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CONVOLUTIONAL NEURAL NETWORK
ARCHITECTURE WITH ADAPTIVE FILTERS

RELATED APPLICATION INFORMATION

[0001] This application claims priority to provisional
application Ser. No. 62/556,534 filed on Sep. 11, 2017,
which is incorporated herein by reference herein in its
entirety.

[0002] This application is related to an application entitled
“Electronic Message Classification and Delivery Using a
Neural Network Architecture,” having attorney docket num-
ber 17072B, and which is incorporated herein by reference
in its entirety.

BACKGROUND

Technical Field

[0003] The present invention relates to machine learning,
and more particularly to convolutional neural network
(CNN) architectures with adaptive filters.

Description of the Related Art

[0004] Artificial neural networks, referred to herein as
neural networks, are machine learning systems that include
a set of units or nodes (“neurons”) organized in respective
layers, which can include an input layer, an output layer and
one or more optional hidden layers, for learning how to
perform tasks. A variety of learning algorithms are known
for implementing and training neural networks (e.g., back-
propagation algorithms). Examples of tasks that can be
performed by neural networks include, but are not limited to,
natural language processing (NLP), image recognition,
speech recognition, computer vision, medical diagnosis and
computer data filtering. Examples of NLP tasks can include,
but are not limited to, sentence/document classification, text
sequence matching, language modeling, machine translation
and abstractive sentence summarization.

SUMMARY

[0005] According to an aspect of the present invention, a
system for employing input-conditioned filters to perform
text categorization tasks using a convolutional neural net-
work architecture is provided. The system includes a
memory device for storing program code. The system also
includes at least one processor, operatively coupled to the
memory device. The at least one processor is configured to
receive an input associated with one or more words, generate
a set of filters conditioned on the input by implementing an
encoder to encode the input into a hidden vector, and
implementing a decoder to determine the set of filters based
on the hidden vector, and perform adaptive convolution by
applying the set of filters to the input to generate a repre-
sentation corresponding to the input.

[0006] According to another aspect of the present inven-
tion, a system for employing input-conditioned filters to
perform question-answering tasks using a convolutional
neural network architecture is provided. The system
includes a memory device for storing program code. The
system also includes at least one processor, operatively
coupled to the memory device. The at least one processor is
configured to receive a first input associated with a question
and a second input associated with an answer, generate a first
set of filters conditioned on the first input and a second set
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of filters conditioned on the second input by implementing
one or more encoders to encode the first input into a first
hidden vector and the second input into a second hidden
vector, and implementing one or more decoders to determine
the first and second sets of filters based on the first and
second hidden vectors, respectively, and perform adaptive
convolution by applying the second set of filters to the first
input to generate a first representation corresponding to the
first input, and applying the first set of filters to the second
input to generate a second representation corresponding to
the second input.

[0007] According to yet another aspect of the present
invention, a computer-implemented method for employing
input-conditioned filters to perform natural language pro-
cessing tasks using a convolutional neural network archi-
tecture is provided. The method includes receiving, by at
least one processor operatively coupled to a memory, one or
more inputs, generating, by the at least one processor, one or
more sets of filters conditioned on respective ones of the one
or more inputs by implementing one or more encoders to
encode the one or more inputs into one or more respective
hidden vectors, and implementing one or more decoders to
determine the one or more sets of filters based on the one or
more hidden vectors, and performing, by the at least one
processor, adaptive convolution by applying the one or more
sets of filters to respective ones of the one or more inputs to
generate one or more representations.

[0008] These and other features and advantages will
become apparent from the following detailed description of
illustrative embodiments thereof, which is to be read in
connection with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

[0009] The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein:

[0010] FIG. 1 is a block/tlow diagram of a system/method
for employing input-conditioned filters to perform text cat-
egorization tasks using a neural network architecture, in
accordance with an embodiment of the present invention;
[0011] FIG. 2 is a block/flow diagram of a system/method
for employing input-conditioned filters to perform question-
answering tasks using a neural network architecture, in
accordance with another embodiment of the present inven-
tion;

[0012] FIG. 3 is a block/tlow diagram of a system/method
for employing input-conditioned filters to perform machine
learning tasks using a neural network architecture, in accor-
dance with embodiments of the present invention;

[0013] FIG. 4 is a block diagram of an exemplary envi-
ronment to which the present invention can be applied, in
accordance with an embodiment of the present invention;
and

[0014] FIG. 5is a block diagram of a processing system in
accordance with an embodiment of the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

[0015] One example of a neural network is a convolutional
neural network (CNN). CNNs are deep, feed-forward net-
works that, compared to other types of neural networks and
methods, use relatively little pre-processing. This allows
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CNNs s to learn filters that, in other architectures, are created
or engineered using domain knowledge.

[0016] A CNN can include input and output layers, and
can include multiple hidden layers. The hidden layers of a
CNN can include one or more convolutional layers, one or
more pooling layers (e.g., local and/or global pooling lay-
ers), one or more fully connected layers and/or one or more
normalization layers. Convolutional layers apply a convo-
Iution operation to the input and pass the result to the next
layer. Such convolution can emulate a neuronal response to
an image. Pooling layers perform pooling to combine the
outputs of neuron clusters of a layer as input into a subse-
quent layer. For example, max-pooling uses the maximum
value from neuron clusters of a layer as input into the
subsequent layer. As another example, average-pooling uses
the average value from neuron clusters of a layer as input
into the subsequent layer. Fully connected layers connect
each neuron in a layer to each neuron in another layer.
[0017] CNN popularity mainly arises from: (1) the ability
to extract salient and abstract features from every n-gram
text fragment; (2) the flexibility of controlling effective
context size by stacking several layers in a hierarchical
manner; and (3) convolutions over different parts of a
sequence are highly parallelable, and are thus more compu-
tationally efficient than, e.g., recurrent neural networks
(RNNG).

[0018] The general idea of CNNs is the consideration of
feature extraction and the corresponding supervised task in
a joint manner. As an encoder network for text, CNNs can
convolve an input, such as a sentence represented as an
embedding matrix, with a set of filters with a window size
of'n, and thus can encapsulate meaningful semantic features
from all n-gram phrases. An embedding matrix represents
the mapping of words of a sentence, which can each
corresponding to one dimension, to a vector space having a
lower dimension.

[0019] However, in most cases, the weights of filters are
assumed to be the same regardless of the input text or
specific phrases. Although this filter type can capture the
most common patterns inherent in natural language sen-
tences, some vital features that are sample-specific may be
neglected, especially in the case where conditional informa-
tion is available. This observation is consistent with the
intuition that while humans are reading different types of
documents (e.g. academic papers or newspaper articles),
humans tend to leverage distinct strategies for better and
easier understanding. Additionally, in the context of select-
ing a correct answer to a question from a few candidates, it
is natural for someone to read the answer (question) while
simultaneously bearing the meaning of question (answer) in
mind.

[0020] Existing CNN models may not be expressive
enough, in the sense that different inputs can share a fixed set
of filters. To increase the expressiveness and improve per-
formance of CNNs to perform, e.g., NLP task(s), the
embodiments described herein provide for an adaptive con-
volutional filter generation framework that leverages a meta-
network to generate a set of input-aware filters. The convo-
Iution operation in the framework described herein does not
have a fixed set of filters, thereby endowing the CNN with
improved modeling flexibility and/or capacity. The set of
input-aware filters generated by the meta-network described
herein can be conditioned on an input, and can be adaptively
applied to the same or a different text sequence. In this
manner, the set of input-aware filters can vary from sen-
tence-to-sentence and can allow more fine-grained feature
abstraction. The filter-generating meta-networks described
herein can be learned end-to-end together with other net-
work modules during the training procedure. Moreover,
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since the flexibility of the framework described herein is
inherent in the convolution operation, it can be naturally
generalized to tackle NLP reasoning problems.

[0021] The framework in accordance with the embodi-
ments described herein can be generalized to model sentence
pairs. An adaptive question answering (AdaQA) model is
described herein, where a two-way feature abstraction
mechanism is introduced to encapsulate co-dependent sen-
tence representations. The embodiments described herein
can achieve state-of-the-art performance with respect to
tasks including, e.g., document categorization and question
answering tasks, achieving performance gains over strong
CNN and non-CNN baselines. For example, the architecture
in accordance with the embodiments described herein can
generate highly effective filters for an input and can serve as
a bridge to allow interactions between sentence pairs, with-
out an excessive increase in the number of model param-
eters.

[0022] It is to be appreciated that the use of any of the
following “/”, “and/or”, and “at least one of”, for example,
in the cases of “A/B”, “A and/or B” and “at least one of A
and B”, is intended to encompass the selection of the first
listed option (A) only, or the selection of the second listed
option (B) only, or the selection of both options (A and B).
As a further example, in the cases of “A, B, and/or C” and
“at least one of A, B, and C”, such phrasing is intended to
encompass the selection of the first listed option (A) only, or
the selection of the second listed option (B) only, or the
selection of the third listed option (C) only, or the selection
of the first and the second listed options (A and B) only, or
the selection of the first and third listed options (A and C)
only, or the selection of the second and third listed options
(B and C) only, or the selection of all three options (A and
B and C). This may be extended, as readily apparent by one
of ordinary skill in this and related arts, for as many items
listed.

[0023] Referring now in detail to the figures in which like
numerals represent the same or similar elements and initially
to FIG. 1, a block/flow diagram illustrates an exemplary
adaptive convolutional neural network (ACNN) architecture
100.

[0024] An input 110 (“x”) is provided. In one embodi-
ment, the input 110 can include one or more words (e.g., a
sentence). For example, the input 110 can be a review
provided by a consumer, which can include one or more
sentences corresponding to the review. The review could be
of a product, hotel, restaurant, etc.

[0025] If the input 110 has a length T (padded where
necessary), the words of the input 110 are X, X,, . . . , X,
and the input 110 can be represented as a matrix XER %
by concatenating the d-dimensional embeddings of all the
words of the input 110 as columns.

[0026] Generally, in the convolutional layer(s) of a CNN

architecture, a set of filters with weights WER ¥ ig
convolved with every window of h words within the sen-
tence (e.g., {Xi Xogmis - - - Xgpe1.7y> Where K is the
number of output feature maps. In this manner, feature maps

p for these h-gram text fragments can be generated as:
PfVRX, 51 +D),

where bER *7 is the bias term and f is a non-linear function.
For example, f can be implemented as a rectified linear unit
(ReLU). The output feature maps of the convolutional

layer(s), pER ="+ can then be passed to the pooling

layer(s) of the CNN. In one embodiment, the pooling
layer(s) implement max-pooling, such that the maximum
value in every row of p is taken to form a K-dimensional
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vector. By doing this, the most vital features detected by
each filter can be kept and information from less fundamen-
tal text fragments can be removed. Moreover, max-pooling
can guarantee that the size of the obtained representation is
independent of the length of the sentence.
[0027] As shown in FIG. 1, the ACNN architecture 100
includes a filter generation module 120 and an adaptive
convolution module 140. The filter generation module 120
generates a set of (fine-grained) filters 130 having filter(s) ()
with a specific size conditioned on the input 110, and the
adaptive convolution module 140 applies the set of filters to
an input (which can be the same or different from the input
110). The modules 120 and 140 are differentiable and the
architecture 100 can be trained in an end-to-end manner. For
example, in the context where the input 110 is a customer’s
product review, the filter generation module 120 can be
adaptive for different categories of products and different
types of customers by scanning the whole review.
[0028] In one embodiment, the filter generation module
120 utilizes an encoding-decoding framework to generate
the set of filters 130. For example, the filter generation
module 120 can include an encoder to encode the input 110
into a (fixed-length) hidden vector z (e.g., using a convolu-
tional layer and a pooling layer), and a decoder that uses the
hidden vector z to generate the set of filters 130 (e.g., using
a deconvolutional layer). Since the dimension of the hidden
vector 7 is independent of the length of the input 110, the set
of filters 130 can have the same size and shape for every
sentence. Accordingly, the encoding section of the filter
generation module 120 abstracts information from the input
110 into the hidden vector z and, based on this representa-
tion, the decoding section of the filter generation module 120
determines the set of filters for the input 110.
[0029] As shown, the adaptive convolution module 140
receives as input the set of filters 130 from the filter
generation module 120 and a sentence, and outputs a label
150 (y). For example, in the context where the input 110 is
a consumer’s review, the output 150 can include a numerical
rating predicted based on the review associated with the
input 110.
[0030] As shown in FIG. 1, the sentence is identical to the
input 110 (e.g., the sentence used to generate the set of filters
130). However, in alternative embodiments (e.g., the archi-
tecture described below with reference to FIG. 2), the
sentence can be different from the input 110 (e.g., different
from the sentence used to generate the set of filters 130).
Using the set of filters 130, the sentence received by the
adaptive convolution module 140 (e.g., input 110) can be
adaptively encoded via a CNN architecture including a
convolutional layer and a pooling layer.
[0031] One application of the ACNN architecture
described above with reference to FIG. 1 is text categori-
zation, which aims to predict a label y for a given input x.
The label y can be a topic, sentiment orientation, etc. To
allow for strong modeling capacity, the generating process
can be defined as the following encoding-decoding frame-
work:

Z=CNN (x, W)

J=DCNN (%, )

where CNN is a convolutional layer of the filter generation
module 120, DCNN is a deconvolutional layer of the filter
generation module 120, and W, and W, are parameters to be
learned in the convolutional layer and the deconvolutional
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layer, respectively. In this framework, the shape and the
number of filters in the set of filters can be flexibly tuned by
the parameter W, of the deconvolutional layer. After gen-
erating the set of filters, the set of filters are passed to the
adaptive convolution module 140 with input x and output
the corresponding sentence representation h, where h=CNN
(x,1). The vector h is adopted for predicting the probabilities
over each class, denoted as p, where p=softmax (Wh+b),
where W and b are parameters of the classifier and softmax(
) is the softmax function. More specifically, W is a weight
matrix connecting the hidden representation vector h and the
output vector p, and b is a bias vector associated with output
vector p. The parameters in DCNN, including W and b, can
be learned by minimizing a task-specific loss function such
as, e.g., cross-entropy loss.
[0032] Open-domain question answering aims to return an
answer according to an input question. Considering the
ability of the ACNN framework of FIG. 1 to generate a set
of filters while being aware of a specific input, the concepts
of' the ACNN framework of FIG. 1 can be naturally applied
to question answering applications.
[0033] Generally, the goal of question answering is to
identify a correct answer from a set of candidates in response
to a factual question. For example, given a question q, q can
be associated with a set or list of candidate answers {a,, a,,
.., a,,} and their corresponding labels {y,, 5, . .. y,.}. For
i=1, 2, . . ., m, if a, correctly answers ¢, then y,=1 and
otherwise y,=0. Accordingly, the question answering task
can be cast as a classification problem where, given an
unlabeled question-answer pair (q,, a,), a label y, is pre-
dicted.
[0034] Referring now to FIG. 2, a block/flow diagram is
provided illustrating an exemplary adaptive question
answering (AdaQA) architecture 200. As shown, a question-
answer pair including a question input Q 210qg and an answer
input A 2105 is provided. The question and answer inputs
210q and 2105 can be represented by their word embedding

matrices. For example, QER *71 and AGR ™7,

[0035] The question input 210« is passed to filter genera-
tion module 220-1 and the answer input 2105 is passed to
filter generation module 220-2 to generate set of filters 230-1
for the question input and set of filters 230-1 for the answer
input. Similar to the filter generation module 120 describe
above, the sets of filters 230-1 and 230-2 can each be
generated by their corresponding filter generation modules
220-1 and 220-2 by employing an encoding-decoding
framework. For example, for a question q, the process to
generate the set of filters 230-1, f, can be defined as:

2 CNN(Q, y)

S, =DCNN (Z_ W)

where CNN is a convolutional layer of the filter generation
module 220-1, DCNN is a deconvolutional layer of the filter
generation module 220-1, and W and W, are parameters to
be learned in the convolutional layer and the deconvolu-
tional layer, respectively. A similar process can be utilized to
generate the set of filters 230-2, f,.

[0036] As further shown, adaptive convolution module
240-1 receives the set of filters 230-2 and the answer input
2106 (e.g., A), and adaptive convolution module 240-2
receives the set of filters 230-1 and the question input 210a
(e.g., Q). The adaptive convolution module 240-1 generates
a question representation 250q, and the adaptive convolution
module 240-2 generates an answer representation 2505. This
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is done to abstract information from the answer/question
pertinent to the corresponding question/answer, such that the
most important features for relatedness prediction are selec-
tively encapsulated, and less vital information is filtered out.
[0037] The question representation 250a can include a
matrix. The adaptive convolution module 240-1 can perform
the following operation to generate the question represen-
tation 250a, h,: h,=CNN (Q, f,). That is, the question
embedding matrix QQ can be convolved with the set of filters
230-2 to generate the question representation 250a.

[0038] The answer representation 2505 can include a
matrix. The adaptive convolution module 240-2 can perform
the following operation to generate the answer embedding
matrix 2506, h,: h,=CNN (A, f). That is, the answer
embedding matrix A is convolved with the set of filters
230-1 to generate the answer representation 25064.

[0039] The question and answer representations 250a and
2505 are received by matching module 260 to implement a
matching function. In one embodiment, the matching func-
tion defines a vector t as follows:

1=[hg; o hg=hy hgoh,),

where - and o denote element-wise subtraction and element-
wise product operations, respectively, [a;b] is concatenation
as column vectors. Then, t is used to model a conditional
probability distribution, p(y=1lh,, h,). For example, the
conditional probability distribution can be modeled as fol-
lows:

pr=lIh,, h)=o(Wt+b),

where o ) is the sigmoid function. An output (e.g., predic-
tion) y 270 is output by the matching module 260.

[0040] Notably, the weights of the filter generating net-
works for both the answer and answer are shared so that the
model adaptivity for answer selection can be improved
without an excessive increase in the number of parameters.
Accordingly, the modules in the architecture of FIG. 2 can
be jointly trained in an end-to-end manner.

[0041] The architecture 200 is designed for solving a
question-answering task (e.g., answer selection given a
question). For example, the architecture 200 can be imple-
mented within an automatic online help desk system, where
question input 210a can be a technical question posted by a
consumer about the functionality of a product, and the
answer input 2106 can be a page from a list of technical
guide pages. Accordingly, the architecture 200 can be
applied to select the right page from the list of technical
guide pages to answer given the consumer’s question.
[0042] Referring now to FIG. 3, a block/flow diagram is
provided illustrating an overview of a system/method 300
for employing input-conditioned filters to perform machine
learning tasks using a neural network architecture. In one
embodiment, the system/method 300 is performed in the
context of a natural language processing task. For example,
the system/method 300 can perform, e.g., text categorization
tasks, question-answering tasks, etc. In one embodiment, the
neural network architecture includes a CNN architecture.
[0043] At block 310, one or more inputs are received. The
one or more inputs can be associated with one or more
words. In one embodiment, the one or more inputs can
include a matrix representing the one or more words. In
another embodiment, the one or more inputs can include a
first input associated with a question and a second input
associated with an answer. For example, the first input can
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include a question embedding matrix and the second input
can include an answer embedding matrix.

[0044] At block 320, one or more sets of filters condi-
tioned on respective ones of the one or more inputs are
generated. The one or more sets of filters can be generated
by implementing one or more encoders to encode the one or
more inputs into one or more respective vectors (e.g., using
one or more first parameters), and implementing one or more
decoders to determine the one or more sets of filters based
on the one or more hidden vectors (e.g., using one or more
second parameters). The one or more encoders can each
include a convolutional layer, and the one more decoders can
each include a deconvolutional layer.

[0045] For example, in the embodiment where the one or
more inputs include a first input associated with a question
and a second input associated with an answer, a first set of
filters conditioned on the first input can be generated by
implementing an encoder to encode the first input into a first
hidden vector and a decoder to determine the first set of
filters based on the first hidden vector, and a second set of
vectors conditioned on the second input can be generated by
implementing an encoder to encode the second input into a
second hidden vector and a decoder to determine the second
set of filters based on the second hidden vector.

[0046] At block 330, adaptive convolution is performed
by applying the one or more sets of filters to respective ones
of the one or more inputs to generate one or more repre-
sentations. Applying each of the one or more sets of filters
to the corresponding input s to generate the one or more
representations can include applying one or more convolu-
tional layers.

[0047] For example, in the embodiment where the one or
more inputs include a first input associated with a question
and a second input associated with an answer, a first repre-
sentation corresponding to the first input can be generated by
applying the second set of filters to the first input, and a
second representation corresponding to the second input can
be generated by applying the first set of filters to the second
input.

[0048] At block 340, a natural language processing task is
performed based on the one or more representations.

[0049] For example, the natural language task can include
a text categorization task. Performing a text categorization
task based on a given representation can include predicting
a probability over a class based on the representation, and
outputting a label based on the probability. The label can
include, e.g., a topic, sentiment orientation, etc.

[0050] As another example, in the embodiment where the
one or more inputs include a first input associated with a
question and a second input associated with an answer, the
natural language task can include a question-answering task.
Performing the question-answering task based on the first
and second inputs can include generating a matching vector
based on the first and second representations, modeling a
conditional probability distribution based on the matching
vector, and outputting a label based on the conditional
probability distribution. The matching vector can be gener-
ated by implementing a matching function. The conditional
probability distribution can be modeled by implementing the
sigmoid function o( ).

[0051] Further details regarding each of the blocks
described with reference to FIG. 3 are described above with
reference to FIGS. 1 and 2.
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[0052] Embodiments described herein may be entirely
hardware, entirely software or including both hardware and
software elements. In a preferred embodiment, the present
invention is implemented in software, which includes but is
not limited to firmware, resident software, microcode, etc.

[0053] Embodiments may include a computer program
product accessible from a computer-usable or computer-
readable medium providing program code for use by or in
connection with a computer or any instruction execution
system. A computer-usable or computer readable medium
may include any apparatus that stores, communicates,
propagates, or transports the program for use by or in
connection with the instruction execution system, apparatus,
or device. The medium can be magnetic, optical, electronic,
electromagnetic, infrared, or semiconductor system (or
apparatus or device) or a propagation medium. The medium
may include a computer-readable medium such as a semi-
conductor or solid state memory, magnetic tape, a removable
computer diskette, a random access memory (RAM), a
read-only memory (ROM), a rigid magnetic disk and an
optical disk, etc.

[0054] FIG. 4 shows a block diagram of an exemplary
environment 400 to which one or more of the embodiments
described herein can be applied, in accordance with an
embodiment of the present invention. The environment 400
is representative of a computer network. The elements
shown relative to FIG. 4 are set forth for the sake of
illustration. However, it is to be appreciated that the embodi-
ments described herein can be applied to other network
configurations and other operational environments as readily
contemplated by one of ordinary skill in the art given the
teachings of the embodiments described herein.

[0055] The environment 400 at least includes at least one
computer processing system 410 and one or more computing
devices connected to a network 405. In this illustrative
embodiment, the one or more computing devices include
computing devices 415-1, 415-2 and 415-3. However, the
number of computing devices should not be considered
limiting.

[0056] The computer processing system 410 can include
any type of computer processing system including, but not
limited to, servers, desktops, laptops, tablets, personal digi-
tal assistants (PDAs) smart phones, media playback devices,
and so forth, depending upon the particular implementation.
For the sake of illustration, the computer processing system
410 is a server.

[0057] The computing devices 415-1 through 415-3 can
include any type of computing device including, but not
limited to, servers, desktops, laptops, tablets, PDAs, smart
phones, media playback devices, and so forth, depending
upon the particular implementation. For the sake of illus-
tration, the computing processing device 415-1 is a laptop,
the computing device 415-2 is a smartphone or a PDA, and
the computing device 415-3 is a desktop.

[0058] The computer processing system 410 is configured
to receive one or more inputs associated with one or more
e-mails corresponding to one or more users, such as user
420, across the at least one network 405, classify the one or
more e-mails by performing natural language processing
based on one or more sets of filters conditioned on respective
ones of the one or more inputs, and permit the user 420 to
access to the one or more classified e-mails via the one or
more computing devices 415-1 through 415-3 (e.g., via an
Internet browser and/or an electronic mail application
(“app”). For example, the computer processing system 410
can automatically perform one or more classification opera-
tions on the one or more electronic message based on text
content of the one or more electronic messages. Types of
classification operations include, but are not limited to,

Mar. 14, 2019

determining whether the one or more electronic messages
are unsolicited (e.g., spam or junk), assigning the one or
more electronic messages to one or more folders (e.g.,
assigning an electronic message to a spam or junk folder),
and assigning one or more tags to the one or more electronic
messages.

[0059] The computer processing system 410 can imple-
ment machine learning techniques, such as the text classi-
fication techniques described herein, to perform the one or
more classification operations. For example, in the context
of determining whether a given electronic message is unso-
licited, the text classification techniques described herein
can be used to learn what text content is likely to be
associated with an unsolicited electronic message, and to
determine a likelihood that the given electronic message is
an unsolicited electronic message. In one embodiment, the
computer processing system 410 can compare the likelihood
to a threshold, and determine that the given electronic
message is an unsolicited electronic message if the likeli-
hood exceeds a threshold. The threshold can be associated
with a “sensitivity” of the unsolicited electronic message
filter, such that a higher threshold can correspond to a less
sensitive unsolicited electronic message filter, and a lower
threshold can correspond to a more sensitive unsolicited
electronic message filter.

[0060] In the embodiment shown in FIG. 4, the elements
thereof are interconnected by at least one network 405.
However, in other embodiments, other types of connections
(e.g., wired, etc.) can also be used. Additionally, one or more
elements in FIG. 4 may be implemented by a variety of
devices, which include but are not limited to, Digital Signal
Processing (DSP) circuits, programmable processors, Appli-
cation Specific Integrated Circuits (ASICs), Field Program-
mable Gate Arrays (FPGAs), Complex Programmable Logic
Devices (CPLDs), and so forth. These and other variations
of the elements of environment 500 can be readily deter-
mined by one of ordinary skill in the art.

[0061] Further details regarding the implementation of the
electronic message classification and delivery system and
method describe in FIG. 4 are described above with refer-
ence to FIGS. 1-3.

[0062] Referring now to FIG. 5, an exemplary processing
system 500 is shown which may implementing the embodi-
ments described with reference to FIGS. 1-4. The processing
system 500 includes at least one processor (CPU) 504
operatively coupled to other components via a system bus
502. A cache 506, a Read Only Memory (ROM) 508, a
Random Access Memory (RAM) 510, an input/output (1/O)
adapter 520, a sound adapter 530, a network adapter 540, a
user interface adapter 550, and a display adapter 560, are
operatively coupled to the system bus 502.

[0063] A first storage device 522 and a second storage
device 524 are operatively coupled to system bus 502 by the
1/0O adapter 520. The storage devices 522 and 524 can be any
of a disk storage device (e.g., a magnetic or optical disk
storage device), a solid state magnetic device, and so forth.
The storage devices 522 and 524 can be the same type of
storage device or different types of storage devices.

[0064] A speaker 532 is operatively coupled to system bus
502 by the sound adapter 530. A transceiver 542 is opera-
tively coupled to system bus 502 by network adapter 540. A
display device 562 is operatively coupled to system bus 502
by display adapter 560.

[0065] A first user input device 552, a second user input
device 554, and a third user input device 556 are operatively
coupled to system bus 502 by user interface adapter 550. The
user input devices 552, 554, and 556 can be any of a
keyboard, a mouse, a keypad, an image capture device, a
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motion sensing device, a microphone, a device incorporating
the functionality of at least two of the preceding devices, and
so forth. Of course, other types of input devices can also be
used, while maintaining the spirit of the present principles.
The user input devices 552, 554, and 556 can be the same
type of user input device or different types of user input
devices. The user input devices 552, 554, and 556 are used
to input and output information to and from system 500.
[0066] Natural language processor 570 may be operatively
coupled to system bus 502. Natural language processor 570
is configured to perform one or more of the operations
described above with reference to FIGS. 1-4. Natural lan-
guage processor 570 can be implemented as a standalone
special purpose hardware device, or may be implemented as
software stored on a storage device. In the embodiment in
which natural language processor 570 is software-imple-
mented, although shown as a separate component of the
computer system 500, natural language processor 570 can be
stored on, e.g., the first storage device 522 and/or the second
storage device 529. Alternatively, natural language proces-
sor 570 can be stored on a separate storage device (not
shown).

[0067] Of course, the processing system 500 may also
include other elements (not shown), as readily contemplated
by one of skill in the art, as well as omit certain elements.
For example, various other input devices and/or output
devices can be included in processing system 500, depend-
ing upon the particular implementation of the same, as
readily understood by one of ordinary skill in the art. For
example, various types of wireless and/or wired input and/or
output devices can be used. Moreover, additional processors,
controllers, memories, and so forth, in various configura-
tions can also be utilized as readily appreciated by one of
ordinary skill in the art. These and other variations of the
processing system 500 are readily contemplated by one of
ordinary skill in the art given the teachings of the present
principles provided herein.

[0068] Having described preferred embodiments of sys-
tems and methods for a convolutional neural network archi-
tecture with adaptive filters (which are intended to be
illustrative and not limiting), it is noted that modifications
and variations can be made by persons skilled in the art in
light of the above teachings. It is therefore to be understood
that changes may be made in the particular embodiments
disclosed which are within the scope and spirit of the
invention as outlined by the appended claims. Having thus
described aspects of the invention, with the details and
particularity required by the patent laws, what is claimed and
desired protected by Letters Patent is set forth in the
appended claims.

What is claimed is:

1. A system for employing input-conditioned filters to
perform text categorization tasks using a convolutional
neural network architecture, comprising:

a memory device for storing program code; and

at least one processor operatively coupled to the memory

device and configured to execute program code stored

on the memory device to:

receive an input associated with one or more words;

generate a set of filters conditioned on the input by
implementing an encoder to encode the input into a
hidden vector, and implementing a decoder to deter-
mine the set of filters based on the hidden vector; and

perform adaptive convolution by applying the set of
filters to the input to generate a representation cor-
responding to the input.

2. The system of claim 1, wherein the input includes a
matrix representing the one or more words.
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3. The system of claim 1, wherein the encoder includes a
convolutional layer, and the decoder includes a deconvolu-
tional layer.

4. The system of claim 1, wherein the at least one
processor is configured to generate the representation by
applying a convolutional layer.

5. The system of claim 1, wherein the at least one
processor is further configured to perform a text categori-
zation task based on the representation by:

predicting a probability over class based on the represen-

tation; and

outputting a label based on the probability.

6. A system for employing input-conditioned filters to
perform question-answering tasks using a convolutional
neural network architecture, comprising:

a memory device for storing program code; and

at least one processor operatively coupled to the memory

device and configured to execute program code stored

on the memory device to:

receive a first input associated with a question and a
second input associated with an answer;

generate a first set of filters conditioned on the first
input and a second set of filters conditioned on the
second input by implementing one or more encoders
to encode the first input into a first hidden vector and
the second input into a second hidden vector, and
implementing one or more decoders to determine the
first and second sets of filters based on the first and
second hidden vectors, respectively; and

perform adaptive convolution by applying the second
set of filters to the first input to generate a first
representation corresponding to the first input, and
applying the first set of filters to the second input to
generate a second representation corresponding to
the second input.

7. The system of claim 6, wherein the first input includes
a question embedding matrix and the second input includes
an answer embedding matrix.

8. The system of claim 6, wherein the one or more
encoders each include a convolutional layer, and the one
more decoders each include a deconvolutional layer.

9. The system of claim 6, wherein the at least one
processor is configured to apply the first and second sets of
filters to generate the first and second representations by
applying convolutional layers.

10. The system of claim 6, wherein the at least one
processor is further configured to perform a question-an-
swering task based on the first and second representations.

11. The system of claim 10, wherein the at least one
processor is further configured to perform the question-
answering task by:

generating a matching vector based on the first and second

representations;

modeling a conditional probability distribution based on

the matching vector; and

outputting a label based on the conditional probability

distribution.

12. A computer-implemented method for employing
input-conditioned filters to perform natural language pro-
cessing tasks using a convolutional neural network archi-
tecture, comprising:

receiving, by at least one processor operatively coupled to

a memory, one or more inputs;
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generating, by the at least one processor, one or more sets
of filters conditioned on respective ones of the one or
more inputs by implementing one or more encoders to
encode the one or more inputs into one or more
respective hidden vectors, and implementing one or
more decoders to determine the one or more sets of
filters based on the one or more hidden vectors; and

performing, by the at least one processor, adaptive con-
volution by applying the one or more sets of filters to
respective ones of the one or more inputs to generate
one or more representations.

13. The method of claim 12, wherein the one or more
encoders each include a convolutional layer, and the one
more decoders each include a deconvolutional layer.

14. The method of claim 12, wherein applying the one or
more sets of filters to respective ones of the one or more
inputs to generate the one or more representations further
includes applying one or more convolutional layers.

15. The method of claim 12, wherein each of the one or
more inputs includes a matrix representing one or more
words.

16. The method of claim 15, further comprising perform-
ing, by the at least one processor, a text categorization task
based on the one or more representations, including:

predicting one or more probabilities over one or more

respective classes based on the one or more represen-
tations; and
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outputting one or more labels based on the one or more

probabilities.

17. The method of claim 11, wherein the one or more
inputs include a first input associated with a question and a
second input associated with an answer, and wherein the one
or more sets of filters include a first set of filters correspond-
ing to the first input and a second set of filters corresponding
to the second input.

18. The method of claim 17, wherein the first input
includes a question embedding matrix and the second input
includes an answer embedding matrix.

19. The method of claim 17, wherein the one or more
representations include a first representation corresponding
to the first input and a second representation corresponding
to the second input.

20. The method of claim 19, further comprising perform-
ing, by the at least one processor, a question-answering task
based on the first and second representations, including:

generating a matching vector based on the first and second

representations;

modeling a conditional probability distribution based on

the matching vector; and

outputting a label based on the conditional probability
distribution.



