a9y United States

US 20210084103A1

a2y Patent Application Publication o) Pub. No.: US 2021/0084103 A1

Smith 43) Pub. Date: Mar. 18, 2021
(54) LIVE MIGRATION OF CLUSTERS IN (52) US. CL
CONTAINERIZED ENVIRONMENTS CPC ... HO4L 67/1097 (2013.01); HO4L 67/32
(2013.01); GO6F 16/285 (2019.01); HO4L
(71) Applicant: Google LLC, Mountain View, CA (US) 67/1008 (2013.01); HO4L 67/1034 (2013.01);
HO4L 43/0817 (2013.01)
(72) Inventor: Daniel Veritas Smith, Sunnyvale, CA
us) 67 ABSTRACT
The technology provides for live migration from a first
(21) Appl. No.: 16/579,945 cluster to a second cluster. For instance, when requests to
) one or more cluster control planes are received, a predeter-
(22) Filed: Sep. 24, 2019 mined fraction of the received requests may be allocated to
a control plane of the second cluster, while a remaining
Related U.S. Application Data fraction of the received requests may be allocated to a
(60) Provisional application No. 62/899,794, filed on Sep. control plane of the first cluster. The predetermined fraction
13, 2019. of requests are handled using the control plane of the second
cluster. While handling the predetermined fraction of
Publication Classification requests, it is detected whether there are failures in the
second cluster. Based on not detecting failures in the second
(51) Int. CL cluster, the predetermined fraction of requests allocated to
HO4L 29/08 (2006.01) the control plane of the second cluster may be increased in
HO4L 12/26 (2006.01) predetermined stages until all requests are allocated to the
GO6F 16/28 (2006.01) control plane of the second cluster.
Datacenter 260 Datacenter 270

1

1

1

Server Computer 210

Server Computer 220

f Processor(s) 212 {

} Processor(s) 222

i

Memory 214

Instructions 216
Data 218

Memory 224

Instructions 226
Data 228

\

Server Computer 230
[Processor(s) 232]

Memory 234

Instructions 236
Data 238

Storage
280 L

Storage

Client computer 250

[Processor(s) 252

Memory 254

| Instructions 256

| Data 258

|

[Applioaﬁon Interface Module 251 1

[User input 253

|

l Output devices 255

|

282 ’
Server Computer 240

| Processor(s) 242 |

Memory 244

instructions 246
Data 248

=

US 2021/0084103 A1

Mar. 18, 2021 Sheet 1 of 17

Patent Application Publication

Vi ddNoid

1V HORd

o LA SPOU I9ISBI

SN

[LA BROU ISISBIN

sueld J0U0D PRsLS

US 2021/0084103 A1

Mar. 18, 2021 Sheet 2 of 17

Patent Application Publication

di J6Nold

1HY HORdd

_ 21813¢3 _

_ (d Y818 _

|

{712 ‘sass50004d
aueyd joJiuoa
‘aseqeiap)
dn 188

Qd YorUY

-g—Downtime——e

g

SUUUUPOV SOV
o S

gl T
- ——

™y
P

/\/ 1'] A SPOU 13151 PO

e, -
R ™

{1d uo paydol)
dn 235

a18jap

- O S,
.\\\«.! ~ .l.ll

pM} SPOL IBISEUW Ma

et

an)
\\\

Zyes0ye

ISVIUUUVI VRV
e e

e
SUESSINEESSS o

US 2021/0084103 A1

Mar. 18, 2021 Sheet 3 of 17

Patent Application Publication

¢ 3dNoOld

002

_ 82 ejed |

_ 947 SUOIONJISU| _

vye Mows|y

_ Zyz (s)iossan0id
Otz 1eindwo) Jonies

=

z8e
abelio)g

_ g€z eleq |

_ 9z SUOIONIISU| _

e Moway

_ 767 (5)10859001d _
0€z 1aindwon Janiag

0/ Jeluaoele(

GGz $901A8p INcINO |

€6z induy Jesn |

1 GZ 8inpoyy aoepaju uoneslddy

8G¢C eled

QG SUCHoNAsuU| _

Gz Aows\

767 (S)10SS9904d _

062 181induwiod wsiD

08¢
abeloig

_ 8z eled |

_ 9ZZ SUOIONIISU| _

Y2z fowsy

777 (5)10859004d _

022 1eindwon JaAles

81z ejeq |

917 SUOIONASUY| _

Y12 AMowsyy

Z1Z (8)10ss9901d _

012 teindwo? Jsalasg

09z Js1usoele(

US 2021/0084103 A1

Mar. 18, 2021 Sheet 4 of 17

Patent Application Publication

€ 3dNold
00¢

0S¢E Jeyndwion JusiD

08¢
abeiolg

pE¢ JoIndwon JaAIes

ce

¢ Jaindwod Janies

06€

082
abeloig

06z Jendwon jusiD

0z eINdwod Joaeg

08¢
abeliolg

0Z¢ Jeindwos 1vAes

0£Z JIndwioo tanleg

0.2 Jelusoeieq

0l Jemndwod isnleg

097 Ja1udoeleq

o€

¢ layusoejeq

0cge PNoID

01€ pPnoio

US 2021/0084103 A1

Mar. 18, 2021 Sheet S of 17

Patent Application Publication

¥ 3dNoOld
00b
A 4 (A4 (3 4

ced cep Lep Jauieuo) Jauiejuo) Jaurejuo)

Jsueuon Jauiejuo) Jauieyuon
nEn vz Axoid ZZy Jebeuew ssuigjuoD
7S Axoid 2y Jobeuew Jauiejuo)
A A A 0Zv 9pou J9NIOM A
OSt OPOU JSNIOAM
6zt 100d SpoN
06¥ 1o|npayos 9P SUOISUDIX® I0j JOAISS ||
Siied |dv
0Sy iojebaibby |
08t tebeuew Jaj|01u0) TI _ 09 S824N0S3I UI-ING IO} JONIDS [« Buiwoouy

0.y osegejeq

Oy 19AISS |dY

0l 8pou JaISe

US 2021/0084103 A1

Mar. 18, 2021 Sheet 6 of 17

Patent Application Publication

G 34NSl4d

¥

€8G SPEOPHUOM

89

(s)jjonu0D

ZSG ‘056 (s)ojebaibby

Zvs ‘0vS
(s)ionses |4y

uone.biw
SAI] PEOPIOAA

(s)jusuodwod
jeuonippe
1o (s)ioebaibbe
paiipoul
yum abpliq ouyjesy |4y

N

1 8G SPEOPIOM

08G

(slsjjonuon

ZSP ‘0S¥ (s)iojebaibby

Zry ‘ovy

0.G sseqeleg

-

(s)ionies |4y

006G J21sn|o uoleunsag

UOI]BZIUOIYOUAS
10 9bpuq abelois

» 0/1 oseqgele(

00t J191Sno 82In0g

US 2021/0084103 A1

Mar. 18, 2021 Sheet 7 of 17

Patent Application Publication

|82 |dY Bulwioouy|

SWIN|OA D13el]
uo paseq ajNoy

P

a)nos-ay
269 Jojebaibbe 069 Jojebaibbe
Buibpuig 181sn|D) Buibpuq s818n|D
. .
= -
o o
cyl i9nes |4V Ot 48Mes |dY

9 3dNSid
(oL€ pnojo)
019 (s)Jeouejeq peo
J2)8N|o plo
45 painoi-al s|jed |dVY
SlN0J-3y J9)snj mau
Aq painoJ-al sjjed |dY
969 Jojebaibbe 69 Joyebaibbe
BuibpLq J81sniD Buibpuq J81sn|H
I I
= o}
e o
ZyS J8nI8s |4V 0PG JonI8s |dY
(01€ pnoo) 00G Jeisnio uoeunsaqg

(0L€ PNOID) OO 481SNJO 804N0S

US 2021/0084103 A1

Mar. 18, 2021 Sheet 8 of 17

Patent Application Publication

paInoJ-al
3Je J2]SN|D PJO WO

s||ed |4y peidasisu)

12]snj0 Mal

2 34NOid

969 Jojebaibbe $#G9 Joyebaibbe

Buibpuq J81snin BuibpLq Ja1snjn
I
- -3
e %

ZyG JenIss |dY 0tS JeAlss |dY

(0l€ pPNoIO) 00G J9Isnjo uoneunssQ

Aq pejnol-al sjjes |4y

(0zg pnop)
0z/ (s)iaureuod 1eospig
A
siojebeibbe pajdedssiul |
|e20] s|ieo |dv
0} pejno. "
(|0 |dV 0€/ SPEOPIOM
0LZ pod
251 Jojebaibby 0S¥ Jojebaibby
! I
o -
154 2

vy Hones |dY

Oty 19AI8S |dV

(0ZE PNOJ2) 00 491sNID 821N0g

US 2021/0084103 A1

Mar. 18, 2021 Sheet 9 of 17

Patent Application Publication

8 3dNSid

0.¥ eseqejep
ul 19a[qo ue jo spial a|geynwiwl
Ajipow 0} 4o ‘}199lqo ajeald 0} ||ed |dv
l1ed |1dv

959 ‘¥S9 (s)iojeBaibbe PUIPOIN S ‘05
Buibpliqg J81sn|D > (s)iojebaibby

Zrs 'ovs pesJ SpIay sjgeiniw Zhy ‘ovy
(s)ienies |dY Ajipow Jo 8je81) (s)ianies |dY

ajeolidal \

028 \ g/g esegeleg
109[00

006 J91snjo uoneunsag

0L8
108(q0

0.y sseqejeqd

00% J8isn|o 821nog

US 2021/0084103 A1

Mar. 18, 2021 Sheet 10 of 17

Patent Application Publication

sSpeopom 0} sjsanbal Builioou|

6 34N9ld

086 190uEjeq peo| [eqolO

0.6 leouejeq peoj |00 0S6 190ue[eq peo| |e20T
| ¥569PON 16 9PON
|__2G69PON = 216 PON

_l B |\|\||/|/| B |\|\|’|/| B |m
_ (296" /096" ! 226 026
| \pod, \pod, = pod pod
[N - _
_ 056 ®PON ! 016 ®PON
Ot6 jood spoN 621 j10od apoN
006 J81snjo uoneunssQ 00¥ 18}snjo 82Inog

0l 3dNSld

US 2021/0084103 A1

= pod paje.ibip
S
=]
=
w 026 pod 096 pPod
=
wn
1 E
S
(o]
ﬂ 0101 slqo _ omoav pod | 020l walgo
= BlepRI9N Jed|sH pesi 0} 0G0 JaAp | DM elepelsi
= k sieo abeiolg
¢lol

<0l

%SIp 1U91sISIad YSIP JUS)SISIod

00F 4918NJ0 924N0Sg 006 Jajsnjo uoneunsag

Patent Application Publication

Vil 3dNOli4
-——3n0-jj0. pabelg

(s)19MIBS |dY MBU SBAIRSGD
'

US 2021/0084103 A1

utol (s)ianios |dY

-

PazZIUOIYOUAS

-]
10 pabpuq (s)eseqgeleq

<— (d O} payoeny

pajealn

ZTTT
apou
J915eW Uo11_UNSA(

Mar. 18, 2021 Sheet 12 of 17

uoneiBiw aAl| o) Sa|NI }8S

abueyo
jequisw e Apealje siaAas |dY JUSWILOHAUT

«—— (d 0} payoejje Apeaily

1111
SPOU 1alseul 22in0g

€TTT 22IAIBS
JOAISS |4V {e21807

PIIT
J03eUIPI00)

Patent Application Publication

-
«
3
= dil F3dNoid
-]
(=]
M uonelBiu ewsyos
a aloidwoo sanlesqO
(o]
m a19|dwod »
uoiefiw ewsyosg
=~ uswinoop A1sAoosip
m « MU SBAI8SA0
= oyen idv___, s|qejieAe
g 210w ON Jusinoop Alaaoosiq apou Jajsew
= uoneunsap 0} sjjed |dv %001
A -
= apou is)seuw
& uofjeulisep o} sjied |dv %08
N -
% apou Jajsew
= < uoljeuisasp 0} sjjed |dv %01
= apou isjsew
UoEUNSSP 0} S| |dVY %S
el
apou Jsjseul
uoneullsep O} sljed |dv %<e
-
apou Jsjsew
ucneunsap 0] siied |dv %1
g

1111
Spou Ja3isews 931nos

¢TTT spou
J31SBW UoBUNSag

€TIT 32IAIDS
13AJBS {4V |e01807

AN
J01RUIPI00D

Patent Application Publication

US 2021/0084103 A1

Mar. 18, 2021 Sheet 14 of 17

Patent Application Publication

oLl 3dNoOI4

peisieg ——»

(d uoeis(——»
pslenu

UMORINYG ——»
Ayanoe

18[|04U0D —»
2i0W ON

1111
9pOouU 121SeLl 831N0g

Buiziuosyouhs

« Jo Buibpuq doyg

¢T111 9pou
J235eW uofjeunsaqg

suo-ppe buluiewal Aue youms

lv
$S800Ns

suoday

apou Jejsew uoleunssp
JO SI9||0JJUOD O} SHO0| %001

Spou Js)SBW UOoHEUNSIP
O SI8JJO1U0D O} SHO0] %05

apou Jejsew uoleunssp
10 SJ3]j0U0D 0} SH20| %01

apou Jajsew uoljeunsap
JO S13||0JJUOD O} SHOO0| %G

8pou Jejsew uoneunsaep
JO SIS[|04UOD 0} YO0} %2

apou Jsjsew uoljeunsap
O S19[|OJUOD O] SHOO| %}

€TT1 22IAL0S
JaAIBS |4V |e21807

vi11
J01BUIPIO0D

€01
saue|d |0J1U0D J31SN|D

T0Z1 pod 23inog

-
«
= 2L 34Nl
oy
& pod 821n0s 9)8jaQg
S -
—
o
& painoJ-a4 10 9S00 8q
W 0] SUONOBUUO0D Jubiy-ul J0) JIBAA

|t

pod uoljeunssp o} pod

= 20.N0S WO} O1jel] YIOMIBU SPIeMio
s ~ UOIINOAXS SWNSaY
v »|
o
m pod 22.inos Jo sa1els Buipiooal
2 aouls saje)s ul sabueyo suwsuel |
e »
m pod @21nos jo sajes Buiplooal
oo aouls sa)els ul sabueys Aue Adon
— -t
= UOIINOaXa ashed
M -t
- pod uoneunssp
S 0} pod 821n0S JO S8)BS Jsuel |
m >
= pod 22IN0S JO S3]BIS PJ02dY
=
- -
m pod uoneunssp anpayoss
= z0z1 pod uoneunsag
olm
=%
«
=
&
&
[~™

Patent Application Publication = Mar. 18,2021 Sheet 16 of 17 US 2021/0084103 A1

Cloud control plane
1312

Coordinator
1114

Cloud platform
1311

Initiates change from a source
environment to a destination
environment

-
Starts destination VM(s)
|t
Reports failure(s) during/after
migration

>

Pauses/stops the migration
P

Initiates change from destination
environment back to source
environment

-
Deletes destination VM(s)

Reporting,
diagnosing, fixing

]
Starts destination VM(s)

Re-initiate change from source
environment to destination
environment

Reports successful migration

Delete source VM(s)

FIGURE 13

Patent Application Publication = Mar. 18,2021 Sheet 17 of 17 US 2021/0084103 A1

Receive requests to one or more cluster control

1410 | planes, wherein the one or more cluster control

| planes include a control plane of a first cluster
and a control plane of a second cluster

l

Allocate a predetermined fraction of the received
1420 requests to the control plane of the second

| cluster, and a remaining fraction of the received
requests to the control plane of the first cluster

l

1430 .| Handle the predetermined fraction of requests
| using the control plane of the second cluster

l

1440 — Detect whether there are failures in the second
| cluster while handling the predetermined fraction
of requests

l

Increase, based on not detecting failures in the
second cluster, the predetermined fraction of
1450 = requests allocated to the control plane of the
| second cluster in predetermined stages until all
received requests are allocated to the control
plane of the second cluster

FIGURE 14

US 2021/0084103 Al

LIVE MIGRATION OF CLUSTERS IN
CONTAINERIZED ENVIRONMENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of the filing date
of U.S. Provisional Patent Application No. 62/899,794 filed
Sep. 13, 2019, the disclosure of which is hereby incorpo-
rated herein by reference.

BACKGROUND

[0002] A containerized environment may be used to effi-
ciently run applications on a distributed or cloud computing
system. For instance, various services of an application may
be packaged into containers. The containers may be grouped
logically into pods, which may then be deployed on a cloud
computing system, such as on a cluster of nodes that are
virtual machines (“VM”). The cluster may include one or
more worker nodes that run the containers, and one or more
master nodes that manage the workloads and resources of
the worker nodes according to various cloud and user
defined configurations and policies. A cluster control plane
is a logical service that runs on the master nodes of a cluster,
which may include multiple software processes and a data-
base storing current states of the cluster. To increase avail-
ability, master nodes in the cluster may be replicated, in
which case a quorum of master node replicas must agree for
the cluster to modify any state of the cluster. Clusters may
be operated by a cloud provider or self-managed by an end
user. For example, the cloud provider may have a cloud
control plane that set rules and policies for all the clusters on
the cloud, or provides easy ways for users to perform
management tasks on the clusters.

[0003] When a cloud provider or an end user makes
changes to an environment of a cluster, the changes may
carry risks to the cluster. Example environment changes may
include software upgrades, which may be upgrades for the
nodes, for the cluster control plane, or for the cloud control
plane. Another example environment change may include
movement of a cluster’s resources between locations, such
as between datacenters at different physical locations, or
between different logical locations, such as regions or zones
within the same datacenter. Additionally, a user may wish to
migrate from a self-managed cluster—where the user is
operating as the cloud provider—to a cluster managed by a
cloud provider, or generally between two clusters managed
by different cloud providers. Such a migration carries risks
because it involves transitioning the cluster’s control plane
to the control of the new cloud provider. As still another
example, a user may wish to change clouds for a cluster
without stopping the cluster, which may be risky to the
processes that are currently running in the cluster.

[0004] FIGS. 1A and 1B illustrate a current process to
change an environment of a cluster, in particular a software
upgrade for the cluster control plane. For instance, the cloud
control plane may introduce a software upgrade, such as a
new version of configurations and policies for VMs hosted
by the cloud provider. As shown in FIG. 1A, to switch a
cluster from the old version “v1.1” to the new version
“v1.2,” the cloud control plane deletes an old master node in
the cluster and creates in its place a new master node. During
this replacement process as shown in FIG. 1B, the new
master node may be blocked from being attached to a

Mar. 18, 2021

persistent disk (“PD”) until the old master node is detached
from the PD and the old master node is deleted.

SUMMARY

[0005] The present disclosure provides for migrating from
a first cluster to a second cluster, which comprises receiving,
by one or more processors, requests to one or more cluster
control planes, wherein the one or more cluster control
planes include a control plane of the first cluster and a
control plane of the second cluster; allocating, by the one or
more processors, a predetermined fraction of the received
requests to the control plane of the second cluster, and a
remaining fraction of the received requests to the control
plane of the first cluster; handling, by the one or more
processors, the predetermined fraction of requests using the
control plane of the second cluster; detecting, by the one or
more processors, whether there are failures in the second
cluster while handling the predetermined fraction of
requests; and increasing, by the one or more processors,
based on not detecting failures in the second cluster, the
predetermined fraction of requests allocated to the control
plane of the second cluster in predetermined stages until all
received requests are allocated to the control plane of the
second cluster.

[0006] The received requests may be allocated by cluster
bridging aggregators of the first cluster and cluster bridging
aggregators of the second cluster, wherein the first cluster
and the second cluster are operated on a same cloud. The
received requests may include requests from a workload
running in the first cluster, wherein the requests from the
workload may be intercepted by a sidecar container injected
in the first cluster and routed to cluster bridging aggregators
of the second cluster, wherein the first cluster and the second
cluster are operated on different clouds.

[0007] The allocation of the received requests may be
performed in a plurality of predetermined stages, wherein
the requests are directed to either the first cluster or the
second cluster based on one or more of: user-agent, user
account, user group, object type, resource type, a location of
the object, or a location of a sender of the request.

[0008] The method may further comprise joining, by the
one or more processors, one or more databases in the control
plane of the second cluster to a quorum including one or
more databases in the control plane of the first cluster,
wherein the first cluster and the second cluster are running
on a same cloud. The method may further comprise syn-
chronizing, by the one or more processors, one or more
databases in the control plane of the second cluster with one
or more databases in the control plane of the first cluster,
wherein the first cluster and the second cluster are operated
on different clouds.

[0009] The method may further comprise allocating, by
the one or more processors, a predetermined fraction of
object locks to one or more controllers of the second cluster,
and a remaining fraction of object locks to one or more
controllers of the first cluster; actuating, by the one or more
processors, objects locked by the one or more controllers of
the second cluster; detecting, by the one or more processors,
whether there are failures in the second cluster while actu-
ating the objects locked; increasing, by the one or more
processors based on not detecting failures in the second
cluster, the predetermined fraction of object locks allocated
to the one or more controllers of the second cluster.

US 2021/0084103 Al

[0010] The method may further comprise determining, by
the one or more processors, that all received requests are
allocated to the control plane of the second cluster; deleting,
by the one or more processors based on the determination,
the control plane of the first cluster, wherein the first cluster
and the second cluster are operated on the same cloud. The
method may further comprise stopping, by the one or more
processors based on detecting one or more failures in the
second cluster, allocation of the received requests to the
control plane of the second cluster. The method may further
comprise generating, by the one or more processors based on
detecting one or more failures in the second cluster, output
including information on the detected failures. The method
may further comprise decreasing, by the one or more pro-
cessors based on detecting failures in the second cluster, the
predetermined fraction of requests allocated to the control
plane of the second cluster until all received requests are
allocated to the control plane of the first cluster. The method
may further comprise determining, by the one or more
processors, that all received requests are allocated to the
control plane of the first cluster; deleting, by the one or more
processors based on the determination, the second cluster.
[0011] The method may further comprise scheduling, by
the one or more processors, a pod in the second cluster;
recording, by the one or more processors, states of a pod in
the first cluster; transmitting, by the one or more processors,
the recorded states of the pod in the first cluster to the pod
in the second cluster. The method may further comprise
pausing, by the one or more processors, execution of work-
loads by the pod in the first cluster; copying, by the one or
more processors, changes in states of the pod in the first
cluster since recording the states of the pod in the first
cluster; transmitting, by the one or more processors, the
copied changes in states to the pod in the second cluster;
resuming, by the one or more processors, execution of
workloads by the pod in the second cluster; forwarding, by
the one or more processors, traffic directed to the pod in the
first cluster to the pod in the second cluster; deleting, by the
one or more processors, the pod in the first cluster.

[0012] The method may further comprise determining, by
the one or more processors, that a first worker node in the
first cluster has one or more pods to be moved to the second
cluster; creating, by the one or more processors, a second
worker node in the second cluster; preventing, by the one or
more processors, the first worker node in the first cluster
from adding new pods; moving, by the one or more proces-
sors, the one or more pods in the first worker node to the
second worker node in the second cluster; determining, by
the one or more processors, that the first worker node in the
first cluster no longer has pods to be moved to the second
cluster; deleting, by the one or more processors, the first
worker node in the first cluster.

[0013] The method may further comprise receiving, by the
one or more processors, requests to one or more workloads,
wherein the one or more workloads include workloads
running in the first cluster and workloads running in the
second cluster; allocating, by the one or more processors
using at least one global load balancer, the received requests
to the one or more workloads between the workloads
running in the first cluster and the workloads running in the
second cluster.

[0014] The method may further comprise determining, by
the one or more processors, that a pod running in the second
cluster references a storage of the first cluster; creating, by

Mar. 18, 2021

the one or more processors, a storage in the second cluster,
wherein the storage of the first cluster and the storage of the
second cluster are located at different locations; reading, by
the one or more processors using a storage driver, the storage
of'the second cluster for data related to the pod in the second
cluster; reading, by the one or more processors using the
storage driver, the storage of the first cluster for data related
to the pod in the second cluster. The method may further
comprise writing, by the one or more processors, changes
made by the pod in the second cluster to the storage of the
second cluster; copying, by the one or more processors, data
unchanged by the pod from the storage of the first cluster to
the storage of the second cluster.

[0015] The present disclosure further provides for a sys-
tem for migrating from a first cluster to a second cluster, the
system comprising one or more processors configured to:
receive requests to one or more cluster control planes,
wherein the one or more cluster control planes include a
control plane of the first cluster and a control plane of the
second cluster; allocate a predetermined fraction of the
received requests to the control plane of the second cluster,
and a remaining fraction of requests to the control plane of
the first cluster; handle the predetermined fraction of
requests using the control plane of the second cluster; detect
whether there are failures in the second cluster while han-
dling the predetermined fraction of requests; and increase,
based on not detecting failures in the second cluster, the
predetermined fraction of requests allocated to the control
plane of the second cluster in predetermined stages until all
received requests are allocated to the control plane of the
second cluster.

[0016] The first cluster and the second cluster may be at
least one of: operating different software versions, operating
at different locations, operating on different clouds provided
by different cloud providers, operating on different clouds
where at least one is a user’s on-premise datacenter, or
connected to different networks.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] FIGS. 1A and 1B illustrate an existing process for
implementing environment change for a cluster.

[0018] FIG. 2 shows an example distributed system on
which a cluster may be operated in accordance with aspects
of the disclosure.

[0019] FIG. 3 shows an example distributed system where
live cluster migration may occur in accordance with aspects
of the disclosure.

[0020] FIG. 4 shows an example cluster in accordance
with aspects of the disclosure.

[0021] FIG. 5 shows example components involved in live
cluster migration in accordance with aspects of the disclo-
sure.

[0022] FIG. 6 illustrates example features routing requests
for cluster control planes during a live migration within a
cloud in accordance with aspects of the disclosure.

[0023] FIG. 7 illustrates example features routing requests
for cluster control plane during a live migration between
different clouds in accordance with aspects of the disclosure.
[0024] FIG. 8 illustrates example features performing stor-
age synchronization for cluster control plane during live
migration between different locations or clouds in accor-
dance with aspects of the disclosure.

[0025] FIG. 9 illustrates example features for migration of
workloads in accordance with aspects of the disclosure.

US 2021/0084103 Al

[0026] FIG. 10 illustrates example features performing
live storage migration for workloads between different loca-
tions or clouds in accordance with aspects of the disclosure.
[0027] FIGS. 11A, 11B, and 11C are timing diagrams
illustrating an example live migration for cluster control
plane in accordance with aspects of the disclosure.

[0028] FIG. 12 is a timing diagram illustrating an example
live migration for workloads in accordance with aspects of
the disclosure.

[0029] FIG. 13 is a timing diagram illustrating post-
migration actions in accordance with aspects of the disclo-
sure.

[0030] FIG. 14 is an example flow diagram in accordance
with aspects of the disclosure.

DETAILED DESCRIPTION

Overview

[0031] The technology relates generally to modifying an
environment of a cluster of nodes in a distributed computing
environment. To reduce the risks and downtime for envi-
ronment changes involved in software upgrades, or moving
between locations, networks, or clouds, a system is config-
ured to modify the environment of a cluster via a live
migration in a staged rollout. In this regard, while a first,
source cluster is still running, a second, destination cluster
may be created.

[0032] During the live migration, operations are handled
by both the source cluster and the destination cluster. In this
regard, various operations and/or components may be gradu-
ally shifted from being handled by the source cluster to
being handled by the destination cluster. The shift may be a
staged rollout, where in each stage, a different set of opera-
tions and/or components may be shifted from the source
cluster to the destination cluster. Further, to mitigate damage
in case of failure, within each stage, shifting operations or
components from the source cluster to the destination cluster
may be gradual or “canaried.” The live migration may be
performed for the control planes of the clusters, as well as
the workloads of the clusters.

[0033] For instance, during live migration of the cluster
control plane, traffic may be allocated between the cluster
control plane of the source cluster and the cluster control
plane of the destination cluster. In this regard, where the
source cluster and the destination cluster are operated on the
same cloud, cluster bridging aggregators may be configured
to route incoming requests, such as API calls from user
applications and/or from workloads, to cluster control planes
of both the source cluster and the destination cluster. Where
the source cluster and the destination cluster are operated on
different clouds, in particular where one of the clouds may
not support cluster migration, one or more sidecar containers
may be injected in the cluster that does not have cluster
bridging aggregators. These sidecar containers may inter-
cept and route API calls to the cluster having cluster bridging
aggregators for further routing/re-routing.

[0034] Allocation of request traffic for the cluster control
plane may be canaried during the live migration. For
instance, initially a predetermined fraction of requests may
be allocated to the cluster control plane of the destination
cluster, while the remaining fraction of requests may be
allocated to the cluster control plane of the source cluster.
The destination cluster may be monitored while its cluster
control plane is handling the predetermined fraction of

Mar. 18, 2021

requests. If no failures are detected, then allocation of
requests to the cluster control plane of the destination cluster
may be gradually increased, until all requests are eventually
allocated to cluster control plane of the destination cluster.
[0035] Allocation of requests between the cluster control
planes of the source cluster and the destination cluster may
be based on predetermined rules. For example, the requests
may be allocated based on resource type, object type, or
location. Further, the requests may be allocated in predeter-
mined stages.

[0036] As another example, during the live migration of
the cluster control plane, object actuation may be allocated
between the cluster control plane of the source cluster and
the cluster control plane of the destination cluster. To further
mitigate damage in case of failure, allocation of object
actuation may also be canaried. For instance, at first, a
predetermined fraction of object locks may be allocated to
controllers of the destination cluster, while the remaining
fraction of object locks may be allocated to controllers of the
source cluster. The destination cluster may be monitored
while actuating the objects locked by the predetermined
fraction of object locks. If no failures are detected, or at least
no additional failures that were not already occurring in the
source cluster prior to the migration, then allocation of
object locks to controllers of the destination cluster may be
increased, until all objects are eventually actuated by con-
trollers of the destination cluster.

[0037] Further, consistent data storage for the cluster
control plane is to be maintained during the live migration.
In this regard, if the source cluster and the destination cluster
are in the same datacenter and thus share the same storage
backend, databases of the source cluster and the destination
cluster may be bridged, for example by joining a same
quorum. On the other hand, if the source cluster and the
destination cluster are operated on different locations or
clouds such that they do not have access to each other’s
storage backend, databases of the source cluster and the
destination cluster may be synchronized.

[0038] Still further, a migration may also be performed for
workloads running in the cluster. In this regard, migration of
the workloads may also be live. For example, as new nodes
are created in the destination cluster, pods may be created in
the destination cluster. Rather than immediately deleting the
pods in the source cluster, execution of pods in the source
cluster may be paused. States of the pods in the source
cluster may be transmitted into the pods in the destination
cluster, and execution may resume in the pods in the
destination cluster. Additionally, a global load balancer may
be configured to route requests to workloads running in both
the source cluster and the destination cluster. Where the
workload migration is between different locations or clouds,
live storage migration may be performed for workloads to
change the location of the storage for the workloads.
[0039] Once all components of the cluster control plane
and/or all components of the workloads are shifted to the
destination cluster, and that there is no additional failures
that were not already occurring in the source cluster prior to
the migration, the source cluster may’s components may be
deallocated or deleted. However, if failures are detected
during or after the live migration, the live migration may be
stopped. Additionally, a rollback may be initiated from the
destination cluster back to the source cluster, and the des-
tination cluster’s components may be deallocated and
deleted.

US 2021/0084103 Al

[0040] The technology is advantageous because it pro-
vides a gradual and monitored rollout process for moditying
cluster infrastructure. The staged and canaried rollout pro-
cess provides more opportunity to stop the upgrade in case
issues arise, therefore preventing large scale damage. Traffic
allocation, such as for requests to cluster control plane
and/or requests to workloads, between the simultaneously
running source and destination clusters may reduce or
eliminate downtime during upgrade. Further, due to the
traffic allocation, from the perspective of the client it may
appear as if only one cluster existed during the live migra-
tion. In case of a failed upgrade, the system also provides
rollback options since the source cluster is not deleted unless
a successful upgrade is completed. The technology further
provides features to enable live migration between clusters
located in different locations, as well as between clusters
operated on different clouds where one of the clouds does
not support live migration.

Example Systems

[0041] FIG. 2 is a functional diagram showing an example
distributed system 200 on which clusters may be operated.
As shown, the system 200 may include a number of com-
puting devices, such as server computers 210, 220, 230, 240
coupled to a network 290. For instance, the server computers
210, 220, 230, 240 may be part of a cloud computing system
operated by a cloud provider. The cloud provider may
further maintain one or more storages, such as storage 280
and storage 282. Further as shown, the system 200 may
include one or more client computing devices, such as client
computer 250 capable of communication with the server
computers 210, 220, 230, 240 over the network 290.
[0042] The server computers 210, 220, 230, 240 and
storages 280, 282 may be maintained by the cloud provider
in one or more datacenters. For example as shown, server
computers 210, 220 and storage 280 may be located in
datacenter 260, while server computers 230, 240 and storage
282 may be located in another datacenter 270. The datacen-
ters 260, 270 and/or server computers 210, 220, 230, 240
may be positioned at a considerable distance from one
another, such as in different cities, states, countries, conti-
nents, etc. Further, within the datacenters 260, 270, there
may be one or more regions or zones. For example, the
regions or zones may be logically divided based on any
appropriate attribute.

[0043] Clusters may be operated on the distributed system
200. For example, a cluster may be implemented by one or
more processors in a datacenter, such as by processors 212
of server computers 210, or by processors 232 and 242 of
server computers 230 and 240. Further, storage systems for
maintaining persistent and consistent records of states of the
clusters, such as persistent disks (“PD”), may be imple-
mented on the cloud computing system, such as in storages
280, 282, or in data 218, 228, 238, 248 of server computers
210, 220, 230, 240.

[0044] Server computers 210, 220, 230, 240 may be
configured similarly. For example as shown, the server
computer 210 may contain one or more processor 212,
memory 214, and other components typically present in
general purpose computers. The memory 214 can store
information accessible by the processors 212, including
instructions 216 that can be executed by the processors 212.
Memory can also include data 218 that can be retrieved,
manipulated or stored by the processors 212. The memory

Mar. 18, 2021

214 may be a type of non-transitory computer readable
medium capable of storing information accessible by the
processors 212, such as a hard-drive, solid state drive, tape
drive, optical storage, memory card, ROM, RAM, DVD,
CD-ROM, write-capable, and read-only memories. The pro-
cessors 212 can be a well-known processor or other lesser-
known types of processors. Alternatively, the processor 212
can be a dedicated controller such as a GPU or an ASIC, for
example, a TPU.

[0045] The instructions 216 can be a set of instructions
executed directly, such as computing device code, or indi-
rectly, such as scripts, by the processors 212. In this regard,
the terms “instructions,” “steps” and “programs” can be used
interchangeably herein. The instructions 216 can be stored in
object code format for direct processing by the processors
212, or other types of computer language including scripts
or collections of independent source code modules that are
interpreted on demand or compiled in advance. Functions,
methods, and routines of the instructions are explained in
more detail in the foregoing examples and the example
methods below. The instructions 216 may include any of the
example features described herein.

[0046] The data 218 can be retrieved, stored or modified
by the processors 212 in accordance with the instructions
216. For instance, although the system and method is not
limited by a particular data structure, the data 218 can be
stored in computer registers, in a relational or non-relational
database as a table having a plurality of different fields and
records, or as JSON, YAML, proto, or XML documents. The
data 218 can also be formatted in a computer-readable
format such as, but not limited to, binary values, ASCII or
Unicode. Moreover, the data 218 can include information
sufficient to identify relevant information, such as numbers,
descriptive text, proprietary codes, pointers, references to
data stored in other memories, including other network
locations, or information that is used by a function to
calculate relevant data.

[0047] Although FIG. 2 functionally illustrates the pro-
cessors 212 and memory 214 as being within the same
block, the processors 212 and memory 214 may actually
include multiple processors and memories that may or may
not be stored within the same physical housing. For
example, some of the instructions 216 and data 218 can be
stored on a removable CD-ROM and others within a read-
only computer chip. Some or all of the instructions and data
can be stored in a location physically remote from, yet still
accessible by, the processors 212. Similarly, the processors
212 can include a collection of processors that may or may
not operate in parallel. The server computers 210, 220, 230,
240 may each include one or more internal clocks providing
timing information, which can be used for time measure-
ment for operations and programs run by the server com-
puters 210, 220, 230, 240.

[0048] The server computers 210, 220, 230, 240 may
implement any of a number of architectures and technolo-
gies, including, but not limited to, direct attached storage
(DAS), network attached storage (NAS), storage area net-
works (SANSs), fibre channel (FC), fibre channel over Eth-
ernet (FCoE), mixed architecture networks, or the like. In
some instances, the server computers 210, 220, 230, 240
may be virtualized environments.

[0049] Server computers 210, 220, 230, 240, and client
computer 250 may each be at one node of network 290 and
capable of directly and indirectly communicating with other

US 2021/0084103 Al

nodes of the network 290. For example, the server comput-
ers 210, 220, 230, 240 can include a web server that may be
capable of communicating with client computer 250 via
network 290 such that it uses the network 290 to transmit
information to an application running on the client computer
250. Server computers 210, 220, 230, 240 may also be
computers in one or more load balanced server farms, which
may exchange information with different nodes of the net-
work 290 for the purpose of receiving, processing and
transmitting data to client computer 250. Although only a
few server computers 210, 220, 230, 240, storages 280, 282,
and datacenters 260, 270 are depicted in FIG. 2, it should be
appreciated that a typical system can include a large number
of connected server computers, a large number of storages,
and/or a large number of datacenters with each being at a
different node of the network 290.

[0050] The client computer 250 may also be configured
similarly to server computers 210, 220, 230, 240, with
processors 252, memories 254, instructions 256, and data
258. The client computer 250 may have all of the compo-
nents normally used in connection with a personal comput-
ing device such as a central processing unit (CPU), memory
(e.g., RAM and internal hard drives) storing data and
instructions, input and/or output devices, sensors, clock, etc.
Client computer 250 may comprise a full-sized personal
computing device, they may alternatively comprise mobile
computing devices capable of wirelessly exchanging data
with a server over a network such as the Internet. For
instance, client computer 250 may be a desktop or a laptop
computer, or a mobile phone or a device such as a wireless-
enabled PDA, a tablet PC, or a netbook that is capable of
obtaining information via the Internet, or a wearable com-
puting device, etc.

[0051] The client computer 250 may include an applica-
tion interface module 251. The application interface module
251 may be used to access a service made available by one
or more server computers, such as server computers 210,
220, 230, 240. The application interface module 251 may
include sub-routines, data structures, object classes and
other type of software components used to allow servers and
clients to communicate with each other. In one aspect, the
application interface module 251 may be a software module
operable in conjunction with several types of operating
systems known in the arts. Memory 254 may store data 258
accessed by the application interface module 251. The data
258 can also be stored on a removable medium such as a
disk, tape, SD Card or CD-ROM, which can be connected to
client computer 250.

[0052] Further as shown in FIG. 2, client computer 250
may include one or more user inputs 253, such as keyboard,
mouse, mechanical actuators, soft actuators, touchscreens,
microphones, sensors, and/or other components. The client
computer 250 may include one or more output devices 255,
such as a user display, a touchscreen, one or more speakers,
transducers or other audio outputs, a haptic interface or other
tactile feedback that provides non-visual and non-audible
information to the user. Further, although only one client
computer 250 is depicted in FIG. 2, it should be appreciated
that a typical system can serve a large number of client
computers being at a different node of the network 290. For
example, the server computers in the system 200 may run
workloads for applications on a large number of client
computers.

Mar. 18, 2021

[0053] As with memory 214, storage 280, 282 can be of
any type of computerized storage capable of storing infor-
mation accessible by one or more of the server computers
210, 220, 230, 240, and client computer 250, such as a
hard-drive, memory card, ROM, RAM, DVD, CD-ROM,
write-capable, and read-only memories. In some instances,
the storage 280, 282 may include one or more persistent disk
(“PD”). In addition, storage 280, 282 may include a distrib-
uted storage system where data is stored on a plurality of
different storage devices which may be physically located at
the same or different geographic locations. Storage 280, 282
may be connected to computing devices via the network 290
as shown in FIG. 2 and/or may be directly connected to any
of the server computers 210, 220, 230, 240, and client
computer 250.

[0054] Server computers 210, 220, 230, 240, and client
computer 250 can be capable of direct and indirect commu-
nication such as over network 290. For example, using an
Internet socket, the client computer 250 can connect to a
service operating on remote server computers 210, 220, 230,
240 through an Internet protocol suite. Server computers
210, 220, 230, 240 can set up listening sockets that may
accept an initiating connection for sending and receiving
information. The network 290, and intervening nodes, may
include various configurations and protocols including the
Internet, World Wide Web, intranets, virtual private net-
works, wide area networks, local networks, private networks
using communication protocols proprietary to one or more
companies, Ethernet, WiFi (for instance, 802.81, 802.81b, g,
n, or other such standards), and HTTP, and various combi-
nations of the foregoing. Such communication may be
facilitated by a device capable of transmitting data to and
from other computers, such as modems (for instance, dial-
up, cable or fiber optic) and wireless interfaces.

[0055] FIG. 3 is a functional diagram showing an example
distributed system 300 on which live cluster migration may
occur. Distributed system 300 includes a first cloud 310 and
a second cloud 320. As shown, cloud 310 may include server
computers 210, 220, 230, 240 in datacenters 260, 270, and
storages 280, 282 connected to network 290. One or more
client computers, such as client computer 250 may be
connected to the network 290 and using the services pro-
vided by cloud 310. Further as shown, cloud 320 may
similarly include computing devices, such as server com-
puters 332, 334 organized in one or more datacenters such
as datacenter 330, and one or more storages such as storage
380, connected to a network 390. One or more client
computers, such as client computer 350 may be connected to
the network 390 and using the services provided by cloud
320. Although only a few server computers, datacenters,
storage, and client computer are depicted in FIG. 3, it should
be appreciated that a typical system can include a large
number of connected server computers, a large number of
datacenters, a large number of storages, and/or a large
number of client computers, with each being at a different
node of the network.

[0056] Cloud 310 and cloud 320 may be operated by
different cloud providers. As such, cloud 310 and cloud 320
may have different configurations such that clusters operated
on cloud 310 and cloud 320 are running in different software
environments. Further, clusters hosted by cloud 310 and
cloud 320 may or may not share any storage backend, be
connected to the same network, or be in the same physical
locations. As such, clusters on cloud 310 and cloud 320 may

US 2021/0084103 Al

not be able to modify or even access resources, software
components, and/or configurations in each other. In some
instances, one or both of cloud 310 and cloud 320 may be
self-managed by a user.

[0057] Live cluster migration in the distributed system 300
may occur in any of a number of ways. For instance, while
a cluster is running in datacenter 260, the cloud provider for
cloud 310 may introduce a software upgrade for the cloud
control plane, the cluster control plane running on the master
nodes, or the worker nodes. As such, a migration may be
performed for objects in the cluster to a destination cluster
created in datacenter 260 that conforms with the software
upgrade. In such instances, the migration is within the same
datacenter 260, on the same network 290, and in the same
cloud 310.

[0058] As another example, live cluster migration may
include moving between physical locations. For instance, a
cloud provider for cloud 310 may be relocating resources, or
a developer of the application running on the cluster may
want to move to a different location, etc. As such, a migra-
tion may be performed for objects in the cluster in datacenter
260 to a destination cluster created in datacenter 270. In such
cases the migration may still be within the same network 290
and the same cloud 310.

[0059] Sometimes, however, a user may want to switch
from using one cloud, which may be self-managed or
operated by one cloud operator, to another cloud operated by
a different cloud operator. For example, a live migration may
be performed for objects in a cluster on cloud 320 to a
destination cluster created in cloud 310. In addition to
changing clouds, such a migration may in some cases
involve a change in network and/or a change in region.
[0060] As further explained in examples below, for migra-
tion between clouds, one or both of cloud 310 and cloud 320
may be configured with features for performing live cluster
migrations. For example, in instances where cloud 310 and
cloud 320 both include features for performing live cluster
migrations, these features may together facilitate the live
cluster migration. In instances where cloud 310 includes
features for performing live cluster migrations, while cloud
320 does not include features for performing live cluster
migrations, cloud 310 and the migrating cluster on cloud 310
may use additional tools and methods to facilitate the
migration, while such are not available to the cloud 320 and
the migrating cluster on cloud 320.

[0061] FIG. 4 is a functional diagram illustrating an
example cluster 400. For instance, a user, such as a devel-
oper, may design an application, and provide configuration
data for the application using a client computer, such as
client computer 250 of FIG. 2. The container orchestration
architecture provided by a cloud, such as cloud 310 of FIG.
3, may be configured to package various services of the
application into containers. The container orchestration
architecture may be configured to allocate resources for the
containers, load balance services provided by the containers,
and scale the containers (such as by replication and dele-
tion).

[0062] As shown in FIG. 4, the container orchestration
architecture may be configured as a cluster 400 including
one or more master nodes, such as master node 410 and a
plurality of worker nodes, such as worker node 420 and
worker node 430. Each node of the cluster 400 may be
running on a physical machine or a virtual machine. The
cluster 400 may be running on a distributed system such as

Mar. 18, 2021

system 200. For example, nodes of the cluster 400 may be
running on one or more processors in datacenter 260 shown
in FIG. 2. The master node 410 may control the worker
nodes 420, 430. The worker nodes 420, 430 may include
containers of computer code and program runtimes that form
part of a user application.

[0063] Further as shown, in some instances, the containers
may be further organized into one or more pods. For
example as shown in FIG. 4, the worker node 420 may
include containers 421, 423, 425, where containers 423 and
425 are organized into a pod 427, while the worker node 430
may include containers 431, 433, 435, where containers 431
and 433 are organized into a pod 437. The containers and
pods of the worker nodes may have various workloads
running on them, for example the workloads may serve
content for a website or processes of an application. The
pods may belong to “services,” which expose the pod to
network traffic from users of the workloads, such as users of
an application or visitors of a website. One or more load
balancers may be configured to distribute traffic, for example
requests from the services, to the workloads running on the
cluster 400. For example the traffic may be distributed
between the pods in the worker nodes of the cluster 400.
[0064] Still further, some of the nodes, such as worker
node 420, may be logically organized as part of a node pool,
such as node pool 429. For example, a node pool may be a
group of nodes sharing one or more attributes, such as
memory size, CPU/GPU attached, etc. In some instances, all
nodes of a node pool may be located in the same location of
a cloud, which may be the same datacenter, same region/
zone within a datacenter, etc.

[0065] The master node 410 may be configured to manage
workloads and resources of the worker nodes 420, 430. In
this regard, the master node 410 may include various soft-
ware components or processes that form part of a cluster’s
control plane. For instance, as shown, the master node 410
may include an API server 440, a database 470, a controller
manager 480, and a scheduler 490 in communication with
one another.

[0066] Although only one master node 410 is shown, the
cluster 400 may additionally include a plurality of master
nodes. For instance, the master node 410 may be replicated
to generate a plurality of master nodes. The cluster 400 may
include a plurality of cluster control plane processes. For
example, the cluster 400 may include a plurality of API
servers, a plurality of databases, etc. In such cases, a quorum
of replica master nodes, such as a majority of the replica
master nodes, must agree for the cluster 400 to modify any
state of the cluster 400. Further, one or more load balancers
may be provided on the cloud on which the cluster 400 is
running for allocating requests, such as API calls, between
the multiple API servers. The plurality of master nodes may
improve performance of the cluster 400 by continuing to
manage the cluster 400 even when one or more master nodes
may fail. In some instances, the plurality of master nodes
may be distributed onto different physical and/or virtual
machines.

[0067] The API server 440 may be configured to receive
requests, such as incoming API calls from a user application
or from workloads running on the worker nodes, and man-
age the worker nodes 420, 430 to run workloads for handling
these API calls. As shown, the API server 440 may include
multiple servers, such as a built-in resource server 460 and
an extensions server 462. Further as shown, the API server

US 2021/0084103 Al

440 may include an aggregator 450 configured to route the
incoming requests to the appropriate server of the API server
440. For instance, when an API call comes in from a user
application, the aggregator 450 may determine whether the
API call is to be handled by a built-in resource of the cloud,
or to be handled by a resource that is an extension. Based on
this determination, the aggregator 450 may route the API
call to either the built-in resource server 460 or the extension
server 462.

[0068] The API server 440 may configure and/or update
objects stored in the database 470. The API server 440 may
do so according to a schema, which may include format that
API objects in the cluster must conform to in order to be
understood, served, and/or stored by other components of
the cluster, including other API servers in the cluster. The
objects may include information on containers, container
groups, replication components, etc. For instance, the API
server 440 may be configured to be notified of changes in
states of various items in the cluster 400, and update objects
stored in the database 470 based on the changes. As such, the
database 470 may be configured to store configuration data
for the cluster 400, which may be an indication of the overall
state of the cluster 400. For instance, the database 470 may
include a number of objects, the objects may include one or
more states, such as intents and statuses. For example, the
user may provide the configuration data, such as desired
state(s) for the cluster 400.

[0069] The API server 440 may be configured to provide
intents and statuses of the cluster 400 to a controller manager
480. The controller manager 480 may be configured to run
control loops to drive the cluster 400 towards the desired
state(s). In this regard, the controller manager 480 may
watch state(s) shared by nodes of the cluster 400 through the
API server 440 and make changes attempting to move the
current state towards the desired state(s). The controller
manager 480 may be configured to perform any of a number
of functions, including managing nodes (such as initializing
nodes, obtain information on nodes, checking on unrespon-
sive nodes, etc.), managing replications of containers and
container groups, etc.

[0070] The API server 440 may be configured to provide
the intents and statuses of the cluster 400 to the scheduler
490. For instance, the scheduler 490 may be configured to
track resource use on each worker node to ensure that
workload is not scheduled in excess of available resources.
For this purpose, the scheduler 490 may be provided with
the resource requirements, resource availability, and other
user-provided constraints and policy directives such as qual-
ity-of-service, affinity/anti-affinity requirements, data local-
ity, and so on. As such, the role of the scheduler 490 may be
to match resource supply to workload demand.

[0071] The API server 440 may be configured to commu-
nicate with the worker nodes 420, 430. For instance, the API
server 440 may be configured to ensure that the configura-
tion data in the database 470 matches that of containers in
the worker nodes 420, 430, such as containers 421, 423, 425,
431, 433, 435. For example as shown, the API server 440
may be configured to communicate with container managers
of the worker nodes, such as container managers 422, 432.
The container managers 422, 432 may be configured to start,
stop, and/or maintain the containers based on the instruc-
tions from the master node 410. For another example, the
API server 440 may also be configured to communicate with
proxies of the worker nodes, such as proxies 424, 434. The

Mar. 18, 2021

proxies 424, 434 may be configured to manage routing and
streaming (such as TCP, UDP, SCTP), such as via a network
or other communication channels. For example, the proxies
424, 434 may manage streaming of data between worker
nodes 420, 430.

[0072] FIG. 5 shows some example components of two
clusters involved in live migration. FIG. 5 shows a first
cluster 400 as a source cluster from which objects are to be
migrated, and a second cluster 500 as a destination cluster to
which objects are to be migrated. FIG. 5 further shows both
cluster 400 and cluster 500 with replicated master nodes,
hence cluster 400 and cluster 500 are both shown with
multiple API servers 440, 442, 540, 542 and corresponding
aggregators 450, 452, 550, 552. Although only two replicas
are shown in FIG. 5 for ease of illustration, it should be
appreciated that any of a number of replicas may be gener-
ated.

[0073] Destination cluster 500 runs in a different environ-
ment as source cluster 400. As described above in relation to
FIG. 3, the different environments may be different software
versions, different physical locations of datacenters, differ-
ent networks, different cloud control planes on different
clouds, etc. Instead of deleting a source cluster and creating
a destination cluster to change the environment such as
shown in FIGS. 1A-B, the change of environment can be
performed by a live migration of various objects from the
source cluster 400 to the destination cluster 500, while both
clusters 400 and 500 are still running.

[0074] During the live migration, requests to the cluster
control plane may be allocated between the source cluster
400 and the destination cluster 500. For example, traffic such
as API calls may be allocated between API servers 440, 442
of the source cluster 400 and API servers 540, 542 of the
destination cluster 500. As described in detail below, this
may be accomplished by modifications to the aggregators
450, 452, 550, 552 (see FIG. 6), or by adding a component
that intercepts API traffic (see FIG. 7). Further, to handle the
API calls routed to cluster 400, cluster 400 may run con-
trollers 580 to manage resources in cluster 400, such as
managing replication of worker nodes and objects. Like-
wise, to handle API calls routed to cluster 500, cluster 500
may run controllers 582 to manage resources in cluster 500.

[0075] Further as described in detail below, live migration
between clusters 400 and 500 may include handling objects
stored for the cluster control plane in database 470 and
database 570. For example, if clusters 400 and 500 are in the
same datacenter and thus share the same storage backend,
database 470 and database 570 may be bridged. On the other
hand, if cluster 400 and cluster 500 are on different locations
or clouds such that they do not have access to each other’s
storage backend, database 470 and database 570 may need
to be synchronized (see FIG. 8).

[0076] In addition to migration for the cluster control
plane, a live migration may be performed for workloads
running in the clusters, such as workloads 581 running on
the source cluster 400 and workloads 583 running on the
destination cluster. Requests to workloads, such as API calls
to workloads, may also be routed between the source cluster
400 and the destination cluster 500, for example by using a
global load balancer (see FIG. 9). Further, the location of the
storage for workloads may need to be changed for a migra-
tion across different locations or different clouds (see FIG.
10).

US 2021/0084103 Al

[0077] Further as shown in FIG. 5, a coordinator 590 may
be provided, for example by the cloud provider for cloud
310, which includes various rules for implementing the live
migration. In this regard, if the migration is within the same
cloud, such as cloud 310, both the source cluster 400 and the
destination cluster 500 may perform the migration based on
the rules set in the coordinator 590. On the other hand, if the
migration is between two different clouds, such as cloud 310
and cloud 320, in some instances only the cluster in the same
cloud as the coordinator 590 might be able to follow the
rules set in the coordinator 590. For example, the destination
cluster 500 may be on cloud 310 and able to perform live
migration based on the rules set in the coordinator 590;
while the source cluster 400 may be on cloud 320 that is
self-managed or managed by a different cloud, and may not
have necessary features for following the rules set in the
coordinator 590. As such, cloud 310 may include additional
features to facilitate a migration from or to cloud 320.

[0078] With respect to live migration of a cluster control
plane, FIG. 6 illustrates example cluster bridging aggrega-
tors configured to route requests, such as API calls, between
control planes of two clusters during a live migration within
the same cloud. FIG. 6 shows a first cluster 400 as a source
cluster from which objects are to be migrated, and a second
cluster 500 as a destination cluster into which objects are to
be migrated. In this example, both source cluster 400 and
destination cluster 500 are hosted on the same cloud, such as
cloud 310. FIG. 6 further shows both cluster 400 and cluster
500 with replicated master nodes, hence cluster 400 and
cluster 500 are both shown with multiple API servers 440,
442, 540, 542 and corresponding cluster bridging aggrega-
tors 650, 652, 650, 652.

[0079] One or more load balancers may be configured to
allocate incoming requests, such as API calls, between the
various API servers based on traffic volume. For instance, a
load balancer may be associated with all the API servers of
a cluster, such as by network addresses of the API servers.
However, the load balancer may be configured to provide
client(s) of the cluster, such as application(s) run by the
cluster, a single network address for sending all API calls.
For example, the single network address may be a network
address assigned to the load balancer. As the load balancer
receives incoming API calls, the load balancer may then
route the API calls based on traffic volume. For example, the
load balancer may divide the API calls among the API
servers of the cluster, and send the API calls based on the
network addresses of the API servers.

[0080] Further as shown, the aggregators in the source
cluster 400 and destination cluster 500 are both modified
into cluster bridging aggregators 650, 652, 654, 656. The
cluster bridging aggregators 650, 652, 654, 656 are config-
ured to receive the incoming requests, such as API calls,
from the load balancer 610, and further route requests to the
API servers 440, 442, 540, 542. For example, control plane
of the cloud 310, for example through coordinator 590, may
notify the cluster bridging aggregators 650, 652, 654, 656
when migration is initiated. Once the cluster bridging aggre-
gators 650, 652, 654, 656 become aware of the migration,
the cluster bridging aggregators 650, 652, 654, 656 may
determine whether the incoming API calls should be handled
by the source cluster 400 or the destination cluster 500.
Based on this determination, the cluster bridging aggrega-
tors 650, 652, 654, 656 may route the API calls to the
appropriate API servers.

Mar. 18, 2021

[0081] For instance, if an API call arrives at cluster
bridging aggregator 650 of the source cluster 400, the cluster
bridging aggregator 650 may determine whether the API call
should be handled by the API servers of the source cluster
400, or the API servers of the destination cluster 500. If the
cluster bridging aggregator 650 determines that the API call
is to be handled by the API servers of the source cluster 400,
cluster bridging aggregator 650 may route the API call to the
corresponding API server 440. Otherwise, the cluster bridg-
ing aggregator 650 may re-route the API call to the API
servers of the destination cluster 500. Likewise, if an API
call arrives at cluster bridging aggregator 654 of the desti-
nation cluster 500, the cluster bridging aggregator 654 may
determine whether the API call should be handled by the
destination cluster 500, or the source cluster 400. If the
cluster bridging aggregator 654 determines that the API call
is to be handled by the destination cluster 500, cluster
bridging aggregator 654 may route the API call to the
corresponding API server 540. Otherwise, the cluster bridg-
ing aggregator 654 may route the API call to the API servers
of the source cluster 400. Because the API servers of the
source cluster 400 and the API servers of the destination
cluster 500 may implement different schema for objects they
handle, changes in API traffic allocation may effectively
change the portion of objects conforming to the schema of
the destination cluster 500.

[0082] The cluster bridging aggregators 650, 652, 654,
656 may route or re-route API calls based on any of a
number of factors. For example, the routing may be based on
a resource type, such as pods, services, etc. For instance, the
cluster bridging aggregators 650, 652 may route API calls
for all pods to the API servers 440, 442 in the source cluster
400, and re-route API calls for all services to the destination
cluster 500. The routing may alternatively be based on
object type. For instance, cluster bridging aggregators 650,
652 may route 50% of API calls for pod objects to the API
server 440, 442 in the source cluster 400, and re-route the
rest to the destination cluster 500. As another alternative,
routing may be based on physical location of a resource. For
example, cluster bridging aggregators 650, 652 may route
30% of API calls for pods in a particular datacenter, and
re-route the rest to the destination cluster 500. Other
example factors may include user-agent, user account, user
group, location of a sender of the request, etc. The factors for
API call routing may be set in the coordinator 590 by the
cloud provider for cloud 310.

[0083] The cluster bridging aggregators 650, 652, 654,
656 may route or re-route API calls in a staged manner. For
example, cluster bridging aggregators 654, 656 may start
routing API calls for one resource type to API servers 540,
542 of the destination cluster 500 in one stage, and then
changes to include API calls for another resource type to the
API servers 540, 542 of the destination cluster 500 in a next
stage, and so on. Alternatively, cluster bridging aggregators
654, 656 may start routing API calls for one physical
location to API servers 540, 542 of destination cluster 500
in one stage, and then changes to include routing API calls
for another physical location to API servers 540, 542 of
destination cluster 500 in a next stage, and so on. As another
example, cluster bridging aggregators 654, 656 may route
API calls to the API servers 540, 542 in increasing propor-
tions, such as routing API calls for 10% of pod objects to
API servers 540, 542 of the destination cluster 500 in one
stage, and routing API calls for 20% of pod objects to API

US 2021/0084103 Al

servers 540, 542 of the destination cluster 500 in a next
stage, and so on. The stages of API call routing may be set
in the coordinator 590 by the cloud provider for cloud 310.
[0084] To determine whether to route or re-route a request,
the cluster bridging aggregators 650, 652, 654, 656 may be
provided with information on the allocations to be made. For
instance, the cluster bridging aggregators 650, 652, 654, 656
may be configured to access one or more databases, such as
database 570 of the destination cluster 500, for the fraction
of traffic to be allocated to the source cluster 400 and to the
destination cluster 500. As such, when an AP]I call arrives for
example at cluster bridging aggregator 654, the cluster
bridging aggregator 654 may compute a hash value for the
API call based on the faction (0<F<1) of API calls to be
allocated to the destination cluster 500. The hash value may
be further computed based on other information of the API
call, such as IP address of the source of the API call and
metadata of the API call. Such information may be used to
determine resource type, object type, physical location, etc.,
that are relevant in the staged rollout process described
above. In some examples, the hash value may also be
interpreted as a numeric value p that is a fraction between 0
and 1. If p<F, then the cluster bridging aggregator 654 may
route the API call to the destination cluster 500, otherwise,
the cluster bridging aggregator 654 may route the API call
to the source cluster 400. Decisions made based on the hash
values may be defined deterministically so that no matter
which cluster bridging aggregator involved in the migration
receives the API call, it will make the same decision as the
other cluster bridging aggregators. As such, there will not be
a need to re-route an API call more than once. In some
instances, during transitions in the staged rollout described
above, different fractions F may be set, for example different
resources, different physical locations, etc.

[0085] Additionally, the cluster bridging aggregators may
further be configured to allocate other resources between the
two clusters. For example, the destination cluster 500 may
use different controllers to run control loops as compared to
controllers used by the source cluster 400. As such, switch-
ing between the controllers of the source cluster and con-
trollers of the destination cluster may also be performed in
a staged rollout. For instance, to ensure that inconsistent
changes are not made to objects, controllers may acquire
locks before manipulating the objects. As such, the cluster
bridging aggregators 650, 652, 654, 656 may be configured
to allocate controller locks between the controllers of the
source cluster 400 and the controllers of the destination
cluster 500. The allocation may also be performed in pre-
determined stages, which may also be canaried.

[0086] Together, the API servers 440, 442, 540, 542, and
cluster bridging aggregators 650, 652, 654, 656 in FIG. 6
essentially form a logical API service. Clients of this logical
API service may thus send requests to this logical API
service, and the requests will be routed by the various cluster
bridging aggregators and handled by the various API serv-
ers. To the clients, there may be no observable difference
other than possible latency.

[0087] However, if the first, source cluster 400 and the
second, destination cluster 500 are hosted on different
clouds, one of the source cluster 400 or the destination
cluster 500 may not be provided with cluster bridging
aggregators, FIG. 7 illustrates an additional component
intercepting requests, such as API calls, to the cluster control
plane when performing a live cluster migration between two

Mar. 18, 2021

different clouds. In this example shown, destination cluster
500 is on cloud 310 configured to perform live migration,
while source cluster 400 is on cloud 320 that is self-managed
or managed by a different cloud provider that is not config-
ured to perform live migration. As such, the destination
cluster 500 on cloud 310 is provided with cluster bridging
aggregators 654, 656 as described above, while the source
cluster 400 on cloud 320 is provided with aggregators 450,
452 that cannot route and re-route API calls between clus-
ters.

[0088] Since the two clusters here are on different clouds,
requests, such as API calls, will not be received through the
same load balancer 610 as shown in FIG. 6. Rather, API calls
will be routed to the cluster bridging aggregators in the
source cluster 400 and the destination cluster 500, based on
their different network addresses, such as IP addresses.
[0089] Further as shown in FIG. 7, since cluster 400 does
not include cluster bridging aggregators, sidecar containers
may be injected into pods on cloud 320 for intercepting
requests, such as API calls directed to the API servers locally
in the cluster 400, and re-routing them to the cluster bridging
aggregators 654, 656 in the destination cluster 500. For
example, the sidecar containers may be injected by an
extension the user installs on the cloud control plane of
cloud 320. The sidecar containers may be injected into every
workload pod running in the source cluster 400. For example
as shown, sidecar container 720 is injected into pod 710 in
cluster 400. The sidecar container 720 may be configured to
intercept API calls from the workloads 730 running in pod
710, which are directed to API server 440 or 442, and
simulate the cluster bridging aggregator which is absent
from source cluster 400. It does this simulation simply by
redirecting these API calls to the cluster bridging aggrega-
tors 654, 656 in the destination cluster 500. The cluster
bridging aggregators 654, 656 may then determine whether
these API calls shall be handled locally by API server 540,
542, or if it should be sent back to the source cluster’s API
servers 440, 442. The cluster bridging aggregators 654, 656
may make determinations as discussed above in relation to
FIG. 6, and route the API calls accordingly.

[0090] Together, the API servers 440, 442, 540, 542,
aggregators 450, 452, sidecar container 712, cluster bridging
aggregators 654, 656 in FIG. 7 essentially form a logical API
service. Clients of this logical API service may thus send
requests to this logical API service, and the requests may be
intercepted by the sidecar container 720, and/or routed by
the various cluster bridging aggregators, and handled by the
various API servers. To the clients, there may be no observ-
able difference other than possible latency.

[0091] As alternatives to injecting a sidecar container as
described above, other components or processes may be
used to intercept and re-route requests. For example, domain
name service (DNS) entries may be injected into the nodes
for re-routing to the cluster bridging aggregators of the
destination cluster.

[0092] Returning to FIG. 5, with respect to storage for the
cluster control plane, in instances where the source cluster
400 and destination cluster 500 are on the same cloud and
within the same datacenter, database 570 may join the same
quorum as database 470. As such, the quorum of databases
including the database 470 or database 570 must reach an
agreement before objects are to be modified or written into
any of the quorum of databases. For example, an agreement
may be reached when a majority of the database replicas

US 2021/0084103 Al

agree to the change. This ensures that database 570 and
database 470, and their replicas, reflect consistent changes.
In some examples, database 570 may join at first as non-
voting member of the database quorum, and later becomes
a voting member of the quorum.

[0093] However, if the source cluster 400 and the desti-
nation cluster 500 are not on the same cloud or same
datacenter, database 570 may not be able to join the quorum
of database 470. As such, FIG. 8 illustrates example cluster
control plane storage synchronization during live migration
for clusters on different clouds and/or regions. For example,
a first, source cluster 400 may be on cloud 320 and a second,
destination cluster 500 may be on cloud 310. As another
example, destination cluster 500 may be in datacenter 260
and source cluster 400 may be on datacenter 270.

[0094] In a containerized environment, some fields of an
object can only be modified by an API server and are
otherwise immutable. Thus, once immutable fields of an
object are written or modified by an API server of the source
cluster 400, such as API server 440 or 442, API servers of
the destination cluster 500, such as API server 540 or 542,
may not be able to modify these fields as stored in the
database 470 of the source cluster 400. Thus as shown, for
example when an API call comes in at the cluster bridging
aggregator 654 requesting a new object be created or immu-
table fields modified, the API call may be modified by the
cluster bridging aggregator 654 and sent first to the source
cluster 400, such as to aggregator 450. The API server 440
may create or modify object 810 stored in database 470
according to the modified API call.

[0095] The cluster bridging aggregator 654 may then use
its local API server 540 to create its own copy of the object
810 in database 470, shown as object 820 in database 570.
For instance, the cluster bridging aggregator 654 may read
the immutable fields having the values chosen by the API
server 440 of the source cluster 400, and write these values
into object 820.

[0096] In some instances, the cluster bridging aggregator
654, 656 may block read-only operations for an object while
write operations are in progress for that object to ensure that
API callers see a consistent view of the world. Otherwise,
API callers may observe only part of the changes performed,
since as described above, making a write in this migrating
environment may be a multi-step process. Additionally, API
callers have expectations around the concurrency model of
API server which need to be upheld for the process to be
transparent to these callers.

[0097] In another aspect, a migration may also be per-
formed for workloads running in the clusters. FIG. 9 shows
example features involved in performing workload migra-
tion. For instance, a first, source cluster 400 is shown with
node pool 429, which includes nodes 910, 912, 914. One or
more pods may be running in the nodes of cluster 400, such
as pod 920 and pod 922 shown. Cluster 400 may further
include a local load balancer 930 for allocating traffic to
workloads in the cluster 400. For instance, requests from
websites or applications served by the workloads may be
received by the local load balancer 930, and the local load
balancer 930 may allocate these requests to the various pods
and nodes in node pool 429. For example, the websites or
application served by the workloads of cluster 400 may be
configured with domain name service (DNS) records asso-
ciating the website or application to a network address of the
local load balancer 930.

Mar. 18, 2021

[0098] Further as shown, workloads within cluster 400 are
to be migrated to a second, destination cluster 500. The
cluster 500 may be initialized with a node pool 940 that does
not have any node, and a local balancer 970 for allocating
incoming requests to workloads once pods and nodes are
created in the cluster 500. A migration may be performed for
the node pool 429 from cluster 400 to cluster 500 within the
same location, such as within the same datacenter or within
the same region/zone of a datacenter, or it may be between
different locations. The migration may also be performed
within the same cloud or between different clouds. Although
clusters 400 and 500 are shown with only one node pool, in
practical examples the clusters 400 and 500 may include a
plurality of node pools. In instances where a cluster does not
already group nodes into node pools, during the migration
each node may be treated as its own node pool, or nodes with
similar sizes may be grouped together, etc.

[0099] Once the destination cluster 500 is initialized, the
node pool 940 may gradually increase in size. For example,
a new node 950 may be allocated in node pool 940. The new
node 950 initially may not include any pods. In response to
the increase in size of the node pool 940, the old node pool
429 may decrease in size. For example, old node 910 may
be deleted. The allocation of new nodes and removal of old
nodes may be performed by a cloud provider as instructed by
the coordinator.

[0100] The cluster control plane of the source cluster 400
and/or the destination cluster 500 may be notified that node
910 is now missing, and register all the pods previously
existing in node 910, such as pods 920 and 922 shown, as
lost. As such, cluster control plane of the destination cluster
500 may create replacement pods in the new node pool 940.
For instance, controllers of the destination cluster 500 may
determine that new node 950 in node pool 940 has capacity,
and may create replacement pods, such as replacement pods
960 and 962 shown, in the new node 950. Thus, effectively,
the pods 920, 922 are moved into the second cluster as pods
960, 962. This may be repeated for other nodes in node pool
429, such as creating new nodes 952 and 954 in node pool
940 corresponding to nodes 912, 914 as shown, and replac-
ing any missing pods, until node pool 429 no longer has any
nodes and/or pods.

[0101] As an alternative to deleting node 910 and adding
node 950 before moving any pods, a live migration may be
performed. For instance, once new node 950 is created, node
910 may be “cordoned” such that new pods are prevented
from being scheduled on node 910. Then, new pod 960 is
created in node 950. The states of the pod 920 may be
recorded and transmitted to pod 960. Then, executions of
processes in pod 920 may be paused. If there had been any
changes to pod 920 since recording the states, these changes
may also be copied into pod 960. The paused executions
may then resume in pod 960. Pod 920 may then be deleted.
During this live migration, traffic directed to pod 920, such
as requests to workloads, may be forwarded to pod 960, until
pod 920 is deleted. For example, a load balancer may have
directed requests to pod 920, before being aware of newly
created pod 960. This may be repeated for each pod in the
various nodes and node pools of source cluster 400, until
there is no pod left.

[0102] Further, migration of the workloads may include,
in addition to migration of the pods, also migration of the
services to which the pods belong. Migration of the services
may overlap with migration of the pods. For instance, once

US 2021/0084103 Al

one or more pods are created in the destination cluster 500,
services previously handled by pods of the source cluster
400 may be migrated to be handled by the pods in the
destination cluster 500. Further, migration of the services
may need to be completed before there is no more pods in
the source cluster 400 to handle the services.

[0103] In this regard, one or more global load balancers
may be created. For instance, once the workload node and
pod migration is initiated but before any node is moved, the
source cluster 400 and the destination cluster 500 may each
be associated with one or more load balancers configured to
route requests to workloads running in both the source
cluster 400 and the destination cluster 500. For example as
shown, both the local load balancer 930 and the local load
balancer 970 may be associated with global load balancer
980. Thus, if the source cluster 400 and the destination
cluster 500 are in different locations or clouds, the global
load balancer 980 may be configured to route requests to
these different locations or clouds. The websites or applica-
tion previously served by the workloads of cluster 400 may
be configured with DNS records associating the website or
application to a network address of the global load balancer
980, instead of previously to the local load balancer 930. As
such, once workload node and pod migration starts, requests
from the website or application may be routed through the
global load balancer 980 to both local load balancers 930
and 970.

[0104] Once workload node and pod migration is com-
plete, association between the local load balancer 970 and
the global load balancer 980 may be removed. Further, the
websites or application previously served by both cluster
400 and cluster 500 may be configured with DNS records
associating the website or application to a network address
of'the local load balancer 970. Thus, from this point on, local
load balancer 970 may be configured to route requests from
the website or application to only the workloads running in
the destination cluster 500.

[0105] Still further, where migration of workloads as
shown in FIG. 9 is between different locations or between
different clouds, live migration of workload storage may
need to be performed. FIG. 10 shows live workload storage
migration between different locations or clouds. For
instance, the live workload storage migration may occur
simultaneously as the migration of pods as shown in FIG. 9.
A storage system for a containerized environment may
include various objects storing data. For example, the stor-
age system may include persistent disks provided by a cloud
provider, and metadata objects containing references. For
instance, the metadata objects may be used to set up or
“mount” persistent disk(s) for pods or containers. As some
examples, the metadata objects may include persistent vol-
umes that refer to data on the persistent disks, and persistent
volume claims that refer to the persistent volumes and store
information on usage of such data by containers or pods.
[0106] When the migration is between different locations
or clouds, the metadata objects may be copied to a destina-
tion environment, but the persistent disk may not be copied
to the destination environment. Thus, a live migration of the
storage system for workloads may be performed by tracking
locations of each persistent disk, duplicating the metadata
objects in a destination environment, and using a copy-on-
write system to copy over data.

[0107] For example as shown, while running in a first,
source cluster 400, a pod 920 may have an already existing

Mar. 18, 2021

metadata object 1010, which may refer to a persistent disk
1012. To make effective copies of these storage objects, a
helper pod 1030 may be created in the source cluster 400 and
attached to the metadata object 1010. This helper pod 1030
may be configured to read from the persistent disk 1012 after
the pod 920 migrates to a second, destination cluster 500 as
pod 960.

[0108] The migrated pod 960 is then attached to a node in
the destination cluster 500 and to a newly created metadata
object 1020, which may be a duplicate of metadata object
1010. It may be determined that the metadata object 1020 of
the migrated pod 960 includes references to the persistent
disk 1012. To set up storage for the migrated pod 960, a
storage driver 1050 may determine that the persistent disk
1012 is in a different cluster. As such, a new persistent disk
1022 may be created in the destination cluster 500.

[0109] However, instead of being directly attached to the
new persistent disk 1022, the pod 960 may initially perform
reads and/or writes through the storage driver 1050, which
may determine that the pod 960 and the metadata object
1020 are referring to persistent disks at two different loca-
tions. For example, the storage driver 1050 may be run as a
plugin on the node 910 of FIG. 9. The storage driver 1050
may be configured to access both the old persistent disk
1012, for example, via network access to helper pod 1030,
and the new persistent disk 1022.

[0110] For instance, to read, the pod 960 may use storage
driver 1050 to read from the new persistent disk 1022.
Additionally, the storage driver 1050 may also call the
helper pod 1030, which may read from the persistent disk
1012.

[0111] In order to write, the pod 960 may also do so
through the storage driver 1050. The storage driver 1050
may be configured to direct all writes to the persistent disk
1022. This way, any new changes are written into the new
persistent disk 1022. Writing may be performed by copy-
on-write, where changes are directly written into the new
persistent disk 1022, while unchanged data are copied over
from the old persistent disk 1012.

[0112] Further, a migration may be performed in the
background to gradually move all data from storage objects
in the source cluster 400 to the destination cluster 500. For
example when the network is not busy, the storage driver
1050 may continue to read data from persistent disk 1012,
and then write this data into persistent disk 1022. Once all
the data are copied over, the persistent disk 1022 will contain
the complete file system, and the pod 960 may be directly
attached to the persistent disk 1022 without the storage
driver 1050. The old persistent disk 1012 may be deleted.
During this process, from the perspective of the pod 960,
there is no difference other than possible latency.

[0113] Although FIG. 10 shows one metadata object
between a pod and a persistent disk, in some examples there
may be multiple metadata objects referring to one another
forming a chain of references. For example, a pod may refer
to a persistent volume claim, which may refer to a persistent
volume, which may then refer to a persistent disk.

Example Methods

[0114] Further to example systems described above,
example methods are now described. Such methods may be
performed using the systems described above, modifications
thereof, or any of a variety of systems having different
configurations. It should be understood that the operations

US 2021/0084103 Al

involved in the following methods need not be performed in
the precise order described. Rather, various operations may
be handled in a different order or simultaneously, and
operations may be added or omitted.

[0115] For instance, FIGS. 11A-C are timing diagrams
illustrating an example live cluster migration for the cluster
control plane. FIGS. 11A-C shows various actions occurring
at a source master node 1111 in a first, source cluster, a
destination master node 1112 in a second, destination cluster,
a logical API service 1113, and a coordinator 1114. The
source master node 1111 and destination master node 1112
may be configured as shown in any of FIGS. 4-7. Although
only one source master node 1111 and only one destination
master node 1112 are shown, there may be any number of
master nodes in either or both of the source cluster and the
destination cluster, such as shown in FIGS. 4-7. The logical
API service 1113 may be a quorum of API servers for one
or more clusters, which include aggregators and/or cluster
bridging aggregators as shown in FIGS. 4-6, and/or sidecar
containers as shown in FIG. 7. The timing diagram may be
performed on a system, such as by one or more processors
shown in FIG. 2 or FIG. 3.

[0116] Referring to FIG. 11A, initially, a source master
node 1111 of a source cluster may already be running on a
cloud. As such, the source master node 1111 is already
attached to a PD, and API server(s) of the source master
node 1111 may already be member(s) of the logical API
service 1113.

[0117] At some point, a cloud provider of the cloud or a
user may initiate an environment change, such as introduc-
ing a software upgrade, moving to a different datacenter,
moving to/from a different cloud, etc. The cloud provider
may further define rules for a live migration to implement
the environment change in the coordinator 1114, and the
coordinator 1114 may instruct the logical API service 1113
to implement the rules. For example, the rules may include
factors for workload traffic allocation and stages of migra-
tion.

[0118] Once the environment change is initiated, a desti-
nation master node 1112 may be created and attached to a
PD. To maintain consistent changes as the source master
node 1111, one or more databases of the destination master
node 1112 may be bridged or synchronized with the one or
more database(s) of the source master node 1111. For
example, in instances where the source master node 1111
and the destination master node 1112 are in the same cloud
and location, database(s) of the destination master node 1112
may join the same quorum as the database(s) of the source
master node 1111. In instances where the source master node
1111 and the destination master node 1112 are in different
clouds or locations, database(s) of the destination master
node 1112 may be synchronized to the database(s) of the
source master node 1111 as shown in FIG. 8.

[0119] At this point the destination master node 1112 may
begin running, while the source master node 1111 continues
to run. As such, downtime is reduced or eliminated as
compared to the process shown in FIGURES 1A and 1B. To
simultaneously handle requests to the cluster control plane,
such as API calls, API server(s) of the destination master
node 1112 may join the logical API service 1113. For
instance, the API server(s) of the destination master node
1112 may join the logical API service 1113 via cluster
bridging aggregator(s) as shown in FIG. 6, or sidecar pod(s)
may be created as shown in FIG. 7.

Mar. 18, 2021

[0120] Once the coordinator 1114 observes the API server
(s) of the destination master node 1112, the coordinator 1114
may begin a staged rollout to change the environment.
Continuing to FIG. 11B, the timing diagram illustrates an
example staged rollout of API traffic from the source cluster
to the destination cluster. As shown, the coordinator 1114
may instruct the logical API service 1113 to implement a
staged traffic allocation between API server(s) of the source
master node 1111 and API server(s) of the destination master
node 1112. The API traffic allocation may be implemented
using cluster bridging aggregator(s) as shown in FIG. 6,
and/or using one or more sidecar containers as shown in
FIG. 7. Since API servers of the source cluster and the
destination cluster may handle objects based on different
schemas, the destination schema for objects in the destina-
tion environment is gradually rolled out as API traffic is
increasingly routed to API server(s) of the destination master
node 1112.

[0121] As shown in FIG. 11B, during the rollout stage,
incoming API calls may be routed to API server(s) of the
destination master node 1112 and the API server(s) of the
source master node 1111 via the logical API service 1113.
The coordinator 1114 may set predetermined proportions of
API traffic allocation. In the particular example shown,
initially 1% of the received API calls may be handled by API
server(s) of the destination master node 1112 and remaining
99% of the received API calls may be handled by API
server(s) of the source master node 1111. In other words,
initially only 1% of API calls are handled by API server(s)
of the destination master node 1112 according to the schema
of the destination environment, the rest are handled by API
server(s) of the source master node 1111 according to the
schema of the source environment. In addition to or as
alternative to allocating the API traffic by predetermined
proportions, API traffic may be further allocated according
to other criteria, such as by resource type, by user, by
namespace, by object type, etc.

[0122] During the rollout process, activities in the API
server(s) of the destination master node 1112 may be moni-
tored. For instance, the coordinator 1114 may monitor
activities of cluster control plane components, such as API
servers, controller managers, etc. The coordinator 1114 may
further monitor the workloads, such as comparing work-
loads handled by the source and destination clusters for
problematic differences. As such, if no failure is detected
with one proportion of API calls handled by the API server
(s) of the destination master node 1112, or at least no
additional failures that were not already occurring in the
source cluster 400 prior to the migration, then API traffic to
the API server(s) of the destination master node 1112 may be
increased to a higher proportion, and so on. For example as
shown, the API calls routed to the API server(s) of the
destination master node 1112 may increase from 1% to 2%,
5%, 10%, etc. However, if one or more failures are detected
in the proportion of API calls handled by the API server(s)
of the destination master node 1112, the failure may act as
a warning that more failures may result if a greater propor-
tion of API calls are handled by the API server(s) of the
destination master node 1112. Appropriate actions may be
taken based on the warning, such as reverting all API traffic
to the source API server as shown in FIG. 11.

[0123] Further as shown, in some instances a discovery
document including information on the destination environ-
ment, such as the exact schema to be followed by objects,

US 2021/0084103 Al

may be made available to a user only once the API server(s)
of the destination master node 1112 handle all the incoming
API calls. For example, as each type of object becomes fully
handled by the destination cluster, a section in the discovery
document for the corresponding type of object may be
updated with destination schema for that type of object. In
other words, end users may not be able to observe any
environment change up until this point, when all objects are
being handled by API server(s) of the destination master
node 1112 based on the destination schema. At this point,
there is no more API traffic received by the source master
node 1111, and thus no object is being handled by the API
server(s) of the source master node 1111 based on the old
schema. Control plane of the source master node 1111 may
also observe the new discovery document, and is notified
that the schema migration is complete.

[0124] Once the coordinator 1114 observes the completed
schema migration, the coordinator 1114 may optionally
begin a staged rollout for one or more other aspects of the
clusters. For example, continuing to FIG. 11C, the timing
diagram illustrates an example staged rollout for controllers.
In some instances, an environment change may involve
change in controllers that actuate objects of a cluster. For
example, the destination master node 1112 in the destination
environment may use different controllers to run control
loops as compared to the controllers used by the source
master node 1111. As such, switching between the control-
lers of the source master node 1111 and the controllers of the
destination master node may also be performed in a staged
rollout. For instance, to ensure that inconsistent changes are
not made to objects, controllers may acquire locks before
manipulating the objects. As such, the coordinator 1114 may
instruct the logical API service 1113 to implement a staged
controller lock allocation between controllers of the source
cluster and controllers of the destination cluster.

[0125] Thus in the particular example shown in FIG. 11C,
initially only 1% of controller locks are given to the con-
trollers of the destination master node 1112, the rest of the
controller locks are given to the controllers of the source
master node 1111. As with rollout of API servers, the
coordinator 1114 may monitor activities of cluster control
plane components, such as API servers, controller managers,
and/or workloads for any failure due to switching to the
controllers of the destination master node 1112. If no failure
is detected, or at least no additional failures that were not
already occurring in the source cluster 400 prior to the
migration, the proportion of controller locks given to the
controllers of the destination master node 1112 may be
gradually increased. Further, to ensure no object is manipu-
lated by two controllers while adjustments are made to the
controller lock allocation, such as going from 1% lock to 2%
lock allocation, the controllers may be configured to main-
tain the locks on the objects they already control in the
previous stage. Eventually, all controller locks may be given
to the controllers of the destination master node 1112, and at
that point, there is no more controller activity at the source
master node 1111.

[0126] At this point, optionally the coordinator 1114 may
switch any other remaining add-ons. For example, objects
may be handled by add-on components of the destination
master node 1112, instead of add-on components of the
source master node 1111. Example add-on components may
include a user interface, such as a dashboard, a Domain
Name System (DNS) server, etc. Optionally, the add-on

Mar. 18, 2021

components may be switched in the staged rollout as
described above for API servers and controllers.

[0127] Once the rollout from the source environment to
the destination environment is completed, a shutdown pro-
cess may begin for the source master node 1111. For
instance, any bridging, synchronization, or migration of
databases between the source master node 1111 and the
destination master node 1112 may be stopped. Further, PD
may be detached from the source master node 1111, and the
source master node 1111 may then be deleted. Once the
source master node 1111 is destroyed, the coordinator 1114
may report the successfully completed migration to the
cloud.

[0128] In addition to migration of cluster control plane, a
live migration may be performed for workloads. FIG. 12 is
a timing diagram illustrating an example live migration for
workloads in a cluster from one environment to another
environment. FIG. 12 shows various actions occurring at an
old pod 1201 on a node of a first, source cluster, a new pod
1202 created on a node of a second, destination cluster, and
the cluster control planes 1203 of the two clusters. The pods
may be configured on worker nodes as shown in any of FIG.
4 or 9, for example old pod 1201 may be configured on node
910 of source cluster 400 and new pod 1202 may be
configured on node 950 of cluster 500. Although example
operations involving only one old pod 1201 and only one
new pod 1202 are shown, such operations may be performed
for any number of pairs of pods in the source cluster and the
destination cluster. The control planes 1203 may include
components from the control planes of both the destination
cluster and the source cluster, such as those shown in FIGS.
4-7. The timing diagram may be performed on a system,
such as by one or more processors shown in FIG. 2 or FIG.
3.

[0129] Referring to FIG. 12, while an old pod 1201 is still
running on a node of a source cluster, cluster control planes
1203 may schedule a new pod 1202. For example, new pod
1202 may be scheduled by controllers of destination cluster
500. The cluster control planes 1203 may record the states
of'the old pod 1201, and then transmit these states to the new
pod 1202. The cluster control planes 1203 may pause
execution of old pod 1201. The cluster control planes 1203
may then copy any changes in states of old pod 1201, and
transmit these changes to new pod 1202. The cluster control
planes 1203 may then resume execution of pod 1202.
[0130] Once the pod 1202 starts execution, network traffic,
such as requests from applications or websites directed to
old pod 1201, may be forwarded by the cluster control
planes 1203 to the new pod 1202. For example, the alloca-
tion may be performed by global load balancers as described
with relation to FIG. 9. Once workload migration is com-
plete, connection to old pod 1201 may be closed. The old
pod 1201 may then be deleted. Still further, during the live
workload migration, a live migration of workload storage
may be performed as shown in FIG. 10. For example, the
live migration of workload storage may be performed during
the live migration of requests to workloads.

[0131] As mentioned above, the destination cluster may be
monitored during and/or after the live migration for failures.
As such, FIG. 13 shows example further actions that may be
taken based on whether a live migration succeeds or fails. As
shown, a change from a source environment to a destination
environment may be initiated by a cloud platform 1311 that
instructs the coordinator 1114. The cloud platform 1311 may

US 2021/0084103 Al

then instruct a cloud control plane 1312 to start one or more
new destination VMs for the migration. If the coordinator
1114 reports failures during or after migration to the cloud
platform 1311, the cloud platform 1311 may instruct the
coordinator 1114 to stop or pause the migration. Addition-
ally, output including information on the detected failures
may be generated. For example the information may be
displayed to cloud administrators, users, etc.

[0132] Alternatively or additionally, the cloud platform
1311 may instruct the coordinator 1114 to initiate a change
from the destination environment back to the source envi-
ronment. Once the rollback is complete, cloud platform 1311
may instruct the cloud control plane 1312 to delete the
destination VMs created for the migration. Error reporting,
diagnostics, and fixing may then be performed, for example
by administrators of the cloud platform 1311. Once the
errors are fixed, the cloud platform 1311 may instruct the
coordinator 1114 to re-initiate the change from the source
environment to the destination environment. Importantly,
the workloads running on the clusters never experiences
more than a very minor interruption even if the migration
fails and is rolled back.

[0133] Further as shown, in some instances the coordina-
tor 1114 may report a successful migration. In such cases, if
the source VM(s) are on the same cloud as the cloud
platform 1311, the cloud platform 1311 may instruct the
cloud control plane 1312 to delete the source VM(s). If the
source VM(s) are on a different cloud as the cloud platform
1311, the cloud platform 1311 may not be able to do
anything to the source VM(s). In that case, a user may need
to instruct the other cloud to delete these source VM(s).

[0134] Although FIG. 13 shows a number of example
actions, not all of the actions may need to be performed, and
the order may be different. For example, whether to start a
complete rollback or merely pause the migration to fix some
failures may be based on a determination of the severity of
the failure, or whether the failures already existed prior to
the migration. Further in that regard, the reporting, diagnos-
ing, and fixing of failures may occur additionally or alter-
natively after the migration is paused, and the destination
VM(s) may not be deleted, but instead remain so that the
migration may be resumed once the errors are fixed.

[0135] FIG. 14 is a flow diagram 1400 that may be
performed by one or more processors, such as one or more
processors 212, 222. For example, processors 212, 222 may
receive data and make various determinations as shown in
the flow diagram. FIG. 14 shows an example live migration
from the control plane of a first cluster to the control plane
of a second cluster. Referring to FIG. 14, at block 1410,
requests to one or more cluster control planes are received,
wherein the one or more cluster control planes may include
a control plane of a first cluster and a control plane of a
second cluster. At block 1420, a predetermined fraction of
the received requests are allocated to the control plane of the
second cluster, and a remaining fraction of the received
requests are allocated to the control plane of the first cluster.
At block 1430, the predetermined fraction of requests are
handled using the control plane of the second cluster. At
block 1440, while handling the predetermined fraction of
requests, it is detected whether there are failures in the
second cluster. At block 1450, based on not detecting
failures in the second cluster, the predetermined fraction of
requests allocated to the control plane of the second cluster

Mar. 18, 2021

is increased in predetermined stages until all received
requests are allocated to the control plane of the second
cluster.
[0136] The technology is advantageous because it pro-
vides a gradual and monitored rollout process for upgrading
clusters, or modifying other aspects of a cluster’s environ-
ment. The staged and canaried rollout process provides more
opportunity to stop the upgrade in case issues arise, therefore
preventing large scale damage. Workload traffic allocation
between the simultaneously running source and destination
clusters may reduce or eliminate downtime during upgrade.
Further, due to the workload traffic allocation, from the
perspective of the client it may appear as if only one cluster
existed during the live migration. In case of a failed upgrade,
the system also provides rollback options since the source
cluster is not deleted unless a successful upgrade is com-
pleted. The technology further provides features to enable
live migration between clusters located in different physical
locations, as well as between clusters operated on different
clouds where one of the clouds does not support live
migration.
[0137] Unless otherwise stated, the foregoing alternative
examples are not mutually exclusive, but may be imple-
mented in various combinations to achieve unique advan-
tages. As these and other variations and combinations of the
features discussed above can be utilized without departing
from the subject matter defined by the claims, the foregoing
description of the embodiments should be taken by way of
illustration rather than by way of limitation of the subject
matter defined by the claims. In addition, the provision of the
examples described herein, as well as clauses phrased as
“such as,” “including” and the like, should not be interpreted
as limiting the subject matter of the claims to the specific
examples; rather, the examples are intended to illustrate only
one of many possible embodiments. Further, the same
reference numbers in different drawings can identify the
same or similar elements.
1. A method for migrating from a first cluster to a second
cluster, comprising:
receiving, by one or more processors, requests to two or
more cluster control planes, wherein the two or more
cluster control planes include a control plane of the first
cluster and a control plane of the second cluster,
wherein the received requests include requests from a
workload running in the first cluster, wherein the
requests from the workload are intercepted by a sidecar
container injected in the first cluster and routed to
cluster bridging aggregators of the second cluster,
wherein the first cluster and the second cluster are
operated on different clouds;
allocating, by the one or more processors, a predeter-
mined fraction of the received requests to the control
plane of the second cluster, and a remaining fraction of
the received requests to the control plane of the first
cluster;
handling, by the one or more processors, the predeter-
mined fraction of requests using the control plane of the
second cluster;
detecting, by the one or more processors, whether there
are failures in the second cluster while handling the
predetermined fraction of requests; and
increasing, by the one or more processors, based on not
detecting failures in the second cluster, the predeter-
mined fraction of requests allocated to the control plane

US 2021/0084103 Al

of the second cluster in predetermined stages until all
received requests are allocated to the control plane of
the second cluster.

2. (canceled)

3. (canceled)

4. The method of claim 1, wherein the allocation of the
received requests are performed in a plurality of predeter-
mined stages, wherein the requests are directed to either the
first cluster or the second cluster based on one or more of:
user-agent, user account, user group, object type, resource
type, a location of the object, or a location of a sender of the
request.

5. The method of claim 1, further comprising:

joining, by the one or more processors, one or more

databases in the control plane of the second cluster to
a quorum including one or more databases in the
control plane of the first cluster.
6. The method of claim 1, further comprising:
synchronizing, by the one or more processors, one or
more databases in the control plane of the second
cluster with one or more databases in the control plane
of the first cluster, wherein the first cluster and the
second cluster are operated on different clouds.
7. The method of claim 1, further comprising:
allocating, by the one or more processors, a predeter-
mined fraction of object locks to one or more control-
lers of the second cluster, and a remaining fraction of
object locks to one or more controllers of the first
cluster;
actuating, by the one or more processors, objects locked
by the one or more controllers of the second cluster;

detecting, by the one or more processors, whether there
are failures in the second cluster while actuating the
objects locked;

increasing, by the one or more processors based on not

detecting failures in the second cluster, the predeter-
mined fraction of object locks allocated to the one or
more controllers of the second cluster.

8. The method of claim 1, further comprising:

determining, by the one or more processors, that all

received requests are allocated to the control plane of
the second cluster;

deleting, by the one or more processors based on the

determination, the control plane of the first cluster.

9. The method of claim 1, further comprising:

stopping, by the one or more processors based on detect-

ing one or more failures in the second cluster, allocation
of the received requests to the control plane of the
second cluster.

10. The method of claim 1, further comprising:

generating, by the one or more processors based on

detecting one or more failures in the second cluster,
output including information on the detected failures.

11. The method of claim 1, further comprising:

decreasing, by the one or more processors based on

detecting failures in the second cluster, the predeter-
mined fraction of requests allocated to the control plane
of the second cluster until all received requests are
allocated to the control plane of the first cluster.

12. The method of claim 1, further comprising:

determining, by the one or more processors, that all

received requests are allocated to the control plane of
the first cluster;

Mar. 18, 2021

deleting, by the one or more processors based on the
determination, the second cluster.

13. The method of claim 1, further comprising:

scheduling, by the one or more processors, a pod in the
second cluster;

recording, by the one or more processors, states of a pod
in the first cluster;

transmitting, by the one or more processors, the recorded
states of the pod in the first cluster to the pod in the
second cluster.

14. The method of claim 13, further comprising:

pausing, by the one or more processors, execution of
workloads by the pod in the first cluster;

copying, by the one or more processors, changes in states
of the pod in the first cluster since recording the states
of the pod in the first cluster;

transmitting, by the one or more processors, the copied
changes in states to the pod in the second cluster;

resuming, by the one or more processors, execution of
workloads by the pod in the second cluster;

forwarding, by the one or more processors, traffic directed
to the pod in the first cluster to the pod in the second
cluster;

deleting, by the one or more processors, the pod in the first
cluster.

15. The method of claim 1, further comprising:

determining, by the one or more processors, that a first
worker node in the first cluster has one or more pods to
be moved to the second cluster;

preventing, by the one or more processors, the first worker
node in the first cluster from adding new pods;

moving, by the one or more processors, some of the one
or more pods in the first worker node to one or more
existing worker nodes in the second cluster;

determining, by the one or more processors, that there is
no more capacity in the existing worker nodes in the
second cluster;

creating, by the one or more processors, one or more
additional worker nodes in the second cluster;

moving, by the one or more processors, the remaining one
or more pods in the first worker node to the additional
worker nodes in the second cluster;

determining, by the one or more processors, that the first
worker node in the first cluster no longer has pods to be
moved to the second cluster;

deleting, by the one or more processors, the first worker
node in the first cluster.

16. The method of claim 13, further comprising:

receiving, by the one or more processors, requests to one
or more workloads, wherein the one or more workloads
include workloads running in the first cluster and
workloads running in the second cluster;

allocating, by the one or more processors using at least
one global load balancer, the received requests to the
one or more workloads between the workloads running
in the first cluster and the workloads running in the
second cluster.

17. The method of claim 1, further comprising:

determining, by the one or more processors, that a pod
running in the second cluster references a storage of the
first cluster;

US 2021/0084103 Al

creating, by the one or more processors, a storage in the
second cluster, wherein the storage of the first cluster
and the storage of the second cluster are located at
different locations;
reading, by the one or more processors using a storage
driver, the storage of the second cluster for data related
to the pod in the second cluster;
reading, by the one or more processors using the storage
driver, the storage of the first cluster for data related to
the pod in the second cluster.
18. The method of claim 17, further comprising:
writing, by the one or more processors, changes made by
the pod in the second cluster to the storage of the
second cluster;
copying, by the one or more processors, data unchanged
by the pod from the storage of the first cluster to the
storage of the second cluster.
19. A system for migrating from a first cluster to a second
cluster, comprising:
one or more processors configured to:
receive requests to two or more cluster control planes,
wherein the two or more cluster control planes
include a control plane of the first cluster and a
control plane of the second cluster, wherein the
received requests include requests from a workload
running in the first cluster, wherein the requests from

Mar. 18, 2021

the workload are intercepted by a sidecar container
injected in the first cluster and routed to cluster
bridging aggregators of the second cluster, wherein
the first cluster and the second cluster are operated
on different clouds;
allocate a predetermined fraction of the received
requests to the control plane of the second cluster,
and a remaining fraction of requests to the control
plane of the first cluster;
handle the predetermined fraction of requests using the
control plane of the second cluster;
detect whether there are failures in the second cluster
while handling the predetermined {fraction of
requests; and
increase, based on not detecting failures in the second
cluster, the predetermined fraction of requests allo-
cated to the control plane of the second cluster in
predetermined stages until all received requests are
allocated to the control plane of the second cluster.
20. The system of claim 19, wherein the first cluster and
the second cluster are at least one of: operating different
software versions, operating at different locations, operating
on different clouds provided by different cloud providers,
operating on different clouds where at least one is a user’s
on-premise datacenter, or connected to different networks.

#* #* #* #* #*

