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METHOD AND SYSTEM FOR CONVERTING 
CODE TO EXECUTABLE CODE USING 

NEURAL NETWORKS IMPLEMENTED INA 
VERY LARGESCALE INTEGRATION (VLSI) 

INTEGRATED CIRCUIT 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is related to the following co-pending 
and commonly-assigned patent application entitled 
“Method, System, and Program for Converting Code to 
Executable Code Using Neural Networks Implemented in a 
Software Program,” having Ser. No. 09/455,704, which 
application was filed on the same date herewith and which 
application is incorporated herein by reference in its entirety. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 

The present invention relates to an integrated circuit 
method and System for using neural networks for converting 
code to executable code. 

2. Description of the Related Art 
The Java Platform provides an added layer of execution 

between the underlying operating System and programs 
written in the Java computer language. The Java Platform 
converts Java Source code (Java files) to bytecodes (class 
files), which are machine independent representations of a 
Java class. Thus, the same bytecodes would be created for all 
operating System platforms. The bytecodes are then inputted 
to a Java Virtual Machine program that converts the byte 
codes to the object code in the native machine language of 
the operating system on which the Java Virtual Machine is 
installed. Thus, there is a platform-specific Java Virtual 
Machine program for each platform on which Java programs 
can eXecute. 

The Java Virtual Machine typically includes two 
components, an Interpreter and a Just-In-Time (JIT) Com 
piler. The bytecodes are either interpreted by the Interpreter 
or turned into native machine code by the JIT Compiler. The 
native code may then be executed to run the Java program. 
The JIT Compiler is intended to generate code faster for 
certain methods that are called frequently. The JIT operates 
by Searching for Strings having a recognizable pattern in the 
bytecodes. The JIT provides a mapping of Such recognizable 
strings of bytecodes to native code statements. The JIT 
compiler reuses copies of translated bytecodes to Speed up 
the compilation process. In this way, the JIT Compiler can 
quickly convert recognizable Segments of the byte code to 
native code. 

FIG. 1 illustrates the prior art method for converting Java 
Source code to executable native machine code through the 
use of the Java Interpreter and JIT Compiler. 

There is a need in the art for further improvements for 
compiling Java bytecodes into native code that may be 
executed by the native operating System platform on which 
the Java Virtual Machine is running. 

SUMMARY OF THE PREFERRED 
EMBODIMENTS 

To overcome the limitations in the prior art described 
above, preferred embodiments disclose an integrated circuit 
method and System for generating a compiler to map a code 
Set to object code capable of being executed on an operating 
System platform. The integrated circuit is encoded with logic 
including at least one neural network. The at least one neural 
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2 
network in the integrated circuit is trained- to convert the 
code Set to object code. The at least one trained neural 
network is then used to convert the code Set to object code. 

In further embodiments, the code Set comprises Java 
bytecode implementing a Java class. 

In still further embodiments, the at least one neural 
network embedded in the integrated circuit comprises a first 
level and second level neural networks. The first level neural 
networks are trained to convert the code Set to a unique 
representation of the code Set and the Second level neural 
network is trained to convert the unique representation of the 
code Set to the object code. After training, the first level 
neural networks are capable of being used to convert the 
code Set to a unique representation of the code Set and the 
Second level neural network is capable of being used to 
convert the unique representation to the object code. 

In yet further embodiments, the code Set is parsed into a 
plurality of input vectors and each input vector is assigned 
to one of a plurality of first level neural networks. The first 
level networks are trained to convert the assigned input 
vector to an output vector. The combined output vectors 
from each first level neural network form a unique repre 
Sentation of the code Set. 

Preferred embodiments provide a mechanism for utilizing 
neural networks to provide a mapping from an input code 
Set, Such as Java bytecodes implementing a class, to native 
machine code The preferred embodiments are especially 
useful for Substantially reducing the time needed to compile 
Java bytecodes into native machine code. The preferred 
embodiments avoid having to interpret any portion of the 
bytecodes. Instead, neural networks are utilized to map Java 
bytecodes to native machine code in a manner that is 
substantially faster than current Java Virtual Machine imple 
mentations using Interpreters and JIT Compilers. The neural 
networks of the preferred embodiments further reduce com 
pilation time by parallel processing the input bytecodes and 
by providing a mapping that avoids the need for time 
consuming interpretation operations. 

Still further, the preferred integrated circuit implementa 
tion includes logic to train the neural networks embedded in 
the integrated circuit to convert new Java classes or byte 
codes into object code, thus allowing the integrated circuit 
to retrain the neural networkS. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Referring now to the drawings in which like reference 
numbers represent corresponding parts throughout: 

FIG. 1 is a block diagram illustrating a prior art process 
of converting Java Source code to native machine code, 

FIG. 2 is a block diagram illustrating the computing 
environment and components to convert Source code to 
machine code in accordance with preferred embodiments of 
the present invention; 

FIG. 3 illustrates the components of a Neural Network 
Just-In-Time (JIT) Compiler in accordance with preferred 
embodiments of the present invention; 

FIG. 4 illustrates an example of an implementation of the 
class category neural networks in accordance with preferred 
embodiments of the present invention; 

FIG. 5 illustrates an example of an implementation of the 
Recurrent Neural Network Converter (RNNC) in accor 
dance with preferred embodiments of the present invention; 
and 

FIG. 6 illustrates logic implemented in the Neural Net 
work JIT to convert Java bytecodes to native machine code 
in accordance with preferred embodiments of the present 
invention. 
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DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

In the following description, reference is made to the 
accompanying drawings which form a part hereof and which 
illustrate Several embodiments of the present invention. It is 
understood that other embodiments may be utilized and 
Structural and operational changes may be made without 
departing from the Scope of the present invention. 

FIG. 2 depicts a computing environment including the 
components of the preferred embodiment Java Virtual 
Machine. A computer System 2 is comprised of any com 
puter device known in the art, including personal computers, 
WorkStations, mainframes, network computers, etc., and 
includes an operating System known in the art, Such as 
Solaris, Windows NT, AIX, etc. ** The computer system 2 
includes a Java Virtual Machine 4 that includes a Java 
Compiler 6 and Neural Network Just-In-Time (JIT) Com 
piler 8. The Java Compiler 6 receives the Java Source code 
10 for a class, i.e., a Java file, and translates the Source code 
to Java bytecodes 12 in a manner known in the art. Further 
details of the Java Compiler 6 and Java Virtual Machine 4 
are described in the Sun Microsystems, Inc. publication 
“The Java Virtual Machine Specification,” Second Edition 
(Copyright Sun Microsystems, Inc., 1996), which publica 
tion is incorporated herein by reference in its entirety, and 
available on the Internet. The Java bytecodes 12 are then 
provided as input to the Neural Network JIT 8, which 
converts the bytecodes into the native machine code 14, 
which is executable by the operating System of the computer 
System 2. 

The bytecodes 12 provide all the information necessary to 
define a single Java class. The bytecodes 12 conform to the 
Java class file format. The Java class file format, imple 
mented in the Java bytecode 12, defines the representation of 
a class or interface. The class file format components of the 
bytecodes 12 include: 

Class Definition: includes acceSS flags used to denote 
acceSS permissions to the class, Such as whether the 
class is private, public, an interface, abstract, etc. 

Constant Pool: includes constant values used by the 
methods in the class. 

Interface Implement: indicates classes that must interface 
with the class represented by the bytecode 12. 

Field Table: captures properties and attributes of objects 
in the class, including acceSS permissions to the object. 

Method Table: List of methods of class to perform the 
tasks of the class. 

Attribute Table: definition of attributes used with class 
definition, field table, and method table Segments of 
bytecode. 

The implementation of the Six described categories of the 
bytecode 12 are further described in the publication “The 
Java Virtual Machine Specification,” incorporated by refer 
ence in its entirety above. 

FIG. 3 illustrates further detail of the components of the 
neural network JIT 8, which includes a data separator 16; six 
neural networks for each of the six above described class file 
format categories of the bytecode: a class definition neural 
network (NN) 18, a constant pool neural network, an inter 
face implement neural network 22, a field table neural 
network 24, a method table neural network 26, and an 
attribute table neutral network 28; and a recurrent neural 
network converter (RNNC)30. The data separator 16 parses 
the bits of the bytecode 12 into six different vectors 30a b, 
c, d, e, f, one for each of the Six class categories of the 
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4 
bytecode 12. The bytecode 12 has a known format specify 
ing the byte location of each of the class categories in the 
bytecode, which is described in the publication “The Java 
Virtual Machine Specification,” incorporated by reference 
above. Each of these six class category vectorS 30a, b, c, d, 
e, fare then inputted into the corresponding neural network 
18, 20, 22, 24, 26, and 28 for that class, e.g., the class 
category input vector 30a comprising the class definition 
portion of the bytecode 12 is inputted to the class definition 
neural network 18, the input vector 30b comprising the 
constant pool portion of the bytecode 12 is inputted to the 
constant pool neural network 20, etc. 

In preferred embodiments, each of the class category 
neural networks 18, 20, 22, 24, 26, 28 comprises a separate 
neural network utilizing a Self-organizing map neural net 
work architecture known in the art, Such as the Self 
organizing map neural network described in the IEEE pub 
lication “The Self-Organizing Map,” by Teuvo Kohonen, 
IEEE, vol. 78, no. 9, pgs. 1464–1480 (September 1990). 
FIG. 4 illustrates the Self-organizing neural topology used 
for each of the class file format neural networks 18, 20, 22, 
24, 26, 28. Each of the neural networks 18, 20, 22, 24, 26, 
and 28 includes an input layer 50 comprising one bit for each 
bit in the portion of the corresponding 20 input vector 30a, 
b, c, d, e, f. For instance, each bit of the class definition input 
vector 30a would be inputted into nodes of the input layer 
for the class definition neural network 18. The data at the 
nodes of the input layer 50 are propagated through feedfor 
ward connections to nodes of the hidden layer 52. Each node 
in the hidden layer 52 is fully connected with the input layer 
50, in that every input layer node 50 maps to each hidden 
layer node 52. Weights and adjustments are applied to the 
data from the input layer 50 nodes when mapping the input 
nodes to the hidden layer 52. The hidden layer 52 nodes 
propagate data through fully connected feedforward con 
nections to the output layer 54 nodes. Weights and adjust 
ments are applied to data propagated from the hidden layer 
52 to the output layer 54. Lateral connections are con 
Structed among the nodes of the output layer 54 to provide 
connection therebetween. The neural networks 18, 20, 22, 
24, 26, and 28 convert the input nodes into a feature map of 
binary values or output vectorS 32a, b, c, d, e, f. The 
concatenation of the output vectorS 32a, b, c, d, e, f forms an 
output vector 34 that uniquely represents the class defined 
by the bytecode 12. 

In preferred embodiments, the weights of the neural 
networks 18, 20, 22, 24, 26, and 28 are determined by 
training the nodes using a Self-Organizing Feature Mapping 
algorithm known in the art. The nodes are trained to produce 
output vectors 32a, b, c, d, e, f for the given input vectors 
30a, b, c, d, e,f that when combined form output vector 24 
as a unique representation of the class. The output vector 34 
is fed into the Recurrent Neural Network Converter (RNNC) 
36. 
The RNNC 36 comprises a recurrent neural network 

Structure known in the art, including feedback nodes. The 
RNNC 36 is trained through an iterative process, using 
Standard recurrent neural network back-prolongation 
techniques, to convert the output vector from the neural 
networks 18, 20, 22, 24, 26, and 28 into the native machine 
code 14 for the input bytecode 12. Examples of back 
propagation techniques that may be used to train the RNNC 
36 are described in the publication “Neural Networks: A 
Comprehensive Foundation,” by Simon Haykin, pgs. 
519–526 (Macmillan Publishing Co., 1994) FIG. 5 illus 
trates an example of how the RNNC 36 may be imple 
mented. The RNNC 36 includes a concatenated input-output 
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layer 70 and a processing layer 72 including hidden and 
output neurons. The bits of the combined output vector 24 
are placed at the input nodes 74, I, to I, of the RNNC 30. 
Thus, the bits in the output vector 36 are equal to the n input 
nodes 74, which in certain implementations may comprise 
64 nodes. The concatenated input-output layer 70 further 
includes recurrent nodes R to R, which receive feedback 
from all of the processing layer nodes 72 P to P. In the 
implementation shown in FIG. 5, there are an equal number 
of n input nodes I to I, processing layer 72 nodes P to P, 
and recurrent nodes R to R. 

Weights are applied to map the data placed at the input 
nodes 74 I to I, to the processing layer 72 nodes P to P. 
Thus, the input nodes I to I, are fully interconnected with 
the processing layer nodes P to P. During training, the 
output from the processing layer 72 nodes is propagated as 
feedback to recurrent nodes R to R, through time delay 
units TD to TD, that delay the input to the recurrent nodes 
R to R by one time Step. 

FIG. 6 illustrates the logic in accordance with the pre 
ferred embodiments to convert the Java bytecode 12 into 
native machine code 14. Control begins at block 100 with 
the Java Virtual Machine 4 receiving bytecode 12 imple 
menting a Java class. The data separator 16 component of 
the Java Virtual Machine 4 parses the bytecode into separate 
input vectors 30a, b, c, d, e, if containing the bits of the 
bytecode 12 for each class category. The data separator 16 
maintains predefined information on the bit locations of the 
different class file format types in the bytecode 12 to 
Separate the bytecode into Separate input vectors for each 
class file format type. These class category input vectors 
30a, b, c, d, e, f would then be inputted (at block 104) into 
their respective neural networks 18, 20, 22, 24, 26, and 28, 
Such that each bit of the input vectors would be placed at a 
node of the input layer of the corresponding class category 
neural network. The input vectors 30a, b, c, d, e, f may be 
entered into their class category neural networkS 18, 20, 22, 
24, 26, and 28, respectively, in parallel. 

Block 106 represents the beginning of a parallel proceSS 
for each class information neural network 18, 20, 22, 24, 26, 
28 to map the input vectors 30a, b, c, d, e,f to output vectors 
32a, b, c, d, e, f For each neural network, predetermined 
weights are applied (at block 108) to map the data at the 
input nodes to the hidden layer and weights are then applied 
(at block 110) to map the data at the hidden layer nodes 52 
to the output layer 54 nodes. The neural network 18, 20, 22, 
24, 26, and 28 then selects (at block 112) weights based on 
a preset threshold, defined in the Self-organizing map 
algorithm, for use at the output layer nodes. The Control 
proceeds (at block 114) back to block 106 if there are further 
neural networks 18, 20, 22, 24, 26, and 28 that need to 
process the bytecodes. 

The output vectorS 32a, b, c, d, e, f for each class category 
neural network 18, 20, 22, 24, 26, 28 are then combined (at 
block 116) to form an output vector 34 which provides a 
unique representation of the class formed by the bytecode 
12. Each bit from the output vector 34 is then placed (at 
block 118) at one corresponding input layer 74 node I to I, 
of the RNNC 36. The RNNC 36 then applies (at block 120) 
predetermined weights to map the output vector 34 to the 
native machine code 14. 

In preferred embodiments, the weights used in the RNNC 
36 would be determined by training the RNNC 36 to 
generate native machine code for a class based on the output 
vector 34 from the neural networks 18, 20, 22, 24, 26, 28 that 
provides a unique representation of the class. Numerous 
iterations are performed using the known output vector 34 
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6 
from the neural networks 18, 20, 22, 24, 26, 28 and the target 
native machine code 14 to calculate and calibrate the recur 
rent weight matrix for the RNNC 36. The training procedure 
involves providing feedback to the recurrent nodes R to R. 
This calculated weight matrix may then be applied to data 
from the nodes propagated between the concatenated input 
output layer 70 and processing layer 72 to generate the 
native machine code 14. 
The developer would have to train the class category 

neural networks 18, 20, 22, 24, 26, and 28 using self 
organized map training techniques known in the art to 
generate a mapping that maps the bytecode 12 of a class to 
a binary unique representation of that class. The developer 
would further train the RNNC 36 using back-propagation 
training algorithms known in the art, utilizing feedback from 
the processing layer 72, to generate a mapping that would 
map the output vector 36 to the native machine code 14. 

After generating the mappings for the neural networks, 
the Java virtual machine 4 may be implemented as Software 
or in hardware logic on a VLSI chip. For software 
implementations, the java Virtual machine code 4 would 
include the neural network weight mappings for each of the 
neural networks 18, 20, 22, 24, 26, 28, and 30 to map the 
data at the input nodes to the native machine code 14 using 
the logic of FIG. 6. In preferred embodiments, the neural 
networks may be implemented in the Just-In-Time compiler 
portion of the java Virtual machine 4 to provide a quick 
mapping of the Java Source code of a class to the native 
machine code 14. If new Java classes are added, then the 
developer will have to retrain the neural networks and 
generate new Software including new neural network map 
pings based on the retraining to map the new class to native 
machine code. In Such Software implementations, the devel 
oper would have to provide program updates or fixes incor 
porating the mappings for new classes. 

In VLSI implementations, the neural networks 18, 20, 22, 
24, 26, 28, and 30 may be encoded in the integrated circuit. 
In Such case, each node of the neural networks may be 
formed as a capacitor in the VLSI. The VLSI implementa 
tion of the neural networks 18, 20, 22, 24, 26, 28, and 30 
may comprise a digital, analog or hybrid VLSI. Further, with 
a VLSI implementation, the weights and mappings of the 
neural networks 18, 20, 22, 24, 26, 28, and 30 may be trained 
as new Java classes are provided. Upon receiving a new Java 
class, the user can Set the VLSI chip to learn mode to train 
the neural networks 18, 20, 22, 24, 26, 28 to produce a 
unique representation of the bytecode for the new Java class. 
The user would further set the VLSI chip to train the RNNC 
36 to produce native machine code 14 from the output vector 
34 from the class category neural networks 18, 20, 22, 24, 
26, and 28. After training the VLSI chip to recognize new 
Java classes, the VLSI would be encoded to include the 
newly trained neural networks 18, 20, 22, 24, 26, 28, and 30 
which can then be used to generate native machine code for 
the new Java class according to the logic of FIG. 6. In Such 
embodiments, the VLSI could comprise a programmable 
chip, a filled programmable gate array (FPGA) or complex 
programmable logic device (CPLD). In this way, the VLSI 
logic would allow for the training and updating of the neural 
networks in the VLSI chip to map new bytecodes for new 
classes to native machine code. Alternatively, the neural 
networks may be implemented in non-programmable logic, 
Such as application specific integrated circuits (ASICs), 
which are typically less expensive than the programmable 
logic devices. 

Preferred embodiments utilize neural networks to compile 
Java code and map the input bytecodes to native machine 
codes without having to use the Interpreter. 
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Utilizing the neural networks reduces processing time 
because the Just-InTime neural network of the preferred 
embodiments provides a quick mapping from bytecodes to 
native machine code and utilizes parallel processing tech 
niques to further reduce processing time. Further, with VLSI 
implementations, the chip implementing the preferred 
embodiment neural network architecture may comprise pro 
grammable logic that is capable of being retrained to map 
bytecodes for new classes to the machine code for Such new 
classes. 

ALTERNATIVE EMBODIMENTS/CONCLUSION 

This concludes the description of the preferred embodi 
ments of the invention. The following describes some alter 
native embodiments for accomplishing the present inven 
tion. 

The preferred embodiments may be implemented as a 
method, apparatus or article of manufacture using Standard 
programming and/or engineering techniques to produce 
Software, firmware, hardware, or any combination thereof. 
The term “article of manufacture” (or alternatively, “com 
puter program product”) as used herein is intended to 
encompass one or more computer programs and/or data files 
accessible from one or more computer-readable devices, 
carriers, or media, Such as magnetic Storage media, "floppy 
disk,” CD-ROM, optical disks, holographic units, volatile or 
non-volatile electronic memory, etc. Further, the article of 
manufacture may comprise the implementation of the pre 
ferred embodiments in a transmission media, Such as a 
network transmission line, wireleSS transmission media, 
Signals propagating through Space, radio waves, infrared 
Signals, etc. Of course, those skilled in the art will recognize 
many modifications may be made to this configuration 
without departing from the Scope of the present invention. 

Preferred embodiments described a method, system, and 
program for using neural networks to provide a just-in-time 
compilation of Java bytecodes. However, in alternative 
embodiments, the neural network architecture of the pre 
ferred embodiments may be used to compile the Source or 
other intermediary code for computer languages other than 
Java and for classes implemented in object oriented com 
puter languages other than Java. 

Preferred embodiments provided specific architecture and 
node arrangements for the Self-organizing neural networks 
18, 20, 22, 24, 26, and 28 and the RNNC36. However, those 
skilled in the art will appreciate that alternative node 
arrangement, including the use of more or fewer layers of 
nodes, may be used with the described neural network 
architecture. 

Preferred embodiments were described with respect to the 
use of particular types of neural networks, Such as Self 
organizing maps and recurrent neural networkS. However, in 
alternative embodiments different types of neural networks 
other than those described herein may be used to perform the 
mappings from Source or intermediary code to native 
machine code. 

Preferred embodiments described the Java bytecode as 
Separated into Six class information related categories in 
order to provide input for the neural network mapping to the 
unique class representation. In alternative embodiments, the 
bytecode may be separated according to different character 
izations of the bytecode, including characterizations unre 
lated to the Java class file format of the bytecode 

The class category neural networks 18, 20, 22, 24, 26, and 
28 are described as implemented using Separate neural 
networks and a Self-organizing mapping technique. In alter 
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8 
native embodiments, the Separate class category neural 
networks may be aggregated into fewer neural networks or 
multiplied into a greater number of neural networks. Further, 
the class category neural networks may utilize neural net 
work architectures other than the Self-organized mapping 
techniques. 

Preferred embodiments were described with respect to 
converting intermediary Java bytecodes to object code. In 
further embodiments, the neural networks may be used to 
convert Source code to object code or convert Source code to 
an intermediary code form. 

In Summary, preferred embodiments disclose an inte 
grated circuit method and System for generating a compiler 
to map a code Set to object code capable of being executed 
on an operating System platform. The integrated circuit is 
encoded with logic including at least one neural network. 
The at least one neural network in the integrated circuit is 
trained to convert the code Set to object code. The at least 
one trained neural network is then used to convert the code 
Set to object code. 
The foregoing description of the preferred embodiments 

of the invention has been presented for the purposes of 
illustration and description. It is not intended to be exhaus 
tive or to limit the invention to the precise form disclosed. 
Many modifications and variations are possible in light of 
the above teaching. It is intended that the Scope of the 
invention be limited not by this detailed description, but 
rather by the claims appended hereto. The above 
Specification, examples and data provide a complete descrip 
tion of the manufacture and use of the composition of the 
invention. Since many embodiments of the invention can be 
made without departing from the Spirit and Scope of the 
invention, the invention resides in the claims hereinafter 
appended. 
What is claimed is: 
1. A method for generating a compiler to map a code Set 

to object code capable of being executed on an operating 
System platform, comprising: 

encoding an integrated circuit with logic including at least 
one neural network; 

training the at least one neural network in the integrated 
circuit to convert the code Set to object code; and 

using the at least one trained neural network to convert the 
code Set to object code. 

2. The method of claim 1, wherein the code set comprises 
an intermediary platform independent code generated by 
processing Source code. 

3. The method of claim 2, wherein the code set comprises 
Java bytecode implementing a Java class. 

4. The method of claim 2, wherein the code set represents 
an implementation of an object oriented class. 

5. The method of claim 1, wherein the at least one neural 
network encoded in the integrated circuit comprises at least 
one first level neural network and a Second level neural 
network, wherein training the at least one neural network 
comprises: 

training the at least one first level neural network to 
convert the code Set to a unique representation of the 
code Set, and 

training the Second level neural network to convert the 
unique representation of the code Set to the object code. 

6. The method of claim 1, wherein training the at least one 
first level neural network comprises: 

parsing the code Set into a plurality of input vectors, and 
assigning each input vector to one of a plurality of first 

level neural networks, wherein each of the first level 
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neural networks are trained to convert the assigned 
input vector to an output vector, wherein the combina 
tion of the output vectors from each first level neural 
network forms a unique representation of the code Set. 

7. The method of claim 6, wherein the code set comprises 
a Java bytecode implementing a Java class, and wherein 
parsing the code Set into a plurality of input vectors, com 
prises parsing the code Set into categories based on the 
bytecode class file format, wherein each input vector 
includes bits from the bytecode that comprise one of the 
categories. 

8. The method of claim 6, wherein the Second level neural 
network comprises a recurrent neural network, and wherein 
training the Second level neural network comprises perform 
ing iterations inputting the unique representation of the code 
Set to the Second level neural network to generate the object 
code, wherein the generated object code is fed back into the 
Second level neural network until the Second level neural 
network is capable of mapping the unique representation of 
the code Set to the object code with a minimal amount of 
error in the mapping. 

9. The method of claim 6, wherein the first level neural 
networks comprise a Self-organizing map neural network. 

10. The method of claim 1, wherein the neural network is 
encoded within a Java Just-In-Time Compiler component of 
a Java Virtual Machine encoded in the integrated circuit. 

11. The method of claim 1, further comprising: 
receiving an additional code Set and additional object 

code for the additional code Set, and 
training the at least one neural network to convert the 

additional code Set to the additional object code. 
12. A method for mapping a code Set to object code 

capable of being executed on an operating System platform, 
comprising: 

receiving the code Set with at least one neural network 
implemented in an integrated circuit; and 

converting with the at least one neural network the 
received code Set to the object code. 

13. The method of claim 12, wherein the at least one 
neural network encoded in the integrated circuit comprises 
at least one first level neural network and a Second level 
neural network, and wherein converting, with the at least 
one neural network, the code Set to the object code com 
prises: 

converting, with at least one first level neural network, the 
code Set to a unique representation of the code Set, and 

converting, with a Second level neural network, the 
unique representation of the code Set to the object code. 

14. The method of claim 13, wherein converting the code 
Set to the unique representation with the at least one first 
level neural network comprises: 

parsing the code Set into a plurality of input vectors, 
assigning each input vector to one of a plurality of first 

level neural networks, 
converting, with each of the first level neural networks, 

the assigned input vector to an output vector; and 
combining the output vectors from each first level neural 

network to form a unique representation of the code Set. 
15. An integrated circuit chip implementing a compiler to 

map a code Set to object code capable of being executed on 
an operating System platform, comprising: 

at least one neural network; 
logic for training the at least one neural network in the 

integrated circuit to convert the code Set to object code, 
and 

15 

25 

35 

40 

45 

50 

55 

60 

65 

10 
logic for using the at least one trained neural network to 

convert the code Set to object code. 
16. The integrated circuit of claim 15, wherein the code 

Set comprises an intermediary platform independent code 
generated by processing Source code. 

17. The integrated circuit of claim 16, wherein the code 
Set comprises Java bytecode implementing a Java class. 

18. The integrated circuit of claim 15, wherein the code 
Set represents an implementation of an object oriented class. 

19. The integrated circuit of claim 15, wherein the at least 
one neural network encoded in the integrated circuit com 
prises at least one first level neural network and a Second 
level neural network, wherein the logic for training the at 
least one neural network comprises: 

logic for training the at least one first level neural network 
to convert the code Set to a unique representation of the 
code Set, and 

logic for training the Second level neural network to 
convert the unique representation of the code Set to the 
object code. 

20. The integrated circuit of claim 19, wherein the first 
level neural networks comprise a Self-organizing map neural 
network. 

21. The integrated circuit of claim 15, wherein the logic 
for training the at least one first level neural network 
comprises: 

logic for parsing the code Set into a plurality of input 
Vectors, and 

logic for assigning each input vector to one of a plurality 
of first level neural networks, wherein each of the first 
level neural networks are trained to convert the 
assigned input vector to an output vector, wherein the 
combination of the output vectors from each first level 
neural network forms a unique representation of the 
code Set. 

22. The integrated circuit of claim 21, wherein the code 
Set comprises a Java bytecode implementing a Java class, 
and wherein the logic for parsing the code Set into a plurality 
of input vectors, comprises parsing the code Set into cat 
egories based on the bytecode class file format, wherein each 
input vector includes bits from the bytecode that comprise 
one of the categories. 

23. The integrated circuit of claim 22, wherein the second 
level neural network comprises a recurrent neural network, 
and wherein the logic for training the Second level neural 
network comprises logic for performing iterations inputting 
the unique representation of the code Set to the Second level 
neural network to generate the object code, wherein the 
generated object code is fed back into the Second level 
neural network until the Second level neural network is 
capable of mapping the unique representation of the code Set 
to the object code with a minimal amount of error in the 
mapping. 

24. The integrated circuit of claim 15, wherein the logic 
including the at least one neural network is implemented in 
a Java Just-In-Time Compiler component of a Java Virtual 
Machine implemented in the integrated circuit. 

25. The integrated circuit of claim 15, further comprising; 
logic for receiving an additional code Set and additional 

object code for the additional code Set, and 
logic for training the at least one neural network to 

convert the additional code Set to the additional object 
code. 
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26. An integrated circuit for mapping a code Set to object 
code capable of being executed on an operating System 
platform, comprising: 

logic for receiving the code Set with at least one neural 
network implemented in an integrated circuit; and 

logic for converting with the at least one neural network 
the received code Set to the object code. 

27. The integrated circuit of claim 26, wherein the neural 
network logic further comprises: 

first level neural network logic for converting the code Set 
to a unique representation of the code Set, and 

Second level neural network logic for converting the 
unique representation of the code Set to the object code. 

28. The integrated circuit of claim 27, wherein the first 
level neural network logic further comprises: 

1O 

12 
logic for parsing the code Set into a plurality of input 

Vectors, and logic for assigning each input vector to one 
of a plurality of first level neural networks; 

logic for converting the assigned input vector to an output 
Vector; and 

logic for combining the output vectors from each first 
level neural network to form a unique representation of 
the code Set. 

29. The integrated circuit of claim 26, wherein the code 
Set comprises Java bytecode implementing a Java class and 
the at least one neural network is implemented in a Just-In 
Time Compiler portion of a Java Virtual Machine. 


