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PIPELINING FOR
ANALOG-MEMORY-BASED NEURAL
NETWORKS WITH ALL-LOCAL STORAGE

BACKGROUND

[0001] Embodiments of the present disclosure relate to
neural network circuits, and more specifically, to pipelining
for analog-memory-based neural networks with all-local
storage.

BRIEF SUMMARY

[0002] According to embodiments of the present disclo-
sure, artificial neural networks are provided. In various
embodiments, an artificial neural network comprises a plu-
rality of synaptic arrays. Each of the plurality of synaptic
arrays comprises a plurality of ordered input wires, a plu-
rality of ordered output wires, and a plurality of synapses.
Each of the synapses is operatively coupled to one of the
plurality of input wires and to one of the plurality of output
wires. Hach of the plurality of synapses comprises a resistive
element configured to store a weight. The plurality of
synaptic arrays are configured in a plurality of layers,
comprising at least one input layer, one hidden layer, and
one output layer. A first of the at least one of the synaptic
arrays in the at least one hidden layer is configured to receive
and store an array of inputs from a prior layer during a feed
forward operation. A second of the at least one of the
synaptic arrays in the at least one hidden layer is configured
to receive the array of inputs from the prior layer, and
compute outputs from the at least one hidden layer based on
the weights of the second synaptic array during the feed
forward operation. The first of the at least one of the synaptic
arrays is configured to provide the stored array of inputs to
the second of the at least one of the synaptic arrays during
a back propagation operation. The second of the at least one
of the synaptic arrays is configured to receive correction
values during the back propagation operation, and based on
the correction values and the stored array of inputs, update
its weights.

[0003] According to embodiments of the present disclo-
sure, devices comprising a first and a second synaptic array
are provided. Each of the first and second synaptic arrays
comprise a plurality of ordered input wires, a plurality of
ordered output wires, and a plurality of synapses. Each of the
plurality of synapses is operatively coupled to one of the
plurality of input wires and to one of the plurality of output
wires. Hach of the plurality of synapses comprises a resistive
element configured to store a weight. The first synaptic array
is configured to receive and store an array of inputs from a
prior layer of artificial neural network during feed forward
operation. The second synaptic array is configured to receive
the array of inputs from the prior layer, and compute outputs
based on the weights of the second synaptic array during the
feed forward operation. The first synaptic array is configured
to provide the stored array of inputs to the second synaptic
array during a back propagation operation. The second
synaptic array is configured to receive correction values
during the back propagation operation, and based on the
correction values and the stored array of inputs, update its
weights.

[0004] According to embodiments of the present disclo-
sure, methods of and computer program products for oper-
ating neural network circuits are provided. An array of
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inputs is received by a first synaptic array in a hidden layer
from a prior layer during a feed forward operation. The array
of inputs is stored by the first synaptic array during the feed
forward operation. The array of inputs is received by a
second synaptic array in the hidden layer during the feed
forward operation. The second synaptic array computes
outputs from array of inputs based on weights of the second
synaptic array during the feed forward operation. The stored
array of inputs is provided from the first synaptic array to the
second synaptic array during a back propagation operation.
Correction values are received by the second synaptic array
during the back propagation operation. Based on the cor-
rection values and the stored array of inputs, the weights of
the second synaptic array are updated.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0005] FIG. 1 illustrates an exemplary nonvolatile
memory-based crossbar array, or crossbar memory accord-
ing to embodiments of the present disclosure.

[0006] FIG. 2 illustrates exemplary synapses within a
neural network according to embodiments of the present
disclosure.

[0007] FIG. 3 illustrates an exemplary array of neural
cores according to embodiments of the present disclosure.
[0008] FIG. 4 illustrates an exemplary neural network
according to embodiments of the present disclosure.
[0009] FIGS. 5A-E illustrate steps of forward propagation
according to embodiments of the present disclosure.
[0010] FIGS. 6A-E illustrate steps of back propagation
according to embodiments of the present disclosure.
[0011] FIGS. 7A-E illustrate simultaneous steps for both
forward and back propagation according to embodiments of
the present disclosure.

[0012] FIG. 8 illustrates a method of operating a neural
network according to embodiments of the present disclo-
sure.

[0013] FIG. 9 depicts a computing node according to an
embodiment of the present disclosure.

DETAILED DESCRIPTION

[0014] Artificial neural networks (ANNs) are distributed
computing systems, which consist of a number of neurons
interconnected through connection points called synapses.
Each synapse encodes the strength of the connection
between the output of one neuron and the input of another.
The output of each neuron is determined by the aggregate
input received from other neurons that are connected to it.
Thus, the output of a given neuron is based on the outputs
of connected neurons from the preceding layer and the
strength of the connections as determined by the synaptic
weights. An ANN is trained to solve a specific problem (e.g.,
pattern recognition) by adjusting the weights of the synapses
such that a particular class of inputs produce a desired
output.

[0015] ANNs may be implemented on various kinds of
hardware, including crossbar arrays, also known as cros-
spoint arrays or crosswire arrays. A basic crossbar array
configuration includes a set of conductive row wires and a
set of conductive column wires formed to intersect the set of
conductive row wires. The intersections between the two
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sets of wires are separated by crosspoint devices. Crosspoint
devices function as the ANN’s weighted connections
between neurons.

[0016] In various embodiments, a nonvolatile memory-
based crossbar array, or crossbar memory, is provided. A
plurality of junctions are formed by row lines intersecting
column lines. A resistive memory element, such as a non-
volatile memory, is in series with a selector at each of the
junctions coupling between one of the row lines and one of
the column lines. The selector may be a volatile switch or a
transistor, various types of which are known in the art. It will
be appreciated that a variety of resistive memory elements
are suitable for use as described herein, including memris-
tors, phase-change memories, conductive-bridging RAMs,
and spin-transfer torque RAMs.

[0017] A fixed number of synapses may be provided on a
core, and then multiple cores connected to provide a com-
plete neural network. In such embodiments, interconnectiv-
ity between cores is provided to convey outputs of the
neurons on one core to another core, for example, via a
packet-switched or circuit-switched network. In a packet-
switched network, greater flexibility of interconnection may
be achieved, at a power and speed cost due to the need to
transmit, read, and act on address bits. In a circuit-switched
network, no address bits are required, and so flexibility and
re-configurability must be achieved through other means.

[0018] In various exemplary networks, a plurality of cores
is arranged in an array on a chip. In such embodiments,
relative positions of cores may be referred to by the cardinal
directions (north, south, east, west). Data carried by neural
signals may be encoded in the pulse-duration carried by each
wire, using digital voltage levels suitable for buffering or
other forms of digital signal restoration.

[0019] One approach to routing is to provide Analog-to-
Digital converters at the output edge of each core, paired
with a digital network-on-chip for rapidly routing packets to
any other core, and with Digital-to- Analog converters at the
input edge of each core.

[0020] Training of Deep Neural Networks (DNNs)
involves three different steps: 1) forward-inference of a
training example through the entire network to the output; 2)
back-propagation of the deltas or corrections based on
difference between the guessed output and the known
ground-truth output for that training example; and 3) weight-
update of each weight in the network by combining the
original forward excitation (x) associated with the neuron
just upstream from the synaptic weight together with the
back-propagated delta associated with the neuron just down-
stream from the synaptic weight.

[0021] Pipelining of this training process is complicated
by the fact that these two pieces of data needed for weight
update are produced at widely different times. The incoming
excitation values (x vector) is produced during the forward
pass, while the incoming delta values (delta vector) is not
produced until the entire forward pass has completed and the
reverse pass has returned to the same neural network layer.
For a layer that sits early in the neural network, this implies
that the x vector data that will be needed later must be stored
in the meantime—and the number of such vectors that must
be stored and later retrieved could be very large.

[0022] In particular, to do a weight update at a layer q, the
excitations corresponding to input m (e.g., an image) pro-
duced at some time step t are required. In addition, the deltas

Mar. 31, 2022

for layer q are required, which are not available until
timestep t+21, where 1 is the number of layers between q and
the output of the network.

[0023] Meanwhile, forward-inference-only pipelining
approaches that do not require long-term storage of the x
vectors can efficiently pass these vectors from one array-
core implementing a neural network layer to the next
array-core with extremely local routing, so that all layers can
be working on data simultaneously. For instance, the array-
core(s) associated with the N DNN layer can be working on
the N** data-example, while the array-core(s) for the N—1**
layer work on the N-1* data example. This approach, where
multiple chunks of data proceed by stages through a hard-
ware system is known as pipelining. It is particularly effi-
cient since each component is continuously kept busy, even
though neighboring components may be working on differ-
ent parts of the same problem or data-example, or even on
completely different data-examples.

[0024] Approaches for pipelined training that digitize all x
and delta vectors and store them elsewhere on the chip have
been described. Such approaches require digitization, long-
distance routing of digital data, and significant amounts of
memory, and any of these elements can become the bottle-
neck as the number of neural network layers becomes large.

[0025] Accordingly, there is a need for a technique to
allow pipelining of deep neural network training that offers
the same scalability to large networks by eliminating all the
long-range data traffic.

[0026] The present disclosure provides a 5-step sequence,
with two or more logical array-cores assigned to each neural
network layer. These array-cores can either be uniquely
provisioned or can be otherwise identical. One array-core is
responsible for extremely-local short-term storage of x vec-
tors produced during the forward pass; the other array-core
operates in the usual crossbar array or RPU (Resistive
Processing Unit) modes of forward propagation (producing
the next x vectors), reverse propagation (producing delta
vectors) and weight update.

[0027] In some embodiments, the short-term storage can
be distributed over a plurality of array-cores, while the
RPU/crossbar functionality can also be distributed over a
plurality of array-cores. At the other end of the distribution
spectrum, the two roles of short-term storage and crossbar
functionality could be implemented on one physical array-
core or tile.

[0028] Referring to FIG. 1, an exemplary nonvolatile
memory-based crossbar array, or crossbar memory, is illus-
trated. A plurality of junctions 101 are formed by row lines
102 intersecting column lines 103. A resistive memory
element 104, such as a non-volatile memory, is in series with
a selector 105 at each of the junctions 101 coupling between
one of the row lines 102 and one of the column lines 103.
The selector may be a volatile switch or a transistor, various
types of which are known in the art.

[0029] It will be appreciated that a variety of resistive
memory elements are suitable for use as described herein,
including memristors, phase-change memories, conductive-
bridging RAMs, spin-transfer torque RAMs.

[0030] Referring to FIG. 2, exemplary synapses within a
neural network are illustrated. A plurality of inputs X, . . . X,,,
from nodes 201 are multiplied by corresponding weights w,.
The sum of the weights, 2x,w,; is provided to a function f(*)
at node 202 to arrive at a value ij:f(inwij). It will be
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appreciated that a neural network would include a plurality
of such connections between layers, and that this is merely
exemplary.

[0031] Referring now to FIG. 3, an exemplary array of
neural cores is illustrated according to embodiments of the
present disclosure. Array 300 includes a plurality of cores
301. The cores in array 300 are interconnected by lines 302,
as described further below. In this example, the array is
two-dimensional. However, it will be appreciated that the
present disclosure may be applied to a one-dimensional or
three-dimensional array of cores. Core 301 includes non-
volatile memory array 311, which implements synapses as
described above. Core 301 includes a west side and a south
side, each of which may serve as input while the other serves
as output. It will be appreciated that the west/south nomen-
clature is adopted merely for ease of reference to relative
positioning, and is not meant to limit the direction of inputs
and outputs.

[0032] In various exemplary embodiments, the west side
includes support circuitry 312, which is dedicated to the
entire side of core 301, shared circuitry 313, which is
dedicated to a subset of rows, and per-row circuitry 314,
which is dedicated to individual rows. In various embodi-
ments the south side likewise includes support circuitry 315,
which is dedicated to the entire side of core 301, shared
circuitry 316, which is dedicated to a subset of columns, and
per-column circuitry 317, which is dedicated to individual
columns.

[0033] Referring to FIG. 4, an exemplary neural network
is illustrated. In this example, a plurality of input nodes 401
are interconnected with a plurality of intermediate nodes
402. In turn, intermediate nodes 402 are interconnected with
output nodes 403. It will be appreciated that this simple
feed-forward network is presented solely for illustrative
purposes, and the present disclosure is applicable irrespec-
tive of the particular neural network arrangement.

[0034] Referring to FIGS. 5A-E, steps of forward propa-
gation are illustrated according to embodiments of the
presented disclosure. Each of FIGS. 5A-E illustrate the
operation of a pair of arrays at a time slice.

[0035] In the first step, shown in FIG. 5A, the parallel data
vector containing the x vectors for layer q of image m is
propagated across the array-cores 501, 502 to arrive at the
RPU array-core 502 responsible for layer q computation.
The x vectors are also preserved in the East-side periphery
of array-core 501 responsible for layer q storage. The
multiply-accumulate operations take place, setting up the
next x vector.

[0036] Boxes 503 . . . 505 at the West edge of each
crossbar indicate at-row and shared peripheral circuitry
associated with the rows of the crossbar array, for driving
forward excitations, for analog measurement of integrated
current during reverse propagation, and for applying the
retrieved forward excitations during the weight-update
stage.

[0037] Similarly, boxes 506 . . . 508 at the South edge
indicate at-column and shared peripheral circuitry associ-
ated with the columns, for analog measurement of integrated
current during forward excitation, for driving reverse exci-
tations onto columns, and for applying those reverse exci-
tations during the weight-update stage.

[0038] Arrow 509 indicates data-vector propagation on
the parallel routing wires that go over each array, while
boxes 510, 511 mark capacitors that are getting updated
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(e.g., filled or drained) during this first step. Arrow 512
indicates current integration on the array (multiply-accumu-
late). During this step, excitations are being captured at the
east edge of the left-hand array-core as it goes past, AND
these excitations are driving the rows in the right-hand
array-core. This leads to current integration along the col-
umns that implement a massively-parallel multiply-accumu-
late operation. At the end of this step, integrated charge
representing the analog results of these operations are sitting
in capacitors at the South edge of the right-hand array-core,
as indicated by the box 511.

[0039] In the second step, shown in FIG. 5B, the x vector
data (x,,7) held in the East-side periphery of the storage
array-core is written column-wise into the data column 513
associated with image m. In some embodiments, this would
be done using an NVM of high endurance or the 3T1C
(three-transistor one-capacitor) or similar synaptic circuit
element which offers near-infinite endurance and a storage
lifetime of several milliseconds.

[0040] Boxes 514, 515 mark capacitors that are holding a
value from previous timestep—in this case, at the East edge
of the left-hand array-core, and at the South edge of the
right-hand array-core. Arrow 516 indicates parallel row-
wise write into 3T1C (three transistor+1 capacitor) devices,
or any other device capable of rapid and precise writing of
analog state with very high endurance.

[0041] In the third step, shown in FIG. 5C, the next x
vector data at the South-side of the computation array-core
is placed onto the routing network and sent to the g+1 layer.
This process can either inherently include the squashing
function operation, or the squashing function can be applied
at a point along the routing path before the ultimate desti-
nation.

[0042] In the third and fourth steps, shown in FIGS. 5D-E,
no action is needed. These time slices will be used for other
training tasks before the next image can be processed.
[0043] While this list has detailed the operations on the
array-cores associated with the g layer, this implies that the
q+1 layer executes exactly these same operations, shifted in
phase by 2 steps. This implies that arrow 517 in the third step
(which correspond to data leaving layer q) is equivalent to
arrow 509 seen in the first step for the q+1 layer (corre-
sponding to data arriving at layer q+1). By extension, the
q+2 layer executes again these same operations, shifted in
phase by 4 steps from the original layer q. In other words,
during forward propagation, all array-cores are busy on 3 out
of 5 phases.

[0044] Referring now to FIGS. 6 A-E, steps of back propa-
gation are illustrated according to embodiments of the
presented disclosure. Each of FIGS. 6A-E illustrate the
operation of a pair of arrays at a time slice.

[0045] During the first step, shown in FIG. 6A, the pre-
viously stored copy of the x vector for image n is retrieved,
so that it is available at the west-side periphery of the layer
q storage array-core. Note that this was likely stored at some
time in the past, when image n was processed for forward
propagation.

[0046] During the second step, shown in FIG. 6B, the
parallel delta vector for layer q of image n is propagated
through the routing network to arrive at the south side of the
same RPU array-core, leading to transpose multiply-accu-
mulate operations (columns driven, integration along rows),
resulting in stored charge representing the next delta vector
in the West-side capacitors of the layer q computation
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array-core. A copy of the arriving delta vector is preserved
in the south-side peripheral circuitry (indicated by box 601).
[0047] During the third step, shown in FIG. 6C, the
previously retrieved x vector is transmitted from the storage
array-core to the computation array-core, so that it is now
available to the west-side periphery of the layer q compu-
tation array-core.

[0048] During the fourth step, shown in FIG. 6D, the x
vector information at the west-side periphery and the delta
vector information at the south-side periphery are combined
to perform crossbar-compatible weight update (RPU-array
neural network weight-update).

[0049] During the fifth step, shown in FIG. 6E, any
derivative information available at the west-side periphery is
applied to the next delta vector that was produced in the
second step. This information is then placed onto the over-
head routing network, passing over the left-hand array-core
to arrive at the next earlier layer, q-1.

[0050] The phase discrepancy between each column of
array-cores is self-consistent with that observed during the
forward propagation step. Thus, each layer of the network is
doing useful work during each timestep of operation, allow-
ing full pipelining of training.

[0051] Referring now to FIGS. 7A-E, simultaneous steps
for both forward and back propagation according to embodi-
ments of the present disclosure are illustrated. As shown in
these composite images, the steps provided in FIGS. 5A-E
and FIGS. 6A-E are entirely self-consistent and can be
performed simultaneously in five time steps. This implies
that all storage is local, and this scheme can scale to
arbitrarily large neural networks, so long as the routing paths
can be performed without contention. The maximum depth
of the network that would be supported is limited by the
number of columns available for storage of x vectors, since
one column of intermediate storage is used on each set of
five steps, during the time period between the initial passage
of the data-example during forward-propagation, and the
eventual arrival of the deltas for that data-example during
reverse propagation. Once the column of delta values is
retrieved and used for weight-update in the fourth step, then
it can be discarded, and that column re-used for storing
forward-excitation data for the next incoming data-example.
Thus two pointers—one for incoming example m now being
forward-propagated, and one for incoming example n now
being reverse-propagated—are maintained and updated at
each layer of the network.

[0052] As outlined above, a second RPU array is used for
each layer to hold onto the excitations locally, and provides
for a throughput on fully-connected layers of one data-
example for every five clock cycles. In this way, throughput
is maximized while long-range transmission of data is
eliminated. This technique is independent of the number of
layers in the network, and may be applied to a variety of
networks including LSTM, and CNN with ex-situ weight-
update.

[0053] Referring to FIG. 8, a method of operating a neural
network is illustrated according to embodiments of the
present disclosure. At 801, an array of inputs is received by
a first synaptic array in a hidden layer from a prior layer
during a feed forward operation. At 802, the array of inputs
is stored by the first synaptic array during the feed forward
operation. At 803, the array of inputs is received by a second
synaptic array in the hidden layer during the feed forward
operation. At 804, the second synaptic array computes

Mar. 31, 2022

outputs from array of inputs based on weights of the second
synaptic array during the feed forward operation. At 805, the
stored array of inputs is provided from the first synaptic
array to the second synaptic array during a back propagation
operation. At 806, correction values are received by the
second synaptic array during the back propagation opera-
tion. At 807, based on the correction values and the stored
array of inputs, the weights of the second synaptic array are
updated.

[0054] Accordingly, in various embodiments, training data
are processed using on a series of tasks that implement
forward propagation, back propagation, and weight updates.
[0055] Inafirst task, the parallel data vector containing the
x vectors for layer q of image m is propagated across the
array-cores to arrive at the RPU array-core responsible for
layer q computation, while also be preserved in the East-side
periphery of the array-core responsible for layer q storage.
The multiply-accumulate operations take place, setting up
the next x vector.

[0056] In a second task, the x vector data held in the
East-side periphery of the storage array-core is written
column-wise into the data column associated with image m.
In some embodiments, this would be done using an NVM of
high endurance or the 3T1C synaptic circuit element which
offers near-infinite endurance and a storage lifetime of
several milliseconds.

[0057] In a third task, the next x vector data at the
South-side of the computation array-core is placed onto the
routing network and sent to the g+1 layer. This process can
either inherently include the squashing function operation,
or the squashing function can be applied at a point along the
routing path before the ultimate destination.

[0058] In the first task of a subsequent iteration through
the training data, corresponding to the point in time that the
delta vector for layer q of image m is ready to be transmitted,
the previously stored copy of the x vector for this same
image m is retrieved, so that it is available at the west-side
periphery of the layer q storage array-core.

[0059] In the second task of the subsequent iteration, the
parallel delta vector for layer q of image m is propagated
through the routing network to arrive at the south side of the
same RPU array-core, leading to transpose multiply-accu-
mulate operations (columns driven, integration along rows),
resulting in stored charge representing the next delta vector
in the West-side capacitors of the layer q computation
array-core. A copy of the arriving delta vector is preserved
in the south-side peripheral circuitry.

[0060] In the third task of the subsequent iteration, the
previously retrieved x vector is transmitted from the storage
array-core to the computation array-core, so that it is now
available to the west-side periphery of the layer q compu-
tation array-core.

[0061] In the fourth task of the subsequent iteration, the x
vector information at the west-side periphery and the delta
vector information at the south-side periphery are combined
to perform the usual crossbar-compatible weight update
typical for RPU-array neural network weight-update.
[0062] In the fifth task of the subsequent iteration, any
derivative information available at the west-side periphery is
applied to the next delta vector that was produced in the
second task.

[0063] Referring now to FIG. 9, a schematic of an
example of a computing node is shown. Computing node 10
is only one example of a suitable computing node and is not
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intended to suggest any limitation as to the scope of use or
functionality of embodiments described herein. Regardless,
computing node 10 is capable of being implemented and/or
performing any of the functionality set forth hereinabove.
[0064] In computing node 10 there is a computer system/
server 12, which is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer system/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, handheld or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.
[0065] Computer system/server 12 may be described in
the general context of computer system-executable instruc-
tions, such as program modules, being executed by a com-
puter system. Generally, program modules may include
routines, programs, objects, components, logic, data struc-
tures, and so on that perform particular tasks or implement
particular abstract data types. Computer system/server 12
may be practiced in distributed cloud computing environ-
ments where tasks are performed by remote processing
devices that are linked through a communications network.
In a distributed cloud computing environment, program
modules may be located in both local and remote computer
system storage media including memory storage devices.
[0066] As shown in FIG. 9, computer system/server 12 in
computing node 10 is shown in the form of a general-
purpose computing device. The components of computer
system/server 12 may include, but are not limited to, one or
more processors or processing units 16, a system memory
28, and a bus 18 that couples various system components
including system memory 28 to processor 16.

[0067] Bus 18 represents one or more of any of several
types of bus structures, including a memory bus or memory
controller, a peripheral bus, an accelerated graphics port, and
a processor or local bus using any of a variety of bus
architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, Peripheral Component Interconnect
(PCI) bus, Peripheral Component Interconnect Express
(PCle), and Advanced Microcontroller Bus Architecture
(AMBA).

[0068] Computer system/server 12 typically includes a
variety of computer system readable media. Such media
may be any available media that is accessible by computer
system/server 12, and it includes both volatile and non-
volatile media, removable and non-removable media.
[0069] System memory 28 can include computer system
readable media in the form of volatile memory, such as
random access memory (RAM) 30 and/or cache memory 32.
Computer system/server 12 may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage
system 34 can be provided for reading from and writing to
a non-removable, non-volatile magnetic media (not shown
and typically called a “hard drive”). Although not shown, a
magnetic disk drive for reading from and writing to a
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removable, non-volatile magnetic disk (e.g., a “floppy
disk™), and an optical disk drive for reading from or writing
to a removable, non-volatile optical disk such as a CD-
ROM, DVD-ROM or other optical media can be provided.
In such instances, each can be connected to bus 18 by one
or more data media interfaces. As will be further depicted
and described below, memory 28 may include at least one
program product having a set (e.g., at least one) of program
modules that are configured to carry out the functions of
embodiments of the disclosure.

[0070] Program/utility 40, having a set (at least one) of
program modules 42, may be stored in memory 28 by way
of example, and not limitation, as well as an operating
system, one or more application programs, other program
modules, and program data. Each of the operating system,
one or more application programs, other program modules,
and program data or some combination thereof, may include
an implementation of a networking environment. Program
modules 42 generally carry out the functions and/or meth-
odologies of embodiments as described herein.

[0071] Computer system/server 12 may also communicate
with one or more external devices 14 such as a keyboard, a
pointing device, a display 24, etc.; one or more devices that
enable a user to interact with computer system/server 12;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 12 to communicate with one
or more other computing devices. Such communication can
occur via Input/Output (I/0O) interfaces 22. Still yet, com-
puter system/server 12 can communicate with one or more
networks such as a local area network (LAN), a general wide
area network (WAN), and/or a public network (e.g., the
Internet) via network adapter 20. As depicted, network
adapter 20 communicates with the other components of
computer system/server 12 via bus 18. It should be under-
stood that although not shown, other hardware and/or soft-
ware components could be used in conjunction with com-
puter system/server 12. Examples, include, but are not
limited to: microcode, device drivers, redundant processing
units, external disk drive arrays, RAID systems, tape drives,
and data archival storage systems, etc.

[0072] The present disclosure may be embodied as a
system, a method, and/or a computer program product. The
computer program product may include a computer readable
storage medium (or media) having computer readable pro-
gram instructions thereon for causing a processor to carry
out aspects of the present disclosure.

[0073] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
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going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0074] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0075] Computer readable program instructions for carry-
ing out operations of the present disclosure may be assem-
bler instructions, instruction-set-architecture (ISA) instruc-
tions, machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present disclosure.

[0076] Aspects of the present disclosure are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the disclo-
sure. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0077] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
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puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.
[0078] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.
[0079] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present disclosure. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
[0080] The descriptions of the various embodiments of the
present disclosure have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.
What is claimed is:
1. An artificial neural network, comprising a plurality of
synaptic arrays, wherein:
each of the plurality of synaptic arrays comprises a
plurality of ordered input wires, a plurality of ordered
output wires, and a plurality of synapses;
each of the synapses is operatively coupled to one of the
plurality of input wires and to one of the plurality of
output wires;
each of the plurality of synapses comprises a resistive
element configured to store a weight;
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the plurality of synaptic arrays are configured in a plu-
rality of layers, comprising at least one input layer, one
hidden layer, and one output layer;

a first of the at least one of the synaptic arrays in the at
least one hidden layer is configured to receive and store
an array of inputs from a prior layer during a feed
forward operation;

a second of the at least one of the synaptic arrays in the
at least one hidden layer is configured to receive the
array of inputs from the prior layer, and compute
outputs from the at least one hidden layer based on the
weights of the second synaptic array during the feed
forward operation;

the first of the at least one of the synaptic arrays is
configured to provide the stored array of inputs to the
second of the at least one of the synaptic arrays during
a back propagation operation; and

the second of the at least one of the synaptic arrays is
configured to receive correction values during the back
propagation operation, and based on the correction
values and the stored array of inputs, update its
weights.

2. The artificial neural network of claim 1, wherein the

feed forward operation is pipelined.
3. The artificial neural network of claim 1, wherein the
back propagation operation is pipelined.
4. The artificial neural network of claim 1, wherein the
feed forward operation and the back propagation operation
are performed concurrently.
5. The artificial neural network of claim 1, wherein the
first of the at least one of the synaptic arrays is configured
to store one array of inputs per column.
6. The artificial neural network of claim 1, wherein each
of the plurality of synapses comprises a memory element.
7. The artificial neural network of claim 1, wherein each
of the plurality of synapses comprises an NVM or 3T1C.
8. A device, comprising:
a first and a second synaptic array, each of the first and
second synaptic arrays comprising a plurality of
ordered input wires, a plurality of ordered output wires,
and a plurality of synapses, wherein
each of the plurality of synapses is operatively coupled
to one of the plurality of input wires and to one of the
plurality of output wires;

each of the plurality of synapses comprises a resistive
element configured to store a weight;

the first synaptic array is configured to receive and store
an array of inputs from a prior layer of artificial
neural network during feed forward operation;

the second synaptic array is configured to receive the
array of inputs from the prior layer, and compute
outputs based on the weights of the second synaptic
array during the feed forward operation;
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the first synaptic array is configured to provide the
stored array of inputs to the second synaptic array
during a back propagation operation; and

the second synaptic array is configured to receive
correction values during the back propagation opera-
tion, and based on the correction values and the
stored array of inputs, update its weights.

9. The device of claim 8, wherein the feed forward
operation is pipelined.

10. The device of claim 8, wherein the back propagation
operation is pipelined.

11. The device of claim 8, wherein the feed forward
operation and the back propagation operation are performed
concurrently.

12. The device of claim 8, wherein the first synaptic array
is configured to store one array of inputs per column.

13. The device of claim 8, wherein each of the plurality
of synapses comprises a memory element.

14. The artificial neural network of claim 1, wherein each
of the plurality of synapses comprises an NVM or 3T1C.

15. A method comprising:

receiving an array of inputs by a first synaptic array in a

hidden layer from a prior layer during a feed forward
operation;

storing the array of inputs by the first synaptic array

during the feed forward operation;
receiving the array of inputs by a second synaptic array in
the hidden layer during the feed forward operation;

computing by the second synaptic array outputs from
array of inputs based on weights of the second synaptic
array during the feed forward operation;

providing the stored array of inputs from the first synaptic

array to the second synaptic array during a back propa-
gation operation;

receiving correction values by the second synaptic array

during the back propagation operation; and

based on the correction values and the stored array of

inputs, updating the weights of the second synaptic
array.

16. The method of claim 15, wherein the feed forward
operation is pipelined.

17. The method of claim 15, wherein the back propagation
operation is pipelined.

18. The method of claim 15, wherein the feed forward
operation and the back propagation operation are performed
concurrently.

19. The method of claim 15, wherein the first synaptic
array is configured to store one array of inputs per column.

20. The method of claim 15, wherein each of the plurality
of synapses comprises a memory element.
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