
(12) United States Patent
Nguyen

USOO6578020B1

US 6,578,020 B1
Jun. 10, 2003

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND SYSTEM FOR CONVERTING
CODE TO EXECUTABLE CODE USING
NEURAL NETWORKS IMPLEMENTED INA
VERY LARGESCALE INTEGRATION (VLSI)
INTEGRATED CIRCUIT

(75) Inventor: Chung T. Nguyen, Austin, TX (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/455,705
(22) Filed: Dec. 7, 1999
(51) Int. Cl. G06F 15/18; G06F 9/45
(52) U.S. Cl. 706/15; 706/27; 706/33;

717/138; 717/139
(58) Field of Search 706/15, 27, 33;

717/138, 139; 712/200, 1

(56) References Cited

U.S. PATENT DOCUMENTS

4,858,147 A 8/1989 Conwell 700/48
4,994.982 A * 2/1991 Duranton et al. 706/41
5,005,206 A * 4/1991 Naillon et al. 382/158
5,129,037 A * 7/1992 Kirk et al. 706/16
5,134,396 A 7/1992 Sirat et al. 341/50
5,151,971. A * 9/1992 Jousselin et al. 365/189.08
5,201,029 A 4/1993 Jackson 706/31
5,293.459 A 3/1994 Duranton et al. 706/41
5,325,464 A 6/1994 Pechanek et al. 706/41
5,748,849 A * 5/1998 Gobert 706/27
5,787,279 A * 7/1998 Rigoutsos 707/6
5.841,947 A * 11/1998 Nordin 706/13
5,946,673 A * 8/1999 Francone et al. 700/246
5,960,391 A 9/1999 Tateishi et al. 704/232
6,070,140 A 5/2000 Tran 704/275
6,092,039 A 7/2000 Zingher 704/221
6,131,191. A * 10/2000 Cierniak et al. 717/148

Computer System

6,266,807 B1 * 7/2001 McGarity et al. 712/209
6,330,659 B1 * 12/2001 Poff et al. 712/34
6,332,215 B1 * 12/2001 Patel et al. 717/141
6,493,686 B1 12/2002 Francone et al. 706/12

2002/0066083 A1 5/2002 Patel et al. 717/136

FOREIGN PATENT DOCUMENTS

GB 2280288 1/1995 GO6F/9/44

OTHER PUBLICATIONS

Nigri et al; “Silicon Compilation of Neural Networks”. 5th
Annual European Computer Conference, May 1991, p.
541-546.
Luick, D.; “TP 6.1. Beyond Superscalar RISC, What Next?
An Almost Unbiased View'. 1998 IEEE International Sol
id-State Circuits Conference, Feb. 1998, p. 86-87.*
Kuhn et al., “Description and Simulation of Hardware/
Software Systems with Java”. Proceedings of the 36th
Design Automatio Conference, Jun. 1999, p. 790–793.*
Kim et al., “Designing a Java Microprocessor Core Using
FPGA Technology”. 11th Annual IEEE International ASIC
Conference 1998, Sep. 1998, p. 13–17.*
Saha et al.; “Web-based Distribution VLSI Design”. Pro
ceedings of the 1998 11th International Conference on VLSI
Design, Jan. 1998, p. 449-454.*

(List continued on next page.)
Primary Examiner John Follansbee
ASSistant Examiner-Kelvin Booker
(74) Attorney, Agent, or Firm-David W. Victor; Konrad
Raynes Victor & Mann LLP
(57) ABSTRACT

Disclosed is a an integrated circuit method and System for
generating a compiler to map a code Set to object code
capable of being executed on an operating System platform.
The integrated circuit is encoded with logic including at
least one neural network. The at least one neural network in
the integrated circuit is trained to convert the code Set to
object code. The at least one trained neural network is then
used to convert the code Set to object code.

29 Claims, 6 Drawing Sheets

JavaSource

awaitial

Code
java)

achine Java Compiler
(avac)

Neural Network
Compiler

Native lachine
Code

US 6,578,020 B1
Page 2

OTHER PUBLICATIONS

Ito et al., “Designing a Java Microcontroller to Specific
Applications”. Proceedings of the XII Symposium on Inte
grated Circuits and System Design, Oct. 1999, p. 12-15.*
Chen et al., “A Neural Network Architecture for Syntax
Analysis”. IEEE Transactions on Neural Networks, Jan.
1999, p. 94-114.*
Yang et al., “LaTTe: A Java VMJust-in Time Compiler with
Fast and Efficient Register Allocation”. Proceedings of the
1999 International Conference on Parallel Architectures and
Compilation Techniques, Oct. 1999, p. 128-138.*
Artigas et al., "High Performance Numerical Computing in
Java: Language and Compiler Issues”. 1999 LCPC, Aug.
1999.*
Newhall et al.; “Performance Measurement of Dynamically
Compiled Java Executions”. ACM 1999 Java Grande Con
ference, Jun. 1999.*
Prechelt, L., “A Parellel Programming Model for Irregular
Dynamic Neural Networks”. Proceedings of the 3rd Work
ing Conference on Massively Parellel Programming, Nov.
1997, p. 214–219.*
Ramacher, U.; “Synapse-X: A General-Purpose Neurocom
puter Architecture'. 1991 IEEE International Joint Confer
ence on Neural Networks, vol. 3, Nov. 1991, p. 2168–2176.*
Moreira et al., High Performance Computing with the Array
Package for Java: A Case Study Using Data Mining, Pro
ceedings o the 1999 ACM/IEEE Conference on Supercom
puting, Aug. 1999.*
Vellacott, O.R. ANNECS: A Neural Network Compiler and
Simulator, International Joint Conference on Neural Net
works, Jul. 1991, vol. 2, p. 991.*
Vellacott, O.R. Compilation of Neural Nets From High
Level Specifications, IEE Colloquium on Neural Networks:
Design Techniques and Tools, Mar. 1991, pp. 9/1-9/4.*
Takahashi et al., Applying a Neural Network to the Adaptive
Control of JIT Production Systems, Proceedings of the 1999
IEEE International Conference on Control Applications,
Aug. 1999, vol. 2, pp. 1648–1653.*
McCollum et al., The Improvement of a Software Design
Methodology by Encapsulating Knowledge from Code, Pro
ceedings o the 24th Euromicro Conference, Aug. 1998, vol.
2, pp. 913–918.*
Henritzi et al., ADARC: A New Multi-Instruction Issue
Approach, Proceedings of the PDPTA, 1996.*
Hussain, T. Cellular Encoding: Review and Critique, NEC
Research Index, Queen's University, 1997.*
Vellacott, O.R., A Framework of Hierarchy For Neural
Theory, Second International Conference on Artifical Neural
Networks, Nov. 1991, pp. 237-241.*

Fakhraie et al., Comparision of Three Different Architec
tures for MOS-Compatible Quadratic Synapses, 1994 Inter
national Symposium on Speech, Image Processing and
Neural Networks, Apr. 1994, pp. 483-486.*
Spaanenburg et al., ASIC-Based Development of Cellular
Neural Networks, 1990 IEEE International Workshop on
Cellular Neural Networks and Their Applications, Dec.
1990, pp. 177-184.*
UK Search Report in App. No. GB00288.18.3, date of Search
Dec. 17, 2001.
Theoretical Computer Science (Netherlands) vol. 141, No.
1-2, pp. 1–52, Apr. 1995, ISSN 0304-3975 “Fundamental
Study: A neural compiler” by F Gruau, J Y Ratajszczak, G
Wiber.
Chen, Chun-Hsien et al. “A Neural-Network Architecture
for Syntax Analysis”, Revised Oct. 5, 1998, IEEE Transac
tions on Neural Networks, vol. 10. No. 1, Jan. 1999, pp.
94-114.
C.T. Nguyen, et al., “Wavelet-based Hybrid Neurosystem
for Feature Extractions, Characterizations and Signal Clas
sifications", Proceedings of the 29" Asilomar Conference on
Signals, Systems, and Computers (2-Volume Set), 1196
Institute of Electrical and Electronics Engineers, online,
retrieved Apr. 24, 2001). Retrieved from the Internet <URL:
http://computer.org/Proceedings/asilomar/7370/
73700904abs.htm, Nov. 1996.
C.T. Nguyen, et al., “Wavelet-based Hybrid Neurosystem
for Feature Extractions, Characterizations and Signal Clas
sifications', Naval Undersea Warfare Center Division New
port, Newport Rhode Island 08241, pp. 904-908, Nov. 1996.
H. Szu, et al., “Wavelet Transforms and Neural Networks for
Compression and Recognition”, Neural Networks, vol. 9,
No. 4, pp. 695–708, 1996.
S. Haykin, “Neural Networks: A Comprehensive Founda
tion”, Macmillan Publishing Co., 1994, Chap. 13.5-13.7,
pp. 518–526.
T. Kohonen, “The Self-Organizing Map”, pp. 74-89,
reprinted from Proc. IEEE, vol. 78, No. 9, Sep. 1990, pp.
1464–1480.
D. Kramer, “The JavaTM Platform", JavaSoft, May 1996, pp.
iii-24.
F. Yellin, “The JIT Compiler API”, Oct. 1996, pp. 1-23,
retrieved on Nov. 21, 1999-URL: http://java.sun.com/
docs/jit interface.html>.
C. Stergiou, and D. Siganos, “Neural Networks”, believed to
be published in Surprise 96 Journal 1996–1997, <URL:
http://www-dse.doc.ic.ac.uk/~nd/Surprise 96/journal/
vo14/cs11/report.html>.

* cited by examiner

U.S. Patent Jun. 10, 2003 Sheet 2 of 6 US 6,578,020 B1

Computer System
Java Source

COde
(java)

Java Virtual
MaChine Java Compiler

(faWaC)

JaVa
Bytecodes

Neural NetWOrk JIT
Compiler

Native MaChine
COOle

FIG. 2

US 6,578,020 B1 U.S. Patent

US 6,578,020 B1 Sheet 4 of 6 Jun. 10, 2003 U.S. Patent

Output Layer

U.S. Patent Jun. 10, 2003 Sheet S of 6 US 6,578,020 B1

Processing
Layer
72

COnCatenated
Input-Output

Layer
70

MaChine
COde

FIG. 5

U.S. Patent Jun. 10, 2003 Sheet 6 of 6 US 6,578,020 B1

100

Receive Java ByteCode.

112

102 Perform Weight Selection
Separate the bytecode into based On a preset threshold
input vectors for each Class at Output layer n00eS.

file format type.
114

14 BaCk to block 106 to
Input, in parallel, each input perform for each neural
Vector into the Corresponding network.

neural network.
116

106 Combine Output vectorS from
g h Class Category neural In parallel proCeSSing m00e, eacn Class Cat

for each neural netWOrk do: netwillge inque

108 118

Place each bit from Output Apply Weights to data at input
nodes to map to hidden layer. VeClOr ARE nOdeS

110 120

Apply Weights to data at Apply Weight map of RNNC to
hidden nodes to map to data at input nodes to produce

Output layer n00eS. native maChine COde.

FIG. 6

US 6,578,020 B1
1

METHOD AND SYSTEM FOR CONVERTING
CODE TO EXECUTABLE CODE USING

NEURAL NETWORKS IMPLEMENTED INA
VERY LARGESCALE INTEGRATION (VLSI)

INTEGRATED CIRCUIT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to the following co-pending
and commonly-assigned patent application entitled
“Method, System, and Program for Converting Code to
Executable Code Using Neural Networks Implemented in a
Software Program,” having Ser. No. 09/455,704, which
application was filed on the same date herewith and which
application is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an integrated circuit
method and System for using neural networks for converting
code to executable code.

2. Description of the Related Art
The Java Platform provides an added layer of execution

between the underlying operating System and programs
written in the Java computer language. The Java Platform
converts Java Source code (Java files) to bytecodes (class
files), which are machine independent representations of a
Java class. Thus, the same bytecodes would be created for all
operating System platforms. The bytecodes are then inputted
to a Java Virtual Machine program that converts the byte
codes to the object code in the native machine language of
the operating system on which the Java Virtual Machine is
installed. Thus, there is a platform-specific Java Virtual
Machine program for each platform on which Java programs
can eXecute.

The Java Virtual Machine typically includes two
components, an Interpreter and a Just-In-Time (JIT) Com
piler. The bytecodes are either interpreted by the Interpreter
or turned into native machine code by the JIT Compiler. The
native code may then be executed to run the Java program.
The JIT Compiler is intended to generate code faster for
certain methods that are called frequently. The JIT operates
by Searching for Strings having a recognizable pattern in the
bytecodes. The JIT provides a mapping of Such recognizable
strings of bytecodes to native code statements. The JIT
compiler reuses copies of translated bytecodes to Speed up
the compilation process. In this way, the JIT Compiler can
quickly convert recognizable Segments of the byte code to
native code.

FIG. 1 illustrates the prior art method for converting Java
Source code to executable native machine code through the
use of the Java Interpreter and JIT Compiler.

There is a need in the art for further improvements for
compiling Java bytecodes into native code that may be
executed by the native operating System platform on which
the Java Virtual Machine is running.

SUMMARY OF THE PREFERRED
EMBODIMENTS

To overcome the limitations in the prior art described
above, preferred embodiments disclose an integrated circuit
method and System for generating a compiler to map a code
Set to object code capable of being executed on an operating
System platform. The integrated circuit is encoded with logic
including at least one neural network. The at least one neural

15

25

35

40

45

50

55

60

65

2
network in the integrated circuit is trained- to convert the
code Set to object code. The at least one trained neural
network is then used to convert the code Set to object code.

In further embodiments, the code Set comprises Java
bytecode implementing a Java class.

In still further embodiments, the at least one neural
network embedded in the integrated circuit comprises a first
level and second level neural networks. The first level neural
networks are trained to convert the code Set to a unique
representation of the code Set and the Second level neural
network is trained to convert the unique representation of the
code Set to the object code. After training, the first level
neural networks are capable of being used to convert the
code Set to a unique representation of the code Set and the
Second level neural network is capable of being used to
convert the unique representation to the object code.

In yet further embodiments, the code Set is parsed into a
plurality of input vectors and each input vector is assigned
to one of a plurality of first level neural networks. The first
level networks are trained to convert the assigned input
vector to an output vector. The combined output vectors
from each first level neural network form a unique repre
Sentation of the code Set.

Preferred embodiments provide a mechanism for utilizing
neural networks to provide a mapping from an input code
Set, Such as Java bytecodes implementing a class, to native
machine code The preferred embodiments are especially
useful for Substantially reducing the time needed to compile
Java bytecodes into native machine code. The preferred
embodiments avoid having to interpret any portion of the
bytecodes. Instead, neural networks are utilized to map Java
bytecodes to native machine code in a manner that is
substantially faster than current Java Virtual Machine imple
mentations using Interpreters and JIT Compilers. The neural
networks of the preferred embodiments further reduce com
pilation time by parallel processing the input bytecodes and
by providing a mapping that avoids the need for time
consuming interpretation operations.

Still further, the preferred integrated circuit implementa
tion includes logic to train the neural networks embedded in
the integrated circuit to convert new Java classes or byte
codes into object code, thus allowing the integrated circuit
to retrain the neural networkS.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1 is a block diagram illustrating a prior art process
of converting Java Source code to native machine code,

FIG. 2 is a block diagram illustrating the computing
environment and components to convert Source code to
machine code in accordance with preferred embodiments of
the present invention;

FIG. 3 illustrates the components of a Neural Network
Just-In-Time (JIT) Compiler in accordance with preferred
embodiments of the present invention;

FIG. 4 illustrates an example of an implementation of the
class category neural networks in accordance with preferred
embodiments of the present invention;

FIG. 5 illustrates an example of an implementation of the
Recurrent Neural Network Converter (RNNC) in accor
dance with preferred embodiments of the present invention;
and

FIG. 6 illustrates logic implemented in the Neural Net
work JIT to convert Java bytecodes to native machine code
in accordance with preferred embodiments of the present
invention.

US 6,578,020 B1
3

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

In the following description, reference is made to the
accompanying drawings which form a part hereof and which
illustrate Several embodiments of the present invention. It is
understood that other embodiments may be utilized and
Structural and operational changes may be made without
departing from the Scope of the present invention.

FIG. 2 depicts a computing environment including the
components of the preferred embodiment Java Virtual
Machine. A computer System 2 is comprised of any com
puter device known in the art, including personal computers,
WorkStations, mainframes, network computers, etc., and
includes an operating System known in the art, Such as
Solaris, Windows NT, AIX, etc. ** The computer system 2
includes a Java Virtual Machine 4 that includes a Java
Compiler 6 and Neural Network Just-In-Time (JIT) Com
piler 8. The Java Compiler 6 receives the Java Source code
10 for a class, i.e., a Java file, and translates the Source code
to Java bytecodes 12 in a manner known in the art. Further
details of the Java Compiler 6 and Java Virtual Machine 4
are described in the Sun Microsystems, Inc. publication
“The Java Virtual Machine Specification,” Second Edition
(Copyright Sun Microsystems, Inc., 1996), which publica
tion is incorporated herein by reference in its entirety, and
available on the Internet. The Java bytecodes 12 are then
provided as input to the Neural Network JIT 8, which
converts the bytecodes into the native machine code 14,
which is executable by the operating System of the computer
System 2.

The bytecodes 12 provide all the information necessary to
define a single Java class. The bytecodes 12 conform to the
Java class file format. The Java class file format, imple
mented in the Java bytecode 12, defines the representation of
a class or interface. The class file format components of the
bytecodes 12 include:

Class Definition: includes acceSS flags used to denote
acceSS permissions to the class, Such as whether the
class is private, public, an interface, abstract, etc.

Constant Pool: includes constant values used by the
methods in the class.

Interface Implement: indicates classes that must interface
with the class represented by the bytecode 12.

Field Table: captures properties and attributes of objects
in the class, including acceSS permissions to the object.

Method Table: List of methods of class to perform the
tasks of the class.

Attribute Table: definition of attributes used with class
definition, field table, and method table Segments of
bytecode.

The implementation of the Six described categories of the
bytecode 12 are further described in the publication “The
Java Virtual Machine Specification,” incorporated by refer
ence in its entirety above.

FIG. 3 illustrates further detail of the components of the
neural network JIT 8, which includes a data separator 16; six
neural networks for each of the six above described class file
format categories of the bytecode: a class definition neural
network (NN) 18, a constant pool neural network, an inter
face implement neural network 22, a field table neural
network 24, a method table neural network 26, and an
attribute table neutral network 28; and a recurrent neural
network converter (RNNC)30. The data separator 16 parses
the bits of the bytecode 12 into six different vectors 30a b,
c, d, e, f, one for each of the Six class categories of the

15

25

35

40

45

50

55

60

65

4
bytecode 12. The bytecode 12 has a known format specify
ing the byte location of each of the class categories in the
bytecode, which is described in the publication “The Java
Virtual Machine Specification,” incorporated by reference
above. Each of these six class category vectorS 30a, b, c, d,
e, fare then inputted into the corresponding neural network
18, 20, 22, 24, 26, and 28 for that class, e.g., the class
category input vector 30a comprising the class definition
portion of the bytecode 12 is inputted to the class definition
neural network 18, the input vector 30b comprising the
constant pool portion of the bytecode 12 is inputted to the
constant pool neural network 20, etc.

In preferred embodiments, each of the class category
neural networks 18, 20, 22, 24, 26, 28 comprises a separate
neural network utilizing a Self-organizing map neural net
work architecture known in the art, Such as the Self
organizing map neural network described in the IEEE pub
lication “The Self-Organizing Map,” by Teuvo Kohonen,
IEEE, vol. 78, no. 9, pgs. 1464–1480 (September 1990).
FIG. 4 illustrates the Self-organizing neural topology used
for each of the class file format neural networks 18, 20, 22,
24, 26, 28. Each of the neural networks 18, 20, 22, 24, 26,
and 28 includes an input layer 50 comprising one bit for each
bit in the portion of the corresponding 20 input vector 30a,
b, c, d, e, f. For instance, each bit of the class definition input
vector 30a would be inputted into nodes of the input layer
for the class definition neural network 18. The data at the
nodes of the input layer 50 are propagated through feedfor
ward connections to nodes of the hidden layer 52. Each node
in the hidden layer 52 is fully connected with the input layer
50, in that every input layer node 50 maps to each hidden
layer node 52. Weights and adjustments are applied to the
data from the input layer 50 nodes when mapping the input
nodes to the hidden layer 52. The hidden layer 52 nodes
propagate data through fully connected feedforward con
nections to the output layer 54 nodes. Weights and adjust
ments are applied to data propagated from the hidden layer
52 to the output layer 54. Lateral connections are con
Structed among the nodes of the output layer 54 to provide
connection therebetween. The neural networks 18, 20, 22,
24, 26, and 28 convert the input nodes into a feature map of
binary values or output vectorS 32a, b, c, d, e, f. The
concatenation of the output vectorS 32a, b, c, d, e, f forms an
output vector 34 that uniquely represents the class defined
by the bytecode 12.

In preferred embodiments, the weights of the neural
networks 18, 20, 22, 24, 26, and 28 are determined by
training the nodes using a Self-Organizing Feature Mapping
algorithm known in the art. The nodes are trained to produce
output vectors 32a, b, c, d, e, f for the given input vectors
30a, b, c, d, e,f that when combined form output vector 24
as a unique representation of the class. The output vector 34
is fed into the Recurrent Neural Network Converter (RNNC)
36.
The RNNC 36 comprises a recurrent neural network

Structure known in the art, including feedback nodes. The
RNNC 36 is trained through an iterative process, using
Standard recurrent neural network back-prolongation
techniques, to convert the output vector from the neural
networks 18, 20, 22, 24, 26, and 28 into the native machine
code 14 for the input bytecode 12. Examples of back
propagation techniques that may be used to train the RNNC
36 are described in the publication “Neural Networks: A
Comprehensive Foundation,” by Simon Haykin, pgs.
519–526 (Macmillan Publishing Co., 1994) FIG. 5 illus
trates an example of how the RNNC 36 may be imple
mented. The RNNC 36 includes a concatenated input-output

US 6,578,020 B1
S

layer 70 and a processing layer 72 including hidden and
output neurons. The bits of the combined output vector 24
are placed at the input nodes 74, I, to I, of the RNNC 30.
Thus, the bits in the output vector 36 are equal to the n input
nodes 74, which in certain implementations may comprise
64 nodes. The concatenated input-output layer 70 further
includes recurrent nodes R to R, which receive feedback
from all of the processing layer nodes 72 P to P. In the
implementation shown in FIG. 5, there are an equal number
of n input nodes I to I, processing layer 72 nodes P to P,
and recurrent nodes R to R.

Weights are applied to map the data placed at the input
nodes 74 I to I, to the processing layer 72 nodes P to P.
Thus, the input nodes I to I, are fully interconnected with
the processing layer nodes P to P. During training, the
output from the processing layer 72 nodes is propagated as
feedback to recurrent nodes R to R, through time delay
units TD to TD, that delay the input to the recurrent nodes
R to R by one time Step.

FIG. 6 illustrates the logic in accordance with the pre
ferred embodiments to convert the Java bytecode 12 into
native machine code 14. Control begins at block 100 with
the Java Virtual Machine 4 receiving bytecode 12 imple
menting a Java class. The data separator 16 component of
the Java Virtual Machine 4 parses the bytecode into separate
input vectors 30a, b, c, d, e, if containing the bits of the
bytecode 12 for each class category. The data separator 16
maintains predefined information on the bit locations of the
different class file format types in the bytecode 12 to
Separate the bytecode into Separate input vectors for each
class file format type. These class category input vectors
30a, b, c, d, e, f would then be inputted (at block 104) into
their respective neural networks 18, 20, 22, 24, 26, and 28,
Such that each bit of the input vectors would be placed at a
node of the input layer of the corresponding class category
neural network. The input vectors 30a, b, c, d, e, f may be
entered into their class category neural networkS 18, 20, 22,
24, 26, and 28, respectively, in parallel.

Block 106 represents the beginning of a parallel proceSS
for each class information neural network 18, 20, 22, 24, 26,
28 to map the input vectors 30a, b, c, d, e,f to output vectors
32a, b, c, d, e, f For each neural network, predetermined
weights are applied (at block 108) to map the data at the
input nodes to the hidden layer and weights are then applied
(at block 110) to map the data at the hidden layer nodes 52
to the output layer 54 nodes. The neural network 18, 20, 22,
24, 26, and 28 then selects (at block 112) weights based on
a preset threshold, defined in the Self-organizing map
algorithm, for use at the output layer nodes. The Control
proceeds (at block 114) back to block 106 if there are further
neural networks 18, 20, 22, 24, 26, and 28 that need to
process the bytecodes.

The output vectorS 32a, b, c, d, e, f for each class category
neural network 18, 20, 22, 24, 26, 28 are then combined (at
block 116) to form an output vector 34 which provides a
unique representation of the class formed by the bytecode
12. Each bit from the output vector 34 is then placed (at
block 118) at one corresponding input layer 74 node I to I,
of the RNNC 36. The RNNC 36 then applies (at block 120)
predetermined weights to map the output vector 34 to the
native machine code 14.

In preferred embodiments, the weights used in the RNNC
36 would be determined by training the RNNC 36 to
generate native machine code for a class based on the output
vector 34 from the neural networks 18, 20, 22, 24, 26, 28 that
provides a unique representation of the class. Numerous
iterations are performed using the known output vector 34

15

25

35

40

45

50

55

60

65

6
from the neural networks 18, 20, 22, 24, 26, 28 and the target
native machine code 14 to calculate and calibrate the recur
rent weight matrix for the RNNC 36. The training procedure
involves providing feedback to the recurrent nodes R to R.
This calculated weight matrix may then be applied to data
from the nodes propagated between the concatenated input
output layer 70 and processing layer 72 to generate the
native machine code 14.
The developer would have to train the class category

neural networks 18, 20, 22, 24, 26, and 28 using self
organized map training techniques known in the art to
generate a mapping that maps the bytecode 12 of a class to
a binary unique representation of that class. The developer
would further train the RNNC 36 using back-propagation
training algorithms known in the art, utilizing feedback from
the processing layer 72, to generate a mapping that would
map the output vector 36 to the native machine code 14.

After generating the mappings for the neural networks,
the Java virtual machine 4 may be implemented as Software
or in hardware logic on a VLSI chip. For software
implementations, the java Virtual machine code 4 would
include the neural network weight mappings for each of the
neural networks 18, 20, 22, 24, 26, 28, and 30 to map the
data at the input nodes to the native machine code 14 using
the logic of FIG. 6. In preferred embodiments, the neural
networks may be implemented in the Just-In-Time compiler
portion of the java Virtual machine 4 to provide a quick
mapping of the Java Source code of a class to the native
machine code 14. If new Java classes are added, then the
developer will have to retrain the neural networks and
generate new Software including new neural network map
pings based on the retraining to map the new class to native
machine code. In Such Software implementations, the devel
oper would have to provide program updates or fixes incor
porating the mappings for new classes.

In VLSI implementations, the neural networks 18, 20, 22,
24, 26, 28, and 30 may be encoded in the integrated circuit.
In Such case, each node of the neural networks may be
formed as a capacitor in the VLSI. The VLSI implementa
tion of the neural networks 18, 20, 22, 24, 26, 28, and 30
may comprise a digital, analog or hybrid VLSI. Further, with
a VLSI implementation, the weights and mappings of the
neural networks 18, 20, 22, 24, 26, 28, and 30 may be trained
as new Java classes are provided. Upon receiving a new Java
class, the user can Set the VLSI chip to learn mode to train
the neural networks 18, 20, 22, 24, 26, 28 to produce a
unique representation of the bytecode for the new Java class.
The user would further set the VLSI chip to train the RNNC
36 to produce native machine code 14 from the output vector
34 from the class category neural networks 18, 20, 22, 24,
26, and 28. After training the VLSI chip to recognize new
Java classes, the VLSI would be encoded to include the
newly trained neural networks 18, 20, 22, 24, 26, 28, and 30
which can then be used to generate native machine code for
the new Java class according to the logic of FIG. 6. In Such
embodiments, the VLSI could comprise a programmable
chip, a filled programmable gate array (FPGA) or complex
programmable logic device (CPLD). In this way, the VLSI
logic would allow for the training and updating of the neural
networks in the VLSI chip to map new bytecodes for new
classes to native machine code. Alternatively, the neural
networks may be implemented in non-programmable logic,
Such as application specific integrated circuits (ASICs),
which are typically less expensive than the programmable
logic devices.

Preferred embodiments utilize neural networks to compile
Java code and map the input bytecodes to native machine
codes without having to use the Interpreter.

US 6,578,020 B1
7

Utilizing the neural networks reduces processing time
because the Just-InTime neural network of the preferred
embodiments provides a quick mapping from bytecodes to
native machine code and utilizes parallel processing tech
niques to further reduce processing time. Further, with VLSI
implementations, the chip implementing the preferred
embodiment neural network architecture may comprise pro
grammable logic that is capable of being retrained to map
bytecodes for new classes to the machine code for Such new
classes.

ALTERNATIVE EMBODIMENTS/CONCLUSION

This concludes the description of the preferred embodi
ments of the invention. The following describes some alter
native embodiments for accomplishing the present inven
tion.

The preferred embodiments may be implemented as a
method, apparatus or article of manufacture using Standard
programming and/or engineering techniques to produce
Software, firmware, hardware, or any combination thereof.
The term “article of manufacture” (or alternatively, “com
puter program product”) as used herein is intended to
encompass one or more computer programs and/or data files
accessible from one or more computer-readable devices,
carriers, or media, Such as magnetic Storage media, "floppy
disk,” CD-ROM, optical disks, holographic units, volatile or
non-volatile electronic memory, etc. Further, the article of
manufacture may comprise the implementation of the pre
ferred embodiments in a transmission media, Such as a
network transmission line, wireleSS transmission media,
Signals propagating through Space, radio waves, infrared
Signals, etc. Of course, those skilled in the art will recognize
many modifications may be made to this configuration
without departing from the Scope of the present invention.

Preferred embodiments described a method, system, and
program for using neural networks to provide a just-in-time
compilation of Java bytecodes. However, in alternative
embodiments, the neural network architecture of the pre
ferred embodiments may be used to compile the Source or
other intermediary code for computer languages other than
Java and for classes implemented in object oriented com
puter languages other than Java.

Preferred embodiments provided specific architecture and
node arrangements for the Self-organizing neural networks
18, 20, 22, 24, 26, and 28 and the RNNC36. However, those
skilled in the art will appreciate that alternative node
arrangement, including the use of more or fewer layers of
nodes, may be used with the described neural network
architecture.

Preferred embodiments were described with respect to the
use of particular types of neural networks, Such as Self
organizing maps and recurrent neural networkS. However, in
alternative embodiments different types of neural networks
other than those described herein may be used to perform the
mappings from Source or intermediary code to native
machine code.

Preferred embodiments described the Java bytecode as
Separated into Six class information related categories in
order to provide input for the neural network mapping to the
unique class representation. In alternative embodiments, the
bytecode may be separated according to different character
izations of the bytecode, including characterizations unre
lated to the Java class file format of the bytecode

The class category neural networks 18, 20, 22, 24, 26, and
28 are described as implemented using Separate neural
networks and a Self-organizing mapping technique. In alter

15

25

35

40

45

50

55

60

65

8
native embodiments, the Separate class category neural
networks may be aggregated into fewer neural networks or
multiplied into a greater number of neural networks. Further,
the class category neural networks may utilize neural net
work architectures other than the Self-organized mapping
techniques.

Preferred embodiments were described with respect to
converting intermediary Java bytecodes to object code. In
further embodiments, the neural networks may be used to
convert Source code to object code or convert Source code to
an intermediary code form.

In Summary, preferred embodiments disclose an inte
grated circuit method and System for generating a compiler
to map a code Set to object code capable of being executed
on an operating System platform. The integrated circuit is
encoded with logic including at least one neural network.
The at least one neural network in the integrated circuit is
trained to convert the code Set to object code. The at least
one trained neural network is then used to convert the code
Set to object code.
The foregoing description of the preferred embodiments

of the invention has been presented for the purposes of
illustration and description. It is not intended to be exhaus
tive or to limit the invention to the precise form disclosed.
Many modifications and variations are possible in light of
the above teaching. It is intended that the Scope of the
invention be limited not by this detailed description, but
rather by the claims appended hereto. The above
Specification, examples and data provide a complete descrip
tion of the manufacture and use of the composition of the
invention. Since many embodiments of the invention can be
made without departing from the Spirit and Scope of the
invention, the invention resides in the claims hereinafter
appended.
What is claimed is:
1. A method for generating a compiler to map a code Set

to object code capable of being executed on an operating
System platform, comprising:

encoding an integrated circuit with logic including at least
one neural network;

training the at least one neural network in the integrated
circuit to convert the code Set to object code; and

using the at least one trained neural network to convert the
code Set to object code.

2. The method of claim 1, wherein the code set comprises
an intermediary platform independent code generated by
processing Source code.

3. The method of claim 2, wherein the code set comprises
Java bytecode implementing a Java class.

4. The method of claim 2, wherein the code set represents
an implementation of an object oriented class.

5. The method of claim 1, wherein the at least one neural
network encoded in the integrated circuit comprises at least
one first level neural network and a Second level neural
network, wherein training the at least one neural network
comprises:

training the at least one first level neural network to
convert the code Set to a unique representation of the
code Set, and

training the Second level neural network to convert the
unique representation of the code Set to the object code.

6. The method of claim 1, wherein training the at least one
first level neural network comprises:

parsing the code Set into a plurality of input vectors, and
assigning each input vector to one of a plurality of first

level neural networks, wherein each of the first level

US 6,578,020 B1

neural networks are trained to convert the assigned
input vector to an output vector, wherein the combina
tion of the output vectors from each first level neural
network forms a unique representation of the code Set.

7. The method of claim 6, wherein the code set comprises
a Java bytecode implementing a Java class, and wherein
parsing the code Set into a plurality of input vectors, com
prises parsing the code Set into categories based on the
bytecode class file format, wherein each input vector
includes bits from the bytecode that comprise one of the
categories.

8. The method of claim 6, wherein the Second level neural
network comprises a recurrent neural network, and wherein
training the Second level neural network comprises perform
ing iterations inputting the unique representation of the code
Set to the Second level neural network to generate the object
code, wherein the generated object code is fed back into the
Second level neural network until the Second level neural
network is capable of mapping the unique representation of
the code Set to the object code with a minimal amount of
error in the mapping.

9. The method of claim 6, wherein the first level neural
networks comprise a Self-organizing map neural network.

10. The method of claim 1, wherein the neural network is
encoded within a Java Just-In-Time Compiler component of
a Java Virtual Machine encoded in the integrated circuit.

11. The method of claim 1, further comprising:
receiving an additional code Set and additional object

code for the additional code Set, and
training the at least one neural network to convert the

additional code Set to the additional object code.
12. A method for mapping a code Set to object code

capable of being executed on an operating System platform,
comprising:

receiving the code Set with at least one neural network
implemented in an integrated circuit; and

converting with the at least one neural network the
received code Set to the object code.

13. The method of claim 12, wherein the at least one
neural network encoded in the integrated circuit comprises
at least one first level neural network and a Second level
neural network, and wherein converting, with the at least
one neural network, the code Set to the object code com
prises:

converting, with at least one first level neural network, the
code Set to a unique representation of the code Set, and

converting, with a Second level neural network, the
unique representation of the code Set to the object code.

14. The method of claim 13, wherein converting the code
Set to the unique representation with the at least one first
level neural network comprises:

parsing the code Set into a plurality of input vectors,
assigning each input vector to one of a plurality of first

level neural networks,
converting, with each of the first level neural networks,

the assigned input vector to an output vector; and
combining the output vectors from each first level neural

network to form a unique representation of the code Set.
15. An integrated circuit chip implementing a compiler to

map a code Set to object code capable of being executed on
an operating System platform, comprising:

at least one neural network;
logic for training the at least one neural network in the

integrated circuit to convert the code Set to object code,
and

15

25

35

40

45

50

55

60

65

10
logic for using the at least one trained neural network to

convert the code Set to object code.
16. The integrated circuit of claim 15, wherein the code

Set comprises an intermediary platform independent code
generated by processing Source code.

17. The integrated circuit of claim 16, wherein the code
Set comprises Java bytecode implementing a Java class.

18. The integrated circuit of claim 15, wherein the code
Set represents an implementation of an object oriented class.

19. The integrated circuit of claim 15, wherein the at least
one neural network encoded in the integrated circuit com
prises at least one first level neural network and a Second
level neural network, wherein the logic for training the at
least one neural network comprises:

logic for training the at least one first level neural network
to convert the code Set to a unique representation of the
code Set, and

logic for training the Second level neural network to
convert the unique representation of the code Set to the
object code.

20. The integrated circuit of claim 19, wherein the first
level neural networks comprise a Self-organizing map neural
network.

21. The integrated circuit of claim 15, wherein the logic
for training the at least one first level neural network
comprises:

logic for parsing the code Set into a plurality of input
Vectors, and

logic for assigning each input vector to one of a plurality
of first level neural networks, wherein each of the first
level neural networks are trained to convert the
assigned input vector to an output vector, wherein the
combination of the output vectors from each first level
neural network forms a unique representation of the
code Set.

22. The integrated circuit of claim 21, wherein the code
Set comprises a Java bytecode implementing a Java class,
and wherein the logic for parsing the code Set into a plurality
of input vectors, comprises parsing the code Set into cat
egories based on the bytecode class file format, wherein each
input vector includes bits from the bytecode that comprise
one of the categories.

23. The integrated circuit of claim 22, wherein the second
level neural network comprises a recurrent neural network,
and wherein the logic for training the Second level neural
network comprises logic for performing iterations inputting
the unique representation of the code Set to the Second level
neural network to generate the object code, wherein the
generated object code is fed back into the Second level
neural network until the Second level neural network is
capable of mapping the unique representation of the code Set
to the object code with a minimal amount of error in the
mapping.

24. The integrated circuit of claim 15, wherein the logic
including the at least one neural network is implemented in
a Java Just-In-Time Compiler component of a Java Virtual
Machine implemented in the integrated circuit.

25. The integrated circuit of claim 15, further comprising;
logic for receiving an additional code Set and additional

object code for the additional code Set, and
logic for training the at least one neural network to

convert the additional code Set to the additional object
code.

US 6,578,020 B1
11

26. An integrated circuit for mapping a code Set to object
code capable of being executed on an operating System
platform, comprising:

logic for receiving the code Set with at least one neural
network implemented in an integrated circuit; and

logic for converting with the at least one neural network
the received code Set to the object code.

27. The integrated circuit of claim 26, wherein the neural
network logic further comprises:

first level neural network logic for converting the code Set
to a unique representation of the code Set, and

Second level neural network logic for converting the
unique representation of the code Set to the object code.

28. The integrated circuit of claim 27, wherein the first
level neural network logic further comprises:

1O

12
logic for parsing the code Set into a plurality of input

Vectors, and logic for assigning each input vector to one
of a plurality of first level neural networks;

logic for converting the assigned input vector to an output
Vector; and

logic for combining the output vectors from each first
level neural network to form a unique representation of
the code Set.

29. The integrated circuit of claim 26, wherein the code
Set comprises Java bytecode implementing a Java class and
the at least one neural network is implemented in a Just-In
Time Compiler portion of a Java Virtual Machine.

