US 20180081730A1
a9y United States

a2y Patent Application Publication o) Pub. No.: US 2018/0081730 A1

Duttagupta et al. (43) Pub. Date: Mar. 22, 2018
(54) SYSTEMS AND METHODS FOR (52) US. CL
PREDICTING PERFORMANCE OF CPC GO6F 9/5027 (2013.01); GOGF 9/45558
APPLICATIONS ON AN INTERNET OF (2013.01)
THINGS (I0T) PLATFORM
(71) Applicant: Tata Consultancy Services Limited, (57) ABSTRACT
Mumbai (IN)
(72) Inventors: Subhasri Duttagupta, Mumbai (IN); Performance prediction systems and method of an Internet
Mukund Kumar, Mumbai (IN); Manoj of Things (IoT) platform and applications includes obtaining
Karunakaran Nambiar, Mumbai (IN) input(s) comprising one of (i) user requests and (ii) sensor
observations from sensor(s); invoking Application Program-
(73) Assignee: Tata Consultancy Services Limited, ming Interface (APIs) of the platform based on input(s);
Mumbai (IN) identifying open flow (OF) and closed flow (CF) requests of
system(s) connected to the platform; identitying workload
(21) Appl. No.: 15/410,178 characteristics of the OF and CF requests to obtain segre-
gated OF and segregated CF requests, and a combination of
(22) Filed: Jan. 19, 2017 open and closed flow requests; executing performance tests
with the APIs based on the workload characteristics; mea-
(30) Foreign Application Priority Data suring resource utilization of the system(s) and computing
service demands of resource(s) from measured utilization,
Sep. 20, 2016 (IN) cceevveriirecrccccenen 201621032118 and user requests processed by the platform per unit time;

executing the performance tests with the invoked APIs based

Publication Classification on volume of workload characteristics pertaining to the

(51) Int. CL application(s); and predicting, using queuing network, per-
GO6F 9/50 (2006.01) formance of the application(s) for the volume of workload
GO6F 9/455 (2006.01) characteristics.

: ;f/-‘f\\ Sy
_{} : » ’ Dovelopers
Davice
Management e I Shaad
Message Routing
. & Event Processing H
{ : RESTHI

*,
QPC-UA, Modbus, Contirua s

Things with Gateway Devices Cloud Services Apps, Clients & Portals

Embedded Sansors

Moblie Devices

Patent Application Publication = Mar. 22,2018 Sheet 1 of 9 US 2018/0081730 A1

SYSTEM
100

MEMORY
10

PROCESSOR(E)
104

INTERFACE(S)
108

Patent Application Publication = Mar. 22,2018 Sheet 2 of 9 US 2018/0081730 A1

Obtaining, by the ioT platform, ohe‘ of (i) user requests and (i}

: s 20
sensor observations from one or more sensors 2

,, .3 |
identifying and invoking Application Programming interface
(APis) of the loT platform based on one of {i) user requests and .- 204
{il} sensor observations

!

ldentifying, based on the invoked APls, open flow requests and
closed flow requests of system(s) connected to the loT platform

identifying workload characteristics of the open flow requests
and the closed flow requests to oblain segregated open flow
requests and segregated closed flow requests, and a

combination of open and closed flow requesis
¥
Executing performance tests with the invoked APls based on
the workioad characteristics

y

Concurrently measuring utilization of the resource(s) of the
system(s) and computing service demands of the resource(s)

Executing the performance tests with the invoked APIls based
on a volume of workioad characteristics peraining toone or . 214
more applications exscuted on the joT platform

|
,) ¥ ;
Predicting, using a gueuing network, performance of the one or
more applications for the volume of workload characteristics P 216
upan the one or more performance tests being executed

e 208

e 208

e 210

T 21 2 '

FIG. 2

US 2018/0081730 A1

Mar. 22, 2018 Sheet 3 of 9

Patent Application Publication

SIELIO 7 SusD ‘sddy

HESRSE F

fd¥

S e e

siodoianag

(f

uswsbeuepy Bl 0sUSS

€ "Old

SOMAIBG DO

83?(

4

Buissenold weng gy
i

£

wausbeuepy
SoIaCl

sanina(] Armaien

BRURUOD "SNURON YIrDd0
HOW apn o) 1Sy

SENASET BHOOW

SIOSUBES POPRYGUI
it sBuy L

US 2018/0081730 A1

Mar. 22, 2018 Sheet 4 of 9

Patent Application Publication

ot Rt

1 SIOAIDT BGIDER UG P,
1085200400 IUSOU .

JBIERYD BSRGH

o

'_.;:,_f')

%

mm,%%xm_ B
e sffvssa

F

R A SRR A SRR]

SyedL ¥py Lt Sear
UONBRAIBSGO Tﬂtm | Xusoyy

‘ L oan Buudg M

R . i wm:maa puB SN
o ./J

EA

ayoen
PSLOSI
15R0ZeH

..}.Hyex.w...(. sz .. b . ",
&7 segy .ﬂ BUAISG UORBIGUDE)
A53Y x..\u.ﬁ : JF JVSdiy

K3
ol
\v»
b8
5
oy

P

P R——

e e

US 2018/0081730 A1

Mar. 22, 2018 Sheet 5 of 9

Patent Application Publication

§'Oid

JBRIES DSBYM IO

.\s\ 4.»{.‘.,.,...4.,,..'.....‘\}.\,..,,.; i \\, ...1..,4../! i
7 ; ¢ . ; »
fi,.v\% /4.15.\\ ’ el

PO 505

; : -

TR SN
spey | _ ABMBIBD 1Y | giosueg

e

P 3 » ol
@ & N i o

Patent Application Publication = Mar. 22,2018 Sheet 6 of 9 US 2018/0081730 A1

3

Peffofmancs of Postob

5
[y
fonn

orsToNE I E
HUE b

B AT
84&@ o7
~E 25.}{'5""“
b o
ﬁ St g
Fegaret? 2
= 300 g
pec 4 ;
B 107
BIED | &
-)
8 1006
b A =
= 4

o
104

i
2
i)

’%i’ii}’ 200 A00 40D BO0 B00 700 BOGo9nh
Mo of Threads

{2y PosiObsorvation

FIG. 8A

Paronmance of GetObservalion

P
d
&

=]
s}
o]

=
L]

Throughput {binisec)
. = .
fakie]
Response time (oo

g' N 3 : ; : 5‘;

00 450 2000 250 300 350 400 458 500 550
blo of Threads

thy Cetlibeeration

FiG. 8B

Patent Application Publication = Mar. 22,2018 Sheet 7 of 9 US 2018/0081730 A1

Peorformance of PosiObs

30 : f; S 1200
Pfedmieci Mmug?m% s
250 Actual Response time -+ 100
= Bty e @
g, p _E
£ 200 800 g
5 :
60 e HOG
o &
iz Z R 3
§‘s§}@ o 400 2
’ i o B
G E 00
5 o wh
f . okl
}é* i -*%‘5 R
g : O
g 160 200 300 404 500 8O0
Mo of Threads
FiG. 7
Performance of PostObs on AWS
Tomcat Vs ¥ 4 14
@
1 &
m s
"12‘*3 i)
> 0.8 &
% }nﬂ-
g [
22 06 &
(o]
dn
04 &
1 o
0.2
0 o 0

542 1024 1280
No of Users

FiG. 8

Patent Application Publication = Mar. 22,2018 Sheet 8 of 9 US 2018/0081730 A1

Parformance of Mixed AP

250 - . ey 1600
Eehart S S
Predicted Throughput -~ -+ L7 4 1400
00 Actual Response ime -~ .
e BB B B Ba S 1008
% MV
@ 1 %g
2150 & Y g
= | 800 =
100 800 §
fel i 5 £,
& o 400 8
B en & - TR
Rk 'f";. v M,.;. . ,
& 4 200
{} ; et o ; {}

0 160 20 :?;i}{‘}‘ 406 50 G000 700 8060
Rovof Threads

Fiz. 8

ES Dt
e

P

ES Masgter

FiG. 10

Patent Application Publication = Mar. 22,2018 Sheet 9 of 9 US 2018/0081730 A1

PDF of Inter-arrival time

05 LR ¥ ¥ 3 ¥ K i ._ ¥ (3 ey
04 ¢
& 0.3
=
T
8
5 0.2
0.1
0 . A $ 32 AN vy
10 20 30 40 50 60 70 80 90 100 110 120 130
Inter-arrival Time (in ms)
FIG. 11
Performance of Dashboard Qusenies
%{3 : ¥ P g ¥ ¥ ::'6:?
Actua!l Throughput b
70 b Pradictad mﬁ aﬂghp#ﬁ R :
Actial Response time FAD
T80k Fradicied Fcif;v,;;f:m“ Ef e e S E I %}
£ &
£ - ~ s
% 59 aUE &
540 + E
3 g
T) T
3 N EBERREERRERE {'}

a0 35 400 45
Mo of Users

FiG. 12

US 2018/0081730 Al

SYSTEMS AND METHODS FOR
PREDICTING PERFORMANCE OF
APPLICATIONS ON AN INTERNET OF
THINGS (I0T) PLATFORM

PRIORITY CLAIM

[0001] This U.S. patent application claims priority under
35 U.S.C. § 119 to: India Application No. 201621032118,
filed on Sep. 20, 2016. The entire contents of the aforemen-
tioned application are incorporated herein by reference.

TECHNICAL FIELD

[0002] This disclosure relates generally to performance
prediction systems, and more particularly to systems and
methods for predicting performance of applications on an
internet of things (IoT) platform.

BACKGROUND

[0003] Internet of things (IoT) brings the next wave in the
era of computing where many of objects that surround
people are connected on a network in some form or the other.
In this new paradigm of computing, an loT platform plays an
important role since it offers services that are essential for
building IoT applications. There are multiple commercial
IoT platforms and among them four big players are IBM
Watson loT platform, Amazon Web Services loT platform,
Cisco’s IoT cloud connect, Microsoft Azure IoT platform,
and a number of popular open source IoT platforms such as
Kaa—unobscured cloud platform for IoT, DeviceHive, the
Physical Web powered by Google and so on. Many of these
IoT platforms when hosted on clouds enable us to monitor,
manage and control remote smart devices secamlessly as
though they are connected to local server itself. IoT appli-
cations along with IoT platforms have a huge potential in
redefining the way people live and work. However, many
practical issues need to be addressed before they actually
affect important aspects of our life. Performance Assurance
is one such important requirement for wide acceptance of
these applications.

[0004] Traditional performance modeling has focused on
request response applications dealing with fixed size data
sets. The new breed of IoT applications have additional
elements such as smart devices along with sensors that lead
to growing and dynamic data sets. While applying conven-
tional performance modeling and analysis techniques in [oT
applications, one has to ensure that the model prediction is
able to address larger volume of data sets. A typical three tier
web application consists of web-tier, business tier and
database tier. However, in an IoT system, along with the
three standard tiers, the smart things also constitute another
important tier. Another important feature of IoT systems is
the presence of a large number of technologies operating
together—for example, a single device gateway tier in loT
application may use multiple software components such as
high performance load balancer, key-value based NoSQL
database for managing events and logs and Elasticsearch for
fast storage and retrieval of information and so on. This adds
to the complexity in building performance models for IoT
application.

[0005] There are a number of IoT platforms that have
come up in the recent past. In addition to the ones mentioned
above. For example, Xively provides essential remote ser-
vices for data pulled from any public feed. Thingspeak is an

Mar. 22, 2018

open source loT platform that provides APIs to store and
retrieve data from various devices. But none of these plat-
forms report any performance analysis data. Depending on
the area of loT applications such as transportation, health-
care, industrial automation and emergency response, the
issue of performance, reliability and availability can play a
very important role, and performance of an IoT system
depends on performance of individual components as well
as technologies underneath which still remain unresolved.

SUMMARY

[0006] Embodiments of the present disclosure present
technological improvements as solutions to one or more of
the above-mentioned technical problems recognized by the
inventors in conventional systems. For example, in one
aspect, a method for predicting performance of one or more
applications being executed on an Internet of Things (IoT)
platform is provided. The method comprises obtaining, by
the IoT platform, at least one of (i) one or more user requests
and (ii) one or more sensor observations from one or more
sensors; identifying and invoking one or more Application
Programming Interface (APIs) of the loT platform based on
the at least one of (i) one or more user requests and (ii) one
or more sensor observations from the one or more sensors;
identifying, based on the one or more invoked APIs, one or
more open flow requests and one or more closed flow
requests of one or more systems connected to the IoT
platform; identifying one or more workload characteristics
of the one or more open flow requests and the one or more
closed flow requests to obtain one or more segregated open
flow requests and one or more segregated closed flow
requests, and a combination of open and closed flow
requests; executing one or more performance tests with the
one or more invoked APIs based on the one or more
workload characteristics; concurrently measuring utilization
of one or more resources of the one or more systems and
computing one or more service demands of each of the one
or more resources, wherein the one or more service demands
are computed from the measured utilization of the one or
more resources, and number of user requests processed by
the IoT platform per unit time; executing the one or more
performance tests with the one or more invoked APIs based
on a volume of workload characteristics pertaining to the
one or more applications; and predicting, using a queuing
network, performance of the one or more applications for the
volume of workload characteristics.

[0007] In an embodiment, the step of executing the one or
more performance tests with the one or more invoked APIs
comprises: varying one or more input parameters of the one
or more invoked APIs; and determining variation in the one
or more service demands based on the one or more varied
input parameters. In an embodiment, the variation in the one
or more service demands is indicative of the performance of
the one or more applications for the volume of workload
characteristics. In an embodiment, the variation in the one or
more service demands is determined based on at least one of
(1) number of sensor observations and (ii) number of user
requests obtained by the IoT platform.

[0008] The method may further comprise generating a log
comprises details pertaining to the one or more sensor
observations being obtained by the IoT platform from the
one or more sensors, wherein the details comprises time-
stamp values of arrivals of each of the one or more sensor
observations; obtaining, based on the time-stamp values, one

US 2018/0081730 Al

or more samples for inter-arrival time of sensor observations
over a pre-defined duration; segregating the one or more
samples into one or more time intervals; and deriving a
plurality of inter-arrival distributions of the one or more
sensor observations upon the one or more samples being
segregated into the one or more time intervals.

[0009] In another aspect, a system is provided. The system
comprising: one or more storage devices (memory) storing
instructions; one or more communication interfaces; and one
or more hardware processors coupled to the memory using
the one or more communication interfaces, wherein the one
or more hardware processors are configured by the instruc-
tions to execute an IoT platform that: obtains at least one of
(1) one or more user requests and (ii) one or more sensor
observations from one or more sensors. In an embodiment,
the one or more hardware processors are further configured
to: identify and invoke one or more Application Program-
ming Interface (APIs) of the IoT platform based on the at
least one of (i) one or more user requests and (ii) one or more
sensor observations from the one or more sensors, identify,
based on the one or more invoked APIs, one or more open
flow requests and one or more closed flow requests of one
or more systems connected to the IoT platform, identify one
or more workload characteristics of the one or more open
flow requests and the one or more closed flow requests to
obtain one or more segregated open flow requests and one or
more segregated closed flow requests, and a combination of
open and closed flow requests, execute one or more perfor-
mance tests with the one or more invoked APIs based on the
one or more workload characteristics, concurrently measure
utilization of one or more resources of the one or more
systems and computing one or more service demands of
each of the one or more resources, wherein the one or more
service demands are computed from the measured utilization
of the one or more resources, and number of user requests
processed by the loT platform per unit time. The one or more
hardware processors are further configured by the instruc-
tions to execute the one or more performance tests with the
one or more invoked APIs based on a volume of workload
characteristics pertaining to one or more applications being
executed on the IoT platform, and predict, using a queuing
network, performance of the one or more applications for the
volume of workload characteristics.

[0010] In an embodiment, one or more performance tests
are executed with the one or more invoked APIs by: varying
one or more input parameters of the one or more invoked
APIs; and determining variation in the one or more service
demands based on the one or more varied input parameters.
[0011] In an embodiment, the variation in the one or more
service demands is indicative of the performance of the one
or more applications for the volume of workload character-
istics. In an embodiment, the variation in the one or more
service demands is determined based on at least one of (i)
number of sensor observations and (ii) number of user
requests obtained by the IoT platform.

[0012] In an embodiment, the one or more hardware
processors are further configured by the instructions to:
generate a log file comprises details pertaining to the one or
more sensor observations being obtained by the IoT plat-
form from the one or more sensors, wherein the details
comprises time-stamp values of arrivals of each of the one
or more sensor observations, obtain, based on the time-
stamp values, one or more samples for inter-arrival time of
sensor observations over a pre-defined duration, segregate

Mar. 22, 2018

the one or more samples into one or more time intervals, and
derive one or more inter-arrival distributions of the one or
more sensor observations upon the one or more samples
being segregated into the one or more time intervals.

[0013] In yet another aspect, one or more non-transitory
machine readable information storage mediums comprising
one or more instructions is provided. The one or more
instructions which when executed by one or more hardware
processors causes obtaining, by the IoT platform, at least one
of (i) one or more user requests and (ii) one or more sensor
observations from one or more sensors; identifying and
invoking one or more Application Programming Interface
(APIs) of the loT platform based on the at least one of (i) one
or more user requests and (ii) one or more sensor observa-
tions from the one or more sensors; identifying, based on the
one or more invoked APIs, one or more open flow requests
and one or more closed flow requests of one or more systems
connected to the IoT platform; identifying one or more
workload characteristics of the one or more open flow
requests and the one or more closed flow requests to obtain
one or more segregated open flow requests and one or more
segregated closed flow requests, and a combination of open
and closed flow requests; executing one or more perfor-
mance tests with the one or more invoked APIs based on the
one or more workload characteristics; concurrently measur-
ing utilization of one or more resources of the one or more
systems and computing one or more service demands of
each of the one or more resources, wherein the one or more
service demands are computed from the measured utilization
of the one or more resources, and number of user requests
processed by the loT platform per unit time; executing the
one or more performance tests with the one or more invoked
APIs based on a volume of workload characteristics per-
taining to the one or more applications; and predicting, using
a queuing network, performance of the one or more appli-
cations for the volume of workload characteristics.

[0014] In an embodiment, the step of executing the one or
more performance tests with the one or more invoked APIs
comprises: varying one or more input parameters of the one
or more invoked APIs; and determining variation in the one
or more service demands based on the one or more varied
input parameters. In an embodiment, the variation in the one
or more service demands is indicative of the performance of
the one or more applications for the volume of workload
characteristics. In an embodiment, the variation in the one or
more service demands is determined based on at least one of
(1) number of sensor observations and (ii) number of user
requests obtained by the IoT platform.

[0015] The instructions which when executed by the one
or more hardware processors may further cause generating
a log comprises details pertaining to the one or more sensor
observations being obtained by the IoT platform from the
one or more sensors, wherein the details comprises time-
stamp values of arrivals of each of the one or more sensor
observations; obtaining, based on the time-stamp values, one
or more samples for inter-arrival time of sensor observations
over a pre-defined duration; segregating the one or more
samples into one or more time intervals; and deriving a
plurality of inter-arrival distributions of the one or more
sensor observations upon the one or more samples being
segregated into the one or more time intervals.

US 2018/0081730 Al

[0016] It is to be understood that both the foregoing
general description and the following detailed description
are exemplary and explanatory only and are not restrictive of
the invention, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] The accompanying drawings, which are incorpo-
rated in and constitute a part of this disclosure, illustrate
exemplary embodiments and, together with the description,
serve to explain the disclosed principles:

[0018] FIG. 1 illustrates an exemplary block diagram of a
system for predicting performance of one or more applica-
tions executed on an internet of things (IoT) platform in
accordance with an embodiment of the present disclosure.

[0019] FIG. 2 illustrates an exemplary flow diagram of a
method for predicting performance of one or more applica-
tions executed on the IoT platform in accordance with an
embodiment of the present disclosure.

[0020] FIG. 3 is an exemplary overview of an IoT plat-
form in according to an embodiment of the present disclo-
sure.

[0021] FIG. 4 illustrates an exemplary Sensor Observation
Service (SOS) architecture according to an embodiment of
the present disclosure.

[0022] FIG. 5 illustrates an exemplary model for Sensor
Observation Services (SOS) and Message Routing compo-
nent according to an embodiment of the present disclosure.
[0023] FIGS. 6A-6B are graphical representations illus-
trating performances of one or more Application Program-
ming Interfaces (APIs) on Eka cluster according to an
embodiment of the present disclosure.

[0024] FIG. 7 is a graphical representation illustrating
performance of an API on Amazon Web Services (AWS)
server according to an embodiment of the present disclosure.
[0025] FIG. 8 is a graphical representation illustrating
number of virtual machines required for an API according to
an embodiment of the present disclosure.

[0026] FIG. 9 is a graphical representation illustrating
results of performance testing and the corresponding pre-
diction by the system of FIG. 1 according to an embodiment
of the present disclosure.

[0027] FIG. 10 illustrates an exemplary architectural view
of an additional backend layer used for monitoring energy
usage according to an embodiment of the present disclosure.
[0028] FIG. 11 is a graphical representation illustrating
sample distribution of inter-arrival of sensor observations in
an Energy Monitoring application being executed on an loT
platform according to an example embodiment of the pres-
ent disclosure.

[0029] FIG. 12 is a graphical representation illustrating
prediction of Dashboard Queries for higher number of users
according to an embodiment of the present disclosure.

DETAILED DESCRIPTION

[0030] Exemplary embodiments are described with refer-
ence to the accompanying drawings. In the figures, the
left-most digit(s) of a reference number identifies the figure
in which the reference number first appears. Wherever
convenient, the same reference numbers are used throughout
the drawings to refer to the same or like parts. While
examples and features of disclosed principles are described
herein, modifications, adaptations, and other implementa-
tions are possible without departing from the spirit and

Mar. 22, 2018

scope of the disclosed embodiments. It is intended that the
following detailed description be considered as exemplary
only, with the true scope and spirit being indicated by the
following claims.

[0031] InIT organization, there is a requirement to ensure
that applications developed on their own IoT platform can
handle a large number of users without affecting the
response time. The applications have multiple online trans-
actions that analyze the input data from a number of sources.
The application user base is likely to grow by a large extent
in the near future. Further, the volume of input data being
injected into the application backend is also likely to grow
significantly. Thus, an IT organization or an entity needs to
ensure that the infrastructure for the application can handle
future usages as well. An loT platform is typically hosted on
a cloud environment where each component of the platform
is using one or more virtual machine (VMs). In order to meet
certain performance service level agreements (SLA) of the
IoT application, the following important questions need to
be addressed. For example, which component of an IoT
platform becomes a bottleneck when the platform is han-
dling the peak data rate from a certain number of sensors?
Whether there would be a violation of response time SLA for
a certain growth in the number of users accessing the loT
services? How many VMs are required for a specific com-
ponent of an IoT platform in order to ensure SLA for a
certain number of users? Whether the platform can support
multiple APIs simultaneously without affecting the perfor-
mance?; and how does the platform perform in case of big
data store as opposed to standard RDBMS layer as the
backend?

[0032] Further, for the specific sample loT application one
deals with, they conduct only a limited number of perfor-
mance tests due to limited access to deployment platform. It
is noticed that two fundamental questions that every loT
platform provider would like to address are: (1) whether the
platform is ready for connecting to a certain number of
devices, and (2) whether the platform can handle growing
number of users requests. Using simple Queuing Network
modeling approach based on a few performance tests, the
embodiments of the present disclosure provide systems and
methods that have attempted to address both of these con-
cerns as well as addressed to the above mentioned issues.
Though there have been diversified areas of research in IoT,
very few work deal with performance modeling of IoT
applications. The embodiments of the present disclosure
provides systems and methods to identify important hurdles
in modeling practical IoT applications using standard mod-
eling techniques and propose their solutions.

[0033] Referring now to the drawings, and more particu-
larly to FIG. 1 through 12, where similar reference charac-
ters denote corresponding features consistently throughout
the figures, there are shown preferred embodiments and
these embodiments are described in the context of the
following exemplary system and/or method.

[0034] FIG. 1 illustrates an exemplary block diagram of a
system 100 for predicting performance of one or more
applications executed on an internet of things (IoT) platform
in accordance with an embodiment of the present disclosure.
In an embodiment, the system 100 includes one or more
processors 104, communication interface device(s) or input/
output (I/0) interface(s) 106, and one or more data storage
devices or memory 102 operatively coupled to the one or
more processors 104. The one or more processors 104 that

US 2018/0081730 Al

are hardware processors can be implemented as one or more
microprocessors, microcomputers, microcontrollers, digital
signal processors, central processing units, state machines,
logic circuitries, and/or any devices that manipulate signals
based on operational instructions. Among other capabilities,
the processor(s) is configured to fetch and execute com-
puter-readable instructions stored in the memory. In an
embodiment, the system 100 can be implemented in a
variety of computing systems, such as laptop computers,
notebooks, hand-held devices, workstations, mainframe
computers, servers, a network cloud and the like.

[0035] The I/O interface device(s) 106 can include a
variety of software and hardware interfaces, for example, a
web interface, a graphical user interface, and the like and can
facilitate multiple communications within a wide variety of
networks N/W and protocol types, including wired net-
works, for example, LAN, cable, etc., and wireless net-
works, such as WLAN, cellular, or satellite. In an embodi-
ment, the I/O interface device(s) can include one or more
ports for connecting a number of devices to one another or
to another server.

[0036] The memory 102 may include any computer-read-
able medium known in the art including, for example,
volatile memory, such as static random access memory
(SRAM) and dynamic random access memory (DRAM),
and/or non-volatile memory, such as read only memory
(ROM), erasable programmable ROM, flash memories, hard
disks, optical disks, and magnetic tapes. In an embodiment,
one or more modules (not shown) of the system 100 can be
stored in the memory 102.

[0037] FIG. 2, with reference to FIG. 1, illustrates an
exemplary flow diagram of a method for predicting perfor-
mance of one or more applications executed on the IoT
platform in accordance with an embodiment of the present
disclosure. In an embodiment, the system 100 comprises one
or more data storage devices or the memory 102 operatively
coupled to the one or more hardware processors 104 and is
configured to store instructions for execution of steps of the
method by the one or more processors 104. The steps of the
method of the present disclosure will now be explained with
reference to the components of the system 100 as depicted
in FIG. 1, and the flow diagram. In an embodiment of the
present disclosure, at step 202, the one or more processors
104 (or the IoT platform) obtain at least one of (i) one or
more user requests and (ii) one or more sensor observations
from one or more sensors. In an embodiment of the present
disclosure, the system 100 may receive input comprising the
one or more user requests only, or the one or more sensor
observations only, or combination of both user request(s)
and sensor observation(s). In an embodiment of the present
disclosure, at step 204, the one or more processors 104
identify and invoke one or more Application Programming
Interface (APIs) of the IoT platform based on the input
comprising at least one of (i) one or more user requests and
(ii) one or more sensor observations from the one or more
sensors.

[0038] In an embodiment of the present disclosure, at step
206, the one or more processors identify, based on the one
or more invoked APIs, one or more open flow requests and
one or more closed flow requests of one or more systems
connected to the IoT platform. In an embodiment of the
present disclosure, open flow requests (also referred herein
as “Open Queuing Network) refers to where external arriv-
als and departures take place. In an embodiment of the

Mar. 22, 2018

present disclosure, closed flow requests (also referred herein
as “Closed Queuing Network™) refers to where no external
arrival and departure takes place and same number of
requests loop through the set of queues. In an embodiment
of the present disclosure, at step 208, the one or more
processors 204 identify one or more workload characteris-
tics of the one or more open flow requests and the one or
more closed flow requests to obtain one or more segregated
open flow requests and one or more segregated closed flow
requests, and a combination of open and closed flow
requests. In an embodiment of the present disclosure, at step
210, the one or more processors 204 execute one or more
performance tests with the one or more invoked APIs based
on the one or more workload characteristics.

[0039] In an embodiment of the present disclosure, at step
212, the one or more processors 104 concurrently measure
utilization of one or more resources of the one or more
systems and compute one or more service demands of each
of the one or more resources. In an embodiment of the
present disclosure, the one or more service demands are
computed from (i) the measured utilization of the one or
more resources, and/or (ii) number of user requests pro-
cessed by the IoT platform per unit time.

[0040] In an embodiment of the present disclosure, at step
214, the one or more processors 204 execute the one or more
performance tests with the one or more invoked APIs based
on a volume of workload characteristics pertaining to the
one or more applications executed on the IoT platform. In an
embodiment of the present disclosure, the one or more
performance tests are executed with the one or more invoked
APIs by varying one or more input parameters of the one or
more invoked APIs, and variation in the one or more service
demands is determined based on the one or more varied
input parameters. In another embodiment of the present
disclosure, the variation in the one or more service demands
is determined based on at least one of (i) number of sensor
observations and (ii) number of user requests obtained by
the IoT platform. In an embodiment of the present disclo-
sure, at the step 216, the one or more processors 204 predict,
using a queuing network, performance of the one or more
applications for the volume of workload characteristics. In
an embodiment of the present disclosure, “Queuing Net-
work” refers to a model in which one or more jobs from one
queue arrive at another queue.

[0041] In an embodiment, the method when executed by
the IoT platform, further comprises generating a log file
comprises details pertaining to the one or more sensor
observations being obtained by the IoT platform from the
one or more sensors, wherein the details comprises time-
stamp values of arrivals of each of the one or more sensor
observations. The loT platform is further configured to
obtain, based on the time-stamp values, one or more samples
for inter-arrival time of sensor observations over a pre-
defined duration, segregate the one or more samples into one
or more time intervals, and derive one or more inter-arrival
distributions of the one or more sensor observations upon
the one or more samples being segregated into the one or
more time intervals.

[0042] FIG. 3, with reference to FIGS. 1-2, is an exem-
plary overview of an IoT platform in according to an
embodiment of the present disclosure. As can be depicted
from FIG. 3, the IoT platform provides support for (i)
connecting to different devices (e.g., but are not limited to
smart devices), (i) managing application development and

US 2018/0081730 Al

deployment, (iii) sensor data (or sensor observations) acqui-
sition and management, etc. through a number of APIs. The
APIs supported by the IoT platform address problems which
are illustrated by way of examples:

[0043] 1)Manage Interoperability: It provides standard-
ized semantics, enable access and crowd sourced appli-
cation development.

[0044] 2) Manage Diversity: It enables different sensor
types with varied functional capabilities supplied by
different vendors to communicate with the IoT plat-
form.

[0045] 3) Manage Scale: It enables monitoring and
managing a large number of devices and sensors
remotely.

[0046] FIG. 3 illustrates one or more core components of
the IoT platform proposed and implemented by the system
100 of the present disclosure. One or more physical systems
for example, but not limited to, smart meters in homes,
sensors deployed in railway tracks, energy meters in office
building, etc. are shown that act as the source of information.
These devices communicate through device agents to plat-
form services running on a public/private cloud. Device
agent manages integration of devices which communicate
through specific protocol adaptors and application proxies.
Following are illustrative services offered by the IoT plat-
form of the present disclosure and these services should not
be construed as limiting the scope of the embodiments
herein:

[0047] 1) Device Integration and Management services
offering.

[0048] 2) Protocol adaptors and application proxies.

[0049] 3) Sensor Observation Services along with Mes-

saging Routing Services.
[0050] 4) Sensor Stream Processing and Visualization,
Batch Analytics and Data Explorer Services.

[0051] FIG. 3 further shows that at one side of the IoT
platform, smart devices access the IoT platform through a
set of APIs (e.g., representational state transfer (REST)
APIs). At the other end, the IoT platform can help in quick
development and deployment of IoT applications. This is
due to availability of a set of common services offered by the
IoT platform that are essential for one or more IoT appli-
cations executed on the IoT platform.
[0052] Each of the services offered by the IoT platform
can work independent of other services. However, in the
present disclosure, the system 100 focuses on Sensor Obser-
vation Services (SOS) that are responsible for storing and
managing sensor observations and a message routing service
that acts as a rule processing engine which applies various
rules on sensor observations and push these observations to
different subscribers based on the rules they satisfy.
[0053] FIG. 4, with reference to FIGS. 1-3, illustrates an
exemplary Sensor Observation Service SOS architecture
according to an embodiment of the present disclosure. As
can be depicted in the SOS architecture, Tomcat NIO server
processes actual logic corresponding to the observation
APIs. It has a Derby in-memory database for handling user
authentication. Sensor observations are inserted into a Hbase
datastore (which can also be replaced by a relational data-
base such as PostgreSQL).
[0054] The embodiments of the present disclosure analyze
the performance of the IoT platform by predicting perfor-
mances of one or more loT applications executed on the [oT
platform based on (i) number of sensors injecting observa-

Mar. 22, 2018

tions to an IoT system which increases with time. This may
result an increase in both data arrival rate and volume of
arrivals, and (ii) number of (online) users requesting certain
information from IoT system increases significantly over
time.

[0055] The system 100 measures performance metrics for
example, throughput (the number of transactions per second
or minute) and response time. Response time is measured in
terms of the delay between a request by a client for certain
information regarding sensor observations to actually
receiving the response from a back-end server. The other
metric that is captured from a system administrator perspec-
tive is system resource utilization at important servers. All
these metrics are compared as they are predicted by a
simulator model and the actual values measured during
either performance testing or obtained through log file
analysis from the production environment.

[0056] Deployment Platform:

[0057] The embodiments of the present disclosure imple-
mented separate environments for testing modules of the [oT
platform. The first environment was built using dedicated
servers on Eka cluster, wherein each of the servers were 8
cores, Intel Quadcore Xeon processor, and each of the SOS
components such as Tomcat, Hazelcast, HBase Masternode,
Zookeeper along with each of the Region Servers were
deployed on individual server. In spite of having 8 cores
servers for Tomcat, expected scalability of Sensor Observa-
tion Services module were not achieved since the servers
belong to earlier generations and have mostly old configu-
rations. However, this deployment offers better scalability as
compared to 2 cores virtual machine (VM) instance on AWS
due to larger number of cores. On Amazon, each of the VMs
used had 2 cores and 4 GB RAM. In this deployment,
PostgreSQL was used as the data store instead of HBase and
is having separate VM than the Tomcat server such that
utilization of application server and database server were
separately traceable. In most of the situations, it was noticed
that CPU at the Tomcat layer is the bottleneck. Hence, in the
analysis, the embodiments of the present disclosure focused
on CPU service demand.

[0058] In order to predict performance of the IoT platform,
primarily in modeling the performance in terms of requests
and/or responses, the embodiments of the present disclosure
implemented Java Modeling Tools to model performance of
the IoT platform and one or more applications executed on
the IoT platform. FIG. 5, with reference to FIGS. 14,
illustrates an exemplary model for Sensor Observation Ser-
vices (SOS) and Message Routing component according to
an embodiment of the present disclosure. More specifically,
FIG. 5 illustrates Queuing Network Model for SOS accord-
ing to an embodiment of the present disclosure. FIG. 5
depicts separate queue elements corresponding to Tomcat,
Hazelcast, Hbase and Message Routing service. Message
Routing service includes a RabbitMQ node. There are
different types of workload for SOS module but the main
two requests are PostObservation API and GetObservation
API. Both of these requests are modeled as closed class with
API client representing the think time between the requests.
All API requests pass through API gateway that controls the
flow of requests. Currently it is modeled as delay element to
represent very short processing time at the gateway. Each
PostObservation API request after it gets processed by
Sensor Observation service components, such as Tomcat,
Hazelcast and Hbase also goes to Message Routing node.

US 2018/0081730 Al

The flow of requests from SOS to message routing node
cannot be modeled as standard fork-join element since
PostObservation API request from API client returns to the
client after getting processed by SOS and does not wait for
message routing to complete. In contrast, the requests from
message routing module need to reach the subscriber which
is the sink node. The model requires that every Open request
flow must have a sink node. Thus, the workload for Pos-
tObservation API belongs to both Open and Closed type of
requests which falls under a category of combination of
open and closed flow requests.

[0059] In conventional methods and systems, it is noticed
that workloads which are partially open and based on certain
probability, the requests either follow open or closed loop.
However, it is not seen that open requests that get forked
after getting processed in a closed network. The embodi-
ments of the present disclosure address the challenge of
modeling PostObservation API as both open and closed
class by introducing additional OpenPostObservation API
request which has zero service demand at all SOS nodes but
has positive service demand at message routing node. The
arrival rate of OpenPostObservation API is matched with the
throughput for PostObservation API which is a closed
request.

[0060] For better understanding of the above description,
an expression for Closed Queuing Network that consists of
all the nodes in the lower part of FIG. 5 is illustrated.
Representing think time of Post requests as Z,,, and
response time as R, .., for Tomcat node, R,,,_., for Hazel-
cast node and R,,, .. for Hbase node and overall throughput
of the Closed system as X,,,,. If N is the number of threads
requesting PostObservation API, then based on Little’s Law,
the relationship between throughput and response time can
be expressed as illustrated by way of example below:

‘ N 0
post = Zpoxr + Z Ri
ies

where the set S includes Tomcat, Hazelcast, Hbase and other
subsystems. Response time at a node is calculated based on
its Queue length and service demand of PostObservation
API at that node. Using the initial test results, the service
demands are obtained, and through JMT tool, all these
metrics for the closed queuing network are obtained. The
throughput value obtained from the above network is used as
the rate of arrival for requests belonging to OpenPostOb-
servation API class in the Open Queuing network. The Open
network consists of sensors, AP] gateway, RabbitMQ and
alerts. Assuming that the Queuing network is of type M/G/1
since the arrival of API requests can be taken as Poisson
process and service time is taken as general. It is observed
that the utilization for nodes in Open Queuing network
matches the prediction in JMT. Henceforth, it is assumed
that the output of SOS module follows a Poisson distribution
as it is fed to Open Queuing network comprising of message
routing and RabbitMQ node.

[0061] where the set S includes Tomcat, Hazelcast, Hbase
and other subsystems. Response time at a node is calculated
based on its Queue length and service demand of PostOb-
servation API at that node. Using the initial test results, the
service demands are obtained, and through JMT tool, all
these metrics for the closed queuing network are obtained.

Mar. 22, 2018

The throughput value obtained from the above network is
used as the rate of arrival for requests belonging to Open-
PostObservation API class in the Open Queuing network.
The Open network consists of sensors, API gateway, Rab-
bitMQ and alerts. Assuming that the Queuing network is of
type M/G/1 since the arrival of API requests can be taken as
Poisson process and service time is taken as general. It is
observed that the utilization for nodes in Open Queuing
network matches the prediction in JMT. Henceforth, it is
assumed that the output of SOS module follows a Poisson
distribution as it is fed to Open Queuing network comprising
of message routing and RabbitMQ node.

[0062] The steps involved in building performance models
for an IoT platform is described in FIG. 2 which involves
identifying important APIs of the IoT platform and impor-
tant system components visited by these requests. Then
performance tests are conducted with single API and a few
combinations of Mixed APIs with certain number of con-
current threads. While performing the tests, system utiliza-
tion is measured and service demands are computed. These
performance tests are repeated for volume of workload
characteristics (e.g., for higher workloads) and by varying
input parameters of the APIs to find out variations (if any)
in service demands. These service demands are input to the
performance prediction of the IoT applications, and the IoT
platform thereof.

[0063] Performance of Single API

[0064] FIGS. 6A-6B, with reference to FIGS. 1 through 5,
are graphical representations illustrating performances of
one or more Application Programming Interfaces (APIs) on
Eka cluster according to an embodiment of the present
disclosure.

[0065] In order to analyze the scalability of the IoT
platform, initial performance testing is done for individual
APIs. The objective is to validate whether each of the APIs
can support a large number of concurrent accesses. Two sets
of REST APIs from SOS module are most commonly used:
(1) GetObservation() API, and (2) PostObservation() API.
Besides them, the other APIs deal with posting and editing
of sensors metadata and getting the capabilities of SOS and
so on. Whenever a sensor has a new observation to send to
the IoT platform, PostObservation API is invoked. Since
PostObseration API gets executed more frequently than
GetObservation API, it is tested for higher concurrency.
Load testing (e.g., regular load testing) for these APIs are
performed. In FIG. 6A, it is observed that PostObservation(
) API has low response time till 1024 concurrent threads.
Thus, this API is able to provide the desired scalability.
Further, PostObservation API has fixed size request and
response length. Hence, it is expected that CPU service
demand of this API remains unaffected at higher concur-
rency. In the experiments performed during the implemen-
tation of the embodiments of the present disclosure, it is also
seen that the Tomcat CPU service demand does not vary
much with higher concurrency.

[0066] In case of GetObservation API, the response size
depends on the number of observations satisfying a specific
criteria given in the query. Thus it is expected that the
service demand of the API to be dependent on the number
of observations retrieved for the sensor. FIG. 6B shows the
scalability of this API as observed and as predicted by the
system 100. Currently performance testing is done with
sensors having 50 observations. It is observed that the API
does not scale beyond 512 threads. At 512 threads CPU

US 2018/0081730 Al

utilization on Tomcat VM reaches close to 80% and the
response time increases more than 1 second. With the query
response size there is a linear increase in service demand for
GetObservation API. Through additional measurements, it is
noticed that the Tomcat CPU demand is 14 ms, 27.1 and 46
ms when the number of observations retrieved by the sensor
is 1, 100 and 1000-2000. Thus, it is inferred that if this API
is used for retrieving a large number of observations, then
the Tomcat layer would require more than 1 VMs for
concurrency larger than 512 threads.

[0067] FIG. 7, with reference to FIGS. 1 through 6, is a
graphical representation illustrating performance of an API
on Amazon Web Services (AWS) server according to an
embodiment of the present disclosure. More specifically,
FIG. 7 depicts the performance of PostObservation API on
AWS server. On AWS deployment, instead of HBase as the
database backend, PostGres is used for comparing the per-
formance of these two scenarios. In AWS deployment envi-
ronment, a VM has 2 CPU cores and on such a VM,
PostObservation API scales up-to 256 threads if the response
time SLA is 1 sec. As a result, it requires additional VMs to
scale to 512. The goal of the present disclosure is to verity
whether PostObservation API can scale to higher number of
threads by using additional VMs. FIG. 8, with reference to
FIGS. 1 through 7, is a graphical representation illustrating
number of virtual machines required for an API according to
an embodiment of the present disclosure. More specifically,
FIG. 8 depicts the horizontal scalability of PostObservation(
) API according to an example embodiment of the present
disclosure. Particularly, FIG. 8 depicts that the number of
Tomcat VMs required for scaling to 512 threads, 1024
threads and 1280 threads are 2, 3 and 4 respectively. In all
these cases, only one PostGres VM (data layer) is able to
handle all the requests. However at 1280 threads, PostGres
VM saturates and a higher VM is needed for scaling beyond
1280 threads. Thus, the model is able to predict the number
of VMs required for scaling to higher number of users.
[0068] Performance of Mixed APIs

[0069] The embodiments of the present disclosure enables
the system 100 to perform tests with different mixture of
APIs. The goal here is to validate when multiple APIs are
being accessed separately, performance of one API not
getting affected by other API. One such mix has 80% threads
accessing PostObservation API and 10% threads accessing
GetObservation latest API. The latter API gets served from
Hazelcast cache instead of HBase and gives only the latest
observation for a sensor. FIG. 9, with reference to FIGS. 1
through 8, is a graphical representation illustrating results of
performance testing and the corresponding prediction by the
system 100 according to an embodiment of the present
disclosure. Performance of mixed API reflects the perfor-
mance of API which is dominant in the workload mix. In this
case, PostObservation API constitutes 80% of the threads
and it is observed that the workload does not scale beyond
1024 threads and there is an increase in response time
beyond 768 threads. Note that similar behavior is observed
in case of PostObservation API as well. However, during the
testing it is noticed that any specific performance effect of
one API due to other. API except that performance of mixed
API depends on the scalability of individual component
APIs as well as on the ratio of their mixing.

[0070] Performance Analysis of a Sample loT Application

[0071] In this section, performance of a sample applica-
tion running on the IoT platform is analysed. The context

Mar. 22, 2018

used for the application is an energy monitoring system of
a number of office buildings spread across multiple geo-
graphical locations. Sources of energy can be HVAC, light-
ing, UPS and so on. The IoT platform is (primarily) used for
storing sensor observations in order to run analytic queries
over them. However, for doing more online interactive
queries, the sensor observation data is also stored using
Elasticsearch. Sensor data comes through a device gateway
to IoT platform. This data gets inserted in the data store
corresponding to the IoT platform, further it gets pushed to
the Energy Monitoring backend through a Publish Subscribe
system using RabbitMQ.

[0072] Brief Description of the Backend

[0073] The energy monitoring system uses additional
computing and storage system apart from the IoT platform
described earlier. FIG. 10, with reference to FIGS. 1 through
9, illustrates an exemplary architectural view of an addi-
tional backend layer used for monitoring energy usage
according to an embodiment of the present disclosure. The
users can send different online queries to view various
statistics on the energy usage. These queries are directed to
Elasticsearch server. The server also receives data from
sensors through a node which subscribes to messages pub-
lished by RabbitMQ. Thus Elasticsearch system stores sen-
sor information and the clients retrieve specific information
based on the queries fired. Apart from online queries there
are alert generating services that get executed at the Elas-
ticsearch database. Thus the following types of requests flow
to Elasticsearch (ES) backend as follows:

[0074] 1) Queries received from online users.

[0075] 2) Sensor Data insertion from the IoT platform to
ES backend.

[0076] 3) Queries received at regular intervals for gener-
ating alerts.

[0077] Deriving Request Inter-Arrival Distribution
[0078] As a first step towards characterizing the perfor-

mance of the application, data in-flow rate is derived.
Specifically, the inter-arrival distribution of sensor observa-
tions is derived. Some of the sensors in the Energy Moni-
toring application are configured to send data every fifteen
minutes whereas some other sensors send data in every hour.
Moreover, there are pre-configured pulling routines which
query sensors and pull their observations based on some
update or event.

[0079] Hence, data arrival rate from sensors to IoT plat-
form is not fixed. This is confirmed from the log file. Every
time an observation gets inserted to IoT platform, the
application server layer makes an entry in its log file. Thus
time-stamp values of arrival of sensor observation for each
sensor observation is obtained. From this, one or more
samples are obtained for the inter-arrival time of observa-
tions arriving over a predefined duration (e.g., over duration
of fifteen minutes). Then, the inter-arrival time samples are
segregated into various time intervals. In other words, the
inter-arrival time samples are bucketed in buckets corre-
sponding to 10 ms, 20 ms, 30 ms etc. This is repeated for
various times of the day and for all these intervals of fifteen
minutes duration, distribution for the inter-arrival time is
obtained. Then the first and second moments for the distri-
bution are obtained and compared with various standard
distributions. Statistical package are used by the system 100
to obtain the parameters for the inter-arrival distribution of
sensor observations.

US 2018/0081730 Al

[0080] FIG. 11, with reference to FIGS. 1 through 10, is a
graphical representation illustrating sample distribution of
inter-arrival of sensor observations in an Energy Monitoring
application being executed on an loT platform according to
an example embodiment of the present disclosure. This is
modeled as hyper-exponential distribution since the mean of
sensor data inter-arrival time is less than the standard
deviation for the same. The embodiments of the present
disclosure enables the system 100 to model it as a combi-
nation of three exponential distributions having different
arrival rates reflecting data arrival rates of different types of
sensors.
[0081] Deriving Service Demand for Transactions
[0082] Next challenge in predicting performance for the
sample loT application is accessing the production environ-
ment. The deployed platform is unavailable for extensive
performance tests. Hence, service demands corresponding to
many of the transactions are derived based on the available
information in the log file. In the above sections, three
different types of transactions were mentioned that are
getting executed in the application. In off hours, only sensor
data insertion and alert generating queries are available.
Since, alert generating queries run at periodic intervals and
cause higher system utilization during that period, the
throughput of these alert generating queries are obtained and
correlated with the utilization for specific duration (e.g., by
applying the basic utilization law discussed in Quantitative
System Performance: Computer System Analysis Using
Queuing Network Models). Then, by using Least Square
technique, the service demand of the above two transactions
are derived. Two system resources that are primarily focused
on by the embodiments of the present disclosure are CPU
and disk for all the important servers.
[0083] For the third type of transactions, limited perfor-
mance tests are conducted. For this, online queries are
received from energy monitoring dashboard with large
think-time (about 30 seconds) so as not to disturb the
performance of the production environment. The utilization
values during the performance tests are adjusted by off-
setting suitably based on the CPU utilization corresponding
to the earlier two cases. All these estimations are done taking
a pessimistic approach such that whenever utilization is
found to be varying over a short interval, the higher values
of utilization may be taken/considered. Having obtained
service demands for all different transactions, performance
of the sample loT application is extrapolated.
[0084] Extrapolation of Performance for Larger Users
[0085] Having estimated approximate service demand for
three different types of transactions, the performance of the
sample application is projected for the following:

[0086] 1) The number of sensors sending the observa-

tions increases by a factor of 10-15.
[0087] 2) The current user-base for the online applica-
tion increases by a factor of 2-3.

[0088] For both of these cases, the performance of energy
monitoring application is projected. Since currently there is
no data available for larger number of sensors, and it is not
allowed to send synthetic energy data that gets into the
production database, it is not possible to validate the pre-
diction for the first case. But in the queuing model, the
average rate of arrival for sensor observations is increased
by a factor of 10 and the system 100 predicts that the current
deployment can support occasional very high rate of obser-
vation arrivals without affecting the performance. For

Mar. 22, 2018

example, even if the observation arrival rate reaches 9000
observations/sec in 10% of the total duration, the time taken
for data insertion to the backend is less than a second.

[0089] For the growth of online users injecting dashboard
queries, a limited number of performance tests were
executed (or performed) by injecting online queries at
off-hours to the system 100. FIG. 12, with reference to FIGS.
1 through 11, is a graphical representation illustrating pre-
diction of Dashboard Queries for higher number of users
according to an embodiment of the present disclosure. More
specifically, FIG. 12 illustrates the predicted performance
for up-to 45 concurrent users whereas the system 100 is able
to obtain actual test results for only 5-20 concurrent users.
It can be verified that the system prediction is within 8-10%
of'the actual system performance. Since the system response
time is found to be more than 10 sec, it can be worked
towards tuning the performance of the application.

[0090] The embodiments of the present disclosure have
dealt with performance analysis specifically scalability
analysis of an IoT platform and applications (e.g., (IoT)
applications) that provides services in terms of a set of APIs
hosted on a cloud platform. Using analytical modeling
technique, the system 100 predicts the performance of these
APIs—for individual APIs as well as for mixed APIs and
validate their performance through performance testing
results. The platform is capable of supporting a large number
of concurrent threads as can be seen from the graphical
representations depicted in the FIGS. The system 100
reports measurement results for two deployment scenarios
for the IoT platform—one consists of a set of physical
servers and another is on AWS. Further, the embodiments of
the present disclosure also enables the system 100 to analyze
performance of a sample IoT application using services of
the IoT platform.

[0091] The written description describes the subject mat-
ter herein to enable any person skilled in the art to make and
use the embodiments. The scope of the subject matter
embodiments is defined by the claims and may include other
modifications that occur to those skilled in the art. Such
other modifications are intended to be within the scope of the
claims if they have similar elements that do not differ from
the literal language of the claims or if they include equiva-
lent elements with insubstantial differences from the literal
language of the claims.

[0092] It is to be understood that the scope of the protec-
tion is extended to such a program and in addition to a
computer-readable means having a message therein; such
computer-readable storage means contain program-code
means for implementation of one or more steps of the
method, when the program runs on a server or mobile device
or any suitable programmable device. The hardware device
can be any kind of device which can be programmed
including e.g. any kind of computer like a server or a
personal computer, or the like, or any combination thereof.
The device may also include means which could be e.g.
hardware means like e.g. an application-specific integrated
circuit (ASIC), a field-programmable gate array (FPGA), or
a combination of hardware and software means, e.g. an
ASIC and an FPGA, or at least one microprocessor and at
least one memory with software modules located therein.
Thus, the means can include both hardware means and
software means. The method embodiments described herein
could be implemented in hardware and software. The device
may also include software means. Alternatively, the embodi-

US 2018/0081730 Al

ments may be implemented on different hardware devices,
e.g. using a plurality of CPUs.

[0093] The embodiments herein can comprise hardware
and software elements. The embodiments that are imple-
mented in software include but are not limited to, firmware,
resident software, microcode, etc. The functions performed
by various modules described herein may be implemented in
other modules or combinations of other modules. For the
purposes of this description, a computer-usable or computer
readable medium can be any apparatus that can comprise,
store, communicate, propagate, or transport the program for
use by or in connection with the instruction execution
system, apparatus, or device.

[0094] The illustrated steps are set out to explain the
exemplary embodiments shown, and it should be anticipated
that ongoing technological development will change the
manner in which particular functions are performed. These
examples are presented herein for purposes of illustration,
and not limitation. Further, the boundaries of the functional
building blocks have been arbitrarily defined herein for the
convenience of the description. Alternative boundaries can
be defined so long as the specified functions and relation-
ships thereof are appropriately performed. Alternatives (in-
cluding equivalents, extensions, variations, deviations, etc.,
of'those described herein) will be apparent to persons skilled
in the relevant art(s) based on the teachings contained
herein. Such alternatives fall within the scope and spirit of
the disclosed embodiments. Also, the words “comprising,”
“having,” “containing,” and “including,” and other similar
forms are intended to be equivalent in meaning and be open
ended in that an item or items following any one of these
words is not meant to be an exhaustive listing of such item
or items, or meant to be limited to only the listed item or
items. It must also be noted that as used herein and in the
appended claims, the singular forms “a,” “an,” and “the”
include plural references unless the context clearly dictates
otherwise.

[0095] Furthermore, one or more computer-readable stor-
age media may be utilized in implementing embodiments
consistent with the present disclosure. A computer-readable
storage medium refers to any type of physical memory on
which information or data readable by a processor may be
stored. Thus, a computer-readable storage medium may
store instructions for execution by one or more processors,
including instructions for causing the processor(s) to per-
form steps or stages consistent with the embodiments
described herein. The term “computer-readable medium”
should be understood to include tangible items and exclude
carrier waves and transient signals, i.e., be non-transitory.
Examples include random access memory (RAM), read-
only memory (ROM), volatile memory, nonvolatile
memory, hard drives, CD ROMs, DVDs, flash drives, disks,
and any other known physical storage media.

[0096] It is intended that the disclosure and examples be
considered as exemplary only, with a true scope and spirit of
disclosed embodiments being indicated by the following
claims.

What is claimed is:

1. A method for predicting performance of one or more
applications being executed on an Internet of Things (IoT)
platform, comprising:

obtaining, by said IoT platform, at least one of (i) one or

more user requests and (ii) one or more sensor obser-
vations from one or more sensors;

Mar. 22, 2018

identifying and invoking one or more Application Pro-
gramming Interface (APIs) of said loT platform based
on said at least one of (i) one or more user requests and
(ii) one or more sensor observations from said one or
more sensors;

identifying, based on said one or more invoked APIs, one

or more open flow requests and one or more closed flow
requests of one or more systems connected to said loT
platform;

identifying one or more workload characteristics of said

one or more open flow requests and said one or more
closed flow requests to obtain one or more segregated
open flow requests and one or more segregated closed
flow requests, and a combination of open and closed
flow requests;

executing one or more performance tests with said one or

more invoked APIs based on said one or more work-
load characteristics;

concurrently measuring utilization of one or more

resources of said one or more systems and computing
one or more service demands of each of said one or
more resources;

executing said one or more performance tests with said

one or more invoked APIs based on a volume of
workload characteristics pertaining to said one or more
applications; and

predicting, using a queuing network, performance of said

one or more applications for said volume of workload
characteristics.

2. The method of claim 1, wherein the step of executing
said one or more performance tests with said one or more
invoked APIs comprises:

varying one or more input parameters of said one or more

invoked APIs; and

determining variation in said one or more service

demands based on said one or more varied input
parameters.

3. The method of claim 2, wherein said variation in said
one or more service demands is indicative of said perfor-
mance of said one or more applications for said volume of
workload characteristics.

4. The method of claim 2, wherein said variation in said
one or more service demands is determined based on at least
one of (i) number of sensor observations and (ii) number of
user requests obtained by said IoT platform.

5. The method of claim 1, wherein said one or more
service demands are computed from said measured utiliza-
tion of said one or more resources, and number of user
requests processed by said IoT platform per unit time.

6. The method of claim 1, further comprising:

generating a log comprises details pertaining to said one

or more sensor observations being obtained by said loT
platform from said one or more sensors, wherein said
details comprises time-stamp values of arrivals of each
of said one or more sensor observations;

obtaining, based on said time-stamp values, one or more

samples for inter-arrival time of sensor observations
over a pre-defined duration;

segregating said one or more samples into one or more

time intervals; and

deriving one or more inter-arrival distributions of said one

or more sensor observations upon said one or more
samples being segregated into said one or more time
intervals.

US 2018/0081730 Al

7. A system comprising:
a memory storing instructions;
one or more communication interfaces; and

one or more hardware processors coupled to said memory

using said one or more communication interfaces,

wherein said one or more hardware processors are

configured by said instructions to execute an loT plat-

form that:

obtains at least one of (i) one or more user requests and
(i1) one or more sensor observations from one or
more sensors, wherein said one or more hardware
processors are further configured to:

identify and invoke one or more Application Program-
ming Interface (APIs) of said IoT platform based on
said at least one of (i) one or more user requests and
(i1) one or more sensor observations from said one or
more sensors,

identify, based on said one or more invoked APIs, one
or more open flow requests and one or more closed
flow requests of one or more systems connected to
said IoT platform,

identify one or more workload characteristics of said
one or more open flow requests and said one or more
closed flow requests to obtain one or more segre-
gated open flow requests and one or more segregated
closed flow requests, and a combination of open and
closed flow requests,

execute one or more performance tests with said one or
more invoked APIs based on said one or more
workload characteristics,

concurrently measure utilization of one or more
resources of said one or more systems and comput-
ing one or more service demands of each of said one
or more resources,

execute said one or more performance tests with said
one or more invoked APIs based on a volume of
workload characteristics pertaining to one or more
applications being executed on said IoT platform,
and

predict, using a queuing network, performance of said
one or more applications for said volume of work-
load characteristics.

8. The system of claim 7, wherein said one or more
performance tests are executed with said one or more
invoked APIs by:

varying one or more input parameters of said one or more

invoked APIs; and

determining variation in said one or more service

demands based on said one or more varied input
parameters.

9. The system of claim 8, wherein said variation in said
one or more service demands is indicative of said perfor-
mance of said one or more applications for said volume of
workload characteristics.

10. The system of claim 8, wherein said variation in said
one or more service demands is determined based on at least
one of (i) number of sensor observations and (ii) number of
user requests obtained by said IoT platform.

11. The system of claim 7, wherein said one or more
service demands are computed from said measured utiliza-
tion of said one or more resources, and number of user
requests processed by said IoT platform per unit time.

10

Mar. 22, 2018

12. The system of claim 7, wherein said one or more
hardware processors are further configured by said instruc-
tions to:

generate a log file comprises details pertaining to said one

or more sensor observations being obtained by said loT
platform from said one or more sensors, wherein said
details comprises time-stamp values of arrivals of each
of said one or more sensor observations,

obtain, based on said time-stamp values, one or more

samples for inter-arrival time of sensor observations
over a pre-defined duration,

segregate said one or more samples into one or more time

intervals, and

derive one or more inter-arrival distributions of said one

or more sensor observations upon said one or more
samples being segregated into said one or more time
intervals.

13. One or more non-transitory machine readable infor-
mation storage mediums comprising one or more instruc-
tions which when executed by one or more hardware pro-
cessors perform a method of predicting performance of one
more applications being executed on an Internet of Things
(IoT) platform by:

obtaining, by said IoT platform, at least one of (i) one or

more user requests and (ii) one or more sensor obser-
vations from one or more sensors;

identifying and invoking one or more Application Pro-

gramming Interface (APIs) of said loT platform based
on said at least one of (i) one or more user requests and
(ii) one or more sensor observations from said one or
more sensors;

identifying, based on said one or more invoked APIs, one

or more open flow requests and one or more closed flow
requests of one or more systems connected to said loT
platform;

identifying one or more workload characteristics of said

one or more open flow requests and said one or more
closed flow requests to obtain one or more segregated
open flow requests and one or more segregated closed
flow requests, and a combination of open and closed
flow requests;

executing one or more performance tests with said one or

more invoked APIs based on said one or more work-
load characteristics;

concurrently measuring utilization of one or more

resources of said one or more systems and computing
one or more service demands of each of said one or
more resources;

executing said one or more performance tests with said

one or more invoked APIs based on a volume of
workload characteristics pertaining to said one or more
applications; and

predicting, using a queuing network, performance of said

one or more applications for said volume of workload
characteristics.

14. The one or more non-transitory machine readable
information storage mediums of claim 13, wherein the step
of executing said one or more performance tests with said
one or more invoked APIs comprises:

varying one or more input parameters of said one or more

invoked APIs; and

determining variation in said one or more service

demands based on said one or more varied input
parameters.

US 2018/0081730 Al

15. The one or more non-transitory machine readable
information storage mediums of claim 14, wherein said
variation in said one or more service demands is indicative
of'said performance of said one or more applications for said
volume of workload characteristics.

16. The one or more non-transitory machine readable
information storage mediums of claim 14, wherein said
variation in said one or more service demands is determined
based on at least one of (i) number of sensor observations
and (ii) number of user requests obtained by said IoT
platform.

17. The one or more non-transitory machine readable
information storage mediums of claim 13, wherein said one
or more service demands are computed from said measured
utilization of said one or more resources, and number of user
requests processed by said IoT platform per unit time.

11

Mar. 22, 2018

18. The one or more non-transitory machine readable
information storage mediums of claim 13, further compris-
ing:

generating a log comprises details pertaining to said one

or more sensor observations being obtained by said loT
platform from said one or more sensors, wherein said
details comprises time-stamp values of arrivals of each
of said one or more sensor observations;

obtaining, based on said time-stamp values, one or more

samples for inter-arrival time of sensor observations
over a pre-defined duration;

segregating said one or more samples into one or more

time intervals; and

deriving one or more inter-arrival distributions of said one

or more sensor observations upon said one or more
samples being segregated into said one or more time
intervals.

