US 20160085794A1

a2y Patent Application Publication (o) Pub. No.: US 2016/0085794 A1l

a9 United States

Bengali et al.

43) Pub. Date: Mar. 24, 2016

(54) DATA CONSISTENCY AND ROLLBACK FOR
CLOUD ANALYTICS

(71) Applicant: Dell Products L.P., Round Rock, TX
(US)

(72) Inventors: Ketan Bengali, Sunnyvale, CA (US);
Kaniska Mandal, Sunnyvale, CA (US);
Alex J. Chen, Fremont, CA (US)

(21) Appl. No.: 14/862,007
(22) Filed:

Sep. 22, 2015

Related U.S. Application Data

(63) Continuation of application No. 13/764.,446, filed on
Feb. 11, 2013, now Pat. No. 9,141,680.

Server
110
1 | ——
) Data
Server | - Integration «—»| Collection
115 < | Server Server
123 130
Client /
Device
120

Publication Classification

(51) Int.CL
GOGF 17/30 (2006.01)
GOGF 11/14 (2006.01)
(52) US.CL

CPC ... GOGF 17/30371 (2013.01); GO6F 17/30563
(2013.01); GOGF 11/1469 (2013.01); GOGF
2201/80 (2013.01)

(57) ABSTRACT

An extract-transform-load (ETL) platform fetches consistent
datasets in a batch for a given period of time and provides the
ability to rollback that batch. The batch may be fetched for an
interval of time, and the ETL platform may fetch new or
changed data from different cloud/on-premise applications. It
will store this data in the cloud or on-premise to build data
history. As the ETL platform fetches new data, the system will
not overwrite existing data, but rather will create new versions
so that change history is preserved. For any reason, if busi-
nesses would like to rollback data, they could rollback to any
previous batch.

Warehouse
Database

Staging ETL Server

Database 140 145
135 Batch log
147

A

Y

Analytics Server
150

A

Y
Client
Device
155




US 2016/0085794 Al

Mar. 24, 2016 Sheet 1 of 5

Patent Application Publication

Gal
801neQ

Jusllo

051
Janag sonAleuy

Lyl

Bol yojeg

2
aseqgeleq
asnoyalep

<
—

ovl
JonJes 113

I 34NOI4

ST Ocl
JOMIRG
asegele(
buibeys cowwwm_woo

Gcl
SEVNELS

uonelbolu|

0cl
20I1A8(Q

Juslio

[
Jonleg

(7
JoAlog




Patent Application Publication =~ Mar. 24, 2016 Sheet 2 of 5 US 2016/0085794 A1

Collect first batch of data NN
l 210

Collect second batch of data N
l 220

Mark second batch of data as current batch N
l 230

Detect roll-back event

N
l 240

Mark first batch of data as current batch N
250

FIGURE 2



Patent Application Publication = Mar. 24,2016 Sheet 3 of 5

US 2016/0085794 Al

DCS receives start batch message

310

'

DCS transmits batch instructions

320

'

DCS receives batch data

330

'

DCS receives batch end message

'

340

DCS begins loading batch data into staging server N

Log batch as failure

Loading of batch data fail?

370 380

FIGURE 3

350

Log batch as success




Patent Application Publication =~ Mar. 24, 2016 Sheet 4 of 5 US 2016/0085794 A1

Before/After Key | Amount Start End Batch ID Current
Before Chg 4 5090 4444000 1213412008 4 ¥
After Chg 1 500 1/1/1900 7/31/2012 1 N
After Chg 1 1000 8/1/2012 12/31/2099 2 Y
FIGURE 4A
Before/After Key Amount Start End Batch ID Current
Before Rllbk [ 4 500 4441900 H3H2009 4 N
After Rllbk 4 4000 8142012 42/34/2090 2 ¥
After Rllbk 1 500 1/1/1900 12/31/2099 1 Y

FIGURE 4B



Patent Application Publication

Mar. 24, 2016 Sheet 5 of 5

Processor
510

Output
devices
550

Memory
520

Input
Devices
560

Storage
530

Display
System
570

Antenna
540

US 2016/0085794 Al

FIGURE 5

Peripherals

580




US 2016/0085794 Al

DATA CONSISTENCY AND ROLLBACK FOR
CLOUD ANALYTICS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application is a continuation and claims
the priority benefit of U.S. patent application Ser. No. 13/764,
446 filed Feb. 11, 2013, now U.S. Pat. No. 9,141,680, the
disclosure of which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] Businesses must process large amounts of data to
make strategic decisions and be successful. The data is often
provided in formats such as reports. To build a meaningful
report, businesses are relying on multi-tenanted software as a
service (SAAS) analytic companies. Building and providing
meaningful analytics typically require a large amount of
resources and have a high cost.

[0003] In order to reduce cost, more and more businesses
are adapting to cloud based SAAS application models. For
example, businesses may store sales data in “Salesforce”
applications, accounting data in “NetSuite” applications, and
billing data in “Zuora” applications. It is important to have
detailed information about a company’s performance and
positions. Unfortunately, analytic applications do not con-
solidate data from different SAAS applications and provide a
single view. Analytic applications also do not provide data
consistency within data collection of different data types.
What is needed is an improved analytics system that improves
upon the analytic systems of the prior art.

SUMMARY OF THE INVENTION

[0004] The present system includes an extract-transform-
load (ETL) platform which fetches consistent datasets in a
batch for a given period of time and provides the ability to
rollback that batch. The batch may be fetched for an interval
of'time, and the ETL platform may fetch new or changed data
from different cloud/on-premise applications. It will store
this data in the cloud or on-premise to build data history. As
the ETL platform fetches new data, the system will not over-
write existing data, but rather will create new versions so that
change history is preserved. For any reason, if businesses
would like to rollback data, they could rollback to any previ-
ous batch.

[0005] Inanembodiment, a method for collecting data may
include collecting a first batch of data by a server from one or
more tenant applications and associated with a first period of
time. A second batch of data may be collected by the server
from the one or more tenant applications and associated with
a second period of time subsequent to the first period of time.
The second batch of data may be marked as the current batch
of data. A rollback event may be detected, and the first batch
of data may be marked as the current batch of data after the
rollback request.

[0006] Inanembodiment, a system for collecting data may
include a memory, a processor and one or more modules
stored in memory and executable by the processor. The mod-
ules may be executable to collect a first batch of data from one
or more tenant applications and associated with a first period
of time, collect a second batch of data from the one or more
tenant applications and associated with a second period of
time subsequent to the first period of time, and mark the
second batch of data as the current batch of data. The modules

Mar. 24, 2016

may further be executable to detect a rollback event and mark
the first batch of data as the current batch of data after the
rollback request.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1 is a block diagram of an exemplary data
analytics system.
[0008] FIG. 2 is an exemplary method for performing a
rollback of data.

[0009] FIG. 3 is an exemplary method for collecting a batch
of data.
[0010] FIG. 4A is an exemplary batch log with a data
change.
[0011] FIG. 4B is an exemplary batch log with a roll back.
[0012] FIG.5is ablock diagram of a device for implement-

ing the present technology.

DETAILED DESCRIPTION

[0013] Thepresentsystem includes an ETL platform which
fetches consistent datasets in a batch for a given period of time
and provides the ability to rollback that batch. The batch may
be fetched for an interval of time, and the ETL platform may
fetch new or changed data from different cloud/on-premise
applications. It will store this data in the cloud or on-premise
to build data history. As the ETL platform fetches new data, it
will not overwrite existing data, but rather will create new
versions so that change history is preserved. For any reason,
if businesses would like to rollback data, they could rollback
to any previous batch.

[0014] The present system has many advantages over the
prior art. Though some prior art SAAS analytic providers
provide analytics, these systems don’t provide history track-
ing or snapshot trending features. Building analytics with
history tracking or snapshot trending feature requires com-
plex ETL and rollback features. Once data is fetched and
placed in an SAAS analytics system and a hardware failure
occurs at the SAAS application vendor, if SAAS application
vendor rolls back its system to some previous point-in-time,
data in the SAAS analytic system will become inconsistent
with the SAAS application. In this case, the only possible fix
is to erase everything in SAAS analytic, re-provision data
from SAAS application and erase all history.

[0015] Data consistency is also an issue for previous SAAS
analytics systems. All SAAS applications provide an API to
access their data. However fetching data using their supplied
APIs doesn’t provide data consistency. For example, when
fetching data from Salesforce, it is possible that the process is
fetching all accounts at time T1, and then fetching all oppor-
tunities at time T10. Fetching all opportunities at time T10
would result in getting new Opportunities created between
time T1 and T10 whose account information is not fetched
yet. It may result in inconsistent dataset as receiving an oppor-
tunity without account information may produce wrong
report output.

[0016] When the present system restores itself from any
failure (Business application/Application integrator/Data
Collector/ETL system); the ETL system can automatically
restart the data extraction process as it continuously polls a
data collection status and looks up for newer successful
batches of data based on timestamps. The ETL system can
replay the data extraction process from anytime in the past,
without any manual intervention required. This auto-re-
storability and auto-restartability features ensure data consis-



US 2016/0085794 Al

tency. This system ensures complete data isolation for mul-
tiple tenants and guarantees consistent delivery to
heterogeneous persistence data stores.

[0017] FIG. 1 is a block diagram of an exemplary data
analytics system. The system of FIG. 1 includes tenant serv-
ers 110 and 115, tenant clime 120, integration server 125, data
collection server (DCS) 130, staging database 135, extract-
transform-load (ETL) server 140, warehouse database 145,
analytics server 150 and client device 150. Each of devices
110-155 may communicate with each other over a network
(not shown). The network may be implemented as a private
network, public network, Wi-Fi network, WAN, LAN, an
intranet, the Internet, a cellular network, or a combination of
these networks.

[0018] Servers 110 and 115 and client device 120 may each
be associated with a tenant (client organization) in a multi-
tenancy. Each tenant of the multi-tenancy may include one or
more servers and client devices. Each server and client may
include data to be collected by data collection server 130 via
integration server 125. In embodiments, integration server
125 may communicate with different SAAS providers,
whether provided from a cloud or a particular machine, and
communicate with data collection server 130. Client 120 may
be implemented as a desktop, laptop, notebook, tablet com-
puter, smart phone, or some other computing device.

[0019] Data collection server 130 may collect data from
one or more tenant applications on devices 110-120 through
integration server 125 and store the data in a staging database
135. The Data collection server may send batch instructions
to integration server 125 in response to receiving a start batch
request. Data collection server may provide any portion of the
staging data to ETL server 140, for example upon receiving a
data request from ETL server 140. When data is collected, it
is stored and maintained. Batches of data are not overwritten
with newly collected data.

[0020] ETL server 140 receives staging data from data col-
lection server 130 and may transform the data to a format
more useful to a user. For example, the data transformation
may include selecting only certain columns to load into a star
format, translating coded values, deriving new calculated
values, sorting data, aggregating data, transposing or pivoting
data, splitting a column into multiple columns, and other
processing. Once data is transformed by ETL server 140, it
may be provided to data warehouse 155 for future analytics.
[0021] Warehouse database 145 may receive transformed
data from ETL server 140 and provide the data to analytics
server 150 for processing. When data is loaded into ware-
house database 145, the data is stored in a star schema and
maintained. Transformed data is not overwritten in ware-
house database 145. This allows rollback to previous batches
of'dataif needed. A batch log 147 may be stored at warehouse
database 147. The batch log may be updated and maintained
to track information about each batch of data and may be used
in the rollback of data. The batch log may be stored in table
format and may include attributes for each batch such as batch
1D, tenant ID, data start date and time, data end date and time,
DCS processing status, staging database 1D, ETL processing
status, and ETL server ID. The DCS processing status and
ETL processing status may include not started, in-progress,
success and failure. The batch log may be updated by ETL
server 140, data collection server 130, and other servers of the
system of FIG. 1. Though illustrated as being stored in ware-
house database 145, batch log 147 may be stored on another
serer or database within the system of FIG. 1.

Mar. 24, 2016

[0022] Analytics server 150 may retrieve transformed data
stored in a star schema in data warehouse 155 and perform
analytics to the data. The results of the analytics may be
provided in the form of charts, graphs, reports or other for-
mats to a user at client device 170.

[0023] Though illustrated as one server or one device, each
of the servers and clients of the system of FIG. 1 may be
implemented using one or more actual or logical machines,
servers and client devices. One or more blocks of the system
of FIG. 1 may also be combined. Further, though examples of
communications are shown using arrows, it is intended and
should be understood that each of the servers and clients in the
system of FIG. 1 may communicate over network, and there-
fore with each other.

[0024] FIG. 2 is an exemplary method for performing a
rollback of data. A first batch of data is collected at step 210.
Thebatch of data may be collected for a period of time by data
collection serve 130 from tenant devices 110-120 via integra-
tion server 125. A batch log may be updated during and after
the batch data collection, and the collected data is marked
with the batch ID information. Collecting a first batch of data
is discussed in more detail below with respect to the method
of FIG. 3.

[0025] After a batch of data is collected, the batch may be
stored or “staged” at staging database 135. Once staged, the
batch may be transformed at ETL server 140. ETL server 140
performs transformation functions per batch. The trans-
formed batch of data is then provided to warehouse database
145. Analytics server 150 may access transformed data at
warehouse database 145 to generate charts, graphs, reports
and other tools for analyzing the transformed data.

[0026] A second batch of data is collected at step 220. The
second batch of data may include the same data objects as the
first batch (sales information, opportunity information, and so
forth), but will cover a different period of time. In some
embodiments, the second batch will automatically include
data with a start time just after the end time of the previous
successful batch. Collecting a second batch of data is per-
formed as described with respect to FI1G. 3. The second batch
of data may be staged in staging database 135 without over-
writing or deleting the first batch or any other batch. Simi-
larly, when the second batch is transformed and stored in
warehouse database 145, no other data is overwritten or
deleted when the second batch of data is stored.

[0027] The second batch is marked as the current batch at
step 230. The batch may be marked as the current batch in the
batch log 147. The second batch is the most up to date batch
and will likely be used for performing analytics. An example
of a batch log having a second batch marked as the current
batch is provided in FIG. 4A.

[0028] A rollback event is detected at step 240. A rollback
event may include receiving input from a user that a rollback
should be performed. For example, an administrator may
determine that the most current batch should not be used, and
may request a rollback to the previous batch. A rollback event
may also include an automated event not initiated from a user.
For example, if a data load into warehouse database 145 fails,
arollback event may be automatically triggered by the failure.
[0029] Upon detecting a rollback event, a first batch (i.e.,
previous successtul batch) is designated as the current batch
at step 250. In some embodiments, the current batch infor-
mation is deleted from the batch log 147 and the previous
batch is marked as the current batch. An example of a batch
log reflecting a rollback is illustrated in FIG. 4B.



US 2016/0085794 Al

[0030] FIG.3 is an exemplary method for collecting a batch
of data. The DCS 130 receives a start batch message from
integration server 125 at step 310. The start batch message
may be received periodically or initiated by the integration
serer 125 in response to a user request.

[0031] In response to the request, the DCS 130 transmits
batch instructions to integration server 125 at step 320. The
batch instructions may indicate the data start time and date,
data end time and date, the data to be collected, and the batch
ID. For example, the batch instructions may indicate to col-
lect employee records, sales records, and revenue records
created or changed during a time period of Jan. 1, 2013 at 8:00
AMto Jan. 1, 2013 at 10:00 AM, and to call the data batch no.
001. The batch log may be updated by DCS 130 to indicate the
batch ID and that DCS processing of the batch is “not started.”
[0032] DCS 130 receives batch data at step 330. In some
embodiments, DCS 130 may receive all batch data requested,
a portion of the data, or none of the data. While data is
received from integration server 125 by DCS 130, the DCS
processing status may indicate “in-progress.” Once the batch
data has been provided to DCS server 130, integration server
125 provides a batch end message to DCS 130 at step 340.
The request for a batch of data may specity that all new data
and changed data maintained by a tenant be collected. If no
tenant data has changed or been updated for the specified
period of time, no data will be provided and no new batch is
created.

[0033] DCS sever 130 may stage the collected data for the
batch in staging database 135 at step 350. A determination is
then made by DCS 130 if the batch data staging has failed or
succeeded. The batch data staging is marked as “successful”
in batch log 147 at step 380 if all batch data received by DCS
130 is staged or loaded into staging database 135. If any
portion of the batch data is not loaded into staging database
135, the batch status is set to “failure” at step 370. If a batch
is listed as a failure, the batch is removed from the batch log
and the next batch will attempt to collect the same data for the
same time period. In some embodiments, the batch log may
be updated by script generated and executed by DCS 130,
ETL 135 or other parts of the system of FIG. 1.

[0034] FIG. 4A is an exemplary batch log with a data
change. The batch table of FIG. 4A include seven columns
with headings of “Before/After”, “Key”, “Amount”, “Start”,
“End”, “Batch ID”, and “Current.” The Key through current
record columns may be added to all data stored in staging
database 135 and warehouse database 145. In the example of
FIG. 4A, an opportunity in the batch data has changed from
$500 to $1,000. In the original batch collection, the key has a
value of 1, the amount of the opportunity is 500, the batch data
starts at Jan. 1, 1900 and ends at Dec. 31, 2099, the data has a
batch ID of 1 and is marked as the current data.

[0035] After a change that occurs on Aug. 1, 2012 is
detected, the original batch of row 1 is replaced (hence, the
strikeout of the data in row 1) and is replaced with two
batches, as indicated in the second row and third row of data
in the log. The second row of data indicates that the business
key is 1, the amount is 500, the data begins on Jan. 1, 1900 and
ends at Jul. 31, 2012, the batch ID is 1 and that the batch is not
the current record. The third column indicates a business key
of'1, an amount of 1000, a start date of Aug. 1, 2012, an end
date of Dec. 31, 2099, a batch ID of 2 and that the batch is the
current record.

[0036] FIG. 4B is an exemplary batch log with a roll back.
The columns in FIG. 4B have the same headings as those in

Mar. 24, 2016

the batch log of FIG. 4A. FIG. 4B illustrates a batch log in the
case of a rollback that causes the current record to be changed
to batch ID 1 from batch ID 2. The first two rows of the batch
log in FIG. 4B match the last two rows of the batch log from
FIG. 4A. Both rows are replaced (hence, the strikethrough),
with the first row from FIG. 4A, which is now made the
current record.

[0037] FIG.5is ablock diagram of a device for implement-
ing the present technology. FIG. 5 illustrates an exemplary
computing system 500 that may be used to implement a
computing device for use with the present technology. Sys-
tem 500 of FIG. 5 may be implemented in the contexts of the
likes includes tenant servers 110 and 115, tenant clime 120,
integration server 125, DCS 130, staging database 135, ETL
server 140, warehouse database 145, analytics server 150 and
client device 150. The computing system 500 of FIG. 5
includes one or more processors 510 and memory 520. Main
memory 520 may store, in part, instructions and data for
execution by processor 510. Main memory can store the
executable code when in operation. The system 500 of FIG. 5
further includes a storage 520, which may include mass stor-
age and portable storage, antenna 540, output devices 550,
user input devices 560, a display system 570, and peripheral
devices 580.

[0038] The components shown in FIG. 5 are depicted as
being connected via a single bus 590. However, the compo-
nents may be connected through one or more data transport
means. For example, processor unit 510 and main memory
520 may be connected via a local microprocessor bus, and the
storage 530, peripheral device(s) 580 and display system 570
may be connected via one or more input/output (I/0O) buses.

[0039] Storage device 530, which may include mass stor-
age implemented with a magnetic disk drive or an optical disk
drive, may be a non-volatile storage device for storing data
and instructions for use by processor unit 510. Storage device
530 can store the system software for implementing embodi-
ments of the present invention for purposes of loading that
software into main memory 510.

[0040] Portable storage device of storage 530 operates in
conjunction with a portable non-volatile storage medium,
such as a floppy disk, compact disk or Digital video disc, to
input and output data and code to and from the computer
system 500 of FIG. 5. The system software for implementing
embodiments of the present invention may be stored on such
a portable medium and input to the computer system 500 via
the portable storage device.

[0041] Antenna 540 may include one or more antennas for
communicating wirelessly with another device. Antenna 516
may be used, for example, to communicate wirelessly via
Wi-Fi, Bluetooth, with a cellular network, or with other wire-
less protocols and systems. The one or more antennas may be
controlled by a processor 510, which may include a control-
ler, to transmit and receive wireless signals. For example,
processor 510 execute programs stored in memory 512 to
control antenna 540 transmit a wireless signal to a cellular
network and receive a wireless signal from a cellular network.

[0042] The system 500 as shown in FIG. 5 includes output
devices 550 and input device 560. Examples of suitable out-
put devices include speakers, printers, network interfaces,
and monitors. Input devices 560 may include a touch screen,
microphone, accelerometers, a camera, and other device.
Input devices 560 may include an alpha-numeric keypad,
such as a keyboard, for inputting alpha-numeric and other



US 2016/0085794 Al

information, or a pointing device, such as a mouse, a track-
ball, stylus, or cursor direction keys.
[0043] Display system 570 may include a liquid crystal
display (LCD), LED display, or other suitable display device.
Display system 570 receives textual and graphical informa-
tion, and processes the information for output to the display
device.
[0044] Peripherals 580 may include any type of computer
support device to add additional functionality to the computer
system. For example, peripheral device(s) 580 may include a
modem or a router.
[0045] The components contained in the computer system
500 of FIG. 5 are those typically found in computing system,
such as but not limited to a desk top computer, lap top com-
puter, notebook computer, net book computer, tablet com-
puter, smart phone, personal data assistant (PDA), or other
computer that may be suitable for use with embodiments of
the present invention and are intended to represent a broad
category of such computer components that are well known in
the art. Thus, the computer system 500 of FIG. 5 can be a
personal computer, hand held computing device, telephone,
mobile computing device, workstation, server, minicom-
puter, mainframe computer, or any other computing device.
The computer can also include different bus configurations,
networked platforms, multi-processor platforms, etc. Various
operating systems can be used including Unix, Linux, Win-
dows, Macintosh OS, Palm OS, and other suitable operating
systems.
[0046] The foregoing detailed description of the technol-
ogy herein has been presented for purposes of illustration and
description. It is not intended to be exhaustive or to limit the
technology to the precise form disclosed. Many modifications
and variations are possible in light of the above teaching. The
described embodiments were chosen in order to best explain
the principles of the technology and its practical application
to thereby enable others skilled in the art to best utilize the
technology in various embodiments and with various modi-
fications as are suited to the particular use contemplated. It is
intended that the scope of the technology be defined by the
claims appended hereto.
1. (canceled)
2. A system for retrieving consistent datasets, comprising:
a staging database for storing batches of data correspond-
ing to a period of time, wherein a batch of data includes
one or more distinct datasets; and
aplurality of tenant devices, wherein each tenant device of
the plurality of tenant devices includes a processor that
executes instructions stored in memory to:
collect a current batch of data associated with a first
period of time from one or more sources, wherein
collection of the first batch of data includes instruc-

Mar. 24, 2016

tions to collect new or changed data compared to a
marked current batch of data that has been previously
stored in memory,

assign identification information for the collected cur-
rent batch of data, wherein the collected current col-
lected current batch of data includes at least one new
or changed dataset compared to the marked current
batch of data that is previously stored in a batch log,

store the collected current batch of data in the staging
database, wherein the stored current batch of data
does not overwrite previously stored batches of data
listed in the batch log, and wherein a location associ-
ated with the stored current batch of data is updated in
the batch log,

mark the collected current batch of data as the current
batch of data in the batch log,

detect a rollback event, wherein the rollback event indi-
cates that the marked current batch of data should not
be used,

select a previously stored batch of data as the current
batch using the batch log, wherein information for the
previously stored batch of data is included in the batch
log,

retrieve the previously stored batch of data from the
staging database using the identification information
in the batch log, wherein the retrieved previously
stored batch of data is used to overwrite the first batch
of data, and

deleting information pertaining to the first batch of data
from the batch log.

3. The system of claim 2, wherein the collected batches of
data from the one or more sources corresponds with one or
more applications associated with the tenant.

4. The system of claim 2, wherein the current batch of data
and the previously stored batches of data include the same
data objects.

5. The system of claim 2, wherein the detected rollback
event corresponds to an automated event.

6. The system of claim 5, wherein the automated event
includes a generated failure output if a batch of data cannot be
stored in memory.

7. The system of claim 2, wherein collection of the current
batch of data from the one or more sources includes instruc-
tions that indicates the period of time associated with the data
to be collected and what data is to be collected.

8. The system of claim 2, wherein collection of the current
batch of data from the one or more sources includes updating
the batch log with a status associated with the collection.

9. The system of claim 8, wherein the collection status
updated in the batch log includes “not started”, “in-progress”,
“successful”, and “failure.”

#* #* #* #* #*



