US 20160085633A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2016/0085633 A1

Factor et al. 43) Pub. Date: Mar. 24, 2016
(54) AUTOMATED DATA RECOVERY FROM (52) US.CL
REMOTE DATA OBJECT REPLICAS CPC ... GO6F 11/1451 (2013.01); GO6F 17/30424
(2013.01)
(71) Applicant: International Business Machines
Corporation, Armonk, NY (US) (57) ABSTRACT
(72) Inventors: Michael E Factor, Haifa (Hf); D.avid Machines, systems and methods for recovering data objects
Hadas, Zlchrqn Yaakov (IL); Elliot K. in a distributed data storage system, the method comprising
Kolodner, Haifa (IL.) storing one or more replicas of a first data object on one or
21 Appl. No.: 14/964.050 more clusters.in one or more data centers conne?cted over a
(1) Appl-No ? data communications network; recording health information
(22) Filed: Dec. 9, 2015 about said one or more replicas, wherein the health informa-
tion comprises data about availability of a replica to partici-
Related U.S. Application Data pate in a restoration process; calculating a query-priority for
(63) Continuation of application No. 14/058,293, filed on the first data object; querying, based on the calculated query-
Oct. 21. 2013 T priority, the health information for the one or more replicas to
R ’ determine which of the one or more replicas is available for
Publication Classification restoration of the object data; calculating a restoration-prior-
ity for the first data object based on the health information for
(51) Int.ClL the one or more replicas; and restoring the first data object
GOG6F 11/14 (2006.01) from the one or more of the available replicas, based on the
GOG6F 17/30 (2006.01) calculated restoration-priority.
Store location of 210
—» replicas foradata |-
object
No
Recover object data?
Yes
v
Query dalabase‘ for |.. 8230
location of replicas
No Replica healthy?

Yes
v

Restore the object
data from the replica |~

S 8250

End

US 2016/0085633 Al

Mar. 24, 2016 Sheet 1 of 6

Patent Application Publication

Vi 'OIAd

7 Iua) vie(q

10T 191sn[D

SOT oseqeieq

610C°PON

C10CPPON

Network 210

[10T °PON

[Ju9) vle(q

101 19sn[D

SOT oseqereq

6101 °PON

CI01°PON

Network 110

ITOT 2PON

US 2016/0085633 Al

Mar. 24, 2016 Sheet 2 of 6

Patent Application Publication

a1 ‘OIAd

1001 SPON

\ N JsId

/

X 192[q0 ere(

X 190[qO B1eg

T 102lq0 vreqg

T 192[q0 vreq

1 109[qO BrR

1 109[qO e

\&
\ s

=/
/

X w2lqo ereq | [X 199[q0 B1eQ
¢ 192[qO Breq T 109lq0 vreq
/— 103[qO 1B [12[qO '1eQq

=/

-

N
4 [ys1d

/
/

X 109[q0 'R

X 192[q0O v1RQ

T 109[q0 ereC

T 9lq0 vreg

/_ 102[qO e1R(

[102[qO v1eq

=

Patent Application Publication = Mar. 24,2016 Sheet 3 of 6 US 2016/0085633 A1

Store location of 9210
replicas for a data A

object

Recover object data?

Yes

v

Query database for
location of replicas

[\ S230

Replica healthy?

Yes

v

Restore the object S250
data from the replica =

End

FIG. 2

Patent Application Publication = Mar. 24, 2016 Sheet 4 of 6 US 2016/0085633 A1

Implement recovery plan that
prioritizes the recovery of a
data object based on health

information

—._ 310

ecovery priority for
data object determineg

Yes

v

quueu

Service recovery

S320

Add recovery task to e S330

tasks according to S340
order of tasks in the =
queue
End

FIG. 3

US 2016/0085633 Al

Mar. 24, 2016 Sheet 5 of 6

Patent Application Publication

Q0BJISIU]
uonEOIUNWWO))

0011 sng

VI "OIA

SO01A(]
IEEVGRIN BIPIN ‘

Kerdsi(q o3e101S

20rJINU]
180

// vOll

Ia[[0Nu0))
O/1

JOSSAD0IJ

// €ol1 // 011 // [0L1

R QI JUSWUOIIAUY AICMPIEE]

Patent Application Publication = Mar. 24, 2016 Sheet 6 of 6 US 2016/0085633 A1

Software Environment 1120 —-\‘

Application
Software
1122

User
Interface
1124

Browser
1126

System Software 1121

Hardware Environment 1110

FIG. 4B

US 2016/0085633 Al

AUTOMATED DATA RECOVERY FROM
REMOTE DATA OBJECT REPLICAS

COPYRIGHT & TRADEMARK NOTICES

[0001] A portion of the disclosure of this patent document
may contain material, which is subject to copyright protec-
tion. The owner has no objection to the facsimile reproduction
by any one of the patent document or the patent disclosure, as
it appears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyrights whatsoever.
[0002] Certain marks referenced herein may be common
law or registered trademarks of the applicant, the assignee or
third parties affiliated or unaffiliated with the applicant or the
assignee. Use of these marks is for providing an enabling
disclosure by way of example and shall not be construed to
exclusively limit the scope of the disclosed subject matter to
material associated with such marks.

TECHNICAL FIELD

[0003] The disclosed subject matter relates generally to
data recovery from remotely stored data replicas and, more
particularly, to a system and method for dispersing and stor-
ing data across a plurality of data centers for the purpose of
data recovery.

BACKGROUND

[0004] Mass-scale data storage systems are desirable for
their sheer size and ability to process and store vast amounts
of data. Generally, these mass-scale systems are built to
include a plurality of data centers located remotely from one
another. Each data center is usually comprised of a plurality
of'independent clusters wherein each cluster has a plurality of
nodes. These nodes are coupled to each other by way of a data
network infrastructure and are ideally independent from each
other insofar as the data is stored on storage media that are
separately maintained.

[0005] The purpose for keeping the data centers at remote
sites is to mitigate the risk of damage to multiple data centers
in case of a catastrophic event (e.g., flood, earthquake, or
tornado). In the event that a data center experiences the loss of
a data object or a replica, the recovery process requires locat-
ing a surviving replica from which to replicate or restore the
lost data. Accordingly, data centers are typically built with
multiple local replicas per cluster. This feature allows a clus-
ter to self-recover from a fault using the surviving local rep-
licas.

[0006] If all local replicas are lost, the data may be recov-
ered from one or more remotely stored replicas. Such remote
recovery is currently accomplished via a manual process,
often requiring administrative assistance. Due to the size and
distribution of resources in a mass-scale data storage system,
information regarding the location and availability of replicas
across the plurality of data centers and clusters is not readily
scalable and, in turn, is unavailable to all nodes across the
plurality of data centers.

SUMMARY

[0007] For purposes of summarizing, certain aspects,
advantages, and novel features have been described herein. It
is to be understood that not all such advantages may be
achieved in accordance with any one particular embodiment.
Thus, the disclosed subject matter may be embodied or car-
ried out in a manner that achieves or optimizes one advantage

Mar. 24, 2016

or group of advantages without achieving all advantages as
may be taught or suggested herein.

[0008] Machines, systems and methods for recovering data
objects in a distributed data storage system are provided. The
method comprises storing one or more replicas of a first data
object on one or more clusters in one or more data centers
connected over a data communications network; recording
health information about said one or more replicas, wherein
the health information comprises data about availability of a
replica to participate in a restoration process; calculating a
query-priority for the first data object; querying, based on the
calculated query-priority, the health information for the one
or more replicas to determine which of the one or more
replicas is available for restoration of the object data; calcu-
lating a restoration-priority for the first data object based on
the health information for the one or more replicas; and
restoring the first data object from the one or more of the
available replicas, based on the calculated restoration-prior-
ity.

[0009] In accordance with one or more embodiments, a
system comprising one or more logic units is provided. The
one or more logic units are configured to perform the func-
tions and operations associated with the above-disclosed
methods. In yet another embodiment, a computer program
product comprising a computer readable storage medium
having a computer readable program is provided. The com-
puter readable program when executed on a computer causes
the computer to perform the functions and operations associ-
ated with the above-disclosed methods.

[0010] One or more ofthe above-disclosed embodiments in
addition to certain alternatives are provided in further detail
below with reference to the attached figures. The disclosed
subject matter is not, however, limited to any particular
embodiment disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The disclosed embodiments may be better under-
stood by referring to the figures in the attached drawings, as
provided below.

[0012] FIGS. 1A and 1B illustrate block diagrams of exem-
plary system infrastructure for storing and recovering data in
a distributed data communications network, in accordance
with one or more embodiments.

[0013] FIGS. 2 and 3 are flow diagrams illustrating exem-
plary methods for automated data recovery from remotely
stored replicas of lost data objects, in accordance with one
embodiment.

[0014] FIGS. 4A and 4B are block diagrams of hardware
and software environments in which the disclosed systems
and methods may operate, in accordance with one or more
embodiments.

[0015] Features, elements, and aspects that are referenced
by the same numerals in different figures represent the same,
equivalent, or similar features, elements, or aspects, in accor-
dance with one or more embodiments.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

[0016] In the following, numerous specific details are set
forth to provide a thorough description of various embodi-
ments. Certain embodiments may be practiced without these
specific details or with some variations in detail. In some
instances, certain features are described in less detail so as not

US 2016/0085633 Al

to obscure other aspects. The level of detail associated with
each of the elements or features should not be construed to
qualify the novelty or importance of one feature over the
others.

[0017] Referring to FIG. 1A, a computing environment is
illustrated that enables data recovery in a data storage system
that replicates copies of data objects (i.e., replicas) across
multiple data centers. As shown, a plurality of data centers
(e.g., data center 1, data center 2, etc.) may be implemented,
where a data center is comprised of one or more clusters (e.g.,
cluster 101, cluster 201, etc.). A data center may also com-
prise one or more networks (e.g., network 110, network 210,
etc.) having one or more nodes (e.g., nodes 2011, 2012, etc.).
A remote or local database (e.g., database 105, database 205,
etc.) in addition to power supplies and cooling systems (not
shown) may be also included in a data center.

[0018] Referring to FIG. 1B, a network node 1001 is illus-
trated which includes a plurality of storage media (e.g., disks
1 through N) on which multiple data objects 1 through X may
be stored. In accordance with one embodiment, a robust,
reliable and efficient data recovery system is implemented in
which the overall number of data object replicas stored on a
single node in the network is limited to a minimum where
possible by dispersing and storing data objects on remote
nodes or clusters in a distributed data storage system. In this
manner, if a fault results in loss, damage, or otherwise
unavailability of a replica at a local cluster, the likelihood of
recovering the data is higher if one or more replicas of the data
are stored in remote clusters, because the probability of the
remote cluster having been affected by the same local fault is
minimal.

[0019] Referring to FIG. 2, in accordance with one imple-
mentation, a database may be configured to communicate
with a local cluster to store and provide the placement of data
object replicas for one or more data objects (S210), where the
data objects are stored on one or more network nodes in the
local cluster. For example, a database may store information
about data objects to indicate that a data object 1 is stored on
disk 1, in node 1001, in cluster 101 of data center 1. Further,
additional information may be stored in the database in asso-
ciation with a data object to indicate the locations of one or
more replicas of said data object within the local data center
and across remote data centers in a distributed storage net-
work. Thus, the database may include a record that associates
a local data object with its corresponding remote replicas in
clusters 1 through N.

[0020] A data object may be deemed faulty if at least one
replica of the data object is lost or damaged. If a faulty data
object is to be restored or recovered(S220), the database
record for the faulty data object may be queried to determine
the list of clusters 1 through N that hold replicas of the faulty
data object (S230). Once the location or locations of the
replicas are determined, optionally, a plurality of parallel
processes 1 through N may be initiated in order to commu-
nicate with the corresponding clusters on which the remote
replicas 1 through N are stored. The purpose of such query
may be to, for example, determine health data about the
availability of a replica for the purposes of recovery (5240).
Health data may be in form of an indicator (e.g., a logical flag,
such as a Boolean operand) associated with the replica for
indicating whether the replica is available on the correspond-
ing disk, node or cluster, whether local or remote.

[0021] Accordingly, health data for a replica may be uti-
lized to determine whether the faulty data object may be

Mar. 24, 2016

successfully recovered from that replica. If a healthy replica is
available, then the data object may be restored from that
replica (S250), otherwise remedial measures may be taken
(S260). For example, if a remote node on which a replica of a
faulty data object is stored is conducting a replica recovery
process for the same faulty data object, then the health data for
the target replica would indicate that the target replica is not
available for the purpose of the replica recovery. Health data
for a replica in various distributed data centers may also,
optionally, include information about the number of replicas
available for a certain data object. The health data may be
analyzed to calculate a recovery plan based on recovery cri-
teria, which may include the risk of loss based on the number
or the location of available replicas on local or remote clus-
ters.

[0022] For example, to define a recovery criteria or plan, a
priority function may be used to determine the priority of
recovering a first faulty data object over a second faulty data
object based on the probability of losing the first faulty data
object and the cost associated with losing or recovering the
first faulty data object as compared to the second faulty data
object. Depending on implementation, for example, it may be
desirable to recover faulty data objects with fewer numbers of
local duplicates first, over faulty data objects that have a
higher number oflocal duplicates. As another example, it may
be desirable to recover faulty data objects that are rated as
being stored on less secure or less reliable data storage media
first. Other recovery plans with alternative priority schemes
may be also implemented in accordance with factors that may
suggest or assign higher importance or cost with the recovery
of certain data objects.

[0023] Inaccordance with one embodiment, an exemplary
priority function P(D)=Func(N(D),C(D),n) may be used for
recovery of a faulty data object from one or more replicas in
a distributed network, where:

[0024] D represents a data object with multiple replicas
in multiple clusters;

[0025] L(D) represents the local replica of D;

[0026] R(D),, i=1 . ..n, where “i” and “n” are natural
numbers, with a remote replica indexed 1 of D out of “n”
remote replicas;

[0027] H(D)i represents the health of R(D), at the time a
recovery query is run, wherein ad-hoc information pro-
vided by a remote cluster may indicate that a replica is
“Available” or “Unavailable”, for example;

[0028] N(D) represents the number of remote replicas
for which H(D),=“Available”, for example;

[0029] C(D)represents the cost of losing N replicas of D;

[0030] P(D) represents the priority given by the system
for the recovery operation of D; and

[0031] S(D) represents a source of the remote replica of
D that has H(D)i =“Available”, for example, and was
chosen by the system from which to copy from.

[0032] Referring to FIG. 3, in accordance with one embodi-
ment, the recovery plan may be implemented using a recovery
priority queue, where the relative priority of recovery ofa data
object is determined from the analysis of the health informa-
tion associated with the data object and other factors noted
above (S310). Once the priority of recovery for a data object
is determined (S320), for example, based on a priority func-
tion such as the one noted above, then a corresponding recov-
ery task may be added to the recovery priority queue (S330).
The recovery tasks in the queue may be serviced according to
the order of the tasks in the queue (S340). It is noteworthy

US 2016/0085633 Al

that, depending on implementation, the recovery requests
added to the recovery priority queue may be added in real time
as information noted above about a damaged, or otherwise
unavailable data object (i.e., a faulty data object) and its
corresponding N replicas is obtained and analyzed.

[0033] Inoneexample scenario, a request for recovery of a
faulty data object may be added to the recovery priority queue
as soon as possible and, optionally, prior to having deter-
mined the recovery priority for the faulty data object. For
example, a first recovery request for a first data object and a
second recovery request for a second data object may be
added to the queue, with the first recovery request being
scheduled ahead of the second recovery request. If the recov-
ery of the second data object is determined to be of a higher
priority over the recovery of the first data object (e.g., based
on the results of the priority function), the second recovery
request may be moved to a position in the queue that is ahead
of the first recovery request.

[0034] Inanother example, recovery requests may be added
to the queue after the priority is calculated. In this example,
first priority for a first recovery request for a first data object
may be calculated first and added to the queue and at some
later time, a second priority which is higher than the first
priority may be calculated for a second recovery request for a
second data object such that the second request would be
scheduled before the first request. In one implementation, the
recovery for the first data object may not be interrupted, if the
processing of the first recovery request has already started. As
such, the recovery process may be optimized without slowing
down the recovery requests that have already started process-
ing, unless a certain predetermined set of conditions are met,
for example.

[0035] In accordance with one embodiment, one or more
factors may be considered in calculating a recovery plan for
the purpose of introducing efficiency into the replica recovery
process. As a simplified example, consider a scenario in
which it may be determined that out of 10 faulty data objects,
healthy replicas for 7 of the 10 objects may be recovered from
the same set of remote clusters. A naive approach, in this
example scenario, would be to submit 10 separate queries to
determine the health or availability of replicas for each of the
10 faulty data objects from 10 separate remote clusters, fol-
lowed by 10 independent retrieval requests to recover the
local replica of the 10 faulty objects, possibly from 10 difter-
ent remote clusters. It will be appreciated that such naive
approach is associated with a large amount of overhead and is
costly.

[0036] In one embodiment, health information stored in a
(desirably local) recovery database about the replicas may be
analyzed to determine the location of replicas available on a
local or remote node or cluster. In the above example, 7 out of
10 replicas may be stored on a single local or remote node or
cluster. It is noteworthy that at this point, while the location of
the replicas is known, the actual health of the replicas may not
be known. As such, health inquiries may need to be submitted
for the 10 replicas to determine which of the 10 replicas may
be suitable for the purpose ofrecovery. For efficiency, a health
inquiry for the 7 replicas that reside on the same node may be
submitted in a single inquiry (e.g., instead of submitting 7
separate inquiries).

[0037] In this example, at a health verification stage,
responses may be received to the health inquiries submitted.
The response would indicate the health of the 10 replicas.
Desirably, in one implementation, a single response is

Mar. 24, 2016

received to the single inquiry for the 7 replicas to indicate the
health level for one or more (and desirably all) the 7 replicas.
Additional queries may be submitted to other remote clusters
for health information of replicas on other nodes. For
example, 3 separate health inquiries may have to be submitted
to 3 separate nodes ifthe remaining 3 out of the 10 replicas are
on 3 separate nodes. Note also that each faulty object may
have multiple replicas and that inquiries needs to be sent to
one or more clusters in which such replicas should exist to
inquire the health of the object.
[0038] Once the health data for the 10 replicas is collected,
the recovery priority for the faulty object may be calculated
and a list of possible options for recovery of the object may be
determined. In the above example, if 4 of the faulty objects
being recovered have the same priority, and replicas for the 4
faulty objects may be retrieved from the same remote cluster,
then a single recovery request may be submitted for those 4
faulty objects. That is, instead of issuing 4 independent
retrieval requests, to the same remote cluster, one retrieval
request is submitted. This implementation would save net-
work and processing bandwidth and overhead costs associ-
ated with processing the recovery inquiries and requests.
[0039] The cluster recovering the 10 faulty objects there-
fore may design an efficient recovery scheme for the 10 faulty
objects by grouping retrieval requests that share the same or
similar priority and may be retrieved from the same source
cluster using the information gathered during the health veri-
fication stage. Such grouped retrieval requests with their pri-
ority may be added to the priority queue once their priority is
determined as described above. In one embodiment, the
health verification stage and the recovery stage may be inter-
twined and use the same priority queue such that health veri-
fication stage tasks are assigned a priority defined by the
apriority knowledge obtained from the database (e.g., based
on the number of potential replicas that the faulty object may
still have and the cost of losing such object). The recovery
task priority may be calculated based on the responses pro-
vided at the health verification stage as provided above.
[0040] In accordance with one embodiment, if the replica
recovery process from one or more identified nodes or clus-
ters is unsuccessful, the replica recovery process may be
repeated by returning to a health verification stage—i.e. by
querying the health of the replicas by submitting the recovery
inquiry and request to other nodes or clusters that may have
replicas of the faulty data objects, even where said nodes or
clusters do not provide the most optimal recovery process as
calculated. Alternatively, other sources that were calculated at
the previous health verification stage may be used to obtain
the faulty object, while optionally adjusting the recovery
request priority accordingly.
[0041] Insummary, the following processes may be imple-
mented for the purpose of recovery:

[0042] 1.Identify a faulty data object by determining that

at least N replicas of a data object are lost.
[0043] 2. Queue Task 1 (Query health data & calculate
priority):

[0044] 2.1 Query multiple nodes about the health of
respective replicas for the faulty object,

[0045] 2.2 Calculate the priority of recovery task for
the faulty object and decide the location from which to
recover the replica, and

[0046] 2.3 Queue Task 2 to perform the recovery task
based on the calculated priority for the faulty object.

US 2016/0085633 Al

[0047] 3. Task 2 (Recovery):

[0048] 3.1 Try to recover from a replica based on
health data,

[0049] 3.2 If fail to recover: Queue Task 1 to query the
health of replicas for the faulty object again. Depend-
ing on implementation, the priority of recovery for the
faulty object may or may not be calculated again,
according to one or more factors (e.g., if the priority
calculation is independent of the health of the repli-
cas).

[0050] As noted earlier, the recovery tasks may be priori-
tized based on the probability associated with the risk of
losing one or more data replicas associated with a faulty data
object. Further, a parallel recovery configuration may be
implemented such that (a) some or optionally all nodes of a
cluster may participate in the replica recovery process, (b)
multiple processes may run in parallel to assist with the recov-
ery from multiple available replicas, and (c) replicas may be
grouped to speed up mass recovery processes.
[0051] Advantageously, the disclosed parallel replica
recovery process from a focused group of nodes or clusters in
a distributed data storage environment scales well in larger
data storage systems and may be utilized to support an on-
going replica recovery process for recovering a relatively
large number of replicas across a large-scale data storage
system. In accordance with one embodiment, metadata
including a replica’s health information or availability status
may be maintained in a database at the cluster level per replica
(e.g., as opposed to the node level), such that the metadata
may be accessed even ifthe replica data is lost. Such metadata
may include the list of candidate clusters from which the
replica may be recovered, optionally, the cost of losing the
replicated data or the cost of replicating from each respective
candidate cluster.
[0052] In one embodiment, the replica metadata may be
replicated more times than the data object replica itself,
allowing the replica metadata to survive more faults than the
replica, for example. A cluster may contain one or more
unprotected copies of the replica and one or more protected
copies of an object’s metadata, either via encoding (to achieve
redundancy) or via replication. Depending on implementa-
tion, the priority of recovery for a data object or of obtaining
the health of a faulty object during a health verification stage
may be determined based upon, for example, at least one or
more of the following:

[0053] the number of replicas lost for a data object,

[0054] the number of replicas remaining for a data object

(e.g., whether de-facto replicas or in theory), and
[0055] the cost of losing one or more replicas of the data
object.

[0056] If a candidate replica chosen or located for the pur-
pose of restoration of a respective data object is deemed
unavailable, the recovery priority for the data object may be
determined as if the respective set of replica held by that
candidate cluster is lost. In accordance with one embodiment,
a designated cluster may be selected from one of a candidate
set of clusters, if the designated cluster responds that the
cluster contains a healthy replica. A candidate cluster may
report its current state (e.g., the available resources), where a
designated cluster may be determined based on the availabil-
ity of its resources. If a cluster is provided with data about the
cost of recovery from one or more candidate clusters, a des-
ignated cluster may be selected with a lower (or lowest)
associated recovery cost.

Mar. 24, 2016

[0057] Inaccordance with one embodiment, a cluster may
have information about local replicas of a data object such
that a designated cluster for the purpose of recovery may be
determined based upon whether there are additional copies of
the data object replicas in the cluster. The designated cluster
may be determined from among the candidate clusters that
responded with the highest number of healthy replicas from
the set of replicas that share the same priority, where:

[0058] priority is calculated prior to selecting the desig-
nated cluster from which a faulty data object is to be
recovered, and

[0059] when the designated cluster is selected, the same
designated cluster is chosen for the largest possible sub-
set of faulty data objects that share the same priority.

[0060] For example, in Table 1 below, Cluster 2 will be
chosen for replicating faulty data objects 4, 5, 6, 7 and 8. And,
Cluster 1 will be chosen for replicating lost replicas 1, 2 and
3.

replica priority cluster 1 cluster 2
1 5 ok ok
2 5 ok ok
3 5 ok Missing
4 7 ok ok
5 7 ok ok
6 7 ok ok
7 7 ok ok
8 7 Missing ok

[0061] In accordance with one embodiment, after a failure
to recover a faulty data object from a designated cluster, a new
priority and a new designated cluster may be determined
based on the information previously queried from the candi-
date clusters or by making an additional query to the candi-
date clusters. A list of faulty data objects or lost replicas for a
data object may be determined based on metadata stored in a
recovery database. The list may be processed to find a com-
mon list of candidate clusters from which a faulty data object
may be restored. List of lost replicas may be first divided
based on the administrative domain controlling the data such
that any further recovery processing is done based on privi-
leges belonging to the said administrative domain.

[0062] References in this specification to “an embodi-
ment”, “one embodiment”, “one or more embodiments” or
the like, mean that the particular element, feature, structure or
characteristic being described is included in at least one
embodiment of the disclosed subject matter. Occurrences of
such phrases in this specification should not be particularly
construed as referring to the same embodiment, nor should
such phrases be interpreted as referring to embodiments that
are mutually exclusive with respect to the discussed features
or elements.

[0063] In different embodiments, the claimed subject mat-
ter may be implemented as a combination of both hardware
and software elements, or alternatively either entirely in the
form of hardware or entirely in the form of software. Further,
computing systems and program software disclosed herein
may comprise a controlled computing environment that may
be presented in terms of hardware components or logic code
executed to perform methods and processes that achieve the
results contemplated herein. Said methods and processes,
when performed by a general purpose computing system or
machine, convert the general purpose machine to a specific
purpose machine.

US 2016/0085633 Al

[0064] Referring to FIGS. 4A and 4B, a computing system
environment in accordance with an exemplary embodiment
may be composed of a hardware environment 1110 and a
software environment 1120. The hardware environment 1110
may comprise logic units, circuits or other machinery and
equipments that provide an execution environment for the
components of software environment 1120. In turn, the soft-
ware environment 1120 may provide the execution instruc-
tions, including the underlying operational settings and con-
figurations, for the various components of hardware
environment 1110.

[0065] Referring to FIG. 4A, the application software and
logic code disclosed herein may be implemented in the form
of machine readable code executed over one or more com-
puting systems represented by the exemplary hardware envi-
ronment 1110. As illustrated, hardware environment 110 may
comprise a processor 1101 coupled to one or more storage
elements by way of a system bus 1100. The storage elements,
for example, may comprise local memory 1102, storage
media 1106, cache memory 1104 or other machine-usable or
computer readable media. Within the context of this disclo-
sure, a machine usable or computer readable storage medium
may include any recordable article that may be utilized to
contain, store, communicate, propagate or transport program
code.

[0066] A computer readable storage medium may be an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor medium, system, apparatus or device. The
computer readable storage medium may also be implemented
in a propagation medium, without limitation, to the extent that
such implementation is deemed statutory subject matter.
Examples of a computer readable storage medium may
include a semiconductor or solid-state memory, magnetic
tape, a removable computer diskette, a random access
memory (RAM), a read-only memory (ROM), a rigid mag-
netic disk, an optical disk, or a carrier wave, where appropri-
ate. Current examples of optical disks include compact disk,
read only memory (CD-ROM), compact disk read/write (CD-
R/W), digital video disk (DVD), high definition video disk
(HD-DVD) or Blue-ray™ disk.

[0067] In one embodiment, processor 1101 loads execut-
able code from storage media 1106 to local memory 1102.
Cache memory 1104 optimizes processing time by providing
temporary storage that helps reduce the number of times code
is loaded for execution. One or more user interface devices
1105 (e.g., keyboard, pointing device, etc.) and a display
screen 1107 may be coupled to the other elements in the
hardware environment 1110 either directly or through an
intervening 1/O controller 1103, for example. A communica-
tion interface unit 1108, such as a network adapter, may be
provided to enable the hardware environment 1110 to com-
municate with local or remotely located computing systems,
printers and storage devices via intervening private or public
networks (e.g., the Internet). Wired or wireless modems and
Ethernet cards are a few of the exemplary types of network
adapters.

[0068] Itis noteworthy that hardware environment 1110, in
certain implementations, may not include some or all the
above components, or may comprise additional components
to provide supplemental functionality or utility. Depending
on the contemplated use and configuration, hardware envi-
ronment 1110 may be a machine such as a desktop or a laptop
computer, or other computing device optionally embodied in
an embedded system such as a set-top box, a personal digital

Mar. 24, 2016

assistant (PDA), a personal media player, a mobile commu-
nication unit (e.g., a wireless phone), or other similar hard-
ware platforms that have information processing or data stor-
age capabilities.

[0069] In some embodiments, communication interface
1108 acts as a data communication port to provide means of
communication with one or more computing systems by
sending and receiving digital, electrical, electromagnetic or
optical signals that carry analog or digital data streams rep-
resenting various types of information, including program
code. The communication may be established by way of a
local or a remote network, or alternatively by way of trans-
mission over the air or other medium, including without limi-
tation propagation over a carrier wave.

[0070] As provided here, the disclosed software elements
that are executed on the illustrated hardware elements are
defined according to logical or functional relationships that
are exemplary in nature. It should be noted, however, that the
respective methods that are implemented by way of said
exemplary software elements may be also encoded in said
hardware elements by way of configured and programmed
processors, application specific integrated circuits (ASICs),
field programmable gate arrays (FPGAs) and digital signal
processors (DSPs), for example.

[0071] Referring to FIG. 4B, software environment 1120
may be generally divided into two classes comprising system
software 1121 and application software 1122 as executed on
one or more hardware environments 1110. In one embodi-
ment, the methods and processes disclosed here may be
implemented as system software 1121, application software
1122, or a combination thereof. System software 1121 may
comprise control programs, such as an operating system (OS)
or an information management system, that instruct one or
more processors 1101 (e.g., microcontrollers) in the hardware
environment 1110 on how to function and process informa-
tion. Application software 1122 may comprise but is not
limited to program code, data structures, firmware, resident
software, microcode or any other form of information or
routine that may be read, analyzed or executed by a processor
1101.

[0072] In other words, application software 1122 may be
implemented as program code embedded in a computer pro-
gram product in form of a machine-usable or computer read-
able storage medium that provides program code for use by,
or in connection with, a machine, a computer or any instruc-
tion execution system. Moreover, application software 1122
may comprise one or more computer programs that are
executed on top of system software 1121 after being loaded
from storage media 1106 into local memory 1102. In a client-
server architecture, application software 1122 may comprise
client software and server software. For example, in one
embodiment, client software may be executed on a client
computing system that is distinct and separable from a server
computing system on which server software is executed.
[0073] Software environment 1120 may also comprise
browser software 1126 for accessing data available over local
or remote computing networks. Further, software environ-
ment 1120 may comprise a user interface 1124 (e.g., a graphi-
cal user interface (GUI)) for receiving user commands and
data. It is worthy to repeat that the hardware and software
architectures and environments described above are for pur-
poses of example. As such, one or more embodiments may be
implemented over any type of system architecture, functional
or logical platform or processing environment.

US 2016/0085633 Al

[0074] It should also be understood that the logic code,
programs, modules, processes, methods and the order in
which the respective processes of each method are performed
are purely exemplary. Depending on implementation, the pro-
cesses or any underlying sub-processes and methods may be
performed in any order or concurrently, unless indicated oth-
erwise in the present disclosure. Further, unless stated other-
wise with specificity, the definition of logic code within the
context of this disclosure is not related or limited to any
particular programming language, and may comprise one or
more modules that may be executed on one or more proces-
sors in distributed, non-distributed, single or multiprocessing
environments.

[0075] As will be appreciated by one skilled in the art, a
software embodiment may include firmware, resident soft-
ware, micro-code, etc. Certain components including soft-
ware or hardware or combining software and hardware
aspects may generally be referred to herein as a “circuit,”
“module” or “system.” Furthermore, the subject matter dis-
closed may be implemented as a computer program product
embodied in one or more computer readable storage medium
(s) having computer readable program code embodied
thereon. Any combination of one or more computer readable
storage medium(s) may be utilized. The computer readable
storage medium may be a computer readable signal medium
ora computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing.

[0076] Inthecontext ofthis document, acomputer readable
storage medium may be any tangible medium that can con-
tain, or store a program for use by or in connection with an
instruction execution system, apparatus, or device. A com-
puter readable signal medium may include a propagated data
signal with computer readable program code embodied
therein, for example, in baseband or as part of a carrier wave.
Such a propagated signal may take any of a variety of forms,
including, but not limited to, electro-magnetic, optical, or any
suitable combination thereof. A computer readable signal
medium may be any computer readable medium that is not a
computer readable storage medium and that can communi-
cate, propagate, or transport a program for use by or in con-
nection with an instruction execution system, apparatus, or
device.

[0077] Program code embodied on a computer readable
storage medium may be transmitted using any appropriate
medium, including but not limited to wireless, wireline, opti-
cal fiber cable, RF, etc., or any suitable combination of the
foregoing. Computer program code for carrying out the dis-
closed operations may be written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Java, Smalltalk, C++ or
the like and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages.

[0078] The program code may execute entirely on the
user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area

Mar. 24, 2016

network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

[0079] Certain embodiments are disclosed with reference
to flowchart illustrations or block diagrams of methods, appa-
ratus (systems) and computer program products according to
embodiments. It will be understood that each block of the
flowchart illustrations or block diagrams, and combinations
of'blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, a special purpose
machinery, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions or acts specified in the flowchart or
block diagram block or blocks.

[0080] These computer program instructions may also be
stored in a computer readable storage medium that can direct
a computer, other programmable data processing apparatus,
or other devices to function in a particular manner, such that
the instructions stored in the computer readable storage
medium produce an article of manufacture including instruc-
tions which implement the function or act specified in the
flowchart or block diagram block or blocks.

[0081] The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer or machine
implemented process such that the instructions which execute
on the computer or other programmable apparatus provide
processes for implementing the functions or acts specified in
the flowchart or block diagram block or blocks.

[0082] The flowchart and block diagrams in the figures
illustrate the architecture, functionality, and operation of pos-
sible implementations of systems, methods and computer
program products according to various embodiments. In this
regard, each block in the flowchart or block diagrams may
represent a module, segment, or portion of code, which com-
prises one or more executable instructions for implementing
the specified logical functions. It should also be noted that, in
some alternative implementations, the functions noted in the
block may occur in any order or out of the order noted in the
figures.

[0083] For example, two blocks shown in succession may,
in fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each
block of the block diagrams or flowchart illustration, and
combinations of blocks in the block diagrams or flowchart
illustration, may be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and com-
puter instructions.

[0084] The claimed subject matter has been provided here
with reference to one or more features or embodiments.
Those skilled in the art will recognize and appreciate that,
despite of the detailed nature of the exemplary embodiments
provided here, changes and modifications may be applied to
said embodiments without limiting or departing from the
generally intended scope. These and various other adapta-
tions and combinations of the embodiments provided here are

US 2016/0085633 Al

within the scope of the disclosed subject matter as defined by
the claims and their full set of equivalents.

1. A method for recovering data objects in a distributed data
storage system, the method comprising:

storing one or more replicas of a first data object on one or

more clusters in one or more data centers connected over

a data communications network;

recording health information about said one or more rep-

licas, wherein the health information comprises data

about availability of a replica to participate in a restora-
tion process;

in response to determining that the first data object is to be

recovered, calculating a query-priority for the first data

object;

querying, based on the calculated query-priority, the health

information for the one or more replicas to determine

which of the one or more replicas is available for resto-
ration of the first data object;

calculating a restoration-priority for the first data object

based on the health information for the one or more

replicas; and

restoring the first data object from the one or more of the

available replicas, based on the calculated restoration-

priority, wherein the query-priority is calculated based
on a priority function P(D)=Func(R(D),C(D),n), where:

D represents a data object with multiple replicas in mul-
tiple clusters;

R(D),,i=1...n, where “i” and “n” are natural numbers,
with a remote replica indexed i of D out of n remote
replicas;

C(D) represents cost of losing N replicas of D;

P(D) represents priority given by the system for the
query operation of D; and

Func()represents some function.

2. (canceled)

3. The method of claim 1, wherein the restoration-priority
is calculated based on a second function with parameters that
represent at least one of:

number of replicas available for restoring the first data

object in the distributed data storage system,

projected costs associated with losing M replicas of the

first data object in the distributed data storage system, or

risk of loss associated with delaying recovery of the first
data object over a second data object, wherein the risk of
loss is calculated based on the number of replicas or the
costs of loss associated with the first and second data
objects.

4. The method of claim 1, wherein the one or more data
centers are located remotely from the location in which the
first data object is being recovered.

5. The method of claim 1, wherein the health information
comprises availability and location data about the one or more
replicas.

6. The method of claim 1, wherein querying the health
information of a plurality of data objects from a location is
optimized by aggregating queries for at least a subset of the
plurality of the data objects in a single query.

7. The method of claim 6, wherein data objects in the subset
of the plurality of the data objects in the single query are
associated with the same query-priority.

8. The method of claim 1, wherein the restoration of a
plurality of data objects is optimized by restoring at least a
subset of the plurality of the data objects from a location

Mar. 24, 2016

where a maximum collective number of the plurality of data
objects have replicas, using a single restoration request.

9. The method of claim 8, wherein data objects in the subset
of the plurality of the data objects restored using a single
restoration request are associated with the same restoration-
priority.

10. (canceled)

11. The method of claim 1, wherein the restoration-priority
is calculated based on a second priority function P(D)=Func
(N(D),C(D),n), where:

D represents a data object with multiple replicas in mul-

tiple clusters;

R(D),, i=1 . .. n, where “1” and “n” are natural numbers,
with a remote replica indexed i of D out of n remote
replicas;

H(D), represents health of R(D), at the time a recovery
query is run, wherein ad-hoc information provided by a
remote cluster may indicate that a replica is “Available”
or “Unavailable”, for example;

N(D) represents number of remote replicas for which
H(D), is available;

C(D) represents cost of losing N replicas of D;

P(D) represents priority given by the system for the resto-
ration operation of D; and

Func()represents some function.

12. The method of claim 1, wherein the health information
for the one or more replicas is recorded by a first cluster in a
database accessible by a recovery module of the first cluster.

13. The method of claim 1, wherein a first priority queue is
used in the one or more clusters to record and prioritize one or
more tasks for restoring one or more data objects such that:

a first task associated with priority set to be the first data
object query-priority is inserted into the first priority
queue to query the health information for the one or
more replicas of the first data object from one or more
locations, in response to determining that the first data
object is to be recovered, and

a second task with priority set to be the first data object
restoration-priority is inserted into the first priority
queue to restore the first data object from the one or more
available replicas in the one or more locations, in
response to determining the restoration-priority for the
first data object;

wherein the one or more tasks are extracted from the first
priority queue and executed, such that a task with higher
priority is executed before a task with lower priority.

14. The method of claim 13, wherein given a first plurality
of data objects with health information that is to be queried
from the same location or have the same query-priority, opti-
mizing the querying such that a first task for querying health
information for a subset of one or more of the first plurality of
data objects is inserted as a single task in the first priority
queue.

173333
1

15. The method of claim 13, wherein given a second plu-
rality of data objects that are to be restored from the same
location or have the same restoration-priority, optimizing the
restoring such that a second task for restoring a subset of one
or more of the second plurality of data objects is inserted as a
single task in the first priority queue.

#* #* #* #* #*

