
(19) United States
US 20160085578A1

(12) Patent Application Publication (10) Pub. No.: US 2016/0085578 A1
Bhide et al. (43) Pub. Date: Mar. 24, 2016

(54) CORRELATING HYPERVISOR DATA FOR A (52) U.S. Cl.
VIRTUAL MACHINE WITH ASSOCATED CPC G06F 9/45558 (2013.01); G06F II/3409
OPERATING SYSTEMI DATA (2013.01); G06F II/3024 (2013.01); G06F

2009/45591 (2013.01)
(71) Applicant: Splunk Inc., San Francisco, CA (US)

(72) Inventors: Alok A. Bhide, Mountain View, CA
(US); Adrian E. Hall, Lake Forest Park, (57) ABSTRACT
WA (US)

(21) Appl. No.: 14/526,237 The disclosed embodiments relate to a system for analyzing
y x- - - 9 the performance virtual machines. During operation, the sys

(22) Filed: Oct. 28, 2014 tem obtains hypervisor data for a set of virtual machines,
wherein the hypervisor data was received from one or more

Related U.S. Application Data hypervisors while the set of virtual machines was running on
(60) Provisional application No. 62/054,264, filed on Sep. the hypervisors. The system also obtains operating system

23, 2014 s1- Y is data for the set of virtual machines, wherein the operating
s system data was received from a set of operating systems

Publication Classification while the set of operating systems was running on the set of
virtual machines. Next, the system correlates hypervisor data

(51) Int. Cl. for a virtual machine with corresponding operating system
G06F 9/455 (2006.01) data for the virtual machine. Finally, the system presents the
G06F II/30 (2006.01) correlated hypervisor data and operating system data for the
G06F II/34 (2006.01) virtual machine to a user.

SEARCH

of Y Search iE="10" " stats count target

RULE 422
BASE PROssor
406

EXRACON
RULE w re
4.08 (?-gEP>\d-V. Vd-V. Voi-V. Vd) FELO

| (..*?\,) {4} (?-target: I \,\ ..]+)" -- va's
EXTRACTION- target

RULE

10.o.o. 5 index - : 42 :- Yar a a -

- 65.3.7.124
OAA ir -- FELO
SOR -- a-- - - - - - - - - - - - - - - - i............... VALUES :
414 : 421

Sun Aug 1. 2014 08:15,
EVEN
46 :

Mon Aug 2 2014 07:10
EVEN
417 r----------------

Mon Aug 2 2014 07:12, 65.3.7.24: 443, 200, store.aspx, 830, webkit
EVEN
418

Patent Application Publication Mar. 24, 2016 Sheet 1 of 10 US 2016/0085578 A1

SOURCE SOURCE SOURCE
105 105 105

FORWARDER FORWARDER
101 101

SYSTEM
100

NDEXER NOEXER NDEXER
102 102 102

SEARCH
HEAD
104.

FIG. 1

Patent Application Publication Mar. 24, 2016 Sheet 2 of 10 US 2016/0085578 A1

SAR

RECEIVE DAA
201

APPORON DATA NO EVENTS
202

DETERMINE MESAMPS FROM
EVENTS

203

ASSOCATE TIMESTAMPS WITH
EVENTS

204

RANSFORM EVENTS
205

IDENTIFY KEYWORDS IN EVENTS
206

UPDATE KEYWORD INDEX
2O7

Patent Application Publication Mar. 24, 2016 Sheet 3 of 10 US 2016/0085578 A1

SEARCH HEAD RECEIVES OUERY
FROM CLEN

301

SEARCH HEAO DETERMINES WHAT
PORONS OF THE CRUERY CAN BE

DISTRIBUTEDO NOEXERS
302

SEARCH HEAD DSTRIBUTES
PORTIONS OF QUERY TO

INDEXERS
303

NOEXERS SEARCH OAA STORE
FOR OUERY-RESPONSIVE EVENTS

304

SEARCH HEAD COMBINES PARAL
RESULS OR EVENS TO PRODUCE

FINAL RESULT
305

FIG. 3

Patent Application Publication Mar. 24, 2016 Sheet 5 of 10 US 2016/0085578 A1

Original Search : 501
search error stats count BY host

Sent to peers: 502
search 'error prestats count BY host (map)

Executed by search head: 503
Merge prestats results received from peers (reduce)

FIG. 5

US 2016/0085578 A1 Mar. 24, 2016 Sheet 6 of 10 Patent Application Publication

Patent Application Publication Mar. 24, 2016 Sheet 7 of 10 US 2016/0085578 A1

8:888

Patent Application Publication Mar. 24, 2016 Sheet 8 of 10 US 2016/0085578 A1

VRTUAL
MACHINES

7O6

(YYYYYYY
HYPERVISOR 704

HOST 702

WRUAL
MACHINES

716

(YYYYYYY VIRTUAL FORWARDER
HYPERVISOR 714 CENTER forger 101

73O
HOST 712 HYPERVSOR

OAA
732

NOEXER
WRUAL 102
MACHINES OS

726 DAA
748

YYYYYYY (YYYYYYY
HYPERVISOR 724 C vid

DATA
SORE

HOST 722 103

. APPLICATIONS AND
PROCESSES 746

t ECHNOLOGY ADD-ON 745
FORWARDER 744

VIRTUAL MACH NE 742 FIG 7

Patent Application Publication Mar. 24, 2016 Sheet 9 of 10 US 2016/0085578 A1

START

OBAN HYPERVISOR DATA FOR ASE OF
VIRTUAL MACHINES, WHEREIN THE HYPERVISOR
DAA WAS RECEIVED FROM ONE OR MORE
HYPERVISORS WHILE THE SET OF VIRTUAL

MACH NES WERE RUNNING ON THE
HYPERVSORS

802

OBTAN OPERATING SYSTEM DATA FOR THE SE
OF VIRTUAL MACHINES, WHEREN THE

OPERATING SYSTEM OAAWAS RECEIVED FROM
A SE OF OPERATING SYSTEMS WHLE THE SE
OF OPERATING SYSTEMS WAS RUNNING ON HE

SET OF VIRTUAL MACH NES
804.

CORRELATE THE HYPERVSORDAA FOR A
WRUAL MACHINE WITH CORRESPONDING
OPERATING SYSTEM DATA FOR THE VIRTUAL

MACHINE
806

PRESEN THE CORRELATED HYPERVISOR DAA
AND OPERATING SYSTEM DATA FOR THE VIRTUAL

MACHINE O A USER
808

COMPUTE OFFERENCES BETWEEN
PERFORMANCE METRICS IN THE HYPERVISOR
DAA AND CORRESPONDING PERFORMANCE
MERCS IN THE OPERATING SYSTEM DAA

810

PRESENT THE COMPUTED OFFERENCES TO THE
USER
812

END

FIG. 8

US 2016/0085578 A1 Mar. 24, 2016 Sheet 10 of 10

Z06 SESSHOO? Jc3

Patent Application Publication

US 2016/0085578 A1

CORRELATING HYPERVISOR DATA FORA
VIRTUAL MACHINE WITH ASSOCATED

OPERATING SYSTEMI DATA

CROSS REFERENCE TO RELATED
APPLICATION

0001. This application claims priority under 35 U.S.C.
S119(e) to U.S. Provisional Application Ser. No. 62/054,264,
entitled “Correlating Hypervisor Data for a Virtual Machine
with Associated Operating System Data.” by inventors Alok
A. Bhide and Adrian Hall, Attorney docket number SPLK14
1019PSP filed on Sep. 23, 2014, the contents of which are
herein incorporated by reference.

BACKGROUND

0002 1. Field of the Invention
0003. The disclosed embodiments generally relate to tech
niques for analyzing performance in computer systems. More
specifically, the disclosed embodiments relate to a technique
for correlating hypervisor data for a virtual machine with
associated operating system data.
0004 2. Related Art
0005 Organizations are increasingly relying on cloud
based computing systems to perform large-scale computa
tional tasks. Such cloud-based computing systems are typi
cally operated by hosting companies that maintain a sizable
computational infrastructure, often comprising thousands of
servers sited in geographically distributed data centers. Cus
tomers typically buy or lease computational resources from
these hosting companies. The hosting companies in turn pro
vision computational resources according to the customers
requirements and then enable the customers to access these
SOUCS.

0006 Cloud-based computing systems often provide a
virtualized computing environment, wherein tasks run on
“virtual machines' that execute on underlying physical host
systems. Such virtualized computing environments enable
computational tasks to be easily moved among host systems
to facilitate load balancing and fault tolerance. However, they
also complicate the process of diagnosing and resolving per
formance problems because Such performance problems can
arise: at the virtual-machine level; at the host-system level;
and also between virtual processes that run inside the virtual
machines.
0007 Existing performance-monitoring tools for virtual
machines typically operate by gathering virtual-machine per
formance parameters from a hypervisor, which is responsible
for instantiating and executing virtual machines on an under
lying host system. For example, virtual-machine perfor
mance parameters can specify processor utilization or
memory utilization parameters for virtual machines that are
executing on the hypervisor. However, these virtual-machine
performance parameters do not tell the whole story. To deter
mine the root cause of a performance problem, it is often
advantageous to analyze performance parameters for virtual
processes that run inside operating systems within the virtual
machines.
0008 Unfortunately, such virtual-process performance
parameters cannot be obtained from the hypervisor. It is typi
cally necessary for an administrator to obtain such virtual
process performance parameters from another diagnostic tool
that gathers process-level performance parameters from oper
ating systems that execute within the virtual machines. Note

Mar. 24, 2016

that these operating systems keep track of different types of
performance data within the virtual machine, including per
formance parameters for virtual processes that run within the
virtual machines. Even when Such process-level performance
parameters can be gathered, it is difficult to correlate these
process-level performance parameters with virtual-machine
performance parameters obtained from a hypervisor.
0009 Hence, what is needed is a system that facilitates
efficiently analyzing performance parameters for virtual
machines together with performance parameters for associ
ated virtual processes without the drawbacks of existing tech
niques.

BRIEF DESCRIPTION OF THE DRAWINGS

0010 FIG. 1 presents a block diagram of an event-pro
cessing system in accordance with the disclosed embodi
mentS.

0011 FIG. 2 presents a flow chart illustrating how index
ers process, index, and store data received from forwarders in
accordance with the disclosed embodiments.
0012 FIG.3 presents a flow chart illustrating how a search
head and indexers perform a search query in accordance with
the disclosed embodiments.
0013 FIG. 4 presents a block diagram of a system for
processing search requests that uses extraction rules for field
values in accordance with the disclosed embodiments.
0014 FIG. 5 illustrates an exemplary search query
received from a client and executed by search peers in accor
dance with the disclosed embodiments.
0015 FIG. 6A illustrates a search screen in accordance
with the disclosed embodiments.
0016 FIG. 6B illustrates a data summary dialog that
enables a user to select various data sources in accordance
with the disclosed embodiments.
0017 FIG. 7 illustrates how hypervisor data and associ
ated operating system data are collected for virtual machines
in accordance with the disclosed embodiments.
0018 FIG. 8 presents a flow chart illustrating how hyper
visor data and operating system data are processed in accor
dance with the disclosed embodiments.
0019 FIG. 9 presents a user interface that simultaneously
displays hypervisor data and operating system data for a
virtual machine in accordance with the disclosed embodi
mentS.

DETAILED DESCRIPTION

0020. The disclosed embodiments relate to a perfor
mance-monitoring system that facilitates correlating hyper
visor performance data for virtual machines with associated
operating system data for virtual processes that execute on the
virtual machines. This performance-monitoring system is
described in more detail below, but first we describe the
structure of an event-based system in which this perfor
mance-monitoring system operates.

1.1 System Overview
0021 Modern data centers often comprise thousands of
host computer systems that operate collectively to service
requests from even larger numbers of remote clients. During
operation, these data centers generate significant Volumes of
performance data and diagnostic information that can be ana
lyzed to quickly diagnose performance problems. In order to
reduce the size of this performance data, the data is typically

US 2016/0085578 A1

pre-processed prior to being stored based on anticipated data
analysis needs. For example, pre-specified data items can be
extracted from the performance data and stored in a database
to facilitate efficient retrieval and analysis at search time.
However, the rest of the performance data is not saved and is
essentially discarded during pre-processing. As storage
capacity becomes progressively cheaper and more plentiful,
there are fewer incentives to discard this performance data
and many reasons to keep it.
0022. This plentiful storage capacity is presently making it
feasible to store massive quantities of minimally processed
performance data at "ingestion time' for later retrieval and
analysis at “search time.” Note that performing the analysis
operations at search time provides greater flexibility because
it enables an analyst to search all of the performance data,
instead of searching pre-specified data items that were stored
at ingestion time. This enables the analyst to investigate dif
ferent aspects of the performance data instead of being con
fined to the pre-specified set of data items that was selected at
ingestion time.
0023. However, analyzing massive quantities of heteroge
neous performance data at search time can be a challenging
task. A data center may generate heterogeneous performance
data from thousands of different components, which can col
lectively generate tremendous Volumes of performance data
that can be time-consuming to analyze. For example, this
performance data can include data from system logs, network
packet data, sensor data, and data generated by various appli
cations. Also, the unstructured nature of much of this perfor
mance data can pose additional challenges because of the
difficulty of applying semantic meaning to unstructured data,
and the difficulty of indexing and querying unstructured data
using traditional database systems.
0024. These challenges can be addressed by using an
event-based system, such as the SPLUNKR ENTERPRISE
system produced by Splunk Inc. of San Francisco, Calif., to
store and process performance data. The SPLUNKR)
ENTERPRISE system is the leading platform for providing
real-time operational intelligence that enables organizations
to collect, index, and harness machine-generated data from
various websites, applications, servers, networks, and mobile
devices that power their businesses. The SPLUNKR)
ENTERPRISE system is particularly useful for analyzing
unstructured performance data, which is commonly found in
system log files. Although many of the techniques described
herein are explained with reference to the SPLUNKR)
ENTERPRISE system, the techniques are also applicable to
other types of data server systems.
0025. In the SPLUNKR ENTERPRISE system, perfor
mance data is stored as “events, wherein each event com
prises a collection of performance data and/or diagnostic
information that is generated by a computer system and is
correlated with a specific point in time. Events can be derived
from “time series data, wherein time series data comprises a
sequence of data points (e.g., performance measurements
from a computer system) that are associated with Successive
points in time and are typically spaced at uniform time inter
vals. Events can also be derived from "structured’ or
“unstructured data. Structured data has a predefined format,
wherein specific data items with specific data formats reside
at predefined locations in the data. For example, structured
data can include data items stored in fields in a database table.
In contrast, unstructured data does not have a predefined
format. This means that unstructured data can comprise vari

Mar. 24, 2016

ous data items having different data types that can reside at
different locations. For example, when the data source is an
operating system log, an event can include one or more lines
from the operating system log containing raw data that
includes different types of performance and diagnostic infor
mation associated with a specific point in time. Examples of
data sources from which an event may be derived include, but
are not limited to: web servers; application servers; databases;
firewalls; routers; operating systems; and Software applica
tions that execute on computer systems, mobile devices, and
sensors. The data generated by Such data sources can be
produced in various forms including, for example and with
out limitation, server log files, activity log files, configuration
files, messages, network packet data, performance measure
ments and sensor measurements. An event typically includes
a timestamp that may be derived from the raw data in the
event, or may be determined through interpolation between
temporally proximate events having known timestamps.
0026. The SPLUNKR ENTERPRISE system also facili
tates using a flexible schema to specify how to extract infor
mation from the event data, wherein the flexible schema may
be developed and redefined as needed. Note that a flexible
schema may be applied to event data “on the fly, when it is
needed (e.g., at search time), rather than at ingestion time of
the data as in traditional database systems. Because the
schema is not applied to event data until it is needed (e.g., at
search time), it is referred to as a “late-binding schema.”
0027. During operation, the SPLUNKR ENTERPRISE
system starts with raw data, which can include unstructured
data, machine data, performance measurements or other
time-series data, Such as data obtained from weblogs, syslogs,
or sensor readings. It divides this raw data into portions.” and
optionally transforms the data to produce timestamped
events. The system stores the timestamped events in a data
store, and enables a user to run queries against the data store
to retrieve events that meet specified criteria, Such as contain
ing certain keywords or having specific values in defined
fields. Note that the term “field’ refers to a location in the
event data containing a value for a specific data item.
0028. As noted above, the SPLUNKRENTERPRISE sys
tem facilitates using a late-binding schema while performing
queries on events. A late-binding schema specifies “extrac
tion rules' that are applied to data in the events to extract
values for specific fields. More specifically, the extraction
rules for a field can include one or more instructions that
specify how to extract a value for the field from the event data.
An extraction rule can generally include any type of instruc
tion for extracting values from data in events. In some cases,
an extraction rule comprises a regular expression, in which
case the rule is referred to as a “regex rule.”
0029. In contrast to a conventional schema for a database
system, a late-binding schema is not defined at data ingestion
time. Instead, the late-binding schema can be developed on an
ongoing basis until the time a query is actually executed. This
means that extraction rules for the fields in a query may be
provided in the query itself, or may be located during execu
tion of the query. Hence, as an analyst learns more about the
data in the events, the analyst can continue to refine the
late-binding schema by adding new fields, deleting fields, or
changing the field extraction rules until the next time the
schema is used by a query. Because the SPLUNKR ENTER
PRISE system maintains the underlying raw data and pro
vides a late-binding schema for searching the raw data, it

US 2016/0085578 A1

enables an analyst to investigate questions that arise as the
analyst learns more about the events.
0030. In the SPLUNKR ENTERPRISE system, a field
extractor may be configured to automatically generate extrac
tion rules for certain fields in the events when the events are
being created, indexed, or stored, or possibly at a later time.
Alternatively, a user may manually define extraction rules for
fields using a variety of techniques.
0031. Also, a number of “default fields” that specify meta
data about the events rather than data in the events themselves
can be created automatically. For example, such default fields
can specify: a timestamp for the event data; a host from which
the event data originated; a source of the event data; and a
source type for the event data. These default fields may be
determined automatically when the events are created,
indexed or stored.
0032. In some embodiments, a common field name may be
used to reference two or more fields containing equivalent
data items, even though the fields may be associated with
different types of events that possibly have different data
formats and different extraction rules. By enabling a common
field name to be used to identify equivalent fields from dif
ferent types of events generated by different data sources, the
system facilitates use of a “common information model
(CIM) across the different data sources.

1.2 Data Server System
0033 FIG. 1 presents a block diagram of an exemplary
event-processing system 100, similar to the SPLUNKR)
ENTERPRISE system. System 100 includes one or more
forwarders 101 that collect data obtained from a variety of
different data sources 105, and one or more indexers 102 that
store, process, and/or perform operations on this data,
wherein each indexer operates on data contained in a specific
data store 103. These forwarders and indexers can comprise
separate computer systems in a data center, or may alterna
tively comprise separate processes executing on various com
puter systems in a data center.
0034. During operation, the forwarders 101 identify
which indexers 102 will receive the collected data and then
forward the data to the identified indexers. Forwarders 101
can also perform operations to strip out extraneous data and
detect timestamps in the data. The forwarders next determine
which indexers 102 will receive each data item and then
forward the data items to the determined indexers 102.
0035. Note that distributing data across different indexers
facilitates parallel processing. This parallel processing can
take place at data ingestion time, because multiple indexers
can process the incoming data in parallel. The parallel pro
cessing can also take place at search time, because multiple
indexers can search through the data in parallel.
0036) System 100 and the processes described below with
respect to FIGS. 1-5 are further described in “Exploring
Splunk Search Processing Language (SPL) Primer and Cook
book” by David Carasso, UM Research, 2012, and in "Opti
mizing Data Analysis With a Semi-Structured Time Series
Database' by Ledion Bitincka, Archana Ganapathi, Stephen
Sorkin, and Steve Zhang, SLAML, 2010, each of which is
hereby incorporated herein by reference in its entirety for all
purposes.

1.3 Data Ingestion
0037 FIG. 2 presents a flow chart illustrating how an
indexer processes, indexes, and stores data received from

Mar. 24, 2016

forwarders inaccordance with the disclosed embodiments. At
block 201, the indexer receives the data from the forwarder.
Next, at block 202, the indexer apportions the data into events.
Note that the data can include lines of text that are separated
by carriage returns or line breaks and an event may include
one or more of these lines. During the apportioning process,
the indexer can use heuristic rules to automatically determine
the boundaries of the events, which for example coincide with
line boundaries. These heuristic rules may be determined
based on the source of the data, wherein the indexer can be
explicitly informed about the source of the data or can infer
the source of the data by examining the data. These heuristic
rules can include regular expression-based rules or delimiter
based rules for determining event boundaries, wherein the
event boundaries may be indicated by predefined characters
or character strings. These predefined characters may include
punctuation marks or other special characters including, for
example, carriage returns, tabs, spaces or line breaks. In some
cases, a user can fine-tune or configure the rules that the
indexers use to determine event boundaries in order to adapt
the rules to the user's specific requirements.
0038 Next, the indexer determines a timestamp for each
event at block 203. As mentioned above, these timestamps
can be determined by extracting the time directly from data in
the event, or by interpolating the time based on timestamps
from temporally proximate events. In some cases, a times
tamp can be determined based on the time the data was
received or generated. The indexer Subsequently associates
the determined timestamp with each event at block 204, for
example by storing the timestamp as metadata for each event.
0039. Then, the system can apply transformations to data
to be included in events at block 205. For log data, such
transformations can include removing a portion of an event
(e.g., a portion used to define event boundaries, extraneous
text, characters, etc.) or removing redundant portions of an
event. Note that a user can specify portions to be removed
using a regular expression or any other possible technique.
0040. Next, a keyword index can optionally be generated
to facilitate fast keyword searching for events. To build a
keyword index, the indexer first identifies a set of keywords in
block 206. Then, at block 207 the indexer includes the iden
tified keywords in an index, which associates each stored
keyword with references to events containing that keyword
(or to locations within events where that keyword is located).
When an indexer subsequently receives a keyword-based
query, the indexer can access the keyword index to quickly
identify events containing the keyword.
0041. In some embodiments, the keyword index may
include entries for name-value pairs found in events, wherein
a name-value pair can include a pair of keywords connected
by a symbol. Such as an equals sign or colon. In this way,
events containing these name-value pairs can be quickly
located. In some embodiments, fields can automatically be
generated for some or all of the name-value pairs at the time
of indexing. For example, if the string “dest=10.0.1.2 is
found in an event, a field named “dest may be created for the
event, and assigned a value of “10.0.1.2.”
0042 Finally, the indexer stores the events in a data store
at block 208, wherein a timestamp can be stored with each
event to facilitate searching for events based on a time range.
In some cases, the stored events are organized into a plurality
ofbuckets, wherein eachbucket stores events associated with
a specific time range. This not only improves time-based
searches, but it also allows events with recent timestamps that

US 2016/0085578 A1

may have a higher likelihood of being accessed to be stored in
faster memory to facilitate faster retrieval. For example, a
bucket containing the most recent events can be stored as flash
memory instead of on hard disk.
0043. Each indexer 102 is responsible for storing and
searching a Subset of the events contained in a corresponding
data store 103. By distributing events among the indexers and
data stores, the indexers can analyze events for a query in
parallel, for example using map-reduce techniques, wherein
each indexer returns partial responses for a Subset of events to
a search head that combines the results to produce an answer
for the query. By storing events in buckets for specific time
ranges, an indexer may further optimize searching by looking
only in buckets for time ranges that are relevant to a query.
0044) Moreover, events and buckets can also be replicated
across different indexers and data stores to facilitate high
availability and disaster recovery as is described in U.S.
patent application Ser. No. 14/266,812 filed on 30 Apr. 2014,
and in U.S. application patent Ser. No. 14/266,817 also filed
on 30 Apr. 2014.

1.4 Query Processing

0045 FIG.3 presents a flow chart illustrating how a search
head and indexers perform a search query in accordance with
the disclosed embodiments. At the start of this process, a
search head receives a search query from a client at block 301.
Next, at block 302, the search head analyzes the search query
to determine what portions can be delegated to indexers and
what portions need to be executed locally by the search head.
At block 303, the search head distributes the determined
portions of the query to the indexers. Note that commands that
operate on single events can be trivially delegated to the
indexers, while commands that involve events from multiple
indexers are harder to delegate.
0046. Then, at block 304, the indexers to which the query
was distributed search their data stores for events that are
responsive to the query. To determine which events are
responsive to the query, the indexer searches for events that
match the criteria specified in the query. This criteria can
include matching keywords or specific values for certain
fields. In a query that uses a late-binding schema, the search
ing operations in block 304 may involve using the late-bind
ing scheme to extract values for specified fields from events at
the time the query is processed. Next, the indexers can either
send the relevant events back to the search head, or use the
events to calculate a partial result, and send the partial result
back to the search head.
0047 Finally, at block 305, the search head combines the
partial results and/or events received from the indexers to
produce a final result for the query. This final result can
comprise different types of data depending upon what the
query is asking for. For example, the final results can include
a listing of matching events returned by the query, or some
type of visualization of data from the returned events. In
another example, the final result can include one or more
calculated values derived from the matching events.
0048 Moreover, the results generated by system 100 can
be returned to a client using different techniques. For
example, one technique streams results back to a client in
real-time as they are identified. Another technique waits to
report results to the client until a complete set of results is
ready to return to the client. Yet another technique streams
interim results back to the client in real-time until a complete
set of results is ready, and then returns the complete set of

Mar. 24, 2016

results to the client. In another technique, certain results are
stored as “search jobs. and the client may Subsequently
retrieve the results by referencing the search jobs.
0049. The search head can also perform various opera
tions to make the search more efficient. For example, before
the search head starts executing a query, the search head can
determine a time range for the query and a set of common
keywords that all matching events must include. Next, the
search head can use these parameters to query the indexers to
obtain a Superset of the eventual results. Then, during a fil
tering stage, the search head can perform field-extraction
operations on the Superset to produce a reduced set of search
results.

1.5 Field Extraction

0050 FIG. 4 presents a block diagram illustrating how
fields can be extracted during query processing in accordance
with the disclosed embodiments. At the start of this process,
a search query 402 is received at a query processor 404. Query
processor 404 includes various mechanisms for processing a
query, wherein these mechanisms can reside in a search head
104 and/or an indexer 102. Note that the exemplary search
query 402 illustrated in FIG. 4 is expressed in the Search
Processing Language (SPL), which is used in conjunction
with the SPLUNKR ENTERPRISE system. SPL is a pipe
lined search language in which a set of inputs is operated on
by a first command in a command line, and then a Subsequent
command following the pipe symbol “I” operates on the
results produced by the first command, and so on for addi
tional commands. Search query 402 can also be expressed in
other query languages. Such as the Structured Query Lan
guage (SQL) or any suitable query language.
0051. Upon receiving search query 402, query processor
404 sees that search query 402 includes two fields “IP and
“target.' Query processor 404 also determines that the values
for the “IP” and “target” fields have not already been
extracted from events in data store 414, and consequently
determines that query processor 404 needs to use extraction
rules to extract values for the fields. Hence, query processor
404 performs a lookup for the extraction rules in a rule base
406, wherein rule base 406 maps field names to correspond
ing extraction rules and obtains extraction rules 408-409,
wherein extraction rule 408 specifies how to extract a value
for the “IP field from an event, and extraction rule 409
specifies how to extract a value for the “target field from an
event. As is illustrated in FIG. 4, extraction rules 408-409 can
comprise regular expressions that specify how to extract val
ues for the relevant fields. Such regular-expression-based
extraction rules are also referred to as “regex rules. In addi
tion to specifying how to extract field values, the extraction
rules may also include instructions for deriving a field value
by performing a function on a character string or value
retrieved by the extraction rule. For example, a transforma
tion rule may truncate a character String, or convert the char
acter string into a different data format. In some cases, the
query itself can specify one or more extraction rules.
0.052 Next, query processor 404 sends extraction rules
408-409 to a field extractor 412, which applies extraction
rules 408-409 to events 416-418 in a data store 414. Note that
data store 414 can include one or more data stores, and extrac
tion rules 408-409 can be applied to large numbers of events
in data store 414, and are not meant to be limited to the three
events 416-418 illustrated in FIG. 4. Moreover, the query
processor 404 can instruct field extractor 412 to apply the

US 2016/0085578 A1

extraction rules to all the events in a data store 414, or to a
subset of the events that has been filtered based on some
criteria.
0053 Next, field extractor 412 applies extraction rule 408
for the first command “Search IP="10 to events in data
store 414 including events 416-418. Extraction rule 408 is
used to extract values for the IP address field from events in
data store 414 by looking for a pattern of one or more digits,
followed by a period, followed again by one or more digits,
followed by another period, followed again by one or more
digits, followed by another period, and followed again by one
or more digits. Next, field extractor 412 returns field values
420 to query processor 404, which uses the criterion
IP="10 to look for IP addresses that start with “10. Note
that events 416 and 417 match this criterion, but event 418
does not, so the result set for the first command is events
416-417.
0054 Query processor 404 then sends events 416-417 to
the next command 'stats count target. To process this com
mand, query processor 404 causes field extractor 412 to apply
extraction rule 409 to events 416-417. Extraction rule 409 is
used to extract values for the target field for events 416-417 by
skipping the first four commas in events 416–417, and then
extracting all of the following characters until a comma or
period is reached. Next, field extractor 412 returns field val
ues 421 to query processor 404, which executes the command
“stats count target to count the number of unique values
contained in the target fields, which in this example produces
the value '2' that is returned as a final result 422 for the query.
0055. Note that query results can be returned to a client, a
search head, or any other system component for further pro
cessing. In general, query results may include: a set of one or
more events; a set of one or more values obtained from the
events; a Subset of the values; statistics calculated based on
the values; a report containing the values; or a visualization,
Such as a graph or chart, generated from the values.

1.6 Exemplary Search Screen
0056 FIG. 6A illustrates an exemplary search screen 600
in accordance with the disclosed embodiments. Search screen
600 includes a search bar 602 that accepts user input in the
form of a search string. It also includes a time range picker
612 that enables the user to specify a time range for the search.
For “historical searches' the user can select a specific time
range, or alternatively a relative time range. Such as “today.”
“yesterday” or “last week. For “real-time searches, the user
can select the size of a preceding time window to search for
real-time events. Search screen 600 also initially displays a
“data summary' dialog as is illustrated in FIG. 6B that
enables the user to select different sources for the event data,
for example by selecting specific hosts and log files.
0057. After the search is executed, the search screen 600
can display the results through search results tabs 604,
wherein search results tabs 604 includes: an “events tab' that
displays various information about events returned by the
search; a “statistics tab that displays statistics about the
search results; and a “visualization tab' that displays various
visualizations of the search results. The events tab illustrated
in FIG. 6A displays a timeline graph 605 that graphically
illustrates the number of events that occurred in one-hour
intervals over the selected time range. It also displays an
events list 608 that enables a user to view the raw data in each
of the returned events. It additionally displays a fields sidebar
606 that includes statistics about occurrences of specific

Mar. 24, 2016

fields in the returned events, including “selected fields' that
are pre-selected by the user, and “interesting fields” that are
automatically selected by the system based on pre-specified
criteria.

1.7 Acceleration Techniques

0058. The above-described system provides significant
flexibility by enabling a user to analyze massive quantities of
minimally processed performance data “on the fly at search
time instead of storing pre-specified portions of the perfor
mance data in a database at ingestion time. This flexibility
enables a user to see correlations in the performance data and
perform Subsequent queries to examine interesting aspects of
the performance data that may not have been apparent at
ingestion time.
0059. However, performing extraction and analysis opera
tions at search time can involve a large amount of data and
require a large number of computational operations, which
can cause considerable delays while processing the queries.
Fortunately, a number of acceleration techniques have been
developed to speed up analysis operations performed at
search time. These techniques include: (1) performing search
operations in parallel by formulating a search as a map
reduce computation; (2) using a keyword index; (3) using a
high performance analytics store; and (4) accelerating the
process of generating reports. These techniques are described
in more detail below.

1.7.1 Map-Reduce Technique

0060. To facilitate faster query processing, a query can be
structured as a map-reduce computation, wherein the 'map'
operations are delegated to the indexers, while the corre
sponding “reduce' operations are performed locally at the
search head. For example, FIG. 5 illustrates how a search
query 501 received from a client at search head 104 can split
into two phases, including: (1) a “map phase' comprising
subtasks 502 (e.g., data retrieval or simple filtering) that may
be performed in parallel and are “mapped to indexers 102 for
execution, and (2) a “reduce phase' comprising a merging
operation 503 to be executed by the search head when the
results are ultimately collected from the indexers.
0061 During operation, upon receiving search query 501,
search head 104 modifies search query 501 by substituting
“stats' with “prestats to produce search query 502, and then
distributes search query 502 to one or more distributed index
ers, which are also referred to as “search peers.” Note that
search queries may generally specify search criteria or opera
tions to be performed on events that meet the search criteria.
Search queries may also specify field names, as well as search
criteria for the values in the fields or operations to be per
formed on the values in the fields. Moreover, the search head
may distribute the full search query to the search peers as is
illustrated in FIG. 3, or may alternatively distribute a modi
fied version (e.g., a more restricted version) of the search
query to the search peers. In this example, the indexers are
responsible for producing the results and sending them to the
search head. After the indexers return the results to the search
head, the search head performs the merging operations 503 on
the results. Note that by executing the computation in this
way, the system effectively distributes the computational
operations while minimizing data transfers.

US 2016/0085578 A1

1.7.2 Keyword Index

0062. As described above with reference to the flow charts
in FIGS. 2 and 3, event-processing system 100 can construct
and maintain one or more keyword indices to facilitate rap
idly identifying events containing specific keywords. This
can greatly speed up the processing of queries involving
specific keywords. As mentioned above, to build a keyword
index, an indexer first identifies a set of keywords. Then, the
indexer includes the identified keywords in an index, which
associates each stored keyword with references to events
containing that keyword, or to locations within events where
that keyword is located. When an indexer subsequently
receives a keyword-based query, the indexer can access the
keyword index to quickly identify events containing the key
word.

1.7.3 High Performance Analytics Store
0063. To speed up certain types of queries, some embodi
ments of system 100 make use of a high performance analyt
ics store, which is referred to as a “summarization table that
contains entries for specific field-value pairs. Each of these
entries keeps track of instances of a specific value in a specific
field in the event data and includes references to events con
taining the specific value in the specific field. For example, an
exemplary entry in a Summarization table can keep track of
occurrences of the value“94107 in a “ZIP code field of a set
of events, wherein the entry includes references to all of the
events that contain the value “94107 in the ZIP code field.
This enables the system to quickly process queries that seek to
determine how many events have a particular value for a
particular field, because the system can examine the entry in
the Summarization table to count instances of the specific
value in the field without having to go through the individual
events or do extractions at search time. Also, if the system
needs to process all events that have a specific field-value
combination, the system can use the references in the Sum
marization table entry to directly access the events to extract
further information without having to search all of the events
to find the specific field-value combination at search time.
0064. In some embodiments, the system maintains a sepa
rate summarization table for each of the above-described
time-specific buckets that stores events for a specific time
range, wherein a bucket-specific Summarization table
includes entries for specific field-value combinations that
occur in events in the specific bucket. Alternatively, the sys
tem can maintain a separate Summarization table for each
indexer, wherein the indexer-specific Summarization table
only includes entries for the events in a data store that is
managed by the specific indexer.
0065. The summarization table can be populated by run
ning a “collection query' that scans a set of events to find
instances of a specific field-value combination, or alterna
tively instances of all field-value combinations for a specific
field. A collection query can be initiated by a user, or can be
scheduled to occur automatically at specific time intervals. A
collection query can also be automatically launched in
response to a query that asks for a specific field-value com
bination.

0066. In some cases, the summarization tables may not
coverall of the events that are relevant to a query. In this case,
the system can use the Summarization tables to obtain partial
results for the events that are covered by summarization
tables, but may also have to search through other events that

Mar. 24, 2016

are not covered by the Summarization tables to produce addi
tional results. These additional results can then be combined
with the partial results to produce a final set of results for the
query. This Summarization table and associated techniques
are described in more detail in U.S. Pat. No. 8,682,925, issued
on Mar. 25, 2014.

1.7.4. Accelerating Report Generation

0067. In some embodiments, a data server system such as
the SPLUNKRENTERPRISE system can accelerate the pro
cess of periodically generating updated reports based on
query results. To accelerate this process, a Summarization
engine automatically examines the query to determine
whether generation of updated reports can be accelerated by
creating intermediate Summaries. (This is possible if results
from preceding time periods can be computed separately and
combined to generate an updated report. In some cases, it is
not possible to combine Such incremental results, for example
where a value in the report depends on relationships between
events from different time periods.) If reports can be acceler
ated, the Summarization engine periodically generates a Sum
mary covering data obtained during a latest non-overlapping
time period. For example, where the query seeks events meet
ing a specified criteria, a Summary for the time period
includes only events within the time period that meet the
specified criteria. Similarly, if the query seeks statistics cal
culated from the events, such as the number of events that
match the specified criteria, then the summary for the time
period includes the number of events in the period that match
the specified criteria.
0068. In parallel with the creation of the summaries, the
Summarization engine schedules the periodic updating of the
report associated with the query. During each Scheduled
report update, the query engine determines whether interme
diate Summaries have been generated covering portions of the
time period covered by the report update. If so, then the report
is generated based on the information contained in the Sum
maries. Also, if additional event data has been received and
has not yet been Summarized, and is required to generate the
complete report, the query can be run on this additional event
data. Then, the results returned by this query on the additional
event data, along with the partial results obtained from the
intermediate Summaries, can be combined to generate the
updated report. This process is repeated each time the report
is updated. Alternatively, if the system stores events in buck
ets covering specific time ranges, then the Summaries can be
generated on a bucket-by-bucket basis. Note that producing
intermediate Summaries can save the work involved in re
running the query for previous time periods, so only the newer
event data needs to be processed while generating an updated
report. These report acceleration techniques are described in
more detail in U.S. Pat. No. 8,589,403, issued on Nov. 19,
2013, and U.S. Pat. No. 8,412,696, issued on Apr. 2, 2011.

System for Collecting Hypervisor Data and Operating
System Data for a VM

0069 FIG. 7 illustrates how hypervisor data and associ
ated operating system data are collected for a number of
virtual machines in accordance with the disclosed embodi
ments. In particular, FIG. 7 illustrates a number of physical
host systems 702, 712 and 722 containing hypervisors and
associated virtual machines. Each host system 702, 712 and
722 can comprise a multi-core processor that includes a num

US 2016/0085578 A1

ber of simultaneously executing processor cores (e.g., 64
processor cores). Moreover, each host system executes a
hypervisor, which is responsible for instantiating and execut
ing virtual machines, wherein a hypervisor allows a virtual
machine to execute applications as if the virtual machine were
actually a physical host machine. In particular, host system
702 executes a hypervisor 704 that executes a set of virtual
machines 706, host system 712 executes a hypervisor 714 that
executes a set of virtual machines 716, and host system 722
executes a hypervisor 724 that executes a set of virtual
machines 726.

0070. Note that all of these virtual machines 706, 716 and
726 and associated hypervisors 704, 714 and 724 operate
under control of a management server, which is referred to as
a “virtual center” 730. Virtual center 730 performs operations
to facilitate centralized management, operational automa
tion, resource optimizations and high availability for the Vir
tual machines 706, 716 and 726, which execute on hypervi
sors 704, 714 and 724. Virtual center 730 additionally obtains
performance-related data from hypervisors 704, 714 and 724.
This performance-related data is sent to a forwarder 101,
which forwards the performance-related data to an indexer
102, wherein indexer 102 stores the data in data store 103. In
some embodiments, forwarder 101 obtains this performance
related data by making calls through an application program
ming interface (API) provided by virtual center 730.
0071. The performance-related data obtained from hyper
visors 704, 714 and 724 is referred to as “hypervisor data”
732. For example, hypervisor data 732 can include, but is not
limited to: resource utilization parameters for virtual
machines; resource utilization parameters for physical hosts;
performance metrics for virtual machines; and performance
metrics for physical hosts.
0072 The system also obtains performance-related data
from operating systems within the virtual machines. To illus
trate how this performance-related data is gathered, the inter
nal structure for a specific virtual machine 742 is illustrated in
FIG. 7. The specific virtual machine 742 includes an operat
ing system 743, which is responsible for managing the execu
tion of various applications and processes 746. For example,
operating system 743 can include the LinuxTM operating sys
tem. A special forwarder 744 is installed on operating system
743 to forward performance-related data to indexer 102.
0073. This performance-related data obtained from inside
virtual machine operating systems is referred to as "operating
system” (OS) data 748. For example, OS data 748 can
include, but is not limited to: resource utilization parameters
for virtual processes running inside the virtual machines;
performance metrics for the virtual processes; identifiers for
owners associated with the virtual processes; and perfor
mance data obtained from the set of operating systems and log
data from operating system logs maintained by the set of
operating systems. Note that this log data can include data
from: underlying system logs; security logs for authentica
tion; configuration change logs; and Internet information ser
vices (IIS) logs.
0.074. It can also be useful to know which owners are
associated with specific virtual processes. For example, an
owner of a process that executes inside a virtual machine is
typically an administrator or a service owner. Hence, when
the system determines that a standard user, who is not an
administrator or a service owner, is running a process on a

Mar. 24, 2016

virtual machine, the system can determine that this circum
stance is a security exception and can deal with the process
accordingly.
0075 Another piece of software, which is referred to as a
technology add-on (TA) 745, is installed over special for
warder 744. TA 745 specifies how to collect OS data 748,
including specifying the sources of the OS data and the fre
quency of collection. For example, OS data can be collected
from various operating system logs, such as an event, log a
security log, or an event-scheduling "cron' log. The OS data
can also be collected from internal operating system kernel
data structures to obtain information about the performance
of specific virtual processes. TA 745 directs the collected OS
data to special forwarder 744, and special forwarder 744 in
turn forwards OS data 748 to indexer 102.

Correlating Hypervisor Data and OS Data for a VM

0076 FIG. 8 presents a flow chart illustrating how hyper
visor data and operating system data are correlated for a
virtual machine in accordance with the disclosed embodi
ments. During operation, the system obtains hypervisor data
for a set of virtual machines, wherein the hypervisor data was
received from one or more hypervisors while the set of virtual
machines was running on the hypervisors (step 802). The
system also obtains operating system data for the set of virtual
machines, wherein the operating system data was received
from a set of operating systems while the set of operating
systems was running on the set of virtual machines (step 804).
0077 Next, the system correlates the hypervisor data for a
virtual machine with corresponding operating system data for
the virtual machine (step 806). For example, the system can
match hypervisor data for a virtual machine with correspond
ing operating system data for the same virtual machine by
identifying the data with reference to a medium-access con
trol (MAC) address associated with the virtual machine.
0078. Note that a MAC address can serve as a unique
identifier for the virtual machine. Hence, if a MAC address is
stored along with the performance data by the hypervisor and
also by the operating system, the MAC address can Subse
quently be used to identify the virtual machine that generated
the performance data. This enables the system to correlate
hypervisor and operating system performance data for the
virtual machine. For example, Suppose the system retrieves
an event containing memory-utilization performance data
from the hypervisor, wherein the event includes a MAC
address for the virtual machine. Additionally, Suppose the
system retrieves anotherevent containing memory-utilization
performance data from an operating system in the same Vir
tual machine, wherein the event also includes the MAC
address for the virtual machine. In this example, the system
can match the events based on the MAC address for the virtual
machine, and can display the corresponding data from the
hypervisor and from the operating system together in a single
display for the virtual machine as is described in more detail
below with reference to FIG. 9. Note that this type of corre
lation can be performed automatically or manually.
007.9 The system can additionally use other types of infor
mation to identify a virtual machine that generated the data,
such as (1) one or more IP addresses for the virtual machine,
and (2) a host name identifying a physical host on which the
virtual machine executes. Also, note that to uniquely identify
a host, the system can use one or more MAC addresses, plus

US 2016/0085578 A1

one or more IP addresses. (Because a MAC address is unique
on a network, it is also unique within a hypervisor and hence
can be used for correlation.)
0080 Next, the system presents the correlated hypervisor
data and operating system data for the virtual machine to a
user (step 808). For example, the system can present the
hypervisor and operating system data together in a single
view to enable the user to understand relationships between
the hypervisor data and operating system data. In another
example, the system facilitates executing a single query,
which is specified in a query language, wherein the single
query operates on both the hypervisor data and the operating
system data for the set of virtual machines to generate a query
result. In yet another example, the system can use the hyper
visor data and the operating system data to establish a base
line to facilitate Subsequently determining when the system
undergoes a noteworthy change.
0081. The information that is presented in this way can be
quite useful. For example, the information can enable an
administrator to determine whether an application is using
more memory than it has been allocated, and to make a
decision about whether the memory allocation needs to be
increased for this application. In another example, the admin
istrator can determine that a process is a "rogue process” that
should not be running on a virtual machine, and can take steps
to shut down the rogue process.
0082 In some embodiments, the system additionally com
putes differences between performance metrics in the hyper
visor data and corresponding performance metrics in the
operating system data (step 810), and the system presents the
computed differences to the user(step 812). Note that inform
ing the user about a significant difference between a perfor
mance metric that appears in the hypervisordata and the same
performance metric that appears in the operating system data
makes the user aware of an uncertainty in measuring the
performance metrics, and thereby enables the user to look for
a cause of the discrepancy. A number of factors can cause this
type of discrepancy, including the overhead involved in run
ning the operating system on the virtual machine, and the
overhead involved in running the virtual machine itself on the
hypervisor.
Displaying Hypervisor Data with Operating System Data
0083 FIG. 9 presents a user interface that simultaneously
displays hypervisor data and operating system data for a
specific virtual machine in accordance with the disclosed
embodiments. More specifically, the exemplary user inter
face illustrated in FIG.9 includes a display 900 that is divided
into three sections. The top section 902 presents performance
information for a number of virtual processes 903-907 in the
virtual machine, wherein each virtual process is represented
with sparklines for central processing unit utilization (labeled
as “CPU”) and memory utilization (labeled as “MEM). The
CPU sparkline for a virtual process represents a percentage
utilization of the virtual machine's virtual CPU by the virtual
process. A value of 50% indicates that the virtual process is
using 50% of the virtual CPU, which means that the other
virtual processes must share the remaining 50% of the virtual
CPU. Similarly, the MEM sparkline for a virtual process
represents a percentage utilization of the virtual machine's
memory by the virtual process. It is useful for an administra
torto be able to determine which specific virtual processes are
consuming a significant amount of processor or memory
SOUCS.

Mar. 24, 2016

I0084. The middle section of display 900 presents a
memory utilization graph910, which includes a solid line912
representing memory utilization for the entire virtual
machine as a percentage of the total memory that has been
allocated to the virtual machine. Note that line 912 is con
structed from information obtained from hypervisor data 732.
Memory utilization graph910 also includes a dashed line 914
representing memory utilization for a selected process as a
percentage of the total memory that has been allocated to the
virtual machine. Note that dashed line 914 is constructed
from information obtained from OS data 748.
I0085. The bottom section of display 900 presents a CPU
utilization graph920, which includes a solid line 922 repre
senting CPU utilization for the entire virtual machine as a
percentage of the total CPU capacity that has been allocated
to the virtual machine. This solid line 922 is constructed from
information obtained from hypervisor data 732. CPU utiliza
tion graph 920 also includes a dashed line 924 representing
CPU utilization for a selected process as a percentage of the
total CPU capacity that has been allocated to the virtual
machine. Note that dashed line 924 is constructed from infor
mation obtained from OS data 748.
I0086. When a user selects one of processes 903-907
within top section 902, the system displays the corresponding
memory utilization and CPU utilization information for the
selected process in the graphs that appear in the middle sec
tion 910 and bottom section 920 of display 900. This enables
the user to determine, for example, whether an increase in
CPU utilization for the virtual machine can be attributed to an
increase in CPU utilization for a specific process. The user
can also double-click on one of the processes in top section
902 to expose other types of operating-system-level informa
tion for the process.
I0087. The display illustrated in FIG. 9 is merely an
example of a type of display that can be used to present both
hypervisor data and operating system data for a virtual
machine at the same time. In general, many different types of
user interface can be used. For example, the system can pro
vide a workflow that lets a user drill down from the perspec
tive of the specific applications and processes into virtual
machines associated with the specific applications and pro
cesses, as opposed to drilling down starting from a virtual
machine hierarchy. This enables an administrator to more
easily investigate the root cause of performance problems for
specific applications and processes.
I0088. The preceding description was presented to enable
any person skilled in the art to make and use the disclosed
embodiments, and is provided in the context of a particular
application and its requirements. Various modifications to the
disclosed embodiments will be readily apparent to those
skilled in the art, and the general principles defined herein
may be applied to other embodiments and applications with
out departing from the spirit and scope of the disclosed
embodiments. Thus, the disclosed embodiments are not lim
ited to the embodiments shown, but are to be accorded the
widest scope consistent with the principles and features dis
closed herein. Accordingly, many modifications and varia
tions will be apparent to practitioners skilled in the art. Addi
tionally, the above disclosure is not intended to limit the
present description. The scope of the present description is
defined by the appended claims.
0089. The data structures and code described in this
detailed description are typically stored on a computer-read
able storage medium, which may be any device or medium

US 2016/0085578 A1

that can store code and/or data for use by a system. The
computer-readable storage medium includes, but is not lim
ited to, Volatile memory, non-volatile memory, magnetic and
optical storage devices such as disk drives, magnetic tape,
CDs (compact discs), DVDs (digital versatile discs or digital
Video discs), or other media capable of storing code and/or
data now known or later developed.
0090 The methods and processes described in the detailed
description section can be embodied as code and/or data,
which can be stored on a non-transitory computer-readable
storage medium as described above. When a system reads and
executes the code and/or data stored on the non-transitory
computer-readable storage medium, the system performs the
methods and processes embodied as data structures and code
and stored within the non-transitory computer-readable Stor
age medium.
0091. Furthermore, the methods and processes described
above can be included inhardware modules. For example, the
hardware modules can include, but are not limited to, appli
cation-specific integrated circuit (ASIC) chips, field-pro
grammable gate arrays (FPGAs), and other programmable
logic devices now known or later developed. When the
hardware modules are activated, the hardware modules per
form the methods and processes included within the hardware
modules.
What is claimed is:
1. A computer-implemented method for analyzing perfor

mance for virtual machines, the method comprising:
obtaining hypervisor data for a set of virtual machines at a

computer system, wherein the hypervisor data was
received from one or more hypervisors while the set of
virtual machines was running on the one or more hyper
visors;

obtaining operating system data for the set of virtual
machines at the computer system, wherein the operating
system data was received from a set of operating systems
while the set of operating systems was running on the set
of virtual machines;

correlating, at the computer system, the hypervisor data for
a virtual machine in the set of virtual machines with
corresponding operating system data for the virtual
machine; and

presenting an output associated with the correlated hyper
visor and operating system data for the virtual machine
to a user through a user-interface on a display system,
wherein the display system can comprise the computer
system.

2. The computer-implemented method of claim 1, wherein
presenting the output associated with the correlated hypervi
sor and operating system data to the user includes sending an
alert to the user if the correlated hypervisor and operating
system data satisfies an alert-generation criterion.

3. The computer-implemented method of claim 1, wherein
presenting the output associated with the correlated hypervi
sor and operating system data to the user includes displaying
both the hypervisor data and the operating system data
together in a graph.

4. The computer-implemented method of claim 1, wherein
presenting the output associated with the correlated hypervi
Sor data and operating system data to the user includes:

computing differences between values for performance
metrics in the hypervisor data and corresponding values
for performance metrics in the operating system data;
and

presenting the computed differences to the user.

Mar. 24, 2016

5. The computer-implemented method of claim 1, wherein
obtaining the operating system data includes:

retrieving one or more events from a data store, wherein the
retrieved events were generated by an operating system
for the virtual machine, and contain MAC addresses that
match a corresponding MAC address for the virtual
machine; and

using a late-binding schema to extract values from the
retrieved events including values for one or more per
formance metrics for the virtual machine.

6. The computer-implemented method of claim 1, wherein
correlating the hypervisor data and operating system data
includes matching hypervisor data and operating system data
for the virtual machine based on one or more of:

a MAC address for the virtual machine;
one or more IP addresses for the virtual machine; and
a host name identifying a physical host on which the virtual

machine executes.
7. The computer-implemented method of claim 1, wherein

the operating system data includes:
resource utilization parameters for virtual processes run

ning inside the virtual machines;
performance metrics for the virtual processes;
identifiers for owners associated with the virtual processes;
log data from operating system logs maintained by the set

of operating systems; and
performance data obtained from the set of operating sys

temS.

8. The computer-implemented method of claim 1, wherein
the hypervisor data includes:

resource utilization parameters for virtual machines;
resource utilization parameters for physical hosts;
performance metrics for virtual machines; and
performance metrics for physical hosts.
9. The computer-implemented method of claim 1, wherein

obtaining the hypervisor data and the operating system data
includes retrieving the hypervisor data and the operating sys
tem data from a single data store that contains both the hyper
visor data and the operating system data.

10. The computer-implemented method of claim 1,
wherein presenting the correlated hypervisor and operating
system data to the user includes presenting the hypervisor
data and operating system data together in a single view.

11. The computer-implemented method of claim 1,
wherein the method further comprises executing a single
query that operates on both the hypervisor data and the oper
ating system data for the set of virtual machines.

12. A non-transitory computer-readable storage medium
storing instructions that when executed by a computer cause
the computer to perform a method for analyzing performance
for virtual machines, the method comprising:

obtaining hypervisor data for a set of virtual machines,
wherein the hypervisor data was received from one or
more hypervisors while the set of virtual machines was
running on the one or more hypervisors;

obtaining operating system data for the set of virtual
machines, wherein the operating system data was
received from a set of operating systems while the set of
operating systems was running on the set of virtual
machines;

correlating the hypervisor data for a virtual machine in the
set of virtual machines with corresponding operating
system data for the virtual machine; and

US 2016/0085578 A1

presenting an output associated with the correlated hyper
visor and operating system data for the virtual machine
to a user.

13. The non-transitory computer-readable storage medium
of claim 12, wherein presenting the output associated with the
correlated hypervisor and operating system data to the user
includes sending an alert to the user if the correlated virtual
machine data and operating system data satisfies an alert
generation criterion.

14. The non-transitory computer-readable storage medium
of claim 12, wherein presenting the output associated with the
correlated hypervisor and operating system data to the user
includes displaying both the hypervisor data and the operat
ing system data together in a graph.

15. The non-transitory computer-readable storage medium
of claim 12, wherein presenting the output associated with the
correlated hypervisor and operating system data to the user
includes:

computing differences between values for performance
metrics in the hypervisor data and corresponding values
for performance metrics in the operating system data;
and

presenting the computed differences to the user.
16. The non-transitory computer-readable storage medium

of claim 12, wherein obtaining the operating system data
includes:

retrieving one or more events from a data store, wherein the
retrieved events were generated by an operating system
for the virtual machine, and contain MAC addresses that
match a corresponding MAC address for the virtual
machine; and

using a late-binding schema to extract values from the
retrieved events including values for one or more per
formance metrics for the virtual machine.

17. The non-transitory computer-readable storage medium
of claim 12, wherein correlating the hypervisor data and
operating system data includes matching hypervisor data and
operating system data for the virtual machine based on one or
more of:

a MAC address for the virtual machine;
one or more IP addresses for the virtual machine; and
a host name identifying a physical host on which the virtual

machine executes.
18. The non-transitory computer-readable storage medium

of claim 12, wherein the operating system data includes:
resource utilization parameters for virtual processes run

ning inside the virtual machines;
performance metrics for the virtual processes;
identifiers for owners associated with the virtual processes;
log data from operating system logs maintained by the set

of operating systems; and
performance data obtained from the set of operating sys

temS.

19. The non-transitory computer-readable storage medium
of claim 12, wherein the hypervisor data includes:

resource utilization parameters for virtual machines;
resource utilization parameters for physical hosts;
performance metrics for virtual machines; and
performance metrics for physical hosts.
20. The non-transitory computer-readable storage medium

of claim 12, wherein obtaining the hypervisor data and the
operating system data includes retrieving the hypervisor data

Mar. 24, 2016

and the operating system data from a single data store that
contains both the hypervisor data and the operating system
data.

21. The non-transitory computer-readable storage medium
of claim 12, wherein presenting the correlated hypervisor and
operating system data to the user includes presenting the
hypervisor data and operating system data togetherina single
view.

22. The non-transitory computer-readable storage medium
of claim 12, wherein the method further comprises executing
a single query that operates on both the hypervisor data and
the operating system data for the set of virtual machines.

23. A system that analyzes performance for virtual
machines, comprising:

at least one processor and at least one associated memory;
and

an analysis mechanism that executes on the at least one
processor and is configured to:
obtain hypervisor data for a set of virtual machines,

wherein the hypervisor data was received from one or
more hypervisors while the set of virtual machines
was running on the one or more hypervisors;

obtain operating system data for the set of virtual
machines, wherein the operating system data was
received from a set of operating systems while the set
of operating systems was running on the set of virtual
machines;

correlate the hypervisor data for a virtual machine in the
set of virtual machines with corresponding operating
system data for the virtual machine; and

present an output associated with the correlated hyper
visor data and operating system data for the virtual
machine to a user.

24. The system of claim 23, wherein while presenting the
output associated with the correlated hypervisor and operat
ing system data to the user, the analysis mechanism is further
configured to send an alert to the user if the correlated hyper
visor and operating system data satisfies an alert-generation
criterion.

25. The system of claim 23, wherein while presenting the
output associated with the correlated hypervisor and operat
ing system data to the user, the analysis mechanism is con
figured to display both the hypervisor data and the operating
system data together in a graph.

26. The system of claim 23, wherein while presenting the
output associated with the correlated hypervisor and operat
ing system data to the user, the analysis mechanism is further
configured to:
compute differences between values for performance met

rics in the hypervisor data and corresponding values for
performance metrics in the operating system data; and

present the computed differences to the user.
27. The system of claim 23, wherein while obtaining the

operating system data, the analysis mechanism is configured
tO:

retrieve one or more events from a data store, wherein the
retrieved events were generated by an operating system
for the virtual machine, and contain MAC addresses that
match a corresponding MAC address for the virtual
machine; and

use a late-binding schema to extract values from the
retrieved events including values for one or more per
formance metrics for the virtual machine.

US 2016/0085578 A1

28. The system of claim 23, wherein while correlating the
hypervisor data and operating system data, the analysis
mechanism is configured to match hypervisor data and oper
ating system data for the virtual machine based on one or
more of:

a MAC address for the virtual machine;
one or more IP addresses for the virtual machine; and
a host name identifying a physical host on which the virtual

machine executes.
29. The system of claim 23, wherein the operating system

data includes:
resource utilization parameters for virtual processes run

ning inside the virtual machines;
performance metrics for the virtual processes;
identifiers for owners associated with the virtual processes;
log data from operating system logs maintained by the set

of operating systems; and
performance data obtained from the set of operating sys

temS.

Mar. 24, 2016

30. The system of claim 23, wherein the hypervisor data
includes:

resource utilization parameters for virtual machines;
resource utilization parameters for physical hosts;
performance metrics for virtual machines; and
performance metrics for physical hosts.
31. The system of claim 23, wherein while obtaining the

hypervisor data and the operating system data the analysis
mechanism is configured to retrieve the hypervisor data and
the operating system data from a single data store that con
tains both the hypervisor data and the operating system data.

32. The system of claim 23, wherein while presenting the
correlated hypervisor and operating system data to the user,
the analysis mechanism is configured to present the hypervi
Sor data and operating system data together in a single view.

33. The system of claim 23, wherein the analysis mecha
nism is further configured to execute a single query that
operates on both the hypervisor data and the operating system
data for the set of virtual machines.

k k k k k

