stream
requested data if said normal operation mode buffer.

4. A method according to claim 1, further comprising
15 the step of:

continually determining during said normal operation
were presently selected.

2. A method according to claim 1, wherein said deter
mining step comprises the steps of: mode which location in said stream buffer has least
comparing a memory address accompanying said recently been used to satisfy a CPU read request,

read request with the memory addresses of data the determined least-recently used location being
20 taken as the location in said stream buffer that is blocks stored in said stream buffer;

determining whether any of the comparisons result in allocated to receive memory data upon a read re
etermining y p quest for which the request data is determined not
a match, such a result indicating that the requested to reside in said stream buffer.
data resides in said stream buffer; and : : x 2k

25

30

35

45

50

55

60

65

