
(19) United States 
US 20160085578A1 

(12) Patent Application Publication (10) Pub. No.: US 2016/0085578 A1 
Bhide et al. (43) Pub. Date: Mar. 24, 2016 

(54) CORRELATING HYPERVISOR DATA FOR A (52) U.S. Cl. 
VIRTUAL MACHINE WITH ASSOCATED CPC ........ G06F 9/45558 (2013.01); G06F II/3409 
OPERATING SYSTEMI DATA (2013.01); G06F II/3024 (2013.01); G06F 

2009/45591 (2013.01) 
(71) Applicant: Splunk Inc., San Francisco, CA (US) 

(72) Inventors: Alok A. Bhide, Mountain View, CA 
(US); Adrian E. Hall, Lake Forest Park, (57) ABSTRACT 
WA (US) 

(21) Appl. No.: 14/526,237 The disclosed embodiments relate to a system for analyzing 
y x- - - 9 the performance virtual machines. During operation, the sys 

(22) Filed: Oct. 28, 2014 tem obtains hypervisor data for a set of virtual machines, 
wherein the hypervisor data was received from one or more 

Related U.S. Application Data hypervisors while the set of virtual machines was running on 
(60) Provisional application No. 62/054,264, filed on Sep. the hypervisors. The system also obtains operating system 

23, 2014 s1- Y is data for the set of virtual machines, wherein the operating 
s system data was received from a set of operating systems 

Publication Classification while the set of operating systems was running on the set of 
virtual machines. Next, the system correlates hypervisor data 

(51) Int. Cl. for a virtual machine with corresponding operating system 
G06F 9/455 (2006.01) data for the virtual machine. Finally, the system presents the 
G06F II/30 (2006.01) correlated hypervisor data and operating system data for the 
G06F II/34 (2006.01) virtual machine to a user. 

SEARCH 

of Y Search iE="10" " stats count target 

RULE 422 
BASE PROssor 
406 

EXRACON 
RULE w re 
4.08 (?-gEP>\d-V. Vd-V. Voi-V. Vd) FELO 

| (..*?\,) {4} (?-target: I \,\ ..]+)" -- va's 
EXTRACTION- target 

RULE 

10.o.o. 5 index - : 42 :- Yar a a - 

- 65.3.7.124 . . . . 
OAA ir -- FELO 
SOR -- a-- - - - - - - - - - - - - - - - i............... VALUES : 
414 : 421 

Sun Aug 1. 2014 08:15, 
EVEN 
46 : 

Mon Aug 2 2014 07:10 
EVEN 
417 r---------------- 

Mon Aug 2 2014 07:12, 65.3.7.24: 443, 200, store.aspx, 830, webkit 
EVEN 
418 

  

  

  



Patent Application Publication Mar. 24, 2016 Sheet 1 of 10 US 2016/0085578 A1 

SOURCE SOURCE SOURCE 
105 105 105 

FORWARDER FORWARDER 
101 101 

SYSTEM 
100 

NDEXER NOEXER NDEXER 
102 102 102 

SEARCH 
HEAD 
104. 

FIG. 1 

  

  



Patent Application Publication Mar. 24, 2016 Sheet 2 of 10 US 2016/0085578 A1 

SAR 

RECEIVE DAA 
201 

APPORON DATA NO EVENTS 
202 

DETERMINE MESAMPS FROM 
EVENTS 

203 

ASSOCATE TIMESTAMPS WITH 
EVENTS 

204 

RANSFORM EVENTS 
205 

IDENTIFY KEYWORDS IN EVENTS 
206 

UPDATE KEYWORD INDEX 
2O7 

  

  

  

    

  

  



Patent Application Publication Mar. 24, 2016 Sheet 3 of 10 US 2016/0085578 A1 

SEARCH HEAD RECEIVES OUERY 
FROM CLEN 

301 

SEARCH HEAO DETERMINES WHAT 
PORONS OF THE CRUERY CAN BE 

DISTRIBUTEDO NOEXERS 
302 

SEARCH HEAD DSTRIBUTES 
PORTIONS OF QUERY TO 

INDEXERS 
303 

NOEXERS SEARCH OAA STORE 
FOR OUERY-RESPONSIVE EVENTS 

304 

SEARCH HEAD COMBINES PARAL 
RESULS OR EVENS TO PRODUCE 

FINAL RESULT 
305 

FIG. 3 

  





Patent Application Publication Mar. 24, 2016 Sheet 5 of 10 US 2016/0085578 A1 

Original Search : 501 
search error stats count BY host 

Sent to peers: 502 
search 'error prestats count BY host (map) 

Executed by search head: 503 
Merge prestats results received from peers (reduce) 

FIG. 5 



US 2016/0085578 A1 Mar. 24, 2016 Sheet 6 of 10 Patent Application Publication 

  

  

    

  

  

  



Patent Application Publication Mar. 24, 2016 Sheet 7 of 10 US 2016/0085578 A1 

8:888 

  



Patent Application Publication Mar. 24, 2016 Sheet 8 of 10 US 2016/0085578 A1 

VRTUAL 
MACHINES 

7O6 

(YYYYYYY 
HYPERVISOR 704 

HOST 702 

WRUAL 
MACHINES 

716 

(YYYYYYY VIRTUAL FORWARDER 
HYPERVISOR 714 CENTER forger 101 

73O 
HOST 712 HYPERVSOR 

OAA 
732 

NOEXER 
WRUAL 102 
MACHINES OS 

726 DAA 
748 

YYYYYYY (YYYYYYY 
HYPERVISOR 724 C vid 

DATA 
SORE 

HOST 722 103 

. APPLICATIONS AND 
PROCESSES 746 

t ECHNOLOGY ADD-ON 745 
FORWARDER 744 

VIRTUAL MACH NE 742 FIG 7 

  



Patent Application Publication Mar. 24, 2016 Sheet 9 of 10 US 2016/0085578 A1 

START 

OBAN HYPERVISOR DATA FOR ASE OF 
VIRTUAL MACHINES, WHEREIN THE HYPERVISOR 
DAA WAS RECEIVED FROM ONE OR MORE 
HYPERVISORS WHILE THE SET OF VIRTUAL 

MACH NES WERE RUNNING ON THE 
HYPERVSORS 

802 

OBTAN OPERATING SYSTEM DATA FOR THE SE 
OF VIRTUAL MACHINES, WHEREN THE 

OPERATING SYSTEM OAAWAS RECEIVED FROM 
A SE OF OPERATING SYSTEMS WHLE THE SE 
OF OPERATING SYSTEMS WAS RUNNING ON HE 

SET OF VIRTUAL MACH NES 
804. 

CORRELATE THE HYPERVSORDAA FOR A 
WRUAL MACHINE WITH CORRESPONDING 
OPERATING SYSTEM DATA FOR THE VIRTUAL 

MACHINE 
806 

PRESEN THE CORRELATED HYPERVISOR DAA 
AND OPERATING SYSTEM DATA FOR THE VIRTUAL 

MACHINE O A USER 
808 

COMPUTE OFFERENCES BETWEEN 
PERFORMANCE METRICS IN THE HYPERVISOR 
DAA AND CORRESPONDING PERFORMANCE 
MERCS IN THE OPERATING SYSTEM DAA 

810 

PRESENT THE COMPUTED OFFERENCES TO THE 
USER 
812 

END 

FIG. 8 

  



US 2016/0085578 A1 Mar. 24, 2016 Sheet 10 of 10 

Z06 SESSHOO? Jc3 

Patent Application Publication 

  



US 2016/0085578 A1 

CORRELATING HYPERVISOR DATA FORA 
VIRTUAL MACHINE WITH ASSOCATED 

OPERATING SYSTEMI DATA 

CROSS REFERENCE TO RELATED 
APPLICATION 

0001. This application claims priority under 35 U.S.C. 
S119(e) to U.S. Provisional Application Ser. No. 62/054,264, 
entitled “Correlating Hypervisor Data for a Virtual Machine 
with Associated Operating System Data.” by inventors Alok 
A. Bhide and Adrian Hall, Attorney docket number SPLK14 
1019PSP filed on Sep. 23, 2014, the contents of which are 
herein incorporated by reference. 

BACKGROUND 

0002 1. Field of the Invention 
0003. The disclosed embodiments generally relate to tech 
niques for analyzing performance in computer systems. More 
specifically, the disclosed embodiments relate to a technique 
for correlating hypervisor data for a virtual machine with 
associated operating system data. 
0004 2. Related Art 
0005 Organizations are increasingly relying on cloud 
based computing systems to perform large-scale computa 
tional tasks. Such cloud-based computing systems are typi 
cally operated by hosting companies that maintain a sizable 
computational infrastructure, often comprising thousands of 
servers sited in geographically distributed data centers. Cus 
tomers typically buy or lease computational resources from 
these hosting companies. The hosting companies in turn pro 
vision computational resources according to the customers 
requirements and then enable the customers to access these 
SOUCS. 

0006 Cloud-based computing systems often provide a 
virtualized computing environment, wherein tasks run on 
“virtual machines' that execute on underlying physical host 
systems. Such virtualized computing environments enable 
computational tasks to be easily moved among host systems 
to facilitate load balancing and fault tolerance. However, they 
also complicate the process of diagnosing and resolving per 
formance problems because Such performance problems can 
arise: at the virtual-machine level; at the host-system level; 
and also between virtual processes that run inside the virtual 
machines. 
0007 Existing performance-monitoring tools for virtual 
machines typically operate by gathering virtual-machine per 
formance parameters from a hypervisor, which is responsible 
for instantiating and executing virtual machines on an under 
lying host system. For example, virtual-machine perfor 
mance parameters can specify processor utilization or 
memory utilization parameters for virtual machines that are 
executing on the hypervisor. However, these virtual-machine 
performance parameters do not tell the whole story. To deter 
mine the root cause of a performance problem, it is often 
advantageous to analyze performance parameters for virtual 
processes that run inside operating systems within the virtual 
machines. 
0008 Unfortunately, such virtual-process performance 
parameters cannot be obtained from the hypervisor. It is typi 
cally necessary for an administrator to obtain such virtual 
process performance parameters from another diagnostic tool 
that gathers process-level performance parameters from oper 
ating systems that execute within the virtual machines. Note 
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that these operating systems keep track of different types of 
performance data within the virtual machine, including per 
formance parameters for virtual processes that run within the 
virtual machines. Even when Such process-level performance 
parameters can be gathered, it is difficult to correlate these 
process-level performance parameters with virtual-machine 
performance parameters obtained from a hypervisor. 
0009 Hence, what is needed is a system that facilitates 
efficiently analyzing performance parameters for virtual 
machines together with performance parameters for associ 
ated virtual processes without the drawbacks of existing tech 
niques. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0010 FIG. 1 presents a block diagram of an event-pro 
cessing system in accordance with the disclosed embodi 
mentS. 

0011 FIG. 2 presents a flow chart illustrating how index 
ers process, index, and store data received from forwarders in 
accordance with the disclosed embodiments. 
0012 FIG.3 presents a flow chart illustrating how a search 
head and indexers perform a search query in accordance with 
the disclosed embodiments. 
0013 FIG. 4 presents a block diagram of a system for 
processing search requests that uses extraction rules for field 
values in accordance with the disclosed embodiments. 
0014 FIG. 5 illustrates an exemplary search query 
received from a client and executed by search peers in accor 
dance with the disclosed embodiments. 
0015 FIG. 6A illustrates a search screen in accordance 
with the disclosed embodiments. 
0016 FIG. 6B illustrates a data summary dialog that 
enables a user to select various data sources in accordance 
with the disclosed embodiments. 
0017 FIG. 7 illustrates how hypervisor data and associ 
ated operating system data are collected for virtual machines 
in accordance with the disclosed embodiments. 
0018 FIG. 8 presents a flow chart illustrating how hyper 
visor data and operating system data are processed in accor 
dance with the disclosed embodiments. 
0019 FIG. 9 presents a user interface that simultaneously 
displays hypervisor data and operating system data for a 
virtual machine in accordance with the disclosed embodi 
mentS. 

DETAILED DESCRIPTION 

0020. The disclosed embodiments relate to a perfor 
mance-monitoring system that facilitates correlating hyper 
visor performance data for virtual machines with associated 
operating system data for virtual processes that execute on the 
virtual machines. This performance-monitoring system is 
described in more detail below, but first we describe the 
structure of an event-based system in which this perfor 
mance-monitoring system operates. 

1.1 System Overview 
0021 Modern data centers often comprise thousands of 
host computer systems that operate collectively to service 
requests from even larger numbers of remote clients. During 
operation, these data centers generate significant Volumes of 
performance data and diagnostic information that can be ana 
lyzed to quickly diagnose performance problems. In order to 
reduce the size of this performance data, the data is typically 
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pre-processed prior to being stored based on anticipated data 
analysis needs. For example, pre-specified data items can be 
extracted from the performance data and stored in a database 
to facilitate efficient retrieval and analysis at search time. 
However, the rest of the performance data is not saved and is 
essentially discarded during pre-processing. As storage 
capacity becomes progressively cheaper and more plentiful, 
there are fewer incentives to discard this performance data 
and many reasons to keep it. 
0022. This plentiful storage capacity is presently making it 
feasible to store massive quantities of minimally processed 
performance data at "ingestion time' for later retrieval and 
analysis at “search time.” Note that performing the analysis 
operations at search time provides greater flexibility because 
it enables an analyst to search all of the performance data, 
instead of searching pre-specified data items that were stored 
at ingestion time. This enables the analyst to investigate dif 
ferent aspects of the performance data instead of being con 
fined to the pre-specified set of data items that was selected at 
ingestion time. 
0023. However, analyzing massive quantities of heteroge 
neous performance data at search time can be a challenging 
task. A data center may generate heterogeneous performance 
data from thousands of different components, which can col 
lectively generate tremendous Volumes of performance data 
that can be time-consuming to analyze. For example, this 
performance data can include data from system logs, network 
packet data, sensor data, and data generated by various appli 
cations. Also, the unstructured nature of much of this perfor 
mance data can pose additional challenges because of the 
difficulty of applying semantic meaning to unstructured data, 
and the difficulty of indexing and querying unstructured data 
using traditional database systems. 
0024. These challenges can be addressed by using an 
event-based system, such as the SPLUNKR ENTERPRISE 
system produced by Splunk Inc. of San Francisco, Calif., to 
store and process performance data. The SPLUNKR) 
ENTERPRISE system is the leading platform for providing 
real-time operational intelligence that enables organizations 
to collect, index, and harness machine-generated data from 
various websites, applications, servers, networks, and mobile 
devices that power their businesses. The SPLUNKR) 
ENTERPRISE system is particularly useful for analyzing 
unstructured performance data, which is commonly found in 
system log files. Although many of the techniques described 
herein are explained with reference to the SPLUNKR) 
ENTERPRISE system, the techniques are also applicable to 
other types of data server systems. 
0025. In the SPLUNKR ENTERPRISE system, perfor 
mance data is stored as “events, wherein each event com 
prises a collection of performance data and/or diagnostic 
information that is generated by a computer system and is 
correlated with a specific point in time. Events can be derived 
from “time series data, wherein time series data comprises a 
sequence of data points (e.g., performance measurements 
from a computer system) that are associated with Successive 
points in time and are typically spaced at uniform time inter 
vals. Events can also be derived from "structured’ or 
“unstructured data. Structured data has a predefined format, 
wherein specific data items with specific data formats reside 
at predefined locations in the data. For example, structured 
data can include data items stored in fields in a database table. 
In contrast, unstructured data does not have a predefined 
format. This means that unstructured data can comprise vari 
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ous data items having different data types that can reside at 
different locations. For example, when the data source is an 
operating system log, an event can include one or more lines 
from the operating system log containing raw data that 
includes different types of performance and diagnostic infor 
mation associated with a specific point in time. Examples of 
data sources from which an event may be derived include, but 
are not limited to: web servers; application servers; databases; 
firewalls; routers; operating systems; and Software applica 
tions that execute on computer systems, mobile devices, and 
sensors. The data generated by Such data sources can be 
produced in various forms including, for example and with 
out limitation, server log files, activity log files, configuration 
files, messages, network packet data, performance measure 
ments and sensor measurements. An event typically includes 
a timestamp that may be derived from the raw data in the 
event, or may be determined through interpolation between 
temporally proximate events having known timestamps. 
0026. The SPLUNKR ENTERPRISE system also facili 
tates using a flexible schema to specify how to extract infor 
mation from the event data, wherein the flexible schema may 
be developed and redefined as needed. Note that a flexible 
schema may be applied to event data “on the fly, when it is 
needed (e.g., at search time), rather than at ingestion time of 
the data as in traditional database systems. Because the 
schema is not applied to event data until it is needed (e.g., at 
search time), it is referred to as a “late-binding schema.” 
0027. During operation, the SPLUNKR ENTERPRISE 
system starts with raw data, which can include unstructured 
data, machine data, performance measurements or other 
time-series data, Such as data obtained from weblogs, syslogs, 
or sensor readings. It divides this raw data into portions.” and 
optionally transforms the data to produce timestamped 
events. The system stores the timestamped events in a data 
store, and enables a user to run queries against the data store 
to retrieve events that meet specified criteria, Such as contain 
ing certain keywords or having specific values in defined 
fields. Note that the term “field’ refers to a location in the 
event data containing a value for a specific data item. 
0028. As noted above, the SPLUNKRENTERPRISE sys 
tem facilitates using a late-binding schema while performing 
queries on events. A late-binding schema specifies “extrac 
tion rules' that are applied to data in the events to extract 
values for specific fields. More specifically, the extraction 
rules for a field can include one or more instructions that 
specify how to extract a value for the field from the event data. 
An extraction rule can generally include any type of instruc 
tion for extracting values from data in events. In some cases, 
an extraction rule comprises a regular expression, in which 
case the rule is referred to as a “regex rule.” 
0029. In contrast to a conventional schema for a database 
system, a late-binding schema is not defined at data ingestion 
time. Instead, the late-binding schema can be developed on an 
ongoing basis until the time a query is actually executed. This 
means that extraction rules for the fields in a query may be 
provided in the query itself, or may be located during execu 
tion of the query. Hence, as an analyst learns more about the 
data in the events, the analyst can continue to refine the 
late-binding schema by adding new fields, deleting fields, or 
changing the field extraction rules until the next time the 
schema is used by a query. Because the SPLUNKR ENTER 
PRISE system maintains the underlying raw data and pro 
vides a late-binding schema for searching the raw data, it 



US 2016/0085578 A1 

enables an analyst to investigate questions that arise as the 
analyst learns more about the events. 
0030. In the SPLUNKR ENTERPRISE system, a field 
extractor may be configured to automatically generate extrac 
tion rules for certain fields in the events when the events are 
being created, indexed, or stored, or possibly at a later time. 
Alternatively, a user may manually define extraction rules for 
fields using a variety of techniques. 
0031. Also, a number of “default fields” that specify meta 
data about the events rather than data in the events themselves 
can be created automatically. For example, such default fields 
can specify: a timestamp for the event data; a host from which 
the event data originated; a source of the event data; and a 
source type for the event data. These default fields may be 
determined automatically when the events are created, 
indexed or stored. 
0032. In some embodiments, a common field name may be 
used to reference two or more fields containing equivalent 
data items, even though the fields may be associated with 
different types of events that possibly have different data 
formats and different extraction rules. By enabling a common 
field name to be used to identify equivalent fields from dif 
ferent types of events generated by different data sources, the 
system facilitates use of a “common information model 
(CIM) across the different data sources. 

1.2 Data Server System 
0033 FIG. 1 presents a block diagram of an exemplary 
event-processing system 100, similar to the SPLUNKR) 
ENTERPRISE system. System 100 includes one or more 
forwarders 101 that collect data obtained from a variety of 
different data sources 105, and one or more indexers 102 that 
store, process, and/or perform operations on this data, 
wherein each indexer operates on data contained in a specific 
data store 103. These forwarders and indexers can comprise 
separate computer systems in a data center, or may alterna 
tively comprise separate processes executing on various com 
puter systems in a data center. 
0034. During operation, the forwarders 101 identify 
which indexers 102 will receive the collected data and then 
forward the data to the identified indexers. Forwarders 101 
can also perform operations to strip out extraneous data and 
detect timestamps in the data. The forwarders next determine 
which indexers 102 will receive each data item and then 
forward the data items to the determined indexers 102. 
0035. Note that distributing data across different indexers 
facilitates parallel processing. This parallel processing can 
take place at data ingestion time, because multiple indexers 
can process the incoming data in parallel. The parallel pro 
cessing can also take place at search time, because multiple 
indexers can search through the data in parallel. 
0036) System 100 and the processes described below with 
respect to FIGS. 1-5 are further described in “Exploring 
Splunk Search Processing Language (SPL) Primer and Cook 
book” by David Carasso, UM Research, 2012, and in "Opti 
mizing Data Analysis With a Semi-Structured Time Series 
Database' by Ledion Bitincka, Archana Ganapathi, Stephen 
Sorkin, and Steve Zhang, SLAML, 2010, each of which is 
hereby incorporated herein by reference in its entirety for all 
purposes. 

1.3 Data Ingestion 
0037 FIG. 2 presents a flow chart illustrating how an 
indexer processes, indexes, and stores data received from 
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forwarders inaccordance with the disclosed embodiments. At 
block 201, the indexer receives the data from the forwarder. 
Next, at block 202, the indexer apportions the data into events. 
Note that the data can include lines of text that are separated 
by carriage returns or line breaks and an event may include 
one or more of these lines. During the apportioning process, 
the indexer can use heuristic rules to automatically determine 
the boundaries of the events, which for example coincide with 
line boundaries. These heuristic rules may be determined 
based on the source of the data, wherein the indexer can be 
explicitly informed about the source of the data or can infer 
the source of the data by examining the data. These heuristic 
rules can include regular expression-based rules or delimiter 
based rules for determining event boundaries, wherein the 
event boundaries may be indicated by predefined characters 
or character strings. These predefined characters may include 
punctuation marks or other special characters including, for 
example, carriage returns, tabs, spaces or line breaks. In some 
cases, a user can fine-tune or configure the rules that the 
indexers use to determine event boundaries in order to adapt 
the rules to the user's specific requirements. 
0038 Next, the indexer determines a timestamp for each 
event at block 203. As mentioned above, these timestamps 
can be determined by extracting the time directly from data in 
the event, or by interpolating the time based on timestamps 
from temporally proximate events. In some cases, a times 
tamp can be determined based on the time the data was 
received or generated. The indexer Subsequently associates 
the determined timestamp with each event at block 204, for 
example by storing the timestamp as metadata for each event. 
0039. Then, the system can apply transformations to data 
to be included in events at block 205. For log data, such 
transformations can include removing a portion of an event 
(e.g., a portion used to define event boundaries, extraneous 
text, characters, etc.) or removing redundant portions of an 
event. Note that a user can specify portions to be removed 
using a regular expression or any other possible technique. 
0040. Next, a keyword index can optionally be generated 
to facilitate fast keyword searching for events. To build a 
keyword index, the indexer first identifies a set of keywords in 
block 206. Then, at block 207 the indexer includes the iden 
tified keywords in an index, which associates each stored 
keyword with references to events containing that keyword 
(or to locations within events where that keyword is located). 
When an indexer subsequently receives a keyword-based 
query, the indexer can access the keyword index to quickly 
identify events containing the keyword. 
0041. In some embodiments, the keyword index may 
include entries for name-value pairs found in events, wherein 
a name-value pair can include a pair of keywords connected 
by a symbol. Such as an equals sign or colon. In this way, 
events containing these name-value pairs can be quickly 
located. In some embodiments, fields can automatically be 
generated for some or all of the name-value pairs at the time 
of indexing. For example, if the string “dest=10.0.1.2 is 
found in an event, a field named “dest may be created for the 
event, and assigned a value of “10.0.1.2.” 
0042 Finally, the indexer stores the events in a data store 
at block 208, wherein a timestamp can be stored with each 
event to facilitate searching for events based on a time range. 
In some cases, the stored events are organized into a plurality 
ofbuckets, wherein eachbucket stores events associated with 
a specific time range. This not only improves time-based 
searches, but it also allows events with recent timestamps that 
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may have a higher likelihood of being accessed to be stored in 
faster memory to facilitate faster retrieval. For example, a 
bucket containing the most recent events can be stored as flash 
memory instead of on hard disk. 
0043. Each indexer 102 is responsible for storing and 
searching a Subset of the events contained in a corresponding 
data store 103. By distributing events among the indexers and 
data stores, the indexers can analyze events for a query in 
parallel, for example using map-reduce techniques, wherein 
each indexer returns partial responses for a Subset of events to 
a search head that combines the results to produce an answer 
for the query. By storing events in buckets for specific time 
ranges, an indexer may further optimize searching by looking 
only in buckets for time ranges that are relevant to a query. 
0044) Moreover, events and buckets can also be replicated 
across different indexers and data stores to facilitate high 
availability and disaster recovery as is described in U.S. 
patent application Ser. No. 14/266,812 filed on 30 Apr. 2014, 
and in U.S. application patent Ser. No. 14/266,817 also filed 
on 30 Apr. 2014. 

1.4 Query Processing 

0045 FIG.3 presents a flow chart illustrating how a search 
head and indexers perform a search query in accordance with 
the disclosed embodiments. At the start of this process, a 
search head receives a search query from a client at block 301. 
Next, at block 302, the search head analyzes the search query 
to determine what portions can be delegated to indexers and 
what portions need to be executed locally by the search head. 
At block 303, the search head distributes the determined 
portions of the query to the indexers. Note that commands that 
operate on single events can be trivially delegated to the 
indexers, while commands that involve events from multiple 
indexers are harder to delegate. 
0046. Then, at block 304, the indexers to which the query 
was distributed search their data stores for events that are 
responsive to the query. To determine which events are 
responsive to the query, the indexer searches for events that 
match the criteria specified in the query. This criteria can 
include matching keywords or specific values for certain 
fields. In a query that uses a late-binding schema, the search 
ing operations in block 304 may involve using the late-bind 
ing scheme to extract values for specified fields from events at 
the time the query is processed. Next, the indexers can either 
send the relevant events back to the search head, or use the 
events to calculate a partial result, and send the partial result 
back to the search head. 
0047 Finally, at block 305, the search head combines the 
partial results and/or events received from the indexers to 
produce a final result for the query. This final result can 
comprise different types of data depending upon what the 
query is asking for. For example, the final results can include 
a listing of matching events returned by the query, or some 
type of visualization of data from the returned events. In 
another example, the final result can include one or more 
calculated values derived from the matching events. 
0048 Moreover, the results generated by system 100 can 
be returned to a client using different techniques. For 
example, one technique streams results back to a client in 
real-time as they are identified. Another technique waits to 
report results to the client until a complete set of results is 
ready to return to the client. Yet another technique streams 
interim results back to the client in real-time until a complete 
set of results is ready, and then returns the complete set of 
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results to the client. In another technique, certain results are 
stored as “search jobs. and the client may Subsequently 
retrieve the results by referencing the search jobs. 
0049. The search head can also perform various opera 
tions to make the search more efficient. For example, before 
the search head starts executing a query, the search head can 
determine a time range for the query and a set of common 
keywords that all matching events must include. Next, the 
search head can use these parameters to query the indexers to 
obtain a Superset of the eventual results. Then, during a fil 
tering stage, the search head can perform field-extraction 
operations on the Superset to produce a reduced set of search 
results. 

1.5 Field Extraction 

0050 FIG. 4 presents a block diagram illustrating how 
fields can be extracted during query processing in accordance 
with the disclosed embodiments. At the start of this process, 
a search query 402 is received at a query processor 404. Query 
processor 404 includes various mechanisms for processing a 
query, wherein these mechanisms can reside in a search head 
104 and/or an indexer 102. Note that the exemplary search 
query 402 illustrated in FIG. 4 is expressed in the Search 
Processing Language (SPL), which is used in conjunction 
with the SPLUNKR ENTERPRISE system. SPL is a pipe 
lined search language in which a set of inputs is operated on 
by a first command in a command line, and then a Subsequent 
command following the pipe symbol “I” operates on the 
results produced by the first command, and so on for addi 
tional commands. Search query 402 can also be expressed in 
other query languages. Such as the Structured Query Lan 
guage (SQL) or any suitable query language. 
0051. Upon receiving search query 402, query processor 
404 sees that search query 402 includes two fields “IP and 
“target.' Query processor 404 also determines that the values 
for the “IP” and “target” fields have not already been 
extracted from events in data store 414, and consequently 
determines that query processor 404 needs to use extraction 
rules to extract values for the fields. Hence, query processor 
404 performs a lookup for the extraction rules in a rule base 
406, wherein rule base 406 maps field names to correspond 
ing extraction rules and obtains extraction rules 408-409, 
wherein extraction rule 408 specifies how to extract a value 
for the “IP field from an event, and extraction rule 409 
specifies how to extract a value for the “target field from an 
event. As is illustrated in FIG. 4, extraction rules 408-409 can 
comprise regular expressions that specify how to extract val 
ues for the relevant fields. Such regular-expression-based 
extraction rules are also referred to as “regex rules. In addi 
tion to specifying how to extract field values, the extraction 
rules may also include instructions for deriving a field value 
by performing a function on a character string or value 
retrieved by the extraction rule. For example, a transforma 
tion rule may truncate a character String, or convert the char 
acter string into a different data format. In some cases, the 
query itself can specify one or more extraction rules. 
0.052 Next, query processor 404 sends extraction rules 
408-409 to a field extractor 412, which applies extraction 
rules 408-409 to events 416-418 in a data store 414. Note that 
data store 414 can include one or more data stores, and extrac 
tion rules 408-409 can be applied to large numbers of events 
in data store 414, and are not meant to be limited to the three 
events 416-418 illustrated in FIG. 4. Moreover, the query 
processor 404 can instruct field extractor 412 to apply the 
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extraction rules to all the events in a data store 414, or to a 
subset of the events that has been filtered based on some 
criteria. 
0053 Next, field extractor 412 applies extraction rule 408 
for the first command “Search IP="10 to events in data 
store 414 including events 416-418. Extraction rule 408 is 
used to extract values for the IP address field from events in 
data store 414 by looking for a pattern of one or more digits, 
followed by a period, followed again by one or more digits, 
followed by another period, followed again by one or more 
digits, followed by another period, and followed again by one 
or more digits. Next, field extractor 412 returns field values 
420 to query processor 404, which uses the criterion 
IP="10 to look for IP addresses that start with “10. Note 
that events 416 and 417 match this criterion, but event 418 
does not, so the result set for the first command is events 
416-417. 
0054 Query processor 404 then sends events 416-417 to 
the next command 'stats count target. To process this com 
mand, query processor 404 causes field extractor 412 to apply 
extraction rule 409 to events 416-417. Extraction rule 409 is 
used to extract values for the target field for events 416-417 by 
skipping the first four commas in events 416–417, and then 
extracting all of the following characters until a comma or 
period is reached. Next, field extractor 412 returns field val 
ues 421 to query processor 404, which executes the command 
“stats count target to count the number of unique values 
contained in the target fields, which in this example produces 
the value '2' that is returned as a final result 422 for the query. 
0055. Note that query results can be returned to a client, a 
search head, or any other system component for further pro 
cessing. In general, query results may include: a set of one or 
more events; a set of one or more values obtained from the 
events; a Subset of the values; statistics calculated based on 
the values; a report containing the values; or a visualization, 
Such as a graph or chart, generated from the values. 

1.6 Exemplary Search Screen 
0056 FIG. 6A illustrates an exemplary search screen 600 
in accordance with the disclosed embodiments. Search screen 
600 includes a search bar 602 that accepts user input in the 
form of a search string. It also includes a time range picker 
612 that enables the user to specify a time range for the search. 
For “historical searches' the user can select a specific time 
range, or alternatively a relative time range. Such as “today.” 
“yesterday” or “last week. For “real-time searches, the user 
can select the size of a preceding time window to search for 
real-time events. Search screen 600 also initially displays a 
“data summary' dialog as is illustrated in FIG. 6B that 
enables the user to select different sources for the event data, 
for example by selecting specific hosts and log files. 
0057. After the search is executed, the search screen 600 
can display the results through search results tabs 604, 
wherein search results tabs 604 includes: an “events tab' that 
displays various information about events returned by the 
search; a “statistics tab that displays statistics about the 
search results; and a “visualization tab' that displays various 
visualizations of the search results. The events tab illustrated 
in FIG. 6A displays a timeline graph 605 that graphically 
illustrates the number of events that occurred in one-hour 
intervals over the selected time range. It also displays an 
events list 608 that enables a user to view the raw data in each 
of the returned events. It additionally displays a fields sidebar 
606 that includes statistics about occurrences of specific 
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fields in the returned events, including “selected fields' that 
are pre-selected by the user, and “interesting fields” that are 
automatically selected by the system based on pre-specified 
criteria. 

1.7 Acceleration Techniques 

0058. The above-described system provides significant 
flexibility by enabling a user to analyze massive quantities of 
minimally processed performance data “on the fly at search 
time instead of storing pre-specified portions of the perfor 
mance data in a database at ingestion time. This flexibility 
enables a user to see correlations in the performance data and 
perform Subsequent queries to examine interesting aspects of 
the performance data that may not have been apparent at 
ingestion time. 
0059. However, performing extraction and analysis opera 
tions at search time can involve a large amount of data and 
require a large number of computational operations, which 
can cause considerable delays while processing the queries. 
Fortunately, a number of acceleration techniques have been 
developed to speed up analysis operations performed at 
search time. These techniques include: (1) performing search 
operations in parallel by formulating a search as a map 
reduce computation; (2) using a keyword index; (3) using a 
high performance analytics store; and (4) accelerating the 
process of generating reports. These techniques are described 
in more detail below. 

1.7.1 Map-Reduce Technique 

0060. To facilitate faster query processing, a query can be 
structured as a map-reduce computation, wherein the 'map' 
operations are delegated to the indexers, while the corre 
sponding “reduce' operations are performed locally at the 
search head. For example, FIG. 5 illustrates how a search 
query 501 received from a client at search head 104 can split 
into two phases, including: (1) a “map phase' comprising 
subtasks 502 (e.g., data retrieval or simple filtering) that may 
be performed in parallel and are “mapped to indexers 102 for 
execution, and (2) a “reduce phase' comprising a merging 
operation 503 to be executed by the search head when the 
results are ultimately collected from the indexers. 
0061 During operation, upon receiving search query 501, 
search head 104 modifies search query 501 by substituting 
“stats' with “prestats to produce search query 502, and then 
distributes search query 502 to one or more distributed index 
ers, which are also referred to as “search peers.” Note that 
search queries may generally specify search criteria or opera 
tions to be performed on events that meet the search criteria. 
Search queries may also specify field names, as well as search 
criteria for the values in the fields or operations to be per 
formed on the values in the fields. Moreover, the search head 
may distribute the full search query to the search peers as is 
illustrated in FIG. 3, or may alternatively distribute a modi 
fied version (e.g., a more restricted version) of the search 
query to the search peers. In this example, the indexers are 
responsible for producing the results and sending them to the 
search head. After the indexers return the results to the search 
head, the search head performs the merging operations 503 on 
the results. Note that by executing the computation in this 
way, the system effectively distributes the computational 
operations while minimizing data transfers. 
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1.7.2 Keyword Index 

0062. As described above with reference to the flow charts 
in FIGS. 2 and 3, event-processing system 100 can construct 
and maintain one or more keyword indices to facilitate rap 
idly identifying events containing specific keywords. This 
can greatly speed up the processing of queries involving 
specific keywords. As mentioned above, to build a keyword 
index, an indexer first identifies a set of keywords. Then, the 
indexer includes the identified keywords in an index, which 
associates each stored keyword with references to events 
containing that keyword, or to locations within events where 
that keyword is located. When an indexer subsequently 
receives a keyword-based query, the indexer can access the 
keyword index to quickly identify events containing the key 
word. 

1.7.3 High Performance Analytics Store 
0063. To speed up certain types of queries, some embodi 
ments of system 100 make use of a high performance analyt 
ics store, which is referred to as a “summarization table that 
contains entries for specific field-value pairs. Each of these 
entries keeps track of instances of a specific value in a specific 
field in the event data and includes references to events con 
taining the specific value in the specific field. For example, an 
exemplary entry in a Summarization table can keep track of 
occurrences of the value“94107 in a “ZIP code field of a set 
of events, wherein the entry includes references to all of the 
events that contain the value “94107 in the ZIP code field. 
This enables the system to quickly process queries that seek to 
determine how many events have a particular value for a 
particular field, because the system can examine the entry in 
the Summarization table to count instances of the specific 
value in the field without having to go through the individual 
events or do extractions at search time. Also, if the system 
needs to process all events that have a specific field-value 
combination, the system can use the references in the Sum 
marization table entry to directly access the events to extract 
further information without having to search all of the events 
to find the specific field-value combination at search time. 
0064. In some embodiments, the system maintains a sepa 
rate summarization table for each of the above-described 
time-specific buckets that stores events for a specific time 
range, wherein a bucket-specific Summarization table 
includes entries for specific field-value combinations that 
occur in events in the specific bucket. Alternatively, the sys 
tem can maintain a separate Summarization table for each 
indexer, wherein the indexer-specific Summarization table 
only includes entries for the events in a data store that is 
managed by the specific indexer. 
0065. The summarization table can be populated by run 
ning a “collection query' that scans a set of events to find 
instances of a specific field-value combination, or alterna 
tively instances of all field-value combinations for a specific 
field. A collection query can be initiated by a user, or can be 
scheduled to occur automatically at specific time intervals. A 
collection query can also be automatically launched in 
response to a query that asks for a specific field-value com 
bination. 

0066. In some cases, the summarization tables may not 
coverall of the events that are relevant to a query. In this case, 
the system can use the Summarization tables to obtain partial 
results for the events that are covered by summarization 
tables, but may also have to search through other events that 
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are not covered by the Summarization tables to produce addi 
tional results. These additional results can then be combined 
with the partial results to produce a final set of results for the 
query. This Summarization table and associated techniques 
are described in more detail in U.S. Pat. No. 8,682,925, issued 
on Mar. 25, 2014. 

1.7.4. Accelerating Report Generation 

0067. In some embodiments, a data server system such as 
the SPLUNKRENTERPRISE system can accelerate the pro 
cess of periodically generating updated reports based on 
query results. To accelerate this process, a Summarization 
engine automatically examines the query to determine 
whether generation of updated reports can be accelerated by 
creating intermediate Summaries. (This is possible if results 
from preceding time periods can be computed separately and 
combined to generate an updated report. In some cases, it is 
not possible to combine Such incremental results, for example 
where a value in the report depends on relationships between 
events from different time periods.) If reports can be acceler 
ated, the Summarization engine periodically generates a Sum 
mary covering data obtained during a latest non-overlapping 
time period. For example, where the query seeks events meet 
ing a specified criteria, a Summary for the time period 
includes only events within the time period that meet the 
specified criteria. Similarly, if the query seeks statistics cal 
culated from the events, such as the number of events that 
match the specified criteria, then the summary for the time 
period includes the number of events in the period that match 
the specified criteria. 
0068. In parallel with the creation of the summaries, the 
Summarization engine schedules the periodic updating of the 
report associated with the query. During each Scheduled 
report update, the query engine determines whether interme 
diate Summaries have been generated covering portions of the 
time period covered by the report update. If so, then the report 
is generated based on the information contained in the Sum 
maries. Also, if additional event data has been received and 
has not yet been Summarized, and is required to generate the 
complete report, the query can be run on this additional event 
data. Then, the results returned by this query on the additional 
event data, along with the partial results obtained from the 
intermediate Summaries, can be combined to generate the 
updated report. This process is repeated each time the report 
is updated. Alternatively, if the system stores events in buck 
ets covering specific time ranges, then the Summaries can be 
generated on a bucket-by-bucket basis. Note that producing 
intermediate Summaries can save the work involved in re 
running the query for previous time periods, so only the newer 
event data needs to be processed while generating an updated 
report. These report acceleration techniques are described in 
more detail in U.S. Pat. No. 8,589,403, issued on Nov. 19, 
2013, and U.S. Pat. No. 8,412,696, issued on Apr. 2, 2011. 

System for Collecting Hypervisor Data and Operating 
System Data for a VM 

0069 FIG. 7 illustrates how hypervisor data and associ 
ated operating system data are collected for a number of 
virtual machines in accordance with the disclosed embodi 
ments. In particular, FIG. 7 illustrates a number of physical 
host systems 702, 712 and 722 containing hypervisors and 
associated virtual machines. Each host system 702, 712 and 
722 can comprise a multi-core processor that includes a num 
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ber of simultaneously executing processor cores (e.g., 64 
processor cores). Moreover, each host system executes a 
hypervisor, which is responsible for instantiating and execut 
ing virtual machines, wherein a hypervisor allows a virtual 
machine to execute applications as if the virtual machine were 
actually a physical host machine. In particular, host system 
702 executes a hypervisor 704 that executes a set of virtual 
machines 706, host system 712 executes a hypervisor 714 that 
executes a set of virtual machines 716, and host system 722 
executes a hypervisor 724 that executes a set of virtual 
machines 726. 

0070. Note that all of these virtual machines 706, 716 and 
726 and associated hypervisors 704, 714 and 724 operate 
under control of a management server, which is referred to as 
a “virtual center” 730. Virtual center 730 performs operations 
to facilitate centralized management, operational automa 
tion, resource optimizations and high availability for the Vir 
tual machines 706, 716 and 726, which execute on hypervi 
sors 704, 714 and 724. Virtual center 730 additionally obtains 
performance-related data from hypervisors 704, 714 and 724. 
This performance-related data is sent to a forwarder 101, 
which forwards the performance-related data to an indexer 
102, wherein indexer 102 stores the data in data store 103. In 
some embodiments, forwarder 101 obtains this performance 
related data by making calls through an application program 
ming interface (API) provided by virtual center 730. 
0071. The performance-related data obtained from hyper 
visors 704, 714 and 724 is referred to as “hypervisor data” 
732. For example, hypervisor data 732 can include, but is not 
limited to: resource utilization parameters for virtual 
machines; resource utilization parameters for physical hosts; 
performance metrics for virtual machines; and performance 
metrics for physical hosts. 
0072 The system also obtains performance-related data 
from operating systems within the virtual machines. To illus 
trate how this performance-related data is gathered, the inter 
nal structure for a specific virtual machine 742 is illustrated in 
FIG. 7. The specific virtual machine 742 includes an operat 
ing system 743, which is responsible for managing the execu 
tion of various applications and processes 746. For example, 
operating system 743 can include the LinuxTM operating sys 
tem. A special forwarder 744 is installed on operating system 
743 to forward performance-related data to indexer 102. 
0073. This performance-related data obtained from inside 
virtual machine operating systems is referred to as "operating 
system” (OS) data 748. For example, OS data 748 can 
include, but is not limited to: resource utilization parameters 
for virtual processes running inside the virtual machines; 
performance metrics for the virtual processes; identifiers for 
owners associated with the virtual processes; and perfor 
mance data obtained from the set of operating systems and log 
data from operating system logs maintained by the set of 
operating systems. Note that this log data can include data 
from: underlying system logs; security logs for authentica 
tion; configuration change logs; and Internet information ser 
vices (IIS) logs. 
0.074. It can also be useful to know which owners are 
associated with specific virtual processes. For example, an 
owner of a process that executes inside a virtual machine is 
typically an administrator or a service owner. Hence, when 
the system determines that a standard user, who is not an 
administrator or a service owner, is running a process on a 
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virtual machine, the system can determine that this circum 
stance is a security exception and can deal with the process 
accordingly. 
0075 Another piece of software, which is referred to as a 
technology add-on (TA) 745, is installed over special for 
warder 744. TA 745 specifies how to collect OS data 748, 
including specifying the sources of the OS data and the fre 
quency of collection. For example, OS data can be collected 
from various operating system logs, such as an event, log a 
security log, or an event-scheduling "cron' log. The OS data 
can also be collected from internal operating system kernel 
data structures to obtain information about the performance 
of specific virtual processes. TA 745 directs the collected OS 
data to special forwarder 744, and special forwarder 744 in 
turn forwards OS data 748 to indexer 102. 

Correlating Hypervisor Data and OS Data for a VM 

0076 FIG. 8 presents a flow chart illustrating how hyper 
visor data and operating system data are correlated for a 
virtual machine in accordance with the disclosed embodi 
ments. During operation, the system obtains hypervisor data 
for a set of virtual machines, wherein the hypervisor data was 
received from one or more hypervisors while the set of virtual 
machines was running on the hypervisors (step 802). The 
system also obtains operating system data for the set of virtual 
machines, wherein the operating system data was received 
from a set of operating systems while the set of operating 
systems was running on the set of virtual machines (step 804). 
0077 Next, the system correlates the hypervisor data for a 
virtual machine with corresponding operating system data for 
the virtual machine (step 806). For example, the system can 
match hypervisor data for a virtual machine with correspond 
ing operating system data for the same virtual machine by 
identifying the data with reference to a medium-access con 
trol (MAC) address associated with the virtual machine. 
0078. Note that a MAC address can serve as a unique 
identifier for the virtual machine. Hence, if a MAC address is 
stored along with the performance data by the hypervisor and 
also by the operating system, the MAC address can Subse 
quently be used to identify the virtual machine that generated 
the performance data. This enables the system to correlate 
hypervisor and operating system performance data for the 
virtual machine. For example, Suppose the system retrieves 
an event containing memory-utilization performance data 
from the hypervisor, wherein the event includes a MAC 
address for the virtual machine. Additionally, Suppose the 
system retrieves anotherevent containing memory-utilization 
performance data from an operating system in the same Vir 
tual machine, wherein the event also includes the MAC 
address for the virtual machine. In this example, the system 
can match the events based on the MAC address for the virtual 
machine, and can display the corresponding data from the 
hypervisor and from the operating system together in a single 
display for the virtual machine as is described in more detail 
below with reference to FIG. 9. Note that this type of corre 
lation can be performed automatically or manually. 
007.9 The system can additionally use other types of infor 
mation to identify a virtual machine that generated the data, 
such as (1) one or more IP addresses for the virtual machine, 
and (2) a host name identifying a physical host on which the 
virtual machine executes. Also, note that to uniquely identify 
a host, the system can use one or more MAC addresses, plus 
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one or more IP addresses. (Because a MAC address is unique 
on a network, it is also unique within a hypervisor and hence 
can be used for correlation.) 
0080 Next, the system presents the correlated hypervisor 
data and operating system data for the virtual machine to a 
user (step 808). For example, the system can present the 
hypervisor and operating system data together in a single 
view to enable the user to understand relationships between 
the hypervisor data and operating system data. In another 
example, the system facilitates executing a single query, 
which is specified in a query language, wherein the single 
query operates on both the hypervisor data and the operating 
system data for the set of virtual machines to generate a query 
result. In yet another example, the system can use the hyper 
visor data and the operating system data to establish a base 
line to facilitate Subsequently determining when the system 
undergoes a noteworthy change. 
0081. The information that is presented in this way can be 
quite useful. For example, the information can enable an 
administrator to determine whether an application is using 
more memory than it has been allocated, and to make a 
decision about whether the memory allocation needs to be 
increased for this application. In another example, the admin 
istrator can determine that a process is a "rogue process” that 
should not be running on a virtual machine, and can take steps 
to shut down the rogue process. 
0082 In some embodiments, the system additionally com 
putes differences between performance metrics in the hyper 
visor data and corresponding performance metrics in the 
operating system data (step 810), and the system presents the 
computed differences to the user(step 812). Note that inform 
ing the user about a significant difference between a perfor 
mance metric that appears in the hypervisordata and the same 
performance metric that appears in the operating system data 
makes the user aware of an uncertainty in measuring the 
performance metrics, and thereby enables the user to look for 
a cause of the discrepancy. A number of factors can cause this 
type of discrepancy, including the overhead involved in run 
ning the operating system on the virtual machine, and the 
overhead involved in running the virtual machine itself on the 
hypervisor. 
Displaying Hypervisor Data with Operating System Data 
0083 FIG. 9 presents a user interface that simultaneously 
displays hypervisor data and operating system data for a 
specific virtual machine in accordance with the disclosed 
embodiments. More specifically, the exemplary user inter 
face illustrated in FIG.9 includes a display 900 that is divided 
into three sections. The top section 902 presents performance 
information for a number of virtual processes 903-907 in the 
virtual machine, wherein each virtual process is represented 
with sparklines for central processing unit utilization (labeled 
as “CPU”) and memory utilization (labeled as “MEM). The 
CPU sparkline for a virtual process represents a percentage 
utilization of the virtual machine's virtual CPU by the virtual 
process. A value of 50% indicates that the virtual process is 
using 50% of the virtual CPU, which means that the other 
virtual processes must share the remaining 50% of the virtual 
CPU. Similarly, the MEM sparkline for a virtual process 
represents a percentage utilization of the virtual machine's 
memory by the virtual process. It is useful for an administra 
torto be able to determine which specific virtual processes are 
consuming a significant amount of processor or memory 
SOUCS. 
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I0084. The middle section of display 900 presents a 
memory utilization graph910, which includes a solid line912 
representing memory utilization for the entire virtual 
machine as a percentage of the total memory that has been 
allocated to the virtual machine. Note that line 912 is con 
structed from information obtained from hypervisor data 732. 
Memory utilization graph910 also includes a dashed line 914 
representing memory utilization for a selected process as a 
percentage of the total memory that has been allocated to the 
virtual machine. Note that dashed line 914 is constructed 
from information obtained from OS data 748. 
I0085. The bottom section of display 900 presents a CPU 
utilization graph920, which includes a solid line 922 repre 
senting CPU utilization for the entire virtual machine as a 
percentage of the total CPU capacity that has been allocated 
to the virtual machine. This solid line 922 is constructed from 
information obtained from hypervisor data 732. CPU utiliza 
tion graph 920 also includes a dashed line 924 representing 
CPU utilization for a selected process as a percentage of the 
total CPU capacity that has been allocated to the virtual 
machine. Note that dashed line 924 is constructed from infor 
mation obtained from OS data 748. 
I0086. When a user selects one of processes 903-907 
within top section 902, the system displays the corresponding 
memory utilization and CPU utilization information for the 
selected process in the graphs that appear in the middle sec 
tion 910 and bottom section 920 of display 900. This enables 
the user to determine, for example, whether an increase in 
CPU utilization for the virtual machine can be attributed to an 
increase in CPU utilization for a specific process. The user 
can also double-click on one of the processes in top section 
902 to expose other types of operating-system-level informa 
tion for the process. 
I0087. The display illustrated in FIG. 9 is merely an 
example of a type of display that can be used to present both 
hypervisor data and operating system data for a virtual 
machine at the same time. In general, many different types of 
user interface can be used. For example, the system can pro 
vide a workflow that lets a user drill down from the perspec 
tive of the specific applications and processes into virtual 
machines associated with the specific applications and pro 
cesses, as opposed to drilling down starting from a virtual 
machine hierarchy. This enables an administrator to more 
easily investigate the root cause of performance problems for 
specific applications and processes. 
I0088. The preceding description was presented to enable 
any person skilled in the art to make and use the disclosed 
embodiments, and is provided in the context of a particular 
application and its requirements. Various modifications to the 
disclosed embodiments will be readily apparent to those 
skilled in the art, and the general principles defined herein 
may be applied to other embodiments and applications with 
out departing from the spirit and scope of the disclosed 
embodiments. Thus, the disclosed embodiments are not lim 
ited to the embodiments shown, but are to be accorded the 
widest scope consistent with the principles and features dis 
closed herein. Accordingly, many modifications and varia 
tions will be apparent to practitioners skilled in the art. Addi 
tionally, the above disclosure is not intended to limit the 
present description. The scope of the present description is 
defined by the appended claims. 
0089. The data structures and code described in this 
detailed description are typically stored on a computer-read 
able storage medium, which may be any device or medium 
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that can store code and/or data for use by a system. The 
computer-readable storage medium includes, but is not lim 
ited to, Volatile memory, non-volatile memory, magnetic and 
optical storage devices such as disk drives, magnetic tape, 
CDs (compact discs), DVDs (digital versatile discs or digital 
Video discs), or other media capable of storing code and/or 
data now known or later developed. 
0090 The methods and processes described in the detailed 
description section can be embodied as code and/or data, 
which can be stored on a non-transitory computer-readable 
storage medium as described above. When a system reads and 
executes the code and/or data stored on the non-transitory 
computer-readable storage medium, the system performs the 
methods and processes embodied as data structures and code 
and stored within the non-transitory computer-readable Stor 
age medium. 
0091. Furthermore, the methods and processes described 
above can be included inhardware modules. For example, the 
hardware modules can include, but are not limited to, appli 
cation-specific integrated circuit (ASIC) chips, field-pro 
grammable gate arrays (FPGAs), and other programmable 
logic devices now known or later developed. When the 
hardware modules are activated, the hardware modules per 
form the methods and processes included within the hardware 
modules. 
What is claimed is: 
1. A computer-implemented method for analyzing perfor 

mance for virtual machines, the method comprising: 
obtaining hypervisor data for a set of virtual machines at a 

computer system, wherein the hypervisor data was 
received from one or more hypervisors while the set of 
virtual machines was running on the one or more hyper 
visors; 

obtaining operating system data for the set of virtual 
machines at the computer system, wherein the operating 
system data was received from a set of operating systems 
while the set of operating systems was running on the set 
of virtual machines; 

correlating, at the computer system, the hypervisor data for 
a virtual machine in the set of virtual machines with 
corresponding operating system data for the virtual 
machine; and 

presenting an output associated with the correlated hyper 
visor and operating system data for the virtual machine 
to a user through a user-interface on a display system, 
wherein the display system can comprise the computer 
system. 

2. The computer-implemented method of claim 1, wherein 
presenting the output associated with the correlated hypervi 
sor and operating system data to the user includes sending an 
alert to the user if the correlated hypervisor and operating 
system data satisfies an alert-generation criterion. 

3. The computer-implemented method of claim 1, wherein 
presenting the output associated with the correlated hypervi 
sor and operating system data to the user includes displaying 
both the hypervisor data and the operating system data 
together in a graph. 

4. The computer-implemented method of claim 1, wherein 
presenting the output associated with the correlated hypervi 
Sor data and operating system data to the user includes: 

computing differences between values for performance 
metrics in the hypervisor data and corresponding values 
for performance metrics in the operating system data; 
and 

presenting the computed differences to the user. 
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5. The computer-implemented method of claim 1, wherein 
obtaining the operating system data includes: 

retrieving one or more events from a data store, wherein the 
retrieved events were generated by an operating system 
for the virtual machine, and contain MAC addresses that 
match a corresponding MAC address for the virtual 
machine; and 

using a late-binding schema to extract values from the 
retrieved events including values for one or more per 
formance metrics for the virtual machine. 

6. The computer-implemented method of claim 1, wherein 
correlating the hypervisor data and operating system data 
includes matching hypervisor data and operating system data 
for the virtual machine based on one or more of: 

a MAC address for the virtual machine; 
one or more IP addresses for the virtual machine; and 
a host name identifying a physical host on which the virtual 

machine executes. 
7. The computer-implemented method of claim 1, wherein 

the operating system data includes: 
resource utilization parameters for virtual processes run 

ning inside the virtual machines; 
performance metrics for the virtual processes; 
identifiers for owners associated with the virtual processes; 
log data from operating system logs maintained by the set 

of operating systems; and 
performance data obtained from the set of operating sys 

temS. 

8. The computer-implemented method of claim 1, wherein 
the hypervisor data includes: 

resource utilization parameters for virtual machines; 
resource utilization parameters for physical hosts; 
performance metrics for virtual machines; and 
performance metrics for physical hosts. 
9. The computer-implemented method of claim 1, wherein 

obtaining the hypervisor data and the operating system data 
includes retrieving the hypervisor data and the operating sys 
tem data from a single data store that contains both the hyper 
visor data and the operating system data. 

10. The computer-implemented method of claim 1, 
wherein presenting the correlated hypervisor and operating 
system data to the user includes presenting the hypervisor 
data and operating system data together in a single view. 

11. The computer-implemented method of claim 1, 
wherein the method further comprises executing a single 
query that operates on both the hypervisor data and the oper 
ating system data for the set of virtual machines. 

12. A non-transitory computer-readable storage medium 
storing instructions that when executed by a computer cause 
the computer to perform a method for analyzing performance 
for virtual machines, the method comprising: 

obtaining hypervisor data for a set of virtual machines, 
wherein the hypervisor data was received from one or 
more hypervisors while the set of virtual machines was 
running on the one or more hypervisors; 

obtaining operating system data for the set of virtual 
machines, wherein the operating system data was 
received from a set of operating systems while the set of 
operating systems was running on the set of virtual 
machines; 

correlating the hypervisor data for a virtual machine in the 
set of virtual machines with corresponding operating 
system data for the virtual machine; and 
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presenting an output associated with the correlated hyper 
visor and operating system data for the virtual machine 
to a user. 

13. The non-transitory computer-readable storage medium 
of claim 12, wherein presenting the output associated with the 
correlated hypervisor and operating system data to the user 
includes sending an alert to the user if the correlated virtual 
machine data and operating system data satisfies an alert 
generation criterion. 

14. The non-transitory computer-readable storage medium 
of claim 12, wherein presenting the output associated with the 
correlated hypervisor and operating system data to the user 
includes displaying both the hypervisor data and the operat 
ing system data together in a graph. 

15. The non-transitory computer-readable storage medium 
of claim 12, wherein presenting the output associated with the 
correlated hypervisor and operating system data to the user 
includes: 

computing differences between values for performance 
metrics in the hypervisor data and corresponding values 
for performance metrics in the operating system data; 
and 

presenting the computed differences to the user. 
16. The non-transitory computer-readable storage medium 

of claim 12, wherein obtaining the operating system data 
includes: 

retrieving one or more events from a data store, wherein the 
retrieved events were generated by an operating system 
for the virtual machine, and contain MAC addresses that 
match a corresponding MAC address for the virtual 
machine; and 

using a late-binding schema to extract values from the 
retrieved events including values for one or more per 
formance metrics for the virtual machine. 

17. The non-transitory computer-readable storage medium 
of claim 12, wherein correlating the hypervisor data and 
operating system data includes matching hypervisor data and 
operating system data for the virtual machine based on one or 
more of: 

a MAC address for the virtual machine; 
one or more IP addresses for the virtual machine; and 
a host name identifying a physical host on which the virtual 

machine executes. 
18. The non-transitory computer-readable storage medium 

of claim 12, wherein the operating system data includes: 
resource utilization parameters for virtual processes run 

ning inside the virtual machines; 
performance metrics for the virtual processes; 
identifiers for owners associated with the virtual processes; 
log data from operating system logs maintained by the set 

of operating systems; and 
performance data obtained from the set of operating sys 

temS. 

19. The non-transitory computer-readable storage medium 
of claim 12, wherein the hypervisor data includes: 

resource utilization parameters for virtual machines; 
resource utilization parameters for physical hosts; 
performance metrics for virtual machines; and 
performance metrics for physical hosts. 
20. The non-transitory computer-readable storage medium 

of claim 12, wherein obtaining the hypervisor data and the 
operating system data includes retrieving the hypervisor data 
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and the operating system data from a single data store that 
contains both the hypervisor data and the operating system 
data. 

21. The non-transitory computer-readable storage medium 
of claim 12, wherein presenting the correlated hypervisor and 
operating system data to the user includes presenting the 
hypervisor data and operating system data togetherina single 
view. 

22. The non-transitory computer-readable storage medium 
of claim 12, wherein the method further comprises executing 
a single query that operates on both the hypervisor data and 
the operating system data for the set of virtual machines. 

23. A system that analyzes performance for virtual 
machines, comprising: 

at least one processor and at least one associated memory; 
and 

an analysis mechanism that executes on the at least one 
processor and is configured to: 
obtain hypervisor data for a set of virtual machines, 

wherein the hypervisor data was received from one or 
more hypervisors while the set of virtual machines 
was running on the one or more hypervisors; 

obtain operating system data for the set of virtual 
machines, wherein the operating system data was 
received from a set of operating systems while the set 
of operating systems was running on the set of virtual 
machines; 

correlate the hypervisor data for a virtual machine in the 
set of virtual machines with corresponding operating 
system data for the virtual machine; and 

present an output associated with the correlated hyper 
visor data and operating system data for the virtual 
machine to a user. 

24. The system of claim 23, wherein while presenting the 
output associated with the correlated hypervisor and operat 
ing system data to the user, the analysis mechanism is further 
configured to send an alert to the user if the correlated hyper 
visor and operating system data satisfies an alert-generation 
criterion. 

25. The system of claim 23, wherein while presenting the 
output associated with the correlated hypervisor and operat 
ing system data to the user, the analysis mechanism is con 
figured to display both the hypervisor data and the operating 
system data together in a graph. 

26. The system of claim 23, wherein while presenting the 
output associated with the correlated hypervisor and operat 
ing system data to the user, the analysis mechanism is further 
configured to: 
compute differences between values for performance met 

rics in the hypervisor data and corresponding values for 
performance metrics in the operating system data; and 

present the computed differences to the user. 
27. The system of claim 23, wherein while obtaining the 

operating system data, the analysis mechanism is configured 
tO: 

retrieve one or more events from a data store, wherein the 
retrieved events were generated by an operating system 
for the virtual machine, and contain MAC addresses that 
match a corresponding MAC address for the virtual 
machine; and 

use a late-binding schema to extract values from the 
retrieved events including values for one or more per 
formance metrics for the virtual machine. 
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28. The system of claim 23, wherein while correlating the 
hypervisor data and operating system data, the analysis 
mechanism is configured to match hypervisor data and oper 
ating system data for the virtual machine based on one or 
more of: 

a MAC address for the virtual machine; 
one or more IP addresses for the virtual machine; and 
a host name identifying a physical host on which the virtual 

machine executes. 
29. The system of claim 23, wherein the operating system 

data includes: 
resource utilization parameters for virtual processes run 

ning inside the virtual machines; 
performance metrics for the virtual processes; 
identifiers for owners associated with the virtual processes; 
log data from operating system logs maintained by the set 

of operating systems; and 
performance data obtained from the set of operating sys 

temS. 
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30. The system of claim 23, wherein the hypervisor data 
includes: 

resource utilization parameters for virtual machines; 
resource utilization parameters for physical hosts; 
performance metrics for virtual machines; and 
performance metrics for physical hosts. 
31. The system of claim 23, wherein while obtaining the 

hypervisor data and the operating system data the analysis 
mechanism is configured to retrieve the hypervisor data and 
the operating system data from a single data store that con 
tains both the hypervisor data and the operating system data. 

32. The system of claim 23, wherein while presenting the 
correlated hypervisor and operating system data to the user, 
the analysis mechanism is configured to present the hypervi 
Sor data and operating system data together in a single view. 

33. The system of claim 23, wherein the analysis mecha 
nism is further configured to execute a single query that 
operates on both the hypervisor data and the operating system 
data for the set of virtual machines. 
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