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/502

ASSIGN AT LEAST ONE OF A FIRST POPULATION OF SYNAPSES OR
A FIRST POPULATION OF ARTIFICTAL NEURONS OF AN ARTIFICTAL
NERVOUS SYSTEM TO A FIRST GROUP TAG ASSOCIATED WITH A
FIRST SET OF PARAMETERS AND AT LEAST ONE OF A FIRST
SYNAPSE TYPE OR A FIRST NEURON TYPE

/504

ASSIGN AT LEAST ONE OF A SECOND POPULATION OF SYNAPSES
OR A SECOND POPULATION OF ARTIFICIAL NEURONS OF THE
ARTIFICIAL NERVOUS SYSTEM TO A SECOND GROUP TAG
ASSOCIATED WITH A SECOND SET OF PARAMETERS AND AT LEAST
ONE OF A SECOND SYNAPSE TYPE OR A SECOND NEURON TYPE

/506

CHANGE ONE OR MORE PARAMETERS IN AT LEAST ONE OF THE
FIRST SET OF PARAMETERS OR THE SECOND SET OF PARAMETERS
CAUSING CHANGING THE ONE OR MORE PARAMETERS FOR AT
LEAST ONE OF ONE OR MORE SYNAPSES IN AT LEAST ONE OF THE
FIRST POPULATION OR THE SECOND POPULATION OR ONE OR
MORE ARTIFICTAL NEURONS IN AT LEAST ONE OF THE FIRST
POPULATION OR THE SECOND POPULATION

FIG. 5
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MEANS FOR ASSIGNING AT LEAST ONE OF A FIRST POPULATION
OF SYNAPSES OR A FIRST POPULATION OF ARTIFICIAL NEURONS
OF AN ARTIFICTIAL NERVOUS SYSTEM TO A FIRST GROUP TAG
ASSOCIATED WITH A FIRST SET OF PARAMETERS AND AT LEAST
ONE OF A FIRST SYNAPSE TYPE OR A FIRST NEURON TYPE

L /504A

MEANS FOR ASSIGNING AT LEAST ONE OF A SECOND POPULATION
OF SYNAPSES OR A SECOND POPULATION OF ARTIFICIAL NEURONS
OF THE ARTIFICIAL NERVOUS SYSTEM TO A SECOND GROUP TAG
ASSOCIATED WITH A SECOND SET OF PARAMETERS AND AT LEAST
ONE OF A SECOND SYNAPSE TYPE OR A SECOND NEURON TYPE

/506A

MEANS FOR CHANGING ONE OR MORE PARAMETERS IN AT LEAST
ONE OF THE FIRST SET OF PARAMETERS OR THE SECOND SET OF
PARAMETERS CAUSING CHANGING THE ONE OR MORE
PARAMETERS FOR AT LEAST ONE OF ONE OR MORE SYNAPSES IN
AT LEAST ONE OF THE FIRST POPULATION OR THE SECOND
POPULATION OR ONE OR MORE ARTIFICIAL NEURONS IN AT LEAST
ONE OF THE FIRST POPULATION OR THE SECOND POPULATION

FIG. 5A
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ASSIGN A GROUP OF ARTIFICIAL NEURONS AND SYNAPSES
OF AN ARTIFICIAL NERVOUS SYSTEM TO A GROUP TAG
WITH AN ASSOCIATED SET OF PARAMETERS

/604

SEND A SINGLE MESSAGE CHANGING VALUES QF THE
PARAMETERS IN THE SET CAUSING SIMULTANEOUS SWITCH
OF THE PARAMETERS FOR ALL ARTIFICIAL NEURONS AND
SYNAPSES IN THE GROUP

F1G. 6

600A

Vs 602A

MEANS FOR ASSIGNING A GROUP OF ARTIFICIAL NEURONS
AND SYNAPSES OF AN ARTIFICIAL NERVOUS SYSTEM TO A
GROUP TAG WITH AN ASSOCIATED SET OF PARAMETERS

Vs 604A

MEANS FOR SENDING A SINGLE MESSAGE CHANGING VALUES
OF THE PARAMETERS IN THE SET CAUSING SIMULTANEOUS
SWITCH OF THE PARAMETERS FOR ALL ARTIFICIAL NEURONS
AND SYNAPSES IN THE GROUP

FIG. 6A
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METHODS AND APPARATUS FOR
IMPLEMENTATION OF GROUP TAGS FOR
NEURAL MODELS

CLAIM OF PRIORITY UNDER 35 U.S.C. §119

[0001] This application claims benefit of U.S. Provisional
Patent Application Ser. No. 61/882,465, filed Sep. 25, 2013
and entitled “Group Tags for Neural Models,” incorporated
by reference in its entirety.

BACKGROUND

[0002] 1. Field

[0003] Certain aspects of the present disclosure generally
relate to artificial nervous systems and, more particularly, to
methods and apparatus for implementing group tags for neu-
rons and synapses.

[0004] 2. Background

[0005] An artificial neural network, which may comprise
an interconnected group of artificial neurons (i.e., neural pro-
cessing units), is a computational device or represents a
method to be performed by a computational device. Artificial
neural networks may have corresponding structure and/or
function in biological neural networks. However, artificial
neural networks may provide innovative and useful compu-
tational techniques for certain applications in which tradi-
tional computational techniques are cumbersome, impracti-
cal, or inadequate. Because artificial neural networks can
infer a function from observations, such networks are particu-
larly useful in applications where the complexity of the task
or data makes the design of the function by conventional
techniques burdensome.

[0006] One type of artificial neural network is the spiking
neural network, which incorporates the concept of time into
its operating model, as well as neuronal and synaptic state,
thereby providing a rich set of behaviors from which compu-
tational function can emerge in the neural network. Spiking
neural networks are based on the concept that neurons fire or
“spike” at a particular time or times based on the state of the
neuron, and that the time is important to neuron function.
When a neuron fires, it generates a spike that travels to other
neurons, which, in turn, may adjust their states based on the
time this spike is received. In other words, information may
be encoded in the relative or absolute timing of spikes in the
neural network.

SUMMARY

[0007] Certain aspects of the present disclosure provide a
method for operating an artificial nervous system. The
method generally includes assigning at least one of a first
population of synapses or a first population of artificial neu-
rons of the artificial nervous system to a first group tag,
wherein the first group tag is associated with a first set of
parameters and at least one of a first synapse type or a first
neuron type, assigning at least one of a second population of
synapses or a second population of artificial neurons of the
artificial nervous system to a second group tag, wherein the
second group tag is associated with a second set of parameters
and at least one of a second synapse type or a second neuron
type, and changing one or more parameters in at least one of
the first set of parameters or the second set of parameters
causing changing the one or more parameters for at least one
of: one or more synapses in at least one of the first population
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or the second population, or one or more artificial neurons in
at least one of the first population or the second population.
[0008] Certain aspects of the present disclosure provide an
apparatus for operating an artificial nervous system. The
apparatus generally includes a processing system and a
memory coupled to the processing system. The processing
system is typically configured to assign at least one of a first
population of synapses or a first population of artificial neu-
rons of the artificial nervous system to a first group tag,
wherein the first group tag is associated with a first set of
parameters and at least one of a first synapse type or a first
neuron type, assign at least one of a second population of
synapses or a second population of artificial neurons of the
artificial nervous system to a second group tag, wherein the
second group tag is associated with a second set of parameters
and at least one of a second synapse type or a second neuron
type, and change one or more parameters in at least one of the
first set of parameters or the second set of parameters causing
changing the one or more parameters for at least one of: one
or more synapses in at least one of the first population or the
second population, or one or more artificial neurons in at least
one of the first population or the second population.

[0009] Certain aspects of the present disclosure provide an
apparatus for operating an artificial nervous system. The
apparatus generally includes means for assigning at least one
of a first population of synapses or a first population of arti-
ficial neurons of the artificial nervous system to a first group
tag, wherein the first group tag is associated with a first set of
parameters and at least one of a first synapse type or a first
neuron type, means for assigning at least one of a second
population of synapses or a second population of artificial
neurons of'the artificial nervous system to a second group tag,
wherein the second group tag is associated with a second set
of parameters and at least one of a second synapse type or a
second neuron type, and means for changing one or more
parameters in at least one of the first set of parameters or the
second set of parameters causing changing the one or more
parameters for at least one of: one means for or more synapses
in at least one of the first population or the second population,
or one or more artificial neurons in at least one of the first
population or the second population.

[0010] Certain aspects of the present disclosure provide a
computer program product for operating an artificial nervous
system. The computer program product generally includes a
computer-readable medium having instructions executable to
assign at least one of a first population of synapses or a first
population of artificial neurons of the artificial nervous sys-
tem to a first group tag, wherein the first group tag is associ-
ated with a first set of parameters and at least one of a first
synapse type or a first neuron type, assign at least one of a
second population of synapses or a second population of
artificial neurons of the artificial nervous system to a second
group tag, wherein the second group tag is associated with a
second set of parameters and at least one of a second synapse
type or a second neuron type, and change one or more param-
eters in at least one of the first set of parameters or the second
set of parameters causing changing the one or more param-
eters for at least one of: one or more synapses in at least one
of the first population or the second population, or one or
more artificial neurons in at least one of the first population or
the second population.

[0011] Certain aspects of the present disclosure provide a
method for operating an artificial nervous system. The
method generally includes assigning a group of artificial neu-
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rons and synapses of the artificial nervous system to a group
tag with an associated set of parameters, and sending a single
message changing values of the parameters in the set causing
simultaneous switch of the parameters for all artificial neu-
rons and synapses in the group.

[0012] Certain aspects of the present disclosure provide an
apparatus for operating an artificial nervous system. The
apparatus generally includes a processing system and a
memory coupled to the processing system. The processing
system is typically configured to assign a group of artificial
neurons and synapses of the artificial nervous system to a
group tag with an associated set of parameters, and send a
single message changing values of the parameters in the set
causing simultaneous switch of the parameters for all artifi-
cial neurons and synapses in the group.

[0013] Certain aspects of the present disclosure provide an
apparatus for operating an artificial nervous system. The
apparatus generally includes means for assigning a group of
artificial neurons and synapses of the artificial nervous sys-
tem to a group tag with an associated set of parameters, and
means for sending a single message changing values of the
parameters in the set causing simultaneous switch of the
parameters for all artificial neurons and synapses in the group.
[0014] Certain aspects of the present disclosure provide a
computer program product for operating an artificial nervous
system. The computer program product generally includes a
computer-readable medium having instructions executable to
assign a group of artificial neurons and synapses of the arti-
ficial nervous system to a group tag with an associated set of
parameters, and send a single message changing values of the
parameters in the set causing simultaneous switch of the
parameters for all artificial neurons and synapses in the group.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] So that the manner in which the above-recited fea-
tures of the present disclosure can be understood in detail, a
more particular description, briefly summarized above, may
be had by reference to aspects, some of which are illustrated
in the appended drawings. It is to be noted, however, that the
appended drawings illustrate only certain typical aspects of
this disclosure and are therefore not to be considered limiting
of its scope, for the description may admit to other equally
effective aspects.

[0016] FIG.1illustrates an example network of neurons, in
accordance with certain aspects of the present disclosure.
[0017] FIG. 2 illustrates an example processing unit (neu-
ron) of a computational network (neural system or neural
network), in accordance with certain aspects of the present
disclosure.

[0018] FIG. 3 illustrates an example spike-timing depen-
dent plasticity (STDP) curve, in accordance with certain
aspects of the present disclosure.

[0019] FIG. 4 is an example graph of state for an artificial
neuron, illustrating a positive regime and a negative regime
for defining behavior of the neuron, in accordance with cer-
tain aspects of the present disclosure.

[0020] FIG. 5 is a flow diagram of example operations for
operating an artificial nervous system, in accordance with
certain aspects of the present disclosure.

[0021] FIG. 5A illustrates example means capable of per-
forming the operations shown in FIG. 5.

[0022] FIG. 6 is another flow diagram of example opera-
tions for operating an artificial nervous system, in accordance
with certain aspects of the present disclosure.
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[0023] FIG. 6A illustrates example means capable of per-
forming the operations shown in FIG. 6.

[0024] FIG. 7 illustrates an example implementation for
operating an artificial nervous system using a general-pur-
pose processor, in accordance with certain aspects of the
present disclosure.

[0025] FIG. 8 illustrates an example implementation for
operating an artificial nervous system where a memory may
be interfaced with individual distributed processing units, in
accordance with certain aspects of the present disclosure.
[0026] FIG. 9 illustrates an example implementation for
operating an artificial nervous system based on distributed
memories and distributed processing units, in accordance
with certain aspects of the present disclosure.

[0027] FIG. 10 illustrates an example implementation of a
neural network, in accordance with certain aspects of the
present disclosure.

DETAILED DESCRIPTION

[0028] Various aspects of the disclosure are described more
fully hereinafter with reference to the accompanying draw-
ings. This disclosure may, however, be embodied in many
different forms and should not be construed as limited to any
specific structure or function presented throughout this dis-
closure. Rather, these aspects are provided so that this disclo-
sure will be thorough and complete, and will fully convey the
scope of the disclosure to those skilled in the art. Based on the
teachings herein one skilled in the art should appreciate that
the scope of the disclosure is intended to cover any aspect of
the disclosure disclosed herein, whether implemented inde-
pendently of or combined with any other aspect of the disclo-
sure. For example, an apparatus may be implemented or a
method may be practiced using any number of the aspects set
forth herein. In addition, the scope of the disclosure is
intended to cover such an apparatus or method which is
practiced using other structure, functionality, or structure and
functionality in addition to or other than the various aspects of
the disclosure set forth herein. It should be understood that
any aspect of the disclosure disclosed herein may be embod-
ied by one or more elements of a claim.

[0029] Theword “exemplary” is used herein to mean “serv-
ing as an example, instance, or illustration.” Any aspect
described herein as “exemplary” is not necessarily to be con-
strued as preferred or advantageous over other aspects.
[0030] Although particular aspects are described herein,
many variations and permutations of these aspects fall within
the scope of the disclosure. Although some benefits and
advantages of the preferred aspects are mentioned, the scope
of the disclosure is not intended to be limited to particular
benefits, uses or objectives. Rather, aspects of the disclosure
are intended to be broadly applicable to different technolo-
gies, system configurations, networks and protocols, some of
which are illustrated by way of example in the figures and in
the following description of the preferred aspects. The
detailed description and drawings are merely illustrative of
the disclosure rather than limiting, the scope of the disclosure
being defined by the appended claims and equivalents thereof

An Example Neural System

[0031] FIG.1illustrates an example neural system 100 with
multiple levels of neurons in accordance with certain aspects
of the present disclosure. The neural system 100 may com-
prise a level of neurons 102 connected to another level of
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neurons 106 though a network of synaptic connections 104
(i.e., feed-forward connections). For simplicity, only two lev-
els of neurons are illustrated in FIG. 1, although fewer or
more levels of neurons may exist in a typical neural system. It
should be noted that some of the neurons may connect to other
neurons of the same layer through lateral connections. Fur-
thermore, some of the neurons may connect back to a neuron
of a previous layer through feedback connections.

[0032] Asillustrated in FIG. 1, each neuron in the level 102
may receive an input signal 108 that may be generated by a
plurality of neurons of a previous level (not shown in FIG. 1).
The signal 108 may represent an input (e.g., an input current)
to the level 102 neuron. Such inputs may be accumulated on
the neuron membrane to charge a membrane potential. When
the membrane potential reaches its threshold value, the neu-
ron may fire and generate an output spike to be transferred to
the next level of neurons (e.g., the level 106). Such behavior
can be emulated or simulated in hardware and/or software,
including analog and digital implementations.

[0033] In biological neurons, the output spike generated
when a neuron fires is referred to as an action potential. This
electrical signal is a relatively rapid, transient, all-or nothing
nerve impulse, having an amplitude of roughly 100 mV and a
duration of about 1 ms. In a particular aspect of a neural
system having a series of connected neurons (e.g., the transfer
of spikes from one level of neurons to another in FIG. 1),
every action potential has basically the same amplitude and
duration, and thus, the information in the signal is represented
only by the frequency and number of spikes (or the time of
spikes), not by the amplitude. The information carried by an
action potential is determined by the spike, the neuron that
spiked, and the time of the spike relative to one or more other
spikes.

[0034] The transfer of spikes from one level of neurons to
another may be achieved through the network of synaptic
connections (or simply “synapses”) 104, as illustrated in FIG.
1. The synapses 104 may receive output signals (i.e., spikes)
from the level 102 neurons (pre-synaptic neurons relative to
the synapses 104). For certain aspects, these signals may be
scaled according to adjustable synaptic weights w, @1,
, WD (where P is a total number of synaptic connections
between the neurons oflevels 102 and 106). For other aspects,
the synapses 104 may not apply any synaptic weights. Fur-
ther, the (scaled) signals may be combined as an input signal
of'eachneuron in the level 106 (post-synaptic neurons relative
to the synapses 104). Every neuron in the level 106 may
generate output spikes 110 based on the corresponding com-
bined input signal. The output spikes 110 may be then trans-
ferred to another level of neurons using another network of
synaptic connections (not shown in FIG. 1).

[0035] Biological synapses may be classified as either elec-
trical or chemical. While electrical synapses are used prima-
rily to send excitatory signals, chemical synapses can mediate
either excitatory or inhibitory (hyperpolarizing) actions in
postsynaptic neurons and can also serve to amplify neuronal
signals. Excitatory signals typically depolarize the membrane
potential (i.e., increase the membrane potential with respect
to the resting potential). If enough excitatory signals are
received within a certain period to depolarize the membrane
potential above a threshold, an action potential occurs in the
postsynaptic neuron. In contrast, inhibitory signals generally
hyperpolarize (i.e., lower) the membrane potential. Inhibitory
signals, if strong enough, can counteract the sum of excitatory
signals and prevent the membrane potential from reaching
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threshold. In addition to counteracting synaptic excitation,
synaptic inhibition can exert powerful control over spontane-
ously active neurons. A spontaneously active neuron refers to
aneuron that spikes without further input, for example, due to
its dynamics or feedback. By suppressing the spontaneous
generation of action potentials in these neurons, synaptic
inhibition can shape the pattern of firing in a neuron, which is
generally referred to as sculpturing. The various synapses 104
may act as any combination of excitatory or inhibitory syn-
apses, depending on the behavior desired.

[0036] The neural system 100 may be emulated by a gen-
eral purpose processor, a digital signal processor (DSP), an
application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA) or other programmable logic
device (PLD), discrete gate or transistor logic, discrete hard-
ware components, a software module executed by a proces-
sor, or any combination thereof. The neural system 100 may
be utilized in a large range of applications, such as image and
pattern recognition, machine learning, motor control, and the
like. Each neuron in the neural system 100 may be imple-
mented as a neuron circuit. The neuron membrane charged to
the threshold value initiating the output spike may be imple-
mented, for example, as a capacitor that integrates an electri-
cal current flowing through it.

[0037] Inan aspect, the capacitor may be eliminated as the
electrical current integrating device of the neuron circuit, and
a smaller memristor element may be used in its place. This
approach may be applied in neuron circuits, as well as in
various other applications where bulky capacitors are utilized
as electrical current integrators. In addition, each of the syn-
apses 104 may be implemented based on a memristor ele-
ment, wherein synaptic weight changes may relateto changes
of the memristor resistance. With nanometer feature-sized
memristors, the area of neuron circuit and synapses may be
substantially reduced, which may make implementation of a
very large-scale neural system hardware implementation
practical.

[0038] Functionality of aneural processor that emulates the
neural system 100 may depend on weights of synaptic con-
nections, which may control strengths of connections
between neurons. The synaptic weights may be stored in a
non-volatile memory in order to preserve functionality of the
processor after being powered down. In an aspect, the synap-
tic weight memory may be implemented on a separate exter-
nal chip from the main neural processor chip. The synaptic
weight memory may be packaged separately from the neural
processor chip as a replaceable memory card. This may pro-
vide diverse functionalities to the neural processor, wherein a
particular functionality may be based on synaptic weights
stored in a memory card currently attached to the neural
processor.

[0039] FIG. 2 illustrates an example 200 of a processing
unit (e.g., an artificial neuron 202) of a computational net-
work (e.g., aneural system or a neural network) in accordance
with certain aspects of the present disclosure. For example,
the neuron 202 may correspond to any of the neurons oflevels
102 and 106 from FIG. 1. The neuron 202 may receive mul-
tiple input signals 204,-204,, (x,-X,,), which may be signals
external to the neural system, or signals generated by other
neurons of the same neural system, or both. The input signal
may be a current or a voltage, real-valued or complex-valued.
The input signal may comprise a numerical value with a
fixed-point or a floating-point representation. These input
signals may be delivered to the neuron 202 through synaptic
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connections that scale the signals according to adjustable
synaptic weights 206,-206,, (w,-w,,), where N may be a total
number of input connections of the neuron 202.

[0040] The neuron 202 may combine the scaled input sig-
nals and use the combined scaled inputs to generate an output
signal 208 (i.e., a signal y). The output signal 208 may be a
current, or a voltage, real-valued or complex-valued. The
output signal may comprise a numerical value with a fixed-
point or a floating-point representation. The output signal 208
may be then transferred as an input signal to other neurons of
the same neural system, or as an input signal to the same
neuron 202, or as an output of the neural system.

[0041] The processing unit (neuron 202) may be emulated
by an electrical circuit, and its input and output connections
may be emulated by wires with synaptic circuits. The pro-
cessing unit, its input and output connections may also be
emulated by a software code. The processing unit may also be
emulated by an electric circuit, whereas its input and output
connections may be emulated by a software code. In an
aspect, the processing unit in the computational network may
comprise an analog electrical circuit. In another aspect, the
processing unit may comprise a digital electrical circuit. In
yet another aspect, the processing unit may comprise a
mixed-signal electrical circuit with both analog and digital
components. The computational network may comprise pro-
cessing units in any of the aforementioned forms. The com-
putational network (neural system or neural network) using
such processing units may be utilized in a large range of
applications, such as image and pattern recognition, machine
learning, motor control, and the like.

[0042] During the course of training a neural network, syn-
aptic weights (e.g., the weights w, ™Y w, D from
FIG. 1 and/or the weights 206,-206,, from FIG 2) may be
initialized with random Values and 1ncreased or decreased
according to a learning rule. Some examples of the learning
rule are the spike-timing-dependent plasticity (STDP) learn-
ing rule, the Hebb rule, the Oja rule, the Bienenstock-Copper-
Munro (BCM) rule, etc. Very often, the weights may settle to
one of two values (i.e., a bimodal distribution of weights).
This effect can be utilized to reduce the number of bits per
synaptic weight, increase the speed of reading and writing
from/to a memory storing the synaptic weights, and to reduce
power consumption of the synaptic memory.

[0043] Synapse Type

[0044] In hardware and software models of neural net-
works, processing of synapse related functions can be based
on synaptic type. Synapse types may comprise non-plastic
synapses (no changes of weight and delay), plastic synapses
(weight may change), structural delay plastic synapses
(weight and delay may change), fully plastic synapses
(weight, delay and connectivity may change), and variations
thereupon (e.g., delay may change, but no change in weight or
connectivity). The advantage of this is that processing can be
subdivided. For example, non-plastic synapses may not
require plasticity functions to be executed (or waiting for such
functions to complete). Similarly, delay and weight plasticity
may be subdivided into operations that may operate in
together or separately, in sequence or in parallel. Different
types of synapses may have different lookup tables or formu-
las and parameters for each of the different plasticity types
that apply. Thus, the methods would access the relevant tables
for the synapse’s type.

[0045] There are further implications of the fact that spike-
timing dependent structural plasticity may be executed inde-
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pendently of synaptic plasticity. Structural plasticity may be
executed even if there is no change to weight magnitude (e.g.,
if the weight has reached a minimum or maximum value, or it
is not changed due to some other reason) since structural
plasticity (i.e., an amount of delay change) may be a direct
function of pre-post spike time difference. Alternatively, it
may be set as a function of the weight change amount or based
on conditions relating to bounds of the weights or weight
changes. For example, a synaptic delay may change only
when a weight change occurs or if weights reach zero, but not
if the weights are maxed out. However, it can be advantageous
to have independent functions so that these processes can be
parallelized reducing the number and overlap of memory
accesses.

Determination of Synaptic Plasticity

[0046] Neuroplasticity (or simply “plasticity”) is the capac-
ity of neurons and neural networks in the brain to change their
synaptic connections and behavior in response to new infor-
mation, sensory stimulation, development, damage, or dys-
function. Plasticity is important to learning and memory in
biology, as well as to computational neuroscience and neural
networks. Various forms of plasticity have been studied, such
as synaptic plasticity (e.g., according to the Hebbian theory),
spike-timing-dependent plasticity (STDP), non-synaptic
plasticity, activity-dependent plasticity, structural plasticity,
and homeostatic plasticity.

[0047] STDP is a learning process that adjusts the strength
of synaptic connections between neurons, such as those in the
brain. The connection strengths are adjusted based on the
relative timing of a particular neuron’s output and received
input spikes (i.e., action potentials). Under the STDP process,
long-term potentiation (LTP) may occur if an input spike to a
certain neuron tends, on average, to occur immediately before
that neuron’s output spike. Then, that particular input is made
somewhat stronger. In contrast, long-term depression (LTD)
may occur if an input spike tends, on average, to occur imme-
diately after an output spike. Then, that particular input is
made somewhat weaker, hence the name “spike-timing-de-
pendent plasticity.” Consequently, inputs that might be the
cause of the post-synaptic neuron’s excitation are made even
more likely to contribute in the future, whereas inputs that are
not the cause of the post-synaptic spike are made less likely to
contribute in the future. The process continues until a subset
ofthe initial set of connections remains, while the influence of
all others is reduced to zero or near zero.

[0048] Since a neuron generally produces an output spike
when many of its inputs occur within a brief period (i.e., being
sufficiently cumulative to cause the output), the subset of
inputs that typically remains includes those that tended to be
correlated in time. In addition, since the inputs that occur
before the output spike are strengthened, the inputs that pro-
vide the earliest sufficiently cumulative indication of corre-
lation will eventually become the final input to the neuron.

[0049] The STDP learning rule may effectively adapt a
synaptic weight of a synapse connecting a pre-synaptic neu-
ron to a post-synaptic neuron as a function of time difference
between spike time t,,,,, of the pre-synaptic neuron and spike
time t,,,, of the post-synaptic neuron (i.e., t=t,,,~t,,.). A
typical formulation of the STDP is to increase the synaptic
weight (i.e., potentiate the synapse) if the time difference is
positive (the pre-synaptic neuron fires before the post-synap-

tic neuron), and decrease the synaptic weight (i.e., depress the
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synapse) if the time difference is negative (the post-synaptic
neuron fires before the pre-synaptic neuron).

[0050] In the STDP process, a change of the synaptic
weight over time may be typically achieved using an expo-
nential decay, as given by,

a, e 1 1>0 (65)]
Aw(n) =

a_e’™ 1 <0

where k, and k_ are time constants for positive and negative
time difference, respectively, a, and a_ are corresponding
scaling magnitudes, and p is an offset that may be applied to
the positive time difference and/or the negative time differ-
ence.

[0051] FIG. 3 illustrates an example graph 300 of'a synaptic
weight change as a function of relative timing of pre-synaptic
and post-synaptic spikes in accordance with STDP. If a pre-
synaptic neuron fires before a post-synaptic neuron, then a
corresponding synaptic weight may be increased, as illus-
trated in a portion 302 of the graph 300. This weight increase
can be referred to as an LTP of the synapse. [t can be observed
from the graph portion 302 that the amount of LTP may
decrease roughly exponentially as a function of the difference
between pre-synaptic and post-synaptic spike times. The
reverse order of firing may reduce the synaptic weight, as
illustrated in a portion 304 of the graph 300, causing an LTD
of the synapse.

[0052] As illustrated in the graph 300 in FIG. 3, a negative
offset 1 may be applied to the LTP (causal) portion 302 of the
STDP graph. A point of cross-over 306 of the x-axis (y=0)
may be configured to coincide with the maximum time lag for
considering correlation for causal inputs from layer i-1 (pr-
esynaptic layer). In the case of a frame-based input (i.e., an
input is in the form of a frame of a particular duration com-
prising spikes or pulses), the offset value p can be computed
to reflect the frame boundary. A first input spike (pulse) in the
frame may be considered to decay over time either as mod-
eled by a post-synaptic potential directly or in terms of the
effect on neural state. If a second input spike (pulse) in the
frame is considered correlated or relevant of a particular time
frame, then the relevant times before and after the frame may
be separated at that time frame boundary and treated differ-
ently in plasticity terms by offsetting one or more parts of the
STDP curve such that the value in the relevant times may be
different (e.g., negative for greater than one frame and posi-
tive for less than one frame). For example, the negative offset
1 may be set to offset LTP such that the curve actually goes
below zero at a pre-post time greater than the frame time and
it is thus part of LTD instead of LTP.

Neuron Models and Operation

[0053] There are some general principles for designing a
useful spiking neuron model. A good neuron model may have
rich potential behavior in terms of two computational
regimes: coincidence detection and functional computation.
Moreover, a good neuron model should have two elements to
allow temporal coding: arrival time of inputs affects output
time and coincidence detection can have a narrow time win-
dow. Finally, to be computationally attractive, a good neuron
model may have a closed-form solution in continuous time
and have stable behavior including near attractors and saddle
points. In other words, a useful neuron model is one that is
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practical and that can be used to model rich, realistic and
biologically-consistent behaviors, as well as be used to both
engineer and reverse engineer neural circuits.

[0054] A neuron model may depend on events, such as an
input arrival, output spike or other event whether internal or
external. To achieve a rich behavioral repertoire, a state
machine that can exhibit complex behaviors may be desired.
If the occurrence of an event itself, separate from the input
contribution (if any) can influence the state machine and
constrain dynamics subsequent to the event, then the future
state of the system is not only a function of a state and input,
but rather a function of a state, event, and input.

[0055] Inanaspect,aneuronnmay bemodeled as a spiking
leaky-integrate-and-fire neuron with a membrane voltage
v,(t) governed by the following dynamics,

dv,(t 2
T = a0+ B e~ 1) ©

where o and o are parameters, w,, , is a synaptic weight for
the synapse connecting a pre-synaptic neuron m to a post-
synaptic neuron n, and y,,(t) is the spiking output of the
neuron m that may be delayed by dendritic or axonal delay
according to At,, , until arrival at the neuron n’s soma.

[0056] It should be noted that there is a delay from the time
when sufficient input to a post-synaptic neuron is established
until the time when the post-synaptic neuron actually fires. In
a dynamic spiking neuron model, such as Izhikevich’s simple
model, a time delay may be incurred if there is a difference
between a depolarization threshold v, and a peak spike volt-
age Vv, For example, in the simple model, neuron soma
dynamics can be governed by the pair of differential equa-
tions for voltage and recovery, i.e.,

dv_k n/c 3)
E—((V—Vr)(V—Vr)—’H' )/C,

du_ b 4
a =alb(v —v;) —u).

where v is a membrane potential, u is a membrane recovery
variable, k is a parameter that describes time scale of the
membrane potential v, a is a parameter that describes time
scale of the recovery variable u, b is a parameter that describes
sensitivity of the recovery variable u to the sub-threshold
fluctuations of the membrane potential v, v, is a membrane
resting potential, I is a synaptic current, and C is a mem-
brane’s capacitance. In accordance with this model, the neu-
ron is defined to spike when v>v,,_ ;.

Hunzinger Cold Model

[0057] The Hunzinger Cold neuron model is a minimal
dual-regime spiking linear dynamical model that can repro-
duce a rich variety of neural behaviors. The model’s one- or
two-dimensional linear dynamics can have two regimes,
wherein the time constant (and coupling) can depend on the
regime. In the sub-threshold regime, the time constant, nega-
tive by convention, represents leaky channel dynamics gen-
erally acting to return a cell to rest in biologically-consistent
linear fashion. The time constant in the supra-threshold
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regime, positive by convention, reflects anti-leaky channel
dynamics generally driving a cell to spike while incurring
latency in spike-generation.

[0058] As illustrated in FIG. 4, the dynamics of the model
may be divided into two (or more) regimes. These regimes
may be called the negative regime 402 (also interchangeably
referred to as the leaky-integrate-and-fire (LIF) regime, not to
be confused with the LIF neuron model) and the positive
regime 404 (also interchangeably referred to as the anti-
leaky-integrate-and-fire (ALIF) regime, not to be confused
with the ALIF neuron model). In the negative regime 402, the
state tends toward rest (v_) at the time of a future event. In this
negative regime, the model generally exhibits temporal input
detection properties and other sub-threshold behavior. In the
positive regime 404, the state tends toward a spiking event
(v,). Inthis positive regime, the model exhibits computational
properties, such as incurring a latency to spike depending on
subsequent input events. Formulation of dynamics in terms of
events and separation of the dynamics into these two regimes
are fundamental characteristics of the model.

[0059] Linear dual-regime bi-dimensional dynamics (for
states v and u) may be defined by convention as,

d
T =v+q,

du_ N (6)
Tu gy SUET

where q, and r are the linear transformation variables for
coupling.

[0060] The symbol p is used herein to denote the dynamics
regime with the convention to replace the symbol p with the
sign “=” or “+” for the negative and positive regimes, respec-
tively, when discussing or expressing a relation for a specific
regime.

[0061] The model state is defined by a membrane potential
(voltage) v and recovery current u. In basic form, the regime
is essentially determined by the model state. There are subtle,
but important aspects of the precise and general definition, but
for the moment, consider the model to be in the positive
regime 404 if the voltage v is above a threshold (v,) and
otherwise in the negative regime 402.

[0062] The regime-dependent time constants include T_
which is the negative regime time constant, and t, which is
the positive regime time constant. The recovery current time
constant T, is typically independent of regime. For conve-
nience, the negative regime time constant T_ is typically
specified as a negative quantity to reflect decay so that the
same expression for voltage evolution may be used as for the
positive regime in which the exponent and T, will generally
be positive, as will be T,

[0063] The dynamics of the two state elements may be
coupled at events by transformations offsetting the states
from their null-clines, where the transformation variables are

Zo=TPu-v, ™
r=0(v+€) (®)

where d, €, f and v_, v, are parameters. The two values for v,
are the base for reference voltages for the two regimes. The
parameter v_ is the base voltage for the negative regime, and
the membrane potential will generally decay toward v_ in the
negative regime. The parameter v, is the base voltage for the
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positive regime, and the membrane potential will generally
tend away from v, in the positive regime.

[0064] The null-clines for v and u are given by the negative
of the transformation variables q,, and r, respectively. The
parameter 9 is a scale factor controlling the slope of the u
null-cline. The parameter 0 is typically set equal to —v_. The
parameter {3 is a resistance value controlling the slope of the
v null-clines in both regimes. The T, time-constant param-
eters control not only the exponential decays, but also the
null-cline slopes in each regime separately.

[0065] The model is defined to spike when the voltage v
reaches a value v,. Subsequently, the state is typically reset at
a reset event (which technically may be one and the same as
the spike event):

v=7 ©)]

u=u+Au (10)

where v_ and Au are parameters. The reset voltage v_ is
typically set to v_.

[0066] By a principle of momentary coupling, a closed-
form solution is possible not only for state (and with a single
exponential term), but also for the time required to reach a
particular state. The closed-form state solutions are

Ar (11
vt + A = (WD) +gp)e™ —q,

A (12)
u(t + Ar) = (D) + re Tu —r

[0067] Therefore, the model state may be updated only
upon events, such as upon an input (pre-synaptic spike) or
output (post-synaptic spike). Operations may also be per-
formed at any particular time (whether or not there is input or
output).

[0068] Moreover, by the momentary coupling principle, the
time of a post-synaptic spike may be anticipated so the time to
reach a particular state may be determined in advance without
iterative techniques or Numerical Methods (e.g., the Euler
numerical method). Given a prior voltage state v, the time
delay until voltage state v,is reached is given by

vrtap (13)
Ar=1,log—
r=1,log .

[0069] If a spike is defined as occurring at the time the

voltage state v reaches v, then the closed-form solution for
the amount of time, or relative delay, until a spike occurs as
measured from the time that the voltage is at a given state v is

+
T+10gvs 4 if v>79, 14
Arg = v+g+

o0 otherwise

where v, is typically set to parameter v,, although other
variations may be possible.

[0070] The above definitions of the model dynamics
depend on whether the model is in the positive or negative
regime. As mentioned, the coupling and the regime p may be
computed upon events. For purposes of state propagation, the
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regime and coupling (transformation) variables may be
defined based on the state at the time of the last (prior) event.
For purposes of subsequently anticipating spike output time,
the regime and coupling variable may be defined based on the
state at the time of the next (current) event.

[0071] There are several possible implementations of the
Cold model, and executing the simulation, emulation or
model in time. This includes, for example, event-update, step-
event update, and step-update modes. An event update is an
update where states are updated based on events or “event
update” (at particular moments). A step update is an update
when the model is updated at intervals (e.g., 1 ms). This does
not necessarily require iterative methods or Numerical meth-
ods. An event-based implementation is also possible at a
limited time resolution in a step-based simulator by only
updating the model if an event occurs at or between steps or
by “step-event” update.

Neural Coding

[0072] A useful neural network model, such as one com-
posed of the artificial neurons 102, 106 of FIG. 1, may encode
information via any of various suitable neural coding
schemes, such as coincidence coding, temporal coding or rate
coding. In coincidence coding, information is encoded in the
coincidence (or temporal proximity) of action potentials
(spiking activity) of a neuron population. In temporal coding,
a neuron encodes information through the precise timing of
action potentials (i.e., spikes) whether in absolute time or
relative time. Information may thus be encoded in the relative
timing of spikes among a population of neurons. In contrast,
rate coding involves coding the neural information in the
firing rate or population firing rate.

[0073] If a neuron model can perform temporal coding,
then it can also perform rate coding (since rate is just a
function of timing or inter-spike intervals). To provide for
temporal coding, a good neuron model should have two ele-
ments: (1) arrival time of inputs affects output time; and (2)
coincidence detection can have a narrow time window. Con-
nection delays provide one means to expand coincidence
detection to temporal pattern decoding because by appropri-
ately delaying elements of a temporal pattern, the elements
may be brought into timing coincidence.

Arrival Time

[0074] In a good neuron model, the time of arrival of an
input should have an effect on the time of output. A synaptic
input—whether a Dirac delta function or a shaped post-syn-
aptic potential (PSP), whether excitatory (EPSP) or inhibitory
(IPSP)—has a time of arrival (e.g., the time of the delta
function or the start or peak of a step or other input function),
which may be referred to as the input time. A neuron output
(i.e., a spike) has a time of occurrence (wherever it is mea-
sured, e.g., at the soma, at a point along the axon, or atan end
of'the axon), which may be referred to as the output time. That
output time may be the time of the peak of the spike, the start
of'the spike, or any other time in relation to the output wave-
form. The overarching principle is that the output time
depends on the input time.

[0075] One might at first glance think that all neuron mod-
els conform to this principle, but this is generally not true. For
example, rate-based models do not have this feature. Many
spiking models also do not generally conform. A leaky-inte-
grate-and-fire (LIF) model does not fire any faster if there are
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extra inputs (beyond threshold). Moreover, models that might
conform if modeled at very high timing resolution often will
not conform when timing resolution is limited, such asto 1 ms
steps.

Inputs

[0076] An inputto a neuron model may include Dirac delta
functions, such as inputs as currents, or conductance-based
inputs. In the latter case, the contribution to a neuron state
may be continuous or state-dependent.

Example Problem being Solved

[0077] Certain aspects of the present disclosure provide
solutions for two problems: reduction of memory require-
ment for a set of artificial neurons and/or synapses, and turn-
ing on/off flags associated with large populations of artificial
neurons and/or synapses simultaneously or in close temporal
proximity.

[0078] In spiking neuron networks, there are a number of
parameters that define each artificial neuron (neuron circuit)
and synapse. Populations of neurons and synapses often share
the same parameters or differ in only a few parameters. For
populations that share the same parameters, the concept of
synapse types and neuron types may be used. Hence, each
synapse or neuron instance may only need a few bits to
specify its synapse type or neuron type, and the synapse type
or neuron type table may comprise a list of the synapse or
neuron parameters. This approach may already save a sub-
stantial amount of memory for synapses or artificial neurons
that share the exact same parameters.

[0079] However, neuron or synapse populations may often
differ in only a few parameters that currently need a com-
pletely new type definition where it would be preferable to
save the memory. Often times, two or more neuron or synapse
populations are associated with neuron or synapse type
parameters that are common and consume a large amount of
the parameter memory. Examples of these parameters are
STDP tables and differential equation linearized coefficient
tables, with a subset of parameters differing between the
populations that consume a little amount of the parameter
memory, such as enable/disable flags for different features.
Hence, there is a need in the art for a method to take advantage
of this potential memory savings to reduce the hardware
memory requirements in implementation of neural networks.
[0080] In addition, in a neural network, there are often
groups or populations of synapses or neurons that have fea-
tures that need to be enabled or disabled simultaneously or at
least in very close temporal proximity. For example, a visual
network may have three layers of neurons. The first layer (i.e.,
layer 1) may comprise [.4 excitatory and [.4 inhibitory neu-
rons with synapses from retinal ganglion cells (RGCs). The
second layer (i.e., layer 2) may comprise [.23 excitatory and
L.23 inhibitory neurons with synapses from the .4 layer neu-
rons, and the third layer (i.e., layer 3) may comprise synapses
from the [.23 inhibitory to the [.23 excitatory neurons. In an
aspect, it may be desirable to first train layer 1, then layer 2,
and finally layer 3. This may be achieved, for example, by
setting plasticity enable/disable parameters in the synapses
and/or neurons first for layer 1, then for layer 2, and finally for
layer 3.

[0081] More broadly, there may be a parallel auditory net-
work with a similar layered structure that can be trained
simultaneously, but also with the aforementioned layered
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approach. It may be desirable to provide a method to control
parameters, such as plasticity enable/disable, for populations
of neurons and/or synapses such as those in layer 1, simulta-
neously or in close temporal proximity. It should be noted that
the close temporal proximity means that it may be desirable
for the enable/disable parameters to be within a few clock
cycles or model ticks of each other.

Group Tags for Artificial Neurons and Synapses

[0082] Certain aspects of the present disclosure support
assigning artificial neurons and/or synapses of an artificial
nervous system to group tags where group tags have an asso-
ciated set of parameters. By using group tags, artificial neu-
rons and/or synapses in a population can be assigned a group
tag. Then, by changing a parameter associated with the group
tag, all synapses and/or artificial neurons in the group may
have that parameter changed.

[0083] In one aspect of the present disclosure, the param-
eters in a synapse type that include the STDP table and plas-
ticity parameters as well as flags for enabling/disabling plas-
ticity, spiking, and dopamine would be grouped into two
separate structures. A first structure may comprise synapse
type with the STDP table, resource model, and other plastic-
ity parameters, wherein a second group tag structure may
comprise flags to enable/disable plasticity, flags for post-
synaptic potential (PSP) transfer, and flags for dopamine.
Then, synapses would be assigned both a group tag and a
synapse type. In this aspect, synapses with different synapse
types could be assigned the same group tag, such as all of the
layer 1 synapses in the aforementioned example. This would
enable controlling all flags for these populations simulta-
neously and with minimal signaling overhead even over dif-
ferent synapse types.

[0084] Inanother aspect of the present disclosure, the same
aforementioned concept can be utilized for artificial neurons
of an artificial nervous system.

[0085] In yet another aspect of the present disclosure, the
group tag can be combined to have a single tag for a group of
both artificial neurons and synapses with a combination of
parameters that may apply to only neurons, only synapses,
and both. For example, the artificial neurons may be associ-
ated with homeostasis enable/disable flags and the synapses
PSP transfer enable/disable flags, and both may share a plas-
ticity enable/disable flag. By sending a single message chang-
ing these values for this group, it would simultaneously
switch these parameters for all the synapses and artificial
neurons in the group.

[0086] Inyetanotheraspectofthe present disclosure, group
tags can be implemented as a super set of a synapse type. In
this aspect, a synapse would only specify itself as a group tag.
The group tag would specify a set of parameters, such as
plasticity enable/disable, resource enable/disable, and PSP
gain, dopamine enable/disable, and a synapse typeto use. The
synapse type would then specify the STDP table, the resource
model, and other associated parameters. In this aspect, the
synapse type parameters may comprise the parameters that
use more memory and that are common to several populations
of'synapses, such as STDP look up tables. The group tag may
comprise parameters taking up much less memory, such as
feature enable/disable flags, which vary over populations that
otherwise share core STDP tables. For example, a neuron
model may comprise three populations of synapses that share
the same STDP tables, but need to have plasticity turned on at
different time instants, or may differ only in whether or not
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dopamine or resource models are utilized. Rather than using
the memory to duplicate the entire table, using group tags in
this context allows for more efficient memory usage.

[0087] Two key examples of'this aspect arise when normal-
izing synaptic weights to fit well in hardware. In the first
example, there are two or more populations of synapses using
the exact same learning rules, but in two or more places in the
network where they have different fan-outs and hence differ-
ent maximum weights or PSP gains. In this case, all the
parameters are the same except this one parameter related to
fan-out, and the use of group tags enables a more efficient
memory structure. In the second example, two or more popu-
lations of neurons utilize the same model parameters except
for the input scaling parameter that changes based on the
fan-in. Again, the use of group tags may enable a more effi-
cient memory structure.

[0088] According to certain aspects of the present disclo-
sure, the group tag parameters could be stored in several
ways. In one aspect, a set of parameters may be associated
with the group tag and a separate disjoint set of parameters
may be associated with the synapse and/or neuron type.
[0089] In another aspect, some or all of the group tag
parameters may be associated with a synapse type and/or a
neuron type where the group tag has the ability to override the
synapse/neuron type parameters if they are present and active.
For example, the group tag may be able to override up to three
synapse type parameters, wherein a field may specify which
parameter to override, using a default value to indicate none,
and another field specifies the new value to use. This can
provide more flexibility using the same amount of memory or
even less memory.

Additional Features

[0090] According to certain aspects of the present disclo-
sure, group tags may be assigned dynamically. Furthermore,
a synapse or artificial neuron may belong to more than one
group. One method of belonging to more than one group is
that the neurons/synapses track the changes to any group they
belong to and maintain the last updated values based on their
set of group membership.

[0091] One implementation of this approach can be to cre-
ate a larger set of groups that comprises all the used expan-
sions of single and multiple initial group membership. Then,
hardware or software could track the single group value
changes and apply them to both the single groups as well as
the existing multiple group sets that the single group is part of.
In this way, a change does not need to be propagated to all
synapses/neurons as it happens, but rather the synapses/neu-
rons can go to the shared database making updates efficient in
terms of number of writes and occurring quickly in terms of
time to the first neuron/synapse update using the new value.
[0092] Inan aspect of the present disclosure, group param-
eters may be changed from within the neural network. For
example, the group A plasticity could be enabled based on a
certain neuron spiking and disabled based on a different neu-
ron spiking. Those neurons may or may not belong to group
A. Furthermore, the group A plasticity could be enabled
based on a set of neurons spiking, based on a set of neurons
having an activity rate above/below a threshold, or based on a
function of the synaptic weights reaching a metric, such as a
sum of weights being above a defined value or percent of
synapses having weights above a specific value.

[0093] In accordance with certain aspects of the present
disclosure, group tags may be activity dependent. For
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example, in one aspect, all cells (e.g., place cells, superior
colliculus cells, V1 cells, etc) firing within a window of time
may be assigned to group tag A. In another aspect, all the
synapses with weights below a threshold or above a threshold
may be assigned to group tag B. In yet another aspect, all cells
(e.g., place cells, superior colliculus cells, V1 cells, etc) firing
at a rate above/below a threshold may obtain a certain group
tag. In yet another aspect, all cells (e.g., place cells, superior
colliculus cells, V1 cells, etc) firing inside/outside a window
of time may be assigned to a certain group tag. In yet another
aspect, all cells (e.g., place cells, superior colliculus cells, V1
cells, etc) with neuron parameters such as membrane voltages
above/below a threshold may get a specific group tag.

[0094] Dynamic tagging of synapses with weights below a
threshold may be utilized to turn on/off plasticity updates
based on processor load availability. Hence, these dynamic
tags may be used to target the least important synapses for
spike dropping. Dynamic tagging may also be used for flag-
ging underutilized synapses and/or neurons for reallocation
or structural plasticity. For example, a structural plasticity
enable bit could be set for a dynamic group of synapses with
low weights or a group of neurons with low spiking rates.
Furthermore, dynamic tagging may also be used for debug
and measurement purposes and statistics, e.g., for getting
metrics such as the percentage of populations with given tags.

[0095] FIG. 5 is a flow diagram of example operations 500
for operating an artificial nervous system in accordance with
certain aspects of the present disclosure. The operations 500
may be performed in hardware (e.g., by one or more neural
processing units, such as a neuromorphic processor), in soft-
ware, or in firmware. The artificial nervous system may be
modeled on any of various biological or imaginary nervous
systems, such as a visual nervous system, an auditory nervous
system, the hippocampus, etc.

[0096] The operations 500 may begin, at 502, by assigning
at least one of a first population of synapses or a first popu-
lation of artificial neurons of the artificial nervous system to a
first group tag, wherein the first group tag may be associated
with a first set of parameters and at least one of a first synapse
type or a first neuron type. At 504, at least one of a second
population of synapses or a second population of artificial
neurons of the artificial nervous system may be assigned to a
second group tag, wherein the second group tag may be
associated with a second set of parameters and at least one of
a second synapse type or a second neuron type. At 506, one or
more parameters in at least one of the first set of parameters or
the second set of parameters may be changed causing chang-
ing the one or more parameters for at least one of: one or more
synapses in at least one of the first population or the second
population, or one or more artificial neurons in at least one of
the first population or the second population.

[0097] Inan aspectofthe present disclosure, atleastone of:
two or more populations of synapses, or two or more popu-
lations of artificial neurons of the artificial nervous system
may be assigned to two or more group tags, wherein the two
or more group tags may be associated with two or more sets
of'parameters and at least one of two or more synapse types or
two or more neuron types. Changing one or more parameters
in at least one of the two or more sets of parameters may cause
changing the one or more parameters for at least one of: one
or more synapses in at least one of the two or more popula-
tions, or one or more artificial neurons in at least one of the
two or more populations.
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[0098] In an aspect of the present disclosure, both the first
and second group tags may be utilized for tagging at least one
of: one or more of the artificial neurons or one or more of the
synapses with both the first and second group tags. Changing
parameters associated with the first and second synapse types
may cause changing these parameters for all synapses in the
first and second populations. In addition, changing other
parameters associated with the first and second neuron types
may cause changing these other parameters for all artificial
neurons in the first and second populations.

[0099] Inan aspect of the present disclosure, parameters in
the first and second sets may be controlled simultaneously. In
an aspect of the present disclosure, the first synapse type may
be same as the second synapse type, and the first neuron type
may be same as the second neuron type. Furthermore, param-
eters in the first and second sets may be changed at different
time instants, and a value of a parameter in the first set may
differ from a value of that parameter in the second set.
[0100] In an aspect of the present disclosure, the first and
second populations of synapses may be subsets of a set of
synapses of at least one of same layer or same type, and the
first and second populations of artificial neurons may be
subsets of a set of artificial neurons of at least one of same
layer or same type. Parameters in the first and second sets may
be disjoint from parameters associated with the first and sec-
ond synapse types.

[0101] For certain aspects of the present disclosure, at least
one parameter in the first and second sets may be common
with at least one parameter associated with the first and sec-
ond synapse types. Furthermore, overriding of the at least one
parameter associated with the first and second synapse types
may be based on the at least one parameter in the first and
second sets.

[0102] FIG. 6 is a flow diagram of example operations 600
for operating an artificial nervous system in accordance with
certain aspects of the present disclosure. The operations 600
may be performed in hardware (e.g., by one or more neural
processing units, such as a neuromorphic processor), in soft-
ware, or in firmware. The artificial nervous system may be
modeled on any of various biological or imaginary nervous
systems, such as a visual nervous system, an auditory nervous
system, the hippocampus, etc.

[0103] The operations 600 may begin, at 602, by assigning
a group of artificial neurons and synapses of the artificial
nervous system to a group tag with an associated set of param-
eters. At 604, a single message may be send changing values
of the parameters in the set causing simultaneous switch of
the parameters for all artificial neurons and synapses in the
group. According to certain aspects of the present disclosure,
the parameters in the set may comprise parameters applying
only to artificial neurons in the group, parameters applying
only to synapses in the group, and parameters applying to
both artificial neurons and synapses in the group.

[0104] FIG. 7 illustrates an example block diagram 700 of
the aforementioned method for operating an artificial nervous
system using a general-purpose processor 702 in accordance
with certain aspects of the present disclosure. Variables (neu-
ral signals), synaptic weights, and/or system parameters asso-
ciated with a computational network (neural network) may be
stored in a memory block 704, while instructions related
executed at the general-purpose processor 702 may be loaded
from a program memory 706. In an aspect of the present
disclosure, the instructions loaded into the general-purpose
processor 702 may comprise code for assigning at least one of
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a first population of synapses or a first population of artificial
neurons of the artificial nervous system to a first group tag,
wherein the first group tag is associated with a first set of
parameters and at least one of a first synapse type or a first
neuron type, for assigning at least one of a second population
of'synapses or a second population of artificial neurons of the
artificial nervous system to a second group tag, wherein the
second group tag is associated with a second set of parameters
and at least one of a second synapse type or a second neuron
type, and for changing one or more parameters in at least one
of the first set of parameters or the second set of parameters
causing changing the one or more parameters for at least one
of: one or more synapses in at least one of the first population
or the second population, or one or more artificial neurons in
at least one of the first population or the second population. In
another aspect of the present disclosure, the instructions
loaded into the general-purpose processor 702 may comprise
code for assigning a group of artificial neurons and synapses
to a group tag with an associated set of parameters, and for
sending a single message changing values of the parameters
in the set causing simultaneous switch of the parameters for
all artificial neurons and synapses in the group.

[0105] FIG. 8 illustrates an example block diagram 800 of
the aforementioned method for operating an artificial nervous
system where a memory 802 can be interfaced via an inter-
connection network 804 with individual (distributed) pro-
cessing units (neural processors) 806 of a computational net-
work (neural network) in accordance with certain aspects of
the present disclosure. Variables (neural signals), synaptic
weights, and/or system parameters associated with the com-
putational network (neural network) may be stored in the
memory 802, and may be loaded from the memory 802 via
connection(s) of the interconnection network 804 into each
processing unit (neural processor) 806. In an aspect of the
present disclosure, the processing unit 806 may be configured
to assign at least one of a first population of synapses or a first
population of artificial neurons of the artificial nervous sys-
tem to a first group tag, wherein the first group tag is associ-
ated with a first set of parameters and at least one of a first
synapse type or a first neuron type, to assign at least one of a
second population of synapses or a second population of
artificial neurons of the artificial nervous system to a second
group tag, wherein the second group tag is associated with a
second set of parameters and at least one of a second synapse
type or a second neuron type, and to change one or more
parameters in at least one of the first set of parameters or the
second set of parameters causing changing the one or more
parameters for at least one of: one or more synapses in at least
one of the first population or the second population, or one or
more artificial neurons in at least one of'the first population or
the second population. In another aspect of the present dis-
closure, the processing unit 806 may be configured to assign
a group of artificial neurons and synapses to a group tag with
an associated set of parameters, and to send a single message
changing values of the parameters in the set causing simulta-
neous switch of the parameters for all artificial neurons and
synapses in the group.

[0106] FIG. 9 illustrates an example block diagram 900 of
the aforementioned method for operating an artificial nervous
system based on distributed weight memories 902 and dis-
tributed processing units (neural processors) 904 in accor-
dance with certain aspects of the present disclosure. As illus-
trated in FIG. 9, one memory bank 902 may be directly
interfaced with one processing unit 904 of a computational
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network (neural network), wherein that memory bank 902
may store variables (neural signals), synaptic weights, and/or
system parameters associated with that processing unit (neu-
ral processor) 904. In an aspect of the present disclosure, the
processing unit(s) 904 may be configured to assign at least
one of a first population of synapses or a first population of
artificial neurons of the artificial nervous system to a first
group tag, wherein the first group tag is associated with a first
set of parameters and at least one of a first synapse type or a
first neuron type, to assign at least one of a second population
of'synapses or a second population of artificial neurons of the
artificial nervous system to a second group tag, wherein the
second group tag is associated with a second set of parameters
and at least one of a second synapse type or a second neuron
type, and to change one or more parameters in at least one of
the first set of parameters or the second set of parameters
causing changing the one or more parameters for at least one
of: one or more synapses in at least one of the first population
or the second population, or one or more artificial neurons in
at least one of the first population or the second population. In
another aspect of the present disclosure, the processing unit
904 may be configured to assign a group of artificial neurons
and synapses to a group tag with an associated set of param-
eters, and to send a single message changing values of the
parameters in the set causing simultaneous switch of the
parameters for all artificial neurons and synapses in the group.

[0107] FIG. 10 illustrates an example implementation of a
neural network 1000 in accordance with certain aspects of the
present disclosure. As illustrated in FIG. 10, the neural net-
work 1000 may comprise a plurality of local processing units
1002 that may perform various operations of methods
described above. Each processing unit 1002 may comprise a
local state memory 1004 and a local parameter memory 1006
that store parameters of the neural network. In addition, the
processing unit 1002 may comprise a memory 1008 with a
local (neuron) model program, a memory 1010 with a local
learning program, and a local connection memory 1012. Fur-
thermore, as illustrated in FIG. 10, each local processing unit
1002 may be interfaced with a unit 1014 for configuration
processing that may provide configuration for local memories
of the local processing unit, and with routing connection
processing elements 1016 that provide routing between the
local processing units 1002.

[0108] According to certain aspects of the present disclo-
sure, each local processing unit 1002 may be configured to
determine parameters of the neural network based upon
desired one or more functional features of the neural network,
and develop the one or more functional features towards the
desired functional features as the determined parameters are
further adapted, tuned and updated.

[0109] The various operations of methods described above
may be performed by any suitable means capable of perform-
ing the corresponding functions. The means may include
various hardware and/or software component(s) and/or mod-
ule(s), including, but not limited to a circuit, an application
specific integrated circuit (ASIC), or processor. For example,
the various operations may be performed by one or more of
the various processors shown in FIGS. 7-10. Generally, where
there are operations illustrated in figures, those operations
may have corresponding counterpart means-plus-function
components with similar numbering. For example, opera-
tions 500-600 illustrated in FIGS. 5-6 correspond to means
500A-600A illustrated in FIGS. 5A-6A.
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[0110] For example, means for displaying may include a
display (e.g., a monitor, flat screen, touch screen, and the
like), a printer, or any other suitable means for outputting data
for visual depiction (e.g., a table, chart, or graph). Means for
processing, means for receiving, means for tracking, means
for adjusting, means for updating, or means for determining
may comprise a processing system, which may include one or
more processors or processing units. Means for sensing may
include a sensor. Means for storing may include a memory or
any other suitable storage device (e.g., RAM), which may be
accessed by the processing system.

[0111] As used herein, the term “determining” encom-
passes a wide variety of actions. For example, “determining”
may include calculating, computing, processing, deriving,
investigating, looking up (e.g., looking up in a table, a data-
base or another data structure), ascertaining, and the like.
Also, “determining” may include receiving (e.g., receiving
information), accessing (e.g., accessing data in a memory),
and the like. Also, “determining” may include resolving,
selecting, choosing, establishing, and the like.

[0112] Asusedherein, a phrasereferringto “atleast one of”
a list of items refers to any combination of those items,
including single members. As an example, “at least one of a,
b, or ¢” is intended to cover a, b, ¢, a-b, a-c, b-c, and a-b-c.

[0113] The various illustrative logical blocks, modules, and
circuits described in connection with the present disclosure
may be implemented or performed with a general purpose
processor, a digital signal processor (DSP), an application
specific integrated circuit (ASIC), a field programmable gate
array signal (FPGA) or other programmable logic device
(PLD), discrete gate or transistor logic, discrete hardware
components or any combination thereof designed to perform
the functions described herein. A general-purpose processor
may be a microprocessor, but in the alternative, the processor
may be any commercially available processor, controller,
microcontroller, or state machine. A processor may also be
implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of
microprocessors, one or more MiCroprocessors in conjunc-
tion with a DSP core, or any other such configuration.

[0114] The steps of a method or algorithm described in
connection with the present disclosure may be embodied
directly in hardware, in a software module executed by a
processor, or in a combination of the two. A software module
may reside in any form of storage medium that is known in the
art. Some examples of storage media that may be used include
random access memory (RAM), read only memory (ROM),
flash memory, EPROM memory, EEPROM memory, regis-
ters, a hard disk, a removable disk, a CD-ROM and so forth.
A software module may comprise a single instruction, or
many instructions, and may be distributed over several dif-
ferent code segments, among different programs, and across
multiple storage media. A storage medium may be coupled to
a processor such that the processor can read information
from, and write information to, the storage medium. In the
alternative, the storage medium may be integral to the pro-
Cessor.

[0115] The methods disclosed herein comprise one or more
steps or actions for achieving the described method. The
method steps and/or actions may be interchanged with one
another without departing from the scope of the claims. In
other words, unless a specific order of steps or actions is
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specified, the order and/or use of specific steps and/or actions
may be modified without departing from the scope of the
claims.

[0116] The functions described may be implemented in
hardware, software, firmware, or any combination thereof. If
implemented in hardware, an example hardware configura-
tion may comprise a processing system in a device. The
processing system may be implemented with a bus architec-
ture. The bus may include any number of interconnecting
buses and bridges depending on the specific application of the
processing system and the overall design constraints. The bus
may link together various circuits including a processor,
machine-readable media, and a bus interface. The bus inter-
face may be used to connect a network adapter, among other
things, to the processing system via the bus. The network
adapter may be used to implement signal processing func-
tions. For certain aspects, a user interface (e.g., keypad, dis-
play, mouse, joystick, etc.) may also be connected to the bus.
The bus may also link various other circuits such as timing
sources, peripherals, voltage regulators, power management
circuits, and the like, which are well known in the art, and
therefore, will not be described any further.

[0117] The processor may be responsible for managing the
bus and general processing, including the execution of soft-
ware stored on the machine-readable media. The processor
may be implemented with one or more general-purpose and/
or special-purpose processors. Examples include micropro-
cessors, microcontrollers, DSP processors, and other cir-
cuitry that can execute software. Software shall be construed
broadly to mean instructions, data, or any combination
thereof, whether referred to as software, firmware, middle-
ware, microcode, hardware description language, or other-
wise. Machine-readable media may include, by way of
example, RAM (Random Access Memory), flash memory,
ROM (Read Only Memory), PROM (Programmable Read-
Only Memory), EPROM (FErasable Programmable Read-
Only Memory), EEPROM (Electrically Erasable Program-
mable Read-Only Memory), registers, magnetic disks,
optical disks, hard drives, or any other suitable storage
medium, or any combination thereof. The machine-readable
media may be embodied in a computer-program product. The
computer-program product may comprise packaging materi-
als.

[0118] In a hardware implementation, the machine-read-
able media may be part of the processing system separate
from the processor. However, as those skilled in the art will
readily appreciate, the machine-readable media, or any por-
tion thereof, may be external to the processing system. By
way of example, the machine-readable media may include a
transmission line, a carrier wave modulated by data, and/or a
computer product separate from the device, all which may be
accessed by the processor through the bus interface. Alterna-
tively, or in addition, the machine-readable media, or any
portion thereof, may be integrated into the processor, such as
the case may be with cache and/or general register files.
[0119] The processing system may be configured as a gen-
eral-purpose processing system with one or more micropro-
cessors providing the processor functionality and external
memory providing at least a portion of the machine-readable
media, all linked together with other supporting circuitry
through an external bus architecture. Alternatively, the pro-
cessing system may be implemented with an ASIC (Applica-
tion Specific Integrated Circuit) with the processor, the bus
interface, the user interface, supporting circuitry, and at least
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a portion of the machine-readable media integrated into a
single chip, or with one or more FPGAs (Field Programmable
Gate Arrays), PL.Ds (Programmable Logic Devices), control-
lers, state machines, gated logic, discrete hardware compo-
nents, or any other suitable circuitry, or any combination of
circuits that can perform the various functionality described
throughout this disclosure. Those skilled in the art will rec-
ognize how best to implement the described functionality for
the processing system depending on the particular application
and the overall design constraints imposed on the overall
system.

[0120] The machine-readable media may comprise a num-
ber of software modules. The software modules include
instructions that, when executed by the processor, cause the
processing system to perform various functions. The software
modules may include a transmission module and a receiving
module. Each software module may reside in a single storage
device or be distributed across multiple storage devices. By
way of example, a software module may be loaded into RAM
from a hard drive when a triggering event occurs. During
execution of the software module, the processor may load
some of the instructions into cache to increase access speed.
One or more cache lines may then be loaded into a general
register file for execution by the processor. When referring to
the functionality of a software module below, it will be under-
stood that such functionality is implemented by the processor
when executing instructions from that software module.

[0121] If implemented in software, the functions may be
stored or transmitted over as one or more instructions or code
on a computer-readable medium. Computer-readable media
include both computer storage media and communication
media including any medium that facilitates transfer of a
computer program from one place to another. A storage
medium may be any available medium that can be accessed
by a computer. By way of example, and not limitation, such
computer-readable media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other
medium that can be used to carry or store desired program
code in the form of instructions or data structures and that can
be accessed by a computer. Also, any connection is properly
termed a computer-readable medium. For example, if the
software is transmitted from a website, server, or other remote
source using a coaxial cable, fiber optic cable, twisted pair,
digital subscriber line (DSL), or wireless technologies such as
infrared (IR), radio, and microwave, then the coaxial cable,
fiber optic cable, twisted pair, DSL, or wireless technologies
such as infrared, radio, and microwave are included in the
definition of medium. Disk and disc, as used herein, include
compact disc (CD), laser disc, optical disc, digital versatile
disc (DVD), floppy disk, and Blu-ray® disc where disks
usually reproduce data magnetically, while discs reproduce
data optically with lasers. Thus, in some aspects computer-
readable media may comprise non-transitory computer-read-
able media (e.g., tangible media). In addition, for other
aspects computer-readable media may comprise transitory
computer-readable media (e.g., a signal). Combinations of
the above should also be included within the scope of com-
puter-readable media.

[0122] Thus, certain aspects may comprise a computer pro-
gram product for performing the operations presented herein.
For example, such a computer program product may com-
prise a computer readable medium having instructions stored
(and/or encoded) thereon, the instructions being executable
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by one or more processors to perform the operations
described herein. For certain aspects, the computer program
product may include packaging material.

[0123] Further, it should be appreciated that modules and/
or other appropriate means for performing the methods and
techniques described herein can be downloaded and/or oth-
erwise obtained by a device as applicable. For example, such
adevice can be coupled to a server to facilitate the transfer of
means for performing the methods described herein. Alterna-
tively, various methods described herein can be provided via
storage means (e.g., RAM, ROM, a physical storage medium
such as a compact disc (CD) or floppy disk, etc.), such that a
device can obtain the various methods upon coupling or pro-
viding the storage means to the device. Moreover, any other
suitable technique for providing the methods and techniques
described herein to a device can be utilized.

[0124] Itis to be understood that the claims are not limited
to the precise configuration and components illustrated
above. Various modifications, changes and variations may be
made in the arrangement, operation and details of the meth-
ods and apparatus described above without departing from
the scope of the claims.

What is claimed is:

1. A method for operating an artificial nervous system,
comprising:
assigning at least one of a first population of synapses or a
first population of artificial neurons of the artificial ner-
vous system to a first group tag, wherein the first group
tag is associated with a first set of parameters and at least
one of a first synapse type or a first neuron type;

assigning at least one of a second population of synapses or
a second population of artificial neurons of the artificial
nervous system to a second group tag, wherein the sec-
ond group tag is associated with a second set of param-
eters and at least one of a second synapse type or a
second neuron type; and

changing one or more parameters in at least one of the first
set of parameters or the second set of parameters causing
changing the one or more parameters for at least one of:
one or more synapses in at least one of the first popula-
tion or the second population, or one or more artificial
neurons in at least one of the first population or the
second population.

2. The method of claim 1, further comprising

tagging at least one of: one or more of the artificial neurons
or one or more of the synapses with both the first and
second group tags.

3. The method of claim 1, further comprising:

changing parameters associated with the first and second
synapse types causing changing these parameters for all
synapses in the first and second populations; and

changing other parameters associated with the first and
second neuron types causing changing these other
parameters for all artificial neurons in the first and sec-
ond populations.

4. The method of claim 1, wherein the first and second sets
of parameters comprise at least one of a flag to enable plas-
ticity, a flag to disable plasticity, a flag for post-synaptic
potential (PSP) transfer, a flag for dopamine, a homeostasis
enable flag, a homeostasis disable flag, a plasticity enable flag
or a plasticity disable flag.
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5. The method of claim 4, further comprising:

controlling simultaneously the flag to enable plasticity, the
flag to disable plasticity, the flag for post-synaptic poten-
tial (PSP) transfer, and the flag for dopamine.

6. The method of claim 1, wherein parameters associated
with the first and second synapse types comprise at least one
of a spike-timing-dependent plasticity (STDP) table, a
resource model, or plasticity parameters.

7. The method of claim 1, further comprising:

controlling simultaneously parameters in the first and sec-

ond sets.

8. The method of claim 1, wherein:

the first synapse type is same as the second synapse type,

and

the first neuron type is same as the second neuron type, and

the method further comprising

changing parameters in the first and second sets at different

time instants, and

avalue of a parameter in the first set differs from a value of

that parameter in the second set.

9. The method of claim 1, wherein:

the first and second populations of synapses are subsets of

a set of synapses of at least one of same layer or same
type, and

the first and second populations of artificial neurons are

subsets of a set of artificial neurons of at least one of
same layer or same type.

10. The method of claim 1, wherein parameters in the first
and second sets are disjoint from parameters associated with
the first and second synapse types.

11. The method of claim 1, wherein at least one parameter
in the first and second sets is common with at least one
parameter associated with the first and second synapse types,
and the method further comprising

overriding, based on the at least one parameter in the first

and second sets, the at least one parameter associated
with the first and second synapse types.

12. The method of 1, wherein at least one of the first group
tag or the second group tag is assigned dynamically.

13. The method of claim 12, wherein dynamically assign-
ing the at least one of first group tag or second group tag is
associated with synapses of at least one of the first population
of synapses or the second population of synapses with
weights below a threshold.

14. The method of claim 12, wherein dynamically assign-
ing the at least one of first group tag or second group tag
further comprises:

flagging underutilized synapses of at least one of the first or

second populations of synapses and underutilized arti-
ficial neurons of at least one of the first or second popu-
lations of artificial neurons for at least one of realloca-
tion or structural plasticity.

15. The method of claim 1, wherein changing the one or
more parameters comprises enabling and disabling plasticity,
and the method further comprising:

enabling plasticity based on a certain artificial neuron of

the first population of artificial neurons or of the second
population of artificial neurons spiking; and

disabling plasticity based on a different certain artificial

neuron of the first population of artificial neurons or of
the second population of artificial neurons spiking.

16. The method of claim 1, wherein changing the one or
more parameters comprises enabling and disabling plasticity,
and the method further comprising:
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enabling plasticity based on a set of artificial neurons of at
least one of the first population of artificial neurons or
the second population of artificial neurons spiking.

17. The method of claim 1, wherein changing the one or
more parameters comprises enabling and disabling plasticity,
and the method further comprising:

enabling plasticity based on a set of artificial neurons of at

least one of the first population of artificial neurons or
the second population of artificial neurons having a
defined activity rate.

18. The method of claim 1, wherein changing the one or
more parameters comprises enabling and disabling plasticity,
and the method further comprising:

enabling plasticity based on a function of synaptic weights

associated with at least one of the first population of
synapses or the second population of synapses reaching
a metric.

19. An apparatus for operating an artificial nervous system,
comprising:

a processing system configured to:

assign at least one of a first population of synapses or a
first population of artificial neurons of the artificial
nervous system to a first group tag, wherein the first
group tag is associated with a first set of parameters
and at least one of a first synapse type or a first neuron
type;

assign at least one of a second population of synapses or
a second population of artificial neurons of the artifi-
cial nervous system to a second group tag, wherein the
second group tag is associated with a second set of
parameters and at least one of a second synapse type
or a second neuron type; and

change one or more parameters in at least one of the first
set of parameters or the second set of parameters
causing changing the one or more parameters for at
least one of: one or more synapses in at least one of the
first population or the second population, or one or
more artificial neurons in at least one of the first popu-
lation or the second population; and

a memory coupled to the processing system.

20. An apparatus for operating an artificial nervous system,
comprising:

means for assigning at least one of a first population of

synapses or a first population of artificial neurons of the
artificial nervous system to a first group tag, wherein the
first group tag is associated with a first set of parameters
and at least one of a first synapse type or a first neuron
type;

means for assigning at least one of a second population of

synapses or a second population of artificial neurons of
the artificial nervous system to a second group tag,
wherein the second group tag is associated with a second
set of parameters and at least one of a second synapse
type or a second neuron type; and

means for changing one or more parameters in at least one

of the first set of parameters or the second set of param-
eters causing changing the one or more parameters for at
least one of: one means for or more synapses in at least
one of the first population or the second population, or
one or more artificial neurons in at least one of the first
population or the second population.

21. A computer program product for operating an artificial
nervous system, comprising a computer-readable medium
having instructions executable to:
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assign at least one of a first population of synapses or a first
population of artificial neurons of the artificial nervous
system to a first group tag, wherein the first group tag is
associated with a first set of parameters and at least one
of a first synapse type or a first neuron type;

assign at least one of a second population of synapses or a

second population of artificial neurons of the artificial
nervous system to a second group tag, wherein the sec-
ond group tag is associated with a second set of param-
eters and at least one of a second synapse type or a
second neuron type; and

change one or more parameters in at least one of the first set

of parameters or the second set of parameters causing
changing the one or more parameters for at least one of:
one or more synapses in at least one of the first popula-
tion or the second population, or one or more artificial
neurons in at least one of the first population or the
second population.

22. A method for operating an artificial nervous system,
comprising:

assigning a group of artificial neurons and synapses of the

artificial nervous system to a group tag with an associ-
ated set of parameters; and

sending a single message changing values of the param-

eters in the set causing simultaneous switch of the
parameters for all artificial neurons and synapses in the
group.

23. The method of claim 22, wherein the parameters in the
set comprise parameters applying only to artificial neurons in
the group, parameters applying only to synapses in the group,
and parameters applying to both artificial neurons and syn-
apses in the group.

24. The method of claim 23, wherein the parameters apply-
ing only to artificial neurons in the group comprise a homeo-
stasis enable flag and a homeostasis disable flag.
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25. The method of claim 23, wherein the parameters apply-
ing only to synapses in the group comprise a post-synaptic
potential (PSP) transfer enable flag and a PSP transfer disable
flag.

26. The method of claim 23, wherein the parameters apply-
ing to both artificial neurons and synapses in the group com-
prise a plasticity enable flag and a plasticity disable flag.

27. An apparatus for operating an artificial nervous system,
comprising:

a processing system configured to:

assign a group of artificial neurons and synapses of the
artificial nervous system to a group tag with an asso-
ciated set of parameters; and

send a single message changing values ofthe parameters
in the set causing simultaneous switch of the param-
eters for all artificial neurons and synapses in the
group; and

a memory coupled to the processing system.

28. An apparatus for operating an artificial nervous system,
comprising:

means for assigning a group of artificial neurons and syn-

apses of the artificial nervous system to a group tag with
an associated set of parameters; and

means for sending a single message changing values of the

parameters in the set causing simultaneous switch of the
parameters for all artificial neurons and synapses in the
group.

29. A computer program product for operating an artificial
nervous system, comprising a computer-readable medium
having instructions executable to:

assign a group of artificial neurons and synapses of the

artificial nervous system to a group tag with an associ-
ated set of parameters; and

send a single message changing values of the parameters in

the set causing simultaneous switch of the parameters
for all artificial neurons and synapses in the group.
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