US 20180081800A9

19) United States

(12) Patent Application Publication
Greiner et al.

(10) Pub. No.: US 2018/0081800 A9

8) Pub. Date: Mar. 22, 2018
CORRECTED PUBLICATION

(54)

(71)

(72)

@

(22)

(15)

(65)

(63)

CREATING A DYNAMIC ADDRESS
TRANSLATION WITH TRANSLATION
EXCEPTION QUALIFIERS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Dan F. Greiner, San Jose, CA (US);
Lisa C. Heller, Poughkeepsie, NY
(US); Damian L. Osisek, Endicott, NY
(US); Erwin Pfeffer, Bavaria (DE)

Appl. No.: 14/809,350

Filed: Jul. 27, 2015

Prior Publication Data

Correction of US 2015/0339226 Al Nov. 26, 2015
See (63) Related U.S. Application Data.

US 2015/0339226 Al Nov. 26, 2015

Related U.S. Application Data

Continuation of application No. 14/191,516, filed on
Feb. 27, 2014, now Pat. No. 9,092,351, which is a
continuation of application No. 13/312,079, filed on
Dec. 6, 2011, now Pat. No. 8,683,176, which is a
continuation of application No. 12/037,268, filed on
Feb. 26, 2008, now Pat. No. 8,095,773.

Publication Classification

Int. Cl1.
GO6r 12/02
GO6F 3/06
U.S. CL
CPC

(51)
(2006.01)
(2006.01)
(52)
........ GOGF 12/0284 (2013.01); GOGF 3/0604

(2013.01); GOGF 3/0667 (2013.01); GO6F
2212/657 (2013.01); GOGF 2212/152
(2013.01); GOGF 2212/50 (2013.01); GO6F
2212/652 (2013.01); GO6F 3/067 (2013.01)

(57) ABSTRACT

An enhanced dynamic address translation facility product is
created such that, in one embodiment, a virtual address to be
translated and an initial origin address of a translation table
of the hierarchy of translation tables are obtained. Dynamic
address translation of the virtual address proceeds. In
response to a translation interruption having occurred during
dynamic address translation, bits are stored in a translation
exception qualifier (TXQ) field to indicate that the exception
was either a host DAT exception having occurred while
running a host program or a host DAT exception having
occurred while running a guest program. The TXQ is further
capable of indicating that the exception was associated with
a host virtual address derived from a guest page frame real
address or a guest segment frame absolute address. The TXQ
is further capable of indicating that a larger or smaller host
frame size is preferred to back a guest frame.

VIRTUAL ADDRESS VRTUAL ADORESS 524 536
BOB . o R g .) .
400 e
R s e conr . 402 996 L st [e seo MEIEIEIRES
Rzmor)w}mmonmmmomu(w BRI 516 (524|552] 534 536 Q ~ Sy -
402 i i B30
N TR ' = e
000ty SEOMENT TABLE (ST, FROH PREVIOUS PAGE] “¢
“‘T—é “ SESHENT TABLE ENTRY (STE} - .
ﬁ*—- : PAGETABLE CRIGIN BPH MCM
REGONFRST-TABLE T 506 -
»; REGIONFRST-TABLE ENTRY JTE] ——=]
|} S FEON-SECOw TARE CRENTET] P LT 544
5 _ € [o naeen 540 54z TRAISLATION LOGK-ASIDE BEFR (TLB) — 5
I ———e——ed 504 o [PAGET BLE ENTRY PiE] N
: - T
|| L emosictne - 7] g PAGE FRAME REAL ADIRESS 038 — ™
REGION-SECORD-TABLE ENTRY fRoTEy 1614 - ;
(REGION- THIRD- TABLE CRIGIVRTTO] FIFTIITE
iﬂO{ i

PAGE-TABLE ORIGIN {FC<0} OR SEGMENT- iF 0% [yl
i FRAVE ABSOLUTE: ADDRESS {FC-1} Cl ol

SEGMENT TABLE (ST}
SEGUENT TABLE ENTRYISTE)

Y !

526 562
O

538

54817 REAL ADDRESS

Patent Application Publication Mar. 22, 2018 Sheet 1 of 14 US 2018/0081800 A9

102 100
N oPC
|
104~ VIRTUAL YIRTUAL VIRTUAL VIRTUAL
) MACHINE MACHINE MACHINE MACHINE
i 2 3 N

M2 0SaEsn || 1 osteuEst ||| ostauest) || | os(euesy

HOST (HYPERVISOR] | 108

CENTRAL PROCESSORIS) 106

INPUTZ0UTPUT SURSYSTEM ~ 10
FIG. 1

(PRIOR ART)

Patent Application Publication

Mar. 22,2018 Sheet 2 of 14

US 2018/0081800 A9

200
\
ENULATED (VIRTUAL)
HOST COMPUTER s,
MEMORY 208 210
/
COMPLTER MEMORY
HOST)
20 |
wEL W W w] rete
0S 1 0 il 08 Jif 05 B+
MA AT HOST
204

. S NS
T
FENMLATED (VIRTUAL) :
| PROCESSOR (CPU) . i
i EMULATION g
| ROUTINES :
; ;
: EMULATION 7 %
! PROCESSCR 212 i
| |
| ¢ |
s ! 206 :
}
I |
L. .. e e e e 2 £ A A Ao Ann Ank Ak ik £i A St . 2k o Ak Ao 2 . . i S s e e ki e}

{FRIOR

FIG. 2

S e
AR j

NETWORK

Patent Application Publication = Mar. 22, 2018 Sheet 3 of 14 US 2018/0081800 A9

63
PRMARY AScE P10
ACCESS REGISTER ASCE |- 214
SECONDARY ASCE 018
HOME ASCE |~ S22
L R
FIG. 3

(PRIOR ART)

Patent Application Publication Mar. 22,2018 Sheet 4 of 14

US 2018/0081800 A9

o ‘ Ao ’ ‘
N EFFECTIVE ASCE e 04 406
EFFECTIVE ASCE \ R 5)@
TABLE CRIGIN R P e
’ %2 B 6060 63
(SELECTOR) i
TABLE DFSIGNATION |~ 406
DI=0 DI=2 D7=2 D=3
~ REGIONFRST TARE 410
REGION SECOND TABLE |~ 42
REGIONTHRD TABE P
N
FIG, 4
(PRIOE ART)

Patent Application Publication Mar. 22, 2018 Sheet 5 of 14 US 2018/0081800 A9

VIRTUAL ADDRESS
400 508 \E'"‘H‘ ot S —
L o—— o4 - REX | s [Rnx] sx]
(EFFECTIE ADDRESS SPACE CoNTROL ELevr 07 75© L L L S| jX E3

\f_REG!DE:i TABLE OR SEGYENT TABLE OGN [R-01 [GPRPRIDITL] 1916 B241532| 554 535@
3

!

ALK . f
0y

REGION-FRST-TABLE (RFT} — 506
REGION-FIRST-TARLE ENTRY TRFTE)
REGION-SECOND-TABLE CRGN (RSTOL T P TITIRTTIL
L 504
§ REGION-SECOND-TABIF RST)
] {REGION-SECOND-TABLE ENTRY RSTE] B4
REGION-THRD-TABLE ORIGINGRTTOL . [PPl
S
{ 5iz
! ¢ REGION-THRD-TABLE RTT)
ﬂ;@ REGION-THRD-TARLE ENTRY RTTE) ,] 522
{ b SEGMENT-TABLE ORIGINSTOL [TPITF T
C
g 520
L L SEVENT TARLE ST
__________ ~T+] [SEGNERT TABLE ENTRYSTE) 7530
(Tt PAGE-TABLE CRIGIN FC-0) OR SEGKENT- FLIC] |11

Dt FRAVE ABSCLUTE ADDRESS {FC=Y) C

BT EEROE

} - 1754 %

US 2018/0081800 A9

Mar. 22,2018 Sheet 6 of 14

Patent Application Publication

18 + SSCY ﬁx H q N S
[g [‘ -
, kx| wﬂm

— 0 3¢S
v - {EIT SOV T34 IO B
, . N Gld) NN TRYL 3% L
(T e 30SY00T NOY B Zrs— G i T8v: 304 |
._, H ‘ Y T
Ll NDMO TBYL Y |y
H |
; ’ (S AN TAYL NS |
U opg IVATOIH oM 1S TRYL IS
»»\“mm AR Nt
& \/.
\ : ooG-N_/

A8 | M | XS NS s
\ B : ¥ :

(=)
<«
(=] e
2 OO0 L
= SSI00Y UT0SHY L 7 0% Ol
g i 285
4
& - N
S X | X SSwoaY UM0SEY TN NI
)] * M . X
-]
| 4%

_—
=
S
=]
o~
- W Lo Flef oo o] | ssuaar 3IOSEY Ive-vewens
wn 4 i
= T e - i ,_ 7 DS M TR R
2 Lo (14 3409 305007 MO ISl - m . =G0 S T8YL N30
N
% Y
= s 1o

\1
S Y ,
PR I I 4
w 7
! N
Dzts VLG

Patent Application Publication

_J

Patent Application Publication Mar. 22, 2018 Sheet 8 of 14 US 2018/0081800 A9

é ORTAIN GUEST VIRTUAL ACDRESS T0 BE TRANSLATED 002
OBTAIN INITIAL ORIGIN AMD LENGTH OF GUEST 604
TRANSLATION TABLE, TREAT OFFSET AS ZERO

N e

¥
/\Pm ON OF GLEST t”RsUﬁL @Lﬁ@ A
512
?

, L .
USF INDEX PORTION OF THE VIRTUAL ADDRESS TO GENERATL A
GUEST #F%S LUTE ADDRESS OF A TRANSLATION TABLE ENTRY
1 ,
RERFORM HOST DAT AND PREFIXING TO CBTAIN HOST ABSOLUTE ADDRESS
OF TABLE ENTRY. PASS ADDRESS. SOURCE = “GUEST OTHER" (I

\
— 516 514
el <7
608
| FETCH GUEST TRANSLATION TABLE ENTRY _z &10

ay PREGENT GUEST g
BEZ . TRANSLATION EXCEPTION | _ -

ey

YES
1S IVALD BIT SET JEY ol WITH THO = “CURRENT
\~ CONFIGURATION: 10)

G2 S THE TABLE ENTRY 70 OBTAM |
| ORIGIN, CFFSET, AND LENGTH OF
A NEXT TRANSLATION TABLE

VS 6\@
S >
\ o TSRO T~y
I SEGVENT-TABLE ENTRY @
&1 =< CONTROL o

'ﬁH]

i
' \T"" 05T OAT VES
o PRESENTED

Fi(. ©

Patent Application Publication Mar. 22,2018 Sheet 9 of 14

Q30 _@

CBTAIN GRIGIN OF CLEST PACE TABLE FROM CLEST SEGVENT-TARLE BNTRY} 71
- ,
{GE PAGE INDEX PORTION CF VIRTUAL ADORESS TO GENERATE
GUEST ABSOLLITE ACCRESS OF GLEST PAGE-TABLE ENTRY
,] R ,
SERFCRM HOST DAT AND FREFIXING TC OBTAIN HOST ABSOLUTE ADDRESS | - 714
OF TARLE ENTRY. wfaw ADDRESS_ SOURCE = GUEST OTHER' i

US 2018/0081800 A9

|~ 712

—~ f';-’a@'
A 724
720~] b
PRESENT GLEST

TRANSLATION EXCEPTION
et WITH TAQ = "CURRENT |
CONFIGURATION” ()

$ NG ,.
- COVRINE PAGE-FRAME REAL ADCRESS WITH ‘

| OFFSET PORTION OF VIRTUAL ADDRESS TO CBTAIN
Gl %}' REAL ADDRESS OF TARGET DATA TRE
i
O~ APPLY GUEST FREFIXING TO OBTAIN GLEST
ABSOLUTE ADDRESS OF TARGEY DATA
t
. PERFORM HOST DAT AND PREFIING T0 OBTAIN
FEE T s T ARSOLUTE ADDRESS OF TARGET DATA, PASS
ADORESS SOLRCE = “GUEST PRRA" 12
e i‘\\- ~TO%

?‘“;wi.\
HOST DAT SUCCERD?

Bok

[ACCESS TARGET DATA ADDRESSID Y |~756
U - TRANSLATED VIRTUAL ADDRESS

/ Q \n L‘i}q* P}ﬁ‘“ i
E’ EXCEPTION HAS o
_FEEN PRESENTED FlG, 7

Patent Application Publication

Mar. 22,2018 Sheet 10 of 14

LIRSy
CHAL '\@

'

US 2018/0081800 A9

OBTAIN GUEST SEGMENT-FRAME
ABSOLLTE ADDRESS FROM GUEST
SEGMENT TARLE ENTRY

COMBINE SEGVENT-FRAVE ABSOLUTE
ACDRESS WiTH OFFSET PORTION OF

VIRTUAL ALCRESS TO GBTAIN GUEST

ABSOLUTE ADDRESS OF TARGET DATA

PERFCRM HOST DAT AND PREFIING TO ORTAN
HOST ABSOLUTE ADDRESS OF TARGET DATA, FASS |

ADDRESS. SOURCE = "GUEST SFAA™ (31

!
k)
. //;L\’*—-__’.*& |

N

O HOST DAT SUCCEED?

ACCESS TARGET DATA ADDRESSED BY
TRANSLATED VIRTUAL ADDRESS

S, %
PO W——

/" STOP. HOST DAT
EXCEPTION HAS
BEEN PRESENTED

FIG. &

Patent Application Publication Mar. 22, 2018 Sheet 11 of 14 US 2018/0081800 A9

CRTAN HOST VIRTUAL ADDRESS TO BE TRANGLATED 1~ 202
% :

CRTAIN ITIAL GRIGN AND LENGTH OF AKOST |- 904

| TRANSLATION T/BLE: TREAT OFFSET AS 76RO

\) ?1 Y ks
/[/, e 10 &\\ ‘;4\}_@
FORTION OF HOST YRTUAL ADCRES > 12
WITHIN RAAGE) 906
916
N ‘ BXECUTING VES
USE RDEX PORTIGN OF H0ST VRTUAL | e
AUDRESS TO GENERATE A HOST /BSOLUTE 910 912
ACDRESS OF A TRANSLATION TAB ENTRY I ;
FRESENT OST PRESENT HOST
TRANSLATION EXCEPTION| | TRANSLATION
| WITHTXQ - CURENT | | XCEPTION WITHTYO
CONFIGLRATION (01| | - ADORESS SouRCE
|

¥

0 USE THE TABLE ENTRY TO OBTAIN
CRIGIN, QFFSET, AND LENGTH OF
A NEXT TRANSLATION TABLE
s

\

G24

TOSFORMAT T
CONTROL 1N SEGMENT-TABLE ENTRY
S

BN
FiGG. 9

Patent Application Publication = Mar. 22, 2018 Sheet 12 of 14 US 2018/0081800 A9

FRY O
026 ~(©)

002~ OBTAIN ORIGIN OF HU M\E TABLE FROM
HOST SEGMENT-TABLE ENTRY

|

00— | USE PAGE INDEX FORTION OF HOST VIRTUAL
e ADCRESS TO GENERATE HOST ABSOLLTE
AEDRESS OF HOST PAGE-TABLE ENTRY

I's

¥

FETCH HOST PAGE-TABLE ENTRY

TS

1008

el

iy | COVBINE PAGE-FRAME REAL ADORESS WITH
WHI OFFSET PORTION OF HOST VIRTGAL ADDRESS 10
CBTAIN HOST REAL ADDRESS OF TARGET DATA

HEEN APPLY HOST PREFIXING TO OBTAIN HOST
ABSOLUTE ADORESS OF TARGET DATA

1014 ~ | RETURN HOST ABSOLUTE ADDRESS AS TRANSLATION
| RESULT (DR ACCESS TARGET DATA)

FIG. 10

Patent Application Publication Mar. 22,2018 Sheet 13 of 14

RIDZ TN

!
|
§

US 2018/0081800 A9

ORTAIN HOST SEGMENT-FRANE ABSOLUTE

ADORESS FROM HOST SEGMENT-TABLE ENTRY |

COMBINE SEGMENT-FRAME ABSOLUTE ADDRESS
WITH OFFSET PORTICN OF VIRTUAL ADDRESS 10

OBTAIN HOST ABSOLUTE ADORESS OF TARGET DATA |

THHD

RETURN HOST ABSOLUTE ADDRESS AS TRANSLATION
RESULT {OR ACCESS TARGET DATA)

FlG. 1

US 2018/0081800 A9

Mar. 22,2018 Sheet 14 of 14

Patent Application Publication

ANV E

g Nd0 04 $3
ISSIMAAY Y Nd0 404
muww&%maq WY 3iM10sey SRS @amm
T GAEg T 0 LT CTTTTTTTEERT T
76184 — Alddy \ o
w m Yy m S T N@ww w / \‘fowﬂ&d m . lleﬂ m.
w ,,, w m \ \ M gag
4 i { , { 4
m \ ! J M \ !
+ FIONYHO ON—Yy L | / / M i
] m \\ | m VAP
\ m / W | BN O]
\ { i \ i i
w \ / | . | \ i 4
! / w u ,x |
T lsowr/ _ -+ | JA | t
i 3L/ [S \
d w A “&Ba_ i }mss w \\ /x W
! | R w iy m T
{ | | [] { \\ f/ m /
o Soy3z | T
+ ifi!im,uf} WHD O m o %NW ~ | Add 41_11;531.%?
. i i /] _ ;
T | | T+ — JONIHO O
f ! m
L R H U 1 R AU S

ONIXiZ3dd

SRR Te!

US 2018/0081800 A9

CREATING A DYNAMIC ADDRESS
TRANSLATION WITH TRANSLATION
EXCEPTION QUALIFIERS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This is a continuation of U.S. patent application
Ser. No. 14/191,516, “DYNAMIC ADDRESS TRANSLA-
TION WITH TRANSLATION EXCEPTION QUALI-
FIER?”, filed Feb. 27, 2014, which is a continuation of U.S.
patent application Ser. No. 13/312,079, “DYNAMIC
ADDRESS TRANSLATION WITH TRANSLATION
EXCEPTION QUALIFIER?, filed Nov. 6, 2011, which is a
continuation of U.S. patent application Ser. No. 12/037,268,
“DYNAMIC ADDRESS TRANSLATION WITH TRANS-
LATION EXCEPTION QUALIFIER”, filed Feb. 26, 2008,
all of which are assigned to International Business Machines
Corporation. The disclosures of the foregoing applications
are incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention relates generally to systems
and methods for translating a virtual address in a computer
system and, more particularly, to systems and methods of
translating a virtual address into a real or absolute address of
a block of data in a computer system having a dynamic
address translation facility wherein virtual address transla-
tion occurs via a hierarchy of translation tables.

BACKGROUND OF THE INVENTION

[0003] Dynamic Address Translation (DAT) provides the
ability to interrupt the execution of a program at an arbitrary
moment, record it and its data in auxiliary storage, such as
a direct access storage device, and at a later time return the
program and the data to different main storage (memory)
locations for resumption of execution. The transfer of the
program and its data between main and auxiliary storage
may be performed piecemeal, and the return of the infor-
mation to main storage may take place in response to an
attempt by the CPU to access it at the time it is needed for
execution. These functions may be performed without
change or inspection of the program and its data, do not
require any explicit programming convention in the relo-
cated program, and do not disturb the execution of the
program except for the time delay involved.

[0004] With appropriate support by an operating system,
the dynamic address translation facility may be used to
provide to a user a system wherein storage appears to be
larger than the main storage which is available in the
configuration. This apparent main storage is often referred to
as virtual storage, and the addresses used to designate
locations in the virtual storage are often referred to as virtual
addresses. The virtual storage of a user may far exceed the
size of the main storage which is available in the configu-
ration and normally is maintained in auxiliary storage. The
virtual storage is considered to be composed of blocks of
data, commonly called pages (also referred to as segments
and regions). Only the most recently referred to pages of the
virtual storage are assigned to occupy blocks of physical
main storage. As the user refers to pages of virtual storage
that do not appear in main storage, they are brought in to
replace pages in main storage that are less likely to be
needed. In some cases, virtual storage is assigned to main

Mar. 22, 2018

storage for a long period of time (or permanently), regard-
less of whether the storage is referenced. The swapping of
pages of storage may be performed by the operating system
without the user’s knowledge.

[0005] Programs use addresses (or virtual addresses) to
access virtual storage. The program may fetch instructions
from virtual storage or load data or store data from virtual
storage using virtual addresses. The virtual addresses asso-
ciated with a range of virtual storage define an address
space. With appropriate support by an operating system, the
dynamic address translation facility may be used to provide
a number of address spaces. These address spaces may be
used to provide degrees of isolation between users. Such
support can consist of completely different address space for
each user, thus providing complete isolation, or a shared area
may be provided by mapping a portion of each address space
to a single common storage area. Also, instructions are
provided which permit a semi-privileged program to access
more than one such address space.

[0006] Dynamic address translation provides for the trans-
lation of virtual addresses from multiple different address
spaces. On an IBM® System z processor, for example, these
address spaces are called primary address space, secondary
address space, and Access Register specified address spaces.
A privileged program can also cause the home address space
to be accessed. Dynamic address translation may be speci-
fied for instruction and data addresses generated by the CPU.
[0007] As is common in the art, DAT is performed by
using successive portions of the virtual address as indices to
select entries in a series of translation tables (for example,
region first, region second, region third, segment and page
tables). Each intermediate table entry, if marked valid,
contains the origin, offset and length of the next-lower-level
table, which is then indexed by the next portion of the virtual
address, until a “leaf” entry is reached, containing a real or
absolute frame address. The remaining portion of the virtual
address is then used as a byte index into that frame to
complete the translation result.

[0008] Virtualization is used to improve efficiency and
flexibility in computing environments. Prior to virtualiza-
tion, a single operating system typically ran in a machine. In
a virtualized environment, a hypervisor program or host is in
control of machine resources. This host creates multiple
virtual machines, containers in which separate, independent
operating system instances, called guests, can run, sharing
resources such as processors and memory under control of
the host.

[0009] In a pageable-guest (virtual machine) environment
on, for example, an IBM® System z processor, dynamic
address translation occurs at two levels: a guest virtual page
is backed by a guest real frame, and these guest frames are
in turn represented as host virtual memory, divided into host
virtual pages which are backed by host real frames. Since
address translation is managed independently by guest and
host, a guest frame of either size may be mapped into host
virtual area comprised of pages of either size. Thus, a guest
frame might consist of one host page, many host pages (large
guest frame in small host pages), or a portion of a host page
(small guest frames in a large host page). Memory can be
managed more efficiently, and the translation lookaside
buffer (TLB) in the machine can be used more efficiently,
when the host uses the same size page as the guest frame it
backs. So, for example, a guest 1 Megabyte frame is treated
as a unit by the guest, and should be backed by a host 1

US 2018/0081800 A9

Megabyte frame, rather than 256 separately paged 4 Kilo-
byte frames. This allows a single TLB entry to map the
entire megabyte of guest virtual addresses to the correspond-
ing host absolute addresses.

[0010] In order that the host page size conforms to the
guest frame size, the host must be able to determine what
size frames the guest intends to use in different areas of guest
memory. In some cases, the guest may utilize a frame
management instruction which indicates the intended guest
frame size, and handling of that instruction by the firmware
or the host can then provide a host frame conforming in size
to back the guest frame. However, if the guest does not use
this instruction at time of deployment, or if it later changes
the frame size, host and guest sizes may no longer conform.
In particular, if the host has paged out a portion of guest
memory and the guest then references it, a host translation
exception ensues, so that the host has the opportunity to
provide backing memory with the preferred guest frame
contents. This interruption affords an additional opportunity
for the host to assign a frame conforming in size to the guest
frame.

[0011] What is needed is an enhanced dynamic address
translation facility which provides additional functionality,
heretofore unknown to this art, which effectively and effi-
ciently informs the host processor to allocate a properly
sized frame with which to back the guest frame in response
to whether the interruption was caused by executing in a host
or guest configuration and, if in a guest configuration,
whether the interruption pertains to a guest large or small
frame identified by a leaf guest DAT-table entry, or to a guest
frame referenced in some other way.

SUMMARY OF THE INVENTION

[0012] What is provided are a system, method, and com-
puter program product, providing a translation exception
qualifier for a dynamic address translation facility which
translates a virtual address into a real or absolute address of
a block of data in main storage of a computer system having
a machine architecture.

[0013] Inoneexample embodiment, a virtual address to be
translated is obtained. An origin address of a first translation
table of a hierarchy of translation tables used in translation
is obtained. The hierarchy of translation tables consists of
one or more of a region first table, a region second table, a
region third table, a segment table, and optionally a page
table. Dynamic address translation of the virtual address into
a real or absolute address of a block of data in main storage
proceeds. If translation cannot be completed, for example, if
one of the table entries needed for the translation is marked
invalid, then a translation exception interruption occurs. In
response to a host translation exception interruption event
having occurred during translation of the virtual address,
bits are stored in a translation exception qualifier to indicate
that the translation exception was one of a host DAT
exception having occurred while running a host program,
and a host DAT exception having occurred while running a
guest program. The TXQ field is capable of also indicating
that the translation exception was a guest DAT exception
having occurred while running the guest program; that the
host DAT exception pertained to an address derived from a
guest leaf table entry; that the host DAT exception pertained
to an address derived from a guest page frame real address;
and that the host DAT exception pertained to an address
derived from a guest segment frame absolute address. The

Mar. 22, 2018

TXQ field is capable of further indicating a size of a guest
frame to which the host DAT exception pertains and that a
larger or smaller frame size is needed, so that the host or
firmware can provide a proper size of host frame with which
to back a guest frame. Other embodiments are provided.
[0014] The invention will next be described in connection
with certain illustrated embodiments. It should be under-
stood that various changes and modifications can be made
by those skilled in the art without departing from the spirit
or scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The accompanying figures, where like reference
numerals refer to identical or functionally similar elements
throughout the separate views and which together with the
detailed description below are incorporated in and form part
of the specification, serve to further illustrate various
embodiments and to explain various principles and advan-
tages all in accordance with the present invention.

[0016] FIG. 1 illustrates one embodiment of a prior art
host computer system wherein guest and host enhanced
dynamic address translation will be performed;

[0017] FIG. 2 provides an example prior art emulated host
computer system that emulates the host computer system of
a host architecture;

[0018] FIG. 3 illustrates one prior art embodiment of how
the program status word is used to determine the effective
ASCE for dynamic address translation of the virtual address;
[0019] FIG. 4 illustrates one prior art embodiment wherein
the effective ASCE determined in FIG. 3 is used to deter-
mine the highest translation table in the hierarchy of trans-
lation tables used in translation of the virtual address;
[0020] FIG. 5A illustrates one embodiment of the process
of dynamic address translation of a virtual address using a
hierarchy of translation tables to the segment table level;
[0021] FIG. 5B illustrates a continuation of the dynamic
address translation of FIG. 5A wherein the Segment Table
Entry (STE) format control (FC) is zero;

[0022] FIG. 5C illustrates a continuation of the dynamic
address translation of FIG. 5A wherein the Segment Table
Entry (STE) format control (FC) is one;

[0023] FIG. 6 illustrates a flow diagram of one embodi-
ment of enhanced dynamic address translation (EDAT) at
the guest level to obtain a format control field in a segment
table entry;

[0024] FIG. 7 illustrates a continuation of the flow dia-
gram from node 630 of FIG. 6 when the guest STE format
control is zero;

[0025] FIG. 8 illustrates a continuation of the flow dia-
gram from node 632 of FIG. 6 when the guest STE format
control is one;

[0026] FIG. 9 illustrates a flow diagram of one embodi-
ment of EDAT at the host level, which may be invoked from
the guest EDAT process, to obtain a format control field in
a host segment table entry;

[0027] FIG. 10 illustrates a continuation of the flow dia-
gram from node 928 of FIG. 9 when the host STE format
control is zero;

[0028] FIG. 11 illustrates a continuation of the flow dia-
gram from node 930 of FIG. 9 when the host STE format
control is one; and

[0029] FIG. 12 illustrates the relationship between real
and absolute addresses.

US 2018/0081800 A9

DETAILED DESCRIPTION

[0030] It should be understood that statements made in the
specification of the present application do not necessarily
limit any of the various claimed inventions. Moreover, some
statements may apply to some inventive features but not to
others. Unless otherwise indicated, singular elements may
be in the plural and vice versa with no loss of generality.
[0031] One of ordinary skill in this art would be readily
familiar with addressing storage in a computing environ-
ment and using bits in a register or address field to indicate
differing states and acting on those states. Further, one of
ordinary skill in this art would be knowledgeable in the art
of computer software and knowledgeable about the work-
ings and interrelationships between components of com-
puter systems sufficient to implement the teachings hereof in
their own computing environments without undue experi-
mentation.

OVERVIEW

[0032] What is provided is an example embodiment of an
enhanced Dynamic Address Translation (DAT) facility.
When the enhanced DAT facility is installed and enabled,
DAT translation may produce either a page frame real
address or a segment frame absolute address, determined by
the Segment Table Entry (STE) format control in the seg-
ment table entry. As used herein, the term “enhanced DAT
applies” means all of the following are true: 1) The EDAT
facility is installed; 2) The EDAT facility is enabled via
control register 0 (CRO) bit 40; and, 3) The address is
translated by means of DAT-table entries.

[0033] When enhanced DAT applies, the following addi-
tional function is available in the DAT process:

[0034] A DAT protection bit is added to region table
entries, providing function similar to the DAT protec-
tion bits in the segment and page table entries.

[0035] A STE format control is added to the segment
table entry. When the STE format control is zero, DAT
proceeds as is currently defined, except that a change
recording override in the page table entry indicates
whether setting of the change bit may be bypassed for
the page.

[0036] When the STE format control is one, the seg-
ment table entry also contains the following:

[0037] A segment frame absolute address (rather than
a page table origin) specifying the absolute storage
location of the 1 Megabyte block.

[0038] Access control bits and a fetch protection bit
which optionally may be used in lieu of the corre-
sponding bits in the segment’s individual storage
keys.

[0039] A bit which determines the validity of the
access control bits and the fetch protection bit in the
segment table entry.

[0040] A change recording override which indicates
whether setting of the change bit may be bypassed in
the segment’s individual storage keys.

[0041] A translation-exception qualifier (TXQ) is stored
when a DAT exception interruption occurs, to provide
details as to the execution environment (host or guest)
in which the exception occurred, and the source of the
address that was being translated.

Mar. 22, 2018

Host Computer System

[0042] An emulated system includes an emulator program
which emulates a computer system that can provide both a
host architecture and an interpretive-execution capability.
The emulated system memory may contain both host and
pageable guests. A host program running in an emulated host
architecture can Start Interpretive Execution of a guest
program, which then runs under emulation of the interpre-
tive-execution facility. One example of an interpretive-
execution facility and a Start Interpretive Execution (SIE)
instruction for executing pageable guests is described in
“IBM® System/370 Extended Architecture”, IBM® Pub.
No. SA22-7095 (1985), which is incorporated herein by
reference in its entirety.

[0043] Reference is now being made to FIG. 1 which
illustrates one embodiment of a host computer system 100
wherein guest and host enhanced dynamic address transla-
tion will be performed Host computing environment 100 is
preferably based on the z/Architecture® offered by Interna-
tional Business Machines Corporation (IBM), Armonk, N.Y.
The z/Architecture® is more fully described in: “z/Archi-
tecture® Principles of Operation”, IBM® Pub. No. SA22-
7832-05, 6™ Edition, (April 2007), which is incorporated by
reference herein in its entirety. Computing environments
based on the 7/Architecture® include, for example, eServer
and zSeries®, both by IBM®.

[0044] Computing environment 100 includes a central
processor complex (CPC) 102 providing virtual machine
support. CPC 102 includes, for instance, one or more virtual
machines 104, one or more processors 106, at least one host
108 (e.g., a control program such as a hypervisor), and an
input/output subsystem 110. The virtual machine support of
the CPC provides the ability to operate large numbers of
virtual machines, each capable of hosting a guest operating
system 112, such as Linux.

[0045] Each virtual machine is capable of functioning as a
separate system. That is, each virtual machine can be inde-
pendently reset, host contain a guest operating system, and
operate with different programs. An operating system or
application program running in a virtual machine appears to
have access to a full and complete system, but in reality, only
a portion of it is available.

[0046] In this particular example, the model of virtual
machines is a V=V model, in which the memory of a virtual
machine is backed by virtual memory, instead of real
memory. Each virtual machine has a virtual linear memory
space. The physical resources are owned by the host, and the
shared physical resources are dispatched by the host to the
guest operating systems, as needed, to meet their processing
demands. This V=V virtual machine model assumes that the
interactions between the guest operating systems and the
physical shared machine resources are controlled by the
host, since the large number of guests typically precludes the
host from simply partitioning and assigning the hardware
resources to the configured guests. One or more aspects of
the V=V model are more fully described in: “z/VM: Running
Guest Operating Systems”, IBM® Pub. No. SC24-5997-02,
(2001), which is hereby incorporated herein by reference in
its entirety.

[0047] Central processors 106 are physical processor
resources that are assignable to a virtual machine. For
instance, virtual machine 104 includes one or more virtual
processors, each of which represents all or a share of a
physical processor resource that may be dynamically allo-

US 2018/0081800 A9

cated to the virtual machine. Virtual machines are managed
by the host. The host may be implemented in microcode
running on one or more processors or be part of a host
operating system executing on the machine. In one example,
the host is a VM hypervisor such as z’VM® offered by
IBM®. One embodiment of zZVM® is more fully described
in: “z/VM: General Information Manual”, IBM® Pub. No.
GC24-5991-04, (2001), which is hereby incorporated herein
by reference in its entirety.

[0048] Input/output system 110 directs the flow of infor-
mation between devices and main storage. It is coupled to
the central processing complex. It can be part of the central
processing complex or separate therefrom. The I/O subsys-
tem relieves the central processors of the task of communi-
cating directly with the /O devices coupled to CPC and
permits data processing to proceed concurrently with 1/O
processing.

[0049] The Central Processors 106 may have a Dynamic
Address Translation (DAT) facility (function or unit) for
transforming program addresses (virtual addresses) into real
address of memory. A DAT facility typically includes a
translation lookaside buffer for caching translations so that
later accesses to the block of computer memory do not
require the delay of address translation. Typically a cache is
employed between the computer memory and the processor.
The cache may be hierarchical having a large cache avail-
able to more than one CPU and smaller, faster (lower level)
caches between the large cache and each CPU. In some
implementations the lower level caches are split to provide
separate low level caches for instruction fetching and data
accesses. In an embodiment, an instruction is fetched from
memory by an instruction fetch unit via a cache. The
instruction is decoded in an instruction decode unit and
dispatched (with other instructions in some embodiments) to
instruction execution units. Typically several execution units
are employed, for example an arithmetic execution unit, a
floating point execution unit and a branch instruction execu-
tion unit. The instruction is executed by the execution unit,
accessing operands from instruction specified registers or
memory as needed. If an operand is to be accessed (loaded
or stored) from memory, a load store unit typically handles
the access under control of the instruction being executed.
[0050] In an embodiment, the invention may be practiced
by software (sometimes referred to Licensed Internal Code
(LIC), firmware, micro-code, milli-code, pico-code and the
like, any of which would be consistent with the present
invention). Software program code which embodies the
present invention is typically accessed by the processor also
known as a CPU (Central Processing Unit) of computer
system from a long term storage media, such as a CD-ROM
drive, tape drive or hard drive. The software program code
may be embodied on any of a variety of known media for use
with a data processing system, such as a diskette, hard drive,
or CD-ROM. The code may be distributed on such media, or
may be distributed to users from the computer memory or
storage of one computer system over a network to other
computer systems for use by users of such other systems.

[0051] Alternatively, the program code may be embodied
in the memory, and accessed by the processor using the
processor bus. Such program code includes an operating
system which controls the function and interaction of the
various computer components and one or more application
programs. Program code is normally paged from dense
storage media to a high speed memory where it is available

Mar. 22, 2018

for processing by the processor. The techniques and methods
for embodying software program code in memory, on physi-
cal media, and/or distributing software code via networks
are well known and will not be further discussed herein.
Program code, when created and stored on a tangible
medium (including but not limited to electronic memory
modules (RAM), flash memory, compact discs (CDs),
DVDs, magnetic tape and the like is often referred to as a
“computer program product”. The computer program prod-
uct medium is typically readable by a processing circuit
preferably in a computer system for execution by the pro-
cessing circuit.

[0052] Another example of a computing environment to
incorporate one or more aspects of the present invention is
depicted in FIG. 2. In this example, an emulated host
computer system 200 is provided that emulates a host
computer system 202 of a host architecture. Emulated host
processor 204 (or virtual host processor) is realized through
an emulation processor 206 having a different native instruc-
tion set architecture than used by the processors of the host
computer. Emulated host computer system has memory 208
accessible to emulation processor 206. In the example
embodiment, memory 208 is partitioned into a host com-
puter memory 210 portion and an emulation routines 212
portion. Host computer memory 210 is available to pro-
grams of emulated host computer 202 and may contain both
a host or hypervisor 214 and one or more virtual machines
216 running guest operating systems 218, analogous to the
like-named elements in FIG. 1. Emulation processor 206
executes native instructions of an architected instruction set
of an architecture other than that of the emulated processor;
the native instructions are obtained, for example, from
emulation routines memory 212. Emulation processor 206
may access a host instruction for execution from a program
in host computer memory 210 by employing one or more
instruction(s) obtained in a sequence & access/decode rou-
tine which may decode the host instruction(s) accessed to
determine a native instruction execution routine for emulat-
ing the function of the host instruction accessed. One such
host instruction may be, for example, a Start Interpretive
Execution (SIE) instruction, by which the host seeks to
execute a program in a virtual machine. The emulation
routines 212 may include support for this instruction, and for
executing a sequence of guest instructions in a virtual
machine in accordance with the definition of this SIE
instruction.

[0053] Other facilities that are defined for the host com-
puter system architecture may be emulated by architected
facilities routines, including such facilities as general pur-
pose registers, control registers, dynamic address transla-
tion, and /O subsystem support and processor cache for
example. The emulation routines may also take advantage of
functions available in the emulation processor 206 (such as
general registers and dynamic translation of virtual
addresses) to improve performance of the emulation rou-
tines. Special hardware and offload engines may also be
provided to assist the processor in emulating the function of
the host computer. The host computer, in one embodiment,
is in communication with a variety of known storage media
220, such as, for example, a diskette, hard drive, or CD-
ROM. Software program code may be distributed on such
media or may be distributed to users over a network 222.

US 2018/0081800 A9

Computer Processor and Registers

[0054] In an embodiment, a CPU’s program instruction
functionality communicates with a plurality of registers over
a communication bus. The communication bus may be
internal or external to the CPU. Some registers may be read
only. Other hardware and/or software may also read/write to
one or more of the registers accessible by the CPU. An
instruction operation code (opcode) determines which type
of register is to be used in any particular machine instruction
operation.

General Registers

[0055] Instructions may designate information in one or
more of 16 general registers. The general registers may be
used as base address registers and index registers in address
arithmetic and as accumulators in general arithmetic and
logical operations. Each register contains 64 bit positions.
The general registers are identified by the numbers 0-15 and
are designated by a four bit R field in an instruction. Some
instructions provide for addressing multiple general regis-
ters by having several R fields. For some instructions, the
use of a specific general register is implied rather than
explicitly designated by an R field of the instruction.

[0056] For some operations, either bits 32-63 or bits 0-63
of two adjacent general registers are coupled, providing a
64-bit or 128-bit format, respectively. In these operations,
the program must designate an even numbered register,
which contains the leftmost (high order) 32 or 64 bits. The
next higher numbered register contains the rightmost (low
order) 32 or 64 bits. In addition to their use as accumulators
in general arithmetic and logical operations, 15 of the 16
general registers are also used as base address and index
registers in address generation. In these cases, the registers
are designated by a four bit B field or X field in an
instruction. A value of zero in the B or X field specifies that
no base or index is to be applied, and, thus, general register
0 cannot be designated as containing a base address or index.

Control Registers

[0057] The control registers provide for maintaining and
manipulating control information outside the program status
word. The CPU has 16 control registers, each having 64 bit
positions. The bit positions in the registers are assigned to
particular facilities in the system, such as program event
recording, and are used either to specify that an operation
can take place or to furnish special information required by
the facility. The control registers are identified by the
numbers 0-15 and are designated by four bit R fields in the
instructions LOAD CONTROL and STORE CONTROL.
Multiple control registers can be addressed by these instruc-
tions.

Control Register 1

[0058] Control register 1 contains the Primary Address
Space Control Element (PASCE). In one embodiment, con-
trol register 1 has one of the following two formats, depend-
ing on the real space control bit (R) in the register:

[0059] Primary Region-Table or

[0060] Segment-Table Designation (R=0)

| Primary Region-Table or Segment-Table Origin
0 31

Primary Region-Table or
Segment-Table Origin (continued)

32 52 54 5556 57 58 59 60 62 63

Mar. 22, 2018

[0061] Primary Real-Space Designation (R=1)

| Primary Real-Space Token Origin |
0 31

G[p[s]x]r

|Prima.ry Real-Space Token Origin (cont) |

32 52 54 5556 57 58 59 63

Format of Control Register 1

[0062] Selected fields in the Primary Address Space Con-
trol Element (PASCE) are allocated as follows:

[0063] Primary Region Table or Segment Table Origin:
[0064] Bits 0-51 of the primary region table or segment
table designation in control register 1, with 12 zeros
appended on the right, form a 64-bit address that designates
the beginning of the primary region table or segment table.
It is unpredictable whether the address is real or absolute.
This table is called the primary region table or segment table
since it is used to translate virtual addresses in the primary
address space.

[0065] Primary Real Space Control (R):

[0066] If bit 58 of control register 1 is zero, the register
contains a region table or segment table designation. If bit 58
is one, the register contains a real space designation. When
bit 58 is one, a one value of the common segment bit in a
translation lookaside buffer representation of a segment
table entry prevents the entry and the translation lookaside
buffer page table copy it designates from being used when
translating references to the primary address space, even
with a match between the token origin in control register 1
and the table origin in the translation lookaside buffer entry.
[0067] Primary Designation Type Control (DT):

[0068] When R is zero, the type of table designation in
control register 1 is specified by bits 60 and 61 in the
register, as follows:

Bits 60 and 61 Designation Type
11 Region-first-table
10 Region-second-table
01 Region-third-table
00 Segment-table

Primary Designation Type (DT) Control Bits

[0069] When R is zero, bits 60 and 61 must be 11 binary
when an attempt is made to use the PASCE to translate a
virtual address in which the leftmost one bit is in bit
positions 0-10 of the address. Similarly, bits 60 and 61 must
be 11 or 10 binary when the leftmost one bit is in bit
positions 11-21 of the address, and they must be 11, 10, or
01 binary when the leftmost one bit is in bit positions 22-32
of the address. Otherwise, an ASCE-type exception is rec-

ognized.

[0070] Primary Region Table or Segment Table Length
(TL):

[0071] Bits 62 and 63 of the primary region table desig-

nation or segment table designation in control register 1
specify the length of the primary region table or segment
table in units of 4,096 bytes, thus making the length of the
region table or segment table variable in multiples of 512

US 2018/0081800 A9

entries. The length of the primary region table or segment
table, in units of 4,096 bytes, is one more than the TL value.
The contents of the length field are used to establish whether
the portion of the virtual address (RFX, RSX, RTX, or SX)
to be translated by means of the table designates an entry
that falls within the table.

[0072] Primary Real Space Token Origin:

[0073] Bits 0-51 of the primary real space designation in
control register 1, with 12 zeros appended on the right, form
a 64-bit address that may be used in forming and using
translation lookaside buffer entries that provide a virtual
equals real translation for references to the primary address
space. Although this address is used only as a token and is
not used to perform a storage reference, it still must be a
valid address; otherwise, an incorrect translation lookaside
buffer entry may be used when the contents of control
register 1 are used.

[0074] The following bits of control register 1 are not
assigned and are ignored: bits 52, 53, and 59 if the register
contains a region table designation or segment table desig-
nation, and bits 52, 53 and 59-63 if the register contains a
real space designation.

Control Register 7

[0075] Control register 7 contains the Secondary Address
Space Control Element (SASCE). In one embodiment, con-
trol register 7 has one of the following two formats, depend-
ing on the real space control bit (R) in the register:

[0076] Secondary Region-Table or

[0077] Segment-Table Designation (R=0)

| Secondary Region-Table or Segment-Table Origin
0 31

Secondary Region-Table or

Segment-Table Origin (continued) L
32 52 54 5556 57 58 59 62 63
[0078] Secondary Real-Space Designation (R=1)

| Secondary Real-Space Token Origin |
0 31

[[ps

| Secondary Real-Space Token Origin (cont)|

32 52 54 55 56 57 58 59 63

Format of Control Register 7

Control Register 13

[0079] Control register 13 contains the Home Address
Space Control Element (HASCE). In one embodiment,
control register 13 has one of the following two formats,
depending on the real space control bit (R) in the register:

[0080] Home Region-Table or
[0081] Segment-Table Designation (R=0)
| Home Region-Table or Segment-Table Origin
0 31
Home Region-table or
Segment-table Origin (cont.)
32 52 5556 57 5859 60 62 63

Mar. 22, 2018

[0082] Home Real-Space Designation (R=1)

| Home Real-Space Token Origin |
0 31

[sK]

|Home Real-Space Token Orgin (cont.)

32 52 55 56 57 58 59 63

Format of Control Register 13

Access Registers

[0083] The CPU has 16 access registers numbered 0-15.
An access register consists of 32 bit positions containing an
indirect specification of an ASCE. An ASCE is a parameter
used by the dynamic address translation (DAT) mechanism
to translate references to a corresponding address space.
When the CPU is in a mode called the access register mode
(controlled by bits in the program status word), an instruc-
tion B field, used to specify a logical address for a storage
operand reference, designates an access register, and the
ASCE specified by the access register is used by DAT for the
reference being made. For some instructions, an R field is
used instead of a B field. Instructions are provided for
loading and storing the contents of the access registers and
for moving the contents of one access register to another.
[0084] Each of access registers 1-15 can designate any
address space, including the current instruction space (the
primary address space). Access register 0 designates the
primary instruction space. When one of access registers 1-15
is used to designate an address space, the CPU determines
which address space is designated by translating the contents
of the access register. When access register 0 is used to
designate an address space, the CPU treats the access
register as designating the primary instruction space, and it
does not examine the actual contents of the access register.
Therefore, the 16 access registers can designate, at any one
time, the primary instruction space and a maximum of 15
other spaces.

Program Status Word (PSW)

[0085] The program status word includes the instruction
address, condition code, and other information used to
control instruction sequencing and to determine the state of
the CPU. The active or controlling program status word is
called the current program status word. It governs the
program currently being executed.

[0086] The CPU has an interruption capability, which
permits the CPU to switch rapidly to another program in
response to exceptional conditions and external stimuli.
When an interruption occurs, the CPU places the current
program status word in an assigned storage location, called
the old program status word location, for the particular class
of interruption. The CPU fetches a new program status word
from a second assigned storage location. This new program
status word determines the next program to be executed.
When it has finished processing the interruption, the pro-
gram handling the interruption may reload the old program
status word, making it again the current program status
word, so that the interrupted program can continue.

[0087] There are six classes of interruption: external, /O,
machine check, program, restart, and supervisor call. Each

US 2018/0081800 A9

class has a distinct pair of old program status word and new
program status word locations permanently assigned in real
storage.

Current Program Status Word

[0088] The current program status word in the CPU con-
tains information required for the execution of the currently
active program. The program status word is 128 bits in
length and includes the instruction address, condition code,
and other control fields. In general, the program status word
is used to control instruction sequencing and to hold and
indicate much of the status of the CPU in relation to the
program currently being executed. Additional control and
status information is contained in control registers and
permanently assigned storage locations. The status of the
CPU can be changed by loading a new program status word
or part of a program status word.

[0089] Control is switched during an interruption of the
CPU by storing the current program status word, so as to
preserve the status of the CPU, and then loading a new
program status word. Execution of LOAD PSW or LOAD
PSW EXTENDED, or the successful conclusion of the
initial program loading sequence, introduces a new program
status word. The instruction address is updated by sequential
instruction execution and replaced by successful branches.
Other instructions are provided which operate on a portion
of the program status word.

[0090] A new or modified program status word becomes
active (that is, the information introduced into the current
program status word assumes control over the CPU) when
the interruption or the execution of an instruction that
changes the program status word is completed. The inter-
ruption for Program Event Recording (PER) associated with
an instruction that changes the program status word occurs
under control of the PER mask that is effective at the
beginning of the operation. Bits 0-7 of the program status
word are collectively referred to as the system mask. In one
embodiment, the program status word has the following
format:

olRlo oo || E key|oMwlp|as|ccFE |00 000 00| E

ofx| ™Y Mask A

01 2 56 7 8 12 13 141516 20 24 31
B

A |0000000000000000000000000000000

32 33 63

| Instruction Address |
64 95

| Instruction Address (Continued) |
96 127

Program Status Word Format

[0091] The following is a brief summary of the functions
of selected program status word fields.

[0092] DAT Mode (T):

[0093] Bit 5 controls whether implicit dynamic address
translation of logical and instruction addresses used to
access storage takes place. When bit 5 is zero, DAT is off and
logical and instruction addresses are treated as real

Mar. 22, 2018

addresses. When bit 5 is one, DAT is on, and the dynamic
address translation mechanism is invoked.

[0094] PSW Key:

[0095] Bits 8-11 form the access key for storage references
by the CPU. If the reference is subject to key controlled
protection, the PSW Key is matched with a storage key when
information is stored or when information is fetched from a
location that is protected against fetching. However, for one
of the operands of each of MOVE TO PRIMARY, MOVE
TO SECONDARY, MOVE WITH KEY, MOVE WITH
SOURCE KEY, and MOVE WITH DESTINATION KEY,
an access key specified as an operand is used instead of the
PSW Key.

[0096] Address Space Control (AS):

[0097] Bits 16 and 17, in conjunction with Program Status
Word bit 5, control the translation mode.

[0098] Condition Code (CC):

[0099] Bits 18 and 19 are the two bits of the condition
code. The condition code is set to 0, 1, 2, or 3, depending on
the result obtained in executing certain instructions. Most
arithmetic and logical operations, as well as some other
operations, set the condition code. The instruction
BRANCH ON CONDITION can specify any selection of
the condition code values as a criterion for branching.
[0100] Instruction Address:

[0101] Bits 64-127 of the program status word are the
instruction address. This address designates the location of
the leftmost byte of the next instruction to be executed,
unless the CPU is in the wait state (bit 14 of the program
status word is one).

Address Types & Formats

[0102] For purposes of addressing main storage, three
basic types of addresses are recognized: absolute, real, and
virtual. The addresses are distinguished on the basis of the
transformations that are applied to the address during a
storage access. Address translation converts a virtual address
to a real address. Prefixing converts a real address to an
absolute address. In addition to the three basic address types,
additional types are defined which are treated as one or
another of the three basic types, depending on the instruction
and the current mode.

Absolute Address

[0103] An absolute address is the address assigned to a
main storage location. An absolute address is used for a
storage access without any transformations performed on it.
The channel subsystem and all CPUs in the configuration
refer to a shared main storage location by using the same
absolute address. Available main storage is usually assigned
contiguous absolute addresses starting at 0, and the
addresses are assigned in complete 4 Kilobyte blocks on
integral boundaries. An exception is recognized when an
attempt is made to use an absolute address in a block which
has not been assigned to physical locations. On some
models, storage reconfiguration controls may be provided
which permit the operator to change the correspondence
between absolute addresses and physical locations. How-
ever, at any one time, a physical location is not associated
with more than one absolute address. Storage consisting of
byte locations sequenced according to their absolute
addresses is referred to as absolute storage.

US 2018/0081800 A9

Real Address

[0104] A real address identifies a location in real storage.
When a real address is used for an access to main storage,
it is converted, by means of prefixing, to form an absolute
address. At any instant there is one real address to absolute
address mapping for each CPU in the configuration. When
a real address is used by a CPU to access main storage, it
may be converted to an absolute address by prefixing. The
particular transformation is defined by the value in the prefix
register for the CPU. Storage consisting of byte locations
sequenced according to their real addresses is referred to as
real storage.

Virtual Address

[0105] A virtual address identifies a location in virtual
storage. When a virtual address is used for an access to main
storage, it is translated by means of dynamic address trans-
lation, either to a real address which may be subject to
prefixing to form an absolute address, or directly to an
absolute address.

Primary Virtual Address

[0106] A primary virtual address is a virtual address which
is to be translated by means of the Primary Address Space
Control Element (PASCE). Logical addresses are treated as
primary virtual addresses when in the primary space mode.
Instruction addresses are treated as primary virtual addresses
when in the primary space mode, secondary space mode, or
access register mode. The first operand address of MOVE
TO PRIMARY and the second operand address of MOVE
TO SECONDARY are treated as primary virtual addresses.
In addition, when a pageable guest is executing, the main
storage (memory) which the guest views as absolute storage
is represented in the host’s primary address space; that is,
guest absolute addresses are treated as host primary virtual
addresses.

Secondary Virtual Address

[0107] A secondary virtual address is a virtual address
which is to be translated by means of the Secondary Address
Space Control Element (SASCE). Logical addresses are
treated as secondary virtual addresses when in the secondary
space mode. The second operand address of MOVE TO
PRIMARY and the first operand address of MOVE TO
SECONDARY are treated as secondary virtual addresses.

AR Specified Virtual Address

[0108] An AR specified virtual address is a virtual address
which is to be translated by means of an Access Register-
specified Address Space Control Element. Logical addresses
are treated as AR specified addresses when in the access
register mode.

Home Virtual Address

[0109] A home virtual address is a virtual address which is
to be translated by means of the Home Address Space
Control Element (HASCE). Logical addresses and instruc-
tion addresses are treated as home virtual addresses when in
the home space mode.

Mar. 22, 2018

Instruction Address

[0110] Addresses used to fetch instructions from storage
are called instruction addresses. Instruction addresses are
treated as real addresses in the real mode, as primary virtual
addresses in the primary space mode, secondary space
mode, or access register mode, and as home virtual
addresses in the home space mode. The instruction address
in the current program status word and the target address of
EXECUTE are instruction addresses.

Effective Address

[0111] In some situations, it is convenient to use the term
“effective address.” An effective address is the address
which exists before any transformation by dynamic address
translation or prefixing is performed. An effective address
may be specified directly in a register or may result from
address arithmetic. Address arithmetic is the addition of the
base and displacement or of the base, index, and displace-
ment.

Prefixing

[0112] Prefixing provides the ability to assign the range of
real addresses 0-8191 to a different block in absolute storage
for each CPU, thus permitting more than one CPU sharing
main storage to operate concurrently with a minimum of
interference, especially in the processing of interruptions.
Prefixing causes real addresses in the range 0-8191 to
correspond one-for-one to the block of 8K byte absolute
addresses (the prefix area) identified by the value in bit
positions 0-50 of the prefix register for the CPU, and the
block of real addresses identified by that value in the prefix
register to correspond one-for-one to absolute addresses
0-8191. The remaining real addresses are the same as the
corresponding absolute addresses. This transformation
allows each CPU to access all of main storage, including the
first 8K bytes and the locations designated by the prefix
registers of other CPUs.

[0113] The prefix is a 51-bit quantity contained in bit
positions 0-50 of the prefix register. In one embodiment, the
prefix register has the following format:

|00000000000000000000000000000000|
0 31

o] Prefix Bits 33-50 FHT]
3233 51 63

Format of Prefix Register

[0114] When prefixing is applied, the real address is
transformed into an absolute address by using one of the
following rules, depending on bits 0-50 of the real address:
[0115] 1. Bits 0-50 of the address, if all zeros, are
replaced with bits 0-50 of the prefix.
[0116] 2. Bits 0-50 of the address, if equal to bits 0-50
of the prefix, are replaced with zeros.
[0117] 3. Bits 0-50 of the address, if not all zeros and
not equal to bits 0-50 of the prefix, remain unchanged.
[0118] Only the address presented to storage is translated
by prefixing. The contents of the source of the address
remain unchanged.

US 2018/0081800 A9

[0119] The distinction between real and absolute
addresses is made even when the prefix register contains all
zeros, in which case a real address and its corresponding
absolute address are identical.
Relationship between Real and Absolute Addresses
[0120] The relationship between real and absolute
addresses is graphically depicted in (1) and (2) in FIG. 12,
wherein:
[0121] (1) Real addresses in which bits 0-50 are equal
to bits 0-50 of the prefix for this CPU (A or B)
[0122] (2) Absolute addresses of the block that contains
for this CPU (A or B) the real locations 0-8191.

Address Spaces

[0123] An address space is a consecutive sequence of
integer numbers (virtual addresses); together with the spe-
cific transformation parameters which allow each number to
be associated with a byte location in storage. The sequence
starts at zero and proceeds left to right.

[0124] When a virtual address is used by a CPU to access
main storage, it is first converted, by means of dynamic
address translation (DAT), to a real or absolute address. A
real address may be further subjected to prefixing to form an
absolute address. DAT may use a region first table, region
second table, region third table, segment table, and a page
table as transformation parameters. The designation (origin
and length) of the highest level table for a specific address
space is called an Address Space Control Element (ASCE),
and it is found for use by DAT in a control register or as
specified by an access register. Alternatively, the ASCE for
an address space may be a real space designation, which
indicates that DAT is to translate the virtual address simply
by treating it as a real address and without using any tables.
[0125] DAT uses, at different times, the ASCE in different
control registers or specified by the access registers. The
choice is determined by the translation mode specified in the
current program status word. Four translation modes are
available: primary space mode, secondary space mode,
access register mode, and home space mode. Different
address spaces are addressable depending on the translation
mode.

[0126] At any instant when the CPU is in the primary
space mode or secondary space mode, the CPU can translate
virtual addresses belonging to two address spaces—the
primary address space and the secondary address space. At
any instant when the CPU is in the access register mode, it
can translate virtual addresses of up to 16 address spaces—
the primary address space and up to 15 AR specified address
spaces. At any instant when the CPU is in the home space
mode, it can translate virtual addresses of the home address
space.

[0127] The primary address space is identified as such
because it consists of primary virtual addresses, which are
translated by means of the Primary Address Space Control
Element (PASCE). Similarly, the secondary address space
consists of secondary virtual addresses translated by means
of'the Secondary Address Space Control Element (SASCE).
The AR specified address spaces consist of AR specified
virtual addresses translated by means of Access Register-
specified Address Space Control Element (AR specified
ASCE), and the home address space consists of home virtual
addresses translated by means of the Home Address Space
Control Element (HASCE). The primary and secondary
ASCEs are in control registers 1 and 7, respectively. The AR

Mar. 22, 2018

specified ASCEs may be in control registers 1 and 7, or in
table entries called ASN second table entries. The HASCE
is in control register 13.

Dynamic Address Translation

[0128] Dynamic address translation is the process of trans-
lating a virtual address (during a storage reference, for
example) into the corresponding main memory address (real
address or absolute address in the embodiment). The virtual
address may be a primary virtual address, secondary virtual
address, Access Register specified virtual address, or a home
virtual address. These addresses are translated by means of
the PASCE, SASCE, AR-specified ASCE, or the HASCE,
respectively. After selection of the appropriate ASCE, the
translation process is the same for all of the four types of
virtual address.

Addressing Translation Mode

[0129] An effective address is the address (virtual address)
which exists before any transformation by dynamic address
translation or prefixing is performed. The three bits in the
program status word that control dynamic address transla-
tion are bit 5, the DAT mode bit, and bits 16 and 17, the
address space control bits. When the DAT mode bit is zero,
then DAT is off, and the CPU is in the real mode. When the
DAT mode bit is one, then DAT is on, and the CPU is in the
translation mode designated by the address space control
bits: binary 00 designates the primary space mode, binary 01
designates the access register mode, binary 10 designates the
secondary space mode, and binary 11 designates the home
space mode. The various modes are shown below, along
with the handling of addresses in each mode.

Handling of Addresses

PSW Bit Instruction Logical
5 16 17 DAT Mode Addresses Addresses
0 0 0 Off Real mode Real Real
0 0 1 Off Real mode Real Real
0 1 0 Off Real mode Real Real
0 1 1 Off Real mode Real Real
1 0 0 On Primary-space Primary Primary
mode virtual virtual
1 0 1 On Access-register Primary AR-specified
mode virtual virtual
1 1 0 On Secondary-space Primary Secondary
mode virtual virtual
1 1 1 On Home-space mode Home Home
virtual virtual

Translation Modes

[0130] The Program Status Word is a 128 bit word which,
in part, provides 2 bits which indicate the addressing mode.
In one embodiment, bit 31 is the Extended Addressing Mode
(EA) bit and bit 32 is the Base Addressing Mode (BA) bit.
These two bits indicate the size of addresses. The state of
each of these two bits is binary (1 or 0). If the EA bit is 0
and the BA bit is O then 24-bit addressing is indicated. If
24-bit addressing is indicated, bits 40-63 of a 64-bit word (a
64-bit entity is commonly called a doubleword) is where the
address is located. Where the instruction address occupies
the second 64 bits of a 128-bit entity (a quadword), the bit

US 2018/0081800 A9

positions in the program status word are as follows. In 24-bit
mode, the instruction address is in bits 104-127 of the
program status word. In the 31-bit mode, the instruction
address is in bits 97-127 of the program status word. In
64-bit mode, the instruction address is in bits 64-127 of the
program status word. If the EA bit is 0 and the BA bit is 1
then 31-bit addressing is indicated. The appropriate 64-bit
word contains a 31-bit address located at bit positions 33-63.
If the EA bit is 1 and the BA bit is 1 then bits 0-63, which
is the entire 64-bits, of a 64-bit word contains the address.
Otherwise, an exception condition is indicated. Once the
addressing mode has been obtained, the ASCE needs to be
determined.

Address Space Control Element (ASCE)

[0131] Reference is now being made to FIG. 3 which
illustrates one embodiment of how the Program Status Word
is used to determine the effective Address Space Control
Element (ASCE) for dynamic address translation of the
virtual address. The ASCE may specify, for example, a 2
Gigabytes (Giga=2>°) address space. Or, it may specify, for
example, 4 Terabytes (Tera=2°), 8 Petabytes (Peta=2°°), or
a 16 Exabytes (Exa=2%°) address space. Or, it may specify
a real-space designation. A real space designation causes the
virtual address to be treated as a real address in storage
without referencing one or more address translation tables.
[0132] The Program Status Word 300 contains a transla-
tion (T) bit 302 and Address Space (AS) bits 304. At 306, if
the translation (T) bit is zero then the address is a real
address 326. If, at 308, the Address Space (AS) equals zero
(binary 00) then the effective ASCE for this virtual address
is the Primary Address Space Control Element (PASCE)
310. If, at 312, the Address Space (AS) equals one (binary
01) then the effective ASCE is the Access Register-specified
Address Space Control Element 314. If, at 316, an Address
Space (AS) equals two (binary 10) then the effective ASCE
is the Secondary Address Space Control Element (SASCE)
318. Otherwise, the Address Space (AS) equals three (binary
11) and the effective ASCE is the Home Address Space
Control Element (HASCE) 322.

[0133] After selection of the effective ASCE, the process
of dynamic address translation is preferably the same for all
four types of virtual addresses.

[0134] A segment table designation or region table desig-
nation causes translation to be performed by means of tables
established by the operating system in real or absolute
storage. A real space designation causes the virtual address
simply to be treated as a real address, without the use of
tables in storage.

[0135] In the process of translation when using a segment
table designation or a region table designation, three types of
units of information are recognized—regions, segments, and
pages. A region is a block of sequential virtual addresses
spanning 2 Gigabytes and beginning at a 2 Gigabyte bound-
ary. A segment is a block of sequential virtual addresses
spanning 1 Megabytes and beginning at a 1 Megabyte
boundary. A page is a block of sequential virtual addresses
spanning 4 Kilobytes and beginning at a 4 Kilobyte bound-

ary.
Virtual Address Format

[0136] Translation of a virtual address may involve refer-
encing a plurality of translation tables of a hierarchy of

Mar. 22, 2018

translation tables to obtain a real or absolute address. The
real address may be further subject to a prefixing operation
to form an absolute address. The virtual address contains
indexes to entries in translation tables in the hierarchy of
translation tables. The virtual address, accordingly, is
divided into four principal fields. Bits 0-32 are called the
region index (RX), bits 33-43 are called the segment index
(SX), bits 44-51 are called the page index (PX), and bits
52-63 are called the byte index (BX). In one embodiment,
the virtual address has the following format:

Format of the Virtual Address

[0137] As determined by its ASCE, a virtual address space
may be a 2 Gigabyte space consisting of one region, or it
may be up to a 16 Exabyte space consisting of up to 8
Gigabyte regions. The RX part of a virtual address applying
to a 2 Gigabyte address space must be all zeros; otherwise,
an exception is recognized. The RX part of a virtual address
is itself divided into three fields. Bits 0-10 are called the
region first index (RFX), bits 11-21 are called the region
second index (RSX), and bits 22-32 are called the region
third index (RTX). In one embodiment, bits 0-32 of the
virtual address have the following format:

[REX [®sx | RTX |
0 11 22 33

Format of RX of the Virtual Address

[0138] A virtual address in which the RTX is the leftmost
significant part (a 42-bit address) is capable of addressing 4
Terabytes (2048 regions), one in which the RSX is the
leftmost significant part (a 53-bit address) is capable of
addressing 8 Petabytes (4,194,304 regions), and one in
which the RFX is the leftmost significant part (a 64-bit
address) is capable of addressing 16 Exabytes (8,589,934,
592 regions).

[0139] A virtual address in which the RX is zero can be
translated into a real address by means of two translation
tables: a segment table and a page table. With the EDAT
facility enabled, the translation may be completed with only
the segment table. The RFX may be non-zero, in which case,
a region first table, region second table, and region third
table, are required. If the RFX is zero, but the RSX may be
non-zero, a region second table and region third table are
required. If the RFX and RSX are zero, but the RTX may be
non-zero, a region third table is required.

[0140] An exception is recognized if the ASCE for an
address space does not designate the highest level of table
(beginning with the region first table and continuing down-
ward to the segment table) needed to translate a reference to
the address space.

Dynamic Translation of the Virtual Address

[0141] Reference is now being made to FIG. 4 illustrating
one embodiment wherein the effective ASCE determined in

US 2018/0081800 A9

FIG. 3 is used to determine the first translation table in the
hierarchy of translation tables used in translation of the
virtual address.

[0142] In one embodiment, control register 1 (CR1) con-
tains the PASCE. Control register 7 (CR7) contains the
SASCE. Control register 13 (CR13) contains the HASCE,
and an Address-Space-Second-table Entry (ASTE) that is
derived by the Access-Register-Translation (ART) process
contains an Access Register-specified Address Space Con-
trol Element. An effective ASCE 400 is selected from one of
these locations.

[0143] A first portion of the effective ASCE 400 contains
a table origin 402 which contains an origin address desig-
nating either a region first table, a region second table, a
region third table, or a segment table. The table origin (bits
0 ...51)is appended with 12 binary zeros to form a 64-bit
origin address of the highest translation table in the hierar-
chy of translation tables to be used in translation of the
virtual address. Effective ASCE 400 also contains a real
space control (R) bit 404 and DT bits 406. If the real space
control (R) bit is zero then the DT bits are decoded by
selector 408 to determine which particular origin address is
table origin 402. If the DT bits equal three (binary 11) then
table origin 402 designates a region first table 410. If the DT
bits equal two (binary 10) then table origin 402 designates
a region second table 412. If the DT bits equal one (binary
01) then table origin 402 designates a region third table 414.
Otherwise, if the DT bits equal zero (binary 00) then table
origin 402 designates a segment table 416.

[0144] A region first table, region second table, or region
third table is sometimes referred to simply as a region table.
Similarly, a region first table designation, region second
table designation, or region third table designation is some-
times referred to as a region table designation. The region,
segment, and page tables reflect the current assignment of
real storage. Page is a term used for the assignment of virtual
storage. Real storage is allotted in fixed blocks. Pages need
not be adjacent in real storage even though assigned to a set
of sequential virtual addresses.

[0145] When the ASCE used in a translation is a region
first table designation, the translation process consists in a
multi-level lookup using, for example, a region first table, a
region second table, a region third table, a segment table,
and optionally a page table. These tables reside in real or
absolute storage. When the ASCE is a region second table
designation, region third table designation, or segment table
designation, the lookups in the levels of tables above the
designated level are omitted, and the higher level tables
themselves are omitted.

[0146] Reference is now being made to FIG. 5A illustrat-
ing one embodiment of dynamic address translation of a
virtual address using a hierarchy of translation tables.
[0147] The effective ASCE 400 of FIG. 4 contains the
Designation Type (DT) bits 406. If the real space control (R)
404 bit of the ASCE is zero then the DT bits are decoded by
selector 408 to determine which origin address table origin
402 designates. If the real space control (R) bit is one then
dynamic address translation takes place as shown at node D
564 in FIG. 5B.

[0148] If the DT bits equal three (binary 11) in selector
408 then the designated first table in the hierarchy of
translation tables is a region first table. Table origin 402 is
arithmetically added, at 502, with a Region First Index
(RFX) 508 portion of the virtual address to reference region

Mar. 22, 2018

first table entry 506 in a region first table. The table origin
(either with 12 zeros appended on the right, or multiplied by
4096) is added to the product of the index multiplied by 8 (or
the index with three zeros appended on the right). The region
first table entry contains a region second table origin 504 to
a next lower table in the hierarchy of translation tables used
in translation. The next lower table to the region first table
is the region second table. If the invalid (I) bit of the region
first table entry is equal to one then the region first table
entry is invalid and cannot be used in translation. An
exception condition is indicated.

[0149] Ifthe DT bits equal two (binary 10) in selector 408
then the designated first table in the hierarchy of translation
tables is a region second table. Table origin 402 is arith-
metically added, at 510, with a Region Second Index (RSX)
516 portion of the virtual address to reference region second
table entry 514 in a region second table. The table origin
(either with 12 zeros appended on the right, or multiplied by
4096) is added to the product of the index multiplied by 8 (or
the index with three zeros appended on the right). The region
second table entry contains a region third table origin 512 to
a next lower table in the hierarchy of translation tables used
in translation. The next lower table to the region second table
is the region third table. If the invalid (I) bit of the region
second table entry is equal to one then the region second
table entry is invalid and an exception condition is indicated.
[0150] Ifthe DT bits equal one (binary (01) in selector 408
then the designated first table in the hierarchy of translation
tables is a region third table. Table origin 402 is arithmeti-
cally added, at 518, with a Region Third Index (RTX) 524
portion of the virtual address to reference region third table
entry 522 in a region third table. The table origin (either with
12 zeros appended on the right, or multiplied by 4096) is
added to the product of the index multiplied by 8 (or the
index with three zeros appended on the right). The region
third table entry contains a segment table origin 520 to a next
lower table in the hierarchy of translation tables used in
translation. The next lower table to the region third table is
the segment table. If the invalid (I) bit of the region third
table entry is equal to one then the region third table entry
is invalid and an exception condition is indicated.

[0151] If the DT bits equal zero (binary (00) in selector
408 then the designated first table in the hierarchy of
translation tables is a segment table. Table origin 402 is
arithmetically added, at 526, with a Segment Index (SX) 532
portion of the virtual address to reference segment table
entry 530 in a segment table. The table origin (either with 12
zeros appended on the right, or multiplied by 4096) is added
to the product of the index multiplied by 8 (or the index with
three zeros appended on the right). The segment table entry
contains either an origin address to a page table or a segment
frame absolute address (SFAA), either shown at 528. If the
invalid (I) bit of the segment table entry is equal to one then
the segment table entry is invalid and an exception condition
is indicated.

[0152] At 538, the STE format control (FC) bit of the
segment table is examined. If the STE format control is one
then the segment table entry 530 contains a segment frame
absolute address (SFAA) 552 and dynamic address transla-
tion continues with reference to node 562 in FIG. 5C.
Otherwise, the segment table entry obtained form the seg-
ment table contains a page table origin address and dynamic
address translation continues with reference to node 560 in
FIG. 5B.

US 2018/0081800 A9

[0153] With reference now being made to FIG. 5B. If the
STE format control in the segment table entry is zero then
the segment table entry obtained from the segment table
contains an origin address to the next lower table in the
hierarchy of translation tables. The next lower table to the
segment table is a page table. The page table origin 528,
obtained from segment table entry 530 of FIG. 5A, is
arithmetically added, at 538, with a Page Index (PX) 534
portion of the virtual address to reference page table entry
542 in a page table. The table origin (either with 11 zeros
appended on the right, or multiplied by 2048) is added to the
product of the index multiplied by 8 (or the index with three
zeros appended on the right). The page table entry contains
a page frame real address (PFRA) 546. When the leftmost
bits of the page frame real address are concatenated, at 548,
with a byte index (BX) 536 portion of the virtual address, a
64-bit real address 550 is obtained. The real 64-bit address
may be further subjected to a prefixing operation to form an
absolute address. The translated virtual address references a
desired 4 Kilobyte (4096 bytes) block of data in main
storage or memory.

[0154] Preferably, information used in dynamic transla-
tion of a virtual address to a memory address is stored in a
translation lookaside buffer entry tag along with the address
of the block of memory associated with the virtual address.
Subsequent storage access can quickly translate a virtual
address by comparing ASCE information and virtual address
information with translation lookaside buffer tags. If a tag is
found to be that of the virtual address, the translation
lookaside buffer address of the block of memory can be used
instead of performing the slow sequential access of each
translation table involved. In one embodiment, the page
frame real address (PFRA) along with a tag consisting of, for
example, the ASCE and the RX, SX, and PX portions of the
virtual address are stored in an entry of the translation
lookaside buffer 544. Subsequent translation of this virtual
address is thereafter derived from the information stored in
the translation lookaside buffer.

[0155] With reference now being made to FIG. 5C. If the
STE format control in the segment table entry 530 is one
then the segment table entry contains a segment frame
absolute address (SFAA) 552. When the leftmost bits of the
segment frame absolute address are concatenated, at 554,
with a page index 534 portion and a byte index 536 portion
of the virtual address, a 64-bit absolute address 556 is
obtained. The translated virtual address references a desired
large block of data in main storage or memory. The large
block of data is at least 1 megabyte (1,048,576 bytes) in size.
[0156] In one embodiment, the segment frame absolute
address (SFAA) along with the RX and SX portions of the
virtual address are stored in a translation lookaside buffer
544. Subsequent translation of this virtual address is there-
after derived from the information stored in the translation
lookaside buffer.

Translation Table Entry Formats

[0157] Embodiments of the various translation table
entries in the hierarchy of translation tables used in trans-
lation are as follows.

Region Table Entries

[0158] The term “region table entry” means a region first
table entry, region second table entry, or region third table

Mar. 22, 2018

entry. The entries fetched from the region first table, region
second table, and region third table have the following
formats. The level (first, second, or third) of the table
containing an entry is identified by the table type (TT) bits
in the entry.

[0159] In one embodiment, the formats of the region first
table entry, the region second table entry, and the region
third table entry are as follows:

[0160] Region-First-Table Entry (TT=11)
| Region-Second-Table Origin |
0 31
[Region-Second-Table Origin (continued)] [[P[[TF[1] [TT[TL]
32 52 54 56 58 596062 63
[0161] Region-Second-Table Entry (TT=10)
| Region-Third-Table Origin |
0 31
[Region-Third-Table Origin (continued) | [[P] [TF[1] [TT]TL]
32 52 54 56 58 596062 63
[0162] Region-Third-Table Entry (TT=01)
| Segment-Table Origin |
0 31
| Segment-Table Origin (continued) | [[P] [TF[1] [TT[TL]
32 52 54 56 58 596062 63

Format of the Region Table Entries

[0163] Region Second Table Origin, Region Third Table
Origin, and Segment Table Origin:

[0164] A region first table entry contains a region second
table origin. A region second table entry contains a region
third table origin. A region third table entry contains a
segment table origin. The following description applies to
each of the three table origins. Bits 0-51 of the entry, with
12 zeros appended on the right, form a 64-bit address that
designates the beginning of the next lower level table.
[0165] DAT Protection Bit (P):

[0166] When enhanced DAT applies, bit 54 is treated as
being OR’ed with the DAT protection bit in each subsequent
region table entry, segment table entry, and, when appli-
cable, page table entry used in the translation. Thus, when
the bit is one, DAT protection applies to the entire region or
regions specified by the region table entry. When the
enhanced DAT facility is not installed, or when the facility
is installed but the enhanced DAT enablement control is
zero, bit 54 of the region table entry is ignored.

[0167] Region Second Table Offset, Region Third Table
Offset, and Segment Table Offset (TF):

[0168] A region first table entry contains a region second
table offset. A region second table entry contains a region
third table offset. A region third table entry contains a
segment table offset. The following description applies to
each of the three table offsets. Bits 56 and 57 of the entry

US 2018/0081800 A9

specify the length of a portion of the next lower level table
that is missing at the beginning of the table, that is, the bits
specify the location of the first entry actually existing in the
next lower level table. The bits specify the length of the
missing portion in units of 4,096 bytes, thus making the
length of the missing portion variable in multiples of 512
entries. The length of the missing portion, in units of 4,096
bytes, is equal to the TF value. The contents of the offset
field, in conjunction with the length field, bits 62 and 63, are
used to establish whether the portion of the virtual address
(RSX, RTX, or SX) to be translated by means of the next
lower level table designates an entry that actually exists in
the table.

[0169] Region Invalid Bit (I):

[0170] Bit 58 in a region first table entry or region second
table entry controls whether the set of regions associated
with the entry is available. Bit 58 in a region third table entry
controls whether the single region associated with the entry
is available. When bit 58 is zero, address translation pro-
ceeds by using the region table entry. When the bit is one,
the entry cannot be used for translation.

[0171] Table Type Bits (TT):

[0172] Bits 60 and 61 of the region first table entry, region
second table entry, and region third table entry identify the
level of the table containing the entry, as follows: Bits 60 and
61 must identify the correct table level, considering the type
of table designation that is the ASCE being used in the
translation and the number of table levels that have so far
been used; otherwise, a translation specification exception is
recognized. The following table shows the table type bits:

Bits 60 and 61 Region-Table Level
11 First
10 Second
01 Third

Table Type bits for region table Entries

[0173] Region Second Table Length, Region Third Table
Length, and Segment Table Length (TL):

[0174] A region first table entry contains a region second
table length. A region second table entry contains a region
third table length. A region third table entry contains a
segment table length. The following description applies to
each of the three table lengths. Bits 62 and 63 of the entry
specify the length of the next lower level table in units of
4,096 bytes, thus making the length of the table variable in
multiples of 512 entries. The length of the next lower level
table, in units of 4,096 bytes, is one more than the TL value.
The contents of the length field, in conjunction with the
offset field, bits 56 and 57, are used to establish whether the
portion of the virtual address (RSX, RTX, or SX) to be
translated by means of the next lower level table designates
an entry that actually exists in the table. All other bit
positions of the region table entry are reserved for possible
future extensions and should contain zeros; otherwise, the
program may not operate compatibly in the future. When
enhanced DAT applies, the reserved bit positions of the
region table entry should contain zeros even if the table entry
is invalid.

Segment Table Entries

[0175] When enhanced DAT does not apply, or when
enhanced DAT applies and the STE format control, bit 53 of

Mar. 22, 2018

the segment table entry is zero, the entry fetched from the
segment table, in one embodiment, has the following format:

[0176] Segment-Table Entry (TT=00, FC=0)
| Page-Table Origin |
0 31
Page-Table Origin (continued) fj P I|C|TT
32 53 54 55 58 59 60 62 63

Format I of a Segment Table Entry

[0177] When enhanced DAT applies and the STE format
control is one, the entry fetched from the segment table, in
one embodiment, has the following format:

[0178] Segment-Table Entry (TT=00, FC=1)
| Segment-Frame Absolute Address |
0 31
Segment-Frame Absolute A F,[C
Address (continued) v ACCIE C P (6] nett
32 44 47 48 52 53 54 55 56 5859 60 6263

Format II of a Segment Table Entry

[0179] Selected fields in the segment table entry are allo-
cated as follows:
[0180] Page Table Origin:
[0181] When enhanced DAT does not apply, or when
enhanced DAT applies but the STE format control, bit 53 of
the segment table entry, is zero, bits 0-52, with 11 zeros
appended on the right, form a 64-bit address that designates
the beginning of a page table. It is unpredictable whether the
address is real or absolute.
[0182] Segment Frame Absolute Address (SFAA):
[0183] When enhanced DAT applies and the STE format
control is one, bits 0-43 of the entry, with 20 zeros appended
on the right, form the 64-bit absolute address of the segment.
[0184] ACCF Validity Control (AV):
[0185] When enhanced DAT applies and the STE format
control is one, bit 47 is the access control bits and fetch
protection bit (ACCF) validity control. When the AV control
is zero, bits 48-52 of the segment table entry are ignored.
When the AV control is one, bits 48-52 are used as described
below.
[0186] Access Control Bits (ACC):
[0187] When enhanced DAT applies, the STE format
control is one, and the AV control is one, bits 48-51 of the
segment table entry contain the access control bits that may
be used for any key controlled access checking that applies
to the address.
[0188] Fetch Protection Bit (F):
[0189] When enhanced DAT applies, the STE format
control is one, and the AV control is one, bit 52 of the
segment table entry contains the fetch protection bit that
may be used for any key controlled access checking that
applies to the address.
[0190] STE Format Control (FC):
[0191] When enhanced DAT applies, bit 53 is the format
control for the segment table entry, as follows:

[0192] When the FC bit is zero, bits 0-52 of the entry

form the page table origin, and bit 55 is reserved.

US 2018/0081800 A9

[0193] When the FC bit is one, bits 0-43 of the entry
form the segment frame absolute address, bit 47 is the
ACCEF validity control, bits 48-51 are the access control
bits, bit 52 is the fetch protection bit, and bit 55 is the
change recording override. When enhanced DAT does
not apply, bit 53 is ignored.

[0194] DAT Protection Bit (P):
[0195] Bit 54, when one, indicates that DAT protection
applies to the entire segment.

[0196] When enhanced DAT does not apply, bit 54 is
treated as being OR'ed with the DAT protection bit in
the page table entry used in the translation.

[0197] When enhanced DAT applies, the DAT protec-
tion bit in any and all region table entries used in the
translation are treated as being OR'ed with the DAT
protection bit in the segment table entry; when the STE
format control is zero, the DAT protection bit in the
STE is further treated as being OR'ed with the DAT
protection bit in the page table entry.

[0198] Change Recording Override (CO):

[0199] When enhanced DAT applies, and the STE format
control is one, bit 55 of the segment table entry is the change
recording override for the segment. When enhanced DAT
does not apply, or when enhanced DAT applies but the STE
format control is zero, bit 55 of the segment table entry is
ignored.

[0200] Segment Invalid Bit (I):

[0201] Bit 58 controls whether the segment associated
with the segment table entry is available.

[0202] When the bit is zero, address translation pro-
ceeds by using the segment table entry.

[0203] When the bit is one, the segment table entry
cannot be used for translation.

[0204] Common Segment Bit (C):

[0205] Bit 59 controls the use of the translation lookaside
buffer copies of the segment table entry. When enhanced
DAT does not apply or when enhanced DAT applies but the
format control is zero, bit 59 also controls the use of the
translation lookaside buffer copies of the page table desig-
nated by the segment table entry.

[0206] A zero identifies a private segment; in this case,
the segment table entry and any page table it designates
may be used only in association with the segment table
origin that designates the segment table in which the
segment table entry resides.

[0207] A one identifies a common segment; in this case,
the segment table entry and any page table it designates
may continue to be used for translating addresses
corresponding to the segment index, even though a
different segment table is specified.

[0208] However, translation lookaside buffer copies of the
segment table entry and any page table for a common
segment are not usable if the private space control, bit 55, is
one in the ASCE used in the translation or if that ASCE is
a real space designation. The common segment bit must be
zero if the segment table entry is fetched from storage during
a translation when the private space control is one in the
ASCE being used. Otherwise, a translation specification
exception is recognized.

[0209] Table Type Bits (TT):

[0210] Bits 60 and 61 of the segment table entry are 00
binary to identify the level of the table containing the entry.
The meanings of all possible values of bits 60 and 61 in a
region table entry or segment table entry are as follows:

14

Mar. 22, 2018

Bits 60 and 61 Table Level
11 Region-first
10 Region-second
01 Region-third
00 Segment

Table Type Bits 60, 61

[0211] Bits 60 and 61 must identify the correct table level,
considering the type of table designation that is the ASCE
being used in the translation and the number of table levels
that have so far been used; otherwise, a translation specifi-
cation exception is recognized. All other bit positions of the
segment table entry are reserved for possible future exten-
sions and should contain zeros; otherwise, the program may
not operate compatibly in the future. When enhanced DAT
applies, the reserved bit positions of the segment table entry
should contain zeros even if the table entry is invalid.

Page Table Entries

[0212] In one embodiment, the entry fetched from the
page table has the following format:

| Page-Frame Real Address

Page-Frame Real Address
(contiued)

C
(6]

52 53 54 55 56

<

I[P

32 63

Format of a Page Table Entry

[0213] Selected fields in the page table entry are allocated
as follows:

[0214] Page Frame Real Address (PFRA):

[0215] Bits 0-51 provide the leftmost bits of a real storage

address. When these bits are concatenated with the 12-bit
byte index field of the virtual address on the right, a 64-bit
real address is obtained.

[0216] Page Invalid Bit (I):

[0217] Bit 53 controls whether the page associated with
the page table entry is available. When the bit is zero,
address translation proceeds by using the page table entry.
When the bit is one, the page table entry cannot be used for
translation.

[0218] DAT Protection Bit (P):

[0219] Bit 54 controls whether store accesses can be made
in the page. This protection mechanism is in addition to the
key controlled protection and low address protection mecha-
nisms. The bit has no effect on fetch accesses. If the bit is
zero, stores are permitted to the page, subject to the follow-
ing additional constraints:

[0220] The DAT protection bit being zero in the seg-
ment table entry used in the translation.

[0221] When enhanced DAT applies, the DAT protec-
tion bit being zero in all region table entries used in the
translation.

[0222] Other protection mechanisms.

[0223] If the bit is one, stores are disallowed. When no
higher priority exception conditions exist, an attempt to
store when the DAT protection bit is one causes a protection

US 2018/0081800 A9

exception to be recognized. The DAT protection bit in the
segment table entry is treated as being OR'ed with bit 54
when determining whether DAT protection applies to the
page. When enhanced DAT applies, the DAT protection bit
in any region table entries used in translation are also treated
as being OR'ed with bit 54 when determining whether DAT
protection applies.

[0224] Change Recording Override (CO):

[0225] When enhanced DAT does not apply, bit 55 of the
page table entry must contain zero; otherwise, a translation
specification exception is recognized as part of the execution
of an instruction using that entry for address translation.
When enhanced DAT applies and the STE format control is
zero, bit 55 of the page table entry is the change recording
override for the page.

[0226] Bit position 52 of the entry must contain zero;
otherwise, a translation specification exception is recognized
as part of the execution of an instruction using that entry for
address translation. Bit positions 56-63 are not assigned and
are ignored.

Another Embodiment of the Dynamic Translation

[0227] This section describes the translation process as it
is performed implicitly before a virtual address is used to
access main storage.

[0228] Translation of a virtual address is controlled by the
DAT mode bit and address space control bits in the program
status word and by the ASCEs in control registers 1, 7, and
13 and as specified by the access registers. When the ASCE
used in a translation is a region first table designation, the
translation is performed by means of a region first table,
region second table, region third table, segment table, and
page table, all of which reside in real or absolute storage.
When the ASCE is a lower level type of table designation
(region second table designation, region third table desig-
nation, or segment table designation) the translation is
performed by means of only the table levels beginning with
the designated level, and the virtual address bits that would,
if non-zero, require use of a higher level or levels of table
must be all zeros; otherwise, an ASCE-type exception is
recognized. When the ASCE is a real space designation, the
virtual address is treated as a real address, and table entries
in real or absolute storage are not used.

[0229] The ASCE used for a particular address translation
is called the effective ASCE. Accordingly, when a primary
virtual address is translated, the contents of control register
1 are used as the effective ASCE. Similarly, for a secondary
virtual address, the contents of control register 7 are used;
for an AR specified virtual address, the ASCE specified by
the access register is used; and for a home virtual address,
the contents of control register 13 are used.

[0230] When the real space control in the effective ASCE
is zero, the designation type in the ASCE specifies the table
designation type: region first table, region second table,
region third table, or segment table. The corresponding
portion of the virtual address (region first index, region
second index, region third index, or segment index) is
checked against the table length field in the designation, and
it is added to the origin in the designation to select an entry
in the designated table. If the selected entry is outside its
table, as determined by the table length field in the desig-
nation, or if the I bit is one in the selected entry, a region first
translation, region second translation, region third transla-
tion, or segment translation exception is recognized, depend-

Mar. 22, 2018

ing on the table level specified by the designation. If the
table type bits in the selected entry do not indicate the
expected table level, a translation specification exception is
recognized.

[0231] The table entry selected by means of the effective
ASCE designates the next lower level table to be used. If the
current table is a region first table, region second table, or
region third table, the next portion of the virtual address
(region second index, region third index, or segment index,
respectively) is checked against the table offset and table
length fields in the current table entry, and it is added to the
origin in the entry to select an entry in the next lower level
table. If the selected entry in the next table is outside its
table, as determined by the table offset and table length fields
in the current table entry, or if the I bit is one in the selected
entry, a region second translation, region third translation, or
segment translation exception is recognized, depending on
the level of the next table. If the table type bits in the selected
entry do not indicate the expected table level, a translation
specification exception is recognized.

[0232] Processing of portions of the virtual address by
means of successive table levels continues until a segment
table entry has been selected. The segment table entry
contains a page protection bit that applies to all pages in the
specified segment.

[0233] The page index portion of the virtual address is
added to the page table origin in the segment table entry to
select an entry in the page table. If the I bit is one in the page
table entry, a page translation exception is recognized. The
page table entry contains the leftmost bits of the real address
that represents the translation of the virtual address, and it
contains a page protection bit that applies only to the page
specified by the page table entry.

[0234] The byte index field of the virtual address is used
unchanged as the rightmost bit positions of the real address.
[0235] In order to eliminate the delay associated with
references to translation tables in real or absolute storage,
the information fetched from the tables normally is also
placed in a special buffer, the translation lookaside buffer,
and subsequent translations involving the same table entries
may be performed by using the information recorded in the
translation lookaside buffer. The translation lookaside buffer
may also record virtual equals real translations related to a
real space designation.

[0236] Whenever access to real or absolute storage is
made during the address translation process for the purpose
of fetching an entry from a region table, segment table, or
page table, key controlled protection does not apply.

Lookup in a Table Designated by an ASCE

[0237] The DT control, bits 60-61 of the effective ASCE,
specifies both the table designation type of the ASCE and the
portion of the virtual address that is to be translated by
means of the designated table, as follows:

Virtual-Address
Portion Translated

Bits 60 and 61 Designation Type by the Table
11 Region-first-table Region first index
(bits 0-10)
10 Region-second-table ~ Region second index
(bits 11-21)
01 Region-third-table Region third index

(bits 22-32)

US 2018/0081800 A9

-continued

Virtual-Address
Portion Translated
by the Table

Bits 60 and 61 Designation Type

00 Segment-table Segment index

(bits 33-43)

Translation by Means of Designated Table

[0238] When bits 60 and 61 have the value 11 binary, the
region first index portion of the virtual address, in conjunc-
tion with the region first table origin contained in the ASCE,
is used to select an entry from the region first table. The
64-bit address of the region first table entry in real or
absolute storage is obtained by appending 12 zeros to the
right of bits 0-51 of the region first table designation and
adding the region first index with three rightmost and 50
leftmost zeros appended. As part of the region first table
lookup process, bits 0 and 1 of the virtual address (which are
bits 0 and 1 of the region first index) are compared against
the table length, bits 62 and 63 of the region first table
designation, to establish whether the addressed entry is
within the region first table. If the value in the table length
field is less than the value in the corresponding bit positions
of the virtual address, a region first translation exception is
recognized. The comparison against the table length may be
omitted if the equivalent of a region first table entry in the
translation lookaside buffer is used in the translation. The
entry fetched from the region first table designates the
beginning and specifies the offset and length of the corre-
sponding region second table.

[0239] When bits 60 and 61 of the ASCE have the value
10 binary, the region second index portion of the virtual
address, in conjunction with the region second table origin
contained in the ASCE, is used to select an entry from the
region second table. Bits 11 and 12 of the virtual address
(which are bits 0 and 1 of the region second index) are
compared against the table length in the ASCE. If the value
in the table length field is less than the value in the
corresponding bit positions of the virtual address, a region
second translation exception is recognized. The comparison
against the table length may be omitted if the equivalent of
aregion second table entry in the translation lookaside buffer
is used in the translation. The region second table lookup
process is otherwise the same as the region first table lookup
process; the entry fetched from the region second table
designates the beginning and specifies the offset and length
of the corresponding region third table.

[0240] When bits 60 and 61 of the ASCE have the value
01 binary, the region third index portion of the virtual
address, in conjunction with the region third table origin
contained in the ASCE, is used to select an entry from the
region third table. Bits 22 and 23 of the virtual address
(which are bits 0 and 1 of the region third index) are
compared against the table length in the ASCE. If the value
in the table length field is less than the value in the
corresponding bit positions of the virtual address, a region
third translation exception is recognized. The region third
table lookup process is otherwise the same as the region first
table lookup process, including the checking of the table
type bits in the region third table entry. The entry fetched

16

Mar. 22, 2018

from the region third table designates the beginning and
specifies the offset and length of the corresponding segment
table.

[0241] When bits 60 and 61 of the ASCE have the value
00 binary, the segment index portion of the virtual address,
in conjunction with the segment table origin contained in the
ASCE, is used to select an entry from the segment table. Bits
33 and 34 of the virtual address (which are bits 0 and 1 of
the segment index) are compared against the table length in
the ASCE. If the value in the table length field is less than
the value in the corresponding bit positions of the virtual
address, a segment translation exception is recognized. The
comparison against the table length may be omitted if the
equivalent of a segment table entry in the translation looka-
side buffer is used in the translation. The segment table
lookup process is otherwise the same as the region first table
lookup process, including the checking of the table type bits
in the segment table entry. Processing is as follows:

[0242] When enhanced DAT does not apply, or when
enhanced DAT applies but the STE format control is
zero, the entry fetched from the segment table desig-
nates the beginning of the corresponding page table,
and processing continues as described in “Page Table
Lookup”, below.

[0243] When enhanced DAT applies and the STE for-
mat control is one, the entry fetched from the segment
table contains the leftmost bits of the segment frame
absolute address. If the DAT protection bit is one either
in any region table entry used in the translation or in the
segment table entry, and the storage reference for which
the translation is being performed is a store, a protec-
tion exception is recognized.

Lookup in a Table Designated by a Region Table Entry

[0244] When the effective ASCE is a region table desig-
nation, a region table entry is selected as described in the
preceding section. Then the contents of the selected entry
and the next index portion of the virtual address are used to
select an entry in the next lower level table, which may be
another region table or a segment table. When the table entry
selected by means of the ASCE is a region first table entry,
the region second index portion of the virtual address, in
conjunction with the region second table origin contained in
the region first table entry, is used to select an entry from the
region second table. The 64-bit address of the region second
table entry in real or absolute storage is obtained by append-
ing 12 zeros to the right of bits 0-51 of the region first table
entry and adding the region second index with three right-
most and 50 leftmost zeros appended.

[0245] When forming the address of a region second,
region third, or segment table entry, it is unpredictable
whether prefixing, if any, is applied to the respective table
origin contained in the higher level table entry before the
addition of the table index value, or prefixing is applied to
the table entry address that is formed by the addition of the
table origin and table index value.

[0246] As part of the region second table lookup process,
bits 11 and 12 of the virtual address (which are bits 0 and 1
of the region second index) are compared against the table
offset, bits 56 and 57 of the region first table entry, and
against the table length, bits 62 and 63 of the region first
table entry, to establish whether the addressed entry is within
the region second table. If the value in the table offset field
is greater than the value in the corresponding bit positions of

US 2018/0081800 A9

the virtual address, or if the value in the table length field is
less than the value in the corresponding bit positions of the
virtual address, a region second translation exception is
recognized.

[0247] The region second table designates the beginning
and specifies the offset and length of the corresponding
region third table.

[0248] When the table entry selected by means of the
ASCE is a region second table entry, or if a region second
table entry has been selected by means of the contents of a
region first table entry, the region third index portion of the
virtual address, in conjunction with the region third table
origin contained in the region second table entry, is used to
select an entry from the region third table. Bits 22 and 23 of
the virtual address (which are bits 0 and 1 of the region third
index) are compared against the table offset and table length
in the region second table entry. A region third translation
exception is recognized if the table offset is greater than bits
22 and 23 or if the table length is less than bits 22 and 23.
The region third table lookup process is otherwise the same
as the region second table lookup process. The entry fetched
from the region third table designates the beginning and
specifies the offset and length of the corresponding segment
table.

[0249] When the table entry selected by means of the
ASCE is a region third table entry, or if a region third table
entry has been selected by means of the contents of a region
second table entry, the segment index portion of the virtual
address, in conjunction with the segment table origin con-
tained in the region third table entry, is used to select an
entry from the segment table. Bits 33 and 34 of the virtual
address (which are bits 0 and 1 of the segment index) are
compared against the table offset and table length in the
region third table entry. A segment translation exception is
recognized if the table offset is greater than bits 33 and 34
or if the table length is less than bits 33 and 34. A translation
specification exception is recognized if (1) the private space
control, bit 55, in the ASCE is one and (2) the common
segment bit, bit 59, in the entry fetched from the segment
table is one. The segment table lookup process is otherwise
the same as the region second table lookup process. Pro-
cessing is as follows:

[0250] When enhanced DAT does not apply, or when
enhanced DAT applies but the STE format control is
zero, the entry fetched from the segment table desig-
nates the beginning of the corresponding page table,
and processing continues as described in “Page Table
Lookup”, below.

[0251] When enhanced DAT applies and the STE for-
mat control is one, the entry fetched from the segment
table contains the leftmost bits of the segment frame
absolute address. If the DAT protection bit is one either
in any region table entry used in the translation or in the
segment table entry, and the storage reference for which
the translation is being performed is a store, a protec-
tion exception is recognized.

Page Table Lookup

[0252] When enhanced DAT does not apply, or when
enhanced DAT applies but the STE format control is zero,
the page index portion of the virtual address, in conjunction
with the page table origin contained in the segment table
entry, is used to select an entry from the page table.

Mar. 22, 2018

[0253] The 64-bit address of the page table entry in real or
absolute storage is obtained by appending 11 zeros to the
right of the page table origin and adding the page index, with
three rightmost and 53 leftmost zeros appended. A carry out
of bit position 0 cannot occur.

[0254] The entry fetched from the page table indicates the
availability of the page and contains the leftmost bits of the
page frame real address. The page invalid bit, bit 53, is
inspected to establish whether the corresponding page is
available. If this bit is one, a page translation exception is
recognized. If bit position 52 contains a one, a translation
specification exception is recognized. When enhanced DAT
does not apply, or enhanced DAT applies and the STE format
control is zero, a translation specification exception is also
recognized if bit position 55 contains a one. If the DAT
protection bit is one either in the segment table entry used in
the translation, in the page table entry, or, when enhanced
DAT applies, in any region table entry used during the
translation, and the storage reference for which the transla-
tion is being performed is a store, a protection exception is
recognized.

Formation of the Real and Absolute Addresses

[0255] When the effective ASCE is a real space designa-
tion, bits 0-63 of the virtual address are used directly as the
real storage address. The real address may be further sub-
jected to prefixing to form an absolute address. When the
effective ASCE is not a real space designation and no
exceptions in the translation process are encountered, the
following conditions apply:

[0256] When the enhanced DAT does not apply, or
when enhanced DAT applies but the STE format con-
trol is zero, the page frame real address is obtained
from the page table entry. The page frame real address
and the byte index portion of the virtual address are
concatenated, with the page frame real address forming
the leftmost part. The result is the real storage address
which corresponds to the virtual address. The real
address may be further subjected to prefixing to form
an absolute address.

[0257] When enhanced DAT applies and the STE for-
mat control is one, the segment frame absolute address
and the page index and byte index portions of the
virtual address are concatenated, left to right, respec-
tively, to form the absolute address which corresponds
to the virtual address.

Recognition of Exceptions during Translation

[0258] Table entries marked invalid or containing invalid
addresses or invalid formats can cause exceptions to be
recognized during the translation process. Exceptions are
recognized when information contained in table entries is
used for translation and is found to be incorrect.

[0259] In addition, an exception, for example, an ASCE-
type exception. could occur if the virtual address to be
translated is beyond the range that can be represented by the
top-level table designated by the ASCE. In one example, an
ASCE-type exception would occur as a result of the follow-
ing pseudocode:

If (DT < 3 AND RFX !=0) OR (DT < 2 AND (RFX || RSX) !=0)
OR (DT <1 AND RX !=0))
then asce_ type__exception();

US 2018/0081800 A9

[0260] The DT bits are the Designation type (bits 60-61 of
the ASCE). The RFX is the Region-First Index (bits 0-10 of
the virtual address). The RSX is the Region-Second Index
(bits 11-21 of the virtual address). The RX is the entire
region index (bits 0-32 of the virtual address). One skilled in
this art would readily understand the logical operations and
the comparative operands used in the pseudo code.

Translation-Exception Qualifier (TXQ)

[0261] With respect to the Translation-Exception Quali-
fier, it should be understood that the term “when enhanced-
DAT applies” pertains to the level (host or guest) at which
the translation exception is presented. For example, a TXQ
is presented on a host translation exception whenever
enhanced DAT applies at the host level, whether or not it
applies at the guest level.

[0262] During a DAT-related program interruption, a
translation exception identification (TEID) is stored. When
the enhanced-DAT facility is installed and enabled, a trans-
lation exception qualifier (TXQ) is stored in three bits of the
TEID. The TXQ assists a host configuration in determining
whether the interruption was caused by the host or guest. If
the exception was caused by the guest, the TXQ indicates
whether or not the interruption was caused by the address
contained in a guest leaf table entry and if so, whether the
leaf entry was a Segment Table Entry or a Page Table Entry.
This allows the host to recognize references to areas the
guest views as 4 K-byte versus 1 M-byte frames. The TXQ
is designed such that it can be expanded if a larger frame size
is needed, e.g., 2 Gigabyte.

[0263] During a program interruption due to an ASCE-
type, region-first-translation, region-second-translation,
region-third-translation, segment-translation, or page-trans-
lation exception, bits 0-51 of the virtual address causing the
exception are stored in bit positions 0-51 of locations
168-175. This address is sometimes referred to as the
translation-exception address. Bits 52-56 of locations 168-
175 are unpredictable.

[0264] When the enhanced-DAT facility is installed and
enabled in the host configuration and a host ASCE-type,
region-translation, segment-translation, or page-translation
exception is recognized, bits 57-59 contain the translation-
exception qualifier (TXQ), as follows:

[0265] O—Exception was caused by the currently-ex-
ecuting configuration (that is, a guest DAT exception is
presented during guest execution, or a host DAT excep-
tion during host execution).

[0266] 1—Exception was associated with a host virtual
address derived from a guest address other than those
listed below.

[0267] 2—Exception was associated with a host virtual
address derived from the guest page-frame real address.

[0268] 3—Exception was associated with a host virtual
address derived from the guest segment-frame absolute
address.

[0269] 4-7 Reserved.

[0270] TxQ values 1-3 are presented only on host excep-
tions that occurred during guest execution.

Two-Level DAT

[0271] As explained above, during execution of a page-
able guest, two levels of DAT are performed: guest virtual
addresses are translated through guest DAT and, when

Mar. 22, 2018

applicable, prefixing to guest absolute addresses, which are
then treated as host virtual addresses in the host primary
address space, and translated through host DAT and, when
applicable, prefixing to host absolute addresses. During the
guest DAT process, references are made to guest translation
table entries, located via guest absolute addresses which
must also be translated through host DAT and, when appli-
cable, prefixing. The process can result in guest DAT excep-
tions based on guest table specifications and contents, and
each reference to a guest absolute address, for a guest table
entry or the final target of the guest translation, can give rise
to host DAT exceptions. The appropriate TXQ must be
generated for each of these exceptions, per the specifications
above. FIGS. 6-9 illustrate the guest DAT process in detail,
and FIGS. 9-11 illustrate the host DAT process.

Guest DAT

[0272] Reference is now being made to FIG. 6 which
illustrates a flow diagram of one embodiment of guest
dynamic address translation to the point of obtaining a
format control field from a guest segment table entry.

[0273] At 602, a guest virtual address to be translated is
obtained. At 604, the origin address, table level, and table
length of the highest translation table used in translation of
the virtual address are obtained. The origin address of the
first translation table used in translation is taken from the
table origin field in the ASCE; the table level and table
length depend on the DT and TL bits in the ASCE, respec-
tively. The table offset for the highest translation table used
is always treated as zero. At 606, an index portion of the
guest virtual address to be used to reference the appropriate
table entry in the translation table is first checked against the
table offset and table length, which determine the minimum
and maximum index values represented in the table. If, at
606, the index is outside this range, then further translation
of'the virtual address cannot proceed. In one embodiment, at
608, a guest translation exception is presented appropriate to
the table level being indexed (for example, a region-first,
region-second, region-third, or segment translation excep-
tion). Because this is a guest DAT exception encountered
while executing the guest, the TXQ is set to zero to signify
an exception at the current configuration level. The transla-
tion of this virtual address is then stopped, at 610. If, at 606,
the index is within the valid range, then, at 612, the index
multiplied by the table entry length is added to the table
origin to generate the guest absolute address of a table entry.
At 614, this guest absolute address is treated as a host virtual
address, and host DAT and, when applicable, prefixing are
invoked to obtain the corresponding host absolute address.
An additional parameter to host DAT, to be used in gener-
ating a TXQ if needed, indicates that the source of the
address to be translated is a guest address other than a
page-frame real address or segment-frame absolute address.
FIGS. 9-11, explained below, detail the host DAT process. If,
at 616, the host DAT process failed, then at 618, the guest
translation process is terminated; the host DAT process will
have generated an exception. The TXQ for this host excep-
tion is determined as described in FIG. 9. If, at 616, the host
DAT process succeeded, then at 620, the guest translation-
table entry is fetched using the resulting host absolute
address. At 622, the invalid (I) bit in the guest table entry is
examined. If it is set, then further translation of the virtual
address cannot proceed using the table entry because it has
been marked as being invalid; at 608, a guest translation

US 2018/0081800 A9

exception is presented, with a TXQ value indicating the
current configuration, as above, and further translation of
this virtual address using this segment table entry stops at
610. Otherwise, at 624, if the entry fetched from the guest
translation table is not a segment table entry then the
segment table in the hierarchy of translation tables has not
yet been referenced. In this case, at 626, the origin, offset,
and length of a next lower table in the hierarchy of guest
translation tables is obtained from the table entry. Control
returns to step 606, at which the next index field within the
guest virtual address is checked against the new offset and
length, and if within range, this index is used to reference the
corresponding table entry in the next lower table used in
translation.

[0274] For example, if the table origin address of the first
guest translation table to be used in translation is a region
first table then the RFX portion of the guest virtual address
is used to reference a region first table entry with the region
first table. If the table origin address is to a region second
table then the RSX portion of the virtual address is used to
reference a region second table entry within the region
second table. If the table origin address is to a region third
table then the RTX portion of the virtual address is used to
reference a region third table entry within the region third
table. If the table origin address is to a segment table then the
SX portion of the virtual address is used to reference a
segment table entry within the segment table. Successive
tables are referenced until the segment table entry has been
fetched.

[0275] Once the guest segment table entry has been
fetched, at 628, the segment table entry (STE) format control
bit is examined to determine if format control is set for this
particular virtual address. If the STE format control is zero
then dynamic address translation occurs with respect to node
630. If the STE format control is one then dynamic address
translation occurs with respect to node 632.

Guest Dynamic Address Translation (STE Format Control is
Zero)

[0276] Reference is now being made to FIG. 7 which
illustrates a continuation of the flow diagram from node 630
of FIG. 6 when the guest STE format control is zero.

[0277] At 710, an origin address to a guest page table is
obtained from the guest segment table entry. At 712, a page
index (PX) portion of the guest virtual address is multiplied
by the table entry length and added to the guest page table
origin to generate the guest absolute address of a guest page
table entry. At 714, this guest absolute address is treated as
a host virtual address, and host DAT and, when applicable,
prefixing are invoked to obtain the corresponding host
absolute address. An additional parameter to host DAT, to be
used in generating a TXQ if needed, indicates that the source
of the address to be translated is a guest address other than
a page-frame real address or segment-frame absolute
address. If, at 716, the host DAT process failed, then at 718,
the guest translation process is terminated; the host DAT
process will have generated an exception. If, at 716, the host
DAT process succeeded, then at 720, the guest page table
entry is fetched using the resulting host absolute address. An
Invalid (I) bit is obtained from the guest page table entry. If,
at 722, the Invalid (I) bit is one then, translation of the virtual
address cannot continue using this page table entry because
the entry has been marked as being invalid; at 724, a guest
page translation exception is presented, with a TXQ value

Mar. 22, 2018

indicating the exception arises from translation at the current
configuration level. Further translation of the virtual address
using this page table entry stops, at 726. If, at 722, the
Invalid (I) bit is zero then, at 728, the guest page frame real
address (PFRA) from the guest page table entry is combined
with a byte index (BX) portion of the guest virtual address
to generate the guest real address corresponding to the input
guest virtual address. At 730, this guest real address is
further subject to a guest prefixing operation to form a guest
absolute address. At 732, this guest absolute address is
treated as a host virtual address, and host DAT and, when
applicable, prefixing are invoked to obtain the correspond-
ing host absolute address. An additional parameter to host
DAT, to be used in generating a TXQ if needed, indicates
that the source of the address to be translated is a guest
page-frame real address. If, at 734, the host DAT process
failed, then at 718, the guest translation process is termi-
nated; the host DAT process will have generated an excep-
tion. If; at 734, the host DAT process succeeded, then at 736,
the resulting host absolute address is used to access a block
of data addressed by the translated guest virtual address.

Guest Dynamic Address Translation (STE Format Control is
One)

[0278] Reference is now being made to FIG. 8 which
illustrates a continuation of the flow diagram from node 632
of FIG. 6 when the guest STE format control is one.
[0279] At 810, a guest segment frame absolute address
(SFAA) is obtained from a portion of the guest segment table
entry. At 812, the guest segment frame absolute address
(SFAA) is combined with the PX and BX portions of the
guest virtual address to generate the guest absolute address
of a desired block of data in main storage or in memory. At
814, this guest absolute address is treated as a host virtual
address, and host DAT and, when applicable, prefixing are
invoked to obtain the corresponding host absolute address.
An additional parameter to host DAT, to be used in gener-
ating a TXQ if needed, indicates that the source of the
address to be translated is a guest segment frame absolute
address. If, at 816, the host DAT process failed, then at 818,
the guest translation process is terminated; the host DAT
process will have generated an exception. If, at 816, the host
DAT process succeeded, then at 720, the resulting host
absolute address is used to access the desired block of data
addressed by the translated guest virtual address.

Host DAT

[0280] Reference is now being made to FIG. 9 which
illustrates a flow diagram of one embodiment of host
dynamic address translation at the host level, which may be
invoked from the guest EDAT process, to obtain a format
control field from a host segment table entry.

[0281] At 902, a host virtual address to be translated is
obtained. At 904, the origin address, table level, and table
length of the highest host translation table used in translation
of the host virtual address are obtained. The origin address
of the first host translation table used in translation is taken
from the table origin field in the ASCE; the table level and
table length depend on the DT and TL bits in the ASCE,
respectively. The table offset for the highest translation table
used is always treated as zero. At 906, an index portion of
the host virtual address to be used to reference the appro-
priate table entry in the translation table is first checked

US 2018/0081800 A9

against the table offset and table length, which determine the
minimum and maximum index values represented in the
table. If, at 906, the index is outside this range, then further
translation of the virtual address cannot proceed; a host
translation exception must be presented, appropriate to the
table level being indexed (for example, a region-first,
region-second, region-third, or segment translation excep-
tion). In one embodiment, at 908, a test is made of whether
a guest program is currently executing. If not, that is, if the
host is executing, then at 910, a host translation exception is
presented with the TXQ set, for example, to zero, to signify
an exception at the current configuration level. If instead a
guest program is executing, then at 912, a host translation
exception is presented with the TXQ set to the address
source value passed from the guest translation operation. In
either case, the translation process is then stopped, at 914.
[0282] If, at 906, the index is within the valid range, then,
at 916, the index multiplied by the table entry length is added
to the host table origin to generate the host absolute address
of a host table entry. At 918, the host translation table entry
is fetched using this host absolute address. At 920, the
invalid (I) bit in the host table entry is examined. If it is set,
then further translation of the virtual address cannot proceed
using the table entry because it has been marked as being
invalid; control is transferred to 908 to present a host
translation exception with the appropriate TXQ value, as
above, and further translation of this virtual address using
this segment table entry stops. Otherwise, at 922, if the entry
fetched from the translation table is not a segment table entry
then the segment table in the hierarchy of translation tables
has not yet been referenced. In this case, at 924, the origin,
offset, and length of a next lower table in the hierarchy of
host translation tables is obtained from the table entry.
Control returns to step 906, at which the next index field
within the host virtual address is checked against the new
offset and length, and if within range, this index is used to
reference the corresponding host table entry in the next
lower table used in translation.

[0283] For example, if the table origin address of the first
host translation table to be used in translation is a region first
table then the RFX portion of the host virtual address is used
to reference a region first table entry with the region first
table. If the table origin address is to a region second table
then the RSX portion of the virtual address is used to
reference a region second table entry within the region
second table. If the table origin address is to a region third
table then the RTX portion of the virtual address is used to
reference a region third table entry within the region third
table. If the table origin address is to a segment table then the
SX portion of the virtual address is used to reference a
segment table entry within the segment table. Successive
tables are referenced until the segment table entry has been
fetched.

[0284] Once the host segment table entry has been
fetched, at 926, the segment table entry (STE) format control
bit is examined to determine if format control is set for this
particular virtual address. If the STE format control is zero
then dynamic address translation occurs with respect to node
928. If the STE format control is one then dynamic address
translation occurs with respect to node 930.

Host Dynamic Address Translation (STE Format Control is
Zero)

[0285] Reference is now being made to FIG. 10 which
illustrates a continuation of the flow diagram from node 928
of FIG. 9 when the host STE format control is zero.

Mar. 22, 2018

[0286] At 1002, an origin address to a host page table is
obtained from the host segment table entry. At 1004, a page
index (PX) portion of the host virtual address is multiplied
by the table entry length and added to the page table origin
to generate the host absolute address of a host page table
entry. At 1006, the host page table entry is fetched using this
host absolute address. An Invalid (I) bit is obtained from the
host page table entry. If, at 1008, the Invalid (I) bit is one
then, translation of the virtual address cannot continue using
this page table entry because the entry has been marked as
being invalid; control is transferred to 940 in FIG. 9, to
present a host translation exception with the appropriate
TXQ value, as above, and further translation of this virtual
address using this page table entry stops. If, at 1008, the
Invalid (I) bit is zero then, at 1010, the host page frame real
address (PFRA) from the page table entry is combined with
the byte index (BX) portion of the host virtual address to
generate the host real address corresponding to the input
host virtual address. At 1012, this host real address is further
subject to a host prefixing operation to form a host absolute
address. At 1014, this host absolute address is returned as the
result of the host address translation, to be used, for
example, in the guest DAT process which invoked it, or if
none, then to access the target data during host execution.

Host Dynamic Address Translation (STE Format Control is
One)

[0287] Reference is now being made to FIG. 11 which
illustrates a continuation of the flow diagram from node 930
of FIG. 9 when the host STE format control is one.

[0288] At 1102, a host segment frame absolute address
(SFAA) is obtained from a portion of the host segment table
entry. At 1104, the host segment frame absolute address
(SFAA) is combined with the PX and BX portions of the
host virtual address to generate the host absolute address of
a desired block of data in main storage or in memory. At
1106, this host absolute address is returned as the result of
the host address translation, to be used, for example, in the
guest DAT process which invoked it, or if none, then to
access the target data during host execution.

[0289] The translation exception qualifier (TXQ) field is
thus capable of indicating that the interruption was caused
by an address contained in a guest leaf table entry and if so,
whether the leaf entry was a segment table entry or a page
table entry; that is, whether the exception was associated
with a host virtual address derived from a guest page frame
real address or was associated with a host virtual address
derived from a guest segment frame absolute address. The
TXQ field is thereby capable of indicating the proper size of
host frame with which to back a guest frame. It is further
capable of indicating that a larger frame size is needed, e.g.
2 Gigabyte or larger.

Commercial Implementation

[0290] Although the z/Architecture® by IBM® is men-
tioned herein, one or more aspects of the present invention
are equally applicable to other machine architectures and/or
computing environments employing pageable entities or
similar constructs.

[0291] Commercial implementations of the EDAT facility,
the TXQ, and other formats, instructions, and attributes
disclosed herein can be implemented either in hardware or
by programmers, such as operating system programmers,

US 2018/0081800 A9

writing in, for example, assembly language. Such program-
ming instructions may be stored on a storage medium
intended to be executed natively in a computing environ-
ment such as the IBM® System z server, or alternatively in
machines executing other architectures. The instructions can
be emulated in existing and in future servers and on other
machines or mainframes. They can be executed in machines
where generally execution is in an emulation mode.
[0292] In emulation mode, the specific instruction being
emulated is decoded, and a subroutine is executed to imple-
ment the individual instruction, as in a subroutine or driver,
or some other technique is used for providing a driver for the
specific hardware, as is within the skill of those in the art
after understanding the description hereof. Various software
and hardware emulation techniques are described in numer-
ous United States patents including: U.S. Pat. Nos. 5,551,
013, 5,574,873, 5,790,825, 6,009,261, 6,308,255, and 6,463,
582, each of which is incorporated herein by reference.
Many other teachings further illustrate a variety of ways to
achieve emulation of an instruction set architected for a
target machine.

Other Variations and Architectures

[0293] The various embodiments described herein are just
examples. There may be many variations to these embodi-
ments without departing from the spirit of the present
invention.

[0294] One or more of the capabilities of the present
invention can be implemented in software, firmware, hard-
ware, or some combination thereof. Aspects of the invention
are beneficial to many types of environments, including
other environments that have a plurality of zones, and
non-partitioned environments. Further, there may be no
central processor complexes, but yet, multiple processors
coupled together. Various aspects hereof are applicable to
single processor environments.

[0295] Although particular environments are described
herein, again, many variations to these environments can be
implemented without departing from the spirit of the present
invention. For example, if the environment is logically
partitioned, then more or fewer logical partitions may be
included in the environment. Further, there may be multiple
central processing complexes coupled together. These are
only some of the variations that can be made without
departing from the spirit of the present invention. Addition-
ally, other variations are possible.

[0296] Although the term ‘page’ is used to refer to a fixed
size or a predefined size area of storage, the size of a page
can vary. Similarly, the size of a block can vary. There may
be different sizes of blocks and/or pages. A page may be
equivalent to a block. Other structures may be alternatively
used or otherwise implemented through software and/or
hardware. Further, in the examples described herein, there
may be many variations, including, but not limited to
different sized words or addresses; a different number of
bits; bits in a different order; more, fewer or different bits;
more, fewer or different fields; fields in a differing order;
different sizes of fields; etc. Again, these are only provided
as an example. Many variations are possible.

[0297] A possible variation on the translation process
described here is to treat the DAT table entry addresses as
real rather than absolute addresses. Another possible varia-
tion is to perform a transformation between guest absolute
and host virtual addresses, such as adding a guest main-

Mar. 22, 2018

storage origin or testing against a guest main-storage limit,
s0 as to restrict guest absolute storage to a desired portion of
the containing host address space. Yet another variation
would allow for guest absolute addresses to be referenced in
multiple host address spaces, selected, for example, by
access register contents.

[0298] A processing unit includes pageable entities, such
as guests, hosts, other processors, emulators, virtual
machines, and/or other similar constructs. A buffer includes
an area of storage and/or memory as well as different types
of data structures including, but not limited to, arrays or
pageable entities. A table can include other data structures as
well. An instruction can reference other registers. Moreover,
a page, a segment, and/or a region can be of varying sizes
different than those described herein.

[0299] One or more aspects of the present invention can be
included in an article of manufacture (e.g., one or more
computer program products) having, for instance, computer
usable or machine readable media. The media has embodied
therein, for instance, computer readable program code
means or logic (e.g., instructions, code, commands, etc.) to
provide and facilitate the capabilities of the present inven-
tion. The article of manufacture can be included as a part of
a computer system or sold separately. Additionally, at least
one program storage device readable by a machine embody-
ing at least one program of instructions executable by the
machine to perform the capabilities of the present invention
can be provided.

[0300] The flow diagrams depicted herein are illustrative.
There may be many variations to these diagrams or the steps
or operations described without departing from the spirit of
the invention. For instance, the steps may be performed in a
differing order, or steps may be added, deleted or modified.
All of these variations are considered a part of the invention
as claimed.

[0301] Although embodiments hereof have been depicted
and described in detail herein, it will be apparent to those
skilled in the relevant art that various modifications, addi-
tions, substitutions and the like can be made without depart-
ing from the spirit of the invention and these are therefore
considered to be within the scope of the invention as defined
in the following claims.

What is claimed is:

1. A computer implemented method for qualifying a
translation exception in a dynamic address translation (DAT)
facility configured to translate a program address into a
translated address of a desired block of host main storage in
a computer system, comprising:

translating the program address into an address of a

desired block of main storage; and

based on a translation exception event having occurred
during said translating of the program address, storing
a translation exception qualifier (TXQ) to indicate
whether the translation exception event relates to a host
DAT exception or a guest DAT exception, said TXQ
indicating with a first value that an exception was
caused by a currently executing configuration, with a
second value that the exception was associated with a
host virtual address derived from a guest page frame
real address, with a third value that the exception was
associated with a host virtual address derived from a
guest segment frame absolute address, and with a
fourth value that the exception was associated with a

US 2018/0081800 A9

host virtual address derived from a guest address other
than a guest page frame real address or a guest segment
frame absolute address.
2. The method according to claim 1, wherein the computer
system comprises a host machine and a guest virtual
machine (VM), the guest VM being provisioned with virtual
resources by a host program of the host machine, the host
machine having host resources including host main storage,
the guest VM comprising a guest operating system, the
virtual resources comprising guest main storage, wherein the
program address comprises a guest referenced address ref-
erenced by said guest program or a host referenced address
referenced by said host program, the guest referenced
address for determining a corresponding guest address of a
block of guest main storage, the method comprising:
based on the program address comprising the host refer-
enced address, performing a host DAT comprising:

based on host DAT tables, dynamically translating the
host referenced address to determine the address of the
desired block of host main storage.
3. The method according to claim 2, further comprising:
based on the program address comprising the guest ref-
erenced address, performing a guest DAT comprising:

based on one or more of guest DAT tables and host DAT
tables, dynamically translating the guest referenced
address to determine the address of the desired block of
host main storage; and

based on a translation exception event having occurred

during said translating of the program address, creating
the translation exception qualifier (TXQ) to indicate
whether said translation exception event relates to said
host DAT exception, or said guest DAT exception.

4. The method according to claim 3, wherein the trans-
lation exception event is caused by dynamic address trans-
lation based on the host DAT tables, the method further
comprising, responsive to the program address being the
guest referenced address and the dynamically translating the
guest referenced address being based on both the guest DAT
tables and the host DAT tables, performing:

based on the guest DAT tables, translating the guest

referenced address to determine the guest address of the
block of guest main storage and based on the host DAT
tables, translating the guest address of the block of
guest main storage to determine the host address of the
desired block of host main storage, wherein the guest
address of the block of guest main storage comprises
any one of a guest page frame real address obtained
from a guest page table entry, or a guest segment frame
absolute address obtained from a guest segment table
entry, the guest segment table entry having the guest
segment frame absolute address and an enabled format
control (FC) field, the page frame real address subject
to prefixing to form a real address.

5. The method according to claim 4, further comprising
storing said TXQ to indicate that said translation exception
event was caused by said host referenced address encoun-
tering a host DAT exception, the TXQ having a value of 0.

6. The method according to claim 4, further comprising
storing said TXQ to indicate that said translation exception
event pertained to host DAT translation of a host virtual
address derived from said guest referenced address, the host
virtual address not being derived from the guest page table
entry or the guest segment table entry comprising the
enabled FC field, the TXQ having a value of 1.

7. The method according to claim 4, further comprising
storing said TXQ to indicate that said translation exception
event pertained to host DAT translation of a host virtual

Mar. 22, 2018

address derived from said guest referenced address, the host
virtual address comprising said guest page frame real
address, the TXQ having a value of 2.

8. The method according to claim 4, further comprising
storing said TXQ to indicate that said translation exception
event pertained to host DAT translation of a host virtual
address derived from said guest referenced address, the host
virtual address comprising said guest segment frame abso-
lute address, the TXQ having a value of 3.

9. A system for qualifying a translation exception in a
dynamic address translation (DAT) facility configured to
translate a program address into a translated address of a
desired block of host main storage in a computer system, the
system comprising:

a computer memory configured to store machine instruc-
tions and a hierarchy of translation tables used for
dynamic address translation of a virtual address into a
real address or absolute address of a desired block of
data in said main storage; and

a processor in communication with said computer
memory, said processor configured to access said hier-
archy of translation tables stored in said memory, said
system configured to perform a method comprising:

translating the program address into an address of a
desired block of main storage; and

based on a translation exception event having occurred
during said translating of the program address, storing
a translation exception qualifier (TXQ) to indicate
whether the translation exception event relates to a host
DAT exception or a guest DAT exception, said TXQ
indicating with a first value that an exception was
caused by a currently executing configuration, with a
second value that the exception was associated with a
host virtual address derived from a guest page frame
real address, with a third value that the exception was
associated with a host virtual address derived from a
guest segment frame absolute address, and with a
fourth value that the exception was associated with a
host virtual address derived from a guest address other
than a guest page frame real address or a guest segment
frame absolute address.

10. The system according to claim 9, wherein the com-
puter system comprises a host machine and a guest virtual
machine (VM), the guest VM being provisioned with virtual
resources by a host program of the host machine, the host
machine having host resources including host main storage,
the guest VM comprising a guest operating system, the
virtual resources comprising guest main storage, wherein the
program address comprises a guest referenced address ref-
erenced by said guest program or a host referenced address
referenced by said host program, the guest referenced
address for determining a corresponding guest address of a
block of guest main storage, the method comprising:

based on the program address comprising the host refer-
enced address, performing a host DAT comprising:

based on host DAT tables, dynamically translating the
host referenced address to determine the address of the
desired block of host main storage.

11. The system according to claim 10, the method further
comprising:

based on the program address comprising the guest ref-
erenced address, performing a guest DAT comprising:

based on one or more of guest DAT tables and host DAT
tables, dynamically translating the guest referenced
address to determine the address of the desired block of
host main storage; and

US 2018/0081800 A9

based on a translation exception event having occurred
during said translating of the program address, creating
the translation exception qualifier (TXQ) to indicate
whether said translation exception event relates to said
host DAT exception, or said guest DAT exception.

12. The system according to claim 11, wherein the trans-
lation exception event is caused by dynamic address trans-
lation based on the host DAT tables, the method further
comprising, responsive to the program address being the
guest referenced address and the dynamically translating the
guest referenced address being based on both the guest DAT
tables and the host DAT tables, performing:

based on the guest DAT tables, translating the guest
referenced address to determine the guest address of the
block of guest main storage and based on the host DAT
tables, translating the guest address of the block of
guest main storage to determine the host address of the
desired block of host main storage, wherein the guest
address of the block of guest main storage comprises
any one of a guest page frame real address obtained
from a guest page table entry, or a guest segment frame
absolute address obtained from a guest segment table
entry, the guest segment table entry having the guest
segment frame absolute address and an enabled format
control (FC) field, the page frame real address subject
to prefixing to form a real address.

13. The system according to claim 12, the method further
comprising storing said TXQ to indicate that said translation
exception event was caused by said host referenced address
encountering a host DAT exception, the TXQ having a value
of 0.

14. The system according to claim 12, the method further
comprising storing said TXQ to indicate that said translation
exception event pertained to host DAT translation of a host
virtual address derived from said guest referenced address,
the host virtual address not being derived from the guest
page table entry or the guest segment table entry comprising
the enabled FC field, the TXQ having a value of 1.

15. The system according to claim 12, the method further
comprising storing said TXQ to indicate that said translation
exception event pertained to host DAT translation of a host
virtual address derived from said guest referenced address,
the host virtual address comprising said guest page frame
real address, the TXQ having a value of 2.

16. The system according to claim 12, the method further
comprising storing said TXQ to indicate that said translation
exception event pertained to host DAT translation of a host
virtual address derived from said guest referenced address,
the host virtual address comprising said guest segment frame
absolute address, the TXQ having a value of 3.

17. A computer program product for qualifying a trans-
lation exception in a dynamic address translation (DAT)
facility configured to translate a program address into a
translated address of a desired block of host main storage in
a computer system, the computer system comprising a host
machine and a guest virtual machine (VM), the guest VM
being provisioned with virtual resources by a host program
of the host machine, the host machine having host resources
including host main storage, the guest VM comprising a
guest operating system, the virtual resources comprising
guest main storage, the computer program product compris-
ing:

23

Mar. 22, 2018

a storage medium readable by said computer system, said
storage medium storing instructions for performing a
method comprising:

translating the program address into an address of a
desired block of main storage; and

based on a translation exception event having occurred
during said translating of the program address, storing
a translation exception qualifier (TXQ) to indicate
whether the translation exception event relates to a host
DAT exception or a guest DAT exception, said TXQ
indicating with a first value that an exception was
caused by a currently executing configuration, with a
second value that the exception was associated with a
host virtual address derived from a guest page frame
real address, with a third value that the exception was
associated with a host virtual address derived from a
guest segment frame absolute address, and with a
fourth value that the exception was associated with a
host virtual address derived from a guest address other
than a guest page frame real address or a guest segment
frame absolute address.

18. The computer program product according to claim 17,
wherein the computer system comprises a host machine and
a guest virtual machine (VM), the guest VM being provi-
sioned with virtual resources by a host program of the host
machine, the host machine having host resources including
host main storage, the guest VM comprising a guest oper-
ating system, the virtual resources comprising guest main
storage, wherein the program address comprises a guest
referenced address referenced by said guest program or a
host referenced address referenced by said host program, the
guest referenced address for determining a corresponding
guest address of a block of guest main storage, the method
comprising:

based on the program address comprising the host refer-
enced address, performing a host DAT comprising:

based on host DAT tables, dynamically translating the
host referenced address to determine the address of the
desired block of host main storage.

19. The computer program product according to claim 18,

the method further comprising:

based on the program address comprising the guest ref-
erenced address, performing a guest DAT comprising:

based on one or more of guest DAT tables and host DAT
tables, dynamically translating the guest referenced
address to determine the address of the desired block of
host main storage; and

based on a translation exception event having occurred
during said translating of the program address, creating
the translation exception qualifier (TXQ) to indicate
whether said translation exception event relates to said
host DAT exception, or said guest DAT exception.

20. The computer program product according to claim 19,
wherein the translation exception event is caused by
dynamic address translation based on the host DAT tables,
the method further comprising, responsive to the program
address being the guest referenced address and the dynami-
cally translating the guest referenced address being based on
both the guest DAT tables and the host DAT tables, per-
forming:

based on the guest DAT tables, translating the guest
referenced address to determine the guest address of the
block of guest main storage and based on the host DAT
tables, translating the guest address of the block of

US 2018/0081800 A9 Mar. 22, 2018
24

guest main storage to determine the host address of the
desired block of host main storage, wherein the guest
address of the block of guest main storage comprises
any one of a guest page frame real address obtained
from a guest page table entry, or a guest segment frame
absolute address obtained from a guest segment table
entry, the guest segment table entry having the guest
segment frame absolute address and an enabled format
control (FC) field, the page frame real address subject
to prefixing to form a real address.

#* #* #* #* #*

