
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
2

31
5

11
5

A
1

��&�����������
(11) EP 2 315 115 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
27.04.2011 Bulletin 2011/17

(21) Application number: 09382229.4

(22) Date of filing: 23.10.2009

(51) Int Cl.:
G06F 9/445 (2006.01)

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL
PT RO SE SI SK SM TR

(71) Applicant: Iriscene Software Corporation, S.L.
28023 Madrid (ES)

(72) Inventors:
• Navas Santamaria, Javier

E-28023, Madrid (ES)

• Guío Mena, Susana
E-28023, Madrid (ES)

• García Gallardo, Orión
E-28023, Madrid (ES)

• De Prat Martí, José Luis
E-28023, Madrid (ES)

(74) Representative: ABG Patentes, S.L.
Avenida de Burgos 16D
Edificio Euromor
28036 Madrid (ES)

(54) Method and system for managing the software distribution and maintenance in hostile
environments

(57) The present invention refers to a method and a
system for managing, in a hostile environment, the soft-
ware maintenance and distribution in a system that in-
cludes a server and at least one terminal. The method
of the invention comprises: identifying the situation in
which a software clement in distribution in a terminal is,
attributing to said software element a state from a group
of predefined states; periodically checking the corre-
spondence between the state attributed to each software
element and their actual situation; monitoring transitions
between states of the software elements; and relating
the software elements to be distributed by means of de-
pendencies for the automated assignment of software
elements to the terminals according to a dependencies
tree.

EP 2 315 115 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

Field of the Invention

[0001] The present invention deals with computer sys-
tems and/or networks. In particular, the present invention
relates to the field of remote management of groups of
terminals, specifically to the issues of software distribu-
tion and maintenance in said groups.

Background and prior art

[0002] The invention aims to solve the problem of the
correctness and availability of software distributed in hos-
tile environments.
[0003] It should be understood as "hostile environ-
ment" an environment where the probability of events
that affect the process of installing the distributed soft-
ware or the software itself once already installed, at some
point in their life cycle, is significant, mainly due to mali-
cious users.
[0004] In hostile environments it is not possible to con-
trol the nature of the event or its originating agent. In said
environments users can act maliciously by trying to
destabilize the system. In addition, systems in said en-
vironments can be protected with automatic restoration
elements, which, when providing the stability of the same,
hinder the remote update of said systems.
[0005] The solution consists in automatic actions taken
by the tool itself to counterfeit the degradation of the cor-
rectness and availability of distributed software; or in the
generation of alerts that inform the system operator of
such degradation, so that the detection should not de-
pend on the skill of the operator.
[0006] In the present document, software correctness
shall be understood as the appropriate deployment of
software, measured ultimately by the correct execution
of the task for which it was conceived.
[0007] In addition to the continuous corrective actions,
the invention includes a dependency management be-
tween applications and/or software to be deployed, in
order to ensure the expected success and proper func-
tioning of all distributed packages.
[0008] In the present document, software availability
shall be understood as the holding of the correction over
time. The security, at the time of discharge, of the cor-
rectness of software is a poor value unless it is renewed
periodically.
[0009] The invention will also take into account the
possibility that the systems are protected by automatic
restoration systems that prevent an ordinary modification
of the software already installed.
[0010] Solutions for software delivery are already
known (U.S. 6493871 B1), however, the common as-
sumption is their applicability to friendly environments in
which the probability of occurrence of adverse events
only takes non-negligible values for the case of network
communications.

[0011] The assumption of the immutability of distribut-
ed software, except by action of its own software distri-
bution solution, is also accepted.

General description of the invention

[0012] The present invention solves the technical
problems described above. For this, a method for man-
aging software distribution and maintenance in a hostile
environment is provided according to independent claim
1 and a system for managing software distribution and
maintenance is provided according to independent claim
11. The dependent claims present preferred embodi-
ments of the present invention.
[0013] In a first aspect, the invention provides a meth-
od for managing in a hostile environment the software
distribution and maintenance in a system comprising a
server and at least one terminal, the method comprising:

• identifying the situation in which a software element
in distribution in a terminal is and attributing to said
software element a state from a group of predefined
states;

• periodically checking the correspondence between
the state attributed to each software element and
their actual situation;

• monitoring transitions between states of the software
elements and

• relating the software elements to be distributed by
means of dependencies for the automated assign-
ment of software elements to the terminals according
to a dependencies tree.

[0014] In the context of the present invention, a soft-
ware element in distribution shall be understood as the
software element from the moment it has been assigned
for installation in one or more terminals.
[0015] According to the present invention, a list of
states is defined wherein any software element in distri-
bution from a central server to one or more terminals
inhabiting the hostile environment can be. Also, the sub-
set of states considered erroneous, i.e. those who would
harm the correctness and availability of software, is de-
termined from the set of possible states.
[0016] The method of the invention can perform the
following tasks, regardless of the software distribution
itself:

1 st .- Collecting and updating in a continuous man-
ner the situation in which each distributed software
element is, in any managed terminal, by associating
to each one of these software elements one of the
states defined. This association can be accessed via
graphical interface or obtained through some auto-
mated method that performs the relevant invocations
to the functions designed for that purpose.

2nd .- Periodically checking the correspondence be-

1 2

EP 2 315 115 A1

3

5

10

15

20

25

30

35

40

45

50

55

tween the state attributed to each software element
in each terminal with its actual situation. Updating
the associated state if discrepancies are discovered
and, in certain scenarios, taking automated actions
to redirect the software element to its original state.

3rd .- A software element can be exclusively in cor-
rect states, and still suffer a real deterioration in its
availability. The invention monitors the abnormal
transitions between correct states, allowing alerting
this occurrence to the operator and/or automatically
solving the found problem.

[0017] The assignment of software elements can lead
by itself to a degradation of the correction of the system
or element itself This happens when a software element
is assigned to a terminal without taking into account its
dependencies, which indicate the needs of the software
element of other software elements in order to work prop-
erly.
[0018] The present invention allows the definition,
through the invocation of functions designed for that pur-
pose, of dependencies between different software ele-
ments to be distributed, so when one element depending
on others is assigned to a terminal, the invention makes
an implicit assignment of these other elements on which
the first element depends, automatically assigning them
to the same terminal or terminals to which the first soft-
ware element is assigned and automatically prioritizing,
so that the installation of various software elements in
the correct sequence is ensured.
[0019] The invention allows the application of current
techniques for software distribution in hostile environ-
ments, providing a behavior model for adverse events
such as faulty installation, inadvertent or malicious unin-
stallation, software malfunction due to lack of certain re-
quirements in their deployment (software dependencies,
machine requirements, etc.).
[0020] The method of the invention may comprise per-
forming one or more actions intended to infer the final
outcome of a software element installation, such as ver-
ification of the existence of registry keys, the presence
of files, etc.
[0021] The state of the art is prolix when it comes to
define behaviors in positive scenarios. The present in-
vention has the advantage over existing systems of pre-
dicting the existence of negative scenarios and defining
a behavior to notice this fact or even address it automat-
ically, without intervention by the system operator.
[0022] The presence of dependence definitions be-
tween complex software elements ensures that the ter-
minals meet the requirements for the proper functioning
of all elements assigned.
[0023] Also, said dependencies can ensure that the
terminals receive correctly the necessary system up-
dates or applications, automatically and without the need
for the operator to include these elements on the manual
assignments of software elements to be distributed.

[0024] In a second aspect of the invention a system
for managing software distribution and maintenance in a
software distribution system located in a hostile environ-
ment is provided, the software distribution system com-
prising a central server and at least one terminal, the
system for managing software distribution and mainte-
nance comprising means adapted to perform the method
according to the first aspect of the invention.
[0025] The central server may comprise a database,
web services and/or a graphic interface application.

Description of the drawings

[0026] The invention is described below making refer-
ence to a series of figures wherein, for illustrative and
non limitative purposes, is represented the following:

FIGURE 1 shows a schematic representation of an
embodiment of the system of the invention.

FIGURE 2 shows the transitions considered as not
abnormal between states of distributed software el-
ements.

FIGURE 3 shows a flow chart corresponding to a
reinstallation of a software element.

FIGURE 4 shows an example of the structure of de-
pendencies between various software elements.

FIGURE 5 shows the logic of assignment of the cen-
tral server for a scenario.

Detailed description of the invention

[0027] In Figure 1 a preferred embodiment of the sys-
tem of the invention is schematically shown, the system
comprising means assigned to a central server (2) in
which the software elements (5) to be distributed are lo-
cated, these software elements being stored or created
for distribution, and an agent (1) installed in each of the
terminals. The central server (2) has available a number
of functions (3) (e.g., by invocation or by graphical inter-
face (4)) whereby assignments of software elements to
the terminals are performed. Once the updates have
been assigned, the agents (1) start their downloading
according to certain distribution logic (6).
[0028] Terminals inquire periodically about the status
of their assignments and, as they are informed of chang-
es, they operate according to a preprogrammed se-
quence. Changes may involve either the actual imple-
mentation of the assignments: download of the software
element (5) and installation thereof; either the revocation
of them: uninstalling and optionally deleting the software
element (5).
[0029] Hitherto are the components of the invention
common in the current state of the art.
[0030] The present invention defines the states in

3 4

EP 2 315 115 A1

4

5

10

15

20

25

30

35

40

45

50

55

which, at any given time, a software element (5) in dis-
tribution may be found at any given terminal. Figure 2
shows the transitions between states of software ele-
ments (5) considered not anomalous.
[0031] From the possible states of a software element
(5) in distribution the following states may be defined:

Assigned: In which the software element (5) has
been assigned to the terminal, but the agent (1) re-
siding in said terminal has not yet taken any action
in this regard.

Installed: In which the agent residing in the terminal
has finished successfully the installation of the soft-
ware element (5).

Downloaded: In which the agent (1) residing in the
terminal has finished successfully the download of
the software element (5) but has not yet executed
any action with the downloading file.

Paused: In which the agent (1) has executed the
pause command over one or more downloads in
progress. This command is ordered by the operator
via the central server (2) Graphical User Interface
(4) or is generated automatically through invocation
of the adequate function (3) by an automated exter-
nal service (e.g., control of the maximum number of
downloading terminals).

Installation Error: The agent (1) installed in the ter-
minals may carry out, optionally, the checking of the
existence of the software element (5) to be distrib-
uted in the target terminal. In such a case, said
checking is repeated at the end of the software dis-
tribution process, determining if the installation of the
software element (5) has been successful or not. A
negative scenario shall cause the transition to the
state described in this paragraph.

[0032] The checking is carried out by verifying the ex-
istence of a list of files and/or registry keys that the op-
erator defines when the software element (5) is created.
[0033] An example, in a hostile environment, wherein
an installation error could occur could be as follows. A
user, either maliciously or inadvertently, revokes the writ-
ing permissions of the directory wherein a software ele-
ment (5) must be installed. In the scenario outlined here,
without this second checking, it would be impossible for
the system to determine the success or failure of software
distribution.
[0034] Requirements Error: In addition to the soft-
ware requirements, which can be guaranteed by the tool
itself, it is possible to condition the software distribution
to hardware requirements, as may be the existence of a
certain amount of RAM, or a certain amount of free space
the hard disk.
[0035] The system of the invention, at the central serv-

er (2), supports the verification of the compliance with
these requirements. In those terminals that do not comply
with the requirements thresholds defined, the software
element (5) evolve to this state.
[0036] The invention can perform two kinds of verifi-
cation of requirements compliance: verification of data
stored in a database or real-time data verification. The
first one is only possible when there is an inventory da-
tabase of managed terminals, which database can be
accessed by the central server (2).
[0037] As a software element (5) is in a Requirement
Error state, the requirements associated to that element
are checked periodically for said terminal.
[0038] Pre/post-operation Error: The software ele-
ments (5) may be jointly distributed with a series of op-
erations to be executed by the target terminal, these op-
erations being to be performed prior to the installation,
after the installation, or after an error in case it takes
place.
[0039] 1st Pre-operations: operations to be executed
by the terminal after the software element (5) download-
ing and prior to its installation. A valid example of the pre-
operation command can be the pause command over a
service intended to be updated.
[0040] 2nd Post-operations: operations to be executed
by the terminal after the successful installation of the soft-
ware element (5). A valid example of post-operation can
be, linking with the previous example, the starting com-
mand over a service that has been updated.
[0041] 3rd Post-operations on error: the invention al-
lows the execution of specific operations after detecting
an incorrect installation of a software element (5). Such
operations are particularly valuable in the integration sce-
narios with recovery tools, since a restoring command
can be designated as post-operation on error, so that the
terminal returns to the situation prior to the unsuccessful
installation.
[0042] The integration of operations with the software
elements (5) provides great power and versatility to the
method and system of the invention. However, if the type
of operation that can be executed in each scenario is not
controlled, the risk of degrading the proper functioning
of the system exists.
[0043] In a hostile environment it is usual to have au-
tomatic system restoration tools in each restart. This in-
creases the reliability of the system (a reboot or a manual
command restores the system to the original installation),
but it makes impossible the remote update of said soft-
ware with traditional methods.
[0044] See the following example. An operator wants
to distribute an application. This application is distributed
to terminals allocating it on a first drive protected by a
restoration tool. The same application installation pack-
age executes the task, as post-operation, of creating a
new snapshot of the system named as image 2 (it is un-
derstood that there was already a system snapshot
named as image 1).
[0045] The operator decides to change the installation

5 6

EP 2 315 115 A1

5

5

10

15

20

25

30

35

40

45

50

55

directory of the application to a second drive not protected
by the restoration tool for example because such appli-
cation cannot be found among those protected due to
client policy.
[0046] In an example of correct use by the operator,
the operator can create a single package for installing
the application on the second unit and which, as post-
operation, orders to the restoration tool to return to the
previous image (image 1) in which that application was
not installed. Said action must be executed as post-op-
eration, because even if the application should not be in
the first unit, a policy of not depriving users of the service
of such application is adopted, making effective the return
of the first unit to the previous image (image 1) only in
case of successful installation of the package.
[0047] The example of misuse runs parallel to the pre-
vious case until the operator creates the second pack-
age, which must install the application on the second unit.
At this point the operator makes a mistake and creates
a package that reinstalls the application on the first unit.
The result is the creation of a cycle: application installa-
tion, restoration of "image 1", application installation, res-
toration of "image 1" ...
[0048] Considering the operator errors as part of the
hostile environment, the present invention can detect this
and other potential problems introduced by the operator
when he/she creates software updates.
[0049] It is thus necessary that the agent (1), prior to
the execution of the pre-operations, make a verification
and compilation of them (as well as post-operations and
post-operations on error) so that it is ensured that its ex-
ecution will not prejudice the proper functioning of the
system.
[0050] This guarantee will be obtained by checking a
set of compilation rules by the agent (1) of the system of
the invention, which rules are contained in a configuration
file accessible by the agent (1). Said file can be edited
and/or updated at the central server (2) and redistributed
to the managed terminals by the software distribution
system itself That distributed software element (5) whose
operations violate the rules of compilation for a given
terminal, will be marked with status " Pre/post-operation
Error" for that terminal.
[0051] Downloading: In this state, for a given termi-
nal, will be all those software elements (5) for which the
agent (1) has started the download.
[0052] Download error: This is the state associated
with a software element (5) in a given terminal, for which
any downloading error has occurred in the terminal.
[0053] Installing: This is the state indicative of the on-
going installation of a software element (5) by the agent
(1).
[0054] Except for the case of the first state, Assigned,
it is the agent (1) which decides when the transition from
one state to another has occurred, its responsibility being
to report that transition to the central server (2). If the
agent (1) cannot update the change in the central server
(2) for any reason, e.g. a fall of communications service,

the agent (1) itself would be responsible for retrying the
updating after a random period of time. If during the
course of that period, the element changes its state again,
the agent (1) rules out the oldest changes to report only
the most recent ones and, therefore, the ones in effect.
[0055] The operator can, through the user interface of
the server, restart any software element (5) whose status
is wrong, causing that the status becomes Assigned
again.
[0056] The invention provides through these states a
proper granularity for an accurate knowledge of the out-
come of the download process. However, paying atten-
tion exclusively to this point in time of the life cycle of a
distributed software element (5) is not appropriate if the
aim is to ensure the survival of that element in the termi-
nals that inhabit a hostile environment.
[0057] As it was anticipated in the description of the
technical problem faced by the present invention, is not
negligible in such environments the possibility of occur-
rence of events affecting the "survival" of the distributed
software elements (5).
[0058] Examples of such events could include: dele-
tion of such elements by users or applications, malicious-
ly or inadvertently, execution of recovery commands af-
fecting the partition where the elements reside, corrup-
tion of container files of the element, etc...
[0059] The invention, through its agent (1) installed at
the terminals, performs a periodical checking of the ef-
fective state of the software elements (5) installed (in the
Installed state) at the terminals. Through this periodical
checking, the agent (1) notes if the current state of the
software element (5) matches the state known by the
system. If so, no action is taken concerning the element.
Otherwise, the agent (1) is capable of automatically ex-
ecuting maintenance actions that are appropriate for the
reinstallation of the element, governed by the flow chart
in Figure 3.
[0060] A continuous transition of a software element
(5) through the so considered correct states is possible,
the availability of the distributed software elements (5)
being however degraded.
[0061] Consider the following scenario as an example:

In the first scenario, a malicious user voluntarily re-
moves a distributed software element (5). The sys-
tem, through periodical checking by its agent (1), re-
alizes the situation and makes the appropriate main-
tenance tasks. The malicious user, at his/her next
session, deletes the above mentioned software ele-
ment (5) again so the agent (1) repeats automatically
the installation, and so on.

[0062] It may be possible that the continuous transition
through the states ’installing’ and ’installed’, goes unno-
ticed to the operator, so he/she cannot run any appropri-
ate action (shield the software element (5), punish the
user, etc.). The agent (1) of the system of the present
invention monitors and counts the number of times the

7 8

EP 2 315 115 A1

6

5

10

15

20

25

30

35

40

45

50

55

software element (5) passes through this transition, so
when that transition happens more than once, it can au-
tomatically run a specific action and/or generate a notice
to be sent to the central server (2), to be stored in a reg-
ister and/or displayed to the operator at the graphical
interface. The invention thus ensures event warning by
the operator and allows him/her to decide what measures
to adopt.
[0063] In the second scenario, a software element (5)
is assigned twice to the same terminal. This duplicity in
the assignment may occur for several reasons: the soft-
ware element (5) is covered by another software element
also assigned to the terminal; the assignment is made
directly to the terminal and duplication is due to the as-
signment of the same element to a group that includes
the terminal, etc.
[0064] Considering every software element (5) has a
life cycle, it may be possible to decide the withdrawal of
such software element (5) after a time in service. With
no external aids, the operator could ignore some of the
multiple assignments of a software element (5), so it
would continue to function in any of the terminals even
when it shouldn’t. The agent (1) of the system of the in-
vention monitors the non-occurrence of the transition
from ’installed’ state to ’empty’ state, implicit for those
terminals where a software element (5) is not installed,
generating the dispatch of a notice visible from the graph-
ical interface (4) of the central server (2).
[0065] Transitions (or absence of transitions) to be
monitored by the central server (2) can be configured by
the server operator, whether through the graphical inter-
face (4) or by invoking the functions (3) designed for this
purpose. Thus, the agent (1) of the invention can detect
a specified sequence of events corresponding for exam-
ple to an unwanted action of a user, understanding an
event as a transition or an absence of transitions.
[0066] Finally, the method and system of the invention
allow defining dependencies between two or more soft-
ware elements (5). These may be actual dependencies
used to reflect actual needs of software elements (e.g.
the fact that element A needs element B to work properly),
or artificial needs created by the operator (element A
works independently of B, but because business rea-
sons, they should not be distributed separately). The de-
pendencies between the software elements (5) can also
be nested, so that the assignment of a software element
depending on another one will cause the automatic as-
signment of the elements on which the software ele-
ments, on which the first software element depends, de-
pend.
[0067] When a software element (5) dependent on oth-
ers is assigned for its distribution, the logic of distribution
(6) residing on the central server (2) automatically as-
signs these other elements (i.e., the dependent element
"drag" its dependencies), providing them with such a pri-
ority so that the installation of each element in the proper
order is ensured.
[0068] Software elements (5) can be classified into five

types of elements:

i) Operating System

ii) Operating System patch or updating.

iii) Application

iv) Application patch or updating.

v) Document or file

[0069] The software element (5) type is intrinsic to it-
self, being its priority of automatic installation based on
the very element type (top priority for Operating System,
less for files) and its automatic dependencies or based
on manual criteria defined by the operator.
[0070] Dependencies, as shown in the example in Fig-
ure 4, have tree structure, the dependent software ele-
ment (5) being the root thereof and the software elements
(5) on which it depends being the leaves.
[0071] In the example shown in Figure 4, a definition
of an Operating System (OS, priority 1), with two updates
(Upd1 and Upd2, priority 2), two applications (Ap1 and
Ap2, with priority 3), an update of application Ap1
(UpAp1, with priority 4) and a file associated to applica-
tion Ap2 (File1, Priority 5).
[0072] Dependencies may be automatic (in the case
of patches/updatings) or defined by the administrator.
Also, they may be unidirectional or bidirectional. Among
elements with equal priority and having a set dependency
relation, agent will work first with the dependent one ("in-
coming arrow") and then the remaining ones. When no
dependencies are indicated, elements are treated by the
creation date on the server.
[0073] Operating System updates receive an automat-
ic dependency on the Operating System itself, as well as
application updates depend on the application. In this
case, a business dependence between the two applica-
tions has been defined by the operator, application Ap2
being dependent on application Ap1. Not automatically
verifiable dependencies at server are once manually set
by the operator.
[0074] When a software element is assigned to a ter-
minal or group, dependencies ("outgoing arrows") of the
element are checked. The agent (1) on each terminal will
automatically check such dependencies and make sub-
sequent automatic assignment of every element.
[0075] In this example, if the operator assigns software
element Ap1 to a terminal, the existence of software el-
ement OS, then the existence of the two elements and
then the existence of the application itself with its own
updates will be previously checked. In this same exam-
ple, assigning the file "File1", a full installation of all ele-
ments shown would be carried out.
[0076] Because of this mechanism, the invention will
never assign an element that is already assigned to a
given terminal. Figure 5 shows the logic of assignment

9 10

EP 2 315 115 A1

7

5

10

15

20

25

30

35

40

45

50

55

of the resources associated to the central server (2) for
any given scenario.
[0077] Given the periodic verification by the agent (1)
against the server of the assigned elements, their state
and dependencies, the operator is allowed to ignore man-
ual assignment of patches, updates , etc. that are con-
sidered critical and which dependence has been defined
at the server itself; the agents (1) will carry out the down-
load of the elements necessary a proper function.

Claims

1. A method for managing in a hostile environment the
software distribution and maintenance in a system
that comprises a server and at least one terminal,
the method comprising:

identifying the situation in which a software ele-
ment in distribution in a terminal is and attributing
to said software element a state from a group of
predefined states;
periodically checking the correspondence be-
tween the state attributed to each software ele-
ment and their actual situation;
monitoring transitions between states of the
software elements and
relating the software elements to be distributed
by means of dependencies for the automated
assignment of software elements to the termi-
nals according to a dependencies tree.

2. The method for managing in a hostile environment
the software distribution and maintenance according
to claim 1 comprising detection of a specified se-
quence of events, those events being transitions or
absence of transitions between states.

3. The method for managing in a hostile environment
the software distribution and maintenance according
to any of the preceding claims comprising the exe-
cution of an automatic action in response to a result
of a periodical checking.

4. The method for managing in a hostile environment
the software distribution and maintenance according
to claim 3 comprising generating an alarm in re-
sponse to a result of a periodical checking.

5. The method for managing in a hostile environment
the software distribution and maintenance according
to claim 3 or 4 wherein the result of a periodical
checking is selected from the group consisting of the
identification of a state considered to be wrong, the
detection of a mismatch between the state attributed
to a software element and its actual situation, the
detection of an anomalous transition between cor-
rect states and the detection of non-assignment of

software elements necessary for the proper function-
ing of the assigned ones.

6. The method for managing in a hostile environment
the software distribution and maintenance according
to any of the previous claims comprising conditioning
the distribution of a software element to a terminal
to the compliance with one or more requirements,
preferably with an inventory of the terminal and/or a
measure of the use and/or of the performance of the
terminal.

7. The method for managing in a hostile environment
the software distribution and maintenance according
to any of the previous claims comprising the execu-
tion of one or more actions intended to infer the out-
come of a software element installation.

8. The method for managing in a hostile environment
the software distribution and maintenance according
to any of the previous claims comprising the associ-
ation of one or more operations with a software ele-
ment to be distributed, conditioning the execution of
said one or more operations to the compliance with
one or more orders.

9. The method for managing in a hostile environment
the software distribution and maintenance according
to any of the previous claims comprising nesting de-
pendencies between software elements, so that the
assignment of a software element depending on an-
other one will cause the automatic assignment of the
elements on which the software elements, on which
the first software element depends, depend.

10. The method for managing in a hostile environment
the software distribution and maintenance according
to any of the preceding claims comprising the auto-
matic assignment of priorities to the dependencies
between software elements, so that the installation
of the software elements in a proper sequence is
ensured.

11. A system for managing the software distribution and
maintenance in a software distribution system locat-
ed in a hostile environment, the software distribution
system comprising a central server and at least one
terminal, the system for managing the software dis-
tribution and maintenance comprising means adapt-
ed to perform the method according to any of claims
1-10.

12. The system for managing the software distribution
and maintenance in a software distribution system
located in a hostile environment according to claim
11, comprising means associated with the central
server, adapted to associate one or more operations
with a software element to be distributed.

11 12

EP 2 315 115 A1

8

5

10

15

20

25

30

35

40

45

50

55

13. The system for managing the software distribution
and maintenance in a software distribution system
located in a hostile environment according to any of
claims 11 or 12 comprising means associated with
the central server adapted to nest dependencies be-
tween software elements, so that the assignment of
a software element depending on another one will
cause the automatic assignment of the elements on
which the software elements, on which the first soft-
ware element depends, depend.

13 14

EP 2 315 115 A1

9

EP 2 315 115 A1

10

EP 2 315 115 A1

11

EP 2 315 115 A1

12

EP 2 315 115 A1

13

EP 2 315 115 A1

14

EP 2 315 115 A1

15

EP 2 315 115 A1

16

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 6493871 B1 [0010]

	bibliography
	description
	claims
	drawings
	search report

