

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2019/0084972 A1 Deprez et al.

Mar. 21, 2019 (43) **Pub. Date:**

(54) PYRIMIDINYLOXY BENZENE **DERIVATIVES AS HERBICIDES**

(71) Applicant: FMC CORPORATION,

PHILADELPHIA, PA (US)

(72) Inventors: Nicholas Ryan Deprez, East Windsor,

NJ (US); Ravisekhara Pochimireddy Reddy, Secunderabad (IN); Paula Louise Sharpe, Middletown, DE (US); Thomas Martin Stevenson, Newark,

DE (US)

(21) Appl. No.: 16/191,905

(22) Filed: Nov. 15, 2018

Related U.S. Application Data

- (62) Division of application No. 15/111,047, filed on Jul. 12, 2016, now Pat. No. 10,131,652, filed as application No. PCT/US15/10823 on Jan. 9, 2015.
- Provisional application No. 61/928,129, filed on Jan. 16, 2014.

Publication Classification

(51)	Int. Cl.	
	C07D 413/12	(2006.01)
	A01N 43/80	(2006.01)
	A01N 43/54	(2006.01)
	C07D 403/12	(2006.01)
	C07D 417/12	(2006.01)
	C07D 409/12	(2006.01)
	A01N 43/56	(2006.01)
	C07D 401/12	(2006.01)
	A01N 43/82	(2006.01)
	A01N 43/88	(2006.01)
	A01N 43/647	(2006.01)

A01N 43/50 (2006.01)(2006.01)C07D 405/12 C07D 239/34 (2006.01)

U.S. Cl.

CPC C07D 413/12 (2013.01); A01N 43/80 (2013.01); A01N 43/54 (2013.01); C07D 403/12 (2013.01); C07D 417/12 (2013.01); C07D 409/12 (2013.01); C07D 239/34 (2013.01); C07D 401/12 (2013.01); A01N 43/82 (2013.01); A01N 43/88 (2013.01); A01N 43/647 (2013.01); A01N 43/50 (2013.01); C07D 405/12 (2013.01); A01N 43/56 (2013.01)

(57)**ABSTRACT**

Disclosed are compounds of Formula 1, including all stereoisomers, N-oxides, and salts thereof,

1

$$(\mathbb{R}^3)_m \xrightarrow{\frac{3}{4}} \underbrace{\mathbb{Z}}_{6} \underbrace{\mathbb{N}}_{N} \underbrace{\mathbb{R}^2}_{\mathbb{R}^2}$$

wherein

Q, Z, R², R³ and m are as defined in the disclosure.

Also disclosed are compositions containing the compounds of Formula 1 and methods for controlling undesired vegetation comprising contacting the undesired vegetation or its environment with an effective amount of a compound or a composition of the invention.

PYRIMIDINYLOXY BENZENE DERIVATIVES AS HERBICIDES

FIELD OF THE INVENTION

[0001] This invention relates to certain pyrimidinyloxy benzene derivatives, their N-oxides, salts and compositions, and methods of their use for controlling undesirable vegetation

BACKGROUND OF THE INVENTION

[0002] The control of undesired vegetation is extremely important in achieving high crop efficiency. Achievement of selective control of the growth of weeds especially in such useful crops as rice, soybean, sugar beet, maize, potato, wheat, barley, tomato and plantation crops, among others, is very desirable. Unchecked weed growth in such useful crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. The control of undesired vegetation in noncrop areas is also important. Many products are commercially available for these purposes, but the need continues for new compounds that are more effective, less costly, less toxic, environmentally safer or have different sites of action.

[0003] JP 61236766 A (Sumitomo, 1986) discloses certain carbon-linked pyrimidinyloxy benzene derivitaves as herbicides. WO 94/17059 (Nippon Soda, 1994) discloses certain carbon linked pyrimidinyloxy benzene derivative as herbicides.

SUMMARY OF THE INVENTION

[0004] This invention is directed to compounds of Formula 1 (including all stereoisomers), (N-oxides, and salts thereof), agricultural compositions containing them and their use as herbicides:

$$(\mathbb{R}^3)_m \xrightarrow{\frac{3}{4}} \underbrace{\begin{array}{c} Q \\ \\ \\ 5 \end{array}} \underbrace{\begin{array}{c} Z \\ \\ N \end{array}} \underbrace{\begin{array}{c} N \\ \\ \\ R^2 \end{array}}$$

[0005] Q is a 5- or 6-membered aromatic heterocylic ring, bound to the remainder of Formula 1 through a carbon atom, and optionally substituted with 1 to 4 R¹; [0006] Z is O or S;

[0007] each R¹ is independently halogen, cyano, nitro, SF₅, CHO, C(=O)NH₂, C(=S)NH₂, SO₂NH₂, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₄-C₈ alkylcycloalkyl, C₄-C₈ cycloalkylalkyl, C₂-C₆ alkylcarbonyl, C₂-C₆ haloalkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₃-C₇ cycloalkylcarbonyl, C₂-C₈ alkylaminocarbonyl, C₃-C₁₀ dialkylaminocarbonyl, C₁-C₄ alkoxy, C₃-C₄ alkenyloxy, C₃-C₄ alkynyloxy, C₁-C₄ haloalkoxy, C₃-C₄ haloalkenyloxy, C₃-C₄ haloalkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, C₄-C₈ cycloalkylakoxy, C₂-C₆ alkoxyalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkoxyalkyl, C₂-C₆ alkoxyalkoxy, C₂-C₆

alkylcarbonyloxy, C_2 - C_6 cyanoalkyl, C_2 - C_6 cyanoalkoxy, C_1 - C_4 hydroxyalkyl, C_2 - C_4 alkylthioalkyl, $SO_nR^{1.4}$, $Si(CH_3)_3$ or $B(-OC(R^{1.B})_2C(R^{1.B})_2O-)$; or a phenyl ring optionally substituted with up to 5 substituents independently selected from $R^{1.C}$; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from $R^{1.C}$ on carbon atom ring members and $R^{1.D}$ on nitrogen atom ring members;

[0008] R² is halogen, cyano, nitro, C₁-C₄ alkoxy, C₁-C₄ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, SO_nR^{2A}, C₁-C₄ haloalkyl or C₂-C₆ eycloalkyl:

haloalkyl or C_3 - C_6 cycloalkyl; [0009] each R^3 is independently halogen, cyano, hydroxy, nitro, amino, CHO, $C(=O)NH_2$, $C(=S)NH_2$, SO_2NH_2 , C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₄-C₈ alkyl
cycloalkyl, $\mathrm{C_4\text{-}C_8}$ cycloalkylalkyl, $\mathrm{C_2\text{-}C_6}$ alkyl
carbonyl, C2-C6 haloalkylcarbonyl, C2-C6 alkoxycarbonyl, C_3 - C_7 cycloalkylcarbonyl, C_1 - C_4 alkoxy, C_3 - C_4 alkenyloxy, C_3 - C_4 alkynyloxy, C_1 - C_4 haloalkoxy, C₃-C₄ haloalkenyloxy, C₃-C₄ haloalkynyloxy, C₃-C₆ cycloalkoxy, C3-C6 halocycloalkoxy, C4-C8 cycloalkylalkoxy, C_2 - C_6 alkoxyalkyl, C_2 - C_6 haloalkoxyalkyl, C2-C6 alkoxyhaloalkyl, C2-C6 alkoxyalkoxy, C2-C4 alkylcarbonyloxy, C_2 - C_6 cyanoalkyl, C_2 - C_6 cyanoalkyl, C_2 - C_6 cyanoalkoxy, C_2 - C_4 alkylthioalkyl, $Si(CH_3)_3$, C= $CSi(CH_3)_3$, C(\bigcirc O)N($R^{3.4}$)($R^{3.B}$), C(\bigcirc NOR^{3.C})H, C(\bigcirc NOR^{3.C}) to 5 substituents independently selected from R^{3F} ; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from \mathbb{R}^{3F} on carbon atom ring members and R^{3G} on nitrogen atom ring members; or pyrimidinyloxy;

[0010] m is 0, 1, 2 or 3;

1

 $\begin{tabular}{ll} \hline \textbf{(0011)} & each n is independently 0, 1 or 2; \\ \hline \end{tabular}$

[0012] each R^{1,4}, R^{2,4} and R^{3,E} is independently C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄, alkylamino or C₂-C₆ dialkylamino;

[0013] each R^{1B} is independently H or C_1 - C_4 alkyl;

[0014] each R^{1C} is independently hydroxy, halogen, cyano, nitro, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy or C₂-C₁ haloalkoxy.

alkoxy or C_1 - C_6 haloalkoxy; [0015] each R^{1D} is independently cyano, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy or C_2 - C_6 alkylcarbonyl; [0016] each R^{3A} is independently C_1 - C_2 alkyl or C_2 - C_3

[0016] each R^{3A} is independently C_1 - C_4 alkyl or C_1 - C_4 haloalkyl;

[0017] each R^{3B} is independently H, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl;

[0018] each R^{3C} is independently H or C_1 - C_4 alkyl; [0019] each R^{3D} is independently H, amino, C_1 - C_4 alkyl or C_1 - C_4 alkylamino;

[0020] each R^{3F} is independently hydroxy, halogen, cyano, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy or C_1 - C_6 haloalkoxy; and

[0021] each R^{3G} is independently cyano, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy or C_2 - C_6 alkylcarbonyl;

[0022] More particularly, this invention pertains to a compound of Formula 1 (including all stereoisomers), an N-oxide or a salt thereof. This invention also relates to a herbicidal composition comprising a compound of the invention (i.e. in a herbicidally effective amount) and at least one component selected from the group consisting of surfactants, solid diluents and liquid diluents. This invention further relates to a method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of the invention (e.g., as a composition described herein).

[0023] This invention also includes a herbicidal mixture comprising (a) a compound selected from Formula 1, N-oxides, and salts thereof, and (b) at least one additional active ingredient selected from (b1) through (b16); and salts of compounds of (b1) through (b16).

DETAILS OF THE INVENTION [0024] As used herein, the terms "comprises," "compris-

ing," "includes," "including," "has," "having," "contains", "containing," "characterized by" or any other variation thereof, are intended to cover a non-exclusive inclusion, subject to any limitation explicitly indicated. For example, a composition, mixture, process or method that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such composition, mixture, process or method. [0025] The transitional phrase "consisting of" excludes any element, step, or ingredient not specified. If in the claim, such would close the claim to the inclusion of materials other than those recited except for impurities ordinarily associated therewith. When the phrase "consisting of" appears in a clause of the body of a claim, rather than

[0026] The transitional phrase "consisting essentially of" is used to define a composition, process or method that includes materials, steps, features, components, or elements, in addition to those literally disclosed, provided that these additional materials, steps, features, components, or elements do not materially affect the basic and novel characteristic(s) of the claimed invention. The term "consisting essentially of" occupies a middle ground between "comprising" and "consisting of".

immediately following the preamble, it limits only the

element set forth in that clause; other elements are not

excluded from the claim as a whole.

[0027] Where applicants have defined an invention or a portion thereof with an open-ended term such as "comprising," it should be readily understood that (unless otherwise stated) the description should be interpreted to also describe such an invention using the terms "consisting essentially of" or "consisting of."

[0028] Further, unless expressly stated to the contrary, "or" refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).

[0029] Also, the indefinite articles "a" and "an" preceding an element or component of the invention are intended to be nonrestrictive regarding the number of instances (i.e. occurrences) of the element or component. Therefore "a" or "an" should be read to include one or at least one, and the singular

word form of the element or component also includes the plural unless the number is obviously meant to be singular. [0030] As referred to herein, the term "seedling", used either alone or in a combination of words means a young plant developing from the embryo of a seed.

[0031] As referred to herein, the term "broadleaf" used either alone or in words such as "broadleaf weed" means dicot or dicotyledon, a term used to describe a group of angiosperms characterized by embryos having two cotyledons. As used herein, the term "alkylating agent" refers to a chemical compound in which a carbon-containing radical is bound through a carbon atom to a leaving group such as halide or sulfonate, which is displaceable by bonding of a nucleophile to said carbon atom. Unless otherwise indicated, the term "alkylating" does not limit the carbon-containing radical to alkyl; the carbon-containing radicals in alkylating agents include the variety of carbon-bound substituent radicals specified for Q, R¹ and R³.

[0032] In the above recitations, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, ethyl, n-propyl, i-propyl, or the different butyl, pentyl or hexyl isomers. "Alkenyl" includes straight-chain or branched alkenes such as ethenyl, 1-propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl isomers. "Alkenyl" also includes polyenes such as 1,2-propadienyl and 2,4-hexadienyl. "Alkynyl" includes straight-chain or branched alkynes such as ethynyl, 1-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers.

[0033] "Alkoxy" includes, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy and the different butoxy, pentoxy and hexyloxy isomers. "Alkoxyalkyl" denotes alkoxy substitution on alkyl. Examples of "alkoxyalkyl" include CH₃OCH₂, CH₃OCH₂CH₂, CH₃CH₂OCH₂, CH₃CH₂CH₂CH₂OCH₂ and CH₃CH₂OCH₂CH₂. "Alkenyloxy" includes straight-chain or branched alkenyloxy moieties. Examples of "alkenyloxy" include H₂C=CHCH₂O, (CH₃)₂C=CHCH₂O, (CH₃)CH=CHCH₂O, (CH₃)CH=C (CH₃)CH₂O and CH₂=CHCH₂CH₂O. "Alkynyloxy" includes straight-chain or branched alkynyloxy moieties. Examples of "alkynyloxy" include HC≡CCH₂O, CH₃C≡CCH₂O and CH₃C≡CCH₂CH₂O. "Alkylthio" includes branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio, butylthio, pentylthio and hexylthio isomers. "Alkylthioalkyl" denotes alkylthio substitution on alkyl. Examples of "alky-CH₃SCH₂, lthioalkyl" include CH₃SCH₂CH₂, CH₃CH₂CH₂CH₃SCH₃ CH₃CH₂SCH₂, CH₃CH₂SCH₂CH₂. "Alkylthioalkoxy" denotes alkylthio substitution on alkoxy. "Cyanoalkyl" denotes an alkyl group substituted with one cyano group. Examples of "cyanoalkyl" include NCCH2, NCCH2CH2 and CH3CH(CN)CH2. "Alkylamino", "dialkylamino", and the like, are defined analogously to the above examples.

[0034] "Cycloalkyl" includes, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The term "halogen", either alone or in compound words such as "haloalkyl", or when used in descriptions such as "alkyl substituted with halogen" includes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl", or when used in descriptions such as "alkyl substituted with halogen" said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "haloalkyl" or "alkyl substituted with

halogen" include F_3C , $CICH_2$, CF_3CH_2 and CF_3CCI_2 . The terms "haloalkoxy", and the like, is defined analogously to the term "haloalkyl". Examples of "haloalkoxy" include CF_3O —, CCI_3CH_2O —, $HCF_2CH_2CH_2O$ — and CF_3CH_2O —. "Alkylcarbonyl" denotes a straight-chain or branched alkyl moieties bonded to a C(=O) moiety. Examples of "alkylcarbonyl" include $CH_3C(=O)$ —, $CH_3CH_2CH_2C(=O)$ — and $(CH_3)_2CHC(=O)$ —. Examples of "alkoxycarbonyl" include $CH_3OC(=O)$ —, $CH_3CH_2OC(=O)$ —, $CH_3CH_2CH_2OC(=O)$ —, $CH_3CH_2CH_2OC(=O)$ — and the different butoxy- or pentoxycarbonyl isomers.

[0035] The total number of carbon atoms in a substituent group is indicated by the "Ci-Cj" prefix where i and j are numbers from 1 to 6. For example, C_1 - C_4 alkylsulfonyl designates methylsulfonyl through butylsulfonyl; C2 alkoxyalkyl designates CH₃OCH₂—; C₃ alkoxyalkyl designates, for example, CH₃CH(OCH₃)—, CH₃OCH₂CH₂— or CH₃CH₂OCH₂—; and C₄ alkoxyalkyl designates the various isomers of an alkyl group substituted with an alkoxy group containing a total of four carbon atoms, examples including CH₃CH₂CH₂OCH₂— and CH₃CH₂OCH₂CH₂—. [0036] When a compound is substituted with a substituent bearing a subscript that indicates the number of said substituents can exceed 1, said substituents (when they exceed 1) are independently selected from the group of defined substituents, (e.g., $(R^3)_n$, n is 0, 1, 2 or 3). Further, when the subscript indicates a range, e.g. (R)_{i-j}, then the number of substituents may be selected from the integers between i and j inclusive. When a group contains a substituent which can be hydrogen, for example (when m=0), then when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted. When a variable group is shown to be optionally attached to a position, (for example $(R^1)_n$ attached to Q wherein n may be 0, then hydrogen may be at the position even if not recited in the variable group definition. When one or more positions on a group are said to be "not substituted" or "unsubstituted", then hydrogen atoms are attached to take up any free valency.

[0037] Unless otherwise indicated, a "ring" as a component of Formula 1 (e.g., substituent Q) is carbocyclic or heterocyclic. The term "ring member" refers to an atom or heteroatom forming the backbone of a ring. When a fully unsaturated carbocyclic ring satisfies Hückel's rule, then said ring is also called an "aromatic ring". "Saturated carbocyclic" refers to a ring having a backbone consisting of carbon atoms linked to one another by single bonds; unless otherwise specified, the remaining carbon valences are occupied by hydrogen atoms.

[0038] The terms "heterocyclic ring", "heterocycle" denote a ring in which at least one atom forming the ring backbone is not carbon, e.g., nitrogen, oxygen or sulfur. Typically a heterocyclic ring contains no more than 4 nitrogens, no more than 2 oxygens and no more than 2 sulfurs. Unless otherwise indicated, a heterocyclic ring can be a saturated, partially unsaturated, or fully unsaturated ring. When a fully unsaturated heterocyclic ring satisfies Hückel's rule, then said ring is also called a "heteroaromatic ring" or "aromatic heterocyclic ring". Unless otherwise indicated, heterocyclic rings can be attached through any available carbon or nitrogen by replacement of a hydrogen on said carbon or nitrogen.

[0039] "Aromatic" indicates that each of the ring atoms is essentially in the same plane and has a p-orbital perpen-

dicular to the ring plane, and that $(4n+2) \pi$ electrons, where n is a positive integer, are associated with the ring to comply with Hückel's rule.

[0040] The term "optionally substituted" in connection with the heterocyclic rings refers to groups which are unsubstituted or have at least one non-hydrogen substituent that does not extinguish the biological activity possessed by the unsubstituted analog. As used herein, the following definitions shall apply unless otherwise indicated. The term "optionally substituted" is used interchangeably with the phrase "substituted or unsubstituted" or with the term "(un) substituted." Unless otherwise indicated, an optionally substituted group may have a substitutent at each substitutable position of the group, and each substitution is independent of the other.

[0041] When Q is a 5- or 6-membered (nitrogen-containing) heterocyclic ring, it may be attached to the remainder of Formula 1 though any available carbon or nitrogen ring atom, unless otherwise described. As noted above, Q can be (among others) phenyl optionally substituted with one or more substituents selected from a group of substituents as defined in the Summary of the Invention. An example of phenyl optionally substituted with one to five substituents is the ring illustrated as U-1 in Exhibit 1, wherein R^V is R^1 as defined in the Summary of the Invention for Q and r is an integer (from 0 to 4).

[0042] As noted above, Q can be (among others) 5- or 6-membered aromatic heterocyclic ring, which may be saturated or unsaturated, optionally substituted with one or more substituents selected from a group of substituents as defined in the Summary of the Invention. Examples of a 5- or 6-membered unsaturated aromatic heterocyclic ring optionally substituted with from one or more substituents include the rings U-2 through U-61 illustrated in Exhibit 1 wherein R^{ν} is any substituent as defined in the Summary of the Invention for Q (i.e. R1) and r is an integer from 0 to 4, limited by the number of available positions on each U group. As U-29, U-30, U-36, U-37, U-38, U-39, U-40, U-41, U-42 and U-43 have only one available position, for these U groups r is limited to the integers 0 or 1, and r being 0 means that the U group is unsubstituted and a hydrogen is present at the position indicated by $(R^{\nu})_{\nu}$.

Exibit 1

U-3
$$\begin{array}{c}
 & (R^{\nu})_{r_{1}} \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

$$O \xrightarrow{S}_{S}$$

$$V-10$$

$$N \stackrel{(R')_{P}}{\underset{2}{\swarrow}_{2}}$$

$$\begin{array}{c}
 & \text{U-12} \\
 & \text{V} \\
 & \text{V}
\end{array}$$

$$V-13$$

$$(R^{\nu})_{r}$$

$$V_{s}$$

$$V_{s}$$

$$S$$

$$V-14$$

$$S = \sum_{s=-2}^{4} (R^{v})_{r}$$

$$N$$
 N
 $(R^{\nu})_{r}$
 $(R^{\nu}$

$$N$$
U-18
$$N$$

$$N$$

$$N$$

$$V-19$$

$$N \longrightarrow 0$$

$$N \longrightarrow 0$$

$$(R^{\nu})_{p}$$

$$O - N$$
U-21

$$\begin{array}{c}
 & \text{U-22} \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

$$(R^{\nu})_{p}$$

$$S - N$$
U-24

$$V-26$$

$$N-N$$

$$N-N$$

$$V-27$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$

$$\begin{array}{c} & \text{U-28} \\ & & \\$$

$$\begin{array}{c}
\text{U-29} \\
\text{O} \\
\text{(R')}_{p}
\end{array}$$

$$\begin{array}{c} \text{U-30} \\ \text{S} \\ \\ \\ (\text{R}^{\nu})_{p} \end{array}$$

-continued

$$N$$
 N
 N
 $(R^{\nu})_{r}$

$$N = (R^{\nu})_{r},$$

$$N = (R^{\nu})_{r},$$
U-39

$$(\mathbb{R}^{\nu})_{r}^{O} \underset{N}{ N},$$

$$(\mathbb{R}^{\nu})_{r}$$

$$\begin{array}{c} \text{U-42} \\ \\ \text{(R^{\nu})}_{r} \\ \end{array}$$

$$\bigvee_{(R^{\prime})_{r}}^{N}\bigvee_{S}^{N},$$

-continued

$$\begin{array}{c}
(\mathbb{R}^{\nu})_{r,} \\
N = N
\end{array}$$

$$\begin{array}{c}
(R^{\nu})_{r}, \\
N-N
\end{array}$$

$$(R^{\nu})_{r}$$

$$N - N$$

$$V - 47$$

$$V - 47$$

$$V - 47$$

$$V - 47$$

$$V-49$$

$$V-49$$

$$V = \frac{4}{8} (R^{\nu})_{r}$$

$$V = \frac{4}{8} (R^{\nu})_{r}$$

$$\begin{array}{c} & & \text{U-51} \\ & &$$

$$(R^{\nu})_{r},$$

H-58

$$\begin{array}{c}
N \\
N \\
6
\end{array}$$
U-57

$$N$$
 N
 N
 N
 N
 N
 N
 N
 N

$$(R^{\nu})_{r}$$
and
$$N$$

$$N$$

$$\begin{array}{c}
 & \text{U-61} \\
 & \text{N} \\
 & \text{N}
\end{array}$$

[0043] Although R^{V} groups are shown in the structures U-1 through U-61, it is noted that they do not need to be present since they are optional substituents. Note that when R^{ν} is H when attached to an atom, this is the same as if said atom is unsubstituted. The nitrogen atoms that require substitution to fill their valence are substituted with H or R^{ν} . Note that when the attachment point between $(R^{\nu})_r$ and the U group is illustrated as floating, $(R^{\nu})_{\nu}$ can be attached to any available carbon atom or nitrogen atom of the U group. Note that when the attachment point on the U group is illustrated as floating, the U group can be attached to the remainder of Formula 1 through any available carbon or nitrogen of the U group by replacement of a hydrogen atom. Note that some U groups can only be substituted with less than 4 R^V groups (e.g., U-2 through U-47 and U-52 through U-61).

[0044] A wide variety of synthetic methods are known in the art to enable preparation of aromatic and nonaromatic heterocyclic rings and ring systems; for extensive reviews see the eight volume set of *Comprehensive Heterocyclic Chemistry*, A. R. Katritzky and C. W. Rees editors-in-chief, Pergamon Press, Oxford, 1984 and the twelve volume set of *Comprehensive Heterocyclic Chemistry II*, A. R. Katritzky, C. W. Rees and E. F. V. Scriven editors-in-chief, Pergamon Press, Oxford, 1996.

[0045] Compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. Stereoisomers are isomers of identical constitution but differing in the arrangement of their atoms in space and include enantiomers, diastereomers, cis-trans isomers (also known as geometric isomers) and atropisomers. Atropisomers result from restricted rotation about single bonds where the rotational barrier is high enough to permit isolation of the isomeric species. One skilled in the art will appreciate that

one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer (s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers or as an optically active form.

[0046] Compounds of Formula 1 typically exist in more than one form, and Formula 1 thus include all crystalline and non-crystalline forms of the compounds they represent. Non-crystalline forms include embodiments which are solids such as waxes and gums as well as embodiments which are liquids such as solutions and melts. Crystalline forms include embodiments which represent essentially a single crystal type and embodiments which represent a mixture of polymorphs (i.e. different crystalline types). The term "polymorph" refers to a particular crystalline form of a chemical compound that can crystallize in different crystalline forms, these forms having different arrangements and/or conformations of the molecules in the crystal lattice. Although polymorphs can have the same chemical composition, they can also differ in composition due the presence or absence of co-crystallized water or other molecules, which can be weakly or strongly bound in the lattice. Polymorphs can differ in such chemical, physical and biological properties as crystal shape, density, hardness, color, chemical stability, melting point, hygroscopicity, suspensibility, dissolution rate and biological availability. One skilled in the art will appreciate that a polymorph of a compound of Formula 1 can exhibit beneficial effects (e.g., suitability for preparation of useful formulations, improved biological performance) relative to another polymorph or a mixture of polymorphs of the same compound of Formula 1. Preparation and isolation of a particular polymorph of a compound of Formula 1 can be achieved by methods known to those skilled in the art including, for example, crystallization using selected solvents and temperatures. For a comprehensive discussion of polymorphism see R. Hilfiker, Ed., Polymorphism in the Pharmaceutical Industry, Wiley-VCH, Weinheim, 2006.

[0047] One skilled in the art will appreciate that not all nitrogen-containing heterocycles can form N-oxides since the nitrogen requires an available lone pair for oxidation to the oxide; one skilled in the art will recognize those nitrogen-containing heterocycles which can form N-oxides. One skilled in the art will also recognize that tertiary amines can form N-oxides. Synthetic methods for the preparation of N-oxides of heterocycles and tertiary amines are very well known by one skilled in the art including the oxidation of heterocycles and tertiary amines with peroxy acids such as peracetic and m-chloroperbenzoic acid (MCPBA), hydrogen peroxide, alkyl hydroperoxides such as t-butyl hydroperoxide, sodium perborate, and dioxiranes such as dimethyldioxirane. These methods for the preparation of N-oxides have been extensively described and reviewed in the literature, see for example: T. L. Gilchrist in Comprehensive Organic Synthesis, vol. 7, pp 748-750, S. V. Ley, Ed., Pergamon Press; M. Tisler and B. Stanovnik in Comprehensive Heterocyclic Chemistry, vol. 3, pp 18-20, A. J. Boulton and A. McKillop, Eds., Pergamon Press; M. R. Grimmett and B. R. T. Keene in Advances in Heterocyclic Chemistry, vol. 43, pp 149-161, A. R. Katritzky, Ed., Academic Press; M. Tisler and B. Stanovnik in Advances in Heterocyclic Chemistry, vol. 9, pp 285-291, A. R. Katritzky and A. J. Boulton, Eds.,

Academic Press; and G. W. H. Cheeseman and E. S. G. Werstiuk in *Advances in Heterocyclic Chemistry*, vol. 22, pp 390-392, A. R. Katritzky and A. J. Boulton, Eds., Academic Press.

[0048] One skilled in the art recognizes that because in the environment and under physiological conditions salts of chemical compounds are in equilibrium with their corresponding nonsalt forms, salts share the biological utility of the nonsalt forms. Thus a wide variety of salts of a compound of Formula 1 are useful for control of undesired vegetation (i.e. are agriculturally suitable). The salts of a compound of Formula 1 include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids. When a compound of Formula 1 contains an acidic moiety such as a carboxylic acid or phenol, salts also include those formed with organic or inorganic bases such as pyridine, triethylamine or ammonia, or amides, hydrides, hydroxides or carbonates of sodium, potassium, lithium, calcium, magnesium or barium. Accordingly, the present invention comprises compounds selected from Formula 1, N-oxides and agriculturally suitable salts thereof.

[0049] Embodiments of the present invention as described in the Summary of the Invention include (where Formula 1 as used in the following Embodiments includes N-oxides and salts thereof):

Embodiment 1

[0050] A compound of Formula 1 wherein Q is selected from

$$(\mathbb{R}^{1})_{r},$$

$$S = \int_{5}^{3} (\mathbb{R}^{1})_{r}$$

Q-2
$$\begin{array}{c}
 & (R^{1})_{r} \\
 & S
\end{array}$$

Q-3
$$O = \begin{cases}
3 & (\mathbb{R}^1)_{r_1} \\
4 & \\
5 &
\end{cases}$$

$$Q-4$$

$$(R^{1})_{r}$$

$$5$$

$$(R^1)_r$$
 $(R^1)_r$

-continued

$$\bigvee_{N}^{(\mathbb{R}^{1})_{r}},$$

$$\begin{array}{c}
 & \text{Q-7} \\
 & \text{Q-7} \\
 & \text{Q-5}
\end{array}$$

$$\begin{array}{c} Q\text{-}8 \\ \begin{array}{c} N_{\text{S}} \\ N_{\text{S}} \end{array} \end{array}$$

Q-9
$$\begin{array}{c}
 & (\mathbb{R}^1)_r, \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

$$\begin{array}{c}
 & \text{Q-10} \\
 & \text{S} \\
 & \text{S}
\end{array}$$

$$(R^1)_r,$$

$$V_s$$

Q-12
$$S = \int_{2}^{4} (R^{l})_{r},$$

$$\begin{array}{c}
N \\
N
\end{array}$$

Q-16
$$N \longrightarrow 0$$

Q-18

Q-19
$$N \longrightarrow S$$
Q-20

$$\begin{array}{c}
3 \\
(R^{1})_{r}, \\
N
\end{array}$$

Q-21
$$\begin{array}{c}
 & (\mathbb{R}^{1})_{r}, \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

$$(R^1)_r$$
, $N = N$

Q-24
$$\begin{array}{c}
 & (R^{1})_{r}, \\
 & & \\
N-N
\end{array}$$

$$(R^1)_{s}$$
, Q-25

$$N$$
 S
 $(R^1)_{s}$,

$$N$$
 N
 N
 N
 N
 N
 N

$$N$$
 N
 N
 N
 N
 N
 N

$$N$$
 N
 N
 N
 N
 N
 N
 N

$$\begin{array}{c} Q\text{-}30 \\ \\ N \\ \\ (\mathbb{R}^{l})_{s}, \end{array}$$

$$N = \bigvee_{N=0}^{N} O$$

$$(\mathbb{R}^{1})_{s},$$

$$\begin{array}{c} Q\text{-}32 \\ \\ N \\ \\ (R^{1})_{s}, \end{array}$$

$$N = \bigvee_{N=0}^{N} S$$

$$(R^{1})_{s},$$

Q-34
$$(\mathbb{R}^1)_s$$

$$\bigvee_{(R^1)_s}^{N}\bigvee_{O}^{N}$$

Q-36
$$(\mathbb{R}^1)_s$$
 N
 N

$$(R^1)_s$$
 Q-37

$$\begin{array}{c}
 & Q-38 \\
 & N \\
 & N
\end{array}$$

Q-40

Q-41

Q-42

Q-43

Q-44

Q-45

Q-46

Q-47

Q-48

Q-49

$$(R^1)_r$$
, Q-39

$$N-N$$

$$N-N$$
 $N-N$

$$\bigvee_{N-N}^{N} \bigvee_{(R^{l})_{s}}$$

$$\begin{array}{c}
4 & (R^1)_{r}, \\
5 & 6
\end{array}$$

$$\begin{array}{c}
6 & (R^1)_r \\
N \\
3
\end{array}$$

$$\bigwedge_{N}^{(R^1)_{r}}$$

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\$$

$$\bigcup_{N}^{(R^1)_{r}}$$

Q-50
$$\begin{array}{c}
N \\
N \\
\downarrow^{(R^1)_{r_r}} \\
N
\end{array}$$

$$(R^{l})_{r},$$

$$N = \begin{pmatrix} R^{l} \\ \delta \end{pmatrix}$$

$$N = \begin{pmatrix} R^{l} \\ \delta \end{pmatrix}$$

$$(Q-52)$$

$$(R^1)_r$$
, Q-53

$$(R^1)_r$$
 and
$$N$$
 Q-54

[0051] wherein r is 0, 1, 2 or 3; and s is 0 or 1.

Embodiment 2

[0052] A compound of Embodiment 1 wherein Q is selected from Q-1 through Q-42.

Embodiment 3

[0053] A compound of Embodiment 2 wherein Q is selected from Q-7 through Q-24.

Embodiment 4

[0054] A compound of Embodiment 3 wherein Q is selected from Q-16 and Q-18.

Embodiment 5

[0055] A compound of Embodiment 4 wherein Q is Q-16.

Embodiment 6

[0056] A compound of Embodiment 4 wherein Q is Q-18.

Embodiment 7

[0057] A compound of Embodiment 1 wherein Q is selected from Q-43 through Q-55.

Embodiment 8

[0058] A compound of Embodiment 7 wherein Q is selected from Q-43, Q-44, Q-45, Q-48, Q-49 and Q-50.

Embodiment 9

[0059] A compound of Embodiment 8 wherein Q is selected from Q-43, Q-44 and Q-45.

Embodiment 10

[0060] A compound of Embodiment 9 wherein Q is Q-43.

Embodiment 11

[0061] A compound of Embodiment 10 wherein Q is Q-45.

Embodiment 12

[0062] A compound of Formula 1 or any one of Embodiments 1 through 11 either alone or in combination, wherein Z is O.

Embodiment 13

[0063] A compound of Formula 1 or any one of Embodiments 1 through 12 either alone or in combination, wherein each R^1 is independently halogen, cyano, SF_5 , CHO, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 haloalkyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 haloalkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_1 - C_4 alkoxy, C_3 - C_4 alkenyloxy, C_3 - C_4 alkynyloxy, C_1 - C_4 haloalkoxy, C_3 - C_4 haloalkenyloxy, C_3 - C_6 haloalkynyloxy, C_2 - C_6 alkoxyalkyl, C_2 - C_6 haloalkoxyalkyl, C_2 - C_6 cyanoalkyl, C_1 - C_4 hydroxyalkyl, C_2 - C_4 alkylthioalkyl or $SO_nR^{1.4}$.

Embodiment 14

[0064] A compound of Embodiment 13 wherein each R^1 is independently halogen, cyano, CHO, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 haloalkyl, C_2 - C_4 haloalkynyl, C_1 - C_4 alkoxy, C_3 - C_4 alkenyloxy, C_3 - C_4 alkynyloxy, C_1 - C_4 haloalkoxy, C_3 - C_4 haloalkenyloxy, C_3 - C_4 haloalkynyloxy, C_2 - C_6 alkoxyalkyl, C_2 - C_6 haloalkoxyalkyl, C_1 - C_4 hydroxyalkyl, C_2 - C_4 alkylthioalkyl or $SO_nR^{1.4}$.

Embodiment 15

 $\begin{tabular}{ll} \textbf{[0065]} & A compound of Embodiment 14 wherein each R^1 is independently halogen, cyano, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, C_1-C_4 haloalkoxy or $SO_nR^{1.4}$. \end{tabular}$

Embodiment 16

[0066] A compound of Embodiment 15 wherein each R^1 is independently halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl or C_1 - C_4 haloalkoxy.

Embodiment 17

[0067] A compound of Embodiment 16 wherein each R^1 is independently halogen, C_1 - C_4 haloalkyl or C_1 - C_4 haloalkoxy.

Embodiment 18

[0068] A compound of Embodiment 17 wherein each R^1 is independently halogen or C_1 - C_4 haloalkyl.

Embodiment 19

[0069] A compound of Embodiment 18 wherein each R¹ is independently F, Cl, Br, CF₃, CHF₂ or CH₂F.

Embodiment 20

[0070] A compound of Formula 1 or any one of Embodiments 1 through 19 either alone or in combination, wherein r is 0, 1 or 2.

Embodiment 20a

[0071] A compound of Embodiment 20 wherein r is 1.

Embodiment 21

[0072] A compound of Formula 1 or any one of Embodiments 1 through 19 either alone or in combination, wherein s is 1.

Embodiment 21a

[0073] A compound of Formula 1 or any one of Embodiments 1 through 20a either alone or in combination, wherein when Q is Q-16 and r is 1 then R^1 is attached at the 5 position of the Q-16 ring.

Embodiment 21b

[0074] A compound of Formula 1 or any one of Embodiments 1 through 20a either alone or in combination, wherein when Q is Q-18 and r is 1 then R^1 is attached at the 3 position of the Q-18 ring.

Embodiment 22

[0075] A compound of Formula 1 or any one of Embodiments 1 through 21b either alone or in combination, wherein R^2 is halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl.

Embodiment 23

[0076] A compound of Embodiment 22 wherein R^2 is halogen or C_1 - C_4 alkyl.

Embodiment 24

[0077] A compound of Embodiment 23 wherein R^2 is halogen or CH_3 .

Embodiment 25

[0078] A compound of Embodiment 24 wherein R^2 is halogen.

Embodiment 26

[0079] A compound of Embodiment 25 wherein \mathbb{R}^2 is F, Cl or Br.

Embodiment 27

[0080] A compound of Formula 1 or any one of Embodiments 1 through 26 either alone or in combination, wherein m is 0, 1 or 2.

Embodiment 28

[0081] A compound of Embodiment 27 wherein m is 0 or

Embodiment 29

[0082] A compound of Embodiment 28 wherein m is 1.

Embodiment 30

[0083] A compound of Embodiment 27 wherein m is 0 (i.e. the 3-, 4-, 5- and 6-positions are unsubstituted by R^3).

Embodiment 31

[0084] A compound of Formula 1 or any one of Embodiments 1 through 30 either alone or in combination, wherein each \mathbf{R}^3 is independently halogen, cyano, CHO, $\mathbf{C}_1\text{-}\mathbf{C}_4$ alkyl, $\mathbf{C}_2\text{-}\mathbf{C}_4$ alkenyl, $\mathbf{C}_2\text{-}\mathbf{C}_4$ alkynyl, $\mathbf{C}_1\text{-}\mathbf{C}_4$ haloalkyl, $\mathbf{C}_2\text{-}\mathbf{C}_4$ haloalkynyl, $\mathbf{C}_3\text{-}\mathbf{C}_6$ cycloalkyl, $\mathbf{C}_3\text{-}\mathbf{C}_6$ halocycloalkyl, $\mathbf{C}_4\text{-}\mathbf{C}_8$ alkylcycloalkyl, $\mathbf{C}_2\text{-}\mathbf{C}_6$ alkylcarbonyl, $\mathbf{C}_2\text{-}\mathbf{C}_6$ haloalkylcarbonyl, $\mathbf{C}_2\text{-}\mathbf{C}_6$ alkoxy, $\mathbf{C}_3\text{-}\mathbf{C}_4$ alkenyloxy, $\mathbf{C}_3\text{-}\mathbf{C}_4$ alkynyloxy, $\mathbf{C}_1\text{-}\mathbf{C}_4$ haloalkoxy, $\mathbf{C}_3\text{-}\mathbf{C}_4$ alkenyloxy, $\mathbf{C}_3\text{-}\mathbf{C}_4$ alkynyloxy, $\mathbf{C}_1\text{-}\mathbf{C}_4$ haloalkoxy, $\mathbf{C}_3\text{-}\mathbf{C}_4$ haloalkoxy, $\mathbf{C}_3\text{-}\mathbf{C}_6$ cycloalkoxy, $\mathbf{C}_3\text{-}\mathbf{C}_6$ halocycloalkoxy, $\mathbf{C}_2\text{-}\mathbf{C}_6$ alkoxyalkyl, $\mathbf{C}_2\text{-}\mathbf{C}_6$ alkoxyalkyl, $\mathbf{C}_2\text{-}\mathbf{C}_6$ cyanoalkyl, $\mathbf{C}(\text{=O})\mathbf{N}(\mathbf{R}^{3A})(\mathbf{R}^{3B})$, $\mathbf{C}(\text{=NOR}^{3C})\mathbf{H}$, SO_nR^3E; or a phenyl ring optionally substituted with up to 5 substituents independently selected from R^3F; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R^3F on carbon atom ring members and R^3G on nitrogen atom ring members.

Embodiment 32

[0085] A compound of Embodiment 31 wherein each R^3 is independently halogen, cyano, CHO, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 haloalkyl, C_2 - C_4 haloalkynyl, C_3 - C_6 cycloalkyl, C_3 - C_6 halocycloalkyl, C_2 - C_6 haloalkynyl, C_2 - C_6 haloalkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_2 - C_6 alkoxyalkyl, C_2 - C_6 haloalkoxyalkyl, C_2 - C_6 cyanoalkyl, C_1 - C_1 alkoxyalkyl, C_2 - C_3 cyanoalkyl, C_3 - C_4 haloalkoxyalkyl, C_3 - C_6 cyanoalkyl, C_3 - C_6 cyanoalk

Embodiment 33

 $\cline{1}$ [0086] A compound of Embodiment 32 wherein each R^3 is independently halogen, cyano, $C_1\text{-}C_4$ alkyl, $C_2\text{-}C_4$ alkenyl, $C_2\text{-}C_4$ alkynyl, $C_1\text{-}C_4$ haloalkyl, $C_2\text{-}C_6$ alkylcarbonyl, $C_2\text{-}C_6$ haloalkylcarbonyl, $C_2\text{-}C_6$ alkoxycarbonyl, $C_1\text{-}C_4$ alkoxy, $C_1\text{-}C_4$ haloalkoxy, $C_2\text{-}C_6$ alkoxyalkyl or $C_2\text{-}C_6$ haloalkoxyalkyl.

Embodiment 34

[0087] A compound of Embodiment 33 wherein each R^3 is independently halogen, cyano, $C_1\text{-}C_4$ alkyl or $C_1\text{-}C_4$ haloalkyl.

Embodiment 35

[0088] A compound of Embodiment 34 wherein each R³ is independently halogen or cyano.

Embodiment 36

[0089] A compound of Embodiment 35 wherein each R³ is independently halogen.

Embodiment 37

[0090] A compound of Formula 1 or any one of Embodiments 1 through 36 either alone or in combination, wherein \mathbb{R}^3 is attached to the remainder of Formula 1 at the 3-position

Embodiment 38

[0091] A compound of Formula 1 or any one of Embodiments 1 through 37 either alone or in combination, wherein each R^{1A} is independently C_1 - C_4 alkyl or C_1 - C_4 haloalkyl.

Embodiment 39

[0092] A compound of Embodiment 38 wherein each R^{1A} is independently C_1 - C_4 haloalkyl.

Embodiment 40

[0093] A compound of Formula 1 or any one of Embodiments 1 through 39 either alone or in combination, wherein each R^{3E} is independently C_1 - C_4 alkyl.

Embodiment 41

[0094] A compound of Formula 1 or any one of Embodiments 1 through 40 either alone or in combination, wherein each R^{3A} is independently C_1 - C_4 alkyl.

Embodiment 42

[0095] A compound of Formula 1 or any one of Embodiments 1 through 41 either alone or in combination, wherein each R^{3B} is independently H or C_1 - C_4 alkyl.

Embodiment 43

[0096] A compound of Formula 1 or any one of Embodiments 1 through 42 either alone or in combination, wherein each R^{3C} is independently H or C_1 - C_4 alkyl.

Embodiment 44

[0097] A compound of Formula 1 or any one of Embodiments 1 through 43 either alone or in combination, wherein each R^{3D} is independently H or C_1 - C_4 alkyl.

Embodiment 45

[0098] A compound of Formula 1 or any one of Embodiments 1 through 44 either alone or in combination, wherein each n is independently 0 or 2.

Embodiment 46

[0099] A compound of Embodiment 45 wherein n is 2.

Embodiment 47

[0100] A compound of Embodiment 45 wherein n is 0.

Embodiment 48

[0101] A compound of Formula 1 or any one of Embodiments 1 through 47 either alone or in combination, provided that i) when Q is 5-chloro-2-pyridinyl; Z is O; and R3 is 4

chloro, then R2 is other than Cl or Br; ii) when Q is 4-CF3-2-pyrimidinyl; Z is O; and m is 0, then R2 is other than Cl or Br; and iii) when Q is 6-CF3-2-pyridinyl; Z is O; and m is 0, then R2 is other than Br.

[0102] Embodiments of the present invention as described in the Summary of the Invention and Embodiment AAA also include the following:

Embodiment 1P

[0103] A compound of Formula 1 (including all stereoisomers), N-oxides, and salts thereof, agricultural compositions containing them and their use as herbicides as described in the Summary of the Invention.

Embodiment 2P

[0104] A compound of Embodiment 1 wherein Q is a 5- or 6-membered aromatic heterocylic ring, bound to the remainder of Formula 1 through a carbon atom, and optionally substituted with 1 to $3R^1$.

Embodiment 3P

[0105] A compound of Embodiment 2 wherein Q is selected from

Q-1
$$S \xrightarrow{3} (R^{1})_{r_{r}}$$

$$S \xrightarrow{5}$$

Q-4
$$\begin{array}{c}
 & (\mathbb{R}^{1})_{r}, \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

$$(R^{I})_{r}$$

$$N \longrightarrow (R^{I})_{r}$$

$$\begin{array}{c}
 & Q-7 \\
 & \downarrow \\$$

$$\begin{array}{c}
N \\
+ N \\
+ N
\end{array}$$

$$\begin{array}{c}
N \\
+ N
\end{array}$$

Q-9
$$\begin{array}{c}
 & (\mathbb{R}^1)_r, \\
 & N \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

$$\begin{array}{c}
 & \text{Q-10} \\
 & \text{S} \\
 & \text{S}
\end{array}$$

$$\begin{array}{c} \text{Q-11} \\ \text{N} \\ \text{S} \end{array}$$

Q-12
$$\begin{array}{c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

$$\begin{array}{c}
(\mathbb{R}^{1})_{r}, \\
\mathbb{N}
\end{array}$$

Q-16
$$\begin{array}{c}
 & (\mathbb{R}^{1})_{r}, \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

$$(R^1)_r$$
, Q-17

Q-18
$$Q-18$$

$$Q-19$$

$$Q-19$$

$$Q-19$$

Q-19
$$\begin{array}{c}
 & (R^1)_r, \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

-continued

Q-20
$$\begin{array}{c}
 & (R^1)_r, \\
 & N \\
 & S
\end{array}$$

Q-21
$$S = N$$

Q-22
$$N-N$$

$$\bigvee_{s}^{3}\bigvee_{N}^{(R^{l})_{r}}$$

$$(Q-24)$$

$$(R^{1})_{r},$$

$$N-N$$

$$\bigvee_{O} \bigvee_{(R^1)_{s}}^{N}$$

$$\begin{array}{c} \text{Q-26} \\ \text{N} \\ \text{S} \\ \end{array} \\ (\mathbb{R}^{1})_{s}, \end{array}$$

$$(Q-29)$$
 $(R^1)_{r_2}$
 $(R-1)_{r_3}$

$$Q-30$$
 N
 $(R^1)_s$,

-continued

$$S$$
 N
 (R^1)

$$\begin{array}{c}
\text{Q-33} \\
\text{N} \longrightarrow \\
\text{(}\mathbb{R}^{1})_{s},
\end{array}$$

Q-34
$$(\mathbb{R}^1)_s$$

$$\mathbb{N}$$

$$(\mathbb{R}^1)_s$$

Q-36
$$(\mathbb{R}^{1})_{s}$$

$$\mathbb{N}$$

$$\begin{array}{c} \text{Q-37} \\ \text{N} \\ \text{S} \end{array}$$

$$\bigvee_{N=N}^{(R^1)_{r_*}}$$
Q-39

$$(R^1)_r$$
, Q-40
 $N-N$

$$(R^1)_r$$
, Q-41

Q-42

Q-43

Q-44

Q-45

Q-46

Q-47

Q-48

Q-49

Q-50

Q-51

-continued

$$\begin{array}{c}
4 \\
(R^{l})_{r}, \\
5 \\
6
\end{array}$$

$$\begin{array}{c}
6 & (R^1)_{r}, \\
N & N \\
3
\end{array}$$

$$\bigvee_{N}^{(R^1)_i}$$

$$N$$
 N
 N
 N
 N

-continued

$$(\mathbb{R}^1)_r$$
 and

$$\begin{array}{c}
 & Q-54 \\
 & N \\
 & N
\end{array}$$

r is 0, 1, 2 or 3; and s is 0 or 1.

Embodiment 4P

[0106] A compound of any one of Embodiments 1 through 3 wherein Q is a 5-membered aromatic heterocylic ring, bound to the remainder of Formula 1 through a carbon atom, optionally substituted with R^1 , and is selected from Q-1 through Q-41.

Embodiment 5P

[0107] A compound of Embodiment 4 wherein Q is selected from Q-7 through Q-24.

Embodiment 6P

[0108] A compound of Embodiment 5 wherein Q is selected from Q-9, Q-11, Q-12, Q-16, Q-18, Q-22, Q-23, Q-24 and Q-25.

Embodiment 7P

[0109] A compound of Embodiment 6 wherein Q is selected from Q-11, Q-18 and Q-22.

Embodiment 8P

[0110] A compound of any one of Embodiments 1 through 3 wherein Q is 6-membered aromatic heterocylic ring, bound to the remainder of Formula 1 through a carbon atom, optionally substituted with R^1 , and is selected from Q-42 through Q-54.

Embodiment 9P

[0111] A compound of Embodiment 8 wherein Q is selected from Q-42, Q-43, Q-44, Q-47, Q-48 and Q-49.

Embodiment 10P

[0112] A compound of Embodiment 9 wherein Q is selected from Q-42, Q-43, Q-47 and Q-48.

Embodiment 11P

[0113] A compound of Embodiment 10 wherein Q is selected from Q-42, Q-47 and Q-48.

Embodiment 12P

[0114] A compound of Embodiment 11 wherein Q is selected from Q-42.

Embodiment 13P

[0115] A compound of Embodiment 12 wherein Q is

$$R^1$$
 or S^2

Embodiment 14P

[0116] A compound of any one of Embodiments 1 through 3 wherein Q is selected from Q-7 through Q-24, Q-42, Q-43, Q-44, Q-47, Q-48 and Q-49.

Embodiment 15P

[0117] A compound of Embodiment 14 wherein Q is selected from Q-9, Q-11, Q-12, Q-16, Q-18, Q-22, Q-23, Q-24, Q-25, Q-42, Q-43, Q-47 and Q-48.

Embodiment 16P

[0118] A compound of Embodiment 1 wherein Q is phenyl substituted with 1 to 3 R¹.

Embodiment 17P

[0119] A compound of Embodiment 16 wherein Q is phenyl substituted with 1 to $2\ R^1$.

Embodiment 18P

[0120] A compound of Embodiment 17 wherein Q is phenyl substituted with 1 R^1 at the 3- or 4-positions (i.e. meta or para to the attachment of phenyl to the remainder of Formula 1).

Embodiment 19P

[0121] A compound of Embodiment 1 wherein when Q is phenyl substituted with 1 to 3 R^1 , m is 1, 2 or 3.

Embodiment 20P

[0122] A compound of Embodiment 1 wherein when Q is phenyl substituted with 1 to 3 R^1 , m is 1 or 2.

Embodiment 21P

[0123] A compound of Embodiment 1 wherein Q is other than phenyl substituted with 1 to 4 \mathbb{R}^1 .

Embodiment 22P

[0124] A compound of any one of Embodiments 1 through 21 wherein R^1 is halogen, cyano, CHO, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkoxy, C_3 - C_4 alkenyloxy, C_3 - C_4 alkynyloxy, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy, C_2 - C_4 alkoxyalkyl, C_2 - C_4 alkylthioalkyl or $SO_nR^{1.4}$.

Embodiment 23P

[0125] A compound of Embodiment 22 wherein R^1 is halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy, or SCF₃.

Embodiment 24P

[0126] A compound of Embodiment 23 wherein R^1 is halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl or C_1 - C_4 haloalkoxy.

Embodiment 25P

[0127] A compound of Embodiment 24 wherein R^1 is halogen C_1 - C_4 haloalkyl or C_1 - C_4 haloalkoxy.

Embodiment 26P

[0128] A compound of Embodiment 25 wherein R^1 is Cl, Br, CF_3 or OCF_3 .

Embodiment 27P

[0129] A compound of any one of Embodiments 1 through 22 wherein each n is independently 0, 1 or 2.

Embodiment 28P

[0130] A compound of Embodiment 27 wherein each n is independently 0.

Embodiment 29P

[0131] A compound of Embodiment 28 wherein each n is independently 2.

Embodiment 30P

[0132] A compound of any one of Embodiments 1 through 29 wherein R^2 is halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl.

Embodiment 31P

[0133] A compound of Embodiment 30 wherein R^2 is halogen or C_1 - C_4 alkyl.

Embodiment 32P

[0134] A compound of Embodiment 31 wherein R^2 is halogen or CH_3 .

Embodiment 33P

[0135] A compound of Embodiment 32 wherein R^2 is halogen.

Embodiment 34P

[0136] A compound of Embodiment 33 wherein \mathbb{R}^2 is F, Cl or Br.

Embodiment 35P

[0137] A compound of any one of Embodiments 1 through 34 wherein m is 0, 1 or 2.

Embodiment 36P

[0138] A compound of Embodiment 35 wherein m is 0 or

Embodiment 37P

[0139] A compound of Embodiment 36 wherein m is 1.

Embodiment 38P

[0140] A compound of Embodiment 37 wherein m is 0 (i.e. the 3-, 4-, 5- and 6-positions of the benzene ring are unsubstituted by R^3).

Embodiment 39P

[0141] A compound of any one of Embodiments 1 through 37 wherein each R^3 is independently halogen, cyano, hydroxy, nitro, amino, CHO, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, $C(=O)N(R^{3A})(R^{3B})$, $C(=NOR^{3C})H$, $C(=N)(R^{3D})H$, C_1 - C_4 alkoxy, C_2 - C_4 cyanoalkoxy, C_2 - C_4 alkylcarbonyl, C_2 - C_4 alkoxycarbonyl, C_2 - C_4 alkoxyalkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy, SO_nR^{3E} or C_3 - C_6 cycloalkyl.

Embodiment 40P

[0142] A compound of Embodiment 39 wherein each R^3 is independently halogen, cyano, amino, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 alkoxy, C_2 - C_4 alkoxycarbonyl, C_2 - C_4 alkylcarbonyloxy, C_2 - C_4 alkoxyalkyl or C_1 - C_4 haloalkyl.

Embodiment 41P

[0143] A compound of Embodiment 40 wherein each R^3 is independently halogen, cyano, amino or C_1 - C_4 alkyl.

Embodiment 42P

[0144] A compound of Embodiment 41 wherein each R³ is independently cyano.

Embodiment 43P

[0145] A compound of any one of Embodiments 1 through 37 or 39 through 42 wherein each R³ is attached to the remainder of Formula 1 at the 3-, 4- or 6-position.

Embodiment 44P

[0146] A compound of Embodiments 43 wherein each R^3 is attached to the remainder of Formula 1 at the 3- or 4-position.

Embodiment 45P

[0147] A compound of Embodiment 44 wherein R^3 is attached to the remainder of Formula 1 at the 3-position.

Embodiment 46P

[0148] A compound of any one of Embodiments 1 through 22 or 27 or 29 through 45 wherein R^{1A} is C_1 - C_4 alkyl or C_1 - C_4 haloalkyl.

Embodiment 47P

[0149] A compound of Embodiment 46 wherein R^{1A} is C_1 - C_4 haloalkyl.

Embodiment 48P

[0150] A compound of any one of Embodiments 1 through 37 or 39 wherein R^{3E} is C_1 - C_4 alkyl.

Embodiment 49P

[0151] A compound of any one of Embodiments 1 through 37 or 39 wherein R^{3A} is C_1 - C_4 alkyl.

Embodiment 50P

[0152] A compound of any one of Embodiments 1 through 37 or 39 wherein R^{3B} is H or C_1 - C_4 alkyl.

Embodiment 51P

[0153] A compound of any one of Embodiments 1 through 37 or 39 wherein R^{3C} is H or C_1 - C_4 alkyl.

Embodiment 52P

[0154] A compound of any one of Embodiments 1 through 37 or 39 wherein R^{3D} is H or C_1 - C_4 alkyl.

Embodiment 53P

[0155] A compound of any one of Embodiments 1 through 52 wherein Z is O.

Embodiment 54P

[0156] A compound of any one of Embodiments 1 through 53 wherein when m is 1, R³ is positioned at the 3-, 5- or 6-positions (i.e. the 3-, 5- and 6-positions of the benzene ring).

Embodiment 55P

[0157] A compound of any one of Embodiments 1 through 53 wherein when m is 1, R³ is other than Cl at the 4-position. [0158] Embodiments of this invention, including Embodiments 1-48 and 1P-55P above as well as any other embodiments described herein, can be combined in any manner, and the descriptions of variables in the embodiments pertain not only to the a compound of Formula 1 but also to the starting compounds and intermediate compounds useful for preparing the compounds of Formula 1. In addition, embodiments of this invention, including Embodiments 1-48 and 1P-55P above as well as any other embodiments described herein, and any combination thereof, pertain to the compositions and methods of the present invention.

Embodiment AAA

[0159] A compound of Formula 1 wherein

[0160] Q is a 5- or 6-membered aromatic heterocylic ring, bound to the remainder of Formula 1 through a carbon atom, and optionally substituted with 1 to 4 R¹; or

[0161] Q is phenyl substituted with 1 to $4 R^1$;

[0162] Z is O or S;

[0163] R¹ is halogen, cyano, CHO, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy, C₃-C₄ alkenyloxy, C₃-C₄ alkynyloxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, C₂-C₄ alkoxyalkyl, C₂-C₄ alkylthioalkyl, SO"R¹-A, C₂-C₆ dialkylamino, C₁-C₄ cyanoalkyl, C₁-C₄ hydroxyalkyl, CH(=NOH) or C₃-C₆ cycloalkyl; or unsubstituted phenyl; or unsubstituted pyridyl;

[0164] R² is halogen, cyano, nitro, C₁-C₄ alkoxy, C₁-C₄ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, SO_nR^{2,d} or C₁-C₄ haloalkyl;

[0165] each R³ is independently halogen, cyano, hydroxy, nitro, amino, CHO, C₁-C₄ alkyl, C₂-C₄ alk-

enyl, C_2 - C_4 alkynyl, $C(=O)N(R^{3A})(R^{3D})$, $C(=NOR^{3C})H$, $C(=N)(R^{3D})H$, C_1 - C_4 alkoxy, C_2 - C_4 cyanoalkoxy, C_2 - C_4 alkylcarbonyl, C_2 - C_4 alkoxyalkyl, C_1 - C_4 nyl, C₂-C₄ alkylcarbonyloxy, C₂-C₄ alkoxyalkyl, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, SO_nR^{3E} or C₃-C₆ cycloalkyl; or phenyl optionally substituted with cyano, halogen or C₁-C₄ alkyl;

[0166] m is 0, 1, 2 or 3;

[0167] each R^{1A} , R^{2A} and R^{3E} is independently C_1 - C_4 alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkylamino or C₂-C₆ dialkylamino;

[0168] R^{3A} is C_1 - C_4 alkyl or C_1 - C_4 haloalkyl; [0169] R^{3B} is H, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl;

 R^{3C} is independently H or C_1 - C_4 alkyl; [0170]

 R^{3D} is independently H or C_1 - C_4 alkyl; and [0171]

[0172]n is 0, 1, or 2;

[0173] provided the compound of Formula 1 is other 5-chloro-2-[(4'-methyl[1,1'-biphenyl]2-yl)oxy]pyrimidine (CAS #107492-74-0), 5-chloro-2-[(4'chloro[1,1'-biphenyl]2-yl)oxy]-pyrimidine #107492-72-8), 5-chloro-2-[(3'-chloro[1,1'-biphenyl]2yl)oxy]-pyrimidine (CAS #107492-76-2) and 5-chloro-2-[[3'-(trifluoromethyl)[1,1'-biphenyl]2-yl]oxy]-pyrimidine (CAS #107492-75-1); and provided i) when Q is 5-chloro-2-pyridinyl; Z is O; and R³ is 4-chloro, then R² is other than Cl or Br; ii) when Q is 4-CF₃-2pyrimidinyl; Z is O; and m is 0, then R² is other than Cl or Br; and iii) when Q is 6-CF₃-2-pyridinyl; Z is O; and m is 0, then R² is other than Br.

Embodiment AA

[0174] A compound of Embodiment AAA or a compound of Formula 1 as described in the Summary of the Invention wherein

[0175] Q is a 5- or 6-membered aromatic heterocylic ring, bound to the remainder of Formula 1 through a carbon atom, and optionally substituted with 1 to 4 R¹; [0176] Z is O or S;

[0177] each R¹ is independently halogen, cyano, nitro, SF₅, CHO, C(=O)NH₂, C(=S)NH₂, SO₂NH₂, C₁-C₄ alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 haloalkyl, C_2 - C_4 haloalkenyl, C_2 - C_4 haloalkynyl, C_3 - C_6 cycloalkyl, C₃-C₆ halocycloalkyl, C₄-C₈ alkylcycloalkyl, C₄-C₈ cycloalkylalkyl, C₂-C₆ alkylcarbonyl, C₂-C₆ haloalkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₃-C₇ cycloalkylcarbonyl, C_2 - C_8 alkylaminocarbonyl, C_3 - C_{10} dialkylaminocarbonyl, C₁-C₄ alkoxy, C₃-C₄ alkenyloxy, C_3 - C_4 alkynyloxy, C_1 - C_4 haloalkoxy, C_3 - C_4 haloalkenyloxy, C_3 - C_4 haloalkynyloxy, C_3 - C_6 cycloalkoxy, C_3 - C_6 halocycloalkoxy, C_4 - C_8 cycloalkylalkoxy, C₂-C₆ alkoxyalkyl, C₂-C₆ haloalkoxyalkyl, C₂-C₆ alkoxyhaloalkyl, C₂-C₆ alkoxyalkoxy, C₂-C₄ alkylcarbonyloxy, C2-C6 cyanoalkyl, C2-C6 cyanoalkoxy, C_1 - C_4 hydroxyalkyl, C_2 - C_4 alkylthioalkyl, SO_nR^{1A} , $Si(CH_3)_3$ or $B(-OC(R^{1B})_2C(R^{1B})_2O-)$; or a phenyl ring optionally substituted with up to 5 substituents independently selected from R^{1C} ; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R^{1C} on carbon atom ring members and R^{1D} on nitrogen atom ring members;

[0178] R^2 is halogen, cyano, nitro, C_1 - C_4 alkoxy, C_1 - C_4 alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, SO_nR^{2A}, C₁-C₄

haloalkyl or C_3 - C_6 cycloalkyl; [0179] each R^3 is independently halogen, cyano, hydroxy, nitro, amino, CHO, C(=O)NH₂, C(=S)NH₂, SO_2NH_2 , C_1 - C_4 alkyl, C_2 - C_4 alkenyl, \bar{C}_2 - C_4 alkynyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C4-C8 alkylcycloalkyl, C4-C8 cycloalkylalkyl, C2-C6 alkylcarbonyl, C2-C6 haloalkylcarbonyl, C2-C6 alkoxycarbonyl, C₃-C₇ cycloalkylcarbonyl, C₁-C₄ alkoxy, C₃-C₄ alkenyloxy, C₃-C₄ alkynyloxy, C₁-C₄ haloalkoxy, C₃-C₄ haloalkenyloxy, C₃-C₄ haloalkynyloxy, C₃-C₆ cycloalkoxy, C3-C6 halocycloalkoxy, C4-C8 cycloalkylalkoxy, C_2 - C_6 alkoxyalkyl, C_2 - C_6 haloalkoxyalkyl, C_2 - C_6 alkoxyhaloalkyl, C_2 - C_6 alkoxyalkoxy, C_2 - C_4 alkylcarbonyloxy, C2-C6 cyanoalkyl, C2-C6 cyanoalkoxy, C_2 - C_4 alkylthioalkyl, $Si(CH_3)_3$, $C = CSi(CH_3)_3$, $C(\bigcirc)N(R^{3A})(R^{3B})$, $C(\bigcircNOR^{3C})H$, $C(\bigcircNR^{3D})H$, SO_nR^{3E} ; or a phenyl ring optionally substituted with up to 5 substituents independently selected from R^{3F} ; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R^{3F} on carbon atom ring members and R^{3G} on nitrogen atom ring members; or pyrimidinyloxy;

[0180] m is 0, 1, 2 or 3;

[0181] each n is independently 0, 1 or 2;

[0182] each R^{1A} , R^{2A} and R^{3E} is independently C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 , alkylamino or C_2 - C_6 dialkylamino;

[0183] each R^{1B} is independently H or C_1 - C_4 alkyl;

[0184] each R^{1C} is independently hydroxy, halogen, cyano, nitro, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆

alkoxy or C_1 - C_6 haloalkoxy; [0185] each R^{1D} is independently cyano, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy or C_2 - C_6 alkylcarbonyl; [0186] each R^{3A} is independently C_1 - C_4 alkyl or C_1 - C_4

haloalkyl;

[0187] each R^{3B} is independently H, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl;

[0188] each R^{3C} is independently H or C_1 - C_4 alkyl; [0189] each R^{3D} is independently H, amino, C_1 - C_4 alkyl or C_1 - C_4 alkylamino;

[0190] each R^{3F} is independently hydroxy, halogen, cyano, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy or C_1 - C_6 haloalkoxy; and [0191] each R^{3G} is independently cyano, C_1 - C_6 alkyl,

 C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy or C_2 - C_6 alkylcarbonyl;

Embodiment A

[0192] A compound of Embodiment AA wherein

[0193] Q is selected from Q-1 through Q-55 wherein r is 0, 1, 2 or 3; and s is 0 or 1;

[0194] each R¹ is independently halogen, cyano, SF₅, CHO, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 haloalkyl, C_2 - C_4 haloalkyl, C_2 - C_4 haloalkyl nyl, C2-C6 alkylcarbonyl, C2-C6 haloalkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_1 - C_4 alkoxy, C_3 - C_4 alkenyloxy, C_3 - C_4 alkynyloxy, C_1 - C_4 haloalkoxy, C_3 - C_4 haloalkenyloxy, C3-C4 haloalkynyloxy, C2-C6 alkoxyalkyl, C2-C6 haloalkoxyalkyl, C2-C6 cyanoalkyl, C1-C4 hydroxyalkyl, C2-C4 alkylthioalkyl or SO_nR^1/4;

[0195] R³ is independently halogen, cyano, CHO, $\begin{array}{llll} C_1\text{-}C_4 & \text{alkyl}, & C_2\text{-}C_4 & \text{alkenyl}, & C_2\text{-}C_4 & \text{alkynyl}, & C_1\text{-}C_4 \\ \text{haloalkyl}, & C_2\text{-}C_4 & \text{haloalkenyl}, & C_2\text{-}C_4 & \text{haloalkynyl}, \\ \end{array}$ C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₄-C₈ alkylcycloalkyl, C2-C6 alkylcarbonyl, C2-C6 haloalkylcarbonyl, C2-C6 alkoxycarbonyl, C1-C4 alkoxy, C3-C4 alkenyloxy, C_3 - C_4 alkynyloxy, C_1 - C_4 haloalkoxy, C_3 - C_4 haloalkenyloxy, C₃-C₄ haloalkynyloxy, C₃-C₆ cycloalkoxy, C3-C6 halocycloalkoxy, C2-C6 alkoxyalkyl, C_2 - C_6 haloalkoxyalkyl, C_2 - C_4 alkylcarbonyloxy, C_2 - C_6 cyanoalkyl, $C(=O)N(R^{3A})(R^{3B})$, $C(=NOR^{3C})$ H, SO_nR^{3E} ; or a phenyl ring optionally substituted with up to 5 substituents independently selected from R^{3F}; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from \mathbb{R}^{3F} on carbon atom ring members and R^{3G} on nitrogen atom ring members;

[0196] Z is O; and [0197] m is 0, 1 or 2.

Embodiment B

[0198] A compound of Embodiment A wherein

[0199] each R¹ is independently halogen, cyano, CHO, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₁-C₄ alkoxy, C₃-C₄ alkenyloxy, C₃-C₄ alkynyloxy, C₁-C₄ haloalkoxy, C₃-C₄ haloalkenyloxy, C₃-C₄ haloalkynyloxy, C₂-C₆ alkoxyalkyl, C₂-C₆ haloalkoxyalkyl, C₁-C₄ hydroxyalkyl, C₂-C₄ alkylthioalkyl or SO_nR¹-4;

[0200] R² is halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl;
[0201] each R³ is independently halogen, cyano, CHO, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₆ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₂-C₆ alkoxycarbonyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₂-C₆ alkoxycarbonyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₂-C₆ alkoxyalkyl, C₂-C₆ haloalkoxyalkyl, C₂-C₆ cyanoalkyl, SO_nR³E; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R³F on carbon atom ring members and R³G on nitrogen atom ring members; and [0202] m is 0 or 1.

Embodiment C1

[0203] A compound of Embodiment B wherein

[0204] Q is selected from Q-7 through Q-24;

[0205] each R¹ is independently halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy or $SO_nR^{1.4}$;

[0206] R^2 is halogen or C_1 - C_4 alkyl;

[0207] each R³ is independently halogen, cyano, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ haloalkyl, C₂-C₆ alkylcarbonyl, C₂-C₆ haloalkylcarbonyl, C₂-C₆

alkoxycarbonyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_2 - C_6 alkoxyalkyl or C_2 - C_6 haloalkoxyalkyl; and **[0208]** each $R^{1.4}$ is independently C_1 - C_4 alkyl or C_1 - C_4 haloalkyl.

Embodiment C2

[0209] A compound of Embodiment B wherein

[0210] Q is selected from Q-43, Q-44, Q-45, Q-48, Q-49 and Q-50:

[0211] each R¹ is independently halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy or SO_nR^{1,4};

[0212] R^2 is halogen or C_1 - C_4 alkyl;

[0213] each R³ is independently halogen, cyano, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ haloalkyl, C₂-C₆ alkylcarbonyl, C₂-C₆ haloalkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₂-C₆ alkoxyalkyl or C₂-C₆ haloalkoxyalkyl; and

[0214] each $R^{1.4}$ is independently C_1 - C_4 alkyl or C_1 - C_4 haloalkyl.

Embodiment D1

[0215] A compound of Embodiment C1 wherein

[0216] Q is selected from Q-16 and Q-18;

[0217] each R¹ is independently halogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl or C₁-C₄ haloalkoxy;

[0218] R^2 is halogen or CH_3 ; and

[0219] each R³ is independently halogen, cyano, C₁-C₄ alkyl or C₁-C₄ haloalkyl.

Embodiment D2

[0220] A compound of Embodiment C2 wherein

[0221] Q is selected from Q-43, Q-44 and Q-45;

[0222] each R^1 is independently halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl or C_1 - C_4 haloalkoxy;

[0223] R^2 is halogen or CH_3 ; and

[0224] each R³ is independently halogen, cyano, C₁-C₄ alkyl or C₁-C₄ haloalkyl.

[0225] Specific embodiments include compounds of Formula 1 selected from the group consisting of:

[0226] 5-chloro-2-[2-(5-chloro-2-pyridinyl)phenoxy]pyrimidine (Compound 1),

[0227] 5-chloro-2-[2-[5-(fluoromethyl)-3-isoxazolyl]phenoxy]pyrimidine (Compound 32),

[0228] 2-[2-(3-bromo-5-isoxazolyl)phenoxy]-5-chloropy-rimidine (Compound 12),

[0229] 5-chloro-2-[2-[5-(trifluoromethyl)-2-pyridinyl] phenoxy]pyrimidine (Compound 27),

[0230] 5-chloro-2-[3-chloro-2-(5-chloro-2-pyridinyl)phenoxy]pyrimidine (Compound 23),

[0231] 4-[2-[(5-bromo-2-pyrimidinyl)oxy]phenyl]-2-(trif-luoromethyl)pyrimidine (Compound 21),

[0232] 2-[2-(2-bromo-5-thiazolyl)phenoxy]-5-(trifluoromethyl)pyrimidine (Compound 15),

[0233] 5-chloro-2-[4-methyl-2-[2-(trifluoromethyl)-4-pyridinyl]phenoxy]pyrimidine (Compound 24),

[0234] 5-chloro-2-[2-[5-(difluoromethyl)-3-isoxazolyl] phenoxy]pyrimidine (Compound 35),

[0235] 5-chloro-2-[2-[3-(difluoromethyl)-5-isoxazolyl] phenoxy]pyrimidine (Compound 53),

[0236] 5-chloro-2-[2-[5-(diffuoromethyl)-3-isoxazolyl]-3-fluorophenoxy]pyrimidine (Compound 55),

[0237] 5-bromo-2-[2-[5-(difluoromethyl)-3-isoxazolyl] phenoxy]pyrimidine (Compound 62),

[0238] 5-chloro-2-[2-[3-(trifluoromethyl)-5-isoxazolyl] phenoxy]pyrimidine (Compound 63),

[0239] 5-chloro-2-[2-[3-(difluoromethyl)-5-isoxazolyl]-3fluorophenoxy]pyrimidine (Compound 144),

[0240] 5-bromo-2-[2-[3-(difluoromethyl)-5-isoxazolyl]-3-fluorophenoxy]pyrimidine (Compound 145),

[0241] 5-chloro-2-[2-[5-(trifluoromethyl)-3-isoxazolyl]-3-fluorophenoxy]pyrimidine (Compound 168) and

[0242] 5-chloro-2-[2-[5-(trifluoromethyl)-3-isoxazolyl] phenoxy|pyrimidine (Compound 200).

[0243] Embodiments of the present invention as described in the Summary of the Invention and Embodiment AAA also include the following:

Embodiment Ap

[0244] A compound of the Summary of the Invention wherein

[0245] Q is a 5- or 6-membered aromatic heterocylic ring, bound to the remainder of Formula 1 through a carbon atom, and optionally substituted with 1 to 3 R¹;

[0246] Q is phenyl substituted with 1 to 3 R^1 ;

[0247] R^1 is halogen, cyano, CHO, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C2-C4 alkynyl, C1-C4 alkoxy, C3-C4 alkenyloxy, C_3 - C_4 alkynyloxy, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy, C2-C4 alkoxyalkyl, C2-C4 alkylthioalkyl or SO_nR^{1A} ;

[0248] each n is independently 0, 1 or 2

[0249] R^2 is halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl;

[0250] m is 0, 1 or 2;

[0251] each R³ is independently halogen, cyano, hydroxy, nitro, amino, CĤO, C₁-C₄ alkyl, C₂-C₄ alkenyl, C_2 - C_4 alkynyl, $C(=O)N(R^{3A})(R^{3B})$, $C(=NOR^{3C})H$, $C(=N)(R^{3D})H$, C_1 - C_4 alkoxy, C_2 - C_4 cyanoalkoxy, C2-C4 alkylcarbonyl, C2-C4 alkoxycarbonyl, C2-C4 alkylcarbonyloxy, C2-C4 alkoxyalkyl, C1-C4 haloalkyl, C₁-C₄ haloalkoxy, SO_nR^{3E} or C₃-C₆ cycloalkyl;

[0252] each R³ is attached to the remainder of Formula 1 at the 3-, 4- or 6-position;

[0253] $R^{1.4}$ is C_1 - C_4 alkyl or C_1 - C_4 haloalkyl; [0254] R^{3E} is C_1 - C_4 alkyl; [0255] $R^{3.4}$ is C_1 - C_4 alkyl;

 R^{3B} is H or C_1 - C_4 alkyl; [0256]

 R^{3C} is H or C_1 - C_4 alkyl; and [0257]

[0258] R^{3D} is H or C_1 - C_4 alkyl.

Embodiment Bp

[0259] A compound of Embodiment A wherein

[0260] Q is selected from Q-1 through Q-54 (i.e. as described in Embodiment 3);

[0261] Z is O;

[0262] R^1 is halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, or SCF₃;

[0263] R^2 is halogen or C_1 - C_4 alkyl;

[0264] m is 0 or 1;

[0265] each R³ is independently halogen, cyano, amino, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ alkoxy, C2-C4 alkoxycarbonyl, C2-C4 alkylcarbonyloxy, C2-C4 alkoxyalkyl or C1-C4 haloalkyl; and

[0266] each R³ is attached to the remainder of Formula 1 at the 3- or 4-position.

Embodiment Cp

[0267] A compound of Embodiment B wherein

[0268] Q is a 5-membered aromatic heterocylic ring, bound to the remainder of Formula 1 through a carbon atom, optionally substituted with R1, and is selected from Q-1 through Q-41;

[0269] R^1 is halogen C_1 - C_4 haloalkyl or C_1 - C_4 haloalkoxy;

[0270] R^2 is halogen or CH_3 ; and

[0271] each R^3 is independently halogen, cyano, amino or C_1 - C_4 alkyl.

Embodiment Dp

[0272] A compound of Embodiment C wherein

[0273] Q is 6-membered aromatic heterocylic ring, bound to the remainder of Formula 1 through a carbon atom, optionally substituted with R¹, and is selected from Q-42 through Q-54;

[0274] R^1 is halogen C_1 - C_4 haloalkyl or C_1 - C_4 haloalkoxy;

[0275] R^2 is halogen or CH_3 ; and

[0276] each R^3 is independently halogen, cyano, amino or C_1 - C_4 alkyl.

Embodiment Ep

[0277] A compound of Embodiment D wherein

[0278] Q is selected from Q-42, Q-43, Q-44, Q-47, Q-48 and Q-49;

[**0279**] R¹ is Cl, Br, CF₃ or OCF₃;

[0280] R² is halogen; and

[0281] each R³ is independently cyano.

[0282] Specific embodiments include a compound of Formula 1 selected from the group consisting of:

[0283] 5-chloro-2-[2-(5-chloro-2-pyridinyl)phenoxy]pyrimidine (Compound 1);

[0284] 5-chloro-2[2-[5-(fluoromethyl)-3-isoxazolyl]phenoxy]pyrimidine (Compound 32);

[0285] 2-[2-(3-bromo-5-isoxazolyl)phenoxy]-5-chloropyrimidine (Compound 12);

[0286] 5-chloro-2-[[4'-(trifluoromethoxy)[1,1'-biphenyl]-2-yl]oxy]pyrimidine (Compound 42);

[0287] 5-chloro-2-[2-[5-(trifluoromethyl)-2-pyridinyl] phenoxy]pyrimidine (Compound 27);

[0288] 5-chloro-2-[3-chloro-2-(5-chloro-2-pyridinyl)phenoxy]pyrimidine (Compound 23);

[0289] 4-[2-[(5-bromo-2-pyrimidinyl)oxy]phenyl]-2-(trifluoromethyl)pyrimidine (Compound 21);

[0290] 2-[2-(2-bromo-5-thiazolyl)phenoxy]-5-(trifluoromethyl)pyrimidine (Compound 15); and

[0291] 5-chloro-2-[4-methyl-2-[2-(trifluoromethyl)-4-

pyridinyl]phenoxy]pyrimidine (Compound 24). [0292] This invention also relates to a method for control-

ling undesired vegetation comprising applying to the locus of the vegetation herbicidally effective amounts of the compounds of the invention (e.g., as a composition described herein). Of note as embodiments relating to methods of use are those involving the compounds of embodiments described above. Compounds of the invention are particularly useful for selective control of weeds in crops

such as wheat, barley, maize, soybean, sunflower, cotton, oilseed rape and rice, and specialty crops such as sugarcane, citrus, fruit and nut crops.

[0293] Also noteworthy as embodiments are herbicidal compositions of the present invention comprising the compounds of embodiments described above.

[0294] This invention also includes a herbicidal mixture comprising (a) a compound selected from Formula 1, N-oxides, and salts thereof, and (b) at least one additional active ingredient selected from (b1) photosystem II inhibitors, (b2) acetohydroxy acid synthase (AHAS) inhibitors, (b3) acetyl-CoA carboxylase (ACCase) inhibitors, (b4) auxin mimics and (b5) 5-enol-pyruvylshikimate-3-phosphate (EPSP) synthase inhibitors, (b6) photosystem I electron diverters, (b7) protoporphyrinogen oxidase (PPO) inhibitors, (b8) glutamine synthetase (GS) inhibitors, (b9) very long chain fatty acid (VLCFA) elongase inhibitors, (b10) auxin transport inhibitors, (b11) phytoene desaturase (PDS) inhibitors, (b12) 4-hydroxyphenyl-pyruvate dioxygenase (HPPD) inhibitors, (b13) homogentisate solenesyltransererase (HST) inhibitors, (b14) cellulose biosynthesis inhibitors, (b15) other herbicides including mitotic disruptors, organic arsenicals, asulam, bromobutide, cinmethylin, cumyluron, dazomet, difenzoquat, dymron, etobenzanid, flurenol, fosamine, fosamineammonium. metam. methyldvmron. oleic oxaziclomefone, pelargonic acid and pyributicarb, and (b16) herbicide safeners; and salts of compounds of (b1) through (b16).

[0295] "Photosystem II inhibitors" (b1) are chemical compounds that bind to the D-1 protein at the Q_B -binding niche and thus block electron transport from Q_A^- to Q_B in the chloroplast thylakoid membranes. The electrons blocked from passing through photosystem II are transferred through a series of reactions to form toxic compounds that disrupt cell membranes and cause chloroplast swelling, membrane leakage, and ultimately cellular destruction. The Q_R -binding niche has three different binding sites: binding site A binds the triazines such as atrazine, triazinones such as hexazinone, and uracils such as bromacil, binding site B binds the phenylureas such as diuron, and binding site C binds benzothiadiazoles such as bentazon, nitriles such as bromoxynil and phenyl-pyridazines such as pyridate. Examples of photosystem II inhibitors include ametryn, amicarbazone, atrazine, bentazon, bromacil, bromofenoxim, bromoxynil, chlorbromuron, chloridazon, chlorotoluron, chloroxuron, cumyluron, cyanazine, daimuron, desmedipham, desmetryn, dimefuron, dimethametryn, diuron, ethidimuron, fenuron, fluometuron, hexazinone, ioxynil, isoproturon, isouron, lenacil, linuron, metamitron, methabenzthiazuron, metobromuron, metoxuron, metribuzin, monolinuron, neburon, pentanochlor, phenmedipham, prometon, prometryn, propanil, propazine, pyridafol, pyridate, siduron, simazine, simetryn, tebuthiuron, terbacil, terbumeton, terbuthylazine, terbutryn and trietazine.

[0296] "AHAS inhibitors" (b2) are chemical compounds that inhibit acetohydroxy acid synthase (AHAS), also known as acetolactate synthase (ALS), and thus kill plants by inhibiting the production of the branched-chain aliphatic amino acids such as valine, leucine and isoleucine, which are required for protein synthesis and cell growth. Examples of AHAS inhibitors include amidosulfuron, azimsulfuron, bensulfuron-methyl, bispyribac-sodium, cloransulammethyl, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, diclosulam, ethametsulfuron-methyl,

ethoxysulfuron, flazasulfuron, florasulam, flucarbazone-sodium, flumetsulam, flupyrsulfuron-methyl, flupyrsulfuronsodium, foramsulfuron, halosulfuron-methyl, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, iodosulfuron-methyl (including sodium salt), iofensulfuron (2-iodo-N-[[(4-methoxy-6methyl-1,3,5-triazin-2-yl)amino|carbonyl|benzenesulfonamide), mesosulfuron-methyl, metazosulfuron (3-chloro-4-(5,6-dihydro-5-methyl-1,4,2-dioxazin-3-yl)-N-[[(4,6dimethoxy-2-pyrimidinyl)amino]carbonyl]-1-methyl-1Hpyrazole-5-sulfonamide), metosulam, metsulfuron-methyl, nicosulfuron, oxasulfuron, penoxsulam, primisulfuronmethyl, propoxycarbazone-sodium, propyrisulfuron (2-chloro-N-[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]-6-propylimidazo[1,2-b]pyridazine-3-sulfonamide), prosulfuron, pyrazosulfuron-ethyl, pyribenzoxim, pyriftalid, pyriminobac-methyl, pyrithiobac-sodium, rimsulfuron, sulfometuron-methyl, sulfosulfuron, thiencarbazone, thifensulfuron-methyl, triafamone (N-[2-[(4,6-dimethoxy-1,3,5-triazin-2-yl)carbonyl]-6-fluorophenyl]-1,1-difluoro-Nmethylmethanesulfonamide), triasulfuron, methyl, trifloxysulfuron (including sodium triflusulfuron-methyl and tritosulfuron.

[0297] "ACCase inhibitors" (b3) are chemical compounds that inhibit the acetyl-CoA carboxylase enzyme, which is responsible for catalyzing an early step in lipid and fatty acid synthesis in plants. Lipids are essential components of cell membranes, and without them, new cells cannot be produced. The inhibition of acetyl CoA carboxylase and the subsequent lack of lipid production leads to losses in cell membrane integrity, especially in regions of active growth such as meristems. Eventually shoot and rhizome growth ceases, and shoot meristems and rhizome buds begin to die back. Examples of ACCase inhibitors include alloxydim, butroxydim, clethodim, clodinafop, cycloxydim, cyhalofop, diclofop, fenoxaprop, fluazifop, haloxyfop, pinoxaden, profoxydim, propaquizafop, quizalofop, sethoxydim, tepraloxydim and tralkoxydim, including resolved forms such as fenoxaprop-P, fluazifop-P, haloxyfop-P and quizalofop-P and ester forms such as clodinafop-propargyl, cyhalofopbutyl, diclofop-methyl and fenoxaprop-P-ethyl.

[0298] Auxin is a plant hormone that regulates growth in many plant tissues. "Auxin mimics" (b4) are chemical compounds mimicking the plant growth hormone auxin, thus causing uncontrolled and disorganized growth leading to plant death in susceptible species. Examples of auxin mimics include aminocyclopyrachlor (6-amino-5-chloro-2cyclopropyl-4-pyrimidinecarboxylic acid) and its methyl and ethyl esters and its sodium and potassium salts, aminopyralid, benazolin-ethyl, chloramben, clacyfos, clomeprop, clopyralid, dicamba, 2,4-D, 2,4-DB, dichlorprop, fluroxypyr, halauxifen (4-amino-3-chloro-6-(4-chloro-2-fluoro-3methoxyphenyl)-2-pyridinecarboxylic acid), halauxifenmethyl (methyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3methoxyphenyl)-2-pyridinecarboxylate), MCPA, MCPB, mecoprop, picloram, quinclorac, quinmerac, 2,3,6-TBA, triclopyr, and methyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)-5-fluoro-2-pyridinecarboxylate.

[0299] "EPSP (5-enol-pyruvylshikimate-3-phosphate) synthase inhibitors" (b5) are chemical compounds that inhibit the enzyme, 5-enol-pyruvylshikimate-3-phosphate synthase, which is involved in the synthesis of aromatic amino acids such as tyrosine, tryptophan and phenylalanine. EPSP inhibitor herbicides are readily absorbed through plant

foliage and translocated in the phloem to the growing points. Glyphosate is a relatively nonselective postemergence herbicide that belongs to this group. Glyphosate includes esters and salts such as ammonium, isopropylammonium, potassium, sodium (including sesquisodium) and trimesium (alternatively named sulfosate).

[0300] "Photosystem I electron diverters" (b6) are chemical compounds that accept electrons from Photosystem I, and after several cycles, generate hydroxyl radicals. These radicals are extremely reactive and readily destroy unsaturated lipids, including membrane fatty acids and chlorophyll. This destroys cell membrane integrity, so that cells and organelles "leak", leading to rapid leaf wilting and desiccation, and eventually to plant death. Examples of this second type of photosynthesis inhibitor include diquat and paragual.

[0301] "PPO inhibitors" (b7) are chemical compounds that inhibit the enzyme protoporphyrinogen oxidase, quickly resulting in formation of highly reactive compounds in plants that rupture cell membranes, causing cell fluids to leak out. Examples of PPO inhibitors include acifluorfensodium, azafenidin, benzfendizone, bifenox, butafenacil, carfentrazone, carfentrazone-ethyl, chlomethoxyfen, cinidon-ethyl, fluazolate, flufenpyr-ethyl, flumiclorac-pentyl, flumioxazin, fluoroglycofen-ethyl, fluthiacet-methyl, fomesafen, halosafen, lactofen, oxadiargyl, oxadiazon, oxyfluorfen, pentoxazone, profluazol, pyraclonil, pyraflufen-ethyl, saflufenacil, sulfentrazone, thidiazimin, tiafenacil (methyl N-[2-[[2-chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-(trifluoromethyl)-1(2H)-pyrimidinyl]-4-fluorophenyl]thio]-1oxopropyl]-β-alaninate) and 3-[7-fluoro-3,4-dihydro-3-oxo-4-(2-propyn-1-yl)-2H-1,4-benzoxazin-6-yl]dihydro-1,5dimethyl-6-thioxo-1,3,5-triazine-2,4(1H,3H)-dione.

[0302] "GS (glutamine synthase) inhibitors" (b8) are chemical compounds that inhibit the activity of the glutamine synthetase enzyme, which plants use to convert ammonia into glutamine. Consequently, ammonia accumulates and glutamine levels decrease. Plant damage probably occurs due to the combined effects of ammonia toxicity and deficiency of amino acids required for other metabolic processes. The GS inhibitors include glufosinate and its esters and salts such as glufosinate-ammonium and other phosphinothricin derivatives, glufosinate-P ((2S)-2-amino-4-(hydroxymethylphosphinyl)butanoic acid) and bilanaphos.

[0303] "VLCFA (very long chain fatty acid) elongase inhibitors" (b9) are herbicides having a wide variety of chemical structures, which inhibit the elongase. Elongase is one of the enzymes located in or near chloroplasts which are involved in biosynthesis of VLCFAs. In plants, very-longchain fatty acids are the main constituents of hydrophobic polymers that prevent desiccation at the leaf surface and provide stability to pollen grains. Such herbicides include acetochlor, alachlor, anilofos, butachlor, cafenstrole, dimethachlor, dimethenamid, diphenamid, fenoxasulfone (3-[[(2, 5-dichloro-4-ethoxyphenyl)methyl]sulfonyl]-4,5-dihydro-5, 5-dimethylisoxazole), fentrazamide, flufenacet, indanofan, mefenacet, metazachlor, metolachlor, naproanilide, napropamide, napropamide-M ((2R)—N,N-diethyl-2-(1-naphthalenyloxy)propanamide), pethoxamid, piperophos, pretilachlor, propachlor, propisochlor, pyroxasulfone, and thenylchlor, including resolved forms such as S-metolachlor and chloroacetamides and oxyacetamides.

[0304] "Auxin transport inhibitors" (b10) are chemical substances that inhibit auxin transport in plants, such as by binding with an auxin-carrier protein. Examples of auxin transport inhibitors include diffusenzopyr, naptalam (also known as N-(1-naphthyl)phthalamic acid and 2-[(1-naphthalenylamino)carbonyl]benzoic acid).

[0305] "PDS (phytoene desaturase inhibitors) (b11) are chemical compounds that inhibit carotenoid biosynthesis pathway at the phytoene desaturase step. Examples of PDS inhibitors include beflubutamid, diffurencian, fluridone, flurochloridone, flurtamone norflurzon and picolinafen.

[0306] "HPPD (4-hydroxyphenyl-pyruvate dioxygenase) inhibitors" (b12) are chemical substances that inhibit the biosynthesis of synthesis of 4-hydroxyphenyl-pyruvate dioxygenase. Examples of HPPD inhibitors include benzobicyclon, benzofenap, bicyclopyrone (4-hydroxy-3-[[2-[(2methoxyethoxy)methyl]-6-(trifluoromethyl)-3-pyridinyl] carbonyl]bicyclo[3.2.1]oct-3-en-2-one), fenquinotrione (2-[[8-chloro-3,4-dihydro-4-(4-methoxyphenyl)-3-oxo-2quinoxalinyl]carbonyl]-1,3-cyclohexanedione), isoxachlortole, isoxaflutole, mesotrione, pyrasulfotole, pyrazolynate, pyrazoxyfen, sulcotrione, tefuryltrione, tembotrione, topramezone, 5-chloro-3-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-1-(4-methoxyphenyl)-2(1H)quinoxalinone, 4-(2,6-diethyl-4-methylphenyl)-5-hydroxy-2,6-dimethyl-3(2H)-pyridazinone, 4-(4-fluorophenyl)-6-[(2-hvdroxy-6-oxo-1-cyclohexen-1-vl)carbonvl]-2-methyl-1,2,4-triazine-3,5(2H,4H)-dione, 5-[(2-hydroxy-6-oxo-1cyclohexen-1-yl)carbonyl]-2-(3-methoxyphenyl)-3-(3-2-methyl-N-(4methoxypropyl)-4(3H)-pyrimidinone, methyl-1,2,5-oxadiazol-3-yl)-3-(methylsulfinyl)-4-(trifluoromethyl)benzamide and 2-methyl-3-(methylsulfonyl)-N-(1-methyl-1H-tetrazol-5-yl)-4-(trifluoromethyl)benzamide.

[0307] HST (homogentisate solenesyltransererase) inhibitors (b13) disrupt a plant's ability to convert homogentisate to 2-methyl-6-solanyl-1,4-benzoquinone, thereby disrupting carotenoid biosynthesis. Examples of HST inhibitors include haloxydine, pyriclor, 3-(2-chloro-3,6-difluorophenyl)-4-hydroxy-1-methyl-1,5-naphthyridin-2 (1H)-one, 7-(3,5-dichloro-4-pyridinyl)-5-(2,2-difluoroethyl)-8-hydroxypyrido[2,3-b]pyrazin-6(5H)-one and 4-(2,6-diethyl-4-methylphenyl)-5-hydroxy-2,6-dimethyl-3(2H)-pyridazinone.

[0308] HST inhibitors also include compounds of Formulae A and B.

$$\begin{array}{c|c}
R^{d1} & R^{d2} \\
R^{d6} & R^{d3} \\
N & N & N & N \\
N & N & N & N & N \\
R^{d5} & N & N & N & N \\
R^{d5} & N & N & N & N & N \\
\end{array}$$

$$\begin{array}{c|c}
R^{e1} & R^{e2} \\
R^{e3} & R^{e3}
\end{array}$$

$$\begin{array}{c|c}
R^{e4} & R^{e4} \\
R^{e6} & R^{e6}
\end{array}$$

[0309] wherein \mathbb{R}^{d1} is H, Cl or \mathbb{CF}_3 ; \mathbb{R}^{d2} is H, Cl or Br; \mathbb{R}^{d3} is H or Cl; \mathbb{R}^{d4} is H, Cl or \mathbb{CF}_3 ; \mathbb{R}^{d5} is \mathbb{CH}_3 , $\mathbb{CH}_2\mathbb{CH}_3$ or $\mathbb{CH}_2\mathbb{CHF}_2$; and \mathbb{R}^{d6} is OH, or —OC(—O)-i-Pr; and \mathbb{R}^{e1} is H, F, Cl, \mathbb{CH}_3 or $\mathbb{CH}_2\mathbb{CH}_3$; \mathbb{R}^{e2} is H or \mathbb{CF}_3 ; \mathbb{R}^{e3} is H, \mathbb{CH}_3 or $\mathbb{CH}_2\mathbb{CH}_3$; \mathbb{R}^{e4} is H, F or Br; \mathbb{R}^{e5} is Cl, \mathbb{CH}_3 , \mathbb{CF}_3 , \mathbb{OCF}_3 or $\mathbb{CH}_2\mathbb{CH}_3$; \mathbb{R}^{e6} is H, \mathbb{CH}_3 , $\mathbb{CH}_2\mathbb{CHF}_2$ or \mathbb{C} = \mathbb{CH} ; \mathbb{R}^{e7} is OH, —OC(—O)Et, —OC(—O)-i-Pr or —OC(—O)-t-Bu; and \mathbb{A}^{e8} is N or CH.

[0310] Cellulose biosynthesis inhibitors (b14) inhibit the biosynthesis of cellulose in certain plants. They are most effective when using a pre-aplication or early post-application on young or rapidly growing plants. Examples of cellulose biosynthesis inhibitors include chlorthiamid, dichlobenil, flupoxam, indaziflam (N²-[(1R,2S)-2,3-di-hydro-2,6-dimethyl-1H-inden-1-yl]-6-(1-fluoroethyl)-1,3,5-triazine-2,4-diamine), isoxaben and triaziflam.

[0311] Other herbicides (b15) include herbicides that act through a variety of different modes of action such as mitotic disruptors (e.g., flamprop-M-methyl and flamprop-M-isopropyl) organic arsenicals (e.g., DSMA, and MSMA), 7,8dihydropteroate synthase inhibitors, chloroplast isoprenoid synthesis inhibitors and cell-wall biosynthesis inhibitors. Other herbicides include those herbicides having unknown modes of action or do not fall into a specific category listed in (b1) through (b14) or act through a combination of modes of action listed above. Examples of other herbicides include aclonifen, asulam, amitrole, bromobutide, cinmethylin, clomazone, cumyluron, cyclopyrimorate (6-chloro-3-(2-cyclopropyl-6-methylphenoxy)-4-pyridazinyl 4-morpholinecarboxylate), daimuron, difenzoquat, etobenzanid, fluometuron, flurenol, fosamine, fosamine-ammonium, dazomet, dymron, ipfencarbazone (1-(2,4-dichlorophenyl)-N-(2,4-difluorophenyl)-1,5-dihydro-N-(1-methylethyl)-5oxo-4H-1,2,4-triazole-4-carboxamide), metam, methyldymron, oleic acid, oxaziclomefone, pelargonic acid, pyributicarb and 5-[[(2,6-difluorophenyl)methoxy|methyl]-4,5-dihydro-5-methyl-3-(3-methyl-2-thienyl)isoxazole.

[0312] "Herbicide safeners" (b16) are substances added to a herbicide formulation to eliminate or reduce phytotoxic effects of the herbicide to certain crops. These compounds protect crops from injury by herbicides but typically do not prevent the herbicide from controlling undesired vegetation. Examples of herbicide safeners include but are not limited to benoxacor, cloquintocet-mexyl, cumyluron, cyometrinil, cyprosulfamide, daimuron, dichlormid, dicyclonon, dimepiperate, fenchlorazole-ethyl, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen-ethyl, mefenpyr-diethyl, mephenate, methoxyphenone, naphthalic anhydride, oxabetrinil, N-(aminocarbonyl)-2-methylbenzenesulfonamide and N-(aminocarbonyl)-2-fluorobenzenesulfonamide, 1-bromo-4-[(chloromethyl)sulfonyl]benzene, 2-(dichloromethyl)-2methyl-1,3-dioxolane (MG 191), 4-(dichloroacetyl)-1-oxa-4-azospiro[4.5]decane (MON 4660).

[0313] The compounds of Formula 1 can be prepared by general methods known in the art of synthetic organic chemistry. One or more of the following methods and variations as described in Schemes 1-9 can be used to prepare the compounds of Formula 1. The definitions of Q, R¹, R² and R³ in the compounds of Formulae 1-11 below are as defined above in the Summary of the Invention unless otherwise noted. Compounds of Formulae 1A-1C, 2A-2F, 4A and 8A are various subsets of the compounds of Formula 1, 2 4 and 8 and all substituents for Formulae 1A-1C, 2A-2F, 4A and 8A are as defined above for Formula 1 unless otherwise noted.

[0314] One or more of the following methods and variations as described in Schemes 1-9 can be used to prepare the compounds of Formula 1. The definitions of Q, R^1 , R^2 and R^3 in the compounds of Formulae 1-11 below are as defined above in the Summary of the Invention unless otherwise noted.

[0315] As shown in Scheme 1 a compound of Formula 1 can be prepared by nucleophilic substitution by heating a compound of Formula 2 in a suitable solvent, such as acetonitrile, tetrahydrofuran or N,N-dimethylformamide in the presence of a base such as potassium or cesium carbonate, at temperatures ranging from 50 to 110° C., with a compound of Formula 3 (where LG is halogen or SO_2Me). The reaction is typically conducted at temperatures ranging from 50 to 110° C.

 $(R^3)_m \xrightarrow{\qquad \qquad Z \qquad \qquad } Z \qquad \qquad \\ LG \xrightarrow{\qquad \qquad N \qquad \qquad } R^2 \qquad \qquad \\ R^4 \xrightarrow{\qquad \qquad \qquad } Scheme 1 \qquad \qquad \\ LG \xrightarrow{\qquad \qquad N \qquad \qquad } R^2 \qquad \qquad \\ Scheme 1 \qquad \qquad \\ R^2 \xrightarrow{\qquad \qquad N \qquad \qquad } R^2 \xrightarrow{\qquad } R^$

$$(\mathbb{R}^3)_m$$
 \mathbb{I} \mathbb{R}^A

 \mathbb{R}^A is \mathbb{H}

[0316] Alternatively, as shown in Scheme 2, boron compounds of Formula 5 or tin compounds of Formula 6 can be coupled with intermediates of Formula 4 under Suzuki or Stille conditions to give compounds of Formula 1. Suzuki couplings typically are conducted in the presence of Pd(0) or Pd(II) salts, a suitable ligand, and a base. Suitable bases for this transformation include potassium carbonate or cesium carbonate, while Pd(II) salts such as Pd(OAc)₂ or PdCl₂ can be used in conjunction with ligands such as triphenylphosphine or 1,1'-bis(diphenylphosphino)ferrocene (dppf). Conditions for Suzuki couplings are well documented in the literature (see for example *Angewandte Chemie International Edition* 2006, 45, 3484 and *Tetrahedron Letters* 2002,

58(14), 2885). Boron intermediates of Formula 5 are commercially available or can be prepared from the corresponding halides or trifluoromethanesulfonates by methods known in the literature (see for example PCT Patent Publication WO 2007/043278, U.S. Pat. No. 8,080,566, *Organic Letters* 2011, 13(6), 1366 and *Organic Letters* 2012, 14(2), 600). Stille couplings typically can be conducted in the presence of Pd(0) or a Pd(II) salt, a ligand and a Cu(I) salt such as copper(I) iodide. The reaction can be run in a solvent such as dioxane, 1,2-dimethoxyethane or toluene at a temperature ranging from ambient to reflux. For conditions and reagents employed in Stille couplings see *Chemical Reviews* 2007, 107(1), 133-173.

$$\underbrace{Scheme\ 2}_{\begin{subarray}{c} Scheme\ 2\\ \end{subarray}} B(OR)_2 \qquad \qquad palladium\ catalyst, \\ ligand\ and\ base \\ \end{subarray}$$

$$\begin{array}{c} Sn(R)_3 \\ R = C_1 - C_4 \text{ alkyl} \end{array}$$

$$\begin{array}{c} R^2 \\ X \text{ is I, Br or OSO}_2CF_3 \\ R = C_1 - C_4 \text{ alkyl} \end{array}$$

$$\begin{array}{c} R^2 \\ R^3 \\ R = C_1 - C_4 \text{ alkyl} \end{array}$$

[0317] As shown in Scheme 3, a compound of Formula 2C (i.e. a compound of Formula 2 where Z is O) can be prepared by deprotection of a compound of Formula 2B (i.e. a compound of Formula 2A wherein Z is O; and \mathbb{R}^A is CH₂ or -C(=O)CH₃) with a suitable deprotecting agent. Suitable methoxy (i.e. when R^A is CH_3) deprotecting reagents such as BBr₃, AlCl₃ and HBr in acetic acid can be used in the presence of solvents such as toluene, dichloromethane and dichloroethane at a temperature of from -80 to 120° C. Suitable acetoxy (i.e. when R^A is $-C(=O)CH_3$) deprotecting agents include potassium carbonate in methanol or ammonium acetate in aqueous methanol at room temperature can be used as discussed in Das, et al., Tetrahedron 2003, 59, 1049-1054 and methods cited therein. Alternatively, a compound of Formula 2B can be combined with Amberlyst 15© in methanol (as discussed in Das, et al. Tet. Lett. 2003, 44, 5465-5468) or combined with sodium acetate in ethanol (as discussed in Narender, T., et al. Synthetic Communications 2009, 39(11), 1949-1956) to obtain a compound of Formula 2C. Other useful phenolic protecting groups suitable for use in preparing a compound of Formula 2C can be found in Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 4th ed.; Wiley: Hoboken, N.J., 1991.

$$\begin{array}{c|c} & \underline{\text{Scheme 3}} \\ & Q \\ &$$

[0318] An intermediate of Formula 2B can be prepared as shown in Scheme 4 from an intermediate of Formula 7 by a variety of methods known to one skilled in the art. Compounds of Formula 2B can be accessed by coupling precursors of Formula 7 wherein J is Br, Cl, I or trifluoromethanesulfonate with boronate or trialkyltin group-containing heterocycles (i.e compounds of Formula 5 or Formula 6 using the Suzuki conditions or the Stille conditions of Scheme 2). Alternatively, compounds of Formula 7 wherein J is a boronate or trialkyltin group may be coupled with halogen-substituted heterocycles Q-X using the methods shown in Scheme 2 to afford compounds of Formula 2B. The skilled chemist will realize that with the prudent choice of groups X and J in reactions involving compounds of Formula 7 and Q-X can synthesize the intermediate 2B utilizing various cross coupling procedures such as Kumada coupling, Hiyama coupling or Negishi coupling described in "Metal-Catalyzed Cross-Coupling Reactions", Eds. A. de Meijere and F. Diederich, Wiley-VCH, Weinheim, 2004, vols 1 and 2.

[0319] When J in Formula 7 is an alkene, alkyne, oxime, nitrile or ketone, various heterocycles can be prepared using methods described in Katritsky, *Advances in Heterocyclic Chemistry*, Vol. 1-104, Elsevier. In cases where regioisomeric mixtures are produced, the desired product can be isolated using routing separation techniques known in the art.

$$(R^3)_{m-1} \xrightarrow{\qquad \qquad } OR^4$$

$$2B$$

[0320] As shown in Scheme 5, a compound of Formula 4A can be prepared by coupling of phenols of Formula 9 with a compound of Formula 3 under the nucleophilic substitution conditions described in Scheme 1.

X is I, Br or OSO₂CF₃

$$(R^3)_m \xrightarrow{Seheme 5} X$$

$$GH \xrightarrow{S$$

[0321] As shown in Scheme 6, a compound of Formula 1B, (i.e. a compound of Formula 1 where Z is O; and m is 1 at the 3-position) can be prepared by "C—H activation" of a compound of Formula 1A (a compound of Formula 1 wherein Z is O; and m is 0). For example, paladium(II) acetate along with either an N-halosuccinimide, PhI(OAc)₂, N-fluoropyridinium tetrafluoroborate, or a lower alkyl boronic acid can be used to introduce the R³ variable as I, Br, Cl, —OAc, F, and lower alkyl substituents respectively. These methods are detailed in reviews of selective activation of C—H bonds in *Chemical Reviews* 2010, 110, 575-1211 and references cited therein. Methods for "C—H activation" can also be found in Wencel-Delord et al., *Nature Chemistry*

2013, 5, 369-375 and a series of reviews of "C-H activa-

tion" in Accounts of Chemical Research 2012, 45, 777-958

and references cited therein. Iodides and bromides of For-

mula 1B can then be further functionalized by various cross coupling procedures described in "Metal-Catalyzed Cross-Coupling Reactions", Eds A. de Meijere and F. Diederich,

Wiley-VCH, Weinheim, 2004, vols 1 and 2.

Scheme 6

$$(R^3)_m$$

1A

 R^3
 $(R^3)_{m-1}$
 $(R^3)_{m-1}$
 $(R^3)_{m-1}$
 $(R^3)_{m-1}$
 $(R^3)_{m-1}$
 $(R^3)_{m-1}$
 $(R^3)_{m-1}$
 $(R^3)_{m-1}$
 $(R^3)_{m-1}$

[0322] Chemistry based on "C—H activation" can also be used to prepare a compound of Formula 2D (i.e. a compound of Formula 2 wherein Z is O; \mathbb{R}^4 is — $\mathbb{C}(O)\mathbb{CH}_3$; and m is 1 at the 3-position) as shown in Scheme 7 utilizing palladium (II) acetate and (diacetoxyiodo)benzene as described above for Scheme 6. A compound of Formula 2D can subsequently be converted via methods disclosed in Schemes 1 and 6 to provide a compound of Formula 1.

$$(\mathbb{R}^{3})_{m} \xrightarrow{\mathbb{P}d(\mathrm{OAc})_{2}} \mathbb{P}h\mathrm{I}(\mathrm{OAc})_{2} \xrightarrow{\mathbb{Q}} \mathbb{Q}\mathrm{Ac}$$

[0323] Similarly, chemistry based on "C—H activation" can be used to prepare a compound of Formulae 2F (i.e. a compound of Formula 2A wherein Z is S) as shown in Scheme 8. A compound of Formula 8 can first be converted to a compound of Formula 8A (i.e. a compound of Formula 6 wherein the ortho "H" is X; and X is Br or I) by utilizing a stepwise introduction of substituents using "C-H activation". Iodides and bromides of Formula 8A can then be further functionalized by copper mediated cross-coupling with thiourea as described in Qi, Junsheng, Chin. J. Chem. 2010, 28, 1441-1443 to provide the aryl thiol after acidic deprotection. Palladium catalyzed cross-coupling reactions of aryl halides can give protected thiols that can, in turn, be deprotected under either acidic conditions or basic conditions (e.g. cesium fluoride) to provide a compound of Formula 2F. These conditions are discussed in Organ, Michael G., Angew. Chem. Int. Ed. 2012, 51, 3314-3322 and the references cited therein. Also, relevant conditions can be found in Takashiro Itoh, J. Org. Chem. 2006, 71, 2203-2206. A compound of Formula 2F can then be converted via methods disclosed in Schemes 1 and 7 to provide a compound of Formula 1.

[0324] In Scheme 9, the phenol, 2E is reacted with N,N-dimethyl thiocarbamoyl chloride in N,N-dimethylformamide in the presence of a strong tertiary amine base such as 1,4-diazabicyclo[2.2.2]octane or N-methylmorpholine for

acidic phenols (for less-acidic phenols, prior deprotonation with sodium hydride may be advantageous) to form the O-aryl N,N-dimethylthiocarbamate of Formula 10. Newman-Kwart rearrangement of a compound of Formula 10 at temperatures ranging from 200 to 300° C. provides the intermediate S-aryl dimethylthiocarbamate of Formula 11. A one-pot deprotection of a compound of Formula 11 is readily achieved using 10% aqueous sodium hydroxide or methanolic potassium hydroxide to afford the corresponding aryl thiol. Subsequent reaction with a compound of Formula 3 at or slightly above room temperature provides the product 1C (i.e. a compound of Formula 1 wherein Z is S). Methods for Newman-Kwart rearrangements are found in Lloyd-Jones, Guy C., *Synthesis* 2008, 661-689.

[0325] It is recognized by one skilled in the art that various functional groups can be converted into others to provide different a compound of Formula 1. For a valuable resource that illustrates the interconversion of functional groups in a simple and straightforward fashion, see Larock, R. C., Comprehensive Organic Transformations: A Guide to Functional Group Preparations, 2nd Ed., Wiley-VCH, New York, 1999. For example, intermediates for the preparation of a compound of Formula 1 may contain aromatic nitro groups, which can be reduced to amino groups, and then be converted via reactions well known in the art such as the Sandmeyer reaction, to various halides, providing a compound of Formula 1. The above reactions can also in many cases be performed in alternate order

[0326] It is recognized that some reagents and reaction conditions described above for preparing a compound of Formula 1 may not be compatible with certain functional-

ities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 4th ed.; Wiley: Hoboken, N.J., 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of a compound of Formula 1. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular presented to prepare a compound of Formula 1.

[0327] One skilled in the art will also recognize that a compound of Formula 1 and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

[0328] Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Steps in the following Examples illustrate a procedure for each step in an overall synthetic transformation, and the starting material for each step may not have necessarily been prepared by a particular preparative run whose procedure is described in other Examples or Steps. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. ¹H NMR spectra are reported in ppm downfield from tetramethylsilane in CDCl₃; "s" means singlet, "d" means doublet, "t" means triplet, "q" means quartet, "m" means multiplet, "dd" means doublet of doublets, "dt" means doublet of triplets, and "bs" means broad singlet.

[0329] It is recognized by one skilled in the art that various functional groups can be converted into others to provide different compounds of Formula 1. For a valuable resource that illustrates the interconversion of functional groups in a simple and straightforward fashion, see Larock, R. C., Comprehensive Organic Transformations: A Guide to Functional Group Preparations, 2nd Ed., Wiley-VCH, New York, 1999. For example, intermediates for the preparation of compounds of Formula 1 may contain aromatic nitro groups, which can be reduced to amino groups, and then be converted via reactions well known in the art such as the Sandmeyer reaction, to various halides, providing compounds of Formula 1. The above reactions can also in many cases be performed in alternate order

[0330] It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula 1 may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*, 2nd ed.; Wiley:

New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of compounds of Formula 1. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular presented to prepare the compounds of Formula 1.

[0331] One skilled in the art will also recognize that compounds of Formula 1 and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

[0332] Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Steps in the following Examples illustrate a procedure for each step in an overall synthetic transformation, and the starting material for each step may not have necessarily been prepared by a particular preparative run whose procedure is described in other Examples or Steps. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. ¹H NMR spectra are reported in ppm downfield from tetramethylsilane at 500 MHz in CDCl₃ unless otherwise indicated; "s" means singlet, "d" means doublet, "t" means triplet, "q" means quartet, "m" means multiplet, "dd" means doublet of doublets and "dt" means doublet of triplets.

Synthesis Example 1

Synthesis of 3-[2-[(5-chloro-2-pyrimidinyl)oxy] phenyl]-5-isoxazolemethanol (Compound 31)

Step A: Synthesis of 5-chloro-2-[2-[5-[[[(1,1-dimethylethyl)diphenylsilyl]oxy]methyl]-3-isoxazolyl] phenoxy]pyrimidine

[0333] To a solution of 3-(2-methoxyphenyl)-5-isox-azolemethanol (prepared as described in *Bioorganic Med. Chem.* 2004, 12, 3965 (0.500 mg, 0.243 mmol) in tetrahydrofuran (25 mL) was added t-butyldiphenylsilyl chloride (0.804 mg, 2.92 mmol) followed by imidazole (0.199 mg, 2.92 mmol). After 2 h the solvent was removed under vacuum. Purification using chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes to afford the intermediate 5-[[[(1,1-dimethylethyl)diphenylsilyl]oxy] methyl]-3-(2-methoxyphenyl)isoxazole and the material was taken on without further purification.

[0334] To a solution of 5-[[[(1,1-dimethylethyl)diphenyl-silyl]oxy]methyl]-3-(2-methoxyphenyl)isoxazole (3.10 g, 0.699 mmol) in dichloromethane (35 mL) at 0° C. was added a 1.0 M solution of boron tribromide (34.9 mL) and the reaction was stirred at this temperature for 1 h. The reaction was quenched with a saturated solution of sodium bicarbonate. The phases were separated, and the aqueous layer was washed with additional dichloromethane. The combined organic phases were combined, dried with MgSO₄ and concentrated under vacuum. Purification by chromatogra-

phy on silica gel eluting with 0 to 100% ethyl acetate in hexanes afforded 2-[5-[[[(1,1-dimethylethyl)diphenylsilyl] oxy]methyl]-3-isoxazolyl]phenol which was taken to the next step without further purification.

[0335] To a solution of 2-[5-[[[(1,1-dimethylethyl)diphenylsilyl]oxy]methyl]-3-isoxazolyl]phenol (2.78 g, 6.47 mmol) in acetonitrile (60 mL) was added 2,5-dichloropyrimidine (1.15 g, 7.70 mmol) and potassium carbonate (2.24 g, 16.2 mmol) and the reaction was heated to 80° C. for 6 h. The reaction mixture was allowed to warm to room temperature and the solvent was removed under vacuum. Purification by chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes afforded the title product (2.27 g).

[0336] ¹H NMR δ 8.41 (s, 2H), 8.00-7.97 (m, 1H), 7.67-7.61 (m, 4H), 7.56-7.50 (m, 1H), 7.47-7.36 (m, 7H), 7.28-7.26 (m, 1H), 6.56 (t, 1H), 1.05 (s, 9H). MS (AP⁺)=542.

Step B: Synthesis of 3-[2-[(5-chloro-2-pyrimidinyl) oxy]phenyl]-5-isoxazolemethanol

[0337] To a solution of 5-chloro-2-[5-[[[(1,1-dimethylethyl)diphenylsilyl]oxy]methyl]-3-isoxazolyl]phenoxy]pyrimidine (i.e. the product from Step A) (2.27 g, 4.19 mmol) in tetrahydrofuran (15 mL) was added acetic acid (0.50 mL) followed by a solution of 75% tetrabutylammonium fluoride in water (2.9 mL) and the reaction was allowed to stir for 2 h. The reaction was quenched with a saturated solution of sodium bicarbonate and the phases were partitioned and the aqueous phase was further washed with ethyl acetate. The combined organic phases were combined, dried over MgSO₄ and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes afforded the title product, a compound of the present invention (1.21 g).

[0338] 1 H NMR δ 8.45 (s, 2H), 7.99-7.95 (m, 1H), 7.56-7.52 (m, 1H), 7.42-7.38 (m, 1H), 7.28-7.25 (m, 1H), 6.64-6.61 (m, 1H), 4.77-4.73 (m, 2H).

Synthesis Example 2

Synthesis of 3-[2-[(5-chloro-2-pyrimidinyl)oxy] phenyl]-5-isoxazolecarboxaldehyde (Compound 33)

Step A: Synthesis of 3-[2-[(5-chloro-2-pyrimidinyl) oxy]phenyl]-5-isoxazolecarboxaldehyde

[0339] Pyridinium chlorochromate (263 mg, 1.22 mmol) and silica gel (200 mg) were combined and mixed as solids. This mixture was then added to a stirring solution of 3-[2-[(5-chloro-2-pyrimidinyl)oxy]phenyl]-5-isox-

azolemethanol (i.e. the product obtained in Step A of Example 1) (309 mg, 1.02 mmol) in dichloromethane (5.0 mL) and the reaction was allowed to stir for 18 h. The solution was filtered to remove the silica gel and the organic phase was washed with a 1 M hydrochloric acid solution. The organic phase was dried with MgSO₄ and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes to afforded the title product, a compound of the present invention (0.307 g)

[0340] 1 H NMR δ 9.95 (s, 1H), 8.46 (s, 2H), 8.06-8.01 (m, 1H), 7.61-7.56 (m, 1H), 7.47-7.41 (m, 1H), 7.38 (s, 1H), 7.32-7.29 (m, 1H). MS (AP⁺)=302.

Synthesis Example 3

Synthesis of 5-chloro-2-[2-[5-(difluoromethyl)-3-isoxazolyl]phenoxy]pyrimidine (Compound 35)

Step A Synthesis of 5-chloro-2-[2-[5-(difluoromethyl)-3-isoxazolyl]phenoxy]pyrimidine

[0341] To a stirred solution of 3-[2-[(5-chloro-2-pyrimidinyl)oxy]phenyl]-5-isoxazolecarboxaldehyde (i.e. the product from Step A of Example 2) (100 mg, 0.332 mmol) in dichloromethane (3.0 mL) at -78° C. was added Deoxo-Fluor® (161 mg, 0.729 mmol) and the reaction was allowed to return to ambient temperature. Upon consumption of the starting material as evidenced by thin-layer chromatography, the solvent was removed under vacuum. Purification by chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes to afforded the title product, a compound of the present invention (36.3 mg).

[0342] ¹H NMR & 8.46 (s, 2H), 8.01-7.96 (m, 1H), 7.59-7.54 (m, 1H), 7.44-7.38 (m, 1H), 7.31-7.27 (m, 1H), 6.98-6.96 (s, 1H), 6.83-6.60 (m, 1H). MS (ESI*)=324.

Synthesis Example 4

Synthesis of 2-[2-(3-bromo-5-isoxazolyl)phenoxy]-5-chloropyrimidine (Compound 12)

Step A: Synthesis of 3-bromo-5-(2-methoxyphenyl)isoxazole

[0343] To a solution of 1-ethynyl-2-methoxybenzene (0.78 g, 5.92 mmol) in dichloromethane (10 mL) was added dibromoformaldoxime (1.00 g, 4.93 mmol). The mixture was cooled to 0° C. and potassium bicarbonate (1.48 g, 14.8 mmol) was added, followed by heating to 40° C. for 18 h. Water was added to the reaction mixture, the phases separated, and the aqueous layer was again washed with dichloromethane. The combined organic phases were dried over MgSO₄, concentrated under vacuum, and purified by chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes to afford the title product, a compound of the present invention (1.04 g).

[0344] 1 H NMR δ 7.94 (dd, 1H), 7.47-7.42 (m, 1H), 7.09 (dd, 1H), 7.02 (dd, 1H), 6.85 (s, 1H), 3.97 (s, 3H). MS (AP+)=254.

Step B: Synthesis of 2-(3-bromo-5-isoxazolyl)phenol

[0345] To a solution of 3-bromo-5-(2-methoxyphenyl) isoxazole (i.e. the product from Step A) (0.50 g, 1.97 mmol) in dichloromethane (20 mL) was added a 1 M solution of boron tribromide in dichloromethane (9.86 mmol) at -78° C. and the solution was allowed to warm to room temperature and stir for 18 h. Dichloroethane (20 mL) was added, and reaction mixture was concentrated to remove the excess dichloromethane. Boron tribromide in dichloromethane (9.86 mmol) was again added and the reaction was heated to 80° C. until completion as evidenced by thin-layer chromatography. The reaction mixture was allowed to cool to ambient temperature and quenched with a saturated solution of sodium bicarbonate. The phases were separated and the aqueous layer was again washed with dichloromethane. The combined organic phases were dried with MgSO₄, concentrated under vacuum, and purified by chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes to afford the title product (0.395 g).

[0346] 1 H NMR δ 7.76 (dd, 1H), 7.39-7.33 (m, 1H), 7.09-7.02 (m, 1H), 6.96-6.93 (m, 1H), 6.02 (s, 1H). MS (AP⁻)=238.

Step C: 2-[2-(3-bromo-5-isoxazolyl)phenoxy]-5-chloropyrimidine

[0347] To a solution of 2-(3-bromo-5-isoxazolyl)phenol (i.e. the product from Step B) (100 mg, 0.417 mmol) in acetonitrile (5 mL) was added 2,5-dichloropyrimidine (75.0 mg, 0.503 mmol) and potassium carbonate (288 mg, 2.08 mmol) then the solution was stirred at ambient temperature for 18 h. The reaction was then heated at 40° C. for 2 h followed by 80° C. for two hours. The solution was then cooled to ambient temperature, water was added, the phases were separated and the aqueous layer was again washed with dichloromethane. The combined organic phases were dried over MgSO₄, concentrated under vacuum, and purified by chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes to afford the title product, a compound of the present invention (122 mg).

[0348] 1 H NMR δ 8.49 (s, 2H), 8.03 (dd, 1H), 7.58-7.53 (m, 1H), 7.43 (dt, 1H), 7.29 (dd, 1H), 6.74 (s, 1H). MS (AP+)=352.

Synthesis Example 5

Synthesis of 5-chloro-2-[2-[4-(trifluoromethyl)-2-pyridinyl]phenoxy]pyrimidine (Compound 25)

Step A: Synthesis of 2-[4-(trifluoromethyl)-2-pyridinyl]phenol

[0349] 2-Chloro-4-trifluoromethylpyridine (1.0 g, 5.5 mmol) and 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenol (1.57 g, 7.16 mmol) were combined in dimethoxyethane (18 mL) and water (1.8 mL). To this mixture were added sodium carbonate (2.28 g, 16.5 mmol) and tetrakis (triphenylphosphine)palladium(0) (0.32 g, 0.27 mmol). The reaction was heated at 90° C. for 2.5 h and allowed to stir at 23° C. for 18 h. The mixture was diluted with water (20 mL) and dichloromethane (20 mL) and the layers separated. The aqueous layer was washed with dichloromethane (10 mL). The combined dichloromethane layers were washed with saturated aqueous sodium chloride solution (10 mL) and dried over sodium sulfate. After filtration the organic layer was evaporated and the solid thus obtained was triturated with hexanes (20 mL). The filtrate was concentrated to provide 1.18 g of the title compound as a yellow solid which was used in Step B without further purification.

[0350] ¹H NMR & 13.61 (s, 1H), 8.72 (d, 1H), 8.12 (s, 1H), 7.83 (d, 1H), 7.47 (m, 1H), 7.36 (s, 1H), 7.06 (d, 1H), 6.96 (t, 1H).

Step B Synthesis of 5-chloro-2-[2-[4-(trifluoromethyl)-2-pyridinyl]phenoxy]pyrimidine

[0351] 2-[4-(Trifluoromethyl)-2-pyridinyl]phenol (i.e. the product from Step A) (0.20 g, 0.84 mmol) and 2,5-dichloropyrimidine (0.14 g, 0.92 mmol) were dissolved in acetonitrile (2 mL) and treated with powdered potassium carbonate (0.34 g, 2.5 mmol). The mixture was heated to 80° C. for 18 h. After cooling, the reaction mixture was diluted with water (10 mL) and ethyl acetate (10 mL) and the layers separated.

The aqueous layer was washed with ethyl acetate (10 mL). The combined ethyl acetate solution was washed with saturated aqueous sodium chloride solution (10 mL) and dried over MgSO₄. The filtrate was evaporated under reduced pressure and subjected to chromatography through 12 g silica gel eluting with 10 to 20% ethyl acetate in hexanes. Appropriate fractions were pooled and evaporated to provide the title compound, a compound of the present invention (0.2 g) as a clear oil.

[0352] ¹H NMR & 8.75 (d, 1H), 8.39 (s, 2H), 7.91 (s, 1H), 7.88 (m, 1H), 7.54 (m, 1H), 7.44 (m, 1H), 7.37 (d, 1H), 7.28 (m, 1H).

Synthesis Example 6

Synthesis of 5-chloro-2-[4-methyl-2-[6-(trifluoromethyl)-3-pyridinyl]phenoxy]pyrimidine (Compound 22)

Step A: Synthesis of 2-(2-bromo-4-methylphenoxy)-5-chloropyrimidine

[0353] 2-Bromo-4-methylphenol (280 mg, 1.5 mmol) and 2,5-dichloropyrimidine (246 mg, 1.65 mmol) were combined in 6 mL of acetonitrile under a nitrogen atmosphere. Powdered potassium carbonate (455 mg, 3.3 mmol) was added and the resulting mixture was heated at reflux for 6 h. The reaction mixture was cooled and diluted with de-ionized water and ethyl acetate. The aqueous layer was separated and extracted twice with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The resulting residue was purified by medium pressure liquid chromatography on silica gel eluting with 0 to 15% ethyl acetate in hexanes to yield the title compound (270 mg).

[0354] 1 H NMR δ 8.48 (s, 2H), 7.47 (d, 1H), 7.18 (m, 1H), 7.11 (m, 1H), 2.37 (s, 3H).

Step B Synthesis of 5-chloro-2-[4-methyl-2-[6-(trif-luoromethyl)-3-pyridinyl]phenoxy]pyrimidine

[0355] A mixture of 2-(2-bromo-4-methylphenoxy)-5-chloropyrimidine (i.e. the product of Step A; 190 mg, 0.63 mmol), B[6-(trifluoromethyl)-3-pyridinyl]-boronic acid (133 mg, 0.70 mmol), sodium carbonate (0.6 mL of 2 M aqueous solution, 1.26 mmol) and tetrakis(triphenylphosphine)palladium(0) (73 mg, 0.06 mmol) in toluene (9 mL) and ethanol (1 mL) was heated at 90° C. for 2 h. The reaction mixture was then concentrated under reduced pressure, and the residue was purified by medium pressure liquid chromatography on silica gel eluted with 0 to 10% ethyl acetate in hexanes to yield the title compound, a compound of the present invention (190 mg).

[0356] ¹H NMR & 8.77 (d, 1H), 8.36 (s, 2H), 8.02 (m, 1H), 7.64 (d, 1H), 7.31 (m, 2H), 7.15 (d, 1H), 2.45 (s, 3H).

Synthesis Example 7

Synthesis of 5-chloro-2-[2-[3-(difluoromethyl)-5-isoxazolyl]phenoxy]pyrimidine (Compound 53)

Step A: Synthesis of 2-(3-difluoromethyl-5-isoxazolyl)phenol

[0357] To a solution of 25% sodium methoxide in methanol (5 mL) and tetrahydrofuran (10 mL), acetophenone (1 g,

7.3 mmol) and difluoroacetate (1 g, 8.1 mmol) in tetrahydrofuran (2 mL) was added and heated at 60° C. for 5 h. The reaction was cooled to room temperature and treated with 36% aq hydrochloric acid (4 mL) and stirred at 60° C. for 2 h. The reaction was quenched by adding water (15 mL) and the organic solvent was removed under vacuum. The precipitated product 2-difluoromethyl-4-chromenone (1.4 g) was filtered and dissolved in ethanol (5 mL). To this solution, hydroxylamine acetate (22 mmol) in water (5 mL) was added and the mixture was heated at 60° C. for 3 h. After cooling the reaction to ambient temperature 4.4-difluoro-1-(2-hydroxyphenyl)-butane-1,3-dione 3-oxime was precipitated with the addition of water (20 mL). This product was collected by filtration and suspended in acetic acid (5 mL) and 36% aqueous hydrochloric acid (1.8 mL) at room temperature and stirred at 80° C. for 15 min to obtain the title compound as a beige solid (800 mg).

[0358] ¹H NMR & 7.82 (m, 1H), 7.36 (s, 1H), 7.07 (m, 1H), 6.95 (m, 2H), 6.82 (t, 1H), 6.05 (s, 1H). MS (ESI⁺)=212

Step B: Synthesis of 5-chloro-2-[2-[3-(difluoromethyl)-5-isoxazolyl]phenoxy]-pyrimidine

[0359] To a solution of 2-(3-difluoromethyl-5-isoxazolyl) phenol (i.e. the product from Step A) (2.1 g, 9.71 mmol) in anhydrous N,N-dimethylformamide (8 mL) was added 2,5-dichloropyrimidine (1.5 g, 10.2 mmol) and potassium carbonate (2.9 g, 21.3 mmol). The reaction was heated at 90° C. for 1 h. The solution was cooled to ambient temperature and diluted with water. The phases were separated and the aqueous phase was washed with additional ethyl acetate. The organic phases were combined, dried with magnesium sulfate and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 10% ethyl acetate in hexanes afforded the title compound, a compound of the present invention, as a solid (2.2 g).

[0360] 1 H NMR δ 8.49 (s, 2H), 8.06 (m, 1H), 7.57 (m, 1H), 7.44 (m, 1H), 7.31 (m, 1H), 6.88 (s, 1H), 6.74 (t, 1H). MS (ESI⁺)=324

Synthesis Example 8

Synthesis of 5-chloro-2-[2-[3-(difluoromethyl)-5-isoxazolyl]-3-fluorophenoxy]pyrimidine (Compound 144)

Step A: Synthesis of 4,4-difluoro-1-(2-fluoro-6-methoxyphenyl)butane-1,3-dione

[0361] To a solution of 1-(2-fluoro-6-methoxyphenyl) ethanone (2.6 g, 15.5 mmol) and difluoroacetic acid ethyl ester (3.9 mL, 31.0 mmol) in anhydrous N,N-dimethylformamide at 0° C. was added sodium hydride (1.2 g, 31.0 mmol). The reaction mixture was heated at 80° C. for 1 h. The reaction was then cooled to 0° C., diluted with ethyl acetate and acidified with 1 N aqueous hydrochloric acid. The phases were separated and the aqueous phase was washed with additional ethyl acetate. The organic phases were combined and dried with magnesium sulfate and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 15% ethyl acetate in hexanes afforded the title compound (2.5 g).

[0362] ¹H NMR δ 7.39 (m, 1H), 6.77 (m, 2H), 6.24 (s, 1H), 6.01 (t, 1H), 3.87 (s, 3H). MS (ESI⁺)=247

Step B: Synthesis of 3-difluoromethyl-5-(2-fluoro-6-methoxyphenyl)isoxazole

[0363] A solution of 4,4-difluoro-1-(2-fluoro-6-methoxyphenyl)butane-1,3-dione (i.e. the product from Step A) (2.5 g, 10 mmol) and hydroxylamine hydrochloride (2.1 g, 30 mmol) in ethanol (25 mL) was stirred at 80° C. After 1 h the solvent was removed under vacuum. The resulting residue was diluted with water and extracted with dichloromethane. The organic phase was dried with magnesium sulfate and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 15% ethyl acetate in hexanes afforded the title compound (1.5 g).

[0364] ¹H NMR δ 7.41 (m, 1H), 6.69-6.98 (m, 4H), 3.93 (s, 3H). MS (ESI+)=244

Step C: Synthesis of 2-(3-difluoromethyl-5-isoxazolyl)-3-fluorophenol

[0365] To a solution of 3-difluoromethyl-5-(2-fluoro-6methoxyphenyl)isoxazole (i.e. the product from Step B) (1.5 g, 6.2 mmol.) in dichloromethane (10 mL) at 0° C. was added a 1.0 M solution of boron tribromide in dichloromethane (31 mL, 31 mmol). The reaction mixture was warmed to ambient temperature and stirred for 6 h. The reaction was cooled to 0° C. and slowly quenched with a saturated aqueous solution of sodium bicarbonate. The biphasic mixture was stirred at room temperature for 1 h. The phases were separated and the aqueous phase was extracted with dichloromethane. The combined organic phases were dried and concentrated under vacuum. The crude residue was purified by chromatography on silica gel, eluting with 0 to 10% ethyl acetate in hexanes, to afford the title compound (980 mg). [0366] ¹H NMR δ 7.33 (m, 1H), 6.66-6.99 (m, 4H). MS

(ESI+)=230

Step D: Synthesis of 5-chloro-2-[2-[3-(difluoromethyl)-5-isoxazolyl]-3-fluorophenoxy]pyrimidine

[0367] To a solution of 2-(3-difluoromethyl-5-isoxazolyl)-3-fluorophenol (i.e. the product from Step C) (120 mg, 0.5 mmol) in anhydrous N,N-dimethylformamide (2 mL) was added 2,5-dichloropyrimidine (85 mg, 0.57 mmol) and potassium carbonate (244 mg, 1.04 mmol). The reaction was heated at 80° C. for 4 h. The mixture was cooled to ambient temperature and diluted with water. The phases were separated and the aqueous phase was washed with additional ethyl acetate. The organic phases were combined, dried with magnesium sulfate and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 15% ethyl acetate in hexanes afforded the title compound, a compound of the present invention, as a solid (110 mg).

[0368] 1 H NMR δ 8.46 (s, 2H), 7.56 (m, 1H), 7.21 (m, 1H), 7.13 (m, 1H), 6.87 (m, 1H), 6.74 (t, 1H). MS (ER+) =342

Synthesis Example 9

Synthesis of 5-chloro-2-[2-[5-(difluoromethyl)-3isoxazolyl]-3-fluorophenoxy]pyrimidine (Compound 55)

Step A: Synthesis of 4,4-difluoro-1-(2-fluoro-6methoxyphenyl)butane-1,3-dione

[0369] A solution of 2-fluoro-6-methoxyacetophenone (6.83 g, 40.6 mmol) and ethyl difluoroacetate (7.45 g, 60 mmol) in tetrahydrofuran (35 mL) was added dropwise to a solution of tetrahydrofuran (20 mL) and 25% sodium methoxide (10.2 g, 47.2 mmol) over 15 minutes. The reaction was complete in 3 h as determined by high pressure liquid chromatography. The reaction was partially concentrated under vacuum to remove most of the tetrahydrofuran and methanol, and then diluted with toluene and water. The aqueous phase was acidified with 37% hydrochloric acid (5 g), followed by extraction with toluene. The combined organic phases were concentrated under vacuum to provide title compound (7.98 g).

[0370] ¹H NMR 8 7.39 (td, 1H) 6.72-6.81 (m, 2H) 6.25 (d, 1H) 5.87-6.14 (m, 1H) 3.88 (s, 3H).

Step B: Synthesis of 5-(difluoromethyl)-3-(2-fluoro-6-methoxyphenyl)-4H-isoxazol-5-ol

[0371] To a solution of 4,4-difluoro-1-(2-fluoro-6methoxyphenyl)butane-1,3-dione (i.e. the product from Step A) (7.98 g, 32.4 mmol) in 35 mL methanol at room temperature was added a 50% hydroxylamine solution (2.78 g, 42.1 mmol) and IN sodium hydroxide solution (1.50 mL, 1.50 mmol) followed by heating to 65° C. for 2 h. The reaction was cooled to room temperature and diluted with water and toluene. The phases were separated and the organic phase was concentrated under vacuum to provide the title compound (7.99 g).

[0372] ¹H NMR δ 7.36 (td, 1H) 6.73-6.82 (m, 2H) 5.79-6.05 (m, 1H) 3.88 (s, 3H) 3.67-3.73 (m, 1H) 3.47-3.51 (m, 1H) 3.34-3.42 (m, 1H).

Step C: Synthesis of 5-(difluoromethyl)-3-(2-fluoro-6-methoxyphenyl)isoxazole

[0373] To toluene (80 mL) was added 5-(difluoromethyl)-3-(2-fluoro-6-methoxyphenyl)-4H-isoxazol-5-ol (i.e. the product from Step B) (7.99 g, 30.6 mmol) followed by p-toluenesulfonic acid monohydrate (0.700 g, 3.68 mmol). The mixture was heated to a vigorous reflux (107-111° C.) for two hours at which point high pressure liquid chromatography determined the reaction was complete. The cooled reaction mixture was washed with a saturated sodium bicarbonate solution, followed by water. The organic phase was concentrated under vacuum to provide the title compound

[0374] 1 H NMR δ 7.40 (td, 1H) 6.69-6.94 (m, 4H) 3.88 (s, 3H).

Step D: Synthesis of 2-[5-(difluoromethyl)-3-isoxazolyl]-3-fluorophenol

[0375] To a solution of 5-(difluoromethyl)-3-(2-fluoro-6methoxyphenyl)isoxazole (i.e. the product from Step C) (3.72 g, 15.3 mmol) in dichloromethane (15 mL) at 3° C. was added a 1M solution of boron tribromide in dichloromethane (18.0 mL, 18 mmol) over 5 min. The reaction was then allowed to warm to room temperature. After 90 minutes it was determined the reaction was complete using high pressure liquid chromatography and the reaction was treated with a 10% aqueous solution of potassium bicarbonate (10 mL). The phases were separated and the organic phase was concentrated under vacuum. The resulting brown solid was triturated with a water/methanol solution (~2/1) providing the title compound (3.34 g).

[0376] ¹H NMR δ 9.63-9.75 (m, 1H) 7.33 (td, 1H) 7.21 (ddd, 1H) 6.71-6.96 (m, 3H).

Step E: Synthesis of 5-chloro-2-[2-[5-(difluoromethyl)-3-isoxazolyl]-3-fluorophenoxy]pyrimidine

[0377] To a solution of 2-[5-(difluoromethyl)-3-isox-azolyl]-3-fluorophenol (i.e. the product from Step D) (1.61 g, 7.02 mmol) and 5-methyl-2-methylsulfonylpyrimidine (1.49 g, 7.72 mmol) in N,N-dimethylformamide (9 mL) was added potassium carbonate (4.24 g, 17.5 mmol) and the reaction was allowed to stir at room temperature for 24 h. The reaction was diluted with water and toluene, the phases were separated and the organic solvent was removed under vacuum. To the resulting oil was added 8 mL of methanol and a tan slurry formed, after further dilution with a methanol/water solution (20 mL), the precipitate was filtered providing the title compound, a compound of the present invention (2.24 g).

[0378] ¹H NMR \(\delta \) 8.45 (s, 2H) 7.54 (td, 1H) 7.19 (ddd, 1H) 7.14 (dt, 1H) 6.88 (dt, 1H) 6.61-6.85 (m, 1H).

Synthesis Example 10

Preparation of 5-chloro-2-[3-cyano-2-[4-(trifluoromethyl)-2-pyridinyl]phenoxy]pyrimidine (Compound 158)

[0379] A solution of 5-chloro-2-[2-[4-(trifluoromethyl)-2pyridinyl]phenoxy]pyrimidine (i.e. the product of example 5, step B) (0.30 g, 0.853 mmoles) in 4.27 mL of N,Ndimethylformamide under a nitrogen atmosphere was treated with copper(II) bromide (0.19 g, 0.853 mmoles), palladium(II) acetate (9 mg, 0.0426 mmoles) and potassium ferricyanide (0.06 g, 0.17 mmoles). The mixture was heated at 130° C. for 18 hours. The mixture was then cooled, diluted with diethyl ether and water, filtered thru a celite pad and rinsed with ethyl acetate and water. The phases were separated and the aqueous phase was extracted twice with diethyl ether. The combined organic phases were washed twice with water and saturated aqueous sodium chloride, dried over magnesium sulfate, and concentrated to provide 0.21 g crude product. The crude product was purified with a 12 g Teledyne Isco silica gel column eluting with 10 to 30% EtOAc-Hexanes gradient to provide the title compound, a compound of the present invention as a solid (0.23 g).

[0380] 1 H NMR δ 8.86 (d, 1H), 8.40 (s, 2H), 7.78 (d&s, 2H), 7.62 (t, 1H), 7.52 (d, 1H), 7.50 (d, 1H).

Synthesis Example 11

Synthesis of 5-chloro-2-[2-[5-(trifluoromethyl)-2-pyridinyl]phenoxy]pyrimidine (Compound 27)

Step A: Synthesis of 2-[5-(trifluoromethyl)-2-pyridinyl]phenol

[0381] 2-Chloro-5-(trifluoromethyl)pyridine (1.0 g, 5.50 mmoles) and 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol (1.57 g, 7.16 mmoles) were combined in 16 mL of 1,2-dimethoxyethane and 1.8 mL of de-ionized water under a nitrogen atmosphere. Solid sodium carbonate (2.28 g, 16.5 mmoles) and then tetrakis(triphenylphosphine) palladium (0) (0.32 g, 0.27 mmoles) were added. The reaction was heated at reflux approximately ninety minutes. The reaction was cooled, diluted with dichloromethane and filtered thru a celite pad, rinsing with dichloromethane and then de-ionized water. The phases were separated. The aqueous phase was extracted twice with dichloromethane. The combined

organic phases were washed with saturated aqueous sodium chloride, dried over magnesium sulfate, filtered and concentrated to give a solid. A solid was filtered from hexanes to give 34 mg. A second crop was obtained from the filtrate from hexanes to yield 506 mg of a light orange-brown solid of the title compound.

[**0382**] ¹H NMR δ 8.81 (s, 1H), 8.04 (m, 2H), 7.83 (d, 1H), 7.38 (t, 1H), 7.07 (d, 1H), 6.98 (t, 1H).

Step B: Synthesis of 5-chloro-2-[2-[5-(trifluoromethyl)-2-pyridinyl]phenoxy]-pyrimidine

[0383] A mixture of 2-[5-(trifluoromethyl)-2-pyridinyl] phenol (i.e. the product of step A) (0.20 g, 0.836 mmoles) and 2,5-dichloropyrimidine (0.14 g, 0.919 mmoles) in 2.0 mL of N,N-dimethylformamide was stirred under a nitrogen atmosphere. Powdered potassium carbonate (0.35 g, 2.51 mmoles) was added and the mixture was heated at 80° C. overnight. The reaction was cooled before diluting with de-ionized water and diethyl ether. The phases were separated. The aqueous phase was extracted twice with diethyl ether. The combined organic phases were washed three times with de-ionized water, dried over sodium sulfate, filtered and concentrated to 0.37 g of solid. A solid was filtered from hexanes and some diethyl ether to give 103 mg of the title compound, a compound of the present invention. [0384] 1 H NMR δ 8.84 (s, 1H), 8.40 (s, 2H), 7.92 (d, 1H), 7.87 (s&d, 2H), 7.54 (t, 1H), 7.45 (t, 1H), 7.27 (d, 1H).

Synthesis Example 12

Preparation of 5-chloro-2-[2-[5-(trifluoromethyl)-2-pyridinyl]-3-chlorophenoxy]pyrimidine (Compound 160)

[0385] 5-Chloro-2-[2-[5-(trifluoromethyl)-2-pyridinyl] phenoxy]-pyrimidine (i.e. the product of example 11, step B) (0.14 g, 0.398 mmoles) was dissolved in 2 mL of acetic acid. Palladium acetate (0.01 g, 0.039 mmoles) and N-chlorosuccinimide (0.11 g, 0.796 mmoles) were added and the mixture was heated at 100° C. for three hours. The mixture was cooled to room temperature overnight and then diluted with toluene and ethyl acetate. The mixture was filtered thru a celite pad, rinsed with toluene and then ethyl acetate. The filtrate was washed twice with saturated aqueous sodium hydrogencarbonate, saturated aqueous sodium chloride, dried over magnesium sulfate and concentrated to a crude product. The crude product was purified with a 12 g Teledyne Isco silica gel column eluting with 10 to 30% EtOAc-Hexanes gradient to provide the title compound, a compound of the present invention as a solid (40 mg).

[**0386**] ¹H NMR δ 8.82 (s, 1H), 8.41 (s, 2H), 7.93 (d, 1H), 7.52 (d, 1H), 7.47 (m, 2H), 7.19 (m, 1H).

Synthesis Example 13

Synthesis of 5-bromo-2-[2-[5-(difluoromethyl)-3-isoxazolyl]phenoxy]pyrimidine (Compound 62)

Step A: Synthesis of 5-(difluoromethyl)-3-(2-methoxyphenyl)isoxazole

[0387] To a solution of acetophenone (3.0 g, 20 mmol) in methanol (15 mL) was added a 30% sodium methoxide in methanol solution (5.0 mL) and the reaction stirred for five minutes. Next ethyl difluoroacetate (2.97 g, 24 mmol) was

added and the reaction was heated to reflux for 18 h. The reaction was allowed to cool to room temperature and the solvent was removed under vacuum. To the residue was added 1M hydrochloric acid and ethyl acetate, the phases were separated, the organic phase was dried using magnesium sulfate and the solvent was removed under vacuum. Purification by chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes afforded the desired product which was taken on directly. A solution of 4,4difluoro-1-(2-methoxyphenyl)butane-1,3-dione from the previous step in ethanol (30 mL) was added dropwise to a solution of hydroxylamine hydrochloride (1.4 g, 20 mmol) in 1M sodium hydroxide (21 mL). The reaction was then heated to reflux for 2 h, followed by cooling to room temperature. The product was precipitated from solution by the addition of water and collected via vacuum filtration to afford the desired product which was taken on directly (AP+244, 1H NMR δ ppm 7.79 (d, 1H) 7.38-7.46 (m, 1H) 6.93-7.04 (m, 2H) 5.76-6.04 (m, 1H) 3.88 (s, 3H) 3.67-3.80 (m, 1H) 3.49-3.55 (m, 1H)). Next, a solution of 5-(difluoromethyl)-3-(2-methoxyphenyl)-4H-isoxazol-5-ol from the previous step was taken up in trifluoroacetic acid (20 mL) and heated to 70° C. for 18 h. The reaction was cooled to room temperature and the solvent was removed under vacuum. The resulting residue was dissolved in dichloromethane and washed with a saturated solution of sodium bicarbonate. The phases were separated, the organic phase was dried using magnesium sulfate and the solvent was removed under vacuum. Purification by chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes afforded the title compound (2.0 g, AP+=226).

[0388] ¹H NMR 7.91 (dd, 1H) 7.42-7.50 (m, 1H) 6.98-7. 12 (m, 3H) 6.66-6.93 (m, 1H) 3.92 (s, 3H).

Step B: Synthesis of 2-[5-(difluoromethyl)-3-isox-azolyl]phenol

[0389] To a solution of 5-(difluoromethyl)-3-(2-methoxyphenyl)isoxazole (i.e. the product of step A) (2.01 g, 8.92 mmol) in dichloromethane (50 mL) at 0° C. was added a 1M solution of boron tribromide in dichloromethane (13.3 mL, 13.3 mmol) and the reaction was allowed to warm to room temperature over three hours. The solvent was removed under vacuum and purified by chromatography on silica gel, eluting with 0 to 100% ethyl acetate in hexanes to afford the title compound (1.66 g, AP=210).

[0390] ¹H NMR 8 9.14 (s, 1H) 7.51 (dd, 1H) 7.39 (ddd, 1H) 7.11 (dd, 1H) 6.97-7.04 (m, 2H) 6.70-6.95 (m, 1H).

Step C: Synthesis of 5-bromo-2-[2-[5-(difluoromethyl)-3-isoxazolyl]phenoxy]-pyrimidine

[0391] To a solution of 2-[5-(difluoromethyl)-3-isoxazolyl]phenol (i.e. the product of step B) (427 mg, 2.01 mmol) and 5-bromo-2-chloro-pyrimidine (468 mg, 2.42 mmol) in acetonitrile (10 mL) was added potassium carbonate (695 mg, 5.03 mmol) and the reaction was heated to 80° C. for 18 h. The solvent was removed under vacuum and purified by chromatography on silica gel, eluting with 0 to 100% ethyl acetate in hexanes to afford the title compound, a compound of the present invention, as a solid (555 mg, mp=88.9-92.8° C.).

[0392] 1 H NMR δ 8.53 (s, 2H) 7.98 (dd, 1H) 7.53-7.60 (m, 1H) 7.41 (td, 1H) 7.28 (dd, 1H) 6.97 (t, 1H) 6.59-6.84 (m, 1H).

Synthesis Example 14

Synthesis of 5-chloro-2-[2-[5-(trifluoromethyl)-3-isoxazolyl]-3-fluorophenoxy]pyrimidine (Compound 168)

Step A: Synthesis of 5-(difluoromethyl)-3-(2-methoxyphenyl)-4H-isoxazol-5-ol

[0393] To a solution of 2-fluoro-6-methoxyacetophenone (1.0 g, 5.9 mmol) in tetrahydrofuran (2 mL) was added a 30% sodium methoxide in methanol solution (1.4 mL). To this mixture was added dropwise a solution of ethyl trifluoroacetate (0.805 g, 6.49 mmol) in tetrahydrofuran (1 mL) and the reaction stirred at room temperature for 2 h. To the reaction was added 1M hydrochloric acid solution and ethyl acetate, the phases were separated and the aqueous phase was again washed with ethyl acetate. The combined organic phases were dried with magnesium sulfate and concentrated under vacuum to provide the desired product (AP=263) which was taken onto the next step directly. Next, to a solution of 4,4,4-trifluoro-1-(2-fluoro-6-methoxyphenyl)butane-1,3-dione (from the previous step) in ethanol (14 mL) was added 1M sodium hydroxide solution (7 mL) followed by hydroxylamine hydrochloride (410 mg, 5.9 mmol) and the reaction stirred overnight at room temperature. The solvent was removed under vacuum and the residue was purified by chromatography on silica gel, eluting with 0 to 100% ethyl acetate in hexanes and 0 to 20% methanol in dichlromethane to afford the product (AP+=280, 1H NMR δ ppm 7.37 (td, 1H) 6.74-6.83 (m, 2H) 3.89 (s, 3H) 3.79 (d, 1H) 3.50 (dd, 1H)) which was taken onto the next step directly To a solution of 3-(2-fluoro-6-methoxy-phenyl)-5-(trifluoromethyl)-4H-isoxazol-5-ol (from the previous step) in dichloromethane (20 mL) at 0° C. was added a 1M solution of boron tribromide in dichloromethane (11.8 mL, 11.8 mmol) and the reaction was allowed to warm to room temperature over 2 h. The solvent was removed under vacuum. The residue was dissolved in dichloromethane and washed with a saturated solution of sodium bicarbonate, the aqueous phase was washed with dichloromethane. The combined organic phases were dried with magnesium sulfate, concentrated under vacuum and purified by chromatography on silica gel, eluting with 0 to 100% ethyl acetate in hexanes, providing the title compound (606 mg, AP=264).

[0394] 1 H NMR δ 9.86 (s, 1H) 7.32 (td, 1H) 6.84-6.90 (m, 1H) 6.68 (ddd, 1H) 3.86-3.94 (m, 1H) 3.75 (dd, 1H) 3.56 (s, 1H).

Step B: Synthesis of 5-chloro-2-[2-[5-(trifluoromethyl)-3-isoxazolyl]-3-fluorophenoxy]pyrimidine

[0395] To a solution of 3-(2-fluoro-6-hydroxyphenyl)-5-(trifluoromethyl)-4H-isoxazol-5-ol (i.e. the product of step A) (606 mg, 2.29 mmol) in dimethylsulfoxide (15 mL) was added 5-chloro-2-methylsulfonyl-pyrimidine (527 mg, 2.74 mmol) followed by cesium carbonate (1.1 g, 3.43 mmol) and the reaction stirred for 18 h. The reaction was partitioned between water and ethyl acetate, the phases were separated and the aqueous layer was again washed with ethyl acetate. The combined organic phases were dried with magnesium sulfate and concentrated under vacuum. The residue was purified by chromatography on silica gel, eluting with 0 to 100% ethyl acetate, to afford the title compound, a compound of the present invention, (198 mg, AP+=360).

[**0396**] ¹H NMR δ 8.46 (s, 2H) 7.56 (td, 1H) 7.21 (ddd, 1H) 7.15 (dt, 1H) 7.02 (dd, 1H).

Synthesis Example 15

Synthesis of 5-chloro-2-[2-[3-(trifluoromethyl)-5-isoxazolyl)phenoxy]pyrimidine (Compound 63)

Step A: Synthesis of 2-(trifluoromethyl)-4H-1-benzopyran-4-one

[0397] 2-Hydroxyacetophenone (10 g, 66.7 mmol) was dissolved in trifluoroacetic anhydride (19 ml, 133.3 mmol) and pyridine (10.8 mL, 133.3 mmol). The reaction mixture was heated at 70° C. and stirred for 12 h. After cooling the reaction mixture was diluted with 1 M hydrochloric acid and methylene chloride and washed with water. The organic phase was dried with magnesium sulfate and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 5% ethyl acetate in hexanes afforded the title compound (10.5 g) as a pale yellow solid.

[**0398**] ¹H NMR & 8.21 (m, 1H), 7.76 (m, 1H), 7.77 (d, 1H), 7.46 (m, 1H), 6.73 (s, 1H). MS (ESI⁺)=215

Step B: Synthesis of 2-[3-(trifluoromethyl)-5-isox-azolyl]phenol

[0399] To a solution of 2-(trifluoromethyl)-4H-1-benzo-pyran-4-one (i.e. the product of step A) (10.5 g, 48.8 mmol) in ethanol (50 mL), hydroxylamine acetate (146 mmol) in water (50 mL) was added. The mixture was heated at 60° C. for 4 h. After cooling the reaction to ambient temperature 4,4,4-trifluoro-1-(2-hydroxyphenyl)-butane-1,3-dione 3-oxime was precipitated with the addition of water (200 mL). [0400] ¹H NMR & 9.30 (s, 1H), 7.37 (m, 1H), 7.19 (m, 1H), 7.06 (m, 1H), 6.94 (m, 1H), 3.87 (d, 1H), 3.69 (d, 1H).

[0401] This product was collected by filtration and suspended in acetic acid (30 mL) and 36% aqueous hydrochloric acid (10.8 mL) at room temperature. The mixture was stirred at 80° C. for 30 min to afford the title compound as a white solid (4.6 g).

[**0402**] ¹H NMR & 7.88 (m, 1H), 7.37 (m, 1H), 7.08 (m, 1H), 7.01 (s, 1H), 6.95 (m, 1H). MS (ESI⁺)=230

Step C: Synthesis of 5-chloro-2-[2-[3-(trifluoromethyl)-5-isoxazolyl)phenoxy]-pyrimidine

[0403] To a solution of 2-[3-(trifluoromethyl)-5-isoxazolyl]phenol (i.e. the product of step B) (2.2 g, 9.4 mmol) in anhydrous N,N-dimethylformamide (10 mL) was added 2,5-dichloropyrimidine (1.5 g, 10.3 mmol) and potassium carbonate (2.9 g, 20.6 mmol). The reaction was heated at 80° C. for 2 h. The solution was cooled to ambient temperature and diluted with water. The phases were separated and the aqueous phase was washed with additional ethyl acetate. The organic phases were combined, dried with magnesium sulfate and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 5% ethyl acetate in hexanes afforded the title compound, a compound of the present invention, as a solid (2.1 g).

[**0404**] ¹H NMR δ 8.49 (s, 2H), 8.08 (m, 1H), 7.58 (m, 1H), 7.45 (m, 1H), 7.32 (m, 1H), 6.91 (s, 1H). MS (ESI⁺) =342. Melting Point: 114-115° C.

Synthesis Example 16

Synthesis of 5-bromo-2-[2-[3-(difluoromethyl)-5-isoxazolyl]-3-fluorophenoxy]pyrimidine (Compound 145)

Step A: Synthesis of 4,4-difluoro-1-(2-fluoro-6-methoxyphenyl)butane-1,3-dione

[0405] To a solution of 1-(2-fluoro-6-methoxyphenyl) ethanone (2.6 g, 15.5 mmol) and difluoroacetic acid ethyl ester (3.9 mL, 31.0 mmol) in anhydrous N,N-dimethylformamide at 0° C. was added sodium hydride (1.2 g, 31.0 mmol). The reaction mixture was heated at 80° C. for 1 h. The reaction was then cooled down to 0° C., diluted with ethyl acetate and acidified with 1 N aqueous hydrochloric acid. The phases were separated and the aqueous phase was washed with additional ethyl acetate. The organic phases were combined and dried with magnesium sulfate and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 15% ethyl acetate in hexanes afforded the title compound (2.5 g).

[**0406**] ¹H NMR 8 7.39 (m, 1H), 6.77 (m, 2H), 6.24 (s, 1H), 6.01 (t, 1H), 3.87 (s, 3H). MS (ESI*)=247

Step B: Synthesis of 3-(difluoromethyl)-5-(2-fluoro-6-methoxyphenyl)isoxazole

[0407] A solution of 4,4-difluoro-1-(2-fluoro-6-methoxyphenyl)butane-1,3-dione (i.e. the product of step A) (2.5 g, 10 mmol) and hydroxylamine hydrochloride (2.1 g, 30 mmol) in ethanol (25 mL) was stirred at 80° C. After 1 h the solvent was removed under vacuum. The resulting residue was diluted with water and extracted with dichloromethane. The organic phase was dried with magnesium sulfate and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 15% ethyl acetate in hexanes afforded the title compound (1.5 g).

[**0408**] ¹H NMR δ 7.41 (m, 1H), 6.69-6.98 (m, 4H), 3.93 (s, 3H). MS (ESI+)=244

Step C: Synthesis of 2-[3-(difluoromethyl)-5-isox-azolyl]-3-fluorophenol

[0409] To a solution of 3-(difluoromethyl)-5-(2-fluoro-6-methoxyphenyl)isoxazole (i.e. the product of step B) (1.5 g, 6.2 mmol.) in dichloromethane (10 mL) at 0° C. was added a 1.0 M solution of boron tribromide in dichloromethane (31 mL, 31 mmol). The reaction mixture was warmed to ambient temperature and stirred for 6 h. The reaction was cooled to 0° C. and slowly treated with a saturated aqueous solution of sodium bicarbonate. The biphasic mixture was stirred at room temperature for 1 h. The phases were separated and the aqueous phase was extracted with dichloromethane. The combined organic phases were dried and concentrated under vacuum. The crude residue was purified by chromatography on silica gel, eluting with 0 to 10% ethyl acetate in hexanes, to afford the title compound (980 mg).

[0410] 1 H NMR δ 7.33 (m, 1H), 6.66-6.99 (m, 4H). MS (ESI+)=230

Step D: Synthesis of 5-bromo-2-[2-[3-(difluoromethyl)-5-isoxazolyl]-3-fluorophenoxy]pyrimidine

[0411] To a solution of 2-[3-(difluoromethyl)-5-isox-azolyl]-3-fluorophenol (i.e. the product of step C) (229 mg, 1 mmol) in anhydrous N,N-dimethylformamide (2.5 mL)

was added 5-bromo-2-chloropyrimidine (212 mg, 1.1 mmol) and potassium carbonate (304 mg, 2.2 mmol). The reaction was heated at 80° C. for 1 h. The solution was cooled to ambient temperature and diluted with water. The phases were separated and the aqueous layer was washed with additional ethyl acetate. The organic phases were combined, dried with magnesium sulfate and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 15% ethyl acetate in hexanes afforded the title compound, a compound of the present invention, as a solid (320 mg).

[0412] ¹H NMR & 8.54 (s, 2H), 7.54 (m, 1H), 7.20 (m, 1H), 7.13 (m, 1H), 6.86 (m, 1H), 6.75 (t, 1H). MS (ESI⁺) = 387

[0413] By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 1584 can be prepared. The following abbreviations are used in the Tables which follow: t means tertiary, s means secondary, n means normal, i means iso, c means cyclo, Me means methyl, Et means ethyl, Pr means propyl, Bu means butyl, i-Pr means isopropyl, Bu means butyl, c-Pr cyclopropyl, c-Bu means cyclobutyl, Ph means phenyl, OMe means methoxy, OEt means ethoxy, SMe means methylthio, SEt means ethylthio, NHMe methylamino, —CN means cyano, Py means pyridinyl, —NO2 means nitro, tzl meand triazol, pzl means pyrazol, izl means imidazole, odzl means oxadiazol, tdzl means thiadiazol and SO2Me means methylsulfonyl.

TABLE 1

$$(\mathbb{R}^3)_m \xrightarrow{\frac{3}{4}} \mathbb{R}^2$$

 $R^2 = Cl; Z = O; \text{ and } R^3 = H \text{ (m = 0)};$ and Q is:

Isoxazo1-5-yl 5-CHO-isoxazol-3-yl 4-I-isothiazol-5-yl 3-F-isoxazol-5-yl 5-CN-isoxazol-3-yl 4-Me-isothiazol-5-yl 5-CH₂CN-isoxazol-3-yl 3-Cl-isoxazol-5-yl 4-Et-isothiazol-5-yl 3-Br-isoxazol-5-yl 5-OMe-isoxazol-3-yl 4-CF3-isothiazol-5-yl 4-CHF2-isothiazol-5-yl 3-I-isoxazol-5-yl 5-OCF3-isoxazol-3-yl 4-CHO-isothiazol-5-yl 3-Me-isoxazol-5-yl 5-Ph-isoxazol-3-yl 3-Et-isoxazol-5-yl 4-F-isoxazol-3-yl 4-CN-isothiazol-5-yl 3-CF₃-isoxazol-5-yl 4-Cl-isoxazol-3-yl 4-OMe-isothiazol-5-yl 3-CHF₂-isoxazol-5-yl 3-CHO-isoxazol-5-yl 4-Br-isoxazol-3-yl 4-OCF3-isothiazol-5-yl 4-I-isoxazol-3-yl 4-Ph-isothiazol-5-yl 3-CN-isoxazol-5-yl 4-Me-isoxazol-3-yl Isothiazo1-3-yl 3-OMe-isoxazol-5-yl 4-Et-isoxazol-3-yl 5-F-isothiazol-3-yl 4-CF₃-isoxazol-3-yl 4-CHF₂-isoxazol-3-yl 3-OCF3-isoxazol-5-yl 5-Cl-isothiazol-3-vl 5-Br-isothiazol-3-yl 3-Ph-isoxazol-5-vl 5-I-isothiazol-3-yl 4-F-isoxazol-5-vl 4-CHO-isoxazol-3-vl 4-Cl-isoxazol-5-vl 4-CN-isoxazol-3-vl 5-Me-isothiazol-3-vl 4-Br-isoxazol-5-yl 4-OMe-isoxazol-3-yl 5-Et-isothiazol-3-yl 4-I-isoxazol-5-vl 4-OCF3-isoxazol-3-yl 5-CF₂-isothiazol-3-vl 5-CHF₂-isothiazol-3-yl 4-Me-isoxazol-5-yl 4-Ph-isoxazol-3-yl Isothiazo1-5-yl 4-Et-isoxazol-5-vl 5-CHO-isothiazol-3-vl 4-CF₃-isoxazol-5-yl 3-F-isothiazol-5-vl 5-CN-isothiazol-3-vl 4-CHF2-isoxazol-5-yl 3-Cl-isothiazol-5-vl 5-CH2CN-isothiazol-3-vl 4-CHO-isoxazol-5-vl 3-Br-isothiazol-5-vl 5-OMe-isothiazol-3-vl 4-CN-isoxazol-5-vl 3-I-isothiazol-5-vl 5-OCF3-isothiazol-3-yl 4-OMe-isoxazol-5-yl 3-Me-isothiazol-5-yl 5-Ph-isothiazol-3-yl 4-OCF3-isoxazol-5-yl 3-Et-isothiazol-5-vl 4-F-isothiazol-3-vl 4-Ph-isoxazol-5-yl 3-CF₃-isothiazol-5-yl 4-Cl-isothiazol-3-yl isoxazol-3-yl 3-CHF2-isothiazol-5-yl 4-Br-isothiazol-3-yl 5-F-isoxazol-3-yl 3-CHO-isothiazol-5-vl 4-I-isothiazol-3-vl 5-Cl-isoxazol-3-yl 3-CN-isothiazol-5-yl 4-Me-isothiazol-3-yl 5-Br-isoxazol-3-yl 3-OMe-isothiazol-5-yl 4-Et-isothiazol-3-yl 5-I-isoxazol-3-yl 3-OCF3-isothiazol-5-yl 4-CF3-isothiazol-3-yl 5-Me-isoxazol-3-yl 3-Ph-isothiazol-5-yl 4-CHF2-isothiazol-3-yl 5-Et-isoxazol-3-yl 4-F-isothiazol-5-yl 4-CHO-isothiazol-3-yl 5-CF₃-isoxazol-3-yl 4-Cl-isothiazol-5-yl 4-CN-isothiazol-3-yl 5-CHF₂-isoxazol-3-yl 4-Br-isothiazol-5-yl 4-OMe-isothiazol-3-yl 4-OCF3-isothiazol-3-yl 3-CHO-isothiazol-4-yl 4-Et-oxazol-2-yl 4-Ph-isothiazol-3-yl 3-CN-isothiazol-4-yl 4-CF₃-oxazol-2-yl Isoxazo1-4-yl 3-OMe-isothiazol-4-yl 4-CHF2-oxazol-2-yl 3-F-isoxazol-4-yl 3-OCF3-isothiazol-4-yl 4-CHO-oxazol-2-yl 3-Cl-isoxazol-4-yl 3-Ph-isothiazol-4-yl 4-CN-oxazol-2-yl 3-Br-isoxazol-4-yl 5-F-isothiazol-4-yl 4-OMe-oxazol-2-yl 3-I-isoxazol-4-yl 5-Cl-isothiazol-4-yl 4-OCF3-oxazol-2-yl 4-Ph-oxazol-2-yl 3-Me-isoxazol-4-yl 5-Br-isothiazol-4-yl Thiazol-2-yl 3-Et-isoxazol-4-yl 5-I-isothiazol-4-yl

TABLE 1-continued

$$(\mathbb{R}^3)_m \xrightarrow{\frac{3}{4}} \left(\begin{array}{c} \mathbb{Z} \\ \mathbb{N} \\ \mathbb{N} \end{array} \right) \xrightarrow{\mathbb{R}^2} \mathbb{R}^2$$

 $R^2 = Cl; Z = O; \text{ and } R^3 = H \text{ } (m = 0);$ and Q is:

3-CF₃-isoxazol-4-yl 5-Me-isothiazol-4-yl 5-F-thiazol-2-yl 3-CHF₂-isoxazol-4-yl 3-CHO-isoxazol-4-yl 5-Cl-thiazol-2-yl 5-Et-isothiazol-4-yl 5-CF₃-isothiazol-4-yl 5-Br-thiazol-2-yl 3-CN-isoxazol-4-yl 5-CHF2-isothiazol-4-yl 5-I-thiazol-2-yl 5-CHO-isothiazol-4-vl 5-Me-thiazol-2-vl 3-OMe-isoxazol-4-vl 3-OCF₃-isoxazol-4-yl 3-Ph-isoxazol-4-yl 5-CN-isothiazol-4-yl 5-Et-thiazol-2-yl 5-OMe-isothiazol-4-vl 5-CF₂-thiazol-2-vl 5-CHF₂-thiazol-2-yl 5-CHO-thiazol-2-yl 5-F-isoxazol-4-yl 5-OCF₃-isothiazol-4-yl 5-Ph-isothiazol-4-yl 5-Cl-isoxazol-4-yl 5-Br-isoxazol-4-yl 5-CN-thiazol-2-vl oxazol-2-yl 5-I-isoxazol-4-yl 5-CH₂CN-thiazol-2-yl 5-F-oxazol-2-yl 5-OMe-thiazol-2-yl 5-Cl-oxazol-2-yl 5-Me-isoxazol-4-yl 5-OCF₃-thiazol-2-yl 5-Br-oxazol-2-yl 5-Et-isoxazol-4-yl 5-CF₃-isoxazol-4-yl 5-I-oxazol-2-yl 5-Ph-thiazol-2-yl 5-CHF₂-isoxazol-4-yl 5-Me-oxazol-2-yl 4-F-thiazol-2-yl 5-Et-oxazol-2-yl 5-CHO-isoxazol-4-yl 4-Cl-thiazol-2-yl 5-CN-isoxazol-4-yl 5-CF₃-oxazol-2-yl 4-Br-thiazol-2-yl 4-I-thiazol-2-yl $5\text{-}\mathrm{CHF}_2\text{-}\mathrm{oxazol}\text{-}2\text{-}\mathrm{yl}$ 5-OMe-isoxazol-4-vl 5-OCF3-isoxazol-4-yl 4-Me-thiazol-2-yl 5-CHO-oxazol-2-yl 5-Ph-isoxazol-4-yl 5-CN-oxazol-2-yl 4-Et-thiazol-2-yl Isothiazo1-4-yl 5-CH₂CN-oxazol-2-yl 4-CF₃-thiazol-2-yl 3-F-isothiazol-4-yl 5-OMe-oxazol-2-yl 4-CHF2-thiazol-2-yl 3-Cl-isothiazol-4-yl 5-OCF₃-oxazol-2-yl 4-CHO-thiazol-2-yl 3-Br-isothiazol-4-yl 5-Ph-oxazol-2-yl 4-CN-thiazol-2-yl 4-OMe-thiazol-2-yl 3-I-isothiazol-4-yl 4-F-oxazol-2-yl 3-Me-isothiazol-4-yl 4-Cl-oxazol-2-yl 4-OCF3-thiazol-2-yl 3-Et-isothiazol-4-yl 4-Br-oxazol-2-yl 4-Ph-thiazol-2-yl 3-CF₃-isothiazol-4-yl 4-I-oxazol-2-yl Oxazol-5-yl 3-CHF₂-isothiazol-4-yl 4-Me-oxazol-2-yl 2-F-oxazol-5-yl 2-Cl-oxazol-5-yl 4-OCF3-thiazol-5-yl 5-CF₃-thiazol-4-yl 2-Br-oxazol-5-yl 4-Ph-thiazol-5-yl 5-CHF2-thiazol-4-yl 2-Me-oxazol-5-yl Oxazol-4-yl 5-CN-thiazol-4-yl 2-CF₃-oxazol-5-yl 2-F-oxazol-4-yl 5-OMe-thiazol-4-yl 2-CHF2-oxazol-5-yl 2-Cl-oxazol-4-yl 5-OCF3-thiazol-4-yl 2-CN-oxazol-5-yl 2-Br-oxazol-4-yl 5-Ph-thiazol-4-yl 2-OMe-oxazol-5-yl 2-Me-oxazol-4-yl 1H-izl-2-yl 2-OCF₃-oxazol-5-yl 2-CF₃-oxazol-4-yl 1-Me-1H-izl-2-yl 2-Ph-oxazol-5-yl 2-CHF2-oxazol-4-yl 4-F-1-Me-1H-izl-2-yl 4-F-oxazol-5-yl 2-CN-oxazol-4-yl 4-Cl-1-Me-1H-izl-2-yl 4-Cl-oxazol-5-yl 2-OMe-oxazol-4-yl 4-Br-1-Me-1H-izl-2-vl 4-Br-oxazol-5-yl 2-OCF₃-oxazol-4-yl 1,4-di-Me-1H-izl-2-yl 2-Ph-oxazol-4-yl 4-Me-oxazol-5-yl 4-CF₃-1-Me-1H-izl-2-yl 4-CF₃-oxazol-5-yl 4-CHF₂-oxazol-5-yl 4-CHF₂-1-Me-1H-izl-2-yl 4-CN-1-Me-1H-izl-2-yl 5-F-oxazol-4-yl 5-Cl-oxazol-4-yl 4-CN-oxazol-5-yl 5-Br-oxazol-4-yl 4-OMe-1-Me-1H-izl-2-yl 4-OCF₃-1-Me-1H-izl-2-yl 4-Ph-1-Me-1H-izl-2-yl 4-OMe-oxazol-5-yl 5-Me-oxazol-4-yl 4-OCF₃-oxazol-5-yl 4-Ph-oxazol-5-yl 5-CF₃-oxazol-4-yl 5-CHF₂-oxazol-4-yl 5-F-1-Me-1H-izl-2-yl Thiazol-5-yl 5-CN-oxazol-4-yl 5-Cl-1-Me-1H-izl-2-yl 2-F-thiazol-5-yl 5-OMe-oxazol-4-vl 5-Br-1-Me-1H-izl-2-yl 1,5-di-Me-1H-izl-2-yl 2-Cl-thiazol-5-yl 5-OCF₃-oxazol-4-yl 5-Ph-oxazol-4-yl 2-Br-thiazol-5-yl 5-CF₃-1-Me-1H-izl-2-yl 5-CHF₂-1-Me-1H-izl-2-yl 5-CN-1-Me-1H-izl-2-yl 2-Me-thiazol-5-yl Thiazol-4-yl 2-CF₃-thiazol-5-yl 2-CHF₂-thiazol-5-yl 2-F-thiazol-4-yl 5-OMe-1-Me-1H-izl-2-yl 2-Cl-thiazol-4-yl 5-OCF₃-1-Me-1H-izl-2-yl 5-Ph-1-Me-1H-izl-2-yl 2-Br-thiazol-4-yl 2-CN-thiazol-5-vl 2-OMe-thiazol-5-yl 2-Me-thiazol-4-yl 1H-izl-4-yl 2-OCF3-thiazol-5-yl 2-CF2-thiazol-4-vl 1-Me-1H-izl-4-yl 2-Ph-thiazol-5-yl 2-CHF₂-thiazol-4-yl 4-F-thiazol-5-yl 2-F-1-Me-1H-izl-4-yl 2-CN-thiazol-4-yl 4-Cl-thiazol-5-yl 2-OMe-thiazol-4-yl 2-Cl-1-Me-1H-izl-4-yl 4-Br-thiazol-5-yl 2-OCF3-thiazol-4-yl 2-Br-1-Me-1H-izl-4-yl 4-Me-thiazol-5-yl 2-Ph-thiazol-4-yl 1,2-di-Me-1H-izl-4-yl

TABLE 1-continued

$$(\mathbb{R}^3)_m \xrightarrow{\frac{3}{4}} \mathbb{Q}$$

$$\mathbb{R}^2$$

$$\mathbb{R}^2$$

 $R^2 = Cl; Z = O; and R^3 = H (m = 0);$ and Q is:

5-F-thiazol-4-yl

5-Cl-thiazol-4-yl

4-CF₃-thiazol-5-yl 4-CHF₂-thiazol-5-yl 4-CN-thiazol-5-yl 4-OMe-thiazol-5-yl 2-OCF₃-1-Me-1H-izl-4-yl 2-Ph-1-Me-1H-izl-4-yl 5-F-1-Me-1H-izl-4-vl 5-Cl-1-Me-1H-izl-4-yl 5-Br-1-Me-1H-izl-4-yl 1,5-di-Me-1H-izl-4-vl 5-CF₃-1-Me-1H-izl-4-yl 5-CHF₂-1-Me-1H-izl-4-yl 5-CN-1-Me-1H-izl-4-vl 5-OMe-1-Me-1H-izl-4-yl 5-OCF₃-1-Me-1H-izl-4-yl 5-Ph-1-Me-1H-izl-4-yl 1H-izl-5-yl 1-Me-1H-izl-5-yl 2-F-1-Me-1H-izl-5-yl 2-Cl-1-Me-1H-izl-5-yl 2-Br-1-Me-1H-izl-5-yl 1,2-di-Me-1H-izl-5-yl $2\text{-}\mathrm{CF_3}\text{-}1\text{-}\mathrm{Me-}1\mathrm{H-}\mathrm{izl-}5\text{-}\mathrm{yl}$ 2-CHF₂-1-Me-1H-izl-5-yl 2-CN-1-Me-1H-izl-5-yl 2-OMe-1-Me-1H-izl-5-yl 2-OCF₃-1-Me-1H-izl-5-yl 2-Ph-1-Me-1H-izl-5-yl 4-F-1-Me-1H-izl-5-yl 4-Cl-1-Me-1H-izl-5-yl 4-Br-1-Me-1H-izl-5-yl 1,4-di-Me-1H-izl-5-yl 4-CF3-1-Me-1H-izl-5-yl 4-CHF2-1-Me-1H-izl-5-yl 4-CN-1-Me-1H-izl-5-yl 4-OMe-1-Me-1H-izl-5-yl 4-OCF₃-1-Me-1H-izl-5-yl 4-Ph-1-Me-1H-izl-5-yl 1H-pzl-3-yl 1-Me-1H-pzl-3-yl 4-F-1-Me-1H-pzl-3-yl 4-Cl-1-Me-1H-pzl-3-yl 2-CHF₂-[1,3,4]odzl-5-yl 2-CN-[1,3,4]odzl-5-yl 2-OMe-[1,3,4]odzl-5-yl 2-OCF₃-[1,3,4]odzl-5-yl [1,3,4]tdzl-2-yl 2-F-[1,3,4]tdzl-5-yl 2-Cl-[1,3,4]tdzl-5-yl 2-Br-[1,3,4]tdzl-5-yl 2-Me-[1,3,4]tdzl-5-yl 2-CF₃-[1,3,4]tdzl-5-yl 2-CHF₂-[1,3,4]tdzl-5-yl 2-CN-[1,3,4]tdzl-5-yl 2-OMe-[1,3,4]tdzl-5-yl 2-OCF₃-[1,3,4]tdzl-5-yl 4H-[1,2,4]tzl-3-yl 4-Me-4H-[1,2,4]tzl-3-yl 3-F-4-Me-4H-[1,2,4]tzl-5-yl 3-Cl-4-Me-4H-[1,2,4]tzl-5-yl 3-Br-4-Me-4H11,2,41tzl-5-yl 3,4-di-Me-4H-[1,2,4]tzl-5-yl

5-Br-thiazol-4-yl 5-Me-thiazol-4-yl 4-Br-1-Me-1H-pzl-3-yl 1,4-di-Me-1H-pzl-3-yl 4-CF₂-1-Me-1H-pzl-3-vl 4-CHF₂-1-Me-1H-pzl-3-yl 4-CN-1-Me-1H-pzl-3-yl 4-OMe-1-Me-1H-pzl-3-yl 4-OCF₃-1-Me-1H-pzl-3-yl 4-Ph-1-Me-1H-pzl-3-yl 5-F-1-Me-1H-pzl-3-yl 5-Cl-1-Me-1H-pzl-3-yl 5-Br-1-Me-1H-pzl-3-yl 1,5-di-Me-1H-pzl-3-yl $5\text{-}\mathrm{CF_3}\text{-}1\text{-}\mathrm{Me-}1\mathrm{H-}\mathrm{pzl-}3\text{-}\mathrm{yl}$ 5-CHF₂-1-Me-1H-pzl-3-yl 5-CN-1-Me-1H-pzl-3-yl 5-OMe-1-Me-1H-pzl-3-yl 5-OCF₃-1-Me-1H-pzl-3-yl 5-Ph-1-Me-1H-pzl-3-yl 1H-pzl-4-yl 1-Me-1H-pzl-4-yl 3-F-1-Me-1H-pzl-4-yl 3-Cl-1-Me-1H-pzl-4-yl 3-Br-1-Me-1H-pzl-4-yl 1,3-di-Me-1H-pzl-4-yl 3-CF₃-1-Me-1H-pzl-4-yl 3-CHF2-1-Me-1H-pzl-4-yl 3-CN-1-Me-1H-pzl-4-yl 3-OMe-1-Me-1H-pzl-4-yl 3-OCF₃-1-Me-1H-pzl-4-yl 3-Ph-1-Me-1H-pzl-4-yl 5-F-1-Me-1H-pzl-4-yl 5-Cl-1-Me-1H-pzl-4-yl 5-Br-1-Me-1H-pzl-4-yl 1,5-di-Me-1H-pzl-4-yl 5-CF3-1-Me-1H-pzl-4-yl 5-CHF2-1-Me-1H-pzl-4-yl 5-CN-1-Me-1H-pzl-4-yl 5-OMe-1-Me-1H-pzl-4-yl 5-CHF₂-1-Me-1H[1,2,4]tzl-3-5-CN-1-Me-1H-[1,2,4]tzl-3-vl 5-OMe-1-Me-1H-[1,2,4]tzl-3-5-OCF₃-1-Me-1H-[1,2,4]tzl-3-5-Ph-1-Me-1H-[1,2,4]tzl-3-yl 1H-[1,2,4]tzl-5-yl 1-Me-1H-[1,2,4]tzl-5-yl 3-F-1-Me-1H-[1,2,4]tzl-5-yl 3-Cl-1-Me-1H-[1,2,4]tzl-5-yl 3-Br-1-Me-1H-[1,2,4]tzl-5-yl1,3-di-Me-1H-[1,2,4]tzl-5-yl 3-CF3-1-Me-1H-[1,2,4]tzl-5-3-CHF₂-1-Me-1H-[1,2,4]tzl-5- 3-OMe-[1,2,4]tdzl-5-yl

2-CF₃-1-Me-1H-izl-4-yl 2-CHF₂-1-Me-1H-izl-4-yl 2-CN-1-Me-1H-izl-4-yl 2-OMe-1-Me-1H-izl-4-yl 5-OCF₃-1-Me-1H-pzl-4-yl 5-Ph-1-Me-1H-pzl-4-yl 1H-pzl-5-yl 1-Me-1H-pzl-5-yl 3-F-1-Me-1H-pzl-5-yl 3-Cl-1-Me-1H-pzl-5-yl 3-Br-1-Me-1H-pzl-5-yl 1,3-di-Me-1H-pzl-5-yl 3-CF3-1-Me-1H-pzl-5-vl 3-CHF $_2$ -1-Me-1H-pzl-5-yl 3-CN-1-Me-1H-pzl-5-yl 3-OMe-1-Me-1H-pzl-5-yl $3\text{-}\mathrm{OCF}_3\text{-}1\text{-}\mathrm{Me-}1\mathrm{H-}\mathrm{pzl-}5\text{-}\mathrm{yl}$ 3-Ph-1-Me-1H-pzl-5-yl 4-F-1-Me-1H-pzl-5-yl 4-Cl-1-Me-1H-pzl-5-yl 4-Br-1-Me-1H-pzl-5-yl 1,4-di-Me-1H-pzl-5-yl 4-CF₃-1-Me-1H-pzl-5-yl 4-CHF2-1-Me-1H-pzl-5-yl 4-CN-1-Me-1H-pzl-5-yl 4-OMe-1-Me-1H-pzl-5-yl 4-OCF₃-1-Me-1H-pzl-5-yl 4-Ph-1-Me-1H-pzl-5-yl Thiophene-2-yl Thiophene-3-yl Furan-2-yl Furan-3-yl 1H-pyrrol-2-yl 1-Me-1H-pyrrol-2-yl 1H-pyrrol-3-yl 1-Me-1H-pyrrol-3-yl [1,3,4]odzl-2-yl 2-F-[1,3,4]odzl-5-yl 2-Cl-[1,3,4]odzl-5-yl 2-Br-[1,3,4]odzl-5-yl 2-Me[1,3,4]odzl-5-yl 2-CF₃[1,3,4]odzl-5-yl 5-Br-[1,2,4]odzl-3-yl 5-Me-[1,2,4]odzl-3-yl 5-CF₃-[1,2,4]odzl-3-yl 5-CHF₂-[1,2,4]odzl-3-yl 5-CN-[1,2,4]odzl-3-yl 5-OMe-[1,2,4]odzl-3-yl 5-OCF₃-[1,2,4]odzl-3-yl 5-Ph-[1,2,4]odzl-3-vl [1,2,4]tdzl-5-yl 3-F-[1,2,4]tdzl-5-yl 3-Cl-[1,2,4]tdzl-5-yl 3-Br-[1,2,4]tdzl-5-yl 3-Me-[1,2,4]tdzl-5-yl 3-CF₃-[1,2,4]tdzl-5-yl 3-CHF₂-[1,2,4]tdzl-5-yl 3-CN-[1,2,4]tdzl-5-yl 3-OCF_3 -[1,2,4]tdzl-5-yl 3-CN-1-Me-1H-[1,2,4]tzl-5-yl 3-Ph-[1,2,4]tdzl-5-yl 3-OMe-1-Me-1H-[1,2,4]tzl-5- [1,2,4]tdzl-3-yl

TABLE 1-continued

$$(R^3)_m \xrightarrow{\frac{3}{4}} 6 \qquad N \qquad H$$

$$R^2$$

 $R^2 = Cl; Z = O; \text{ and } R^3 = H \text{ (m = 0)};$ and Q is:

3-CF₃-4-Me-4H-[1,2,4]tzl-5-3-CHF₂-4-Me-4H-[1,2,4]tzl-5- yl yl 3-CN-4-Me-4H-[1,2,4]tzl-5-yl 3-OMe-4-Me-4H-[1,2,4]tzl-5-. 3-OCF₃-4-Me-4H-[1,2,4]tzl-5-3-Ph-4-Me-4H-[1,2,4]tzl-5-yl 1H-[1,2,4]tzl-3-yl 1-Me-1H-[1,2,4]tzl-3-yl 5-F-1-Me-1H-[1,2,4]tzl-3-yl 5-Cl-1-Me-1H-[1,2,4]tzl-3-yl 5-Br-1-Me-1H-[1,2,4]tzl-3-yl 1,5-di-Me-1H-[1,2,4]tzl-3-yl 5-CF₃-1-Me-1H-[1,2,4]tzl-3-4-OMe-[1,2,3]odzl-5-yl 4-OCF₃-[1,2,3]odzl-5-yl 4-Ph-[1,2,3]odzl-5-yl [1,2,3]odzl-4-yl 5-F-[1,2,3]odzl-4-yl 5-Cl-[1,2,3]odzl-4-yl 5-Br-[1,2,3]odzl-4-yl 5-Me-[1,2,3]odzl-4-yl 5-CF₃-[1,2,3]odzl-4-yl 5-CHF₂-[1,2,3]odzl-4-yl 5-CN-[1,2,3]odzl-4-yl 5-OMe-[1,2,3]odzl-4-yl 5-OCF₃-[1,2,3]odzl-4-yl 5-Ph-[1,2,3]odzl-4-yl [1,2,3]tdzl-5-yl 4-F-[1,2,3]tdzl-5-yl 4-Cl-[1,2,3]tdzl-5-yl 4-Br-[1,2,3]tdzl-5-yl 4-Me-[1,2,3]tdzl-5-yl 4-CF₃-[1,2,3]tdzl-5-yl 4-CHF₂-[1,2,3]tdzl-5-yl 4-CN-[1,2,3]tdzl-5-yl 4-OMe-[1,2,3]tdzl-5-yl 4-OCF₃-[1,2,3]tdzl-5-yl 4-Ph-[1,2,3]tdzl-5-yl [1,2,3]tdzl-4-yl 5-F-[1,2,3]tdzl-4-yl 5-Cl-[1,2,3]tdzl-4-yl 5-Br-[1,2,3]tdzl-4-yl 5-Me-[1,2,3]tdzl-4-yl 5-CF_3 -[1,2,3]tdzl-4-yl 5-CHF₂-[1,2,3]tdzl-4-yl 5-CN-[1,2,3]tdzl-4-yl 5-OMe-[1,2,3]tdzl-4-yl 5-OCF₃-[1,2,3]tdzl-4-yl 5-Ph-[1,2,3]tdzl-4-yl 3H-[1,2,4]-tzl-3-yl 5-F-3H-[1,2,4]-tzl-3-yl 3-I-pyridin-2-yl 3-Me-pyridin-2-yl 3-Et-pyridin-2-yl 3-CF₃-pyridin-2-yl 3-CHF₂-pyridin-2-yl 3-CHO-pyridin-2-yl

3-CN-pyridin-2-yl

3-OCF3-1-Me-1H-[1,2,4]tzl-5-3-Ph-1-Me-1H-[1,2,4]tzl-5-yl [1,2,4]odzl-5-yl 3-F-[1,2,4]odzl-5-yl 3-Cl-[1,2,4]odzl-5-yl 3-Br-[1,2,4]odzl-5-yl 3-Me-[1,2,4]odzl-5-yl 3-CF₃-[1,2,4]odzl-5-yl 3-CHF₂-[1,2,4]odzl-5-yl 3-CN-[1,2,4]odzl-5-yl 3-OMe-[1,2,4]odzl-5-yl 3-OCF₃-[1,2,4]odzl-5-yl 3-Ph-[1,2,4]odzl-5-yl [1,2,4]odzl-3-yl 5-F-[1,2,4]odzl-3-yl 5-Cl-[1,2,4]odzl-3-yl 5-Cl-3H-[1,2,4]tzl-3-yl 5-Br-3H-[1,2,4]tzl-3-yl 5-Me-3H-[1,2,4]tzl-3-yl 5-CF₃-3H-[1,2,4]tzl-3-yl 5-CHF₂-3H-[1,2,4]tzl-3-yl 5-CN-3H-[1,2,4]tzl-3-yl 5-OMe-3H-[1,2,4]tzl-3-yl $5\text{-OCF}_3\text{-}3\text{H-}[1,2,4]\text{tzl-}3\text{-yl}$ 5-Ph-3H-[1,2,4]tzl-3-yl 1H-[1,2,3]tzl-4-yl 5-F-1H-[1,2,3]tzl-4-yl 5-Cl-1H-[1,2,3]tzl-4-yl 5-Br-1H-[1,2,3]tzl-4-yl 5-Me-1H-[1,2,3]tzl-4-yl 5-CF₃-1H-[1,2,3]tzl-4-yl 5-CHF₂-1H-[1,2,3]tzl-4-yl 5-CN-1H-[1,2,3]tzl-4-yl 5-OMe-1H-[1,2,3]tzl-4-yl 5-OCF₃-1H-[1,2,3]tzl-4-yl 5-Ph-1H-[1,2,3]tzl-4-yl 2H-[1,2,3]tzl-4-yl 4-F-2H-[1,2,3]tzl-5-yl 4-Cl-2H-[1,2,3]tzl-5-yl 4-Br-2H-[1,2,3]tzl-5-yl 4-Me-2H-[1,2,3]tzl-5-yl 4-CF₃-2H-[1,2,3]tzl-5-yl 4-CHF₂-2H-[1,2,3]tzl-5-yl 4-CN-2H-[1,2,3]tzl-5-yl 4-OMe-2H-[1,2,3]tzl-5-yl 4-OCF₃-2H-[1,2,3]tzl-5-yl 4-Ph-2H-[1,2,3]tzl-5-yl 1H-[1,2,3]tzl-5-yl 4-F-1H-[1,2,3]tzl-5-yl 4-Cl-1H-[1,2,3]tzl-5-yl 4-Br-1H-[1,2,3]tzl-5-yl 4-Me-1H-[1,2,3]tzl-5-yl 4-CF₃-1H-[1,2,3]tzl-5-yl 4-CHF₂-1H-[1,2,3]tzl-5-yl 3-OMe-pyridin-4-yl 3-OCF₃-pyridin-4-yl $3-N(Me)_2$ -pyridin-4-yl 3-Ph-pyridin-4-yl 3,5-di-Me-pyridin-4-yl

3,5-di-Cl-pyridin-4-yl

6-F-pyridazin-3-yl

5-F-[1,2,4]tdzl-3-yl 5-Cl-[1,2,4]tdzl-3-yl 5-Br-[1,2,4]tdzl-3-yl 5-Me-[1,2,4]tdzl-3-yl $5-CF_3-[1,2,4]tdzl-3-yl$ 5-CHF₂-[1,2,4]tdzl-3-yl 5-CN-[1,2,4]tdzl-3-yl 5-OMe-[1,2,4]tdzl-3-yl 5-OCF₃-[1,2,4]tdzl-3-yl 5-Ph-[1,2,4]tdzl-3-yl [1,2,3]odzl-5-yl 4-F-[1,2,3]odzl-5-yl 4-Cl-[1,2,3]odzl-5-yl 4-Br-[1,2,3]odzl-5-yl 4-Me-[1,2,3]odzl-5-yl 4-CF₃-[1,2,3]odzl-5-yl 4-CHF₂-[1,2,3]odzl-5-yl 4-CN-[1,2,3]odzl-5-yl 4-CN-1H-[1,2,3]tzl-5-yl 4-OMe-1H-[1,2,3]tzl-5-yl 4-OCF₃-1H-[1,2,3]tzl-5-yl 4-Ph-1H-[1,2,3]tzl-5-yl 5-F-pyridin-2-yl 5-Cl-pyridin-2-yl 5-Br-pyridin-2-yl 5-I-pyridin-2-yl 5-Me-pyridin-2-yl 5-Et-pyridin-2-yl 5-CF₃-pyridin-2-yl 5-CHF₂-pyridin-2-yl 5-CHO-pyridin-2-yl 5-CN-pyridin-2-yl 5-OMe-pyridin-2-yl 5-OCF₃-pyridin-2-yl 5-N(Me)₂-pyridin-2-yl 5-Ph-pyridin-2-yl 3,5-di-Cl-pyridin-2-yl 3-Me-5-Cl-pyridin-2-yl 3-CN-5-Cl-pyridin-2-yl 6-F-pyridin-2-yl 6-Cl-pyridin-2-yl 6-Br-pyridin-2-yl 6-I-pyridin-2-yl 6-Me-pyridin-2-yl 6-Et-pyridin-2-yl 6-CF₃-pyridin-2-yl 6-CHF₂-pyridin-2-yl 6-CHO-pyridin-2-yl 6-CN-pyridin-2-yl 6-OMe-pyridin-2-yl 6-OCF₃-pyridin-2-yl $6-N(Me)_2$ -pyridin-2-yl 6-Ph-pyridin-2-yl 3-F-pyridin-2-yl 3-Cl-pyridin-2-yl 3-Br-pyridin-2-yl 5-F-pyridazin-2-yl 5-Cl-pyridazin-2-yl 5-Br-pyridazin-2-yl 5-I-pyridazin-2-yl 5-Me-pyridazin-2-yl 5-Et-pyridazin-2-yl 5-CF₃-pyridazin-2-yl

TABLE 1-continued

$$(\mathbb{R}^3)_m \xrightarrow{\frac{3}{4}} \mathbb{R}^2$$

 $R^2=\operatorname{Cl};\,Z=O;\,\text{and}\,\,R^3=\mathrm{H}\,\,(\mathrm{m}=0);$ and Q is:

3-OMe-pyridin-2-yl 6-Cl-pyridazin-3-yl 5-CHF ₂ -pyridazin-2-yl 3-OCF ₃ -pyridin-2-yl 6-Br-pyridazin-3-yl 5-CN-pyridazin-2-yl 3-Ph-pyridin-2-yl 6-Me-pyridazin-3-yl 5-OMe-pyridazin-2-yl 5-Ode-pyridazin-2-yl 5-Ode-pyridazin-2-yl 5-OCF ₃ -pyridazin-2-yl 5-OCF ₃ -pyridazin-2-yl 5-OCF ₃ -pyridazin-2-yl 5-OCF ₃ -pyridazin-2-yl 6-CH ₂ -pyridazin-3-yl 5-OCF ₃ -pyridazin-2-yl 6-CH ₂ -pyridazin-3-yl 5-OCF ₃ -pyridazin-2-yl 6-CH ₂ -pyridazin-3-yl 5-OCF ₃ -pyridazin-2-yl 6-De-pyridazin-3-yl 6-CHO-pyridazin-3-yl 5-Cl-pyrimidin-4-yl 5-Cl-pyrimidin-4-yl 5-Cl-pyrimidin-4-yl 5-Cl-pyrimidin-4-yl 5-CF ₃ -pyridin-3-yl 6-OCF ₃ -pyridazin-3-yl 5-De-pyrimidin-4-yl 5-De-pyridin-3-yl 6-N(Me) ₂ -pyridazin-3-yl 5-De-pyrimidin-4-yl 5-De-pyridin-3-yl 6-De-pyridazin-3-yl 5-CH ₂ -pyrimidin-4-yl 5-De-pyridin-3-yl 6-De-pyridazin-3-yl 5-CH ₂ -pyrimidin-4-yl 5-De-pyridin-3-yl 6-De-pyridazin-4-yl 5-De-pyrimidin-4-yl 5-De-pyridin-3-yl 6-De-pyridazin-4-yl 5-De-pyrimidin-4-yl 5-De-pyrimidin-4-yl 5-De-pyridin-3-yl 6-De-pyridazin-4-yl 5-De-pyrimidin-4-yl 5-De-pyrimidin-5-yl 2-De-pyrimidin-5-yl 3-De-pyrimidin-5-yl 3-De-pyrimidin-5-yl 3-De-[1,2,4]triazin-5-yl 3-De-[1,2,4]triazin-5-yl 3-De-[1,2,4]triazin-5-yl 3-De-Pyriazin-6-yl 3-De-			
3-N(Me) ₂ -pyridin-2-yl 3-Ph-pyridin-2-yl 3-Ph-pyridin-2-yl 3-Ph-pyridin-2-yl 3-Ph-pyridin-2-yl 5-Me-pyridazin-3-yl 5-OMe-pyridazin-2-yl 5-OMe-pyridazin-2-yl 5-OMe-pyridazin-2-yl 5-OMe-pyridazin-2-yl 5-OMe-pyridazin-2-yl 5-N(Me) ₂ -pyridazin-2-yl 6-Et-pyridin-3-yl 6-CH-pyridin-3-yl 6-CH-pyridin-3-yl 6-CH-pyridazin-3-yl 6-CN-pyridazin-3-yl 6-Me-pyridin-3-yl 6-Me-pyridin-3-yl 6-Me-pyridazin-3-yl 6-Me-pyridin-3-yl 6-Me-pyridin-3-yl 6-OMe-pyridazin-3-yl 6-OMe-pyridin-3-yl 6-OMe-pyridin-3-yl 6-N(Me) ₂ -pyridazin-3-yl 6-CH-pyridazin-3-yl 6-CH-pyridazin-3-yl 6-CH-pyridin-3-yl 6-CN-pyridin-3-yl 6-CN-pyridazin-3-yl 6-CN-pyridin-3-yl 6-CN-pyridazin-3-yl 6-CN-pyridin-3-yl 6-CP-pyridazin-3-yl 6-CP-pyridazin-4-yl 6-OMe-pyridin-3-yl 6-CP-pyridazin-4-yl 6-OMe-pyridin-3-yl 6-Pp-pyridazin-4-yl 6-N(Me) ₂ -pyridin-3-yl 6-Pp-pyridazin-4-yl 6-Ph-pyridin-3-yl 6-Pp-pyridazin-4-yl 6-Ph-pyridin-3-yl 6-Pp-pyridazin-4-yl 6-Pp-pyridin-3-yl 6-Pp-pyridazin-4-yl 6-Pp-pyridin-3-yl 6-Pp-pyridazin-4-yl 6-Pp-pyridin-3-yl 6-Pp-pyridazin-4-yl 6-Pp-pyridin-3-yl 6-Pp-pyridazin-4-yl 6-Pp-pyridin-3-yl 6-Pp-pyridin-3-yl 6-Pp-pyridazin-4-yl 6-Pp-pyridin-3-yl 6-Pp-pyridin-3-yl 6-Pp-pyridazin-4-yl 6-Pp-pyridin-3-yl 6-Pp-pyridin-3-yl 6-Pp-pyridin-3-yl 6-Pp-pyridazin-4-yl 6-Pp-pyridin-3-yl 6-Pp-pyr	3-OMe-pyridin-2-yl	6-Cl-pyridazin-3-yl	5-CHF ₂ -pyridazin-2-yl
3-Ph-pyridin-2-yl 6-Me-pyridazin-3-yl 5-OMe-pyridazin-2-yl 5,6-di-Cl-pyridin-2-yl 6-Et-pyridazin-3-yl 5-OCF ₃ -pyridazin-2-yl 6-Cl-pyridin-3-yl 6-CH-pyridazin-3-yl 5-N(Me) ₂ -pyridazin-2-yl 5-Ph-pyridazin-2-yl 6-Br-pyridin-3-yl 6-CHO-pyridazin-3-yl 5-Ph-pyridazin-2-yl 6-Br-pyridin-3-yl 6-CN-pyridazin-3-yl 5-Ph-pyridazin-2-yl 6-Et-pyridin-3-yl 6-OMe-pyridazin-3-yl 5-Dr-pyrimidin-4-yl 5-Dr-pyridin-4-yl 6-Dr-pyridin-3-yl 6-N(Me) ₂ -pyridazin-3-yl 5-Dr-pyrimidin-4-yl 6-Dr-pyridin-3-yl 6-N(Me) ₂ -pyridazin-3-yl 5-Dr-pyrimidin-4-yl 6-Dr-pyridin-3-yl 6-Ph-pyridazin-3-yl 5-Dr-pyrimidin-4-yl 6-Dr-pyridin-3-yl 6-Ph-pyridazin-3-yl 5-CF ₃ -pyrimidin-4-yl 6-Dr-pyridin-3-yl 6-Dr-pyridazin-3-yl 5-Dr-pyrimidin-4-yl 5-Dr-pyrimidin-4-yl 5-Dr-pyridin-3-yl 6-Dr-pyridazin-4-yl 5-Dr-pyrimidin-4-yl 5-Dr-pyridin-3-yl 6-Dr-pyridazin-4-yl 5-Dr-pyrimidin-4-yl 5-Dr-pyridin-4-yl 5-Dr-pyridin-3-yl 6-Dr-pyridazin-4-yl 5-Dr-pyrimidin-4-yl 5-Dr-pyrimidin-4-yl 5-Dr-pyridin-3-yl 6-Dr-pyridazin-4-yl 5-Dr-pyrimidin-4-yl 5-Dr-pyrimidin-4-yl 5-Dr-pyrimidin-4-yl 5-Dr-pyrimidin-4-yl 5-Dr-pyrimidin-4-yl 5-Dr-pyrimidin-4-yl 5-Dr-pyrimidin-4-yl 5-Dr-pyrimidin-4-yl 5-Dr-pyrimidin-4-yl 5-Dr-pyrimidin-5-yl 2-Dr-pyrimidin-5-yl 3-Dr-pyridin-4-yl 6-Dr-pyridazin-4-yl 2-Dr-pyrimidin-5-yl 3-Dr-pyridin-4-yl 6-Dr-pyridazin-4-yl 2-Dr-pyrimidin-5-yl 3-Dr-pyridin-5-yl 3-Dr-pyrimidin-5-yl 3-Dr-pyrimidi	3-OCF ₃ -pyridin-2-yl	6-Br-pyridazin-3-yl	5-CHO-pyridazin-2-yl
5,6-di-Cl-pyridin-2-yl 6-Et-pyridazin-3-yl 5-OCF ₃ -pyridazin-2-yl 6-F.pyridin-3-yl 6-CF ₃ -pyridazin-3-yl 5-N(Me) ₂ -pyridazin-2-yl 6-Br-pyridin-3-yl 6-CHO-pyridazin-3-yl 5-Ph-pyridazin-2-yl 6-Br-pyridin-3-yl 6-CHO-pyridazin-3-yl 5-F-pyrimidin-4-yl 6-L-pyridin-3-yl 6-OMe-pyridazin-3-yl 5-Br-pyrimidin-4-yl 6-Et-pyridin-3-yl 6-OMe-pyridazin-3-yl 5-Me-pyrimidin-4-yl 6-CH7-pyridin-3-yl 6-N(Me) ₂ -pyridazin-3-yl 5-Me-pyrimidin-4-yl 6-CH9-pyridin-3-yl 6-N(Me) ₂ -pyridazin-3-yl 5-Me-pyrimidin-4-yl 6-CH9-pyridin-3-yl 6-Ph-pyridazin-3-yl 5-CH9-pyrimidin-4-yl 6-CN-pyridin-3-yl 6-F-pyridazin-3-yl 5-CH9-pyrimidin-4-yl 6-OMe-pyridin-3-yl 6-F-pyridazin-4-yl 5-CH9-pyrimidin-4-yl 6-N(Me) ₂ -pyridin-3-yl 6-P-pyridazin-4-yl 5-OMe-pyrimidin-4-yl 6-P-pyridin-3-yl 6-Br-pyridazin-4-yl 5-OMe-pyrimidin-4-yl 6-P-pyridin-3-yl 6-P-pyridazin-4-yl 5-OMe-pyrimidin-4-yl 6-P-pyridin-3-yl 6-P-pyridazin-4-yl 5-N(Me) ₂ -pyrimidin-4-yl 5-Ppyrimidin-4-yl 6-CH-pyridazin-4-yl <td>3-N(Me)₂-pyridin-2-yl</td> <td>6-I-pyridazin-3-yl</td> <td>5-CN-pyridazin-2-yl</td>	3-N(Me) ₂ -pyridin-2-yl	6-I-pyridazin-3-yl	5-CN-pyridazin-2-yl
$ \begin{array}{llll} 6\text{-}F-pyridin-3-yl & 6\text{-}CF_3-pyridazin-3-yl \\ 6\text{-}CHpyridin-3-yl & 6\text{-}CHF_2-pyridazin-3-yl \\ 6\text{-}Br-pyridin-3-yl & 6\text{-}CHF_2-pyridazin-3-yl \\ 6\text{-}Br-pyridin-3-yl & 6\text{-}CN-pyridazin-3-yl \\ 6\text{-}Br-pyridin-3-yl & 6\text{-}CN-pyridazin-3-yl \\ 6\text{-}Br-pyridin-3-yl & 6\text{-}OMe-pyridazin-3-yl \\ 6\text{-}Epyridin-3-yl & 6\text{-}OMe-pyridazin-3-yl \\ 6\text{-}CF_3-pyridin-3-yl & 6\text{-}OK(me)_2-pyridazin-3-yl \\ 6\text{-}CHF_2-pyridin-3-yl & 6\text{-}N(Me)_2-pyridazin-3-yl \\ 6\text{-}CHP_2-pyridin-3-yl & 6\text{-}Ph-pyridazin-3-yl & 5\text{-}Br-pyrimidin-4-yl \\ 6\text{-}CHO-pyridin-3-yl & 6\text{-}Ph-pyridazin-3-yl & 5\text{-}Et-pyrimidin-4-yl \\ 6\text{-}CHO-pyridin-3-yl & 6\text{-}Ph-pyridazin-3-yl & 5\text{-}CHF_2-pyrimidin-4-yl \\ 6\text{-}OMe-pyridin-3-yl & 6\text{-}Ppyridazin-3-yl & 5\text{-}CHF_2-pyrimidin-4-yl \\ 6\text{-}OK(me)_2-pyridin-3-yl & 6\text{-}Ppyridazin-4-yl & 5\text{-}CM-pyrimidin-4-yl \\ 6\text{-}N(Me)_2-pyridin-3-yl & 6\text{-}Br-pyridazin-4-yl & 5\text{-}OMe-pyrimidin-4-yl \\ 6\text{-}Ph-pyridin-3-yl & 6\text{-}Ppyridazin-4-yl & 5\text{-}OMe-pyrimidin-4-yl \\ 6\text{-}Ppyridin-3-yl & 6\text{-}Ppyridazin-4-yl & 5\text{-}OMe-pyrimidin-4-yl \\ 3\text{-}Ppyridin-4-yl & 6\text{-}CHF_2-pyridazin-4-yl & 5\text{-}Ph-pyrimidin-5-yl \\ 3\text{-}I-pyridin-4-yl & 6\text{-}CHF_2-pyridazin-4-yl & 5\text{-}Ph-pyrimidin-5-yl \\ 3\text{-}I-pyridin-4-yl & 6\text{-}CHP_2-pyridazin-4-yl & 2\text{-}Ppyrimidin-5-yl \\ 3\text{-}Hp-pyridin-4-yl & 6\text{-}OMe-pyridazin-4-yl & 2\text{-}Ppyrimidin-5-yl \\ 3\text{-}CHO-pyridin-4-yl & 6\text{-}OMe-pyridazin-4-yl & 2\text{-}Ppyrimidin-5-yl \\ 3\text{-}CHO-pyridin-4-yl & 6\text{-}Ph-pyridazin-4-yl & 2\text{-}Ppyrimidin-5-yl \\ 3\text{-}CHO-pyridin-4-yl & 6\text{-}N(me)_2-pyridazin-4-yl & 2\text{-}CHP_2-pyrimidin-5-yl \\ 2\text{-}OKF_3-pyrimidin-5-yl & 2\text{-}CHP_2-pyrimidin-5-yl \\ 2\text{-}OKP_3-pyrimidin-5-yl & 6\text{-}Cl-[1,2,4]triazin-5-yl & 4\text{-}Cl-pyrazin-2-yl \\ 3\text{-}CN-pyrazin-2-yl & 6\text{-}Cl-[1,2,4]triazin-5-yl & 3\text{-}Cl-Pph-pyl \\ 3\text{-}OMe-pyrazin-2-yl & 6\text{-}Cl-[1,2,4]triazin-3-yl & 3\text{-}Cl-Pph-pyl \\ 3\text{-}Cl-[1,2,4]triazin-6-yl & 6\text{-}Cl-[1,2,4]triazin-3-yl & 3\text{-}Cl-Pph-pyl \\ 3\text{-}Cl-[1,2,4]triazin-6-yl & 6\text{-}Cl-[1,2,4]triazin-3-yl & 3\text{-}Cl-Pph-pyl \\ 3\text{-}Cl-[1,2,4]triazin-6$	3-Ph-pyridin-2-yl	6-Me-pyridazin-3-yl	5-OMe-pyridazin-2-yl
$ \begin{array}{llll} 6\text{-}F-pyridin-3-yl & 6\text{-}CF_3-pyridazin-3-yl \\ 6\text{-}CHpyridin-3-yl & 6\text{-}CHF_2-pyridazin-3-yl \\ 6\text{-}Br-pyridin-3-yl & 6\text{-}CHF_2-pyridazin-3-yl \\ 6\text{-}Br-pyridin-3-yl & 6\text{-}CN-pyridazin-3-yl \\ 6\text{-}Br-pyridin-3-yl & 6\text{-}CN-pyridazin-3-yl \\ 6\text{-}Br-pyridin-3-yl & 6\text{-}OMe-pyridazin-3-yl \\ 6\text{-}Epyridin-3-yl & 6\text{-}OMe-pyridazin-3-yl \\ 6\text{-}CF_3-pyridin-3-yl & 6\text{-}OK(me)_2-pyridazin-3-yl \\ 6\text{-}CHF_2-pyridin-3-yl & 6\text{-}N(Me)_2-pyridazin-3-yl \\ 6\text{-}CHP_2-pyridin-3-yl & 6\text{-}Ph-pyridazin-3-yl & 5\text{-}Br-pyrimidin-4-yl \\ 6\text{-}CHO-pyridin-3-yl & 6\text{-}Ph-pyridazin-3-yl & 5\text{-}Et-pyrimidin-4-yl \\ 6\text{-}CHO-pyridin-3-yl & 6\text{-}Ph-pyridazin-3-yl & 5\text{-}CHF_2-pyrimidin-4-yl \\ 6\text{-}OMe-pyridin-3-yl & 6\text{-}Ppyridazin-3-yl & 5\text{-}CHF_2-pyrimidin-4-yl \\ 6\text{-}OK(me)_2-pyridin-3-yl & 6\text{-}Ppyridazin-4-yl & 5\text{-}CM-pyrimidin-4-yl \\ 6\text{-}N(Me)_2-pyridin-3-yl & 6\text{-}Br-pyridazin-4-yl & 5\text{-}OMe-pyrimidin-4-yl \\ 6\text{-}Ph-pyridin-3-yl & 6\text{-}Ppyridazin-4-yl & 5\text{-}OMe-pyrimidin-4-yl \\ 6\text{-}Ppyridin-3-yl & 6\text{-}Ppyridazin-4-yl & 5\text{-}OMe-pyrimidin-4-yl \\ 3\text{-}Ppyridin-4-yl & 6\text{-}CHF_2-pyridazin-4-yl & 5\text{-}Ph-pyrimidin-5-yl \\ 3\text{-}I-pyridin-4-yl & 6\text{-}CHF_2-pyridazin-4-yl & 5\text{-}Ph-pyrimidin-5-yl \\ 3\text{-}I-pyridin-4-yl & 6\text{-}CHP_2-pyridazin-4-yl & 2\text{-}Ppyrimidin-5-yl \\ 3\text{-}Hp-pyridin-4-yl & 6\text{-}OMe-pyridazin-4-yl & 2\text{-}Ppyrimidin-5-yl \\ 3\text{-}CHO-pyridin-4-yl & 6\text{-}OMe-pyridazin-4-yl & 2\text{-}Ppyrimidin-5-yl \\ 3\text{-}CHO-pyridin-4-yl & 6\text{-}Ph-pyridazin-4-yl & 2\text{-}Ppyrimidin-5-yl \\ 3\text{-}CHO-pyridin-4-yl & 6\text{-}N(me)_2-pyridazin-4-yl & 2\text{-}CHP_2-pyrimidin-5-yl \\ 2\text{-}OKF_3-pyrimidin-5-yl & 2\text{-}CHP_2-pyrimidin-5-yl \\ 2\text{-}OKP_3-pyrimidin-5-yl & 6\text{-}Cl-[1,2,4]triazin-5-yl & 4\text{-}Cl-pyrazin-2-yl \\ 3\text{-}CN-pyrazin-2-yl & 6\text{-}Cl-[1,2,4]triazin-5-yl & 3\text{-}Cl-Pph-pyl \\ 3\text{-}OMe-pyrazin-2-yl & 6\text{-}Cl-[1,2,4]triazin-3-yl & 3\text{-}Cl-Pph-pyl \\ 3\text{-}Cl-[1,2,4]triazin-6-yl & 6\text{-}Cl-[1,2,4]triazin-3-yl & 3\text{-}Cl-Pph-pyl \\ 3\text{-}Cl-[1,2,4]triazin-6-yl & 6\text{-}Cl-[1,2,4]triazin-3-yl & 3\text{-}Cl-Pph-pyl \\ 3\text{-}Cl-[1,2,4]triazin-6$	5,6-di-Cl-pyridin-2-yl	6-Et-pyridazin-3-yl	5-OCF ₃ -pyridazin-2-yl
6-Cl-pyridin-3-yl 6-Br-pyridin-3-yl 6-Ho-pyridazin-3-yl 6-Ho-pyridin-3-yl 6-Ho-pyridin-4-yl 6-Ho-pyrid		6-CF ₃ -pyridazin-3-yl	
6-I-pyridin-3-yl 6-Me-pyridazin-3-yl 6-Me-pyridin-3-yl 6-Et-pyridin-3-yl 6-Et-pyridin-3-yl 6-CF ₃ -pyridazin-3-yl 6-CF ₃ -pyridin-3-yl 6-CHF ₂ -pyridin-3-yl 6-CHO-pyridin-3-yl 6-CHO-pyridin-3-yl 6-CN-pyridazin-3-yl 6-CN-pyridin-3-yl 6-CN-pyridin-3-yl 6-CN-pyridin-3-yl 6-CN-pyridin-3-yl 6-CN-pyridin-3-yl 6-CN-pyridin-3-yl 6-CN-pyridin-3-yl 6-CP ₃ -pyridazin-3-yl 6-CP ₃ -pyridin-3-yl 6-Ppyridin-3-yl 6-Ppyridin-4-yl 3-Ppyridin-4-yl 3-Ppyridin-5-yl 3-Ppyridin-4-yl 3-Ppyridin-5-yl			
6-I-pyridin-3-yl 6-Me-pyridazin-3-yl 6-Me-pyridin-3-yl 6-Et-pyridin-3-yl 6-Et-pyridin-3-yl 6-CF ₃ -pyridazin-3-yl 6-CF ₃ -pyridin-3-yl 6-CHF ₂ -pyridin-3-yl 6-CHO-pyridin-3-yl 6-CHO-pyridin-3-yl 6-CN-pyridazin-3-yl 6-CN-pyridin-3-yl 6-CN-pyridin-3-yl 6-CN-pyridin-3-yl 6-CN-pyridin-3-yl 6-CN-pyridin-3-yl 6-CN-pyridin-3-yl 6-CN-pyridin-3-yl 6-CP ₃ -pyridazin-3-yl 6-CP ₃ -pyridin-3-yl 6-Ppyridin-3-yl 6-Ppyridin-4-yl 3-Ppyridin-4-yl 3-Ppyridin-5-yl 3-Ppyridin-4-yl 3-Ppyridin-5-yl	6-Br-pyridin-3-yl	6-CHO-pyridazin-3-yl	5-F-pyrimidin-4-yl
6-Me-pyridin-3-yl 6-Et-pyridin-3-yl 6-CF ₃ -pyridin-3-yl 6-CF ₃ -pyridin-3-yl 6-CF ₃ -pyridin-3-yl 6-CH ₂ -pyridin-3-yl 6-CH ₃ -pyridin-3-yl 6-CH ₂ -pyridin-3-yl 6-CH ₃ -pyridin-4-yl 3-F-pyridin-4-yl 3-F-pyridin-5-yl 3-F-pyridin-4-yl 3-F-pyridin-4-yl 3-F-pyridin-5-yl 3-F-pyridin-4-yl 3-F-pyridin-5-yl 3-F-pyridin-4-yl 3-F-pyridin-5-yl 3-F-pyridin-5-yl 3-F-pyridin-5-yl 3-F-pyridin-5-yl 3-F-pyridin-5-yl 3-F-pyridin-5-yl 3-F-pyridin-5-yl 3-CHO-pyridin-5-yl 3-CHO-pyridin-5-yl 3-CHO-pyridin-5-yl 3-CN-pyridin-5-yl 3-CN-pyridin-6-yl 3-CN-pyrazin-2-yl 3-CN-pyrazin-2-yl 3-CN-pyrazin-2-yl 3-CN-pyrazin-2-yl 3-CN-pyrazin-6-yl 3-CN-pyrazin-2-yl 3-CN-pyrazin-2			
$ \begin{array}{llll} 6\text{-}\mathrm{CF}_3^*\mathrm{pyridin}\text{-}3\text{-}\mathrm{yl} & 6\text{-}\mathrm{N}(\mathrm{Me})_2^*\mathrm{pyridazin}\text{-}3\text{-}\mathrm{yl} \\ 6\text{-}\mathrm{CHF}_2^*\mathrm{pyridin}\text{-}3\text{-}\mathrm{yl} & 6\text{-}\mathrm{Ph}^*\mathrm{pyridazin}\text{-}3\text{-}\mathrm{yl} \\ 6\text{-}\mathrm{CHO}^*\mathrm{pyridin}\text{-}3\text{-}\mathrm{yl} & 4\text{-}\mathrm{Cl}^*\mathrm{pyridazin}\text{-}3\text{-}\mathrm{yl} \\ 6\text{-}\mathrm{CN}^*\mathrm{pyridin}\text{-}3\text{-}\mathrm{yl} & 4\text{-}\mathrm{CN}^*\mathrm{pyridazin}\text{-}3\text{-}\mathrm{yl} \\ 6\text{-}\mathrm{CN}^*\mathrm{pyridin}\text{-}3\text{-}\mathrm{yl} & 4\text{-}\mathrm{CN}^*\mathrm{pyridazin}\text{-}3\text{-}\mathrm{yl} \\ 6\text{-}\mathrm{CN}^*\mathrm{pyridin}\text{-}3\text{-}\mathrm{yl} & 6\text{-}\mathrm{F}^*\mathrm{pyridazin}\text{-}4\text{-}\mathrm{yl} \\ 6\text{-}\mathrm{CN}^*\mathrm{pyridin}\text{-}3\text{-}\mathrm{yl} & 6\text{-}\mathrm{F}^*\mathrm{pyridazin}\text{-}4\text{-}\mathrm{yl} \\ 6\text{-}\mathrm{CN}^*\mathrm{pyridin}\text{-}3\text{-}\mathrm{yl} & 6\text{-}\mathrm{F}^*\mathrm{pyridazin}\text{-}4\text{-}\mathrm{yl} \\ 6\text{-}\mathrm{CN}^*\mathrm{pyridin}\text{-}3\text{-}\mathrm{yl} & 6\text{-}\mathrm{B}^*\mathrm{pyridazin}\text{-}4\text{-}\mathrm{yl} \\ 6\text{-}\mathrm{CN}^*\mathrm{pyridin}\text{-}3\text{-}\mathrm{yl} & 6\text{-}\mathrm{B}^*\mathrm{pyridazin}\text{-}4\text{-}\mathrm{yl} \\ 6\text{-}\mathrm{CN}^*\mathrm{pyridin}\text{-}3\text{-}\mathrm{yl} & 6\text{-}\mathrm{B}^*\mathrm{pyridazin}\text{-}4\text{-}\mathrm{yl} \\ 6\text{-}\mathrm{CN}^*\mathrm{pyridin}\text{-}3\text{-}\mathrm{yl} & 6\text{-}\mathrm{B}^*\mathrm{pyridazin}\text{-}4\text{-}\mathrm{yl} \\ 6\text{-}\mathrm{CN}^*\mathrm{pyridazin}\text{-}4\text{-}\mathrm{yl} & 5\text{-}\mathrm{OK}^*\mathrm{pyrimidin}\text{-}4\text{-}\mathrm{yl} \\ 3\text{-}\mathrm{F}^*\mathrm{pyridin}\text{-}3\text{-}\mathrm{yl} & 6\text{-}\mathrm{B}^*\mathrm{pyridazin}\text{-}4\text{-}\mathrm{yl} \\ 3\text{-}\mathrm{F}^*\mathrm{pyridin}\text{-}4\text{-}\mathrm{yl} & 6\text{-}\mathrm{C}\mathrm{F}^*\mathrm{pyridazin}\text{-}4\text{-}\mathrm{yl} \\ 3\text{-}\mathrm{F}^*\mathrm{pyridin}\text{-}4\text{-}\mathrm{yl} & 6\text{-}\mathrm{C}\mathrm{H}^*\mathrm{pyridazin}\text{-}4\text{-}\mathrm{yl} \\ 3\text{-}\mathrm{B}^*\mathrm{pyridin}\text{-}4\text{-}\mathrm{yl} & 6\text{-}\mathrm{C}\mathrm{H}^*\mathrm{pyridazin}\text{-}4\text{-}\mathrm{yl} \\ 3\text{-}\mathrm{E}^*\mathrm{pyridin}\text{-}4\text{-}\mathrm{yl} & 6\text{-}\mathrm{C}\mathrm{N}^*\mathrm{pyridazin}\text{-}4\text{-}\mathrm{yl} \\ 3\text{-}\mathrm{E}^*\mathrm{pyridin}\text{-}4\text{-}\mathrm{yl} & 6\text{-}\mathrm{C}\mathrm{N}^*\mathrm{pyridazin}\text{-}4\text{-}\mathrm{yl} \\ 3\text{-}\mathrm{E}^*\mathrm{pyrimidin}\text{-}5\text{-}\mathrm{yl} \\ 3\text{-}\mathrm{E}^*\mathrm{pyrimidin}\text{-}5\text{-}\mathrm{yl} \\ 3\text{-}\mathrm{E}^*\mathrm{pyridin}\text{-}4\text{-}\mathrm{yl} & 6\text{-}\mathrm{C}\mathrm{N}^*\mathrm{pyridazin}\text{-}4\text{-}\mathrm{yl} \\ 3\text{-}\mathrm{E}^*\mathrm{pyrimidin}\text{-}5\text{-}\mathrm{yl} \\ 3\text{-}\mathrm{E}^*Pyr$			
$ \begin{array}{llll} 6\text{-}\mathrm{CF}_3\text{-}\mathrm{pyridin}-3\text{-}\mathrm{y} & 6\text{-}\mathrm{N}(\mathrm{Me})_2\text{-}\mathrm{pyridazin}-3\text{-}\mathrm{y} \\ 6\text{-}\mathrm{CHF}_2\text{-}\mathrm{pyridin}-3\text{-}\mathrm{y} & 6\text{-}\mathrm{Ph}\text{-}\mathrm{pyridazin}-3\text{-}\mathrm{y} \\ 6\text{-}\mathrm{CHO}\text{-}\mathrm{pyridin}-3\text{-}\mathrm{y} & 4\text{-}\mathrm{Ch}\text{-}\mathrm{pyridazin}-3\text{-}\mathrm{y} \\ 6\text{-}\mathrm{CN}\text{-}\mathrm{pyridin}-3\text{-}\mathrm{y} & 4\text{-}\mathrm{CN}\text{-}\mathrm{pyridazin}-3\text{-}\mathrm{y} \\ 6\text{-}\mathrm{CN}\text{-}\mathrm{pyridin}-3\text{-}\mathrm{y} & 4\text{-}\mathrm{CN}\text{-}\mathrm{pyridazin}-3\text{-}\mathrm{y} \\ 6\text{-}\mathrm{CN}\text{-}\mathrm{pyridin}-3\text{-}\mathrm{y} & 6\text{-}\mathrm{F}\text{-}\mathrm{pyridazin}-4\text{-}\mathrm{y} \\ 6\text{-}\mathrm{CN}\text{-}\mathrm{pyridin}-3\text{-}\mathrm{y} & 6\text{-}\mathrm{F}\text{-}\mathrm{pyridazin}-4\text{-}\mathrm{y} \\ 6\text{-}\mathrm{CN}\text{-}\mathrm{pyridin}-3\text{-}\mathrm{y} & 6\text{-}\mathrm{Br}\text{-}\mathrm{pyridazin}-4\text{-}\mathrm{y} \\ 6\text{-}\mathrm{CR}\text{-}\mathrm{pyridin}-3\text{-}\mathrm{y} & 6\text{-}\mathrm{Br}\text{-}\mathrm{pyridazin}-4\text{-}\mathrm{y} \\ 5\text{-}\mathrm{N}(\mathrm{m}_2)_2\text{-}\mathrm{pyrimidin}-4\text{-}\mathrm{y} \\ 6\text{-}\mathrm{CR}\text{-}\mathrm{pyridazin}-4\text{-}\mathrm{y} & 5\text{-}\mathrm{N}(\mathrm{m}_2)_2\text{-}\mathrm{pyrimidin}-4\text{-}\mathrm{y} \\ 3\text{-}\mathrm{F}\text{-}\mathrm{pyridin}-4\text{-}\mathrm{y} & 6\text{-}\mathrm{Br}\text{-}\mathrm{pyridazin}-4\text{-}\mathrm{y} & 5\text{-}\mathrm{N}(\mathrm{m}_2)_2\text{-}\mathrm{pyrimidin}-4\text{-}\mathrm{y} \\ 3\text{-}\mathrm{Br}\text{-}\mathrm{pyridin}-4\text{-}\mathrm{y} & 6\text{-}\mathrm{CR}\text{-}\mathrm{pyridazin}-4\text{-}\mathrm{y} & 2\text{-}\mathrm{Br}\text{-}\mathrm{pyrimidin}-5\text{-}\mathrm{y} \\ 2\text{-}\mathrm{Br}\text{-}\mathrm{pyrimidin}-5\text{-}\mathrm{y} & 2\text{-}\mathrm{Br}\text{-}\mathrm{pyrimidin}-5\text{-}\mathrm{y} \\ 3\text{-}\mathrm{Br}\text{-}\mathrm{pyridin}-4\text{-}\mathrm{y} & 6\text{-}\mathrm{O}\mathrm{R}\text{-}\mathrm{pyridazin}-4\text{-}\mathrm{y} & 2\text{-}\mathrm{Br}\text{-}\mathrm{pyrimidin}-5\text{-}\mathrm{y} \\ 2\text{-}\mathrm{Br}\text{-}\mathrm{pyrimidin}-5\text{-}\mathrm{y} & 2\text{-}\mathrm{Br}\text{-}\mathrm{pyrimidin}-5\text{-}\mathrm{y} \\ 2\text{-}\mathrm{Br}\text{-}\mathrm{pyrimidin}$			
$ \begin{array}{llll} 6\text{-}\mathrm{CHF}_2\text{-}\mathrm{pyridin-3-yl} & 6\text{-}\mathrm{Ph-pyridazin-3-yl} & 5\text{-}\mathrm{Et-pyrimidin-4-yl} \\ 6\text{-}\mathrm{CN-pyridin-3-yl} & 4\text{-}\mathrm{Cl-pyridazin-3-yl} & 5\text{-}\mathrm{CF}_2\text{-}\mathrm{pyrimidin-4-yl} \\ 6\text{-}\mathrm{CN-pyridin-3-yl} & 4\text{-}\mathrm{Cl-pyridazin-3-yl} & 5\text{-}\mathrm{CH}_2\text{-}\mathrm{pyrimidin-4-yl} \\ 6\text{-}\mathrm{OMe-pyridin-3-yl} & 6\text{-}\mathrm{F-pyridazin-4-yl} & 5\text{-}\mathrm{CN-pyrimidin-4-yl} \\ 6\text{-}\mathrm{OCF}_3\text{-}\mathrm{pyridin-3-yl} & 6\text{-}\mathrm{E-pyridazin-4-yl} & 5\text{-}\mathrm{CN-pyrimidin-4-yl} \\ 6\text{-}\mathrm{Ph-pyridin-3-yl} & 6\text{-}\mathrm{Br-pyridazin-4-yl} & 5\text{-}\mathrm{OMe-pyrimidin-4-yl} \\ 6\text{-}\mathrm{Ph-pyridin-3-yl} & 6\text{-}\mathrm{Br-pyridazin-4-yl} & 5\text{-}\mathrm{OMe-pyrimidin-4-yl} \\ 6\text{-}\mathrm{Cl-pyridin-3-yl} & 6\text{-}\mathrm{Br-pyridazin-4-yl} & 5\text{-}\mathrm{N}(\mathrm{Me})_2\text{-}\mathrm{pyrimidin-4-yl} \\ 4\text{-}\mathrm{CN-6-Cl-pyridin-3-yl} & 6\text{-}\mathrm{Et-pyridazin-4-yl} & 5\text{-}\mathrm{N}(\mathrm{Me})_2\text{-}\mathrm{pyrimidin-4-yl} \\ 3\text{-}\mathrm{F-pyridin-4-yl} & 6\text{-}\mathrm{CH}_2\text{-}\mathrm{pyridazin-4-yl} & 2\text{-}\mathrm{F-pyrimidin-5-yl} \\ 3\text{-}\mathrm{Br-pyridin-4-yl} & 6\text{-}\mathrm{CH}_2\text{-}\mathrm{pyridazin-4-yl} & 2\text{-}\mathrm{Br-pyrimidin-5-yl} \\ 3\text{-}\mathrm{Br-pyridin-4-yl} & 6\text{-}\mathrm{CN-pyridazin-4-yl} & 2\text{-}\mathrm{Br-pyrimidin-5-yl} \\ 3\text{-}\mathrm{Er-pyridin-4-yl} & 6\text{-}\mathrm{OMe-pyridazin-4-yl} & 2\text{-}\mathrm{Br-pyrimidin-5-yl} \\ 3\text{-}\mathrm{Er-pyridin-4-yl} & 6\text{-}\mathrm{OMe-pyridazin-4-yl} & 2\text{-}\mathrm{Br-pyrimidin-5-yl} \\ 3\text{-}\mathrm{Er-pyridin-4-yl} & 6\text{-}\mathrm{OMe-pyridazin-4-yl} & 2\text{-}\mathrm{Br-pyrimidin-5-yl} \\ 3\text{-}\mathrm{CH}_2\text{-}\mathrm{pyridin-4-yl} & 6\text{-}\mathrm{N}(\mathrm{Me})_2\text{-}\mathrm{pyridazin-4-yl} & 2\text{-}\mathrm{Et-pyrimidin-5-yl} \\ 3\text{-}\mathrm{CH}_2\text{-}\mathrm{pyridin-4-yl} & 6\text{-}\mathrm{N}(\mathrm{Me})_2\text{-}\mathrm{pyridazin-4-yl} & 2\text{-}\mathrm{CH}_2\text{-}\mathrm{pyrimidin-5-yl} \\ 3\text{-}\mathrm{CH}_2\text{-}\mathrm{pyridin-4-yl} & 4\text{-}\mathrm{Cl-pyridazin-4-yl} & 2\text{-}\mathrm{CH}_2\text{-}\mathrm{pyrimidin-5-yl} \\ 3\text{-}\mathrm{CH}_2\text{-}\mathrm{pyrimidin-5-yl} & 3\text{-}\mathrm{CM-pyridazin-4-yl} & 2\text{-}\mathrm{CH}_2\text{-}\mathrm{pyrimidin-5-yl} \\ 2\text{-}\mathrm{OMe-pyrimidin-5-yl} & 3\text{-}\mathrm{CH}_2\text{-}\mathrm{lyriazin-5-yl} & 4\text{-}\mathrm{Cl-pyrimidin-5-yl} \\ 2\text{-}\mathrm{CMe-pyrimidin-5-yl} & 3\text{-}\mathrm{CH}_2\text{-}\mathrm{lyriazin-5-yl} & 4\text{-}\mathrm{Cl-pyrimidin-5-yl} \\ 2\text{-}\mathrm{CH}_2\text{-}\mathrm{pyrimidin-5-yl} & 4\text{-}\mathrm{Cl-pyrimidin-5-yl} & 4\text{-}\mathrm{Cl-pyrimidin-5-yl} \\ 2\text{-}\mathrm{CH}_2\text{-}pyrimidin-5-$			
6-CHO-pyridin-3-yl 4-Cl-pyridazin-3-yl 5-CF ₃ -pyrimidin-4-yl 6-CN-pyridin-3-yl 6-F-pyridazin-3-yl 5-CHO-pyrimidin-4-yl 5-CHO-pyrimidin-4-yl 5-CN-pyridin-3-yl 6-Br-pyridazin-4-yl 5-CN-pyrimidin-4-yl 5-CN-pyrimidin-4-yl 6-N(Me) ₂ -pyridin-3-yl 6-Br-pyridazin-4-yl 5-OMe-pyrimidin-4-yl 5-OMe-pyrimidin-4-yl 4-CN-6-Cl-pyridin-3-yl 6-Br-pyridazin-4-yl 5-N(Me) ₂ -pyrimidin-4-yl 5-N(Me) ₂ -pyrimidin-4-yl 3-F-pyridin-3-yl 6-Et-pyridazin-4-yl 5-N(Me) ₂ -pyrimidin-4-yl 3-F-pyridin-4-yl 6-CF ₃ -pyridazin-4-yl 2-F-pyrimidin-5-yl 3-Cl-pyridin-4-yl 6-CHO-pyridazin-4-yl 2-Br-pyrimidin-5-yl 2-Br-pyrimidin-5-yl 3-Et-pyridin-4-yl 6-OMe-pyridazin-4-yl 2-Br-pyrimidin-5-yl 3-Et-pyridin-4-yl 6-N(Me) ₂ -pyridazin-4-yl 2-Et-pyrimidin-5-yl 2-CF ₃ -pyrimidin-5-yl 2-CF ₃ -pyrimidin-5-yl 2-CF ₃ -pyrimidin-5-yl 2-CHO-pyridin-4-yl 4-Cl-pyridazin-4-yl 2-CH ₂ -pyrimidin-5-yl 2-CHO-pyrimidin-5-yl 2-CHO-pyrimidin-5-yl 3-CHO-pyridin-4-yl 4-Cl-pyridazin-4-yl 2-CHO-pyrimidin-5-yl 2-CHO-pyrimidin-5-yl 2-CHO-pyrimidin-5-yl 3-CN-pyridin-4-yl 3-CN-pyridin-5-yl 3-CF ₃ -[1,2,4]-triazin-6-yl 4-CF ₃ -phenyl 3-CN-pyrazin-2-yl 6-OMe-[1,2,4]-triazin-5-yl 3-OF ₃ -phenyl 3-ONe-pyrazin-2-yl 6-CN-[1,2,4]-triazin-3-yl 3-OCF ₃ -phenyl 3-OHe-pyrazin-2-yl 6-CN-[1,2,4]-triazin-3-yl 3-OCF ₃ -phenyl 3-CI-[1,2,4]-triazin-3-yl 3-OCF ₃ -phenyl 3-CI-[1,2,4]-triazin-3-yl 3-OCF ₃ -phenyl 3-CI-[1,2,4]-triazin-3-yl 3-OCF ₃ -phenyl 3-CI-[1,2,4]-triazin-3-yl 3-OCF ₃ -phenyl 3-OMe-pyrazin-2-yl 6-CN-[1,2,4]-triazin-3-yl 3-OCF ₃ -phenyl 3-CI-[1,2,4]-triazin-3-yl 3-OCF ₃ -phenyl 3-OMe-pyrazin-2-yl 6-CN-[1,2,4]-triazin-3-yl 3-OCF ₃ -phenyl 3-OL-[1,2,4]-triazin-3-yl 3-OCF ₃ -phenyl 3-OL-[1,2,4]-triazin-3-yl 3-OL-[1,2,4]-triazin-			
6-CN-pyridin-3-yl 6-F-pyridazin-3-yl 5-CHF ₂ -pyrimidin-4-yl 6-OGF ₃ -pyridin-3-yl 6-F-pyridazin-4-yl 5-CN-pyrimidin-4-yl 6-N(Me) ₂ -pyridin-3-yl 6-F-pyridazin-4-yl 5-OMe-pyrimidin-4-yl 5-OF ₃ -pyrimidin-4-yl 5-OF ₃ -pyrimidin-5-yl 2-F-pyrimidin-5-yl 3-F-pyrimidin-5-yl 3-F-pyrimidin-			
6-OMe-pyridin-3-yl 6-OCF ₃ -pyridin-3-yl 6-Cl-pyridazin-4-yl 5-CN-pyrimidin-4-yl 6-N(Me) ₂ -pyridin-3-yl 6-Ph-pyridin-3-yl 6-Ph-pyridin-3-yl 6-Ph-pyridin-3-yl 6-Ph-pyridin-3-yl 6-Ph-pyridin-4-yl 5-OMe-pyrimidin-4-yl 5-OMe-pyrimidin-4-yl 5-OMe-pyrimidin-4-yl 5-OMe-pyrimidin-4-yl 5-N(Me) ₂ -pyrimidin-4-yl 5-N(Me) ₂ -pyrimidin-4-yl 5-N(Me) ₂ -pyrimidin-4-yl 5-Ph-pyrimidin-4-yl 5-Ph-pyrimidin-5-yl 3-P-pyridin-4-yl 3-P-pyridin-5-yl 3-P-pyrimidin-5-yl 3-Pyrimidin-5-yl 3-Pyrimidin			
$\begin{array}{llll} 6\text{-OCF}_3\text{-pyridin-3-yl} & 6\text{-Cl-pyridazin-4-yl} & 5\text{-CN-pyrimidin-4-yl} \\ 6\text{-N(Me)}_2\text{-pyridin-3-yl} & 6\text{-Br-pyridazin-4-yl} & 5\text{-OMe-pyrimidin-4-yl} \\ 6\text{-Ph-pyridin-3-yl} & 6\text{-Br-pyridazin-4-yl} & 5\text{-OMe-pyrimidin-4-yl} \\ 4\text{-Cd-i-Cl-pyridin-3-yl} & 6\text{-Br-pyridazin-4-yl} & 5\text{-N(Me)}_2\text{-pyrimidin-4-yl} \\ 4\text{-CN-6-Cl-pyridin-3-yl} & 6\text{-Br-pyridazin-4-yl} & 5\text{-N(Me)}_2\text{-pyrimidin-4-yl} \\ 3\text{-F-pyridin-4-yl} & 6\text{-CB}_3\text{-pyridazin-4-yl} & 2\text{-F-pyrimidin-5-yl} \\ 3\text{-Br-pyridin-4-yl} & 6\text{-CH-pyridazin-4-yl} & 2\text{-Br-pyrimidin-5-yl} \\ 3\text{-Br-pyridin-4-yl} & 6\text{-CN-pyridazin-4-yl} & 2\text{-Br-pyrimidin-5-yl} \\ 3\text{-Br-pyridin-4-yl} & 6\text{-OMe-pyridazin-4-yl} & 2\text{-Br-pyrimidin-5-yl} \\ 3\text{-Br-pyridin-4-yl} & 6\text{-OMe-pyridazin-4-yl} & 2\text{-Me-pyrimidin-5-yl} \\ 3\text{-CF}_3\text{-pyridin-4-yl} & 6\text{-O(F}_3\text{-pyridazin-4-yl} & 2\text{-CF}_3\text{-pyrimidin-5-yl} \\ 3\text{-CH}_2\text{-pyridin-4-yl} & 6\text{-N(Me)}_2\text{-pyridazin-4-yl} & 2\text{-CH}_2\text{-pyrimidin-5-yl} \\ 3\text{-CHO-pyridin-4-yl} & 4\text{-Cl-pyridazin-4-yl} & 2\text{-CHO-pyrimidin-5-yl} \\ 3\text{-CN-pyridin-4-yl} & 4\text{-CN-pyridazin-4-yl} & 2\text{-CHO-pyrimidin-5-yl} \\ 2\text{-OMe-pyrimidin-5-yl} & 3\text{-CM}_3\text{-pyrimidin-5-yl} & 2\text{-CN-pyrimidin-5-yl} \\ 2\text{-ONe-pyrimidin-5-yl} & 3\text{-CF}_3\text{-[1,2,4]triazin-6-yl} & 4\text{-Cl-[1,2,4]triazin-3-yl} \\ 4\text{-CR}_3\text{-phenyl} & 4\text{-CN-pyriazin-2-yl} & 4\text{-CN-pyriazin-2-yl} & 4\text{-CN-pyriazin-2-yl} \\ 3\text{-CN-pyrazin-2-yl} & 6\text{-OMe-[1,2,4]triazin-5-yl} & 3\text{-OGF}_3\text{-phenyl} \\ 3\text{-OMe-pyrazin-2-yl} & 6\text{-CN-[1,2,4]triazin-3-yl} & 3\text{-OGF}_3\text{-phenyl} \\ 3\text{-OMe-pyrazin-2-yl} & 6\text{-Cl-[1,2,4]triazin-3-yl} & 3\text{-OdF}_3\text{-phenyl} \\ 3\text{-Ode-pyrazin-2-yl} & 6\text{-Cl-[1,2,4]triazin-3-yl} & 3\text{-Ode-Pyrazin-2-yl} \\ 3\text{-Ode-Pyrazin-2-yl} & 6-Cl-[1,2,4]triaz$			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	3-F-pyridin-4-yl	6-CF ₃ -pyridazin-4-yl	2-F-pyrimidin-5-yl
$\begin{array}{llllllllllllllllllllllllllllllllllll$		6-CHF ₂ -pyridazin-4-yl	2-Cl-pyrimidin-5-yl
3-I-pyridin-4-yl 6-CN-pyridazin-4-yl 2-I-pyrimidin-5-yl 3-Me-pyridin-4-yl 6-OMe-pyridazin-4-yl 2-Me-pyrimidin-5-yl 3-EI-pyridin-4-yl 6-OF ₃ -pyridazin-4-yl 2-EI-pyrimidin-5-yl 3-CF ₃ -pyridin-4-yl 6-N(Me) ₂ -pyridazin-4-yl 2-CF ₃ -pyrimidin-5-yl 3-CHF ₂ -pyrimidin-5-yl 2-CHO-pyridin-4-yl 4-CI-pyridazin-4-yl 2-CHO-pyrimidin-5-yl 2-OMe-pyrimidin-5-yl 3-OMe-[1,2,4]triazin-6-yl 4-CI-[1,2,4]triazin-5-yl 4-CI-[1,3,5]triazin-3-yl 2-N(Me) ₂ -pyrimidin-5-yl 6-Me-[1,2,4]triazin-5-yl 4-CF ₃ -phenyl 3-CI-pyrazin-2-yl 6-OMe-[1,2,4]triazin-5-yl 3-OMe-pyrazin-2-yl 6-OMe-[1,2,4]triazin-5-yl 3-OF ₃ -phenyl 3-CN-pyrazin-2-yl 6-CI-[1,2,4]triazin-5-yl 3-OF ₃ -phenyl 3-CI-[1,2,4]triazin-5-yl 3,5-di-OCF ₃ -phenyl 3-OMe-pyrazin-2-yl 6-CI-[1,2,4]triazin-3-yl 3,5-di-OCF ₃ -phenyl 3-OI-[1,2,4]triazin-6-yl 6-Me-[1,2,4]triazin-3-yl 3,5-di-OCF ₃ -phenyl 3,5-di-OI-phenyl 3-OI-[1,2,4]triazin-6-yl 6-Me-[1,2,4]triazin-3-yl 3,5-di-OI-phenyl 3,5			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	3-Me-pyridin-4-yl	6-OMe-pyridazin-4-yl	2-Me-pyrimidin-5-yl
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	3-Et-pyridin-4-yl		2-Et-pyrimidin-5-yl
3-CHO-pyridin-4-yl 4-Cl-pyridazin-4-yl 2-CHO-pyrimidin-5-yl 3-CN-pyridin-5-yl 3-CN-pyrimidin-5-yl 3-OMe-[1,2,4]triazin-6-yl 4-CN-pyrimidin-5-yl 6-CN-[1,2,4]triazin-3-yl 4-Cl-[1,3,5]triazin-3-yl 2-N(Me) ₂ -pyrimidin-5-yl 6-Cl-[1,2,4]triazin-5-yl 4-Cl-[1,3,5]triazin-2-yl 4-CF ₃ -phenyl 3-Cl-pyrazin-2-yl 6-OMe-[1,2,4]triazin-5-yl 3-ONe ₃ -pyrazin-2-yl 6-CN-[1,2,4]triazin-5-yl 3-OF ₃ -phenyl 3-CN-pyrazin-2-yl 6-Cl-[1,2,4]triazin-3-yl 3,5-di-OCF ₃ -phenyl 3,5-di-OCF ₃ -phenyl 3-OMe-pyrazin-2-yl 6-Cl-[1,2,4]triazin-3-yl 3,5-di-Olephenyl 3,5-di-Olephenyl 3-Cl-[1,2,4]triazin-3-yl 6-Cl-[1,2,4]triazin-3-yl			
3-CN-pyridin-4-yl 4-CN-pyridazin-4-yl 2-CN-pyrimidin-5-yl 2-OMe-pyrimidin-5-yl 3-OMe-[1,2,4]triazin-6-yl 4-Cl-[1,2,4]triazin-3-yl 4-Cl-[1,2,4]triazin-3-yl 4-Cl-[1,3,5]triazin-2-yl 2-PN-pyrimidin-5-yl 6-Cl-[1,2,4]triazin-5-yl 4-CF ₃ -phenyl 4-CF ₃ -phenyl 3-Cl-pyrazin-2-yl 6-OMe-[1,2,4]triazin-5-yl 3-OF ₃ -phenyl 3-CN-pyrazin-2-yl 6-Cl-[1,2,4]triazin-3-yl 3,5-di-OCF ₃ -phenyl 3-OL-[1,2,4]triazin-5-yl 3,5-di-OCF ₃ -phenyl 3-OL-[1,2,4]triazin-3-yl 3-Cl-[1,2,4]triazin-3-yl 3-Cl-[1,2,4]triazin-3-yl	3-CHF ₂ -pyridin-4-yl	6-Ph-pyridazin-4-yl	2-CHF ₂ -pyrimidin-5-yl
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	3-CHO-pyridin-4-yl	4-Cl-pyridazin-4-yl	2-CHO-pyrimidin-5-yl
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	3-CN-pyridin-4-yl	4-CN-pyridazin-4-yl	2-CN-pyrimidin-5-yl
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
2-Ph-pyrimidin-5-yl 6-Me-[1,2,4]triazin-5-yl 4-OCF ₃ -phenyl 3-Cl-[pyrazin-2-yl 6-OMe-[1,2,4]triazin-5-yl 3-OCF ₃ -phenyl 3-OF ₃ -phenyl 3-ONe-pyrazin-2-yl 6-CN-[1,2,4]triazin-5-yl 3,5-di-OCF ₃ -phenyl 3-OMe-pyrazin-2-yl 6-Cl-[1,2,4]triazin-3-yl 3,5-di-Cl-phenyl 3,5-di-Cl-phenyl 6-Me-[1,2,4]triazin-3-yl			
3-Cl-pyrazin-2-yl 6-OMe-[1,2,4]triazin-5-yl 3-OCF ₃ -phenyl 3,5-di-OCF ₃ -phenyl 3,5-di-OCF ₃ -phenyl 3-OMe-pyrazin-2-yl 6-Cl-[1,2,4]triazin-3-yl 3,5-di-Cl-phenyl 3,5-di-Cl-phenyl 3-Cl-[1,2,4]triazin-6-yl 6-Me-[1,2,4]triazin-3-yl			
3-CN-pyrazin-2-yl 6-CN-[1,2,4]triazin-5-yl 3,5-di-OCF ₃ -phenyl 3-OMe-pyrazin-2-yl 6-Cl-[1,2,4]triazin-3-yl 3,5-di-Cl-phenyl 3,5-di-Cl-phenyl 6-Me-[1,2,4]triazin-3-yl			
3-OMe-pyrazin-2-yl 6-Cl-[1,2,4]triazin-3-yl 3,5-di-Cl-phenyl 3-Cl-[1,2,4]triazin-6-yl 6-Me-[1,2,4]triazin-3-yl			
3-Cl-[1,2,4]triazin-6-yl 6-Me-[1,2,4]triazin-3-yl			

[0414] The present disclosure also includes Tables 2 through 1584. Each Table is constructed in the the same manner as Table 1 above, except that the row heading in Table 1 (i.e. " R^2 —Cl; Z—O; and R^3 —H (m=0)") is replaced with the respective row heading shown below. For example, the first entry in Table 2 is a compound of Formula 1 wherein R^1 is H, R^2 is Cl, R^3 is R^3 in the remainder of Formula 1 at the 5-position). The remainder of Tables 3 through 1584 is constructed the same way.

Table	Header Row
2 3	$R^2 = F, Z = O, R^3 = H (m = 0)$ $R^2 = F, Z = O, R^3 = 3-F$

-continued

Table	Header Row
4	$R^2 = F, Z = O, R^3 = 3-C1$
5	$R^2 = F, Z = O, R^3 = 3-Br$
6	$R^2 = F, Z = O, R^3 = 3-I$
7	$R^2 = F, Z = O, R^3 = 3-CN$
8	$R^2 = F, Z = O, R^3 = 3-NO_2$
9	$R^2 = F, Z = O, R^3 = 3-OMe$
10	$R^2 = F, Z = O, R^3 = 3\text{-OCF}_3$
11	$R^2 = F, Z = O, R^3 = 3-CF_3$
12	$R^2 = F, Z = O, R^3 = 3-CHF_2$
13	$R^2 = F, Z = O, R^3 = 3-CH_2F$
14	$R^2 = F, Z = O, R^3 = 3$ -CHO
15	$R^2 = F, Z = O, R^3 = 3-Me$
16	$R^2 = F, Z = O, R^3 = 3-Et$
17	$R^2 = F$, $Z = O$, $R^3 = 3$ -Ethynyl

Table Header Row Table Header Row 18 $R^2 = F, Z = O, R^3 = 3$ -Ethenyl 92 $R^2 = F, Z = O, R^3 = 6$ -NO 19 $R^2 = F, Z = O, R^3 = 3$ -SO ₂ Me 93 $R^2 = F, Z = O, R^3 = 6$ -OM 20 $R^2 = F, Z = O, R^3 = 3$ -O-Pr 94 $R^2 = F, Z = O, R^3 = 6$ -OC 21 $R^2 = F, Z = O, R^3 = 3$ -O-Pr 95 $R^2 = F, Z = O, R^3 = 6$ -CF 22 $R^2 = F, Z = O, R^3 = 3$ -i-Pr 96 $R^2 = F, Z = O, R^3 = 6$ -CH 23 $R^2 = F, Z = O, R^3 = 3$ -Ph 97 $R^2 = F, Z = O, R^3 = 6$ -CH 24 $R^2 = F, Z = S, R^3 = 3$ -F 98 $R^2 = F, Z = O, R^3 = 6$ -CH 25 $R^2 = F, Z = S, R^3 = 3$ -Cl 99 $R^2 = F, Z = O, R^3 = 6$ -Eth 26 $R^2 = F, Z = S, R^3 = 3$ -Br 100 $R^2 = F, Z = O, R^3 = 6$ -Eth 27 $R^2 = F, Z = S, R^3 = 3$ -CN 101 $R^2 = F, Z = O, R^3 = 6$ -Eth 28 $R^2 = F, Z = S, R^3 = 3$ -NO2 103 $R^2 = F, Z = O, R^3 = 6$ -Eth 29 $R^2 = F, Z = S, R^3 = 3$ -NO2 103 $R^2 = F, Z = O, R^3 = 6$ -Eth	e F ₃ 3 F ₂ ₂ F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e F ₃ 3 F ₂ ₂ F
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F ₃ 3 F ₂ ₂ F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 F ₂ ₂ F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F ₂ ₂ F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	₂ F
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.O
27 $R^2 = F, Z = S, R^3 = 3-I$ 101 $R^2 = F, Z = O, R^3 = 6-Eth$ 28 $R^2 = F, Z = S, R^3 = 3-CN$ 102 $R^2 = F, Z = O, R^3 = 6-Eth$ 29 $R^2 = F, Z = S, R^3 = 3-NO_2$ 103 $R^2 = F, Z = O, R^3 = 6-SO_2$	
28 $R^2 = F, Z = S, R^3 = 3$ -CN 102 $R^2 = F, Z = O, R^3 = 6$ -Eth 29 $R^2 = F, Z = S, R^3 = 3$ -NO ₂ 103 $R^2 = F, Z = O, R^3 = 6$ -SO	
29 $R_2^2 = F, Z = S, R_2^3 = 3-NO_2$ 103 $R_2^2 = F, Z = O, R_2^3 = 6-SO_2$	
30 $R^2 = F, Z = S, R^3 = 3$ -OMe 104 $R^2 = F, Z = O, R^3 = 6$ -OA	
31 $R^2 = F, Z = S, R^3 = 3 \cdot OCF_3$ 105 $R^2 = F, Z = O, R^3 = 6 \cdot C \cdot P$	
32 $R^2 = F, Z = S, R^3 = 3 - CF_3$ 106 $R^2 = F, Z = O, R^3 = 6 - i - Pr$	r
33 $R^2 = F, Z = S, R^3 = 3 - CHF_2$ 107 $R^2 = F, Z = O, R^3 = 6 - Ph$	
34 $R^2 = F, Z = S, R^3 = 3 - CH_2F$ 108 $R^2 = F, Z = O, R^3 = 3,4 - d$	
35 $R^2 = F, Z = S, R^3 = 3$ -CHO 109 $R^2 = F, Z = O, R^3 = 3$ -S-H	
36 $R^2 = F, Z = S, R^3 = 3$ -Me 110 $R^2 = F, Z = O, R^3 = 3$,6-d 37 $R^2 = F, Z = S, R^3 = 3$ -Et 111 $R^2 = F, Z = O, R^3 = 4$,5-d	
38 $R^2 = F, Z = S, R^3 = 3$ -Ethynyl 112 $R^2 = F, Z = O, R^3 = 3$,4-di	
39 $R^2 = F, Z = S, R^3 = 3$ -Ethenyl 113 $R^2 = F, Z = O, R^3 = 3,5$ -di	
40 $R^2 = F, Z = S, R^3 = 3-SO_2Me$ 114 $R^2 = F, Z = O, R^3 = 3,6-de$	
41 $R^2 = F, Z = S, R^3 = 3$ -OAc 115 $R^2 = F, Z = O, R^3 = 4,5$ -d	i-Cl
42 $R^2 = F, Z = S, R^3 = 3 - c - Pr$ 116 $R^2 = F, Z = O, R^3 = 3, 4 - d$	
43 $R^2 = F, Z = S, R^3 = 3-i-Pr$ 117 $R^2 = F, Z = O, R^3 = 3.5-d$	
44 $R^2 = F, Z = S, R^3 = 3-Ph$ 118 $R^2 = F, Z = O, R^3 = 3,6-d$ 45 $R^2 = F, Z = O, R^3 = 4-F$ 119 $R^2 = F, Z = O, R^3 = 4,5-d$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
47 $R^2 = F, Z = O, R^3 = 4-Br$ 121 $R^2 = F, Z = O, R^3 = 3,5-d$	
48 $R^2 = F, Z = O, R^3 = 4-I$ 122 $R^2 = F, Z = O, R^3 = 3,6-d$	
49 $R^2 = F, Z = O, R^3 = 4-CN$ 123 $R^2 = F, Z = O, R^3 = 4,5-d$	
50 $R^2 = F, Z = O, R^3 = 4 - NO_2$ 124 $R^2 = F, Z = O, R^3 = 3,4 - d$	
51 $R^2 = F, Z = O, R^3 = 4\text{-OMe}$ 125 $R^2 = F, Z = O, R^3 = 3,5\text{-di}$ 52 $R^2 = F, Z = O, R^3 = 4\text{-OCF}_3$ 126 $R^2 = F, Z = O, R^3 = 3,6\text{-di}$	
$R = F, Z = O, R = 4-Oct_3$ $R^2 = F, Z = O, R^3 = 4-CF_3$ $127 \qquad R^2 = F, Z = O, R^3 = 4.5-d$	
S4 $R^2 = F, Z = O, R^3 = 4 \cdot CHF_2$ 128 $R^2 = F, Z = O, R^3 = 3.4 \cdot d$	
55 $R^2 = F, Z = O, R^3 = 4 - CH_2\hat{F}$ 129 $R^2 = F, Z = O, R^3 = 3,5 - d$	
56 $R^2 = F, Z = O, R^3 = 4$ -CHO 130 $R^2 = F, Z = O, R^3 = 3$,6-di	
57 $R^2 = F, Z = O, R^3 = 4$ -Me 131 $R^2 = F, Z = O, R^3 = 4$ -50 $R^2 = F, Z = O, R^3 = 4$ -14 132 $R^2 = F, Z = O, R^3 = 4$ -4-15 132 $R^2 = F, Z = O, R^3 = 4$ -4-15 133 $R^2 = F, Z = O, R^3 = 4$ -15 134 $R^2 = F, Z = O, R^3 = 4$ -15 135 $R^2 = F, Z = O, R^3 = 4$ -15 135 $R^2 = F, Z = O, R^3 = 4$ -15 135 $R^2 = F, Z = O, R^3 = 4$ -15 135 $R^2 = F, Z = O, R^3 = 4$ -15 135 $R^2 = F, Z = O, R^3 = 4$ -15 135 $R^2 = F, Z = O, R^3 = 4$ -15 135 $R^2 = F, Z = O, R^3 = 4$ -15 135 $R^2 = F, Z = O, R^3 = 4$ -15 15 $R^2 = F, Z = O, R^3 = 4$ -15 15 $R^2 = F, Z = O, R^3 = 4$ -15 15 $R^2 = F, Z = O, R^3 = 4$ -15 15 $R^2 = F, Z = O, R^3 = 4$ -15 15 $R^2 = F, Z = O, R^3 = 4$ -15 15 $R^2 = F, Z = O, R^3 = 4$ -15 15 $R^2 = F, Z = O, R^3 = 4$ -15 15 $R^2 = F, Z = O, R^3 = 4$ -15 15 $R^2 = F, Z = O, R^3 = 4$ -15 15 $R^2 = F, Z = O, R^3 = 4$ -15 15 $R^2 = F, Z = O, R^3 = 4$ -15 15 $R^2 = F, Z = O, R^3 = 4$ -15 15 $R^2 = F, Z = O, R^3 = 4$ -15 15 $R^2 = F, Z = O, R^3 = 4$ -15 15 $R^2 = F, Z = O, R^3 = 4$ -15 15 $R^2 = F, Z = O, R^3 = 4$ -15 15 $R^2 = F, Z = O, R^3 = 4$ -15 15 $R^2 = F, Z = O, R^3 = A$ -15 15 $R^2 = F, Z = O, R^3 = A$ -15 15 $R^3 = F, Z = O, R^3 = A$ -15 15 $R^3 = F, Z = O, R^3 = A$ -15 15 $R^3 = F, Z = O, R^3 = A$ -15 15 $R^3 = A$ -15 15 $R^$	
58 $R^2 = F, Z = O, R^3 = 4$ -Et 132 $R^2 = F, Z = O, R^3 = 3$,4-d 59 $R^2 = F, Z = O, R^3 = 4$ -Ethynyl 133 $R^2 = F, Z = O, R^3 = 3$,5-d	
60 $R^2 = F, Z = O, R^3 = 4$ -Ethenyl 134 $R^2 = F, Z = O, R^3 = 3,6$ -di	
61 $R^2 = F$, $Z = O$, $R^3 = 4-SO_2Me$ 135 $R^2 = F$, $Z = O$, $R^3 = 4,5-d$	
62 $R^2 = F, Z = O, R^3 = 4 - OAc$ 136 $R^2 = F, Z = O, R^3 = 3 - CN$	
63 $R^2 = F, Z = O, R^3 = 4$ -c-Pr 137 $R^2 = F, Z = O, R^3 = 3$ -CN	
64 $R^2 = F, Z = O, R^3 = 4-i-Pr$ 138 $R^2 = F, Z = O, R^3 = 3-CN$	
65 $R^2 = F, Z = O, R^3 = 4-Ph$ 139 $R^2 = F, Z = O, R^3 = 3-CN$ 66 $R^2 = F, Z = O, R^3 = 5-F$ 140 $R^2 = F, Z = O, R^3 = 3-CN$	
67 $R^2 = F, Z = 0, R^3 = 5 - CI$ 141 $R^2 = F, Z = 0, R^3 = 3 - CN$	
68 $R^2 = F, Z = O, R^3 = 5$ -Br 142 $R^2 = F, Z = O, R^3 = 3$ -CN	
69 $R^2 = F, Z = O, R^3 = 5 - I$ 143 $R^2 = F, Z = O, R^3 = 3 - CN$, 6-Br
70 $R^2 = F, Z = O, R^3 = 5 - CN$ 144 $R^2 = F, Z = O, R^3 = 3 - CN$	
71 $R^2 = F, Z = O, R^3 = 5 - NO_2$ 145 $R^2 = F, Z = O, R^3 = 3 - CN$	
72 R ² = F, Z = O, R ³ = 5-OMe 146 R ² = Br, Z = O, R ³ = H (r 73 R ² = F, Z = O, R ³ = 5-OCF ₃ 147 R ² = Br, Z = O, R ³ = 3-F	n = 0)
73 $R = P, Z = 0, R = 3-0.0P_3$	
75 $R^2 = F, Z = O, R^3 = 5$ -CHF ₂ 149 $R^2 = Br, Z = O, R^3 = 3$ -Bi	
76 $R^2 = F, Z = O, R^3 = 5 - CH_2F$ 150 $R^2 = Br, Z = O, R^3 = 3 - I$	
77 $R^2 = F, Z = O, R^3 = 5$ -CHO 151 $R^2 = Br, Z = O, R^3 = 3$ -Cl	
78 $R^2 = F, Z = O, R^3 = 5$ -Me 152 $R^2 = Br, Z = O, R^3 = 3$ -No	4
79 $R^2 = F, Z = O, R^3 = 5-Et$ 153 $R^2 = Br, Z = O, R^3 = 3-Ot$	
80 $R^2 = F, Z = O, R^3 = 5$ -Ethynyl 154 $R^2 = Br, Z = O, R^3 = 3$ -Otto $R^2 = R, Z = O, R^3 = 5$ -Ethynyl 155 $R^2 = R, Z = O, R^3 = 3$ -Otto $R^3 = R, Z = O, R^3 = R, Z = O, R^3 = A$ -Otto $R^3 = R, Z = O, R^3 = A$ -O	
81 $R^2 = F, Z = O, R^3 = 5$ -Ethenyl 155 $R^2 = Br, Z = O, R^3 = 3$ -Cl	
82 $R^2 = F, Z = O, R^3 = 5-SO_2Me$ 156 $R^2 = Br, Z = O, R^3 = 3-CI$ 83 $R^2 = F, Z = O, R^3 = 5-OAc$ 157 $R^2 = Br, Z = O, R^3 = 3-CI$	
83 $R^{+} = F, Z = O, R^{+} = 5-OAc$ 15/ $R^{+} = BF, Z = O, R^{+} = 5-CI$ 84 $R^{2} = F, Z = O, R^{3} = 5-c-Pr$ 158 $R^{2} = BF, Z = O, R^{3} = 3-CI$	
85 $R^2 = F, Z = O, R^3 = 5-i-Pr$ 158 $R = Bf, Z = O, R = 3-Cf$ 85 $R^2 = F, Z = O, R^3 = 5-i-Pr$ 159 $R^2 = Br, Z = O, R^3 = 3-M$	
86 $R^2 = F, Z = O, R^3 = 5-Ph$ 160 $R^2 = Br, Z = O, R^3 = 3-Eh$	
87 $R^2 = F, Z = O, R^3 = 6-F$	
88 $R^2 = F, Z = O, R^3 = 6$ -Cl 162 $R^2 = Br, Z = O, R^3 = 3$ -Et	
89 $R^2 = F, Z = O, R^3 = 6$ -Br 163 $R^2 = Br, Z = O, R^3 = 3$ -SC	*
90 $R^2 = F, Z = O, R^3 = 6-I$ 164 $R^2 = Br, Z = O, R^3 = 3-O$	
91 $R^2 = F, Z = O, R^3 = 6$ -CN 165 $R^2 = Br, Z = O, R^3 = 3$ -c-	Pr

Table	Header Row	Table	Header Row
166	$R^2 = Br, Z = O, R^3 = 3-i-Pr$	240	$R^2 = Br, Z = O, R^3 = 6\text{-CHF}_2$
167	$R^2 = Br, Z = O, R^3 = 3-Ph$	241	$R^2 = Br, Z = O, R^3 = 6-CH_2F$
168	$R^2 = Br, Z = S, R^3 = 3-F$	242	$R^2 = Br, Z = O, R^3 = 6-CHO$
169	$R^2 = Br, Z = S, R^3 = 3-C1$	243	$R^2 = Br, Z = O, R^3 = 6-Me$
170	$R^2 = Br, Z = S, R^3 = 3-Br$	244	$R^2 = Br, Z = O, R^3 = 6-Et$
171	$R^2 = Br, Z = S, R^3 = 3-I$	245	$R^2 = Br, Z = O, R^3 = 6$ -Ethynyl
172	$R^2 = Br, Z = S, R^3 = 3-CN$	246	$R^2 = Br$, $Z = O$, $R^3 = 6$ -Ethenyl
173	$R^2 = Br, Z = S, R^3 = 3-NO_2$	247	$R^2 = Br, Z = O, R^3 = 6-SO_2Me$
174	$R^2 = Br, Z = S, R^3 = 3 - OMe$	248	$R^2 = Br, Z = O, R^3 = 6\text{-OAc}$
175 176	$R^2 = Br, Z = S, R^3 = 3\text{-OCF}_3$ $R^2 = Br, Z = S, R^3 = 3\text{-CF}_3$	249 250	$R^2 = Br, Z = O, R^3 = 6-c-Pr$ $R^2 = Br, Z = O, R^3 = 6-i-Pr$
177	$R = BI, Z = S, R = 3-CF_3$ $R^2 = Br, Z = S, R^3 = 3-CHF_2$	251	R = BI, Z = O, R = 0-1-11 $R^2 = Br, Z = O, R^3 = 6$ -Ph
178	$R^2 = Br, Z = S, R^3 = 3-CH_2F$	252	$R^2 = Br, Z = O, R^3 = 3,4-di-F$
179	$R^2 = Br, Z = S, R^3 = 3$ -CHO	253	$R^2 = Br, Z = O, R^3 = 3.5-di-F$
180	$R^2 = Br, Z = S, R^3 = 3-Me$	254	$R^2 = Br, Z = O, R^3 = 3,6-di-F$
181	$R^2 = Br, Z = S, R^3 = 3-Et$	255	$R^2 = Br, Z = O, R^3 = 4,5-di-F$
182	$R^2 = Br$, $Z = S$, $R^3 = 3$ -Ethynyl	256	$R^2 = Br, Z = O, R^3 = 3,4-di-Cl$
183	$R^2 = Br$, $Z = S$, $R^3 = 3$ -Ethenyl	257	$R^2 = Br, Z = O, R^3 = 3,5-di-Cl$
184	$R^2 = Br, Z = S, R^3 = 3-SO_2Me$	258	$R^2 = Br, Z = O, R^3 = 3,6-di-Cl$
185	$R^2 = Br, Z = S, R^3 = 3-OAc$	259	$R^2 = Br, Z = O, R^3 = 4,5-di-Cl$
186	$R^2 = Br, Z = S, R^3 = 3-c-Pr$	260	$R^2 = Br, Z = O, R^3 = 3,4-di-Br$
187	$R^2 = Br, Z = S, R^3 = 3-i-Pr$	261	$R^2 = Br, Z = O, R^3 = 3.5-di-Br$
188	$R^2 = Br, Z = S, R^3 = 3-Ph$	262	$R^2 = Br, Z = O, R^3 = 3,6-di-Br$
189	$R^2 = Br, Z = O, R^3 = 4-F$	263	$R^2 = Br, Z = O, R^3 = 4.5 \text{-di-Br}$
190	$R^2 = Br, Z = O, R^3 = 4-Cl$	264	$R^2 = Br, Z = O, R^3 = 3,4-di-CN$
191	$R^2 = Br, Z = O, R^3 = 4-Br$ $R^2 = Br, Z = O, R^3 = 4-I$	265	$R^2 = Br, Z = O, R^3 = 3.5 - di - CN$
192 193	R = BI, Z = O, R = 4-I $R^2 = Br, Z = O, R^3 = 4-CN$	266 267	$R^2 = Br, Z = O, R^3 = 3,6-di-CN$ $R^2 = Br, Z = O, R^3 = 4,5-di-CN$
194	$R^2 = Br, Z = O, R^3 = 4-NO_2$	268	$R^2 = Br, Z = O, R^3 = 3,4-di-Me$
195	$R^2 = Br, Z = O, R^3 = 4-OMe$	269	$R^2 = Br, Z = O, R^3 = 3,5-di-Me$
196	$R^2 = Br, Z = O, R^3 = 4-OCF_3$	270	$R^2 = Br, Z = O, R^3 = 3,6-di-Me$
197	$R^2 = Br, Z = O, R^3 = 4-CF_3$	271	$R^2 = Br, Z = O, R^3 = 4,5$ -di-Me
198	$R^2 = Br, Z = O, R^3 = 4-CHF_2$	272	$R^2 = Br, Z = O, R^3 = 3,4-di-OMe$
199	$R^2 = Br, Z = O, R^3 = 4-CH_2F$	273	$R^2 = Br, Z = O, R^3 = 3.5$ -di-OMe
200	$R^2 = Br, Z = O, R^3 = 4\text{-CHO}$	274	$R^2 = Br, Z = O, R^3 = 3,6-di-OMe$
201	$R^2 = Br, Z = O, R^3 = 4-Me$	275	$R^2 = Br, Z = O, R^3 = 4,5-di-OMe$
202	$R^2 = Br, Z = O, R^3 = 4-Et$	276	$R^2 = Br, Z = O, R^3 = 3,4-di-CF_3$
203	$R^2 = Br$, $Z = O$, $R^3 = 4$ -Ethynyl	277	$R^2 = Br, Z = O, R^3 = 3,5-di-CF_3$
204	$R^2 = Br$, $Z = O$, $R^3 = 4$ -Ethenyl	278	$R^2 = Br, Z = O, R^3 = 3,6-di-CF_3$
205	$R^2 = Br, Z = O, R^3 = 4-SO_2Me$	279	$R^2 = Br, Z = O, R^3 = 4,5-di-CF_3$
206	$R^2 = Br, Z = O, R^3 = 4-OAc$	280	$R^2 = Br, Z = O, R^3 = 3-CN, 4-Me$
207	$R^2 = Br, Z = O, R^3 = 4-c-Pr$	281	$R^2 = Br, Z = O, R^3 = 3-CN, 4-F$
208	$R^2 = Br, Z = O, R^3 = 4-i-Pr$	282	$R^2 = Br, Z = O, R^3 = 3-CN, 4-Br$
209 210	$R^2 = Br, Z = O, R^3 = 4-Ph$ $R^2 = Br, Z = O, R^3 = 5-F$	283 284	$R^2 = Br, Z = O, R^3 = 3-CN, 4-OMe$
210	$R^{-} = Br, Z = O, R^{-} = 3-r$ $R^{2} = Br, Z = O, R^{3} = 5-C1$	285 285	$R^2 = Br, Z = O, R^3 = 3-CN, 4-CF_3$ $R^2 = Br, Z = O, R^3 = 3-CN, 6-Me$
212	$R^2 = Br, Z = O, R^3 = 5-Br$	286	$R^2 = Br, Z = O, R^3 = 3-CN, 6-F$
213	$R^2 = Br, Z = O, R^3 = 5-I$	287	$R^2 = Br, Z = O, R^3 = 3-CN, 6-Br$
214	$R^2 = Br, Z = O, R^3 = 5-CN$	288	$R^2 = Br, Z = O, R^3 = 3-CN, 6-OMe$
215	$R^2 = Br, Z = O, R^3 = 5-NO_2$	289	$R^2 = Br, Z = O, R^3 = 3-CN, 6-CF_3$
216	$R^2 = Br, Z = O, R^3 = 5-OMe$	290	$R^2 = CI, Z = O, R^3 = H (m = 0)$
217	$R^2 = Br, Z = O, R^3 = 5\text{-OCF}_3$	291	$R^2 = Cl, Z = O, R^3 = 3-F$
218	$R^2 = Br, Z = O, R^3 = 5 - CF_3$	292	$R^2 = Cl, Z = O, R^3 = 3-Cl$
219	$R^2 = Br, Z = O, R^3 = 5-CHF_2$	293	$R^2 = CI, Z = O, R^3 = 3-Br$
220	$R^2 = Br, Z = O, R^3 = 5-CH_2F$	294	$R^2 = Cl, Z = O, R^3 = 3-I$
221	$R^2 = Br, Z = O, R^3 = 5$ -CHO	295	$R^2 = Cl, Z = O, R^3 = 3-CN$
222	$R^2 = Br, Z = O, R^3 = 5-Me$	296	$R^2 = Cl, Z = O, R^3 = 3-NO_2$
223	$R^2 = Br, Z = O, R^3 = 5-Et$	297	$R^2 = Cl, Z = O, R^3 = 3-OMe$
224	$R^2 = Br$, $Z = O$, $R^3 = 5$ -Ethynyl	298	$R^2 = CI, Z = O, R^3 = 3 - OCF_3$
225	$R^2 = Br$, $Z = O$, $R^3 = 5$ -Ethenyl	299	$R^2 = CI, Z = O, R^3 = 3 - CF_3$
226	$R^2 = Br, Z = O, R^3 = 5-SO_2Me$	300	$R^2 = CI, Z = O, R^3 = 3 - CHF_2$
227	$R^2 = Br, Z = O, R^3 = 5-OAc$	301	$R^2 = CI, Z = O, R^3 = 3 - CH_2F$
228	$R^2 = Br, Z = O, R^3 = 5-c-Pr$	302	$R^2 = CI, Z = O, R^3 = 3$ -CHO
229	$R^2 = Br, Z = O, R^3 = 5-i-Pr$	303	$R^2 = CI, Z = O, R^3 = 3$ -Me
230	$R^2 = Br, Z = O, R^3 = 5-Ph$	304	$R^2 = CI, Z = O, R^3 = 3-Et$
231	$R^2 = Br, Z = O, R^3 = 6-F$	305	$R^2 = Cl, Z = O, R^3 = 3-Ethynyl$
232	$R^2 = Br, Z = O, R^3 = 6-Cl$	306	$R^2 = Cl, Z = O, R^3 = 3$ -Ethenyl
233	$R^2 = Br, Z = O, R^3 = 6-Br$	307	$R^2 = CI, Z = O, R^3 = 3-SO_2Me$
234	$R^2 = Br, Z = O, R^3 = 6-I$	308	$R^2 = CI, Z = O, R^3 = 3-OAc$
235	$R^2 = Br, Z = O, R^3 = 6-CN$	309	$R^2 = Cl$, $Z = O$, $R^3 = 3$ -c-Pr
	$R^2 = Br, Z = O, R^3 = 6-NO_2$	310	$R^2 = Cl, Z = O, R^3 = 3-i-Pr$
236			
237	$R^2 = Br, Z = O, R^3 = 6-OMe$	311	$R^2 = Cl, Z = O, R^3 = 3-Ph$
	$R^2 = Br, Z = O, R^3 = 6 \cdot OMe$ $R^2 = Br, Z = O, R^3 = 6 \cdot OCF_3$ $R^2 = Br, Z = O, R^3 = 6 \cdot CF_3$	311 312 313	$R^2 = CI, Z = O, R^3 = 3-Ph$ $R^2 = CI, Z = S, R^3 = 3-F$ $R^2 = CI, Z = S, R^3 = 3-CI$

	-continued		-continued
Table	Header Row	Table	Header Row
314	$R^2 = Cl, Z = S, R^3 = 3-Br$	388	$R^2 = Cl, Z = O, R^3 = 6-Et$
315	$R^2 = Cl, Z = S, R^3 = 3-I$	389	$R^2 = Cl$, $Z = O$, $R^3 = 6$ -Ethynyl
316	$R^2 = Cl, Z = S, R^3 = 3-CN$	390	$R^2 = Cl$, $Z = O$, $R^3 = 6$ -Ethenyl
317	$R^2 = Cl, Z = S, R^3 = 3-NO_2$	391	$R^2 = CI, Z = O, R^3 = 6-SO_2Me$
318 319	$R^2 = Cl, Z = S, R^3 = 3$ -OMe $R^2 = Cl, Z = S, R^3 = 3$ -OCF ₃	392 393	$R^2 = CI, Z = O, R^3 = 6\text{-OAc}$ $R^2 = CI, Z = O, R^3 = 6\text{-c-Pr}$
320	$R^2 = CI, Z = S, R^3 = 3 - CF_3$ $R^2 = CI, Z = S, R^3 = 3 - CF_3$	394	$R^2 = CI, Z = O, R^3 = 6-i-Pr$
321	$R^2 = Cl, Z = S, R^3 = 3 - CHF_2$	395	$R^2 = CI, Z = O, R^3 = 6-Ph$
322	$R^2 = Cl$, $Z = S$, $R^3 = 3-CH_2F$	396	$R^2 = Cl, Z = O, R^3 = 3,4-di-F$
323	$R^2 = Cl, Z = S, R^3 = 3\text{-CHO}$	397	$R^2 = Cl, Z = O, R^3 = 3.5-di-F$
324	$R^2 = C1, Z = S, R^3 = 3-Me$	398	$R^2 = Cl, Z = O, R^3 = 3,6-di-F$
325 326	$R^2 = Cl, Z = S, R^3 = 3-Et$ $R^2 = Cl, Z = S, R^3 = 3-Ethynyl$	399 400	$R^2 = CI, Z = O, R^3 = 4,5-di-F$ $R^2 = CI, Z = O, R^3 = 3,4-di-CI$
327	$R^2 = Cl$, $Z = S$, $R^3 = 3$ -Ethenyl	401	$R^2 = Cl, Z = O, R^3 = 3,5-di-Cl$
328	$R^2 = Cl$, $Z = S$, $R^3 = 3-SO_2Me$	402	$R^2 = Cl, Z = O, R^3 = 3,6-di-Cl$
329	$R^2 = Cl, Z = S, R^3 = 3-OAc$	403	$R^2 = Cl, Z = O, R^3 = 4,5-di-Cl$
330	$R^2 = Cl, Z = S, R^3 = 3-c-Pr$	404	$R^2 = Cl, Z = O, R^3 = 3,4-di-Br$
331	$R^2 = Cl, Z = S, R^3 = 3-i-Pr$ $R^2 = Cl, Z = S, R^3 = 3-Ph$	405	$R^2 = CI, Z = O, R^3 = 3.5-di-Br$ $R^2 = CI, Z = O, R^3 = 3.6-di-Br$
332 333	R = CI, Z = S, R = 3-PII $R^2 = CI, Z = O, R^3 = 4-F$	406 407	R = CI, Z = O, R = 3,0-dI-Br $R^2 = CI, Z = O, R^3 = 4,5-dI-Br$
334	$R^2 = Cl, Z = O, R^3 = 4-Cl$	408	$R^2 = Cl, Z = O, R^3 = 3,4-di-CN$
335	$R^2 = Cl, Z = O, R^3 = 4-Br$	409	$R^2 = Cl, Z = O, R^3 = 3.5$ -di-CN
336	$R^2 = Cl, Z = O, R^3 = 4-I$	410	$R^2 = Cl, Z = O, R^3 = 3,6-di-CN$
337	$R^2 = Cl, Z = O, R^3 = 4-CN$	411	$R^2 = Cl, Z = O, R^3 = 4,5-di-CN$
338	$R^2 = Cl, Z = O, R^3 = 4-NO_2$ $R^2 = Cl, Z = O, R^3 = 4-OMe$	412	$R^2 = CI, Z = O, R^3 = 3,4-di-Me$ $R^2 = CI, Z = O, R^3 = 3,5-di-Me$
339 340	R = C1, Z = 0, R = 4-OMe $R^2 = C1, Z = 0, R^3 = 4-OCF_3$	413 414	R = CI, Z = O, R = 3,5-dI-Me $R^2 = CI, Z = O, R^3 = 3,6-dI-Me$
341	$R^2 = Cl, Z = O, R^3 = 4 - CF_3$	415	$R^2 = CI, Z = O, R^3 = 4.5$ -di-Me
342	$R^2 = Cl, Z = O, R^3 = 4\text{-CHF}_2$	416	$R^2 = Cl, Z = O, R^3 = 3,4-di-OMe$
343	$R^2 = CI, Z = O, R^3 = 4-CH_2F$	417	$R^2 = Cl, Z = O, R^3 = 3,5-di-OMe$
344	$R^2 = Cl, Z = O, R^3 = 4\text{-CHO}$	418	$R^2 = CI, Z = O, R^3 = 3,6-di-OMe$
345	$R^2 = Cl, Z = O, R^3 = 4-Me$	419	$R^2 = CI, Z = O, R^3 = 4.5$ -di-OMe $R^2 = CI, Z = O, R^3 = 3.4$ -di-CF ₃
346 347	$R^2 = Cl, Z = O, R^3 = 4-Et$ $R^2 = Cl, Z = O, R^3 = 4-Ethynyl$	420 421	$R = CI, Z = O, R = 3,4-dI-CF_3$ $R^2 = CI, Z = O, R^3 = 3,5-dI-CF_3$
348	$R^2 = Cl$, $Z = O$, $R^3 = 4$ -Ethenyl	422	$R^2 = CI, Z = O, R^3 = 3,6-di-CF_3$ $R^2 = CI, Z = O, R^3 = 3,6-di-CF_3$
349	$R^2 = CI, Z = O, R^3 = 4-SO_2Me$	423	$R^2 = CI, Z = O, R^3 = 4,5-di-CF_3$
350	$R^2 = Cl, Z = O, R^3 = 4-OAc$	424	$R^2 = Cl, Z = O, R^3 = 3-CN, 4-Me$
351	$R^2 = Cl, Z = O, R^3 = 4-c-Pr$	425	$R^2 = CI, Z = O, R^3 = 3-CN, 4-F$
352 353	$R^2 = Cl, Z = O, R^3 = 4-i-Pr$ $R^2 = Cl, Z = O, R^3 = 4-Ph$	426 427	$R^2 = Cl, Z = O, R^3 = 3-CN, 4-Br$ $R^2 = Cl, Z = O, R^3 = 3-CN, 4-OMe$
354	$R^2 = Cl, Z = O, R^3 = 5-F$	428	$R^2 = CI, Z = O, R^3 = 3-CN, 4-CF_3$
355	$R^2 = CI, Z = O, R^3 = 5-CI$	429	$R^2 = CI, Z = O, R^3 = 3-CN, 6-Me$
356	$R^2 = Cl, Z = O, R^3 = 5-Br$	430	$R^2 = Cl, Z = O, R^3 = 3-CN, 6-F$
357	$R^2 = C1, Z = O, R^3 = 5-I$	431	$R^2 = Cl, Z = O, R^3 = 3-CN, 6-Br$
358	$R^2 = Cl, Z = O, R^3 = 5-CN$	432	$R^2 = Cl, Z = O, R^3 = 3-CN, 6-OMe$
359 360	$R^2 = Cl, Z = O, R^3 = 5-NO_2$ $R^2 = Cl, Z = O, R^3 = 5-OMe$	433 434	$R^2 = CI, Z = O, R^3 = 3-CN, 6-CF_3$ $R^2 = I, Z = O, R^3 = H (m = 0)$
361	$R^2 = CI, Z = O, R^3 = 5 - OCF_3$	435	$R^2 = I, Z = O, R^3 = 3-F$
362	$R^2 = Cl, Z = O, R^3 = 5 - CF_3$	436	$R^2 = I, Z = O, R^3 = 3-CI$
363	$R^2 = Cl, Z = O, R^3 = 5-CHF_2$	437	$R^2 = I, Z = O, R^3 = 3-Br$
364	$R^2 = Cl, Z = O, R^3 = 5-CH_2F$	438	$R^2 = I, Z = O, R^3 = 3-I$
365	$R^2 = Cl, Z = O, R^3 = 5$ -CHO $R^2 = Cl, Z = O, R^3 = 5$ -Me	439	$R^2 = I, Z = O, R^3 = 3-CN$ $R^2 = I, Z = O, R^3 = 3-NO_2$
366 367	R = CI, Z = O, R = 3-Me $R^2 = CI, Z = O, R^3 = 5-Et$	440 441	$R = 1, Z = 0, R = 3-NO_2$ $R^2 = I, Z = 0, R^3 = 3-OMe$
368	$R^2 = Cl$, $Z = O$, $R^3 = 5$ -Ethynyl	442	$R^2 = I, Z = O, R^3 = 3 - OCF_3$
369	$R^2 = Cl$, $Z = O$, $R^3 = 5$ -Ethenyl	443	$R^2 = I, Z = O, R^3 = 3 - CF_3$
370	$R^2 = Cl, Z = O, R^3 = 5-SO_2Me$	444	$R^2 = I, Z = O, R^3 = 3\text{-CHF}_2$
371	$R^2 = Cl, Z = O, R^3 = 5-OAc$	445	$R^2 = I, Z = O, R^3 = 3 - CH_2F$
372	$R^2 = Cl, Z = O, R^3 = 5-c-Pr$	446	$R^2 = I, Z = O, R^3 = 3$ -CHO
373 374	$R^2 = Cl, Z = O, R^3 = 5-i-Pr$ $R^2 = Cl, Z = O, R^3 = 5-Ph$	447 448	$R^2 = I, Z = O, R^3 = 3$ -Me $R^2 = I, Z = O, R^3 = 3$ -Et
374 375	$R^{-} = CI, Z = O, R^{-} = 5-PI$ $R^{2} = CI, Z = O, R^{3} = 6-F$	448 449	$R^{2} = 1, Z = 0, R^{2} = 3-Et$ $R^{2} = I, Z = 0, R^{3} = 3-Ethynyl$
376	$R^2 = Cl, Z = O, R^3 = 6-Cl$	450	$R^2 = I, Z = O, R^3 = 3$ -Ethenyl
377	$R^2 = CI, Z = O, R^3 = 6-Br$	451	$R^2 = I, Z = O, R^3 = 3-SO_2Me$
378	$R^2 = Cl, Z = O, R^3 = 6-I$	452	$R^2 = I, Z = O, R^3 = 3-OAc$
379	$R^2 = Cl, Z = O, R^3 = 6-CN$	453	$R^2 = I, Z = O, R^3 = 3-c-Pr$
380	$R^2 = Cl, Z = O, R^3 = 6-NO_2$	454	$R^2 = I, Z = O, R^3 = 3-i-Pr$
381	$R^2 = Cl, Z = O, R^3 = 6-OMe$	455	$R^2 = I, Z = O, R^3 = 3-Ph$
382	$R^2 = Cl, Z = O, R^3 = 6\text{-OCF}_3$	456	$R^2 = I, Z = S, R^3 = 3-F$
383	$R^2 = Cl, Z = O, R^3 = 6 - CF_3$	457	$R^2 = I, Z = S, R^3 = 3-CI$
384	$R^2 = CI, Z = O, R^3 = 6 - CHF_2$	458	$R^2 = I, Z = S, R^3 = 3-Br$
385 386	$R^2 = Cl, Z = O, R^3 = 6-CH_2F$ $R^2 = Cl, Z = O, R^3 = 6-CHO$	459 460	$R^2 = I, Z = S, R^3 = 3-I$ $R^2 = I, Z = S, R^3 = 3-CN$
387	$R^{-} = CI, Z = O, R^{-} = 0$ -CHO $R^{2} = CI, Z = O, R^{3} = 6$ -Me	461	$R^{2} = 1, Z = S, R^{3} = 3 - CN$ $R^{2} = I, Z = S, R^{3} = 3 - NO_{2}$
301	$\mathbf{R} = \mathbf{O}_1, \mathbf{L} = \mathbf{O}_2, \mathbf{R} = \mathbf{O}_2$	401	$K = 1, L = 0, K = J-MO_2$

-continued -continued

	-continued		-continued
Table	Header Row	Table	Header Row
462	$R^2 = I, Z = S, R^3 = 3$ -OMe	536	$R^2 = I, Z = O, R^3 = 6-OAc$
463	$R^2 = I, Z = S, R^3 = 3 \text{-OCF}_3$	537	$R^2 = I, Z = O, R^3 = 6 - c - Pr$
464 465	$R^2 = I, Z = S, R^3 = 3-CF_3$ $R^2 = I, Z = S, R^3 = 3-CHF_2$	538 539	$R^2 = I, Z = O, R^3 = 6-i-Pr$ $R^2 = I, Z = O, R^3 = 6-Ph$
466	$R^2 = I, Z = S, R^3 = 3-CH_2F$	540	$R^2 = I, Z = O, R^3 = 3,4-di-F$
467	$R^2 = I, Z = S, R^3 = 3$ -CHO	541	$R^2 = I, Z = O, R^3 = 3,5-di-F$
468	$R^2 = I, Z = S, R^3 = 3$ -Me	542	$R^2 = I, Z = O, R^3 = 3,6-di-F$
469 470	$R^2 = I, Z = S, R^3 = 3-Et$ $R^2 = I, Z = S, R^3 = 3-Ethynyl$	543 544	$R^2 = I, Z = O, R^3 = 4,5-di-F$ $R^2 = I, Z = O, R^3 = 3,4-di-Cl$
471	$R^2 = I$, $Z = S$, $R^3 = 3$ -Ethenyl	545	$R^2 = I, Z = O, R^3 = 3,5$ -di-Cl
472	$R^2 = I, Z = S, R^3 = 3-SO_2Me$	546	$R^2 = I, Z = O, R^3 = 3,6-di-Cl$
473 474	$R^2 = I, Z = S, R^3 = 3\text{-OAc}$ $R^2 = I, Z = S, R^3 = 3\text{-c-Pr}$	547 548	$R^2 = I, Z = O, R^3 = 4,5-di-Cl$ $R^2 = I, Z = O, R^3 = 3,4-di-Br$
475	$R^2 = I, Z = S, R^3 = 3-i-Pr$	549	$R^2 = I, Z = O, R^3 = 3,5-di-Br$
476	$R^2 = I, Z = S, R^3 = 3-Ph$	550	$R^2 = I, Z = O, R^3 = 3,6-di-Br$
477	$R^2 = I, Z = O, R^3 = 4-F$	551	$R^2 = I, Z = O, R^3 = 4.5 - di - Br$
478 479	$R^2 = I, Z = O, R^3 = 4-CI$ $R^2 = I, Z = O, R^3 = 4-Br$	552 553	$R^2 = I, Z = O, R^3 = 3,4-di-CN$ $R^2 = I, Z = O, R^3 = 3,5-di-CN$
480	$R^2 = I, Z = O, R^3 = 4-I$	554	$R^2 = I, Z = O, R^3 = 3,6$ -di-CN
481	$R^2 = I, Z = O, R^3 = 4-CN$	555	$R^2 = I, Z = O, R^3 = 4,5-di-CN$
482	$R^2 = I, Z = O, R^3 = 4-NO_2$	556	$R^2 = I, Z = O, R^3 = 3,4-di-Me$ $R^2 = I, Z = O, R^3 = 3,5-di-Me$
483 484	$R^2 = I, Z = O, R^3 = 4\text{-OMe}$ $R^2 = I, Z = O, R^3 = 4\text{-OCF}_3$	557 558	R = 1, Z = 0, R = 3,5-di-Me $R^2 = 1, Z = 0, R^3 = 3,6$ -di-Me
485	$R^2 = I, Z = O, R^3 = 4-CF_3$	559	$R^2 = I, Z = O, R^3 = 4.5$ -di-Me
486	$R^2 = I, Z = O, R^3 = 4\text{-CHF}_2$	560	$R^2 = I, Z = O, R^3 = 3,4-di-OMe$
487 488	$R^2 = I, Z = O, R^3 = 4-CH_2F$ $R^2 = I, Z = O, R^3 = 4-CHO$	561 562	$R^2 = I, Z = O, R^3 = 3,5-di-OMe$ $R^2 = I, Z = O, R^3 = 3,6-di-OMe$
489	$R^2 = I, Z = O, R^3 = 4-Me$	563	$R^2 = I, Z = O, R^3 = 4,5-di-OMe$
490	$R^2 = I, Z = O, R^3 = 4-Et$	564	$R^2 = I, Z = O, R^3 = 3,4-di-CF_3$
491	$R^2 = I$, $Z = O$, $R^3 = 4$ -Ethynyl	565	$R^2 = I, Z = O, R^3 = 3.5 - di - CF_3$
492 493	$R^2 = I, Z = O, R^3 = 4$ -Ethenyl $R^2 = I, Z = O, R^3 = 4$ -SO ₂ Me	566 567	$R^2 = I, Z = O, R^3 = 3,6-di-CF_3$ $R^2 = I, Z = O, R^3 = 4,5-di-CF_3$
494	$R^2 = I, Z = O, R^3 = 4-OAc$	568	$R^2 = I, Z = O, R^3 = 3$ -CN, 4-Me
495	$R^2 = I, Z = O, R^3 = 4-c-Pr$	569	$R^2 = I, Z = O, R^3 = 3-CN, 4-F$
496 497	$R^2 = I, Z = O, R^3 = 4-i-Pr$ $R^2 = I, Z = O, R^3 = 4-Ph$	570 571	$R^2 = I, Z = O, R^3 = 3-CN, 4-Br$ $R^2 = I, Z = O, R^3 = 3-CN, 4-OMe$
498	$R^2 = I, Z = O, R^3 = 5-F$	572	$R^2 = I, Z = O, R^3 = 3-CN, 4-CF_3$
499	$R^2 = I, Z = O, R^3 = 5-CI$	573	$R^2 = I, Z = O, R^3 = 3-CN, 6-Me$
500	$R^2 = I, Z = O, R^3 = 5$ -Br	574	$R^2 = I, Z = O, R^3 = 3 - CN, 6 - F$
501 502	$R^2 = I, Z = O, R^3 = 5-I$ $R^2 = I, Z = O, R^3 = 5-CN$	575 576	$R^2 = I, Z = O, R^3 = 3\text{-CN}, 6\text{-Br}$ $R^2 = I, Z = O, R^3 = 3\text{-CN}, 6\text{-OMe}$
503	$R^2 = I, Z = O, R^3 = 5-NO_2$	577	$R^2 = I, Z = O, R^3 = 3-CN, 6-CF_3$
504	$R^2 = I, Z = O, R^3 = 5-OMe$	578	$R^2 = Me, Z = O, R^3 = H (m = 0)$
505 506	$R^2 = I, Z = O, R^3 = 5\text{-OCF}_3$ $R^2 = I, Z = O, R^3 = 5\text{-CF}_3$	579 580	$R^2 = Me, Z = O, R^3 = 3-F$ $R^2 = Me, Z = O, R^3 = 3-Cl$
507	$R^2 = I, Z = O, R^3 = 5 - CHF_2$	581	$R^2 = Me, Z = O, R^3 = 3-Br$
508	$R^2 = I, Z = O, R^3 = 5 - CH_2F$	582	$R^2 = Me, Z = O, R^3 = 3-I$
509	$R^2 = I, Z = O, R^3 = 5$ -CHO	583	$R^2 = Me, Z = O, R^3 = 3-CN$
510 511	$R^2 = I, Z = O, R^3 = 5$ -Me $R^2 = I, Z = O, R^3 = 5$ -Et	584 585	$R^2 = Me, Z = O, R^3 = 3-NO_2$ $R^2 = Me, Z = O, R^3 = 3-OMe$
512	$R^2 = I$, $Z = O$, $R^3 = 5$ -Ethynyl	586	$R^2 = Me, Z = O, R^3 = 3-OCF_3$
513	$R^2 = I, Z = O, R^3 = 5$ -Ethenyl	587	$R^2 = Me, Z = O, R^3 = 3-CF_3$
514 515	$R^2 = I, Z = O, R^3 = 5-SO_2Me$ $R^2 = I, Z = O, R^3 = 5-OAc$	588 589	$R^2 = Me, Z = O, R^3 = 3\text{-}CHF_2$ $R^2 = Me, Z = O, R^3 = 3\text{-}CH_2F$
516	$R^2 = I, Z = O, R^3 = 5 - c - Pr$	590	$R^2 = Me, Z = O, R^3 = 3-CHO$
517	$R^2 = I, Z = O, R^3 = 5-i-Pr$	591	$R^2 = Me, Z = O, R^3 = 3-Me$
518	$R^2 = I, Z = O, R^3 = 5-Ph$ $R^2 = I, Z = O, R^3 = 6-F$	592 593	$R^2 = Me, Z = O, R^3 = 3-Et$ $R^2 = Me, Z = O, R^3 = 3-Ethynyl$
519 520	R = 1, Z = 0, R = 0-1 $R^2 = I, Z = 0, R^3 = 6-C1$	593 594	$R^2 = Me$, $Z = O$, $R^3 = 3$ -Ethenyl
521	$R^2 = I, Z = O, R^3 = 6-Br$	595	$R^2 = Me$, $Z = O$, $R^3 = 3-SO_2Me$
522	$R^2 = I, Z = O, R^3 = 6-I$	596	$R^2 = Me, Z = O, R^3 = 3-OAc$
523 524	$R^2 = I, Z = O, R^3 = 6 - CN$	597 598	$R^2 = Me, Z = O, R^3 = 3-c-Pr$ $R^2 = Me, Z = O, R^3 = 3 : Pr$
524 525	$R^2 = I, Z = O, R^3 = 6-NO_2$ $R^2 = I, Z = O, R^3 = 6-OMe$	598 599	$R^2 = Me, Z = O, R^3 = 3-i-Pr$ $R^2 = Me, Z = O, R^3 = 3-Ph$
526	$R^2 = I, Z = O, R^3 = 6 - OCF_3$	600	$R^2 = Me, Z = S, R^3 = 3-F$
527	$R^2 = I, Z = O, R^3 = 6 - CF_3$	601	$R^2 = Me, Z = S, R^3 = 3-Cl$
528	$R^2 = I, Z = O, R^3 = 6\text{-CHF}_2$	602	$R^2 = Me, Z = S, R^3 = 3-Br$
529 530	$R^2 = I, Z = O, R^3 = 6 \cdot CH_2F$	603 604	$R^2 = Me, Z = S, R^3 = 3-I$ $R^2 = Me, Z = S, R^3 = 3.CN$
530 531	$R^2 = I, Z = O, R^3 = 6$ -CHO $R^2 = I, Z = O, R^3 = 6$ -Me	604 605	$R^2 = Me, Z = S, R^3 = 3-CN$ $R^2 = Me, Z = S, R^3 = 3-NO_2$
532	$R^2 = I, Z = O, R^3 = 6-Et$	606	$R^2 = Me, Z = S, R^3 = 3-OMe$
533	$R^2 = I, Z = O, R^3 = 6$ -Ethynyl	607	$R^2 = Me, Z = S, R^3 = 3\text{-OCF}_3$
534 535	$R^2 = I, Z = O, R^3 = 6$ -Ethenyl	608	$R^2 = Me, Z = S, R^3 = 3-CF_3$
535	$R^2 = I, Z = O, R^3 = 6-SO_2Me$	609	$R^2 = Me, Z = S, R^3 = 3\text{-CHF}_2$

Table	Header Row	Table	Header Row
610	$R^2 = Me, Z = S, R^3 = 3-CH_2F$	684	$R^2 = Me, Z = O, R^3 = 3,4-di-F$
611	$R^2 = Me, Z = S, R^3 = 3$ -CHO	685	$R^2 = Me, Z = O, R^3 = 3,5-di-F$
612	$R^2 = Me, Z = S, R^3 = 3-Me$	686	$R^2 = Me, Z = O, R^3 = 3,6-di-F$
613	$R^2 = Me, Z = S, R^3 = 3-Et$	687	$R^2 = Me, Z = O, R^3 = 4.5-di-F$
614	$R^2 = Me$, $Z = S$, $R^3 = 3$ -Ethynyl	688	$R^2 = Me, Z = O, R^3 = 3,4-di-Cl$
615	$R^2 = Me$, $Z = S$, $R^3 = 3$ -Ethenyl	689	$R^2 = Me, Z = O, R^3 = 3.5 - di - Cl$
616	$R^2 = Me, Z = S, R^3 = 3-SO_2Me$	690	$R^2 = Me, Z = O, R^3 = 3,6-di-Cl$
617 618	$R^2 = Me, Z = S, R^3 = 3-OAc$ $R^2 = Me, Z = S, R^3 = 3-c-Pr$	691 692	$R^2 = Me, Z = O, R^3 = 4,5-di-Cl$ $R^2 = Me, Z = O, R^3 = 3,4-di-Br$
619	R = Me, Z = S, R = 3-6-41 $R^2 = Me, Z = S, R^3 = 3-i-Pr$	693	$R^2 = Me, Z = O, R^3 = 3,5-di-Br$
620	$R^2 = Me, Z = S, R^3 = 3-Ph$	694	$R^2 = Me, Z = O, R^3 = 3,6-di-Br$
621	$R^2 = Me, Z = O, R^3 = 4-F$	695	$R^2 = Me, Z = O, R^3 = 4,5-di-Br$
622	$R^2 = Me, Z = O, R^3 = 4-Cl$	696	$R^2 = Me, Z = O, R^3 = 3,4-di-CN$
623	$R^2 = Me, Z = O, R^3 = 4-Br$	697	$R^2 = Me, Z = O, R^3 = 3,5-di-CN$
624	$R^2 = Me, Z = O, R^3 = 4-I$	698	$R^2 = Me, Z = O, R^3 = 3,6-di-CN$
625	$R^2 = Me, Z = O, R^3 = 4-CN$	699	$R^2 = Me, Z = O, R^3 = 4,5-di-CN$
626	$R^2 = Me, Z = O, R^3 = 4-NO_2$	700	$R^2 = Me, Z = O, R^3 = 3,4-di-Me$
627	$R^2 = Me, Z = O, R^3 = 4-OMe$ $R^2 = Me, Z = O, R^3 = 4-OCF_3$	701	$R^2 = Me$, $Z = O$, $R^3 = 3.5$ -di-Me $R^2 = Me$, $Z = O$, $R^3 = 3.6$ -di-Me
628 629	$R = Me, Z = O, R = 4-OCr_3$ $R^2 = Me, Z = O, R^3 = 4-CF_3$	702 703	R = Me, Z = O, R = 3,0-di-Me $R^2 = Me, Z = O, R^3 = 4,5-di-Me$
630	$R = Me, Z = O, R = 4-CF_3$ $R^2 = Me, Z = O, R^3 = 4-CHF_2$	703	$R^2 = Me, Z = O, R^3 = 3,4-di-OMe$
631	$R^2 = Me, Z = O, R^3 = 4-CH_2F$	705	$R^2 = Me, Z = O, R^3 = 3,5-di-OMe$
632	$R^2 = Me, Z = O, R^3 = 4-CHO$	706	$R^2 = Me, Z = O, R^3 = 3,6-di-OMe$
633	$R^2 = Me, Z = O, R^3 = 4-Me$	707	$R^2 = Me, Z = O, R^3 = 4,5-di-OMe$
634	$R^2 = Me, Z = O, R^3 = 4-Et$	708	$R^2 = Me, Z = O, R^3 = 3,4-di-CF_3$
635	$R^2 = Me$, $Z = O$, $R^3 = 4$ -Ethynyl	709	$R^2 = Me, Z = O, R^3 = 3,5-di-CF_3$
636	$R^2 = Me$, $Z = O$, $R^3 = 4$ -Ethenyl	710	$R^2 = Me, Z = O, R^3 = 3,6-di-CF_3$
637	$R^2 = Me, Z = O, R^3 = 4-SO_2Me$	711	$R^2 = Me, Z = O, R^3 = 4,5-di-CF_3$
638	$R^2 = Me, Z = O, R^3 = 4-OAc$	712	$R^2 = Me, Z = O, R^3 = 3-CN, 4-Me$
639 640	$R^2 = Me, Z = O, R^3 = 4-c-Pr$ $R^2 = Me, Z = O, R^3 = 4-i-Pr$	713 714	$R^2 = Me, Z = O, R^3 = 3-CN, 4-F$ $R^2 = Me, Z = O, R^3 = 3-CN, 4-Br$
641	R = Me, Z = O, R = 4-1-11 $R^2 = Me, Z = O, R^3 = 4-Ph$	715	$R^2 = Me, Z = O, R^3 = 3-CN, 4-DI$ $R^2 = Me, Z = O, R^3 = 3-CN, 4-OMe$
642	$R^2 = Me, Z = O, R^3 = 5-F$	716	$R^2 = Me, Z = O, R^3 = 3-CN, 4-CF_3$
643	$R^2 = Me, Z = O, R^3 = 5-Cl$	717	$R^2 = Me, Z = O, R^3 = 3-CN, 6-Me$
644	$R^2 = Me, Z = O, R^3 = 5-Br$	718	$R^2 = Me$, $Z = O$, $R^3 = 3$ -CN, 6-F
645	$R^2 = Me, Z = O, R^3 = 5-I$	719	$R^2 = Me$, $Z = O$, $R^3 = 3$ -CN, 6-Br
646	$R^2 = Me, Z = O, R^3 = 5-CN$	720	$R^2 = Me, Z = O, R^3 = 3-CN, 6-OMe$
647	$R^2 = Me, Z = O, R^3 = 5-NO_2$	721	$R^2 = Me, Z = O, R^3 = 3-CN, 6-CF_3$
648	$R^2 = Me, Z = O, R^3 = 5-OMe$	722	$R^2 = CN, Z = O, R^3 = H (m = 0)$
649 650	$R^2 = Me, Z = O, R^3 = 5 \cdot OCF_3$	723 724	$R^2 = CN, Z = O, R^3 = 3-F$ $R^2 = CN, Z = O, R^3 = 3-Cl$
651	$R^2 = Me, Z = O, R^3 = 5-CF_3$ $R^2 = Me, Z = O, R^3 = 5-CHF_2$	724	R = CN, Z = O, R = 3-C1 $R^2 = CN, Z = O, R^3 = 3-Br$
652	$R^2 = Me, Z = O, R^3 = 5-CH_2F$	726	$R^2 = CN, Z = O, R^3 = 3-I$
653	$R^2 = Me, Z = O, R^3 = 5$ -CHO	727	$R^2 = CN, Z = O, R^3 = 3-CN$
654	$R^2 = Me, Z = O, R^3 = 5-Me$	728	$R^2 = CN, Z = O, R^3 = 3-NO_2$
655	$R^2 = Me, Z = O, R^3 = 5-Et$	729	$R^2 = CN, Z = O, R^3 = 3-OMe$
656	$R^2 = Me$, $Z = O$, $R^3 = 5$ -Ethynyl	730	$R^2 = CN, Z = O, R^3 = 3\text{-}OCF_3$
657	$R^2 = Me$, $Z = O$, $R^3 = 5$ -Ethenyl	731	$R^2 = CN, Z = O, R^3 = 3-CF_3$
658	$R^2 = Me, Z = O, R^3 = 5-SO_2Me$	732	$R^2 = CN, Z = O, R^3 = 3 - CHF_2$
659	$R^2 = Me, Z = O, R^3 = 5-OAc$	733	$R^2 = CN, Z = O, R^3 = 3 - CH_2F$
660 661	$R^2 = Me, Z = O, R^3 = 5-c-Pr$ $R^2 = Me, Z = O, R^3 = 5-i-Pr$	734 735	$R^2 = CN, Z = O, R^3 = 3$ -CHO $R^2 = CN, Z = O, R^3 = 3$ -Me
662	$R^2 = Me, Z = O, R^3 = 5-Ph$	736	$R^2 = CN, Z = O, R^3 = 3-Et$
663	$R^2 = Me, Z = O, R^3 = 6-F$	737	$R^2 = CN$, $Z = O$, $R^3 = 3$ -Ethynyl
664	$R^2 = Me, Z = O, R^3 = 6-Cl$	738	$R^2 = CN$, $Z = O$, $R^3 = 3$ -Ethenyl
665	$R^2 = Me, Z = O, R^3 = 6-Br$	739	$R^2 = CN, Z = O, R^3 = 3-SO_2Me$
666	$R^2 = Me, Z = O, R^3 = 6-I$	740	$R^2 = CN, Z = O, R^3 = 3-OAc$
667	$R^2 = Me, Z = O, R^3 = 6-CN$	741	$R^2 = CN, Z = O, R^3 = 3-c-Pr$
668	$R^2 = Me, Z = O, R^3 = 6-NO_2$	742	$R^2 = CN, Z = O, R^3 = 3-i-Pr$
669	$R^2 = Me, Z = O, R^3 = 6-OMe$	743	$R^2 = CN, Z = O, R^3 = 3-Ph$
670	$R^2 = Me, Z = O, R^3 = 6-OCF_3$	744	$R^2 = CN, Z = S, R^3 = 3-F$
671	$R^2 = Me, Z = O, R^3 = 6-CF_3$	745	$R^2 = CN, Z = S, R^3 = 3-Cl$
672	$R^2 = Me, Z = O, R^3 = 6 - CHF_2$	746	$R^2 = CN, Z = S, R^3 = 3-Br$
673	$R^2 = Me, Z = O, R^3 = 6-CH_2F$	747	$R^2 = CN, Z = S, R^3 = 3-I$
674	$R^2 = Me, Z = O, R^3 = 6$ -CHO	748	$R^2 = CN, Z = S, R^3 = 3 - CN$
675	$R^2 = Me, Z = O, R^3 = 6-Me$ $R^2 = Me, Z = O, R^3 = 6-Et$	749 750	$R^2 = CN, Z = S, R^3 = 3-NO_2$
676	$R^2 = Me$, $Z = O$, $R^3 = 6$ -Et $R^2 = Me$, $Z = O$, $R^3 = 6$ -Ethynyl	750 751	$R^2 = CN, Z = S, R^3 = 3 \text{-OMe}$
677 678	$R^2 = Me$, $Z = O$, $R^3 = 6$ -Ethynyl $R^2 = Me$, $Z = O$, $R^3 = 6$ -Ethenyl	751 752	$R^2 = CN, Z = S, R^3 = 3 \cdot OCF_3$ $R^2 = CN, Z = S, R^3 = 3 \cdot CF_3$
678 679	$R^{2} = Me, Z = O, R^{3} = 6$ -Etnenyl $R^{2} = Me, Z = O, R^{3} = 6$ -SO ₂ Me	752 753	$R^{-} = CN, Z = S, R^{-} = 3 - CF_{3}$ $R^{2} = CN, Z = S, R^{3} = 3 - CHF_{2}$
680	$R^{-} = Me, Z = O, R^{-} = 6-SO_{2}Me$ $R^{2} = Me, Z = O, R^{3} = 6-OAc$	753 754	$R^{-} = CN, Z = S, R^{-} = 3 - CHF_{2}$ $R^{2} = CN, Z = S, R^{3} = 3 - CH_{2}F$
681	R = Me, Z = O, R = 6-OAc $R^2 = Me, Z = O, R^3 = 6-c-Pr$	755	$R = CN, Z = S, R = 3-CH_2r$ $R^2 = CN, Z = S, R^3 = 3-CHO$
682	$R^2 = Me, Z = O, R^3 = 6-i-Pr$	756	$R^2 = CN, Z = S, R^3 = 3-Me$
683	$R^2 = Me, Z = O, R^3 = 6-Ph$	757	$R^2 = CN, Z = S, R^3 = 3-Et$
005	, ~ ., 1t VIII	131	

	-continued		-continued
Table	Header Row	Table	Header Row
758	$R^2 = CN$, $Z = S$, $R^3 = 3$ -Ethynyl	832	$R^2 = CN, Z = O, R^3 = 3,4-di-Cl$
759	$R^2 = CN, Z = S, R^3 = 3$ -Ethenyl	833	$R^2 = CN, Z = O, R^3 = 3.5$ -di-Cl
760 761	$R^2 = CN, Z = S, R^3 = 3-SO_2Me$ $R^2 = CN, Z = S, R^3 = 3-OAc$	834 835	$R^2 = CN, Z = O, R^3 = 3,6-di-Cl$ $R^2 = CN, Z = O, R^3 = 4,5-di-Cl$
762	$R^2 = CN, Z = S, R^3 = 3-c-Pr$	836	$R^2 = CN, Z = O, R^3 = 3,4-di-Br$
763	$R^2 = CN, Z = S, R^3 = 3-i-Pr$	837	$R^2 = CN, Z = O, R^3 = 3,5-di-Br$
764	$R^2 = CN, Z = S, R^3 = 3-Ph$	838	$R^2 = CN, Z = O, R^3 = 3,6-di-Br$
765	$R^2 = CN, Z = O, R^3 = 4-F$	839	$R^2 = CN, Z = O, R^3 = 4.5 - di - Br$
766 767	$R^2 = CN, Z = O, R^3 = 4-Cl$ $R^2 = CN, Z = O, R^3 = 4-Br$	840 841	$R^2 = CN, Z = O, R^3 = 3,4-di-CN$ $R^2 = CN, Z = O, R^3 = 3,5-di-CN$
768	$R^2 = CN, Z = O, R^3 = 4-I$	842	$R^2 = CN, Z = O, R^3 = 3,6-di-CN$
769	$R^2 = CN, Z = O, R^3 = 4-CN$	843	$R^2 = CN, Z = O, R^3 = 4,5-di-CN$
770	$R^2 = CN, Z = O, R^3 = 4-NO_2$	844	$R^2 = CN, Z = O, R^3 = 3,4-di-Me$
771	$R^2 = CN, Z = O, R^3 = 4-OMe$	845	$R^2 = CN, Z = O, R^3 = 3.5$ -di-Me
772 773	$R^2 = CN, Z = O, R^3 = 4 \cdot OCF_3$ $R^2 = CN, Z = O, R^3 = 4 \cdot CF_3$	846 847	$R^2 = CN, Z = O, R^3 = 3,6-di-Me$ $R^2 = CN, Z = O, R^3 = 4,5-di-Me$
774	$R = CN, Z = O, R = +CP_3$ $R^2 = CN, Z = O, R^3 = 4-CHF_2$	848	$R^2 = CN, Z = O, R^3 = 3,4-di-OMe$
775	$R^2 = CN, Z = O, R^3 = 4-CH_2F$	849	$R^2 = CN, Z = O, R^3 = 3,5-di-OMe$
776	$R^2 = CN, Z = O, R^3 = 4-CHO$	850	$R^2 = CN, Z = O, R^3 = 3,6-di-OMe$
777	$R^2 = CN, Z = O, R^3 = 4-Me$	851	$R^2 = CN, Z = O, R^3 = 4.5 - di - OMe$
778 779	$R^2 = CN, Z = O, R^3 = 4-Et$ $R^2 = CN, Z = O, R^3 = 4-Ethynyl$	852 853	$R^2 = CN, Z = O, R^3 = 3,4-di-CF_3$ $R^2 = CN, Z = O, R^3 = 3,5-di-CF_3$
780	R = CN, Z = O, R = 4-Emylyl $R^2 = CN, Z = O, R^3 = 4-Ethenyl$	854	$R = CN, Z = O, R = 3,5-di-CF_3$ $R^2 = CN, Z = O, R^3 = 3,6-di-CF_3$
781	$R^2 = CN, Z = O, R^3 = 4-SO_2Me$	855	$R^2 = CN, Z = O, R^3 = 4,5-di-CF_3$
782	$R^2 = CN, Z = O, R^3 = 4-OAc$	856	$R^2 = CN, Z = O, R^3 = 3-CN, 4-Me$
783	$R^2 = CN, Z = O, R^3 = 4-c-Pr$	857	$R^2 = CN, Z = O, R^3 = 3-CN, 4-F$
784 785	$R^2 = CN, Z = O, R^3 = 4-i-Pr$ $R^2 = CN, Z = O, R^3 = 4-Ph$	858 859	$R^2 = CN, Z = O, R^3 = 3-CN, 4-Br$ $R^2 = CN, Z = O, R^3 = 3-CN, 4-OMe$
786	R = CN, Z = O, R = +TH $R^2 = CN, Z = O, R^3 = 5-F$	860	$R^2 = CN, Z = O, R^3 = 3-CN, 4-OME$ $R^2 = CN, Z = O, R^3 = 3-CN, 4-CF_3$
787	$R^2 = CN, Z = O, R^3 = 5-Cl$	861	$R^2 = CN, Z = O, R^3 = 3-CN, 6-Me$
788	$R^2 = CN, Z = O, R^3 = 5-Br$	862	$R^2 = CN, Z = O, R^3 = 3-CN, 6-F$
789	$R^2 = CN, Z = O, R^3 = 5-I$	863	$R^2 = CN, Z = O, R^3 = 3-CN, 6-Br$
790 791	$R^2 = CN, Z = O, R^3 = 5-CN$ $R^2 = CN, Z = O, R^3 = 5-NO_2$	864 865	$R^2 = CN, Z = O, R^3 = 3-CN, 6-OMe$ $R^2 = CN, Z = O, R^3 = 3-CN, 6-CF_3$
792	$R = CN, Z = O, R = 3-NO_2$ $R^2 = CN, Z = O, R^3 = 5-OMe$	866	$R = CN, Z = O, R = 3-CN, 0-CF_3$ $R^2 = NO_2, Z = O, R^3 = H (m = 0)$
793	$R^2 = CN, Z = O, R^3 = 5 - OCF_3$	867	$R^2 = NO_2$, $Z = O$, $R^3 = 3-F$
794	$R^2 = CN, Z = O, R^3 = 5 - CF_3$	868	$R^2 = NO_2$, $Z = O$, $R^3 = 3-C1$
795	$R^2 = CN, Z = O, R^3 = 5 - CHF_2$	869	$R^2 = NO_2$, $Z = O$, $R^3 = 3$ -Br
796 797	$R^2 = CN, Z = O, R^3 = 5-CH_2F$ $R^2 = CN, Z = O, R^3 = 5-CHO$	870 871	$R^2 = NO_2$, $Z = O$, $R^3 = 3-I$ $R^2 = NO_2$, $Z = O$, $R^3 = 3-CN$
798	$R^2 = CN, Z = O, R^3 = 5-Me$	872	$R^2 = NO_2, Z = O, R^3 = 3-NO_2$
799	$R^2 = CN, Z = O, R^3 = 5-Et$	873	$R^2 = NO_2$, $Z = O$, $R^3 = 3$ -OMe
800	$R^2 = CN$, $Z = O$, $R^3 = 5$ -Ethynyl	874	$R^2 = NO_2$, $Z = O$, $R^3 = 3$ -OCF ₃
801	$R^2 = CN$, $Z = O$, $R^3 = 5$ -Ethenyl	875	$R^2 = NO_2$, $Z = O$, $R^3 = 3$ -CF ₃
802 803	$R^2 = CN, Z = O, R^3 = 5-SO_2Me$ $R^2 = CN, Z = O, R^3 = 5-OAc$	876 877	$R^2 = NO_2$, $Z = O$, $R^3 = 3$ -CHF ₂ $R^2 = NO_2$, $Z = O$, $R^3 = 3$ -CH ₂ F
804	$R^2 = CN, Z = O, R^3 = 5-c-Pr$	878	$R^2 = NO_2$, $Z = O$, $R^3 = 3$ -CHO
805	$R^2 = CN, Z = O, R^3 = 5-i-Pr$	879	$R^2 = NO_2$, $Z = O$, $R^3 = 3$ -Me
806	$R_2^2 = CN, Z = O, R_3^3 = 5-Ph$	880	$R^2 = NO_2$, $Z = O$, $R^3 = 3-Et$
807	$R^2 = CN, Z = O, R^3 = 6-F$ $R^2 = CN, Z = O, R^3 = 6-Cl$	881	$R^2 = NO_2$, $Z = O$, $R^3 = 3$ -Ethynyl
808 809	$R^{-} = CN, Z = O, R^{-} = 6-CI$ $R^{2} = CN, Z = O, R^{3} = 6-Br$	882 883	$R^2 = NO_2$, $Z = O$, $R^3 = 3$ -Ethenyl $R^2 = NO_2$, $Z = O$, $R^3 = 3$ -SO ₂ Me
810	$R^2 = CN, Z = O, R^3 = 6-I$	884	$R^2 = NO_2$, $Z = O$, $R^3 = 3-OAc$
811	$R^2 = CN, Z = O, R^3 = 6-CN$	885	$R^2 = NO_2$, $Z = O$, $R^3 = 3$ -c-Pr
812	$R^2 = CN, Z = O, R^3 = 6-NO_2$	886	$R^2 = NO_2$, $Z = O$, $R^3 = 3$ -i-Pr
813 814	$R^2 = CN, Z = O, R^3 = 6-OMe$ $R^2 = CN, Z = O, R^3 = 6-OCF_3$	887 888	$R^2 = NO_2$, $Z = O$, $R^3 = 3-Ph$ $R^2 = NO_2$, $Z = S$, $R^3 = 3-F$
815	$R = CN, Z = O, R = 6-OCF_3$ $R^2 = CN, Z = O, R^3 = 6-CF_3$	889	$R = NO_2, Z = S, R = 3-1$ $R^2 = NO_2, Z = S, R^3 = 3-C1$
816	$R^2 = CN, Z = O, R^3 = 6-CHF_2$	890	$R^2 = NO_2$, $Z = S$, $R^3 = 3$ -Br
817	$R^2 = CN, Z = O, R^3 = 6-CH_2F$	891	$R^2 = NO_2$, $Z = S$, $R^3 = 3-I$
818	$R^2 = CN, Z = O, R^3 = 6\text{-CHO}$	892	$R^2 = NO_2$, $Z = S$, $R^3 = 3$ -CN
819	$R^2 = CN, Z = O, R^3 = 6-Me$	893	$R^2 = NO_2$, $Z = S$, $R^3 = 3-NO_2$
820 821	$R^2 = CN, Z = O, R^3 = 6-Et$ $R^2 = CN, Z = O, R^3 = 6-Ethynyl$	894 895	$R^2 = NO_2$, $Z = S$, $R^3 = 3$ -OMe $R^2 = NO_2$, $Z = S$, $R^3 = 3$ -OCF ₃
821 822	R = CN, $Z = O$, $R = 6$ -Ethenyl $R^2 = CN$, $Z = O$, $R^3 = 6$ -Ethenyl	893 896	$R = NO_2, Z = S, R = 3-OCF_3$ $R^2 = NO_2, Z = S, R^3 = 3-CF_3$
823	$R^2 = CN, Z = O, R^3 = 6-SO_2Me$	897	$R^2 = NO_2, Z = S, R^3 = 3\text{-CHF}_2$
824	$R^2 = CN, Z = O, R^3 = 6-OAc$	898	$R^2 = NO_2$, $Z = S$, $R^3 = 3-CH_2F$
825	$R^2 = CN, Z = O, R^3 = 6$ -c-Pr	899	$R^2 = NO_2$, $Z = S$, $R^3 = 3$ -CHO
826	$R^2 = CN, Z = O, R^3 = 6-i-Pr$	900	$R^2 = NO_2$, $Z = S$, $R^3 = 3$ -Me
827	$R^2 = CN, Z = O, R^3 = 6-Ph$	901	$R^2 = NO_2$, $Z = S$, $R^3 = 3-Et$
828 829	$R^2 = CN, Z = O, R^3 = 3,4-di-F$ $R^2 = CN, Z = O, R^3 = 3,5-di-F$	902 903	$R^2 = NO_2$, $Z = S$, $R^3 = 3$ -Ethynyl
829 830	$R^{-} = CN, Z = O, R^{-} = 3,5 - di - F$ $R^{2} = CN, Z = O, R^{3} = 3,6 - di - F$	903 904	$R^2 = NO_2$, $Z = S$, $R^3 = 3$ -Ethenyl $R^2 = NO_2$, $Z = S$, $R^3 = 3$ -SO ₂ Me
831	$R^2 = CN, Z = O, R^3 = 4,5-di-F$	905	$R^2 = NO_2$, $Z = S$, $R^3 = 3-OAc$
	,, ', *	, , ,	

	-continued		-continued
Table	Header Row	Table	Header Row
906	$R^2 = NO_2, Z = S, R^3 = 3$ -c-Pr	980	$R^2 = NO_2$, $Z = O$, $R^3 = 3,4$ -di-Br
907	$R^2 = NO_2$, $Z = S$, $R^3 = 3$ -i-Pr	981	$R^2 = NO_2$, $Z = O$, $R^3 = 3,5$ -di-Br
908 909	$R^2 = NO_2$, $Z = S$, $R^3 = 3$ -Ph $R^2 = NO_2$, $Z = O$, $R^3 = 4$ -F	982 983	$R^2 = NO_2$, $Z = O$, $R^3 = 3,6$ -di-Br $R^2 = NO_2$, $Z = O$, $R^3 = 4,5$ -di-Br
910	$R^{-} = NO_{2}, Z = O, R^{-} = 4-F$ $R^{2} = NO_{2}, Z = O, R^{3} = 4-CI$	983 984	$R^{-} = NO_{2}, Z = O, R^{-} = 4,5 - \text{di-Br}$ $R^{2} = NO_{2}, Z = O, R^{3} = 3,4 - \text{di-CN}$
911	$R^2 = NO_2, Z = O, R^3 = 4-Br$	985	$R^2 = NO_2$, $Z = O$, $R^3 = 3,5$ -di-CN
912	$R^2 = NO_2, Z = O, R^3 = 4-I$	986	$R^2 = NO_2$, $Z = O$, $R^3 = 3,6$ -di-CN
913	$R^2 = NO_2$, $Z = O$, $R^3 = 4$ -CN	987	$R^2 = NO_2$, $Z = O$, $R^3 = 4.5$ -di-CN
914	$R^2 = NO_2, Z = O, R^3 = 4-NO_2$	988	$R^2 = NO_2$, $Z = O$, $R^3 = 3,4$ -di-Me
915	$R^2 = NO_2$, $Z = O$, $R^3 = 4$ -OMe	989	$R^2 = NO_2$, $Z = O$, $R^3 = 3.5$ -di-Me
916 917	$R^2 = NO_2$, $Z = O$, $R^3 = 4\text{-OCF}_3$ $R^2 = NO_2$, $Z = O$, $R^3 = 4\text{-CF}_3$	990 991	$R^2 = NO_2$, $Z = O$, $R^3 = 3,6$ -di-Me $R^2 = NO_2$, $Z = O$, $R^3 = 4,5$ -di-Me
918	$R^2 = NO_2, Z = 0, R^3 = 4\text{-CHF}_2$	992	$R^2 = NO_2$, $Z = O$, $R^3 = 3$,4-di-OMe
919	$R^2 = NO_2$, $Z = O$, $R^3 = 4-CH_2F$	993	$R^2 = NO_2$, $Z = O$, $R^3 = 3.5$ -di-OMe
920	$R^2 = NO_2$, $Z = O$, $R^3 = 4$ -CHO	994	$R^2 = NO_2$, $Z = O$, $R^3 = 3,6$ -di-OMe
921	$R^2 = NO_2, Z = O, R^3 = 4-Me$	995	$R^2 = NO_2$, $Z = O$, $R^3 = 4,5$ -di-OMe
922	$R^2 = NO_2, Z = O, R^3 = 4-Et$	996	$R^2 = NO_2$, $Z = O$, $R^3 = 3,4-di-CF_3$
923	$R^2 = NO_2$, $Z = O$, $R^3 = 4$ -Ethynyl	997	$R^2 = NO_2$, $Z = O$, $R^3 = 3.5$ -di-CF ₃
924 925	$R^2 = NO_2$, $Z = O$, $R^3 = 4$ -Ethenyl $R^2 = NO_2$, $Z = O$, $R^3 = 4$ -SO ₂ Me	998 999	$R^2 = NO_2$, $Z = O$, $R^3 = 3,6-di-CF_3$ $R^2 = NO_2$, $Z = O$, $R^3 = 4,5-di-CF_3$
926	$R = NO_2, Z = 0, R = 4-3O_2 Me$ $R^2 = NO_2, Z = 0, R^3 = 4-0Ac$	1000	$R^2 = NO_2, Z = O, R^3 = 4,3$ -di-Cr ₃ $R^2 = NO_2, Z = O, R^3 = 3$ -CN, 4-Me
927	$R^2 = NO_2, Z = O, R^3 = 4-c-Pr$	1001	$R^2 = NO_2$, $Z = O$, $R^3 = 3$ -CN, 4-F
928	$R^2 = NO_2$, $Z = O$, $R^3 = 4$ -i-Pr	1002	$R^2 = NO_2$, $Z = O$, $R^3 = 3$ -CN, 4-Br
929	$R^2 = NO_2, Z = O, R^3 = 4-Ph$	1003	$R^2 = NO_2$, $Z = O$, $R^3 = 3$ -CN, 4-OMe
930	$R^2 = NO_2, Z = O, R^3 = 5-F$	1004	$R^2 = NO_2$, $Z = O$, $R^3 = 3$ -CN, 4-CF ₃
931	$R^2 = NO_2, Z = O, R^3 = 5-Cl$	1005	$R^2 = NO_2$, $Z = O$, $R^3 = 3$ -CN, 6-Me
932 933	$R^2 = NO_2$, $Z = O$, $R^3 = 5$ -Br $R^2 = NO_2$, $Z = O$, $R^3 = 5$ -I	1006 1007	$R^2 = NO_2$, $Z = O$, $R^3 = 3$ -CN, 6-F $R^2 = NO_2$, $Z = O$, $R^3 = 3$ -CN, 6-Br
934	$R^2 = NO_2, Z = 0, R^3 = 5-CN$	1007	$R^2 = NO_2$, $Z = O$, $R^3 = 3$ -CN, 6-OMe
935	$R^2 = NO_2, Z = O, R^3 = 5-NO_2$	1009	$R^2 = NO_2$, $Z = O$, $R^3 = 3$ -CN, 6-CF ₃
936	$R^2 = NO_2$, $Z = O$, $R^3 = 5$ -OMe	1010	$R^2 = OMe, Z = O, R^3 = H (m = 0)$
937	$R^2 = NO_2, Z = O, R^3 = 5 - OCF_3$	1011	$R^2 = OMe, Z = O, R^3 = 3-F$
938	$R^2 = NO_2$, $Z = O$, $R^3 = 5$ -CF ₃	1012	$R^2 = OMe, Z = O, R^3 = 3-Cl$
939 940	$R^2 = NO_2$, $Z = O$, $R^3 = 5$ -CHF ₂ $R^2 = NO_2$, $Z = O$, $R^3 = 5$ -CH ₂ F	1013 1014	$R^2 = OMe, Z = O, R^3 = 3-Br$ $R^2 = OMe, Z = O, R^3 = 3-I$
941	$R^2 = NO_2, Z = O, R^3 = 5$ -CHO	1014	$R^2 = OMe, Z = O, R^3 = 3-CN$
942	$R^2 = NO_2$, $Z = O$, $R^3 = 5$ -Me	1016	$R^2 = OMe, Z = O, R^3 = 3-NO_2$
943	$R^2 = NO_2$, $Z = O$, $R^3 = 5$ -Et	1017	$R^2 = OMe, Z = O, R^3 = 3-OMe$
944	$R^2 = NO_2, Z = O, R^3 = 5$ -Ethynyl	1018	$R^2 = OMe, Z = O, R^3 = 3 - OCF_3$
945 946	$R^2 = NO_2$, $Z = O$, $R^3 = 5$ -Ethenyl $R^2 = NO_2$, $Z = O$, $R^3 = 5$ -SO ₂ Me	1019 1020	$R^2 = OMe, Z = O, R^3 = 3-CF_3$ $R^2 = OMe, Z = O, R^3 = 3-CHF_2$
947	$R^2 = NO_2$, $Z = O$, $R^3 = 5 - OAc$	1020	$R^2 = OMe, Z = O, R^3 = 3-CH_2F$
948	$R^2 = NO_2$, $Z = O$, $R^3 = 5$ -c-Pr	1022	$R^2 = OMe, Z = O, R^3 = 3\text{-CHO}$
949	$R^2 = NO_2$, $Z = O$, $R^3 = 5$ -i-Pr	1023	$R^2 = OMe, Z = O, R^3 = 3-Me$
950	$R^2 = NO_2, Z = O, R^3 = 5-Ph$	1024	$R^2 = OMe, Z = O, R^3 = 3-Et$
951	$R^2 = NO_2, Z = O, R^3 = 6-F$	1025	$R^2 = OMe$, $Z = O$, $R^3 = 3$ -Ethynyl
952 953	$R^2 = NO_2$, $Z = O$, $R^3 = 6$ -Cl $R^2 = NO_2$, $Z = O$, $R^3 = 6$ -Br	1026 1027	$R^2 = OMe, Z = O, R^3 = 3$ -Ethenyl $R^2 = OMe, Z = O, R^3 = 3$ -SO ₂ Me
954	$R^2 = NO_2, Z = O, R^3 = 6-I$	1028	$R^2 = OMe, Z = O, R^3 = 3-OAc$
955	$R^2 = NO_2$, $Z = O$, $R^3 = 6$ -CN	1029	$R^2 = OMe, Z = O, R^3 = 3-c-Pr$
956	$R^2 = NO_2, Z = O, R^3 = 6-NO_2$	1030	$R^2 = OMe, Z = O, R^3 = 3-i-Pr$
957	$R^2 = NO_2, Z = O, R^3 = 6-OMe$	1031	$R^2 = OMe, Z = O, R^3 = 3-Ph$
958	$R^2 = NO_2$, $Z = O$, $R^3 = 6 \cdot OCF_3$	1032	$R^2 = OMe, Z = S, R^3 = 3-F$ $R^2 = OMe, Z = S, R^3 = 3-CI$
959 960	$R^2 = NO_2$, $Z = O$, $R^3 = 6$ -CF ₃ $R^2 = NO_2$, $Z = O$, $R^3 = 6$ -CHF ₂	1033 1034	$R^2 = OMe, Z = S, R^3 = 3-Cl$ $R^2 = OMe, Z = S, R^3 = 3-Br$
961	$R = NO_2, Z = 0, R = 0 - CHF_2$ $R^2 = NO_2, Z = 0, R^3 = 6 - CH_2F$	1034	R = OMe, Z = S, R = 3-BI $R^2 = OMe, Z = S, R^3 = 3-I$
962	$R^2 = NO_2, Z = O, R^3 = 6$ -CHO	1036	$R^2 = OMe, Z = S, R^3 = 3-CN$
963	$R^2 = NO_2$, $Z = O$, $R^3 = 6$ -Me	1037	$R^2 = OMe, Z = S, R^3 = 3-NO_2$
964	$R^2 = NO_2$, $Z = O$, $R^3 = 6-Et$	1038	$R^2 = OMe, Z = S, R^3 = 3-OMe$
965	$R^2 = NO_2$, $Z = O$, $R^3 = 6$ -Ethynyl	1039	$R^2 = OMe, Z = S, R^3 = 3 - OCF_3$
966	$R^2 = NO_2$, $Z = O$, $R^3 = 6$ -Ethenyl	1040	$R^2 = OMe, Z = S, R^3 = 3 - CF_3$
967 968	$R^2 = NO_2$, $Z = O$, $R^3 = 6-SO_2Me$ $R^2 = NO_2$, $Z = O$, $R^3 = 6-OAc$	1041 1042	$R^2 = OMe, Z = S, R^3 = 3\text{-}CHF_2$ $R^2 = OMe, Z = S, R^3 = 3\text{-}CH_3F$
968 969	$R^{-} = NO_{2}, Z = O, R^{-} = 0 - OAC$ $R^{2} = NO_{2}, Z = O, R^{3} = 6 - c - Pr$	1042	$R^{-} = OMe, Z = S, R^{-} = 3-CH_{2}r$ $R^{2} = OMe, Z = S, R^{3} = 3-CHO$
970	$R^2 = NO_2, Z = O, R^3 = 0$ -C-11 $R^2 = NO_2, Z = O, R^3 = 0$ -i-Pr	1043	$R^2 = OMe, Z = S, R^3 = 3-Me$
971	$R^2 = NO_2, Z = 0, R^3 = 6-Ph$	1045	$R^2 = OMe, Z = S, R^3 = 3-Et$
972	$R^2 = NO_2$, $Z = O$, $R^3 = 3,4$ -di-F	1046	$R^2 = OMe$, $Z = S$, $R^3 = 3$ -Ethynyl
973	$R^2 = NO_2$, $Z = O$, $R^3 = 3.5$ -di-F	1047	$R^2 = OMe$, $Z = S$, $R^3 = 3$ -Ethenyl
974	$R^2 = NO_2$, $Z = O$, $R^3 = 3.6$ -di-F	1048	$R^2 = OMe, Z = S, R^3 = 3-SO_2Me$
975	$R^2 = NO_2$, $Z = O$, $R^3 = 4.5$ -di-F	1049	$R^2 = OMe, Z = S, R^3 = 3-OAc$
976	$R^2 = NO_2$, $Z = O$, $R^3 = 3,4$ -di-Cl	1050	$R^2 = OMe, Z = S, R^3 = 3-c-Pr$
977	$R^2 = NO_2$, $Z = O$, $R^3 = 3.5$ -di-Cl	1051	$R^2 = OMe, Z = S, R^3 = 3-i-Pr$
978	$R^2 = NO_2$, $Z = O$, $R^3 = 3,6$ -di-Cl	1052	$R^2 = OMe, Z = S, R^3 = 3-Ph$
979	$R^2 = NO_2$, $Z = O$, $R^3 = 4.5$ -di-Cl	1053	$R^2 = OMe, Z = O, R^3 = 4-F$

	-conunued		-continued
Table	Header Row	Table	Header Row
1054	$R^2 = OMe, Z = O, R^3 = 4-Cl$	1128	$R^2 = OMe, Z = O, R^3 = 3,4-di-CN$
1055	$R^2 = OMe, Z = O, R^3 = 4-Br$	1129	$R^2 = OMe, Z = O, R^3 = 3,5-di-CN$
1056	$R^2 = OMe, Z = O, R^3 = 4-I$	1130	$R^2 = OMe, Z = O, R^3 = 3,6-di-CN$
1057	$R^2 = OMe, Z = O, R^3 = 4-CN$	1131	$R^2 = OMe, Z = O, R^3 = 4,5-di-CN$
1058	$R^2 = OMe, Z = O, R^3 = 4-NO_2$	1132	$R^2 = OMe, Z = O, R^3 = 3,4-di-Me$
1059	$R^2 = OMe, Z = O, R^3 = 4-OMe$	1133	$R^2 = OMe, Z = O, R^3 = 3,5-di-Me$
1060	$R^2 = OMe, Z = O, R^3 = 4 - OCF_3$	1134	$R^2 = OMe, Z = O, R^3 = 3,6-di-Me$
1061	$R^2 = OMe, Z = O, R^3 = 4-CF_3$	1135	$R^2 = OMe, Z = O, R^3 = 4,5-di-Me$
1062 1063	$R^2 = OMe, Z = O, R^3 = 4-CHF_2$ $R^2 = OMe, Z = O, R^3 = 4-CH_2F$	1136 1137	$R^2 = OMe, Z = O, R^3 = 3,4-di-OMe$ $R^2 = OMe, Z = O, R^3 = 3,5-di-OMe$
1064	$R^2 = OMe, Z = O, R^3 = 4-CHO$	1138	$R^2 = OMe, Z = O, R^3 = 3,5$ -di-OMe
1065	$R^2 = OMe, Z = O, R^3 = 4-Me$	1139	$R^2 = OMe$, $Z = O$, $R^3 = 4.5$ -di-OMe
1066	$R^2 = OMe, Z = O, R^3 = 4-Et$	1140	$R^2 = OMe, Z = O, R^3 = 3,4-di-CF_3$
1067	$R^2 = OMe$, $Z = O$, $R^3 = 4$ -Ethynyl	1141	$R^2 = OMe, Z = O, R^3 = 3,5-di-CF_3$
1068	$R^2 = OMe$, $Z = O$, $R^3 = 4$ -Ethenyl	1142	$R^2 = OMe, Z = O, R^3 = 3,6-di-CF_3$
1069	$R^2 = OMe, Z = O, R^3 = 4-SO_2Me$	1143	$R^2 = OMe, Z = O, R^3 = 4,5-di-CF_3$
1070	$R^2 = OMe$, $Z = O$, $R^3 = 4-OAc$	1144	$R^2 = OMe, Z = O, R^3 = 3-CN, 4-Me$
1071	$R^2 = OMe, Z = O, R^3 = 4-c-Pr$	1145	$R^2 = OMe, Z = O, R^3 = 3-CN, 4-F$
1072	$R^2 = OMe, Z = O, R^3 = 4-i-Pr$	1146	$R^2 = OMe, Z = O, R^3 = 3-CN, 4-Br$
1073	$R^2 = OMe, Z = O, R^3 = 4-Ph$	1147	$R^2 = OMe, Z = O, R^3 = 3-CN, 4-OMe$
1074	$R^2 = OMe, Z = O, R^3 = 5-F$	1148	$R^2 = OMe, Z = O, R^3 = 3-CN, 4-CF_3$
1075	$R^2 = OMe, Z = O, R^3 = 5-Cl$	1149	$R^2 = OMe, Z = O, R^3 = 3-CN, 6-Me$
1076	$R^2 = OMe, Z = O, R^3 = 5-Br$	1150	$R^2 = OMe, Z = O, R^3 = 3-CN, 6-F$
1077	$R^2 = OMe, Z = O, R^3 = 5-I$	1151	$R^2 = OMe, Z = O, R^3 = 3-CN, 6-Br$
1078	$R^2 = OMe, Z = O, R^3 = 5-CN$ $R^2 = OMe, Z = O, R^3 = 5-NO_2$	1152	$R^2 = OMe, Z = O, R^3 = 3-CN, 6-OMe$
1079 1080	$R = OMe, Z = O, R = 3-NO_2$ $R^2 = OMe, Z = O, R^3 = 5-OMe$	1153	$R^2 = OMe, Z = O, R^3 = 3-CN, 6-CF_3$ $R^2 = CF_3, Z = O, R^3 = H (m = 0)$
1080	R = OMe, Z = O, R = 3-OMe $R^2 = OMe, Z = O, R^3 = 5-OCF_3$	1154 1155	$R = CF_3, Z = O, R = H (M = 0)$ $R^2 = CF_3, Z = O, R^3 = 3-F$
1082	$R^2 = OMe, Z = O, R^3 = 5-OF_3$ $R^2 = OMe, Z = O, R^3 = 5-OF_3$	1156	$R^2 = CF_3, Z = O, R^3 = 3-CI$
1083	$R^2 = OMe, Z = O, R^3 = 5 - CHF_2$	1157	$R^2 = CF_3, Z = O, R^3 = 3-Br$
1084	$R^2 = OMe, Z = O, R^3 = 5 - CH_2F$	1158	$R^2 = CF_3$, $Z = O$, $R^3 = 3-I$
1085	$R^2 = OMe, Z = O, R^3 = 5-CHO$	1159	$R^2 = CF_3$, $Z = O$, $R^3 = 3$ -CN
1086	$R^2 = OMe, Z = O, R^3 = 5-Me$	1160	$R^2 = CF_3$, $Z = O$, $R^3 = 3-NO_2$
1087	$R^2 = OMe, Z = O, R^3 = 5-Et$	1161	$R^2 = CF_3$, $Z = O$, $R^3 = 3$ -OMe
1088	$R^2 = OMe$, $Z = O$, $R^3 = 5$ -Ethynyl	1162	$R^2 = CF_3$, $Z = O$, $R^3 = 3$ -OCF ₃
1089	$R^2 = OMe$, $Z = O$, $R^3 = 5$ -Ethenyl	1163	$R^2 = CF_3$, $Z = O$, $R^3 = 3-CF_3$
1090	$R^2 = OMe, Z = O, R^3 = 5-SO_2Me$	1164	$R^2 = CF_3$, $Z = O$, $R^3 = 3$ -CHF ₂
1091	$R^2 = OMe, Z = O, R^3 = 5-OAc$	1165	$R^2 = CF_3$, $Z = O$, $R^3 = 3-CH_2F$
1092	$R^2 = OMe, Z = O, R^3 = 5-c-Pr$	1166	$R^2 = CF_3$, $Z = O$, $R^3 = 3$ -CHO
1093	$R^2 = OMe, Z = O, R^3 = 5-i-Pr$	1167	$R^2 = CF_3$, $Z = O$, $R^3 = 3$ -Me
1094	$R^2 = OMe, Z = O, R^3 = 5-Ph$	1168	$R^2 = CF_3$, $Z = O$, $R^3 = 3-Et$
1095 1096	$R^2 = OMe, Z = O, R^3 = 6-F$ $R^2 = OMe, Z = O, R^3 = 6-C1$	1169 1170	$R^2 = CF_3$, $Z = O$, $R^3 = 3$ -Ethynyl $R^2 = CF_3$, $Z = O$, $R^3 = 3$ -Ethenyl
1097	R = OMe, Z = O, R = 0-CI $R^2 = OMe, Z = O, R^3 = 6-Br$	1170	$R^2 = CF_3, Z = O, R^3 = 3-Editenyl$ $R^2 = CF_3, Z = O, R^3 = 3-SO_2Me$
1098	$R^2 = OMe, Z = O, R^3 = 6-I$	1172	$R^2 = CF_3$, $Z = O$, $R^3 = 3$ -OAc
1099	$R^2 = OMe, Z = O, R^3 = 6-CN$	1173	$R^2 = CF_3, Z = O, R^3 = 3-c-Pr$
1100	$R^2 = OMe, Z = O, R^3 = 6-NO_2$	1174	$R^2 = CF_3$, $Z = O$, $R^3 = 3-i-Pr$
1101	$R^2 = OMe, Z = O, R^3 = 6-OMe$	1175	$R^2 = CF_3$, $Z = O$, $R^3 = 3-Ph$
1102	$R^2 = OMe, Z = O, R^3 = 6-OCF_3$	1176	$R^2 = CF_3$, $Z = S$, $R^3 = 3-F$
1103	$R^2 = OMe, Z = O, R^3 = 6-CF_3$	1177	$R^2 = CF_3$, $Z = S$, $R^3 = 3$ -Cl
1104	$R^2 = OMe, Z = O, R^3 = 6-CHF_2$	1178	$R^2 = CF_3$, $Z = S$, $R^3 = 3$ -Br
1105	$R^2 = OMe, Z = O, R^3 = 6-CH_2F$	1179	$R^2 = CF_3$, $Z = S$, $R^3 = 3-I$
1106	$R^2 = OMe, Z = O, R^3 = 6-CHO$	1180	$R^2 = CF_3$, $Z = S$, $R^3 = 3-CN$
1107	$R^2 = OMe, Z = O, R^3 = 6-Me$	1181	$R^2 = CF_3, Z = S, R^3 = 3-NO_2$
1108	$R^2 = OMe$, $Z = O$, $R^3 = 6$ -Et	1182	$R^2 = CF_3, Z = S, R^3 = 3 - OMe$
1109	$R^2 = OMe$, $Z = O$, $R^3 = 6$ -Ethynyl	1183	$R^2 = CF_3, Z = S, R^3 = 3 - OCF_3$
1110	$R^2 = OMe, Z = O, R^3 = 6$ -Ethenyl	1184	$R^2 = CF_3, Z = S, R^3 = 3-CF_3$ $R^2 = CF_3, Z = S, R^3 = 3-CHF_2$
1111 1112	$R^2 = OMe, Z = O, R^3 = 6-SO_2Me$ $R^2 = OMe, Z = O, R^3 = 6-OAc$	1185 1186	$R^{2} = CF_{3}, Z = S, R^{3} = 3-CHF_{2}$ $R^{2} = CF_{3}, Z = S, R^{3} = 3-CH_{2}F$
1112	$R^{2} = OMe, Z = O, R^{3} = 6-OAc$ $R^{2} = OMe, Z = O, R^{3} = 6-c-Pr$	1186	$R^2 = CF_3$, $Z = S$, $R^3 = 3$ -CH ₂ F $R^2 = CF_3$, $Z = S$, $R^3 = 3$ -CHO
1113	R = OMe, Z = O, R = 0-c-rr $R^2 = OMe, Z = O, R^3 = 6-i-Pr$	1188	$R = CF_3, Z = S, R = S-CHO$ $R^2 = CF_3, Z = S, R^3 = S-Me$
1114	R = ONIE, Z = O, R = 0-1-FF $R^2 = OMe, Z = O, R^3 = 6-Ph$	1189	$R = CF_3, Z = S, R = 3$ -Me $R^2 = CF_3, Z = S, R^3 = 3$ -Et
1113	$R^2 = OMe, Z = O, R^3 = 0.4$	1190	$R^2 = CF_3$, $Z = S$, $R^2 = S$ -Et $R^2 = CF_3$, $Z = S$, $R^3 = S$ -Ethynyl
1117	R = OMe, $Z = O$, $R = 3,4-di-FR^2 = OMe, Z = O, R^3 = 3,5-di-F$	1190	$R = CF_3, Z = S, R = 3$ -Ethenyl $R^2 = CF_3, Z = S, R^3 = 3$ -Ethenyl
1117	R = OMe, Z = O, R = 3,5-di-F $R^2 = OMe, Z = O, R^3 = 3,6-di-F$	1191	$R = CF_3, Z = S, R = 3$ -Eulenyl $R^2 = CF_3, Z = S, R^3 = 3$ -SO ₂ Me
1118	R = OMe, Z = O, R = 3,0-di-F $R^2 = OMe, Z = O, R^3 = 4,5-di-F$	1192	$R = CF_3, Z = S, R = 3-SO_2$ We $R^2 = CF_3, Z = S, R^3 = 3-OAc$
1119	$R^{2} = OMe, Z = O, R^{3} = 4,3-di-P$ $R^{2} = OMe, Z = O, R^{3} = 3,4-di-P$	1193	$R^2 = CF_3$, $Z = S$, $R^3 = 3$ -OAC $R^2 = CF_3$, $Z = S$, $R^3 = 3$ -c-Pr
	$R^{2} = OMe, Z = O, R^{3} = 3,4-di-Cl$ $R^{2} = OMe, Z = O, R^{3} = 3,5-di-Cl$	1194	$R^{2} = CF_{3}, Z = S, R^{3} = 3-c-Pr$ $R^{2} = CF_{3}, Z = S, R^{3} = 3-i-Pr$
1121 1122	$R^{2} = OMe, Z = O, R^{3} = 3,5 - di - Cl$ $R^{2} = OMe, Z = O, R^{3} = 3,6 - di - Cl$	1193	$R^{2} = CF_{3}, Z = S, R^{3} = 3-PF$ $R^{2} = CF_{3}, Z = S, R^{3} = 3-PF$
	$R^{2} = OMe, Z = O, R^{3} = 3,0 \text{-di-Cl}$ $R^{2} = OMe, Z = O, R^{3} = 4,5 \text{-di-Cl}$		$R^2 = CF_3, Z = S, R^3 = 3-FII$ $R^2 = CF_3, Z = O, R^3 = 4-F$
1123	$R^{2} = OMe, Z = O, R^{3} = 4,5 - di - Ci$ $R^{2} = OMe, Z = O, R^{3} = 3,4 - di - Br$	1197	$R^{2} = CF_{3}, Z = O, R^{3} = 4-F$ $R^{2} = CF_{3}, Z = O, R^{3} = 4-CI$
1124 1125	$R^2 = OMe, Z = O, R^3 = 3,4-di-Br$ $R^2 = OMe, Z = O, R^3 = 3,5-di-Br$	1198 1199	$R^2 = CF_3, Z = O, R^3 = 4-CI$ $R^2 = CF_3, Z = O, R^3 = 4-Br$
	$R^{-} = OMe, Z = O, R^{-} = 3,5 - di - Br$ $R^{2} = OMe, Z = O, R^{3} = 3,6 - di - Br$		$R^{2} = CF_{3}, Z = O, R^{3} = 4-BF$ $R^{2} = CF_{3}, Z = O, R^{3} = 4-I$
1126 1127	R = OMe, Z = O, R = 3,0 -di-Br $R^2 = OMe, Z = O, R^3 = 4,5 \text{-di-Br}$	1200 1201	$R = CF_3, Z = O, R = 4-1$ $R^2 = CF_3, Z = O, R^3 = 4-CN$
1127	K = ONIC, $L = O$, $K = 4,3$ -dI-DI	1201	$K - CY_3, L = C, K = +CN$

	-conunued		-continued
Table	Header Row	Table	Header Row
1202	$R^2 = CF_3$, $Z = O$, $R^3 = 4-NO_2$	1276	$R^2 = CF_3$, $Z = O$, $R^3 = 3$,4-di-Me
1203	$R^2 = CF_3$, $Z = O$, $R^3 = 4$ -OMe	1277	$R^2 = CF_3$, $Z = O$, $R^3 = 3.5$ -di-Me
1204	$R^2 = CF_3, Z = O, R^3 = 4\text{-}OCF_3$	1278	$R^2 = CF_3$, $Z = O$, $R^3 = 3,6$ -di-Me
1205	$R^2 = CF_3$, $Z = O$, $R^3 = 4-CF_3$	1279	$R^2 = CF_3$, $Z = O$, $R^3 = 4.5$ -di-Me
1206 1207	$R^2 = CF_3$, $Z = O$, $R^3 = 4\text{-CHF}_2$ $R^2 = CF_3$, $Z = O$, $R^3 = 4\text{-CH}_2F$	1280 1281	$R^2 = CF_3$, $Z = O$, $R^3 = 3,4$ -di-OMe $R^2 = CF_3$, $Z = O$, $R^3 = 3,5$ -di-OMe
1207	$R^2 = CF_3, Z = O, R^3 = 4-CHO$	1282	$R^2 = CF_3$, $Z = O$, $R^3 = 3$,6-di-OMe
1209	$R^2 = CF_3$, $Z = O$, $R^3 = 4$ -Me	1283	$R^2 = CF_3$, $Z = O$, $R^3 = 4.5$ -di-OMe
1210	$R^2 = CF_3$, $Z = O$, $R^3 = 4-Et$	1284	$R^2 = CF_3$, $Z = O$, $R^3 = 3,4$ -di- CF_3
1211	$R^2 = CF_3$, $Z = O$, $R^3 = 4$ -Ethynyl	1285	$R^2 = CF_3$, $Z = O$, $R^3 = 3.5$ -di- CF_3
1212	$R^2 = CF_3$, $Z = O$, $R^3 = 4$ -Ethenyl	1286	$R^2 = CF_3$, $Z = O$, $R^3 = 3.6$ -di- CF_3
1213 1214	$R^2 = CF_3$, $Z = O$, $R^3 = 4-SO_2Me$ $R^2 = CF_3$, $Z = O$, $R^3 = 4-OAc$	1287 1288	$R^2 = CF_3$, $Z = O$, $R^3 = 4.5$ -di- CF_3 $R^2 = CF_3$, $Z = O$, $R^3 = 3$ -CN, 4-Me
1215	$R^2 = CF_3, Z = O, R^3 = 4-c-Pr$	1289	$R^2 = CF_3$, $Z = O$, $R^3 = 3-CN$, 4-F
1216	$R^2 = CF_3$, $Z = O$, $R^3 = 4-i-Pr$	1290	$R^2 = CF_3$, $Z = O$, $R^3 = 3$ -CN, 4-Br
1217	$R^2 = CF_3$, $Z = O$, $R^3 = 4$ -Ph	1291	$R^2 = CF_3$, $Z = O$, $R^3 = 3$ -CN, 4-OMe
1218	$R^2 = CF_3$, $Z = O$, $R^3 = 5 - F$	1292	$R^2 = CF_3$, $Z = O$, $R^3 = 3$ -CN, 4-CF ₃
1219	$R^2 = CF_3$, $Z = O$, $R^3 = 5$ -Cl	1293	$R^2 = CF_3$, $Z = O$, $R^3 = 3$ -CN, 6-Me
1220 1221	$R^2 = CF_3$, $Z = O$, $R^3 = 5$ -Br $R^2 = CF_3$, $Z = O$, $R^3 = 5$ -I	1294 1295	$R^2 = CF_3$, $Z = O$, $R^3 = 3$ -CN, 6-F $R^2 = CF_3$, $Z = O$, $R^3 = 3$ -CN, 6-Br
1222	$R^2 = CF_3$, $Z = O$, $R^3 = 5$ -CN	1296	$R^2 = CF_3$, $Z = O$, $R^3 = 3$ -CN, 6-OMe
1223	$R^2 = CF_3$, $Z = O$, $R^3 = 5-NO_2$	1297	$R^2 = CF_3$, $Z = O$, $R^3 = 3$ -CN, 6-CF ₃
1224	$R^2 = CF_3$, $Z = O$, $R^3 = 5$ -OMe	1298	$R^2 = CHF_2$, $Z = O$, $R^3 = H$ (m = 0)
1225	$R^2 = CF_3$, $Z = O$, $R^3 = 5 - OCF_3$	1299	$R^2 = CHF_2$, $Z = O$, $R^3 = 3-F$
1226	$R^2 = CF_3$, $Z = O$, $R^3 = 5 - CF_3$	1300	$R^2 = CHF_2$, $Z = O$, $R^3 = 3-CI$
1227 1228	$R^2 = CF_3$, $Z = O$, $R^3 = 5$ -CHF ₂ $R^2 = CF_3$, $Z = O$, $R^3 = 5$ -CH ₂ F	1301 1302	$R^2 = CHF_2$, $Z = O$, $R^3 = 3-Br$ $R^2 = CHF_2$, $Z = O$, $R^3 = 3-I$
1229	$R^2 = CF_3$, $Z = O$, $R^3 = 5$ -CHO	1303	$R^2 = CHF_2, Z = 0, R^3 = 3-CN$
1230	$R^2 = CF_3$, $Z = O$, $R^3 = 5$ -Me	1304	$R^2 = CHF_2$, $Z = O$, $R^3 = 3-NO_2$
1231	$R^2 = CF_3$, $Z = O$, $R^3 = 5$ -Et	1305	$R^2 = CHF_2$, $Z = O$, $R^3 = 3$ -OMe
1232	$R^2 = CF_3$, $Z = O$, $R^3 = 5$ -Ethynyl	1306	$R^2 = CHF_2$, $Z = O$, $R^3 = 3 - OCF_3$
1233	$R^2 = CF_3$, $Z = O$, $R^3 = 5$ -Ethenyl	1307	$R^2 = CHF_2$, $Z = O$, $R^3 = 3 \cdot CF_3$
1234 1235	$R^2 = CF_3$, $Z = O$, $R^3 = 5-SO_2Me$ $R^2 = CF_3$, $Z = O$, $R^3 = 5-OAc$	1308 1309	$R^2 = CHF_2$, $Z = O$, $R^3 = 3-CHF_2$ $R^2 = CHF_2$, $Z = O$, $R^3 = 3-CH_2F$
1236	$R^2 = CF_3, Z = O, R^3 = 5-c-Pr$	1310	$R^2 = CHF_2, Z = O, R^3 = 3-CHO$
1237	$R^2 = CF_3$, $Z = O$, $R^3 = 5$ -i-Pr	1311	$R^2 = CHF_2$, $Z = O$, $R^3 = 3$ -Me
1238	$R^2 = CF_3$, $Z = O$, $R^3 = 5$ -Ph	1312	$R^2 = CHF_2, Z = O, R^3 = 3-Et$
1239	$R^2 = CF_3$, $Z = O$, $R^3 = 6-F$	1313	$R^2 = CHF_2$, $Z = O$, $R^3 = 3$ -Ethynyl
1240 1241	$R^2 = CF_3$, $Z = O$, $R^3 = 6$ -Cl $R^2 = CF_3$, $Z = O$, $R^3 = 6$ -Br	1314 1315	$R^2 = CHF_2$, $Z = O$, $R^3 = 3$ -Ethenyl $R^2 = CHF_2$, $Z = O$, $R^3 = 3$ -SO ₂ Me
1242	$R^2 = CF_3, Z = O, R^3 = 6-I$	1316	$R^2 = CHF_2$, $Z = O$, $R^2 = 3-SO_2$ MC $R^2 = CHF_2$, $Z = O$, $R^3 = 3-OAc$
1243	$R^2 = CF_3$, $Z = O$, $R^3 = 6$ -CN	1317	$R^2 = CHF_2$, $Z = O$, $R^3 = 3$ -c-Pr
1244	$R^2 = CF_3$, $Z = O$, $R^3 = 6$ - NO_2	1318	$R^2 = CHF_2$, $Z = O$, $R^3 = 3-i-Pr$
1245	$R^2 = CF_3$, $Z = O$, $R^3 = 6$ -OMe	1319	$R^2 = CHF_2$, $Z = O$, $R^3 = 3-Ph$
1246	$R^2 = CF_3$, $Z = O$, $R^3 = 6 \cdot OCF_3$	1320	$R^2 = CHF_2$, $Z = S$, $R^3 = 3-F$
1247 1248	$R^2 = CF_3$, $Z = O$, $R^3 = 6 - CF_3$ $R^2 = CF_3$, $Z = O$, $R^3 = 6 - CHF_2$	1321 1322	$R^2 = CHF_2$, $Z = S$, $R^3 = 3-Cl$ $R^2 = CHF_2$, $Z = S$, $R^3 = 3-Br$
1249	$R^2 = CF_3, Z = O, R^3 = 6 - CH_2F$	1323	$R^2 = CHF_2, Z = S, R^3 = 3-I$
1250	$R^2 = CF_3, Z = O, R^3 = 6$ -CHO	1324	$R^2 = CHF_2, Z = S, R^3 = 3-CN$
1251	$R^2 = CF_3$, $Z = O$, $R^3 = 6$ -Me	1325	$R^2 = CHF_2, Z = S, R^3 = 3-NO_2$
1252	$R^2 = CF_3$, $Z = O$, $R^3 = 6$ -Et	1326	$R^2 = CHF_2$, $Z = S$, $R^3 = 3$ -OMe
1253	$R^2 = CF_3$, $Z = O$, $R^3 = 6$ -Ethynyl	1327	$R^2 = CHF_2$, $Z = S$, $R^3 = 3 - OCF_3$
1254 1255	$R^2 = CF_3$, $Z = O$, $R^3 = 6$ -Ethenyl $R^2 = CF_3$, $Z = O$, $R^3 = 6$ -SO ₂ Me	1328 1329	$R^2 = CHF_2$, $Z = S$, $R^3 = 3-CHF_2$ $R^2 = CHF_2$, $Z = S$, $R^3 = 3-CH_3F$
1256	$R^2 = CF_3$, $Z = O$, $R^3 = 6$ -OAc	1330	$R^2 = CHF_2, Z = S, R^3 = 3-CHO$
1257	$R^2 = CF_3$, $Z = O$, $R^3 = 6$ -c-Pr	1331	$R^2 = CHF_2$, $Z = S$, $R^3 = 3$ -Me
1258	$R^2 = CF_3$, $Z = O$, $R^3 = 6$ -i-Pr	1332	$R^2 = CHF_2$, $Z = S$, $R^3 = 3-Et$
1259	$R^2 = CF_3$, $Z = O$, $R^3 = 6$ -Ph	1333	$R^2 = CHF_2$, $Z = S$, $R^3 = 3$ -Ethynyl
1260	$R^2 = CF_3$, $Z = O$, $R^3 = 3,4$ -di-F	1334	$R^2 = CHF_2$, $Z = S$, $R^3 = 3$ -Ethenyl
1261	$R^2 = CF_3$, $Z = O$, $R^3 = 3,5$ -di-F	1335	$R^2 = CHF_2$, $Z = S$, $R^3 = 3-SO_2Me$
1262 1263	$R^2 = CF_3$, $Z = O$, $R^3 = 3,6$ -di-F $R^2 = CF_3$, $Z = O$, $R^3 = 4,5$ -di-F	1336 1337	$R^2 = CHF_2$, $Z = S$, $R^3 = 3-OAc$ $R^2 = CHF_2$, $Z = S$, $R^3 = 3-c-Pr$
1264	$R = CF_3, Z = O, R = 4,5-di-P$ $R^2 = CF_3, Z = O, R^3 = 3,4-di-Cl$	1338	$R^2 = CHF_2$, $Z = S$, $R^3 = 3$ -i-Pr
1265	$R^2 = CF_3$, $Z = O$, $R^3 = 3,5$ -di-Cl	1339	$R^2 = CHF_2$, $Z = S$, $R^3 = 3-Ph$
1266	$R^2 = CF_3$, $Z = O$, $R^3 = 3$,6-di-Cl	1340	$R^2 = CHF_2$, $Z = 0$, $R^3 = 4-F$
1267	$R^2 = CF_3$, $Z = O$, $R^3 = 4,5$ -di-Cl	1341	$R^2 = CHF_2, Z = O, R^3 = 4-Cl$
1268	$R^2 = CF_3$, $Z = O$, $R^3 = 3,4$ -di-Br	1342	$R^2 = CHF_2, Z = O, R^3 = 4-Br$
1269	$R^2 = CF_3$, $Z = O$, $R^3 = 3.5$ -di-Br	1343	$R^2 = CHF_2$, $Z = O$, $R^3 = 4-I$
1270	$R^2 = CF_3$, $Z = O$, $R^3 = 3,6$ -di-Br	1344	$R^2 = CHF_2, Z = O, R^3 = 4-CN$
1271	$R^2 = CF_3$, $Z = O$, $R^3 = 4.5$ -di-Br	1345	$R^2 = CHF_2, Z = O, R^3 = 4-NO_2$
1272	$R^2 = CF_3$, $Z = O$, $R^3 = 3,4$ -di-CN	1346	$R^2 = CHF_2$, $Z = O$, $R^3 = 4-OMe$
1273	$R^2 = CF_3$, $Z = O$, $R^3 = 3.5$ -di-CN	1347	$R^2 = CHF_2$, $Z = O$, $R^3 = 4 - OCF_3$
1274 1275	$R^2 = CF_3$, $Z = O$, $R^3 = 3,6$ -di-CN $R^2 = CF_3$, $Z = O$, $R^3 = 4,5$ -di-CN	1348 1349	$R^2 = CHF_2$, $Z = O$, $R^3 = 4-CF_3$ $R^2 = CHF_2$, $Z = O$, $R^3 = 4-CHF_2$
12/3	$K = CF_3$, $L = O$, $K = 4,5$ -di-CN	1349	$K = CIII_2, L = O, K = 4-CII_2$

	-continued		-continued
Table	Header Row	Table	Header Row
1350	$R^2 = CHF_2$, $Z = O$, $R^3 = 4-CH_2F$	1424	$R^2 = CHF_2$, $Z = O$, $R^3 = 3.5$ -di-OMe
1351	$R^2 = CHF_2$, $Z = O$, $R^3 = 4$ -CHO	1425	$R^2 = CHF_2$, $Z = O$, $R^3 = 3,6$ -di-OMe
1352	$R^2 = CHF_2$, $Z = O$, $R^3 = 4$ -Me	1426	$R^2 = CHF_2$, $Z = O$, $R^3 = 4.5$ -di-OMe
1353	$R^2 = CHF_2, Z = O, R^3 = 4-Et$	1427	$R^2 = CHF_2$, $Z = O$, $R^3 = 3,4$ -di- CF_3
1354	$R^2 = CHF_2$, $Z = O$, $R^3 = 4$ -Ethynyl	1428	$R^2 = CHF_2$, $Z = O$, $R^3 = 3.5$ -di- CF_3
1355	$R^2 = CHF_2$, $Z = O$, $R^3 = 4$ -Ethenyl	1429	$R^2 = CHF_2$, $Z = O$, $R^3 = 3,6$ -di- CF_3
1356	$R^2 = CHF_2$, $Z = O$, $R^3 = 4-SO_2Me$	1430	$R^2 = CHF_2$, $Z = O$, $R^3 = 4,5$ -di- CF_3
1357	$R^2 = CHF_2$, $Z = O$, $R^3 = 4-OAc$	1431	$R^2 = CHF_2$, $Z = O$, $R^3 = 3$ -CN, 4-Me
1358	$R^2 = CHF_2$, $Z = O$, $R^3 = 4-c-Pr$	1432 1433	$R^2 = CHF_2$, $Z = O$, $R^3 = 3$ -CN, 4-F
1359 1360	$R^2 = CHF_2$, $Z = O$, $R^3 = 4$ -i-Pr $R^2 = CHF_2$, $Z = O$, $R^3 = 4$ -Ph	1434	$R^2 = CHF_2$, $Z = O$, $R^3 = 3-CN$, $4-Br$ $R^2 = CHF_2$, $Z = O$, $R^3 = 3-CN$, $4-OMe$
1361	$R^2 = CHF_2, Z = O, R^3 = 5-F$	1435	$R^2 = CHF_2$, $Z = O$, $R^3 = 3-CN$, $4-CF_3$
1362	$R^2 = CHF_2$, $Z = O$, $R^3 = 5$ -Cl	1436	$R^2 = CHF_2$, $Z = O$, $R^3 = 3$ -CN, 6-Me
1363	$R^2 = CHF_2$, $Z = O$, $R^3 = 5$ -Br	1437	$R^2 = CHF_2$, $Z = O$, $R^3 = 3-CN$, 6-F
1364	$R^2 = CHF_2$, $Z = O$, $R^3 = 5-I$	1438	$R^2 = CHF_2$, $Z = O$, $R^3 = 3-CN$, 6-Br
1365	$R^2 = CHF_2$, $Z = O$, $R^3 = 5-CN$	1439	$R^2 = CHF_2$, $Z = O$, $R^3 = 3$ -CN, 6-OMe
1366	$R^2 = CHF_2$, $Z = O$, $R^3 = 5-NO_2$	1440	$R^2 = CHF_2$, $Z = O$, $R^3 = 3$ -CN, 6-CF ₃
1367	$R^2 = CHF_2$, $Z = O$, $R^3 = 5$ -OMe	1441	$R^2 = SO_2Me$, $Z = O$, $R^3 = H$ (m = 0)
1368	$R^2 = CHF_2$, $Z = O$, $R^3 = 5 - OCF_3$	1442	$R^2 = SO_2Me, Z = O, R^3 = 3-F$
1369	$R^2 = CHF_2$, $Z = O$, $R^3 = 5 \cdot CF_3$	1443	$R^2 = SO_2Me, Z = O, R^3 = 3-Cl$
1370 1371	$R^2 = CHF_2$, $Z = O$, $R^3 = 5-CHF_2$ $R^2 = CHF_2$, $Z = O$, $R^3 = 5-CH_2F$	1444 1445	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3-Br$ $R^2 = SO_2Me$, $Z = O$, $R^3 = 3-I$
1372	$R^2 = CHF_2, Z = O, R^3 = 5-CHO$	1446	$R^2 = SO_2Me, Z = O, R^3 = 3-CN$ $R^2 = SO_2Me, Z = O, R^3 = 3-CN$
1373	$R^2 = CHF_2$, $Z = O$, $R^3 = 5$ -Me	1447	$R^2 = SO_2Me, Z = O, R^3 = 3-NO_2$
1374	$R^2 = CHF_2$, $Z = O$, $R^3 = 5-Et$	1448	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3$ -OMe
1375	$R^2 = CHF_2$, $Z = O$, $R^3 = 5$ -Ethynyl	1449	$R^2 = SO_2^2 Me$, $Z = O$, $R^3 = 3$ -OCF ₃
1376	$R^2 = CHF_2$, $Z = O$, $R^3 = 5$ -Ethenyl	1450	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3$ - CF_3
1377	$R^2 = CHF_2$, $Z = O$, $R^3 = 5-SO_2Me$	1451	$R^2 = SO_2Me, Z = O, R^3 = 3-CHF_2$
1378	$R^2 = CHF_2$, $Z = O$, $R^3 = 5$ -OAc	1452	$R^2 = SO_2Me, Z = O, R^3 = 3-CH_2F$
1379	$R^2 = CHF_2$, $Z = O$, $R^3 = 5$ -c-Pr	1453	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3$ -CHO
1380	$R^2 = CHF_2$, $Z = O$, $R^3 = 5$ -i-Pr	1454	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3-Me$
1381	$R^2 = CHF_2$, $Z = O$, $R^3 = 5$ -Ph	1455	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3$ -Et
1382 1383	$R^2 = CHF_2$, $Z = O$, $R^3 = 6-F$ $R^2 = CHF_2$, $Z = O$, $R^3 = 6-CI$	1456 1457	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3$ -Ethynyl $R^2 = SO_2Me$, $Z = O$, $R^3 = 3$ -Ethenyl
1384	$R^2 = CHF_2, Z = O, R^3 = 6-Br$	1458	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3-Editerry$ $R^2 = SO_2Me$, $Z = O$, $R^3 = 3-SO_2Me$
1385	$R^2 = CHF_2, Z = O, R^3 = 6-I$	1459	$R^2 = SO_2Me, Z = O, R^3 = 3-OAc$
1386	$R^2 = CHF_2$, $Z = O$, $R^3 = 6$ -CN	1460	$R^2 = SO_2^2Me$, $Z = O$, $R^3 = 3$ -c-Pr
1387	$R^2 = CHF_2, Z = O, R^3 = 6-NO_2$	1461	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3-i-Pr$
1388	$R^2 = CHF_2$, $Z = O$, $R^3 = 6$ -OMe	1462	$R^2 = SO_2Me, Z = O, R^3 = 3-Ph$
1389	$R^2 = CHF_2$, $Z = O$, $R^3 = 6 - OCF_3$	1463	$R^2 = SO_2Me$, $Z = S$, $R^3 = 3-F$
1390	$R^2 = CHF_2$, $Z = O$, $R^3 = 6-CF_3$	1464	$R^2 = SO_2Me, Z = S, R^3 = 3-Cl$
1391	$R^2 = CHF_2$, $Z = O$, $R^3 = 6 - CHF_2$	1465	$R^2 = SO_2Me, Z = S, R^3 = 3-Br$
1392 1393	$R^2 = CHF_2$, $Z = O$, $R^3 = 6 - CH_2F$ $R^2 = CHF_2$, $Z = O$, $R^3 = 6 - CHO$	1466 1467	$R^2 = SO_2Me, Z = S, R^3 = 3-I$ $R^2 = SO_2Me, Z = S, R^3 = 3-CN$
1394	$R^2 = CHF_2$, $Z = O$, $R^3 = 6$ -Me	1468	$R^2 = SO_2Me, Z = S, R^3 = 3-NO_2$
1395	$R^2 = CHF_2$, $Z = O$, $R^3 = 6$ -Et	1469	$R^2 = SO_2Me, Z = S, R^3 = 3-OMe$
1396	$R^2 = CHF_2$, $Z = O$, $R^3 = 6$ -Ethynyl	1470	$R^2 = SO_2Me$, $Z = S$, $R^3 = 3$ -OCF ₃
1397	$R^2 = CHF_2$, $Z = O$, $R^3 = 6$ -Ethenyl	1471	$R^2 = SO_2^2 Me$, $Z = S$, $R^3 = 3 - CF_3$
1398	$R^2 = CHF_2$, $Z = O$, $R^3 = 6-SO_2Me$	1472	$R^2 = SO_2Me$, $Z = S$, $R^3 = 3$ -CHF ₂
1399	$R^2 = CHF_2$, $Z = O$, $R^3 = 6$ -OAc	1473	$R^2 = SO_2Me, Z = S, R^3 = 3-CH_2F$
1400	$R^2 = CHF_2$, $Z = O$, $R^3 = 6$ -c-Pr	1474	$R^2 = SO_2Me, Z = S, R^3 = 3\text{-CHO}$
1401	$R^2 = CHF_2$, $Z = O$, $R^3 = 6$ -i-Pr	1475	$R^2 = SO_2Me, Z = S, R^3 = 3-Me$
1402	$R^2 = CHF_2$, $Z = O$, $R^3 = 6-Ph$	1476	$R^2 = SO_2Me, Z = S, R^3 = 3-Et$
1403	$R^2 = CHF_2$, $Z = O$, $R^3 = 3,4$ -di-F	1477	$R^2 = SO_2Me, Z = S, R^3 = 3-Ethynyl$
1404 1405	$R^2 = CHF_2$, $Z = O$, $R^3 = 3.5$ -di-F $R^2 = CHF_2$, $Z = O$, $R^3 = 3.6$ -di-F	1478 1479	$R^2 = SO_2Me$, $Z = S$, $R^3 = 3$ -Ethenyl $R^2 = SO_2Me$, $Z = S$, $R^3 = 3$ -SO ₂ Me
1406	$R^2 = CHF_2$, $Z = O$, $R^3 = 4.5$ -di-F	1480	$R^2 = SO_2Me, Z = S, R^3 = 3-SO_2Me$ $R^2 = SO_2Me, Z = S, R^3 = 3-OAc$
1407	$R^2 = CHF_2$, $Z = O$, $R^3 = 3$,4-di-Cl	1481	$R^2 = SO_2Me, Z = S, R^3 = 3-c-Pr$
1408	$R^2 = CHF_2$, $Z = O$, $R^3 = 3,5$ -di-Cl	1482	$R^2 = SO_2Me, Z = S, R^3 = 3-i-Pr$
1409	$R^2 = CHF_2$, $Z = O$, $R^3 = 3$,6-di-Cl	1483	$R^2 = SO_2Me, Z = S, R^3 = 3-Ph$
1410	$R^2 = CHF_2$, $Z = O$, $R^3 = 4.5$ -di-Cl	1484	$R^2 = SO_2Me$, $Z = O$, $R^3 = 4-F$
1411	$R^2 = CHF_2$, $Z = O$, $R^3 = 3$,4-di-Br	1485	$R^2 = SO_2Me, Z = O, R^3 = 4-Cl$
1412	$R^2 = CHF_2$, $Z = O$, $R^3 = 3.5$ -di-Br	1486	$R^2 = SO_2^2 Me$, $Z = O$, $R^3 = 4$ -Br
1413	$R^2 = CHF_2$, $Z = O$, $R^3 = 3,6$ -di-Br	1487	$R^2 = SO_2^2 Me$, $Z = O$, $R^3 = 4-I$
1414	$R^2 = CHF_2$, $Z = O$, $R^3 = 4,5$ -di-Br	1488	$R^2 = SO_2Me, Z = O, R^3 = 4-CN$
1415	$R^2 = CHF_2$, $Z = O$, $R^3 = 3,4$ -di-CN	1489	$R^2 = SO_2Me$, $Z = O$, $R^3 = 4-NO_2$
1416	$R^2 = CHF_2$, $Z = O$, $R^3 = 3.5$ -di-CN	1490	$R^2 = SO_2Me, Z = O, R^3 = 4-OMe$
1417	$R^2 = CHF_2$, $Z = O$, $R^3 = 3,6$ -di-CN	1491	$R^2 = SO_2Me, Z = O, R^3 = 4-OCF_3$
1418	$R^2 = CHF_2$, $Z = O$, $R^3 = 4,5$ -di-CN	1492	$R^2 = SO_2Me$, $Z = O$, $R^3 = 4$ -CF ₃
1419	$R^2 = CHF_2$, $Z = O$, $R^3 = 3,4$ -di-Me	1493	$R^2 = SO_2Me, Z = O, R^3 = 4-CHF_2$
1420	$R^2 = CHF_2$, $Z = O$, $R^3 = 3,5$ -di-Me	1494	$R^2 = SO_2Me, Z = O, R^3 = 4-CH_2F$
1421	$R^2 = CHF_2$, $Z = O$, $R^3 = 3,6$ -di-Me	1495	$R^2 = SO_2Me, Z = O, R^3 = 4\text{-CHO}$
1422	$R^2 = CHF_2$, $Z = O$, $R^3 = 4,5$ -di-Me	1496	$R^2 = SO_2Me, Z = O, R^3 = 4-Me$
1423	$R^2 = CHF_2$, $Z = O$, $R^3 = 3,4$ -di-OMe	1497	$R^2 = SO_2Me, Z = O, R^3 = 4-Et$

-continued -continued

	Tommada .
Table	Header Row
1498	$R^2 = SO_2Me$, $Z = O$, $R^3 = 4$ -Ethynyl
1499	$R^2 = SO_2Me$, $Z = O$, $R^3 = 4$ -Ethenyl
1500	$R^2 = SO_2Me, Z = O, R^3 = 4-SO_2Me$
1501	$R^2 = SO_2Me$, $Z = O$, $R^3 = 4$ -OAc $R^2 = SO_2Me$, $Z = O$, $R^3 = 4$ -c-Pr
1502 1503	$R^{2} = SO_{2}Me$, $Z = O$, $R^{3} = 4-e-rr$ $R^{2} = SO_{2}Me$, $Z = O$, $R^{3} = 4-i-Pr$
1504	$R^2 = SO_2Me, Z = O, R^3 = 4-Ph$
1505	$R^2 = SO_2Me$, $Z = O$, $R^3 = 5-F$
1506 1507	$R^2 = SO_2Me, Z = O, R^3 = 5-Cl$ $R^2 = SO_2Me, Z = O, R^3 = 5-Br$
1508	$R^2 = SO_2Me, Z = O, R^3 = 5-I$
1509	$R^2 = SO_2Me, Z = O, R^3 = 5-CN$
1510	$R^2 = SO_2Me, Z = O, R^3 = 5-NO_2$
1511 1512	$R^2 = SO_2Me, Z = O, R^3 = 5-OMe$ $R^2 = SO_2Me, Z = O, R^3 = 5-OCF_3$
1513	$R^2 = SO_2Me, Z = O, R^3 = 5-CF_3$
1514	$R^2 = SO_2Me, Z = O, R^3 = 5-CHF_2$
1515	$R^2 = SO_2Me$, $Z = O$, $R^3 = 5$ -CH ₂ F $R^2 = SO_2Me$, $Z = O$, $R^3 = 5$ -CHO
1516 1517	$R = SO_2Me, Z = O, R = 5-CHO$ $R^2 = SO_2Me, Z = O, R^3 = 5-Me$
1518	$R^2 = SO_2Me$, $Z = O$, $R^3 = 5-Et$
1519	$R^2 = SO_2Me, Z = O, R^3 = 5$ -Ethynyl
1520 1521	$R^2 = SO_2Me$, $Z = O$, $R^3 = 5$ -Ethenyl $R^2 = SO_2Me$, $Z = O$, $R^3 = 5$ -SO ₂ Me
1522	$R^2 = SO_2Me, Z = O, R^3 = 5-OAc$
1523	$R^2 = SO_2Me$, $Z = O$, $R^3 = 5$ -c-Pr
1524	$R^2 = SO_2Me, Z = O, R^3 = 5-i-Pr$
1525 1526	$R^2 = SO_2Me$, $Z = O$, $R^3 = 5$ -Ph $R^2 = SO_2Me$, $Z = O$, $R^3 = 6$ -F
1527	$R^2 = SO_2Me, Z = O, R^3 = 6-Cl$
1528	$R^2 = SO_2Me, Z = O, R^3 = 6-Br$
1529 1530	$R^2 = SO_2Me, Z = O, R^3 = 6-I$ $R^2 = SO_2Me, Z = O, R^3 = 6-CN$
1531	$R = SO_2NIE, Z = O, R = 6-CN$ $R^2 = SO_2Me, Z = O, R^3 = 6-NO_2$
1532	$R^2 = SO_2Me, Z = O, R^3 = 6-OMe$
1533	$R^2 = SO_2Me, Z = O, R^3 = 6-OCF_3$
1534 1535	$R^2 = SO_2Me$, $Z = O$, $R^3 = 6-CF_3$ $R^2 = SO_2Me$, $Z = O$, $R^3 = 6-CHF_2$
1536	$R^2 = SO_2Me, Z = O, R^3 = 6-CH_2F$
1537	$R^2 = SO_2Me, Z = O, R^3 = 6\text{-CHO}$
1538 1539	$R^2 = SO_2Me, Z = O, R^3 = 6-Me$ $R^2 = SO_2Me, Z = O, R^3 = 6-Et$
1540	$R^2 = SO_2Me$, $Z = O$, $R^3 = 6$ -Ethynyl
1541	$R^2 = SO_2Me$, $Z = O$, $R^3 = 6$ -Ethenyl
1542	$R^2 = SO_2Me$, $Z = O$, $R^3 = 6-SO_2Me$ $R^2 = SO_2Me$, $Z = O$, $R^3 = 6-OAc$
1543 1544	$R = SO_2Me, Z = O, R = 6-OAC$ $R^2 = SO_2Me, Z = O, R^3 = 6-c-Pr$
1545	$R^2 = SO_2Me$, $Z = O$, $R^3 = 6-i-Pr$
1546	$R^2 = SO_2Me, Z = O, R^3 = 6-Ph$
1547 1548	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3,4-di$ -F $R^2 = SO_2Me$, $Z = O$, $R^3 = 3,5-di$ -F
1549	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3.6$ -di-F
1550	$R^2 = SO_5Me$, $Z = O$, $R^3 = 4.5$ -di-F
1551 1552	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3,4$ -di-Cl $R^2 = SO_2Me$, $Z = O$, $R^3 = 3,5$ -di-Cl
1553	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3.6$ -di-Cl
1554	$R^2 = SO_2Me$, $Z = O$, $R^3 = 4,5$ -di-Cl
1555	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3,4$ -di-Br $R^2 = SO_2Me$, $Z = O$, $R^3 = 3,5$ -di-Br
1556 1557	$R^{-} = SO_{2}Me$, $Z = O$, $R^{+} = 3.5$ -di-Br $R^{2} = SO_{2}Me$, $Z = O$, $R^{3} = 3.6$ -di-Br
1558	$R^2 = SO_2Me, Z = O, R^3 = 4,5-di-Br$
1559	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3,4-di-CN$
1560	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3.5$ -di-CN
1561 1562	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3,6$ -di-CN $R^2 = SO_2Me$, $Z = O$, $R^3 = 4,5$ -di-CN
1563	$R = SO_2Me$, $Z = O$, $R = 4,3$ -di-Ne $R^2 = SO_2Me$, $Z = O$, $R^3 = 3,4$ -di-Me
1564	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3.5$ -di-Me
1565	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3.6$ -di-Me
1566	$R^2 = SO_2Me$, $Z = O$, $R^3 = 4.5$ -di-Me
1567	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3,4$ -di-OMe $R^2 = SO_2Me$, $Z = O$, $R^3 = 3,5$ -di-OMe
1568 1569	$R^{2} = SO_{2}Me$, $Z = O$, $R^{3} = 3,5$ -di-OMe $R^{2} = SO_{2}Me$, $Z = O$, $R^{3} = 3,6$ -di-OMe
1570	$R^2 = SO_2Me$, $Z = O$, $R^3 = 4.5$ -di-OMe
1571	$R^2 = SO_2Me$, $Z = O$, $R^3 = 3,4$ -di-CF ₃

Table	Header Row
1572 1573 1574 1575 1576 1577 1578	$R^2 = SO_2Me, Z = O, R^3 = 3,5-di-CF_3$ $R^2 = SO_2Me, Z = O, R^3 = 3,6-di-CF_3$ $R^2 = SO_2Me, Z = O, R^3 = 4,5-di-CF_3$ $R^2 = SO_2Me, Z = O, R^3 = 3-CN, 4-Me$ $R^2 = SO_2Me, Z = O, R^3 = 3-CN, 4-F$ $R^2 = SO_2Me, Z = O, R^3 = 3-CN, 4-Br$ $R^2 = SO_2Me, Z = O, R^3 = 3-CN, 4-OMe$
1579 1580 1581 1582 1583 1584	$\begin{array}{l} R^2 = SO_2Me, Z = O, R^3 = 3\text{-CN}, 4\text{-CF}_3 \\ R^2 = SO_2Me, Z = O, R^3 = 3\text{-CN}, 6\text{-Me} \\ R^2 = SO_2Me, Z = O, R^3 = 3\text{-CN}, 6\text{-F} \\ R^2 = SO_2Me, Z = O, R^3 = 3\text{-CN}, 6\text{-Br} \\ R^2 = SO_2Me, Z = O, R^3 = 3\text{-CN}, 6\text{-OMe} \\ R^2 = SO_2Me, Z = O, R^3 = 3\text{-CN}, 6\text{-CF}_3 \end{array}$

[0415] A compound of this invention will generally be used as a herbicidal active ingredient in a composition, i.e. formulation, with at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents, which serves as a carrier. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature.

[0416] Useful formulations include both liquid and solid compositions. Liquid compositions include solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions, oil-in-water emulsions, flowable concentrates and/or suspoemulsions) and the like, which optionally can be thickened into gels. The general types of aqueous liquid compositions are soluble concentrate, suspension concentrate, capsule suspension, concentrated emulsion, microemulsion, oil-in-water emulsion, flowable concentrate and suspo-emulsion. The general types of nonaqueous liquid compositions are emulsifiable concentrate, microemulsifiable concentrate, dispersible concentrate and oil dispersion.

[0417] The general types of solid compositions are dusts, powders, granules, pellets, prills, pastilles, tablets, filled films (including seed coatings) and the like, which can be water-dispersible ("wettable") or water-soluble. Films and coatings formed from film-forming solutions or flowable suspensions are particularly useful for seed treatment. Active ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated"). Encapsulation can control or delay release of the active ingredient. An emulsifiable granule combines the advantages of both an emulsifiable concentrate formulation and a dry granular formulation. High-strength compositions are primarily used as intermediates for further formulation.

[0418] Sprayable formulations are typically extended in a suitable medium before spraying. Such liquid and solid formulations are formulated to be readily diluted in the spray medium, usually water, but occasionally another suitable medium like an aromatic or paraffinic hydrocarbon or vegetable oil. Spray volumes can range from about from about one to several thousand liters per hectare, but more typically are in the range from about ten to several hundred liters per hectare. Sprayable formulations can be tank mixed with water or another suitable medium for foliar treatment by aerial or ground application, or for application to the grow-

ing medium of the plant. Liquid and dry formulations can be metered directly into drip irrigation systems or metered into the furrow during planting.

[0419] The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.

	Weight Percent		
	Active Ingredient	Diluent	Surfactant
Water-Dispersible and Water- soluble Granules, Tablets and	0.001-90	0-99.999	0-15
Powders Oil Dispersions, Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates)	1-50	40-99	0-50
Dusts Granules and Pellets High Strength Compositions	1-25 0.001-99 90-99	70-99 5-99.999 0-10	0-5 0-15 0-2

[0420] Solid diluents include, for example, clays such as bentonite, montmorillonite, attapulgite and kaolin, gypsum, cellulose, titanium dioxide, zinc oxide, starch, dextrin, sugars (e.g., lactose, sucrose), silica, talc, mica, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Typical solid diluents are described in Watkins et al., *Handbook of Insecticide Dust Diluents and Carriers*, 2nd Ed., Dorland Books, Caldwell, N.J.

[0421] Liquid diluents include, for example, water, N,Ndimethylalkanamides (e.g., N,N-dimethylformamide), limonene, dimethyl sulfoxide, N-alkylpyrrolidones (e.g., N-methylpyrrolidinone), alkyl phosphates (e.g., triethyl phosphate), ethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, propylene carbonate, butylene carbonate, paraffins (e.g., white mineral oils, normal paraffins, isoparaffins), alkylbenzenes, alkylnaphthalenes, glycerine, glycerol triacetate, sorbitol, aromatic hydrocarbons, dearomatized aliphatics, alkylbenzenes, alkylnaphthalenes, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, acetates such as isoamyl acetate, hexyl acetate, heptyl acetate, octyl acetate, nonyl acetate, tridecyl acetate and isobornyl acetate, other esters such as alkylated lactate esters, dibasic esters, alkyl and aryl benzoates and y-butyrolactone, and alcohols, which can be linear, branched, saturated or unsaturated, such as methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, n-hexanol, 2-ethylhexanol, n-octanol, decanol, isodecyl alcohol, isooctadecanol, cetyl alcohol, lauryl alcohol, tridecyl alcohol, oleyl alcohol, cyclohexanol, tetrahydrofurfuryl alcohol, diacetone alcohol, cresol and benzyl alcohol. Liquid diluents also include glycerol esters of saturated and unsaturated fatty acids (typically C₆-C₂₂), such as plant seed and fruit oils (e.g., oils of olive, castor, linseed, sesame, corn (maize), peanut, sunflower, grapeseed, safflower, cottonseed, soybean, rapeseed, coconut and palm kernel), animalsourced fats (e.g., beef tallow, pork tallow, lard, cod liver oil, fish oil), and mixtures thereof. Liquid diluents also include alkylated fatty acids (e.g., methylated, ethylated, butylated) wherein the fatty acids may be obtained by hydrolysis of glycerol esters from plant and animal sources, and can be purified by distillation. Typical liquid diluents are described in Marsden, *Solvents Guide*, 2nd Ed., Interscience, New York, 1950.

[0422] The solid and liquid compositions of the present invention often include one or more surfactants. When added to a liquid, surfactants (also known as "surface-active agents") generally modify, most often reduce, the surface tension of the liquid. Depending on the nature of the hydrophilic and lipophilic groups in a surfactant molecule, surfactants can be useful as wetting agents, dispersants, emulsifiers or defoaming agents.

[0423] Surfactants can be classified as nonionic, anionic or cationic. Nonionic surfactants useful for the present compositions include, but are not limited to: alcohol alkoxylates such as alcohol alkoxylates based on natural and synthetic alcohols (which may be branched or linear) and prepared from the alcohols and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof; amine ethoxylates, alkanolamides and ethoxylated alkanolamides; alkoxylated triglycerides such as ethoxylated soybean, castor and rapeseed oils; alkylphenol alkoxylates such as octylphenol ethoxylates, nonylphenol ethoxylates, dinonyl phenol ethoxylates and dodecyl phenol ethoxylates (prepared from the phenols and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); block polymers prepared from ethylene oxide or propylene oxide and reverse block polymers where the terminal blocks are prepared from propylene oxide; ethoxylated fatty acids; ethoxylated fatty esters and oils; ethoxylated methyl esters; ethoxylated tristyrylphenol (including those prepared from ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); fatty acid esters, glycerol esters, lanolin-based derivatives, polyethoxylate esters such as polyethoxylated sorbitan fatty acid esters, polyethoxylated sorbitol fatty acid esters and polyethoxylated glycerol fatty acid esters; other sorbitan derivatives such as sorbitan esters; polymeric surfactants such as random copolymers, block copolymers, alkyd peg (polyethylene glycol) resins, graft or comb polymers and star polymers; polyethylene glycols (pegs); polyethylene glycol fatty acid esters; silicone-based surfactants; and sugar-derivatives such as sucrose esters, alkyl polyglycosides and alkyl polysaccharides.

[0424] Useful anionic surfactants include, but are not limited to: alkylaryl sulfonic acids and their salts; carboxylated alcohol or alkylphenol ethoxylates; diphenyl sulfonate derivatives; lignin and lignin derivatives such as lignosulfonates; maleic or succinic acids or their anhydrides; olefin sulfonates; phosphate esters such as phosphate esters of alcohol alkoxylates, phosphate esters of alkylphenol alkoxylates and phosphate esters of styryl phenol ethoxylates; protein-based surfactants; sarcosine derivatives; styryl phenol ether sulfate; sulfates and sulfonates of oils and fatty acids; sulfates and sulfonates of ethoxylated alkylphenols; sulfates of alcohols; sulfates of ethoxylated alcohols; sulfonates of amines and amides such as N,N-alkyltaurates; sulfonates of benzene, cumene, toluene, xylene, and dodecyl and tridecylbenzenes; sulfonates of condensed naphthalenes; sulfonates of naphthalene and alkyl naphthalene; sulfonates of fractionated petroleum; sulfosuccinamates; and sulfosuccinates and their derivatives such as dialkyl sulfosuccinate salts.

[0425] Useful cationic surfactants include, but are not limited to: amides and ethoxylated amides; amines such as N-alkyl propanediamines, tripropylenetriamines and dipro-

pylenetetramines, and ethoxylated amines, ethoxylated diamines and propoxylated amines (prepared from the amines and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); amine salts such as amine acetates and diamine salts; quaternary ammonium salts such as quaternary salts, ethoxylated quaternary salts and diquaternary salts; and amine oxides such as alkyldimethylamine oxides and bis-(2-hydroxyethyl)-alkylamine oxides.

[0426] Also useful for the present compositions are mixtures of nonionic and anionic surfactants or mixtures of nonionic and cationic surfactants. Nonionic, anionic and cationic surfactants and their recommended uses are disclosed in a variety of published references including *McCutcheon's Emulsifiers and Detergents*, annual American and International Editions published by McCutcheon's Division, The Manufacturing Confectioner Publishing Co.; Sisely and Wood, *Encyclopedia of Surface Active Agents*, Chemical Publ. Co., Inc., New York, 1964; and A. S. Davidson and B. Milwidsky, *Synthetic Detergents*, Seventh Edition, John Wiley and Sons, New York, 1987.

[0427] Compositions of this invention may also contain formulation auxiliaries and additives, known to those skilled in the art as formulation aids (some of which may be considered to also function as solid diluents, liquid diluents or surfactants). Such formulation auxiliaries and additives may control: pH (buffers), foaming during processing (antifoams such polyorganosiloxanes), sedimentation of active ingredients (suspending agents), viscosity (thixotropic thickeners), in-container microbial growth (antimicrobials), product freezing (antifreezes), color (dyes/pigment dispersions), wash-off (film formers or stickers), evaporation (evaporation retardants), and other formulation attributes. Film formers include, for example, polyvinyl acetates, polyvinyl acetate copolymers, polyvinylpyrrolidone-vinyl acetate copolymer, polyvinyl alcohols, polyvinyl alcohol copolymers and waxes. Examples of formulation auxiliaries and additives include those listed in McCutcheon's Volume 2: Functional Materials, annual International and North American editions published by McCutcheon's Division, The Manufacturing Confectioner Publishing Co.; and PCT Publication WO 03/024222.

[0428] The compound of Formula 1 and any other active ingredients are typically incorporated into the present compositions by dissolving the active ingredient in a solvent or by grinding in a liquid or dry diluent. Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. If the solvent of a liquid composition intended for use as an emulsifiable concentrate is waterimmiscible, an emulsifier is typically added to emulsify the active-containing solvent upon dilution with water. Active ingredient slurries, with particle diameters of up to 2,000 µm can be wet milled using media mills to obtain particles with average diameters below 3 µm. Aqueous slurries can be made into finished suspension concentrates (see, for example, U.S. Pat. No. 3,060,084) or further processed by spray drying to form water-dispersible granules. Dry formulations usually require dry milling processes, which produce average particle diameters in the 2 to 10 µm range. Dusts and powders can be prepared by blending and usually grinding (such as with a hammer mill or fluid-energy mill). Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", Chemical Engineering, Dec. 4, 1967, pp 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. Pat. No. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in U.S. Pat. Nos. 4,144,050, 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. Pat. Nos. 5,180,587, 5,232,701 and 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. Pat. No. 3,299,566.

[0429] For further information regarding the art of formulation, see T. S. Woods, "The Formulator's Toolbox-Product Forms for Modern Agriculture" in Pesticide Chemistry and Bioscience, The Food-Environment Challenge, T. Brooks and T. R. Roberts, Eds., Proceedings of the 9th International Congress on Pesticide Chemistry, The Royal Society of Chemistry, Cambridge, 1999, pp. 120-133. See also U.S. Pat. No. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10-41; U.S. Pat. No. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182; U.S. Pat. No. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1-4; Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961, pp 81-96; Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989; and Developments in formulation technology, PJB Publications, Richmond, UK, 2000.

[0430] In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Compound numbers refer to compounds in Index Table A. Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Percentages are by weight except where otherwise indicated.

Example A

[0431] High Strength Concentrate

Compound 1	98.5%
silica aerogel	0.5%
synthetic amorphous fine silica	1.0%

Example B

[0432] Wettable Powder

Compound 12	65.0%
dodecylphenol polyethylene glycol ether	2.0%
sodium ligninsulfonate	4.0%
sodium silicoaluminate	6.0%
montmorillonite (calcined)	23.0%

Example C

[0433] Granule

		_
Compound 15	10.0%	
attapulgite granules	90.0%	
(low volatile matter, 0.71/0.30 mm;		
U.S.S. No. 25-50 sieves)		
Olbibi Itol 25 50 bic teb)		

Example D

[0434] Extruded Pellet

Compound 21	25.0%	
anhydrous sodium sulfate	10.0%	
crude calcium ligninsulfonate	5.0%	
sodium alkylnaphthalenesulfonate	1.0%	
calcium/magnesium bentonite	59.0%	

Example E

[0435] Emulsifiable Concentrate

Compound 23	10.0%
polyoxyethylene sorbitol hexoleate	20.0%
C ₆ -C ₁₀ fatty acid methyl ester	70.0%

Example F

[0436] Microemulsion

Compound 24	5.0%
polyvinylpyrrolidone-vinyl acetate copolymer	30.0%
alkylpolyglycoside	30.0%
glyceryl monooleate	15.0%
water	20.0%

Example G

[0437] Suspension Concentrate

Compound 27	35%
butyl polyoxyethylene/polypropylene block copolymer	4.0%
stearic acid/polyethylene glycol copolymer	1.0%
styrene acrylic polymer	1.0%
xanthan gum	0.1%
propylene glycol	5.0%
silicone based defoamer	0.1%
1,2-benzisothiazolin-3-one	0.1%
water	53.7%

Example H

[0438] Emulsion in Water

Compound 32	10.0%
butyl polyoxyethylene/polypropylene block copolymer	4.0%
stearic acid/polyethylene glycol copolymer	1.0%
styrene acrylic polymer	1.0%
xanthan gum	0.1%
propylene glycol	5.0%
silicone based defoamer	0.1%
1,2-benzisothiazolin-3-one	0.1%
aromatic petroleum based hydrocarbon	20.0
water	58.7%

Example I

[0439] Oil Dispersion

Compound 42	25%	
polyoxyethylene sorbitol hexaoleate	15%	
organically modified bentonite clay	2.5%	
fatty acid methyl ester	57.5%	

Example J

[0440] Suspoemulsion

Compound 1	10.0%
imidacloprid	5.0%
butyl polyoxyethylene/polypropylene block copolymer	4.0%
stearic acid/polyethylene glycol copolymer	1.0%
styrene acrylic polymer	1.0%
xanthan gum	0.1%
propylene glycol	5.0%
silicone based defoamer	0.1%
1,2-benzisothiazolin-3-one	0.1%
aromatic petroleum based hydrocarbon	20.0%
water	53.7%

[0441] Test results indicate that the compounds of the present invention are highly active preemergent and/or postemergent herbicides and/or plant growth regulants. The compounds of the invention generally show highest activity for postemergence weed control (i.e. applied after weed seedlings emerge from the soil) and preemergence weed control (i.e. applied before weed seedlings emerge from the soil). Many of them have utility for broad-spectrum preand/or postemergence weed control in areas where complete control of all vegetation is desired such as around fuel storage tanks, industrial storage areas, parking lots, drive-in theaters, air fields, river banks, irrigation and other waterways, around billboards and highway and railroad structures. Many of the compounds of this invention, by virtue of selective metabolism in crops versus weeds, or by selective activity at the locus of physiological inhibition in crops and weeds, or by selective placement on or within the environment of a mixture of crops and weeds, are useful for the selective control of grass and broadleaf weeds within a crop/weed mixture. One skilled in the art will recognize that the preferred combination of these selectivity factors within a compound or group of compounds can readily be determined by performing routine biological and/or biochemical assays. Compounds of this invention may show tolerance to important agronomic crops including, but is not limited to, alfalfa, barley, cotton, wheat, rape, sugar beets, corn (maize), sorghum, soybeans, rice, oats, peanuts, vegetables, tomato, potato, perennial plantation crops including coffee, cocoa, oil palm, rubber, sugarcane, citrus, grapes, fruit trees, nut trees, banana, plantain, pineapple, hops, tea and forests such as eucalyptus and conifers (e.g., loblolly pine), and turf species (e.g., Kentucky bluegrass, St. Augustine grass, Kentucky fescue and Bermuda grass). Compounds of this invention can be used in crops genetically transformed or bred to incorporate resistance to herbicides, express proteins toxic to invertebrate pests (such as Bacillus thuringiensis toxin), and/or express other useful traits. Those skilled in the art will appreciate that not all compounds are equally effective against all weeds. Alternatively, the subject compounds are useful to modify plant growth.

[0442] As the compounds of the invention have both preemergent and postemergent herbicidal activity, to control undesired vegetation by killing or injuring the vegetation or reducing its growth, the compounds can be usefully applied by a variety of methods involving contacting a herbicidally effective amount of a compound of the invention, or a composition comprising said compound and at least one of a surfactant, a solid diluent or a liquid diluent, to the foliage or other part of the undesired vegetation or to the environment of the undesired vegetation such as the soil or water in which the undesired vegetation is growing or which surrounds the seed or other propagule of the undesired vegetation.

[0443] A herbicidally effective amount of the compounds of this invention is determined by a number of factors. These factors include: formulation selected, method of application, amount and type of vegetation present, growing conditions, etc. In general, a herbicidally effective amount of compounds of this invention is about 0.001 to 20 kg/ha with a preferred range of about 0.004 to 1 kg/ha. One skilled in the art can easily determine the herbicidally effective amount necessary for the desired level of weed control.

[0444] Compounds of the invention are useful in treating all plants and plant parts. Plant varieties and cultivars can be obtained by conventional propagation and breeding methods or by genetic engineering methods. Genetically modified plants (transgenic plants) are those in which a heterologous gene (transgene) has been stably integrated into the plant's genome. A transgene that is defined by its particular location in the plant genome is called a transformation or transgenic event

[0445] Genetically modified plant cultivars which can be treated according to the invention include those that are resistant against one or more biotic stresses (pests such as nematodes, insects, mites, fungi, etc.) or abiotic stresses (drought, cold temperature, soil salinity, etc.), or that contain other desirable characteristics. Plants can be genetically modified to exhibit traits of, for example, herbicide tolerance, insect-resistance, modified oil profiles or drought tolerance. Useful genetically modified plants containing single gene transformation events or combinations of transformation events are listed in Exhibit C. Additional information for the genetic modifications listed in Exhibit C can

be obtained from publicly available databases maintained, for example, by the U.S. Department of Agriculture.

Mar. 21, 2019

[0446] The following abbreviations, 1 through 37, are used in Exhibit C for traits. A "-" means the entry is not available.

Trait	Description
1	Glyphosate tolerance
2	High lauric acid oil
3	Glufosinate tolerance
4	Phytate breakdown
5	Oxynil tolerance
6	Disease resistance
7	Insect resistance
9	Modified flower color
11	ALS Herbicide Tol.
12	Dicamba Tolerance
13	Anti-allergy
14	Salt tolerance
15	Cold tolerance
16	Imidazolinone herb. tol.
17	Modified alpha-amylase
18	Pollination control
19	2,4-D tolerance
20	Increased lysine
21	Drought tolerance
22	Delayed ripening/senescence
23	Modified product quality
24	High cellulose
25	Modified starch/carbohydrate
26	Insect & disease resist.
27	High tryptophan
28	Erect leaves semidwarf
29	Semidwarf
30	Low iron tolerance
31	Modified oil/fatty acid
32	HPPD tolerance
33	High oil
34	Aryloxyalkanoate tol.
35	Mesotrione tolerance
36	Reduced nicotine
37	Modified product

Exhibit C

[0447]

Crop	Event Name	Event Code	Trait(s)	Gene(s)
Alfalfa	J101	MON-00101-8	1	cp4 epsps (aroA:CP4)
Alfalfa	J163	MON-ØØ163-7	1	cp4 epsps (aroA:CP4)
Canola*	23-18-17 (Event 18)	CGN-89465-2	2	te
Canola*	23-198 (Event 23)	CGN-89465-2	2	te
Canola*	61061	DP-Ø61Ø61-7	1	gat4621
Canola*	73496	DP-Ø73496-4	1	gat4621
Canola*	GT200 (RT200)	MON-89249-2	1	cp4 epsps (aroA:CP4); goxv247
Canola*	GT73 (RT73)	MON-ØØØ73-7	1	cp4 epsps (aroA:CP4); goxv247
Canola*	HCN10 (Topas 19/2)	_	3	bar
Canola*	HCN28 (T45)	ACS-BNØØ8-2	3	pat (syn)
Canola*	HCN92 (Topas 19/2)	ACS-BNØØ7-1	3	bar
Canola*	MON88302	MON-883Ø2-9	1	cp4 epsps (aroA:CP4)
Canola*	MPS961	_	4	phyA
Canola*	MPS962	_	4	phyA
Canola*	MPS963	_	4	phyA
Canola*	MPS964	_	4	phyA
Canola*	MPS965	_	4	phyA
Canola*	MS1 (B91-4)	ACS-BNØØ4-7	3	bar
Canola*	MS8	ACS-BNØØ5-8	3	bar

-continued

Crop	Event Name	Event Code	Trait(s)	Gene(s)
Canola*	OXY-235	ACS-BNØ11-5	5	bxn
Canola*	PHY14	_	3	bar
Canola* Canola*	PHY23 PHY35	_	3 3	bar bar
Canola*	PHY36		3	bar
Canola*	RF1 (B93-101)	ACS-BNØØ1-4	3	bar
Canola*	RF2 (B94-2)	ACS-BNØØ2-5	3	bar
Canola*	RF3	ACS-BNØØ3-6	3	bar
Bean	EMBRAPA 5.1	EMB-PV051-1	6	ac1 (sense and antisense)
Brinjal# Cotton	EE-1 19-51a	— DD-Ø1951A-7	7 11	cryl Ac S4-HrA
Cotton	281-24-236	DAS-24236-5	3, 7	pat (syn); cry1F
Cotton	3006-210-23	DAS-21Ø23-5	3, 7	pat (syn); cry1Ac
Cotton	31707	_	5, 7	bxn; cry1Ac
Cotton	31803	_	5, 7	bxn; cry1Ac
Cotton	31807	_	5, 7	bxn; cry1Ac
Cotton Cotton	31808 42317	_	5, 7 5, 7	bxn; cry1Ac bxn; cry1Ac
Cotton	BNLA-601	_	7	cry1Ac
Cotton	BXN10211	BXN10211-9	5	bxn; cry1Ac
Cotton	BXN10215	BXN10215-4	5	bxn; cry1Ac
Cotton	BXN10222	BXN10222-2	5	bxn; cry1Ac
Cotton	BXN10224	BXN10224-4	5	bxn; cry1Ac
Cotton Cotton	COT102 COT67B	SYN-IR102-7 SYN-IR67B-1	7 7	vip3A(a) cry1Ab
Cotton	COT202	51N-IK0/D-1	7	vip3A
Cotton	Event 1	_	7	cry1Ac
Cotton	GMF Cry1A	GTL-GMF311-7	7	cry1Ab-Ac
Cotton	GHB119	BCS-GH005-8	7	cry2Ae
Cotton	GHB614	BCS-GH002-5	1	2mepsps
Cotton	GK12 LLCotton25	— ACS-GH001-3	7 3	cry1Ab-Ac bar
Cotton Cotton	MLS 9124	ACS-GH001-3	7	cry1C
Cotton	MON1076	MON-89924-2	7	cry1Ac
Cotton	MON1445	MON-01445-2	1	cp4 epsps (aroA:CP4)
Cotton	MON15985	MON-15985-7	7	cry1Ac; cry2Ab2
Cotton	MON1698	MON-89383-1	7	cp4 epsps (aroA:CP4)
Cotton Cotton	MON531 MON757	MON-00531-6 MON-00757-7	7 7	cry1Ac
Cotton	MON88913	MON-88913-8	1	cry1Ac cp4 epsps (aroA:CP4)
Cotton	Ngwe Chi6 Bt	_	7	— (morner i)
Cotton	SKG321	_	7	cry1A; CpTI
Cotton	T303-3	BCS-GH003-6	3, 7	cry1Ab; bar
Cotton	T304-40	BCS-GH004-7	3, 7	cry1Ab; bar
Cotton	CE43-67B	_	7 7	cry1Ab cry1Ab
Cotton Cotton	CE46-02A CE44-69D	_	7	cry1Ab
Cotton	1143-14A	_	7	cry1Ab
Cotton	1143-51B	_	7	cry1Ab
Cotton	T342-142	_	7	cry1Ab
Cotton	PV-GHGT07 (1445)	_	1	cp4 epsps (aroA:CP4)
Cotton	EE-GH3	_	1 7	mepsps
Cotton Cotton	EE-GH5 MON88701	 MON-88701-3	3, 12	cry1Ab Modified dmo; bar
Cotton	OsCr11	—	13	Modified Cry j
Flax	FP967	CDC-FL001-2	11	als
Lentil	RH44	_	16	als
Maize	3272	SYN-E3272-5	17	amy797E
Maize	5307	SYN-05307-1	7	ecry3.1Ab
Maize Maize	59122 676	DAS-59122-7 PH-000676-7	3, 7 3, 18	cry34Ab1; cry35Ab1; pat pat; dam
Maize	678	PH-000678-9	3, 18	pat; dam
Maize	680	PH-000680-2	3, 18	pat; dam
		DP-098140-6	1, 11	gat4621; zm-hra
Maize	98140			cry1Ab; pat
Maize	98140 Bt10	_	3, /	
		— SYN-EV176-9	3, 7 3, 7	cry1Ab; bar
Maize	Bt10	 SYN-EV176-9 		
Maize Maize	Bt10 Bt176 (176)	SYN-EV176-9 — ACS-ZM004-3	3, 7	cry1Ab; bar
Maize Maize Maize Maize Maize	Bt10 Bt176 (176) BVLA430101 CBH-351 DAS40278-9	— ACS-ZM004-3 DAS40278-9	3, 7 4 3, 7 19	cry1Ab; bar phyA2 cry9C; bar aad-1
Maize Maize Maize Maize Maize Maize	Bt10 Bt176 (176) BVLA430101 CBH-351 DAS40278-9 DBT418	— ACS-ZM004-3 DAS40278-9 DKB-89614-9	3, 7 4 3, 7 19 3, 7	cry1Ab; bar phyA2 cry9C; bar aad-1 cry1Ac; pinII; bar
Maize Maize Maize Maize Maize Maize Maize	Bt10 Bt176 (176) BVLA430101 CBH-351 DAS40278-9 DBT418 DLL25 (B16)	— ACS-ZM004-3 DAS40278-9 DKB-89614-9 DKB-89790-5	3, 7 4 3, 7 19 3, 7 3	cry1Ab; bar phyA2 cry9C; bar aad-1 cry1Ac; pinII; bar bar
Maize Maize Maize Maize Maize Maize Maize Maize	Bt10 Bt176 (176) BVLA430101 CBH-351 DAS40278-9 DBT418 DLL25 (B16) GA21	— ACS-ZM004-3 DAS40278-9 DKB-89614-9	3, 7 4 3, 7 19 3, 7 3 1	cry1Ab; bar phyA2 cry9C; bar aad-1 cry1Ac; pinII; bar bar mepsps
Maize Maize Maize Maize Maize Maize Maize	Bt10 Bt176 (176) BVLA430101 CBH-351 DAS40278-9 DBT418 DLL25 (B16)	— ACS-ZM004-3 DAS40278-9 DKB-89614-9 DKB-89790-5	3, 7 4 3, 7 19 3, 7 3	cry1Ab; bar phyA2 cry9C; bar aad-1 cry1Ac; pinII; bar bar

-continued

Crop	Event Name	Event Code	Trait(s)	Gene(s)
Maize	Fl117	_	1	mepsps
Maize	GAT-ZM1	— DENI 00020 2	3	pat
Maize Maize	LY038 MIR162	REN-00038-3 SYN-IR162-4	20 7	cordapA vip3Aa20
Maize	MIR604	SYN-IR604-5	7	mcry3A
Maize	MON801 (MON80100)	MON801	1, 7	cry1Ab; cp4 epsps (aroA:CP4);
Maize	MON802	MON-80200-7	1, 7	goxv247 cry1Ab; cp4 epsps (aroA:CP4);
Maize	MON809	PH-MON-809-2	1, 7	goxv247 cry1Ab; cp4 epsps (aroA:CP4);
Maize	MON810	MON-00810-6	1, 7	goxv247 cry1Ab; cp4 epsps (aroA:CP4);
Maize	MON832	_	1	goxv247 cp4 epsps (aroA:CP4); goxv247
Maize	MON863	MON-00863-5	7	cry3Bb1
Maize	MON87427	MON-87427-7	1	cp4 epsps (aroA:CP4)
Maize	MON87460	MON-87460-4	21	cspB
Maize	MON88017	MON-88017-3	1, 7	cry3Bb1; cp4 epsps (aroA:CP4)
Maize	MON89034	MON-89034-3	7	cry2Ab2; cry1A.105
Maize Maize	MS3 MS6	ACS-ZM001-9 ACS-ZM005-4	3, 18 3, 18	bar; barnase bar; barnase
Maize	NK603	MON-00603-6	3, 16 1	cp4 epsps (aroA:CP4)
Maize	T14	ACS-ZM002-1	3	pat (syn)
Maize	T25	ACS-ZM003-2	3	pat (syn)
Maize	TC1507	DAS-01507-1	3, 7	cry1Fa2; pat
Maize	TC6275	DAS-06275-8	3, 7	mocry1F; bar
Maize	VIP1034	_	3, 7	vip3A; pat
Maize	43A47	DP-043A47-3	3, 7	cry1F; cry34Ab1; cry35Ab1; pat
Maize	40416	DP-040416-8	3, 7	cry1F; cry34Ab1; cry35Ab1; pat
Maize	32316	DP-032316-8	3, 7	cry1F; cry34Ab1; cry35Ab1; pat
Maize	4114	DP-004114-3	3, 7	cry1F; cry34Ab1; cry35Ab1; pat
Melon	Melon A	_	22	sam-k
Melon	Melon B	CITI ODEE1 9	22	sam-k
Papaya Papaya	55-1 63-1	CUH-CP551-8 CUH-CP631-7	6 6	prsv cp
Papaya	Huanong No. 1	_	6	prsv rep
Papaya	X17-2	UFL-X17CP-6	6	prsv cp
Plum	C-5	ARS-PLMC5-6	6	ppv cp
Canola**	ZSR500	_	1	cp4 epsps (aroA:CP4); goxv247
Canola**	ZSR502	_	1	cp4 epsps (aroA:CP4); goxv247
Canola**	ZSR503	_	1	cp4 epsps (aroA:CP4); goxv247
Rice	7Crp#242-95-7	_	13	7crp
Rice	7Crp#10	_	13	7crp
Rice	GM Shanyou 63	_	7	cry1Ab; cry1Ac
Rice	Huahui-1/TT51-1	— A CC OSOO1 4	7	cry1Ab; cry1Ac
Rice Rice	LLRICE06 LLRICE601	ACS-OS001-4 BCS-OS003-7	3 3	bar bar
Rice	LLRICE62	ACS-OS002-5	3	bar
Rice	Tarom molaii + cry1Ab	—	7	cry1Ab (truncated)
Rice	GAT-OS2	_	3	bar
Rice	GAT-OS3	_	3	bar
Rice	PE-7	_	7	Cry1Ac
Rice	7Crp#10	_	13	7crp
Rice	KPD627-8	_	27	OASA1D
Rice	KPD722-4	_	27	OASA1D
Rice	KA317	_	27	OASA1D
Rice	HW5	_	27	OASA1D
Rice	HW1	_	27	OASA1D
Rice Rice	B-4-1-18 G-3-3-22	_	28 29	Δ OsBRI1 OSGA2ox1
Rice	AD77	_	6	DEF
Rice	AD51	_	6	DEF
Rice	AD48	_	6	DEF
Rice	AD41	_	6	DEF
Rice	13pNasNa800725atAprt1	_	30	HvNAS1; HvNAAT-A; APRT
Rice	13pAprt1	_	30	APRT
Rice	gHvNAS1-gHvNAAT-1	_	30	HvNAS1; HvNAAT-A; HvNAAT-B
Rice	gHvIDS3-1		30	HVIDS3
Rice	gHvNAAT1	_	30	HvNAAT-A; HvNAAT-B
	-	_	30	HvNAS1
			10	TINTALANI
Rice	gHvNAS1-1 NIA-OS006-4	_		
Rice Rice	NIA-OS006-4	_	6	WRKY45
Rice Rice Rice Rice Rice	C			

-continued

Crop	Event Name	Event Code	Trait(s)	Gene(s)
Rice	NIA-OS002-9	_	6	WRKY45
Rice	NIA-OS001-8	_	6	WRKY45
Rice	OsCr11	_	13	Modified Cry j
Rice	17053	_	1	cp4 epsps (aroA:CP4)
Rice	17314	_	1	cp4 epsps (aroA:CP4)
Rose	WKS82/130-4-1	IFD-52401-4	9	5AT; bp40 (f3'5'h)
Rose	WKS92/130-9-1	IFD-52901-9	9	5AT; bp40 (f3'5'h)
Soybean	260-05 (G94-1, G94-19,	_	9	gm-fad2-1 (silencing locus)
,	G168)		-	B 1.102 - (0.111111B 11.110)
Soybean	A2704-12	ACS-GM005-3	3	pat
Soybean	A2704-21	ACS-GM004-2	3	pat
Soybean	A5547-127	ACS-GM006-4	3	pat
Soybean	A5547-35	ACS-GM008-6	3	pat
Soybean	CV127	BPS-CV127-9	16	csr1-2
Soybean	DAS68416-4	DAS68416-4	3	pat
Soybean	DP305423	DP-305423-1	11, 31	gm-fad2-1 (silencing locus); gm-hra
Soybean	DP356043	DP-356043-5	1, 31	gm-fad2-1 (silencing locus); gm-ma
Soybean	DI 330043	D1-330043-3	1, 51	gat4601
Soybean	FG72	MST-FG072-3	32, 1	2mepsps; hppdPF W336
Soybean	GTS 40-3-2 (40-3-2)	MON-04032-6	1	cp4 epsps (aroA:CP4)
Soybean	GU262	ACS-GM003-1	3	pat
Soybean	MON87701	MON-87701-2	7	cry1Ac
Soybean	MON87705	MON-87705-6	1, 31	fatb1-A (sense & antisense); fad2-
,			-,	1A (sense & antisense); cp4 epsps (aroA:CP4)
Soybean	MON87708	MON-87708-9	1, 12	dmo; cp4 epsps (aroA:CP4)
Soybean	MON87769	MON-87769-7	1, 31	Pj.D6D; Nc.Fad3; cp4 epsps (aroA:CP4)
Soybean	MON89788	MON-89788-1	1	cp4 epsps (aroA:CP4)
Soybean	W62	ACS-GM002-9	3	bar
Soybean	W98	ACS-GM001-8	3	bar
Soybean	MON87754	MON-87754-1	33	dgat2A
Soybean	DAS21606	DAS-21606	34, 3	Modified aad-12; pat
Soybean	DAS44406	DAS-44406-6		Modified aad-12; 2mepsps; pat
Soybean	SYHT04R	SYN-0004R-8	35	Modified avhppd
Soybean	9582.814.19.1	_	3, 7	cry1Ac; cry1F; pat
Squash	CZW3	SEM-ØCZW3-2	6	cmv cp; zymv cp; wmv cp
Squash	ZW20	SEM-0ZW20-7	6	zymv cp; wmv cp
Sugar Beet	GTSB77 (T9100152)	SY-GTSB77-8	1	cp4 epsps (aroA:CP4); goxv247
Sugar Beet	H7-1	KM-000H71-4	1	cp4 epsps (aroA:CP4)
Sugar Beet	T120-7	ACS-BV001-3	3	pat
	T227-1	ACS-D V 001-3	1	
Sugar Beet		_		cp4 epsps (aroA:CP4)
Sugarcane	NXI-1T V01250	_	21	EcbetA
Sunflower	X81359	_	16	als
Pepper	PK-SP01	_	6	cmv ep
Tobacco	C/F/93/08-02	_	5	bxn
Tobacco	Vector 21-41	—	36	NtQPT1 (antisense)
Wheat	MON71800	MON-718ØØ-3	1	cp4 epsps (aroA:CP4)

 $[*]Argentine \ (Brassica \ napus),$

[0448] Treatment of genetically modified plants with compounds of the invention may result in super-additive or synergistic effects. For example, reduction in application rates, broadening of the activity spectrum, increased tolerance to biotic/abiotic stresses or enhanced storage stability may be greater than expected from just simple additive effects of the application of compounds of the invention on genetically modified plants.

[0449] Compounds of this invention can also be mixed with one or more other biologically active compounds or agents including herbicides, herbicide safeners, fungicides, insecticides, nematocides, bactericides, acaricides, growth regulators such as insect molting inhibitors and rooting stimulants, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants, plant nutrients, other biologically active compounds or entomopathogenic bacteria, virus or fungi to form a multi-component pesticide

giving an even broader spectrum of agricultural protection. Mixtures of the compounds of the invention with other herbicides can broaden the spectrum of activity against additional weed species, and suppress the proliferation of any resistant biotypes. Thus the present invention also pertains to a composition comprising a compound of Formula 1 (in a herbicidally effective amount) and at least one additional biologically active compound or agent (in a biologically effective amount) and can further comprise at least one of a surfactant, a solid diluent or a liquid diluent. The other biologically active compounds or agents can be formulated in compositions comprising at least one of a surfactant, solid or liquid diluent. For mixtures of the present invention, one or more other biologically active compounds or agents can be formulated together with a compound of Formula 1, to form a premix, or one or more other biologically active compounds or agents can be formulated sepa-

^{**}Polish (B. rapa),

[#]Eggplant

rately from the compound of Formula 1, and the formulations combined together before application (e.g., in a spray tank) or, alternatively, applied in succession.

[0450] A mixture of one or more of the following herbicides with a compound of this invention may be particularly useful for weed control: acetochlor, acifluorfen and its sodium salt, aclonifen, acrolein (2-propenal), alachlor, alloxydim, ametryn, amicarbazone, amidosulfuron, aminocyclopyrachlor and its esters (e.g., methyl, ethyl) and salts (e.g., sodium, potassium), aminopyralid, amitrole, ammonium sulfamate, anilofos, asulam, atrazine, azimsulfuron, beflubutamid, benazolin, benazolin-ethyl, bencarbazone, benfluralin, benfuresate, bensulfuron-methyl, bensulide, bentazone, benzobicyclon, benzofenap, bicyclopyrone, bifenox, bilanafos, bispyribac and its sodium salt, bromacil, bromobutide, bromofenoxim, bromoxynil, bromoxynil octanoate, butachlor, butafenacil, butamifos, butralin, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone-ethyl, catechin, chlomethoxyfen, chloramben, chlorbromuron, chlorflurenol-methyl, chloridazon, chlorimuron-ethyl, chlorotoluron, chlorpropham, chlorsulfuron, chlorthal-dimethyl, chlorthiamid, cinidon-ethyl, cinmethylin, cinosulfuron, clacyfos, clefoxydim, clethodim, clodinafop-propargyl, clomazone, clomeprop, clopyralid, clopyralid-olamine, cloransulam-methyl, cumyluron, cyanazine, cycloate, cyclopyrimorate, cyclosulfamuron, cycloxydim, cyhalofop-butyl, 2,4-D and its butotyl, butyl, isoctyl and isopropyl esters and its dimethylammonium, diolamine and trolamine salts, daimuron, dalapon, dalapon-sodium, dazomet, 2,4-DB and its dimethylammonium, potassium and sodium salts, desmedipham, desmetryn, dicamba and its diglycolammonium, dimethylammonium, potassium and sodium salts, dichlobenil, dichlorprop, diclofop-methyl, diclosulam, difenzoquat metilsulfate, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimethipin, dimethylarsinic acid and its sodium salt, dinitramine, dinoterb, diphenamid, diquat dibromide, dithiopyr, diuron, DNOC, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuronmethyl, ethiozin, ethofumesate, ethoxyfen, ethoxysulfuron, etobenzanid, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenoxasulfone, fenquinotrione, fentrazamide, fenuron, fenuron-TCA, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, florasulam, fluazifop-butyl, fluazifop-P-butyl, fluazolate, flucarbazone, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac-pentyl, flumioxazin, fluometuron, fluoroglycofen-ethyl, flupoxam, flupyrsulfuron-methyl and its sodium salt, flurenol, flurenol-butyl, fluridone, flurochloridone, fluroxypyr, flurtamone, fluthiacet-methyl, fomesafen, foramsulfuron, fosamine-ammonium, glufosinate, glufosinate-ammonium, glufosinate-P, glyphosate and its salts such as ammonium, isopropylammonium, potassium, sodium (including sesquisodium) and trimesium (alternatively named sulfosate), halauxifen, halauxifen-methyl, halosulfuronmethyl, haloxyfop-etotyl, haloxyfop-methyl, hexazinone, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, imazosulfuron, indanofan, indaziflam, iofensulfuron, iodosulfuron-methyl, ioxynil, ioxynil octanoate, ioxynil-sodium, ipfencarbazone, isoproturon, isouron, isoxaben, isoxaflutole, isoxachlortole, lactofen, lenacil, linuron, maleic hydrazide, MCPA and its salts (e.g., MCPA-dimethylammonium, MCPA-potassium and MCPA-

sodium, esters (e.g., MCPA-2-ethylhexyl, MCPA-butotyl) and thioesters (e.g., MCPA-thioethyl), MCPB and its salts (e.g., MCPB-sodium) and esters (e.g., MCPB-ethyl), mecoprop, mecoprop-P, mefenacet, mefluidide, mesosulfuronmethyl, mesotrione, metam-sodium, metamifop, metamitron, metazachlor, metazosulfuron, methabenzthiazuron, methylarsonic acid and its calcium, monoammonium, monosodium and disodium salts, methyldymron, metobenzuron, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron-methyl, molinate, monolinuron, naproanilide, napropamide, napropamide-M, naptalam, neburon, nicosulfuron, norflurazon, orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paraquat dichloride, pebulate, pelargonic acid, pendimethalin, penoxsulam, pentanochlor, pentoxazone, perfluidone, pethoxamid, pethoxyamid, phenmedipham, picloram, picloram-potassium, picolinafen, pinoxaden, piperophos, pretilachlor, primisulfuronmethyl, prodiamine, profoxydim, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propyrisulfuron, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufenethyl, pyrasulfotole, pyrazogyl, pyrazolynate, pyrazoxyfen, pyrazosulfuron-ethyl, pyribenzoxim, pyributicarb, pyridate, pyriftalid, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, quinmerac, quinoclamine, quizalofop-ethyl, quizalofop-P-ethyl, quizalofop-P-tefuryl, rimsulfuron, saflufenacil, sethoxydim, siduron, simazine, simetryn, sulcotrione, sulfentrazone, sulfometuron-methyl, sulfosulfuron, 2,3,6-TBA, TCA, TCA-sodium, tebutam, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbumeton, terbuthylazine, terbutryn, thenylchlor, thiencarbazone, thifensulfuron-methyl, thiobencarb, tiafenacil, tiocarbazil, topramezone, tralkoxydim, tri-allate, triafamone, triasulfuron, triaziflam, tribenuron-methyl, triclopyr, triclopyr-butotyl, triclopyr-triethylammonium, tridiphane, trietazine, trifloxysulfuron, trifluralin, triflusulfuron-methyl, tritosulfuron, vernolate, 3-(2-chloro-3,6-difluorophenyl)-4hydroxy-1-methyl-1,5-naphthyridin-2(1H)-one, 5-chloro-3-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl)carbonyl]-1-(4methoxyphenyl)-2(1H)-quinoxalinone, 2-chloro-N-(1methyl-1H-tetrazol-5-yl)-6-(trifluoromethyl)-3pyridinecarboxamide, 7-(3,5-dichloro-4-pyridinyl)-5-(2,2difluoroethyl)-8-hydroxypyrido[2,3-b]pyrazin-6(5H)-one), 4-(2,6-diethyl-4-methylphenyl)-5-hydroxy-2,6-dimethyl-3 5-[[(2,6-difluorophenyl)methoxy] (2H)-pyridazinone), methyl]-4,5-dihydro-5-methyl-3-(3-methyl-2-thienyl)isoxazole (previously methioxolin), 3-[7-fluoro-3,4-dihydro-3oxo-4-(2-propyn-1-yl)-2H-1,4-benzoxazin-6-yl]dihydro-1, 5-dimethyl-6-thioxo-1,3,5-triazine-2,4(1H,3H)-dione, 4-(4fluorophenyl)-6-[(2-hydroxy-6-oxo-1-cyclohexen-1-yl) carbonyl]-2-methyl-1,2,4-triazine-3,5(2H,4H)-dione, methyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)-5-fluoro-2-pyridinecarboxylate, 2-methyl-3-(methylsulfonyl)-N-(1-methyl-1H-tetrazol-5-yl)-4-(trifluoromethyl)benzamide and 2-methyl-N-(4-methyl-1,2,5oxadiazol-3-yl)-3-(methylsulfinyl)-4-(trifluoromethyl) benzamide. Other herbicides also include bioherbicides such as Alternaria destruens Simmons, Colletotrichum gloeosporiodes (Penz.) Penz. & Sacc., Drechsiera monoceras (MTB-951), Myrothecium verrucaria (Albertini & Schweinitz) Ditmar: Fries, Phytophthora palmivora (Butl.) Butl. and Puccinia thlaspeos Schub.

[0451] Compounds of this invention can also be used in combination with plant growth regulators such as aviglycine, N-(phenylmethyl)-1H-purin-6-amine, epocholeone, gibberellic acid, gibberellin A_4 and A_7 , harpin protein, mepiquat chloride, prohexadione calcium, prohydrojasmon, sodium nitrophenolate and trinexapac-methyl, and plant growth modifying organisms such as *Bacillus cereus* strain BP01

[0452] General references for agricultural protectants (i.e. herbicides, herbicide safeners, insecticides, fungicides, nematocides, acaricides and biological agents) include *The Pesticide Manual*, 13th Edition, C. D. S. Tomlin, Ed., British Crop Protection Council, Farnham, Surrey, U. K., 2003 and *The BioPesticide Manual*, 2nd Edition, L. G. Copping, Ed., British Crop Protection Council, Farnham, Surrey, U. K., 2001.

[0453] For embodiments where one or more of these various mixing partners are used, the weight ratio of these various mixing partners (in total) to the compound of Formula 1 is typically between about 1:3000 and about 3000:1. Of note are weight ratios between about 1:300 and about 300:1 (for example ratios between about 1:30 and about 30:1). One skilled in the art can easily determine through simple experimentation the biologically effective amounts of active ingredients necessary for the desired spectrum of biological activity. It will be evident that including these additional components may expand the spectrum of weeds controlled beyond the spectrum controlled by the compound of Formula 1 alone.

[0454] In certain instances, combinations of a compound of this invention with other biologically active (particularly herbicidal) compounds or agents (i.e. active ingredients) can result in a greater-than-additive (i.e. synergistic) effect on weeds and/or a less-than-additive effect (i.e. safening) on crops or other desirable plants. Reducing the quantity of active ingredients released in the environment while ensuring effective pest control is always desirable. Ability to use greater amounts of active ingredients to provide more effective weed control without excessive crop injury is also desirable. When synergism of herbicidal active ingredients occurs on weeds at application rates giving agronomically satisfactory levels of weed control, such combinations can be advantageous for reducing crop production cost and decreasing environmental load. When safening of herbicidal active ingredients occurs on crops, such combinations can be advantageous for increasing crop protection by reducing weed competition.

[0455] Of note is a combination of a compound of the invention with at least one other herbicidal active ingredient. Of particular note is such a combination where the other herbicidal active ingredient has different site of action from the compound of the invention. In certain instances, a combination with at least one other herbicidal active ingredient having a similar spectrum of control but a different site of action will be particularly advantageous for resistance management. Thus, a composition of the present invention can further comprise (in a herbicidally effective amount) at

least one additional herbicidal active ingredient having a similar spectrum of control but a different site of action. [0456] Compounds of this invention can also be used in combination with herbicide safeners such as allidochlor, benoxacor, cloquintocet-mexyl, cumyluron, cyometrinil, cyprosulfonamide, daimuron, dichlormid, dicyclonon, dietholate, dimepiperate, fenchlorazole-ethyl, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen-ethyl, mefenpyr-diethyl, mephenate, methoxyphenone naphthalic anhydride (1,8-naphthalic anhydride), oxabetrinil, N-(aminocarbonyl)-2-methylbenzenesulfonamide, N-(aminocarbonyl)-2-fluorobenzenesulfonamide, 1-bromo-4-Rchloromethyl) sulfonyllbenzene (BCS), 4-(dichloroacetyl)-1-oxa-4azospiro[4.5]decane (MON 4660), 2-(dichloromethyl)-2methyl-1,3-dioxolane (MG 191), ethyl 1,6-dihydro-1-(2methoxyphenyl)-6-oxo-2-phenyl-5-pyrimidinecarboxylate, 2-hydroxy-N,N-dimethyl-6-(trifluoromethyl)pyridine-3carboxamide, and 3-oxo-1-cyclohexen-1-yl 1-(3,4-dimethylphenyl)-1,6-dihydro-6-oxo-2-phenyl-5-pyrimidinecarboxylate to increase safety to certain crops. Antidotally effective amounts of the herbicide safeners can be applied at the same time as the compounds of this invention, or applied as seed treatments. Therefore an aspect of the present invention relates to a herbicidal mixture comprising a compound of this invention and an antidotally effective amount of a herbicide safener. Seed treatment is particularly useful for selective weed control, because it physically restricts antidoting to the crop plants. Therefore a particularly useful embodiment of the present invention is a method for selectively controlling the growth of undesired vegetation in a crop comprising contacting the locus of the crop with a herbicidally effective amount of a compound of this invention wherein seed from which the crop is grown is treated with an antidotally effective amount of safener. Antidotally effective amounts of safeners can be easily determined by one skilled in the art through simple experimentation.

[0457] Of note is a composition comprising a compound of the invention (in a herbicidally effective amount), at least one additional active ingredient selected from the group consisting of other herbicides and herbicide safeners (in an effective amount), and at least one component selected from the group consisting of surfactants, solid diluents and liquid diluents.

[0458] Table A1 lists specific combinations of a Component (a) with Component (b) illustrative of the mixtures, compositions and methods of the present invention. Compound 1 in the Component (a) column is identified in Index Table A. The second column of Table A1 lists the specific Component (b) compound (e.g., "2,4-D" in the first line). The third, fourth and fifth columns of Table A1 lists ranges of weight ratios for rates at which the Component (a) compound is typically applied to a field-grown crop relative to Component (b) (i.e. (a):(b)). Thus, for example, the first line of Table A1 specifically discloses the combination of Component (a) (i.e. Compound 1 in Index Table A) with 2,4-D is typically applied in a weight ratio between 1:168-6:1. The remaining lines of Table A1 are to be construed similarly.

TABLE A1

Component (a)	Component (b)	Typical	More Typical	Most Typical
(Compound #)		Weight Ratio	Weight Ratio	Weight Ratio
1 1	2,4-D Acetochlor	1:168 to 6:1 1:672 to 2:1		1:16 to 1:2 1:67 to 1:8

TABLE A1-continued

	TABLE A1-continued			
Component (a) (Compound #)	Component (b)	Typical Weight Ratio	More Typical Weight Ratio	Most Typical Weight Ratio
1	Acifluorfen	1:84 to 11:1	1:28 to 4:1	1:8 to 2:1
1	Aclonifen	1:750 to 2:1	1:250 to 1:3	1:75 to 1:9
1	Alachlor	1:672 to 2:1	1:224 to 1:3	1:67 to 1:8 1:33 to 1:4
1 1	Ametryn Amicarbazone	1:336 to 3:1 1:168 to 6:1	1:112 to 1:2 1:56 to 2:1	1:16 to 1:2
1	Amidosulfuron	1:6 to 150:1	1:2 to 50:1	1:1 to 15:1
1	Aminocyclopyrachlor	1:42 to 22:1	1:14 to 8:1	1:4 to 3:1
1	Aminopyralid	1:18 to 50:1	1:6 to 17:1	1:1 to 5:1
1	Amitrole	1:672 to 2:1	1:224 to 1:3	1:67 to 1:8
1 1	Anilofos Asulam	1:84 to 11:1 1:840 to 2:1	1:28 to 4:1 1:280 to 1:3	1:8 to 2:1 1:84 to 1:10
1	Atrazine	1:168 to 6:1	1:56 to 2:1	1:16 to 1:2
1	Azimsulfuron	1:6 to 150:1	1:2 to 50:1	1:1 to 15:1
1	Beflubutamid	1:300 to 3:1	1:100 to 1:1	1:30 to 1:4
1	Benfuresate	1:540 to 2:1	1:180 to 1:2	1:54 to 1:6
1	Bensulfuron-methyl	1:22 to 40:1	1:7 to 14:1	1:2 to 4:1
1 1	Bentazon Benzobicyclon	1:168 to 6:1 1:75 to 12:1	1:56 to 2:1 1:25 to 4:1	1:16 to 1:2 1:7 to 2:1
1	Benzofenap	1:225 to 4:1	1:75 to 2:1	1:22 to 1:3
1	Bicyclopyrone	1:37 to 24:1	1:12 to 8:1	1:3 to 3:1
1	Bifenox	1:225 to 4:1	1:75 to 2:1	1:22 to 1:3
1	Bispyribac-sodium	1:9 to 100:1	1:3 to 34:1	1:1 to 10:1
1 1	Bromacil	1:336 to 3:1 1:336 to 3:1	1:112 to 1:2 1:112 to 1:2	1:33 to 1:4
1	Bromobutide Bromoxynil	1:84 to 11:1	1:112 to 1:2 1:28 to 4:1	1:33 to 1:4 1:8 to 2:1
1	Butachlor	1:672 to 2:1	1:224 to 1:3	1:67 to 1:8
1	Butafenacil	1:37 to 24:1	1:12 to 8:1	1:3 to 3:1
1	Butylate	1:1350 to 1:2		1:135 to 1:15
1	Carfenstrole	1:168 to 6:1	1:56 to 2:1	1:16 to 1:2
1 1	Carfentrazone-ethyl	1:112 to 8:1 1:7 to 120:1	1:37 to 3:1 1:2 to 40:1	1:11 to 1:2 1:1 to 12:1
1	Chlorimuron-ethyl Chlorotoluron	1:672 to 2:1	1:224 to 1:3	1:1 to 12:1 1:67 to 1:8
1	Chlorsulfuron	1:6 to 150:1	1:2 to 50:1	1:1 to 15:1
1	Cincosulfuron	1:15 to 60:1	1:5 to 20:1	1:1 to 6:1
1	Cinidon-ethyl	1:336 to 3:1	1:112 to 1:2	1:33 to 1:4
1	Cinmethylin	1:30 to 30:1	1:10 to 10:1	1:3 to 3:1
1 1	Clacyfos Clethodim	1:84 to 6:1 1:42 to 22:1	1:28 to 2:1 1:14 to 8:1	1:16 to 1:2 1:4 to 3:1
1	Clodinafop-propargyl	1:18 to 50:1	1:6 to 17:1	1:1 to 5:1
1	Clomazone	1:336 to 3:1	1:112 to 1:2	1:33 to 1:4
1	Clomeprop	1:150 to 6:1	1:50 to 2:1	1:15 to 1:2
1	Clopyralid	1:168 to 6:1	1:56 to 2:1	1:16 to 1:2
1 1	Cloransulam-methyl Cumyluron	1:10 to 86:1 1:336 to 3:1	1:3 to 29:1 1:112 to 1:2	1:1 to 9:1 1:33 to 1:4
1	Cyanazine	1:336 to 3:1	1:112 to 1:2	1:33 to 1:4
1	Cyclopyrimorate	1:15 to 60:1	1:5 to 20:1	1:1 to 6:1
1	Cyclosulfamuron	1:15 to 60:1	1:5 to 20:1	1:1 to 6:1
1	Cycloxydim	1:84 to 11:1	1:28 to 4:1	1:8 to 2:1
1 1	Cyhalofop	1:22 to 40:1 1:168 to 6:1	1:7 to 14:1	1:2 to 4:1 1:16 to 1:2
1	Daimuron Desmedipham	1:282 to 4:1	1:56 to 2:1 1:94 to 2:1	1:28 to 1:4
1	Dicamba	1:168 to 6:1	1:56 to 2:1	1:16 to 1:2
1	Dichlobenil	1:1200 to 1:2		1:120 to 1:14
1	Dichlorprop	1:810 to 2:1	1:270 to 1:3	1:81 to 1:9
1	Diclofop-methyl	1:336 to 3:1	1:112 to 1:2	1:33 to 1:4
1 1	Diclosulam Difenzoquat	1:9 to 100:1 1:252 to 4:1	1:3 to 34:1 1:84 to 2:1	1:1 to 10:1 1:25 to 1:3
1	Diffufenican	1:750 to 2:1	1:250 to 1:3	1:75 to 1:9
1	Diflufenzopyr	1:10 to 86:1	1:3 to 29:1	1:1 to 9:1
1	Dimethachlor	1:672 to 2:1	1:224 to 1:3	1:67 to 1:8
1	Dimethametryn	1:168 to 6:1	1:56 to 2:1	1:16 to 1:2
1	Dimethenamid-p	1:336 to 3:1	1:112 to 1:2	1:33 to 1:4
1 1	Dithiopyr Diuron	1:168 to 6:1 1:336 to 3:1	1:56 to 2:1 1:112 to 1:2	1:16 to 1:2 1:33 to 1:4
1	EPTC	1:672 to 2:1	1:224 to 1:3	1:67 to 1:8
1	Esprocarb	1:1200 to 1:2		1:120 to 1:14
1	Ethalfluralin	1:336 to 3:1	1:112 to 1:2	1:33 to 1:4
1	Ethametsulfuron-methyl	1:15 to 60:1	1:5 to 20:1	1:1 to 6:1
1	Ethoxyfen Ethoxygulfuron	1:7 to 120:1	1:2 to 40:1	1:1 to 12:1
1 1	Ethoxysulfuron Etobenzanid	1:18 to 50:1 1:225 to 4:1	1:6 to 17:1 1:75 to 2:1	1:1 to 5:1 1:22 to 1:3
1	Fenoxaprop-ethyl	1:105 to 9:1	1:35 to 3:1	1:10 to 1:2
1	Fenoxasulfone	1:75 to 12:1	1:25 to 4:1	1:7 to 2:1
1	Fenquinotrione	1:15 to 60:1	1:5 to 20:1	1:1 to 6:1

TABLE A1-continued

	17 11000	A1-continue	-	
Component (a) (Compound #)	Component (b)	Typical Weight Ratio	More Typical Weight Ratio	Most Typical Weight Ratio
1	Fentrazamide	1:15 to 60:1	1:5 to 20:1	1:1 to 6:1
1	Flazasulfuron	1:15 to 60:1	1:5 to 20:1	1:1 to 6:1
1	Florasulam	1:2 to 375:1	1:1 to 125:1	4:1 to 38:1
1	Fluazifop-butyl Flucarbazone	1:168 to 6:1	1:56 to 2:1	1:16 to 1:2
1 1	Flucetosulfuron	1:7 to 120:1 1:7 to 120:1	1:2 to 40:1 1:2 to 40:1	1:1 to 12:1 1:1 to 12:1
1	Flufenacet	1:225 to 4:1	1:75 to 2:1	1:22 to 1:3
1	Flumetsulam	1:21 to 43:1	1:7 to 15:1	1:2 to 5:1
1	Flumiclorac-pentyl	1:9 to 100:1	1:3 to 34:1	1:1 to 10:1
1	Flumioxazin	1:22 to 40:1	1:7 to 14:1	1:2 to 4:1
1	Fluometuron	1:336 to 3:1	1:112 to 1:2	1:33 to 1:4
1	Flupyrsulfuron-methyl	1:3 to 300:1	1:1 to 100:1	3:1 to 30:1
1	Fluridone	1:336 to 3:1	1:112 to 1:2	1:33 to 1:4
1 1	Fluroxypyr-meptyl Flurtamone	1:84 to 11:1 1:750 to 2:1	1:28 to 4:1 1:250 to 1:3	1:8 to 2:1 1:75 to 1:9
1	Fluthiacet-methyl	1:42 to 38:1	1:14 to 13:1	1:2 to 5:1
1	Fomesafen	1:84 to 11:1	1:28 to 4:1	1:8 to 2:1
1	Foramsulfuron	1:12 to 75:1	1:4 to 25:1	1:1 to 8:1
1	Glufosinate	1:252 to 4:1	1:84 to 2:1	1:25 to 1:3
1	Glyphosate	1:252 to 4:1	1:84 to 2:1	1:25 to 1:3
1	Halauxifen	1:18 to 50:1	1:6 to 17:1	1:1 to 5:1
1	Halauxifen-methyl	1:18 to 50:1	1:6 to 17:1	1:1 to 5:1
1	Halosulfuron-methyl	1:15 to 60:1	1:5 to 20:1	1:1 to 6:1
1 1	Haloxyfop-methyl Hexazinone	1:30 to 30:1 1:168 to 6:1	1:10 to 10:1 1:56 to 2:1	1:3 to 3:1 1:16 to 1:2
1	Imazamox	1:108 to 0:1	1:4 to 25:1	1:16 to 1:2
1	Imazanic	1:12 to 73:1 1:18 to 50:1	1:6 to 17:1	1:1 to 5:1
1	Imazapyr	1:75 to 12:1	1:25 to 4:1	1:7 to 2:1
1	Imazaquin	1:30 to 30:1	1:10 to 10:1	1:3 to 3:1
1	Imazethabenz-methyl	1:150 to 6:1	1:50 to 2:1	1:15 to 1:2
1	Imazethapyr	1:21 to 43:1	1:7 to 15:1	1:2 to 5:1
1	Imazosulfuron	1:24 to 38:1	1:8 to 13:1	1:2 to 4:1
1	Indanofan	1:300 to 3:1	1:100 to 1:1	1:30 to 1:4
1 1	Indaziflam Iodosulfuron-methyl	1:22 to 40:1 1:3 to 300:1	1:7 to 14:1 1:1 to 100:1	1:2 to 4:1 3:1 to 30:1
1	Ioxynil	1:168 to 6:1	1:56 to 2:1	1:16 to 1:2
1	Ipfencarbazone	1:75 to 12:1	1:25 to 4:1	1:7 to 2:1
1	Isoproturon	1:336 to 3:1	1:112 to 1:2	1:33 to 1:4
1	Isoxaben	1:252 to 4:1	1:84 to 2:1	1:25 to 1:3
1	Isoxaflutole	1:52 to 18:1	1:17 to 6:1	1:5 to 2:1
1	Lactofen	1:37 to 24:1	1:12 to 8:1	1:3 to 3:1
1	Lenacil	1:336 to 3:1	1:112 to 1:2	1:33 to 1:4
1 1	Linuron MCPA	1:336 to 3:1 1:168 to 6:1	1:112 to 1:2 1:56 to 2:1	1:33 to 1:4 1:16 to 1:2
1	MCPB	1:252 to 4:1	1:84 to 2:1	1:25 to 1:3
1	Mecoprop	1:672 to 2:1	1:224 to 1:3	1:67 to 1:8
1	Mefenacet	1:336 to 3:1	1:112 to 1:2	1:33 to 1:4
1	Mefluidide	1:168 to 6:1	1:56 to 2:1	1:16 to 1:2
1	Mesosulfuron-methyl	1:4 to 200:1	1:1 to 67:1	2:1 to 20:1
1	Mesotrione	1:37 to 24:1	1:12 to 8:1	1:3 to 3:1
1	Metamifop Metazachlor	1:37 to 24:1 1:336 to 3:1	1:12 to 8:1	1:3 to 3:1 1:33 to 1:4
1	Metazachlor Metazosulfuron	1:330 to 3:1	1:112 to 1:2 1:7 to 14:1	1:33 to 1:4 1:2 to 4:1
1	Methabenzthiazuron	1:672 to 2:1	1:224 to 1:3	1:67 to 1:8
1	Metolachlor	1:672 to 2:1	1:224 to 1:3	1:67 to 1:8
1	Metosulam	1:7 to 120:1	1:2 to 40:1	1:1 to 12:1
1	Metribuzin	1:168 to 6:1	1:56 to 2:1	1:16 to 1:2
1	Metsulfuron-methyl	1:1 to 500:1	1:1 to 167:1	5:1 to 50:1
1	Molinate	1:900 to 1:1	1:300 to 1:3	1:90 to 1:10
1 1	Napropamide Napropamide-M	1:336 to 3:1 1:168 to 6:1	1:112 to 1:2 1:56 to 2:1	1:33 to 1:4 1:16 to 1:2
1	Napropamide-M Naptalam	1:168 to 6:1	1:56 to 2:1 1:56 to 2:1	1:16 to 1:2 1:16 to 1:2
1	Nicosulfuron	1:108 to 86:1	1:3 to 29:1	1:10 to 1:2 1:1 to 9:1
1	Norflurazon	1:1008 to 1:2		1:100 to 1:12
1	Orbencarb	1:1200 to 1:2	1:400 to 1:4	1:120 to 1:14
1	Orthosulfamuron	1:18 to 50:1	1:6 to 17:1	1:1 to 5:1
1	Oryzalin	1:450 to 2:1	1:150 to 1:2	1:45 to 1:5
1	Oxadiargyl	1:336 to 3:1	1:112 to 1:2	1:33 to 1:4
1	Oxadiazon	1:480 to 2:1	1:160 to 1:2	1:48 to 1:6
1 1	Oxasulfuron Oxaziclomefone	1:24 to 38:1 1:37 to 24:1	1:8 to 13:1 1:12 to 8:1	1:2 to 4:1 1:3 to 3:1
1	Oxyfluorfen	1:37 to 24:1 1:336 to 3:1	1:12 to 8:1 1:112 to 1:2	1:33 to 1:4
1	Paraquat	1:168 to 6:1	1:56 to 2:1	1:16 to 1:2
1	Pendimethalin	1:336 to 3:1	1:112 to 1:2	1:33 to 1:4

TABLE A1-continued

	TABLE A	A1-continue	<u>a</u>	
Component (a) (Compound #)	Component (b)	Typical Weight Ratio	More Typical Weight Ratio	Most Typical Weight Ratio
1	Penoxsulam	1:9 to 100:1	1:3 to 34:1	1:1 to 10:1
1 1	Penthoxamid	1:336 to 3:1 1:90 to 10:1	1:112 to 1:2 1:30 to 4:1	1:33 to 1:4 1:9 to 1:1
1	Pentoxazone Phenmedipham	1:90 to 10:1	1:30 to 4:1	1:9 to 1:1
1	Picloram	1:84 to 11:1	1:28 to 4:1	1:8 to 2:1
1	Picolinafen	1:30 to 30:1	1:10 to 10:1	1:3 to 3:1
1	Pinoxaden	1:22 to 40:1	1:7 to 14:1	1:2 to 4:1
1	Pretilachlor	1:168 to 6:1	1:56 to 2:1	1:16 to 1:2
1 1	Primisulfuron-methyl Prodiamine	1:7 to 120:1 1:336 to 3:1	1:2 to 40:1 1:112 to 1:2	1:1 to 12:1 1:33 to 1:4
1	Profoxydim	1:37 to 24:1	1:12 to 1:2	1:35 to 3:1
1	Prometryn	1:336 to 3:1	1:112 to 1:2	1:33 to 1:4
1	Propachlor	1:1008 to 1:2	1:336 to 1:4	1:100 to 1:12
1	Propanil	1:336 to 3:1	1:112 to 1:2	1:33 to 1:4
1	Propaquizafop	1:42 to 22:1	1:14 to 8:1	1:4 to 3:1
1 1	Propoxycarbazone Propyrisulfuron	1:15 to 60:1 1:15 to 60:1	1:5 to 20:1 1:5 to 20:1	1:1 to 6:1 1:1 to 6:1
1	Propyzamide	1:336 to 3:1	1:112 to 1:2	1:33 to 1:4
1	Prosulfocarb	1:1050 to 1:2	1:350 to 1:4	1:105 to 1:12
1	Prosulfuron	1:6 to 150:1	1:2 to 50:1	1:1 to 15:1
1	Pyraclonil	1:37 to 24:1	1:12 to 8:1	1:3 to 3:1
1	Pyraflufen-ethyl	1:4 to 200:1	1:1 to 67:1	2:1 to 20:1
1	Pyrasulfotole	1:12 to 75:1	1:4 to 25:1	1:1 to 8:1
1	Pyrazolynate	1:750 to 2:1	1:250 to 1:3	1:75 to 1:9
1	Pyrazosulfuron-ethyl	1:9 to 100:1	1:3 to 34:1	1:1 to 10:1
1 1	Pyrazoxyfen Pyribenzoxim	1:4 to 200:1 1:9 to 100:1	1:1 to 67:1 1:3 to 34:1	2:1 to 20:1 1:1 to 10:1
1	Pyributicarb	1:336 to 3:1	1:3 to 34:1 1:112 to 1:2	1:33 to 1:4
1	Pyridate	1:252 to 4:1	1:84 to 2:1	1:25 to 1:3
1	Pyriftalid	1:9 to 100:1	1:3 to 34:1	1:1 to 10:1
1	Pyriminobac-methyl	1:18 to 50:1	1:6 to 17:1	1:1 to 5:1
1	Pyrimisulfan	1:15 to 60:1	1:5 to 20:1	1:1 to 6:1
1	Pyrithiobac	1:21 to 43:1	1:7 to 15:1	1:2 to 5:1
1	Pyroxasulfone	1:75 to 12:1	1:25 to 4:1	1:7 to 2:1
1 1	Pyroxsulam	1:4 to 200:1	1:1 to 67:1 1:56 to 2:1	2:1 to 20:1
1	Quinclorac Quizalofop-ethyl	1:168 to 6:1 1:37 to 24:1	1:12 to 8:1	1:16 to 1:2 1:3 to 3:1
1	Rimsulfuron	1:12 to 75:1	1:4 to 25:1	1:1 to 8:1
1	Saflufenacil	1:22 to 40:1	1:7 to 14:1	1:2 to 4:1
1	Sethoxydim	1:84 to 11:1	1:28 to 4:1	1:8 to 2:1
1	Simazine	1:336 to 3:1	1:112 to 1:2	1:33 to 1:4
1	Sulcotrione	1:105 to 9:1	1:35 to 3:1	1:10 to 1:2
1	Sulfentrazone	1:129 to 7:1	1:43 to 3:1	1:12 to 1:2
1 1	Sulfometuron-methyl Sulfosulfuron	1:30 to 30:1 1:7 to 120:1	1:10 to 10:1 1:2 to 40:1	1:3 to 3:1 1:1 to 12:1
1	Tebuthiuron	1:336 to 3:1	1:112 to 1:2	1:33 to 1:4
1	Tefuryltrione	1:37 to 24:1	1:12 to 8:1	1:3 to 3:1
1	Tembotrione	1:27 to 33:1	1:9 to 11:1	1:2 to 4:1
1	Tepraloxydim	1:22 to 40:1	1:7 to 14:1	1:2 to 4:1
1	Terbacil	1:252 to 4:1	1:84 to 2:1	1:25 to 1:3
1	Terbuthylatrazine	1:750 to 2:1	1:250 to 1:3	1:75 to 1:9
1	Terbutryn	1:168 to 6:1	1:56 to 2:1	1:16 to 1:2
1 1	Thenylchlor Thiazopyr	1:75 to 12:1 1:336 to 3:1	1:25 to 4:1 1:112 to 1:2	1:7 to 2:1 1:33 to 1:4
1	Thiencarbazone	1:3 to 300:1	1:1 to 100:1	3:1 to 30:1
1	Thifensulfuron-methyl	1:4 to 200:1	1:1 to 67:1	2:1 to 20:1
1	Thiobencath	1:672 to 2:1	1:224 to 1:3	1:67 to 1:8
1	Topramazone	1:6 to 150:1	1:2 to 50:1	1:1 to 15:1
1	Tralkoxydim	1:60 to 15:1	1:20 to 5:1	1:6 to 2:1
1	Triafamone	1:3 to 38:1	1:1 to 13:1	1:1 to 8:1
1	Triallate	1:672 to 2:1	1:224 to 1:3	1:67 to 1:8
1	Triazulfuron	1:4 to 200:1	1:1 to 67:1	2:1 to 20:1
1 1	Triaziflam Tribenuron-methyl	1:150 to 6:1 1:3 to 300:1	1:50 to 2:1 1:1 to 100:1	1:15 to 1:2 3:1 to 30:1
1	Triclopyr	1:168 to 6:1	1:56 to 2:1	1:16 to 1:2
1	Trifloxysulfuron	1:2 to 375:1	1:1 to 125:1	4:1 to 38:1
1	Trifluralin	1:252 to 4:1	1:84 to 2:1	1:25 to 1:3
1	Triflusulfuron-methyl	1:15 to 60:1	1:5 to 20:1	1:1 to 6:1
1	Tritosulfuron	1:12 to 75:1	1:4 to 25:1	1:1 to 8:1

M. S.

[0459] Table A2 is constructed the same as Table A1 above except that entries below the "Component (a)" column heading are replaced with the respective Component (a) Column Entry shown below. Compound 1 in the Component (a) column is identified in Index Table A. Thus, for example, in Table A2 the entries below the "Component (a)" column heading all recite "Compound 12" (i.e. Compound 12 identified in Index Table A), and the first line below the column headings in Table A2 specifically discloses a mixture of Compound 12 with 2,4-D. Tables A3 through A9 are constructed similarly.

Table Number	Component (a) Column Entries
A2	Compound 12
A3	Compound 15
A4	Compound 21
A5	Compound 23
A6	Compound 24
A7	Compound 27
A8	Compound 32
A9	Compound 42
A10	Compound 35
A11	Compound 53
A12	Compound 55
A13	Compound 62
A14	Compound 63
A15	Compound 144
A16	Compound 145
A17	Compound 168
A18	Compound 200

[0460] Preferred for better control of undesired vegetation (e.g., lower use rate such as from synergism, broader spectrum of weeds controlled, or enhanced crop safety) or for preventing the development of resistant weeds are mixtures of a compound of this invention with a herbicide selected from the group consisting of chlorimuron-ethyl, nicosulfuron, diuron, hexazinoe, thifensulfuron-methyl and S-meto-lachlor.

[0461] The compounds of the present invention are useful for the control of weed species that are resistant to herbicides with the AHAS-inhibitor or (b2) [chemical compound that inhibits acetohydroxy acid synthase (AHAS), also known as acetolactate synthase (ALS)] mode of action.

[0462] The following Tests demonstrate the control efficacy of the compounds of this invention against specific weeds. The weed control afforded by the compounds is not limited, however, to these species. See Index Table A for compound descriptions. Mass spectra are reported as the molecular weight of the highest isotopic abundance parent ion (M+1) formed by addition of H⁺ (molecular weight of 1) to the molecule, observed by mass spectrometry using atmospheric pressure chemical ionization (AP+) or electrospray ionization (ESI). The following abbreviations are used in the Index Table A which follow: Ph is phenyl, pyridyl is pyridinyl, OEt is ethoxy, CN is cyano, CHO is formyl, t-Bu is tertiary-butyl, i-Pr is iso-propyl, c-Pr is cyclopropyl, Me is methyl, Et is ethyl and C(=O)CH3 is acyl. The abbreviation "Ex." stands for "Example" and is followed by a number indicating in which example the compound is prepared.

INDEX TABLE A

$$(R^3)_m$$
 $\frac{3}{4}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{6}$ $\frac{1}$

	_	- 2	3.	(AP+)
No.	Q	R^2	$(\mathbb{R}^3)_m$	or m.p.
1	5-Cl-2-pyridyl	Cl	m = 0	*
2	6-N(CH ₃) ₂ -3-pyridyl	Cl	$\mathbf{m} = 0$ $\mathbf{m} = 0$	327ª
3	5-Cl-2-pyrimidinyl	Cl	m = 0	320^{α}
4	3-pyridyl	Cl	m = 0 m = 0	285^{a}
5	1,3,4-oxadiazol-2-yl	Br	m = 0 m = 0	319
6	1,3,4-oxadiazol-2-yl	Cl	m = 0	275
7	5-oxazolyl	Cl	m = 0	274ª
8	4-thiazolyl	Cl	m = 0	290
9	5-thiazolyl	Cl	m = 0	290
10	1-CH ₃ -1H-pyrazol-3-yl	Cl	m = 0	*
11	1-CH ₃ -1H-pyrazol-4-yl	Cl	$\mathbf{m} = 0$	*
12	3-Br-5-isoxazolyl	Cl	$\mathbf{m} = 0$	352
13	5-thiazolyl	CF ₃	$\mathbf{m} = 0$	324
14	4-thiazolyl	CF ₃	$\mathbf{m} = 0$	324
15	2-Br-5-thiazolyl	CF ₃	$\mathbf{m} = 0$	402
16	6-Cl-2-pyridyl	Cl	$\mathbf{m} = 0$	319 ^a *
17	6-Cl-2-pyridyl	$_{\mathrm{Br}}$	$\mathbf{m} = 0$	363ª *
18	4-Cl-2-pyrimidinyl	Cl	$\mathbf{m} = 0$	320° *
19	6-CF ₃ -2-pyridyl	Cl	$\mathbf{m} = 0$	352a *
20	2-CF ₃ -4-pyrmidinyl	Cl	$\mathbf{m} = 0$	353 ^a *
21	2-CF ₃ -4-pyrmidinyl	$_{\mathrm{Br}}$	$\mathbf{m} = 0$	398ª *
22	6-CF ₃ -3-pyridyl	Cl	4-CH ₃	366 ^a
23	5-Cl-2-pyidyl	Cl	3-C1	*
24	2-CF ₃ -4-pyridyl	Cl	$4-CH_3$	366
25	4-CF ₃ -2-pyridyl	Cl	$\mathbf{m} = 0$	352
26	4-CF ₃ -2-pyridyl	$_{\mathrm{Br}}$	$\mathbf{m} = 0$	397
27	5-CF ₃ -2-pyridyl	Cl	$\mathbf{m} = 0$	352
28	5-CF ₃ -2-pyridyl	$_{\mathrm{Br}}$	$\mathbf{m} = 0$	397
29	1-CH ₃ -3-CF ₃ -1H-pyrazol-5-yl	Cl	$\mathbf{m} = 0$	355
30	1-CH ₃ -3-CF ₃ -1H-pyrazol-5-yl	$_{\mathrm{Br}}$	$\mathbf{m} = 0$	399
31	5-CH ₂ OH-3-isoxazolyl	Cl	$\mathbf{m} = 0$	304
32	5-CH ₂ F-3-isoxazolyl	Cl	$\mathbf{m} = 0$	306
33	5-CHO-3-isoxazolyl	Cl	$\mathbf{m} = 0$	302
34	5-CH ₂ Cl-3-isoxazolyl	Cl	$\mathbf{m} = 0$	322
35	5-CF ₂ H-3-isoxazolyl	Cl	$\mathbf{m} = 0$	324
36	5-CH ₂ CN-3-isoxazolyl	Cl	$\mathbf{m} = 0$	3116
37	5-CH=NOH-3-isoxazolyl	Cl	$\mathbf{m} = 0$	317
38	5-CN-3-isoxazolyl	Cl	$\mathbf{m} = 0$	299 ^a
39 40	3-CF ₃ -Ph	Cl Cl	$4-CH_3$ $m = 0$	365 367 ^a *
41	3-OCF ₃ -Ph	Cl	m = 0 $m = 0$	352 ^a
42	3,5-di-Cl-Ph	Cl	m = 0 m = 0	367 ^a
43	4-OCF ₃ -Ph 4-CF ₃ -Ph	Cl	$\mathbf{m} = 0$ $\mathbf{m} = 0$	351 ^a
44	3-OCF ₃ -Ph	Cl	4-CH ₃	381 ^a *
45	3-OCF ₃ -Ph	Cl	6-OCF ₃	397 ^a
46	3-OCF ₃ -Ph	Cl	3-F	385 ^a *
47	1-methyl-1H-tetrazol-5-yl	Cl	$\mathbf{m} = 0$	289
48	2-methyl-2H-tetrazol-5-yl	Cl	m = 0	289
49	1-methyl-1H-tetrazol-5-yl	Br	$\mathbf{m} = 0$	334
50	2-methyl-2H-tetrazol-5-yl	Br	$\mathbf{m} = 0$	334
51	1-methyl-1H-1,2,3-triazol-4-yl	Cl	$\mathbf{m} = 0$	288
52	1-methyl-1H-1,2,3-triazol-5-yl	Cl	$\mathbf{m} = 0$	288
53	3-CHF ₂ -5-isoxazolyl	Cl	$\mathbf{m} = 0$	324
54	6-CF ₃ -4-pyrimidinyl	Cl	$\mathbf{m} = 0$	*
55	5-CHF ₂ -3-isoxazolyl	Cl	3-F	96-98
56	5-CHO-3-isoxazolyl	Cl	3-F	137-139
57	5-CH ₂ F-3-isoxazolyl	Cl	3-F	324
58	3-CH ₃ -5-isoxazolyl	Cl	$\mathbf{m} = 0$	288
59	5-(t-Bu)-3-isoxazolyl	Cl	$\mathbf{m} = 0$	330
60	5-CH ₃ -3-isoxazolyl	Cl	$\mathbf{m} = 0$	288
61	2-oxazolyl	Cl	$\mathbf{m} = 0$	274
62	5-CHF ₂ -3-isoxazolyl	Br	$\mathbf{m} = 0$	89-93

INDEX TABLE A-continued

INDEX TABLE A-continued

213 3-CHF₂-5-isoxazolyl

215 5-C(=O)CH₃-3-isoxazolyl

214 4-oxazolyl

216 4-CH₃-2-thienyl

INDEX TABLE A-continued

INDEX TABLE A-continued

$$(\mathbb{R}^3)_m \xrightarrow{\frac{3}{4}} \int_{5}^{\mathbb{R}^2} \int_{6}^{\mathbb{R}^2} \left(\mathbb{R}^3 \right)_{\mathbb{H}} \int_{\mathbb{R}^2}^{\mathbb{R}^2} \left(\mathbb{R}^3 \right)_{\mathbb{H}} \left(\mathbb{R}^3 \right)$$

OMe

Cl

Cl

Cl

 $\mathbf{m} = 0$

 $\mathbf{m} = 0$

 $\mathbf{m} = 0$

 $\mathbf{m} = 0$

$$(R^3)_m$$
 $\frac{3}{4}$ $\frac{Z}{5}$ $\frac{Z}{N}$ $\frac{H}{R^2}$

No.	Q	R^2	$(\mathbb{R}^3)_m$	M. S. (AP+) or m.p.	No.	Q	R^2	$(\mathbb{R}^3)_m$	M. S. (AP+) or m.p.
187	4-Me-2-pyridinyl	Cl	m = 0	298	217	1-CH ₂ CF ₃ -1H-imidazol-4-yl	Cl	3-F	373
188	4-CN-2-pyridinyl	Cl	$\mathbf{m} = 0$	309	218	3-C(=O)CH ₃ -5-isoxazolyl	Cl	$\mathbf{m} = 0$	316
189	5-Cl-3-pyridazinyl	Cl	$\mathbf{m} = 0$	320	219	4-OMe-2-pyridinyl	Cl	$\mathbf{m} = 0$	314
190	6-Cl-4-pyrimidinyl	Cl	$\mathbf{m} = 0$	320	220	5-CF ₂ CH ₃ -3-isoxazolyl	Cl	$\mathbf{m} = 0$	338
191	5-CH ₂ F-3-isoxazolyl	Cl	3-Br	384	221	5-CFCl ₂ -3-isoxazolyl	Cl	4-F	129-132
192	5-Cl-3-isothiazolyl	Cl	$\mathbf{m} = 0$	86-88	222	5-CN-3-isoxazolyl	Cl	3-F	317
193	5-Cl-3-isothiazolyl	F	$\mathbf{m} = 0$	100-102	223	3-CN-5-isoxazolyl	Cl	$\mathbf{m} = 0$	297
194	5-Cl-3-isothiazolyl	CH_3	$\mathbf{m} = 0$	78-82	224	3-CH ₂ F-5-isoxazolyl	Cl	$\mathbf{m} = 0$	306
195	5-CHO-3-isoxazolyl	Cl	3-Br	379	225	3-CO ₂ Et-5-isoxazolyl	Cl	$\mathbf{m} = 0$	346
196	3-C(CH ₃)=CH ₂ -5-isoxazolyl	Cl	$\mathbf{m} = 0$	314	226	5-CFH ₂ -3-isoxazolyl	Cl	$\mathbf{m} = 0$	320
197	3-C(CH ₃)=CH ₂ -5-isoxazolyl	Br	$\mathbf{m} = 0$	359	227	6-OCH ₂ CF ₃ -4-pyrimidinyl	Cl	$\mathbf{m} = 0$	383
198	5-CFCl ₂ -3-isoxazolyl	Cl	$\mathbf{m} = 0$	374	228	3-CF ₃ -5-isoxazolyl	Cl	3-F	360
199	2-thiazolyl	Cl	$\mathbf{m} = 0$	290	229	3-CH ₃ -5-isoxazolyl	Cl	3-F	306
200	5-CF ₃ -3-isoxazolyl	Cl	$\mathbf{m} = 0$	342	230	3-CH ₃ -5-isoxazolyl	$_{\mathrm{Br}}$	3-F	351
201	3-NO ₂ ,5-Cl-2-pyridinyl	Cl	$\mathbf{m} = 0$	363 ^a	231	3-thienyl	Cl	$\mathbf{m} = 0$	289
202	5-Cl-2-pyridinyl	Cl	3-CN	344	232	3-thienyl	Br	$\mathbf{m} = 0$	334
203	5-Cl-2-pyridinyl	Cl	5-Br	398	233	5-isothiazolyl	Cl	$\mathbf{m} = 0$	290
204	5-Cl-2-pyridinyl	$_{\mathrm{Br}}$	3-CN	388	234	5-isothiazolyl	Br	$\mathbf{m} = 0$	335
205	5-Cl-2-pyridinyl	Cl	3-I	445	235	5-CO ₂ Me-3-isoxazolyl	Cl	m = 0	332
206	5-CF ₃ -3-isoxazolyl	F	m = 0	326	236	_ v	Cl	m = 0	334
207	5-Cl-2-pyridinyl	F	3-CN	327	237	1-Me-5-CF ₃ -1H-pyrazol-3-yl	Cl	m = 0 $m = 0$	355
208	5-Cl-2-pyridinyl	Cl	3-&	464	237	2	Cl	3-CN	328
209	4-Br-1H-pyrazol-1-yl	Cl	6-CN	377					
210	3-CHF ₂ -5-isoxazolyl	F	$\mathbf{m} = 0$	308	239	5-CHF ₂ -2-furanyl	Cl	$\mathbf{m} = 0$	323
211	3-CHF ₂ -5-isoxazolyl	CH_3	$\mathbf{m} = 0$	304	dr. o				
212	3-CHF ₂ -5-isoxazolyl	$_{\mathrm{Br}}$	$\mathbf{m} = 0$	369	aES+,				

^bAP−,

cM + Na.

INDEX TABLE B

& 4-Br-1H-pyrazol-1-yl

* See Index Table B for ¹H NMR data

Cmpd ¹H NMR (CDCl₃ solution unless indicated otherwise)^Z

320

274

316

- $1 \quad 8.54 \; (d, 1H), \, 8.39 \; (s, 2H), \, 7.87 \; (d, 1H), \, 7.69 \; (d, 1H), \, 7.60 \; (m, 1H), \, 7.50 \; (m, 1H), \, 7.42 \; (m, 1H), \, 7.24 \; (d, 1H)$
- 10 8.43 (s, 2H), 8.03 (m, 2H), 7.36 (m, 2H), 7.26 (m, 1H), 7.19 (m, 1H), 6.56 (s, 1H), 3.85 (s, 3H)
- $11 \\ 8.45 (s, 2H), \\ 7.77 (s, 1H), \\ 7.72 (s, 1H), \\ 7.62 (m, 1H), \\ 7.32 (m, 2H), \\ 7.18 (m, 1H), \\ 3.86 (s, 3H)$
- 16 8.41 (s, 2H), 7.88 (m, 1H), 7.64 (m, 1H), 7.59 (m, 1H), 7.50 (m, 1H), 7.40 (m, 1H), 7.24 (m, 1H), 7.18 (m, 1H)
- $17 \quad 8.49 \; (s, \, 2H), \, 7.88 \; (m, \, 1H), \, 7.64 \; (m, \, 1H), \, 7.58 \; (m, \, 1H), \, 7.50 \; (m, \, 1H), \, 7.41 \; (m, \, 1H), \, 7.25 \; (m, \, 1H), \, 7.17 \; (m, \, 1H)$
- 18 8.55 (m, 1H), 8.43 (s, 2H), 8.05 (m, 1H), 7.75 (m, 1H), 7.58 (m, 1H), 7.45 (m, 1H), 7.26 (m, 1H)
- 19 8.41 (s, 2H), 7.89 (m, 2H), 7.82 (m, 1H), 7.54 (m, 2H), 7.43 (m, 1H), 7.26 (m, 1H)
- 8.82 (m, 1H), 8.52 (s, 2H), 8.06 (m, 1H), 7.96 (m, 1H), 7.61 (m, 1H), 7.48 (m, 1H), 7.30 (m, 1H)
- $21 \\ 8.83 \text{ (d, 1H)}, \\ 8.52 \text{ (s, 2H)}, \\ 8.08 \text{ (m, 1H)}, \\ 7.97 \text{ (d, 1H)}, \\ 7.62 \text{ (m, 1H)}, \\ 7.47 \text{ (m, 1H)}, \\ 7.30 \text{ (m, 1H)}, \\ 7.30 \text{ (m, 1H)}, \\ 7.47 \text{ (m, 1H)}, \\$
- 23 8.52 (m, 1H), 8.40 (s, 2H), 7.66 (m, 1H), 7.43 (m, 2H), 7.33 (m, 1H), 7.18 (m, 1H)
- $40 \\ 8.26 \text{ (s, 2H), 7.39 (m, 2H), 7.32 (m, 2H), 7.27 (m, 1H), 7.24 (s, 1H), 7.17 (m, 1H), 7.02 (d, 1H)}$
- 44 8.33 (s, 2H), 7.39 (s, 1H), 7.28-7.34 (m, 2H), 7.25 (m, 2H), 7.12 (d, 1H), 7.07 (m, 1H), 2.43 (s, 3H)
- $46 \quad (300 \text{ MHz}) \ 8.33 \ (\text{S}, \, 2\text{H}), \, 7.43 \ (\text{m}, \, 1\text{H}), \, 7.34 \ (\text{m}, \, 2\text{H}), \, 7.22 \ (\text{s}, \, 1\text{H}), \, 7.10 \ (\text{m}, \, 3\text{H})$
- 54 9.42 (s, 1H), 8.43 (s, 2H), 8.12 (s, 1H), 8.05 (d, 1H), 7.72 (m, 1H), 7.53 (m, 1H), 7.32 (m, 1H)
- 134 8.36 (s, 2 H), 7.74 (m, 1 H), 7.62 (m, 1 H), 7.48-7.56 (m, 1 H), 2.33 (s, 3 H), 2.22 (s, 3 H)
- 135 7.22 (m, 1H), 7.31 (m, 1H), 7.36 (m, 1H), 7.65 (m, 2H), 8.40 (s, 2H), 8.52 (m, 1H)
- 140 9.60 (s, 1H), 8.44 (s, 2H), 8.05 (s, 1H), 7.59 (d, 1H), 7.54 (s, 1H), 7.43 (t, 1H), 7.37 (t, 1H), 7.23 (d, 1H)
- $141 \quad 8.43 \; (s, \, 2H), \, 7.86 \; (s, \, 1H), \, 7.57 \; (d, \, 1H), \, 7.37 \; (t, \, 1H), \, 7.34 \; (t, \, 1H), \, 7.22 \; (d, \, 1H), \, 6.98 \; (s, \, 1H), \, 6.57 \; (t, \, 1H)$
- 149 8.54 (2, 2H), 7.96 (dd, 1H), 7.49-7.63 (m, 1H), 7.42 (t, 1H), 7.26-7.29 (m, 1H), 6.86 (t, 1H), 2.00 (t, 3H)

INDEX TABLE B-continued

Cmpd	¹ H NMR (CDCl ₃ solution unless indicated otherwise) ^Z
156	7.06-7.08 (m, 1 H) 7.18 (s, 1 H) 7.93 (s, 1 H) 8.01-8.06 (m, 1 H) 8.46 (s, 2 H)
161	8.34 (s, 2H), 6.59 (s, 1H), 6.56 (t, 1H), 6.40-6.48 (m, 2H), 7.28 (d, 1H), 6.92 (s, 1H), 6.55 (q, 2H)
173	8.34 (s, 2H), 7.99 (dd, 1H), 7.51-7.59 (m, 1H), 7.38 (dt, 1H), 7.26-7.31 (m, 1H), 6.90 (t, 1H), 2.25 (s,
	3H), 1.99 (t, 3H)

 $^{^{\}rm Zl}{\rm H}$ NMR data are in ppm downfield from tetramethylsilane at 500 MHz unless otherwise indicated. Couplings are designated by (s)—singlet, (d)—doublet and (m)—multiplet.

Biological Examples of the Invention

Test A

[0463] Seeds of plant species selected from downy bromegrass (Bromus tectorum), cocklebur (common cocklebur, Xanthium strumarium), wild oat (Avena fatua), barnyardgrass (Echinochloa crus-galli), large (Lg) crabgrass (Digitaria sanguinalis), giant foxtail (Setaria faberii), morningglory (Ipomoea spp.), velvetleaf (Abutilon theophrasti), and sorghum (Sorghum vulgare) were planted into a sandy loam soil and treated preemergence by soil drench using test a chemical formulated in a non-phytotoxic solvent mixture which included a surfactant. At the same time these species were also treated postemergence sprayed to runoff using a test chemical formulated in the same manner.

[0464] Plants ranged in height from 2 to 18 cm and were in the one- to two-leaf stage for the postemergence treatment. Treated plants and untreated controls were maintained in a greenhouse for approximately 11 days, after which time all treated plants were compared to untreated controls and visually evaluated for injury. Plant response ratings, summarized in Table A, are based on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

TABLE A

1000 g ai/ha	Compound 39	2000 g ai/ha	Compound 39
Post Sprayed to	Runoff	Pre Soil Dr	ench
Barnyardgrass	50	Barnyardgrass	90
Bromegrass, Downy	20	Bromegrass, Downy	70
Cocklebur	40	Cocklebur	0
Crabgrass, Large	50	Crabgrass, Large	90
Foxtail, Giant	30	Foxtail, Giant	100

TABLE A-continued

1000 g ai/ha	Compound 39	2000 g ai/ha	Compound 39
Morningglory	30	Morningglory	0
Oat, Wild	20	Oat, Wild	90
Sorghum	30	Sorghum	50
Velvetleaf	60	Velvetleaf	70

Test B

[0465] Seeds of plant species selected from barnyardgrass (Echinochloa crus-galli), kochia (Kochia scoparia), ragweed (common ragweed, Ambrosia elation), Italian ryegrass (Lolium multiflorum), large (Lg) crabgrass (Digitaria sanguinalis), giant foxtail (Setaria faberii), morningglory (Ipomoea spp.), pigweed (Amaranthus retroflexus), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), and corn (Zea mays) were planted into a blend of loam soil and sand and treated preemergence with a directed soil spray using test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

[0466] At the same time, plants selected from these crop and weed species and also blackgrass (*Alopecurus myosuroides*), and *galium* (catchweed bedstraw, *Galium aparine*) were planted in pots containing the same blend of loam soil and sand and treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from 2 to 10 cm and were in the one-to two-leaf stage for the postemergence treatment. Treated plants and untreated controls were maintained in a greenhouse for approximately 10 days, after which time all treated plants were compared to untreated controls and visually evaluated for injury. Plant response ratings, summarized in Table B, are based on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

TABLE B

							Comp	ounds						
1000 g ai/ha	1	2	3	5	6	7	8	9	10	12	23	31	33	34
					Pc	stemerg	gence							
Barnyardgrass	70	0	50	20	0	10	0	10	10	40	50	10	0	0
Blackgrass	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Com	10	0	10	0	0	10	0	10	0	0	20	0	0	0
Crabgrass, Large	70	0	10	0	20	20	10	50	10	30	60	50	10	10
Foxtail, Giant	80	0	20	0	0	20	0	20	10	40	70	30	10	0
Galium	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Kochia	_	_	_	_	_	_	_	_		_	_		_	_
Morningglory	60	40	60	20	20	40	10	50	10	30	70	30	10	0
Pigweed	100	70	70	70	70	20	70	60	50	100	100	30	10	40
Ragweed	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Ryegrass, Italian	_	_	_	—	_	_	_	_		_	_	_	_	_

Morningglory

				-	ΓABL	Е В-с	ontinı	ıed						
Velvetleaf Wheat	100 0	50 0	100 10	30 0	30 0	10 10	30 0	40 10	20 0	90 10	70 0	30 0	0	20 0
							Comp	ounds						
1000 g ai/ha	35	36	40	46	55	57	61	148	171	172	186	191	192	193
					Po	stemerg	gence							
Barnyardgrass	100	90	30	90	100	100	10	10	30	10	0	100	100	90
Blackgrass	_	_	_	_	100	90	_	10	80	0	20	100	90	90
Corn	90	50	20	20	100	90	0	0	10	10	0	60	30	10
Crabgrass, Large Foxtail, Giant	e 100 90	80 90	50 50	100 100	100	100	0	 10	100	10	30	100	— 90	— 90
Galium	_	_	_	_	100	90	_	0	100	10	20	100	100	100
Kochia	_	_	_	_	100	90	_	0	100	30	30	100	100	100
Morningglory	100	20	100	70	_	_	10	_	_	_	_	_	_	_
Pigweed	100	90	100	100	100	100	60	0	100	80	20	100	100	100
Ragweed Ryegrass, Italian	_	_	_	_	100 100	100 80	_	0	30 10	10 0	50 0	90 100	60 50	90 30
Velvetleaf	100	100	100	100	_	_	70	_	_	_	_	_	_	_
Wheat	80	50	10	20	100	90	0	0	30	0	0	30	30	20
								Con	pounds					
	1000 g ai	/ha			194	4		19	5		2	235		
						P	osteme	rgence						
	Barnyarda			100)			0		
	Blackgras Corn	S			90 60			10				0		
	Crabgrass	Large		60				10	, -					
	Foxtail, G				90)		10)			0		
	Galium				100			10				0		
	Kochia	la mr			100)		10				0		
	Morningg Pigweed	iory			90			50				0		
	Ragweed				80			10				0		
	Ryegrass,	Italian			50			10				0		
	Velvetleaf							_	-			_		
	Wheat				20	,	0		,			0		
""							•	ounds						
500 g ai/ha	4	10	11	13	14	16	17	18	19	20	21	22	23	24
						stemerg								
Barnyardgrass Blackgrass	10	0	10	0	0	0	0	0	0	0	60	0	50	60
Corn	_	0	0	10	30	0	0	0	0	0	40	0	20	40
Crabgrass, Large	50	0	10	10	10	0	0	0	0	20	30	10	50	90
Foxtail, Giant	30	0	0	0	10	0	0	0	0	20	60	0	70	90
Galium Kochia	_		_	_	_	_	_	_	_	_	_	_	_	_
Morningglory	30	30	20	10	0			0	0	50	90	10	40	100
Pigweed	100	20	20	40	50	30	10	Ů.	ő	90	100	0	100	40
Ragweed	_	_	_	_	_	_	_		_	_	_	_	_	_
Ryegrass, Italian		_	_	_	_	_	_	_	_	_	_	_	_	_
Velvetleaf Wheat	60 0	20 0	20 0	60 0	30 0	20 0	20 0	0	0	30 0	40 0	60 0	70 0	70 0
W neat			-	•	•	•		ounds	-	-	•	•	•	•
500 g ai/ha	25	26	27	28	29	30	32	37	41	42	43	44	45	47
	23	20	<i>41</i>	20				31	71	74	73	-7*	77	T /
	20	20				stemerg				20	20		20	
Barnyardgrass Blackgrass	30	20	50	50	0	0	90	0 0	20	30	20	20	20	0 0
Corn	30	20	30	20	0	0	50	0	10	20	10	20	10	0
Crabgrass, Large		30	90	40	10	10	90	_	20	50	20	20	40	_
Foxtail, Giant	60	30	70	40	0	10	90	10	20	30	20	10	20	50
Galium	_	_	_	_	_	_	_	0	_	_	_	_	_	60
Kochia			_	_			_	0	_			_	_	80

				T	ABL	Е В-с	continu	ıed						
Pigweed	90	80	100	100	10	10	100	20	70	80	70	50	60	70
Ragweed	_	_	_	_	_	_	_	0	_	_	_	_	_	30
Ryegrass, Italian	_	_	_	_	_	_	_	0	_	_	_	_	_	(
Velvetleaf	80	80	100	100	0	30	100	_	30	100	70	70	60	
Wheat	10	10	0	0	0	0	60	0	0	0	0	0	0	10
							Comp	ounds						
500 g ai/ha	48	49	50	51	52	53	54	58	59	60	62	63	64	123
					Po	stemer	gence							
Barnyardgrass	0	10	0	0	10	100	100	90	10	100	100	100	100	0
Blackgrass	60	10	60	50	10	100	80	90	40	100	_	_	_	0
Corn	10	10	0	0	10	70	0	50	10	90	50	20	30	0
Crabgrass, Large	40	10	10			100	100	90		100	90 90	90	90	0
Foxtail, Giant Galium	40 100	10 60	10 100	50 90	50	100 100	100 100	100	50 90	100 100	—	80	80	0
Kochia	100	30	80	100	50	100	100	100	20	100				ő
Morningglory	_	_	_	_	_	_	_	_		_	100	100	100	_
Pigweed	100	30	100	80	60	100	100	100	50	100	100	100	100	0
Ragweed	70	30	60	60	20	90	60	100	0	90	_	_	_	0
Ryegrass, Italian	0	0	50	0	0	100	60	80	0	80		_		0
Velvetleaf Wheat		20	20	10	20	80	0	50	10	90	100 30	100 50	100 10	0
							Comp	ounds						
500 g ai/ha	134	135	136	137	138	139	151	152	153	156	157	158	159	160
					Po	stemer	gence							
Damarandanasa	90	40	90	10	0	0	0	0	70	20	60	100	20	80
Barnyardgrass Blackgrass	90	40	90	0	0	0	0	0	70 90	40	90	90	30	9
Corn	80	30	70	20	0	0	ő	0	40	40	40	90	30	9
Crabgrass, Large	100	50	90	_	_	_	_	_	_	_	_	_	_	_
Foxtail, Giant	90	60	80	20	0	0	0	0	90	90	80	100	70	10
Galium	_	_	_	20	0	0	0	0	100	100	100	100	100	10
Kochia				60	0	0	0	0	90	90	100	90	80	9
Morningglory Pigweed	90 100	50 100	90 100	90	0	0	0	0	 100	— 100	100	100	100	10
Ragweed	100			0	0	0	0	0	100	40	50	30	0	3
Ryegrass, Italian	_	_	_	Ö	Ö	ŏ	ō	ō	60	70	100	70	Ö	9
Velvetleaf	90	80	100	_	_	_	_		_	_	_	_	_	_
Wheat	30	10	40	0	0	0	0	0	50	30	70	70	20	8
							Comp	ounds						
500 g ai/ha	161	167	168	169	170	179	180	181	182	183	184	185	190	199
					Po	stemer	gence							
Barnyardgrass	0	10	100	30	20	80	90	20	10	70	50	40	0	
Blackgrass	0	10	90	90	60	100	90	10	10	90	60	50	0	_
Corn	0	20	100	20	20	40	70	10	20	30	20	10	0	
Crabgrass, Large	_		100				100				70		_	1
Foxtail, Giant Galium	0	10	100	100	50	100	100	20	50	80	70	70	0	
Ganum Kochia	0	60 60	100 90	100 90	100 100	100 100	100 100	50 50	50 80	100 100	100 100	70 100	10 0	
Morningglory	_	_	_	_	_	_	_	_	_	_	_	_	_	1
Pigweed	0	70	100	100	100	100	100	90	80	100	100	100	20	3
Ragweed	0	0	90	30	50	30	70	10	10	30	40	100	10	_
Ryegrass, Italian Velvetleaf	0	0	90	50	20	100	100	0	0	70	20	0	0	1
Wheat	0	20	100	0	30	90	90	0	0	60	10	0	0	1
							Comp	ounds						
	200	201	202	20	3	204	205	206	207	208	2	09	215	217
500 g ai/ha							ganga							
500 g ai/ha					Po	stemer	genee							
		0	40	0				10	70	20		0	90	0
Barnyardgrass	100	0	40	0		10	10	10	70	20		0	90 40	0
Barnyardgrass Blackgrass		0 - 0	40 — 30	0 - 0	_			10 — 0	70 — 0	20 — 0	-	0 - 0	90 40 40	0 0 0
500 g ai/ha Barnyardgrass Blackgrass Corn Crabgrass, Large	100	_	_	_	_	10	10	_	_	_	-	_	40	0

				-	ΓΑΒΙ	LE B-c	ontinu	ıed						
Galium Kochia Morningglory Pigweed Ragweed		 0 0) (— — D	 10 90		— 30 70		 0 60	10	 30 	70 10 — 100 20	30 30 — 60 30
Ryegrass, Italian Velvetleaf Wheat	— 100 100	 0 0	30		— O			— 60 0	 60 0	 30 0	-	- 30 0	50	0 - 0
- Theat	100							ounds					20	
125 g ai/ha	4	10	11	13	14	15	16	17	18	19	20	21	22	23
					F	ostemer	gence							
Barnyardgrass Blackgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	
Corn	_	0	0	0	0	0	0	0	0	0	0	0	0	10
Crabgrass, Large Foxtail, Giant	20 0	0	10 0	0	0	10 0	0	0	0	0	0	0	0	10 10
Galium	_	_	_	_	_	_	_	_	_	_	_	_	_	
Kochia	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Morningglory	0	20	10	0	0	10	_	_	0	0	0	20	0	20
Pigweed Ragweed	30	0	10	0	0	70 —	0	0	0	0	4 0	8 0	0	70 —
Ryegrass, Italian	20	_	10	20	20	_	0	_	_	_	_			
Velvetleaf Wheat	30 0	0 0	10 0	30 0	20 0	0	0	0	0	0	0	20 0	50 0	40
							Comp	ounds						
125 g ai/ha	24	25	26	27	28	29	30	32	38	41	42	43	44	45
					F	ostemer	gence							
Barnyardgrass Blackgrass	0	0	0	20	0	0	0	70 —	0	0	20	0	10	
Corn	0	10	10	0	0	0	0	10	0	0	20	0	0	(
Crabgrass, Large	80	10	10	20	20	0	0	60	_	10	30	0	10	10
Foxtail, Giant Galium	30	0	0	20	20	0	0	70	0 30	10	10	0	0	10
Kochia		_	_		_	_	_	_	30	_	_	_		
Morningglory	50	10	10	10	0	0	0	70	_	0	20	0	20	30
Pigweed	20	30	30	50	30	0	0	100	20	40	60	30	20	10
Ragweed Ryegrass, Italian			_	_	_			_	0	_	_	_	_	
Velvetleaf	40	20	10	70	40	0	10	90	_	10	100	20	30	50
Wheat	0	0	0	0	0	0	0	30	0	0	0	0	0	(
							Comp	ounds						
125 g ai/ha	47	48	49	50	51	52	53	54	58	59	60	62	63	64
					P	ostemer	gence							
Barnyardgrass	0	0	0	0	0	0	100	20	70	10	50	90	80	90
Blackgrass	0	40	0	40	0	0	100	70	70	0	50	_	_	_
Corn	0	0	0	0	0	0	10	0	0	0	30	10	20	20
Crabgrass, Large Foxtail, Giant		0	0	0	10	0	100	80	 70	10	 50	70 80	80 70	60 60
Galium	30	70	20	90	60	40	100	100	100	40	100	-80	-/U	
Kochia	60	50	30	60	70	20	100	100	100	0	90	_	_	_
Morningglory	_	_	_	_	_	_	_	_	_	_	_	90	100	70
Pigweed	50	70 50	10	70	70	30	100	100	100	40	100	100	100	100
Ragweed Ryegrass, Italian	20 0	50 0	30 0	20 0	20	20 0	60 80	50 30	100 20	0	60 0	_	_	
Velvetleaf	_	_	_	_ 0	_ 0		— 40			_ 0	_	100	100	100
Wheat	0	0	10	U	U	U			U	U	30	0	0	(
								ounds						
125 g ai/ha	70	73	89	90	91	96	97	103	104	105	106	107	108	109
					F	ostemer	gence							
Barnyardgrass	0	0	30	0	0	30	20	40	60	70	0	0	0	90
Blackgrass	0	0	20	0	0	70	0	90	100	100	0	0	0	90

					ΓABL	Е В-с	ontinu	ied						
Corn	0	0	30	0	0	20	20	30	30	20	0	0	10	60
Crabgrass, Large	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Foxtail, Giant Galium	0	0 10	40 50	0 30	0	50 100	30 50	70 100	80 100	80 100	0	0	0 50	90 100
Kochia	0	0	70	10	0	100	90	30	80	70	0	0	0	30
Morningglory	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Pigweed	20	10	90	10	0	100	90	80	90	100	0	0	0	100
Ragweed Ryegrass, Italian	0	0	10 0	0	0	60 60	50 0	60 10	10 30	30 10	0	0	0	90 50
Velvetleaf	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Wheat	0	0	0	0	0	0	0	0	10	10	0	0	0	10
							Comp	ounds						
125 g ai/ha	110	111	112	113	114	115	116	117	118	119	120	121	122	123
					Po	stemerg	gence							
Barnyardgrass	50	10	30	90	20	0	30	0	100	0	90	90	0	0
Blackgrass	40	40	20	90	40 50	0	30 40	0	100	0	90 40	80 40	0	0
Corn Crabgrass, Large	10	10	20	30	50	0	40	0	100	0	40	40	0	0
Foxtail, Giant	70	60	60	90	60	0	90	0	100	10	90	90	0	0
Galium	70	20	50	100	100	0	70	0	100	60	100	100	20	0
Kochia	50	30	70	100	90	0	90	0	100	30	90	90	20	0
Morningglory Pigweed	30	20	30	100	100	0	100	0	100	80	100	100	20	0
Ragweed	40	20	30	80	20	0	40	o	50	10	70	60	10	ō
Ryegrass, Italian	0	0	0	70	60	0	30	0	80	0	90	70	0	0
Velvetleaf Wheat				10	20	0	20	0	— 60		— 40	30	20	0
							Comp	ounds						
125 g ai/ha	124	125	126	127	128	129	130	131	132	133	134	135	137	138
					Po	stemers	gence							
							-							
Barnyardgrass Blackgrass	20	30	100	100	10	10	100	90	50	60	20	10	0	0
	20	20	00	00	20		0.0	0.0	50	70				
	30 10	30 10	90 70	90 50	20 10	0 10	80 40	80 40	50 30	70 30	 10	 10	0	0
Corn Crabgrass, Large	30 10 —	30 10 —	90 70 —	90 50 —	20 10 —	0 10 —	80 40 —	80 40 —	50 30 —	70 30 —	10 10	10 10	0 0 —	0 0 —
Corn Crabgrass, Large Foxtail, Giant	10 — 20	10 — 20	70 — 90	50 — 90	10 — 10	10 — 10	40 — 80	40 — 90	30 — 70	30 — 50	10	10	0	0
Corn Crabgrass, Large Foxtail, Giant Galium	10 — 20 100	10 — 20 100	70 — 90 100	50 — 90 100	10 — 10 30	10 — 10 10	40 — 80 90	40 — 90 90	30 — 70 90	30 — 50 100	10 10 10	10 10 10	0 — 0	0 0 0
Corn Crabgrass, Large Foxtail, Giant Galium Kochia	10 — 20	10 — 20	70 — 90	50 — 90	10 — 10	10 — 10	40 — 80	40 — 90	30 — 70	30 — 50	10 10 10 —	10 10 10 —	0	0
Corn Crabgrass, Large Foxtail, Giant Galium	10 — 20 100	10 — 20 100	70 — 90 100 90	50 — 90 100	10 — 10 30	10 — 10 10	40 — 80 90	40 — 90 90	30 — 70 90	30 — 50 100 90	10 10 10	10 10 10	0 - 0 0	0 0 0
Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed	10 20 100 80 — 90 20	10 — 20 100 80 — 90 20	70 — 90 100 90 — 100 40	50 — 90 100 90 — 100 50	10 	10 10 10 10 30 0	40 — 80 90 90 — 100 60	40 — 90 90 70 — 100 70	30 70 90 60 100 30	30 50 100 90 — 100 30	10 10 10 — — 10	10 10 10 — — 20	0 0 0 - 30 0	0 0 0 0
Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed Ryegrass, Italian	10 — 20 100 80 — 90	10 — 20 100 80 — 90	70 — 90 100 90 — 100	50 — 90 100 90 — 100	10 — 10 30 50 — 60	10 10 10 10 10 — 30	40 — 80 90 90 — 100	40 — 90 90 70 — 100	30 — 70 90 60 — 100	30 — 50 100 90 — 100	10 10 10 — — 10 60 —	10 10 10 — — 20 100 —	0 0 0 - 30	0 0 0 0 -
Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed	10 20 100 80 — 90 20	10 — 20 100 80 — 90 20	70 — 90 100 90 — 100 40	50 — 90 100 90 — 100 50	10 	10 10 10 10 30 0	40 — 80 90 90 — 100 60	40 — 90 90 70 — 100 70	30 70 90 60 100 30	30 50 100 90 — 100 30	10 10 10 — — 10	10 10 10 — — 20	0 0 0 - 30 0	0 0 0 0
Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed Ryegrass, Italian Velvetleaf	10 — 20 100 80 — 90 20 0	10 — 20 100 80 — 90 20 10	70 — 90 100 90 — 100 40 100 —	50 — 90 100 90 — 100 50 90 —	10 10 30 50 — 60 10 0	10 10 10 10 30 0 0	40 	40 — 90 90 70 — 100 70 —	30 	30 50 100 90 — 100 30 30	10 10 10 — 10 60 — 40	10 10 10 ——————————————————————————————	0 0 0 - 30 0 0	0 0 0 0 0 0 0
Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed Ryegrass, Italian Velvetleaf	10 — 20 100 80 — 90 20 0	10 — 20 100 80 — 90 20 10	70 — 90 100 90 — 100 40 100 —	50 — 90 100 90 — 100 50 90 —	10 10 30 50 — 60 10 0	10 10 10 10 30 0 0	40 	40 — 90 90 70 — 100 70 70 — 30	30 	30 50 100 90 — 100 30 30	10 10 10 — 10 60 — 40	10 10 10 ——————————————————————————————	0 0 0 - 30 0 0	0 0 0 0 0 0 0
Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed Ryegrass, Italian Velvetleaf Wheat	10 	10 20 100 80 90 20 10 0	70 — 90 100 90 — 100 40 100 — 40	50 — 90 100 90 — 100 50 90 — 20	10 	10 — 10 10 10 — 30 0 0 — 0	40 	40 — 90 90 70 — 100 70 70 — 30	30 	30 	10 10 10 ——————————————————————————————	10 10 10 ——————————————————————————————	0 0 0 	0 0 0 0 0 0 0 0 0
Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed Ryegrass, Italian Velvetleaf Wheat	10 — 20 100 80 — 90 20 0 — 0	10 — 20 100 80 — 90 20 10 — 0	70 — 90 100 90 — 100 40 100 — 40	50 — 90 100 90 — 100 50 90 — 20	10 — 10 30 50 — 60 10 0 — 0 143	10 — 10 10 10 — 30 0 — 0 — 0 144	40 — 80 90 90 — 100 60 60 — 40 Comp	40 — 90 90 70 — 100 70 70 — 30 ounds	30 — 70 90 60 — 100 30 40 — 10	30 — 50 100 90 — 100 30 30 — 10	10 10 10 ——————————————————————————————	10 10 10 ——————————————————————————————	0 0 0 	0 0 0 0 0 0 0 0 0 0
Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed Ryegrass, Italian Velvetleaf Wheat	10 	10 20 100 80 90 20 10 0	70 — 90 100 90 — 100 40 100 — 40	50 — 90 100 90 — 100 50 90 — 20	10 	10 10 10 10 30 0 0 0	40 	40 — 90 90 70 — 100 70 70 — 30	30 	30 	10 10 10 ——————————————————————————————	10 10 10 ——————————————————————————————	0 0 0 	0 0 0 0 0 0 0 0 0
Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed Ryegrass, Italian Velvetleaf Wheat 125 g ai/ha Barnyardgrass Blackgrass Corn	10 — 20 100 80 — 90 20 0 — 0	10 — 20 100 80 — 90 20 10 — 0	70 — 90 100 90 — 100 40 100 — 40 141	50 — 90 100 90 — 100 50 90 — 20 142	10 — 10 30 50 — 60 10 0 — 0 143	10 — 10 10 10 10 — 30 0 — 0 — 0 144 ostemers	40 — 80 90 90 — 100 60 60 — 40 Comp 145 gence 100 90 70	40 — 90 90 70 — 100 70 — 30 ounds 146	30 — 70 90 60 — 100 30 40 — 10	30 	10 10 10 ——————————————————————————————	10 10 10 ——————————————————————————————	0 	0 0 0 0 0 0 0 0 0 0
Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed Ryegrass, Italian Velvetleaf Wheat 125 g ai/ha Barnyardgrass Blackgrass Corn Crabgrass, Large	10 — 20 100 80 — 90 20 0 — 0 139	10 — 20 100 80 — 90 20 10 — 0	70 — 90 100 90 — 100 40 100 — 40 141	50 — 90 100 90 — 100 50 90 — 20 142	10 	10 — 10 10 10 — 30 0 — 0 — 0 144 0stemers	40 — 80 90 90 — 100 60 60 — 40 Comp 145 gence 100 90 70 —	40 — 90 90 70 — 100 70 — 30 ounds 146 20 30 0	30 	30 — 50 100 90 — 100 30 30 — 10 149	10 10 10 10 60 40 10	10 10 10 	0 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed Ryegrass, Italian Velvetleaf Wheat 125 g ai/ha Barnyardgrass Blackgrass Corn Crabgrass, Large Foxtail, Giant	10 	10 	70 — 90 100 90 — 100 40 100 — 40 141	50 — 90 100 90 — 100 50 90 — 20 142 0 0 0	10 — 10 30 30 50 — 60 10 0 — 0 143 Pec 90 60 30 30 — 80	10 — 10 10 10 10 — 30 0 0 — 0 144 0stemers 100 90 90 — 100 100	40 — 80 90 90 90 — 100 60 60 — 40 Comp 145 gence 100 90 70 — 90	40 — 90 90 70 — 100 70 — 30 ounds 146 — 20 30 0 — 20	30 	30 	10 10 10 	10 10 10 	0 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed Ryegrass, Italian Velvetleaf Wheat 125 g ai/ha Barnyardgrass Blackgrass Corn Crabgrass, Large	10 — 20 100 80 — 90 20 0 — 0 139	10 — 20 100 80 — 90 20 10 — 0	70 — 90 100 90 — 100 40 100 — 40 141	50 — 90 100 90 — 100 50 90 — 20 142	10 	10 — 10 10 10 — 30 0 — 0 — 0 144 0stemers	40 — 80 90 90 90 — 100 60 60 — 40 Comp 145 gence 100 90 70 — 90 100	40 — 90 90 70 — 100 70 — 30 ounds 146 20 30 0	30 	30 — 50 100 90 — 100 30 30 — 10 149	10 10 10 10 60 40 10	10 10 10 	0 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed Ryegrass, Italian Velvetleaf Wheat 125 g ai/ha Barnyardgrass Blackgrass Corn Crabgrass, Large Foxtail, Giant Galium	10 	10 	70 — 90 100 90 40 100 — 40 141 0 0 30 — 0 0	50 — 90 100 90 — 100 50 90 — 20 142 0 0 0 0 10 100 100 100 100 1	10 — 10 30 50 — 60 10 0 — 0 143 Pc 60 30 30 — 80 100	10 — 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0	40 — 80 90 90 90 — 100 60 60 — 40 Comp 145 gence 100 90 70 — 90	40 — 90 90 70 — 100 70 — 30 ounds 146 20 30 0 — 20 50	30 	30 	10 10 10 	10 10 10 	0 	0
Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed Ryegrass, Italian Velvetleaf Wheat 125 g ai/ha Barnyardgrass Blackgrass Corn Crabgrass, Large Foxtail, Giant Galium Kochia	10 	10 	70 — 90 100 90 40 100 — 40 141 0 0 30 — 0 0	50 — 90 100 90 — 100 50 90 — 20 142 0 0 0 100 0 100 100 100 100	10 — 10 30 50 — 60 10 0 — 0 143 Pcc Pcc 80 100	10 — 10 10 10 10 10 10 10 10 10 10 100 10	40 — 80 90 90 — 100 60 60 — 40 Comp 145 gence 100 90 70 — 90 100 100 — 100	40 — 90 90 70 — 100 70 — 30 ounds 146 20 30 0 — 20 50 60	30 	30 	10 10 10 	10 10 10 	0 	0
Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed Ryegrass, Italian Velvetleaf Wheat 125 g ai/ha Barnyardgrass Blackgrass Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed	10 	10 	70 — 90 100 90 — 100 40 100 — 40 141 0 0 0 30 — 0 0 0 0 0 0 0	50 	10 — 10 30 50 — 60 10 0 — 0 1443 Pec 80 100 — 80 100 — 100 20	10 — 10 10 10 — 30 0 0 — 0 144	40 — 80 90 90 — 100 60 60 — 40 Comp 145 gence 100 90 70 — 90 100 100 — 100 50	40 — 90 90 90 70 — 100 70 70 — 30 ounds 146 — 20 30 0 — 20 50 60 — 60 0	30 	30 	10 10 10 10 	10 10 10 20 1000 	0 	0
Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed Ryegrass, Italian Velvetleaf Wheat 125 g ai/ha Barnyardgrass Blackgrass Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed Ryegrass, Italian	10 	10 — 20 100 80 — 90 20 10 — 0 0 0 — 0 0 0 — 0 0	70 — 90 100 90 — 100 40 100 — 40 141 0 0 0 30 — 0 0 0 0 0 0 0	50 	10 — 10 30 30 50 — 60 10 0 — 143 Pec 80 80 100 — 100 — 100	10 — 10 10 10 — 30 0 0 — 0 144 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40 — 80 90 90 — 100 60 60 — 40 Comp 145 gence 100 90 70 — 90 100 100 — 100	40 — 90 90 90 70 — 100 70 70 — 30 ounds 146 — 20 30 0 — 20 50 60 — 60	30 	30 	10 10 10 10 	10 10 10 	0 	0
Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed Ryegrass, Italian Velvetleaf Wheat 125 g ai/ha Barnyardgrass Blackgrass Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory Pigweed Ragweed	10 	10 	70 — 90 100 90 — 100 40 100 — 40 141 0 0 0 30 — 0 0 0 0 0 0 0	50 	10 — 10 30 50 — 60 10 0 — 0 1443 Pec 80 100 — 80 100 — 100 20	10 — 10 10 10 — 30 0 0 — 0 144	40 — 80 90 90 — 100 60 60 — 40 Comp 145 gence 100 90 70 — 90 100 100 — 100 50	40 — 90 90 90 70 — 100 70 70 — 30 ounds 146 — 20 30 0 — 20 50 60 — 60 0	30 	30 	10 10 10 10 	10 10 10 20 1000 	0 	0

TABLE B-continued

							Comp	ounds						
125 g ai/ha	154	155	156	157	158	159	160	161	162	163	164	165	166	167
					Po	stemerg	gence							
Barnyardgrass	0	0	0	20	60	0	0	0	90	0	0	20	0	0
Blackgrass	0	0	20	70	30	0	50	0	30	20	0	30	0	0
Corn	0	0	20	0	30	20	30	0	40	10	0	0	10	0
Crabgrass, Large	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Foxtail, Giant	0	0	20	70	50	0	30	0	90	10	0	20	0	0
Galium	0	0	90	100	30	70	70	0	90	30	30	40	30	10
<i>Kochia</i> Morningglory	0	0	90	90	70	20	40	0	100	50	0	40	0	10
Pigweed	0	0	90	100	80	90	90	0	100	30	30	50	30	10
Ragweed	ŏ	ŏ	20	10	0	0	ő	ŏ	40	30	30	60	30	0
Ryegrass, Italian	0	0	30	90	0	0	0	0	50	0	0	0	0	0
Velvetleaf	_	_	_	_	_	_	_	_	_	_	_			_
Wheat	0	0	20	50	20	20	20	0	30	0	0	0	0	10
							Comp	ounds						
125 g ai/ha	168	169	170	173	174	175	176	177	178	179	180	181	182	183
					Po	stemerg	gence							
Barnyardgrass	100	10	0	70	10	10	30	30	40	10	50	10	0	40
Blackgrass	90	50	50	70	50	0	30	30	40	80	90	0	0	80
Corn	100	10	20	40	0	0	30	10	20	10	20	10	10	10
Crabgrass, Large	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Foxtail, Giant	100	30	30	90	0	0	50	40	60	40	80	0	0	60
Galium	100	100	80	90	70	40	90	100	100	100	100	10	30	100
Kochia	90	90	70	100	70	30	100	70	100	90	100	30	30	100
Morningglory	100	100	100	80	 50	60	100	100	100	100	100	50		100
Pigweed Ragweed	100 90	20	100	60	30	30	20	20	100	100 10	50	10	40	20
Ryegrass, Italian	90	20	0	20	0	0	10	0	30	90	100	0	0	40
Velvetleaf	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Wheat	100	0	0	0	0	0	0	0	10	40	60	0	0	10
							Comp	ounds						
125 g ai/ha	184	185	187	188	189	190	196	197	198	199	200	201	202	203
					Ро	stemerg	gence							
Barnyardgrass	0	10	0	20	0	0	10	0	50	0	90	0	10	0
Blackgrass	10	0	0	20	0	0	0	0	40	_	_	_	_	_
Corn	10	0	0	30	0	0	0	0	20	0	50	0	0	0
Crabgrass, Large	_	_	_	_	_	_	_	_	_	0	100	0	10	0
Foxtail, Giant	10	10	0	20	0	0	10	0	90	0	100	0	30	0
Galium	70	40	0	50	0	0	100	50	100	_	_	_	_	_
Kochia Morningglory	70	90	0	90	0	0	40	0	80	-0	90	0	10	0
Pigweed	90	90	0	60	0	0	60	10	100	10	100	0	90	0
Ragweed	20	70	Ö	20	Ö	10	20	ō	20	_	_	_	_	_
Ryegrass, Italian	0	0	0	0	0	0	0	0	50		_			_
Velvetleaf	_	_	_	_		_	_		_	0	100	0	10	0
Wheat	0	0	0	20	0	0	0	0	10	0	60	0	0	0
							Comp	ounds						
125 g ai/ha	204	205	206	207	208	209	210	211	212	213	214	215	216	217
123 g at/na														
12.5 g anna					Po	stemerg	gence							
	0	0	0	0	0 0	stemerg 0	gence 0	10	30	0	0	20	10	0
Barnyardgrass Blackgrass	_	_	_	_	0	0	0 30	50	50	10	0	0	10	0
Barnyardgrass Blackgrass Corn	_ 0				0 — 0	0 — 0	0 30 10	50 10	50 20			0 20	10 10	0
Barnyardgrass Blackgrass Corn Crabgrass, Large			 0 10		0 0 0	0 — 0 10	0 30 10	50 10 —	50 20 —	10 10 —	0 0 —	0 20 —	10 10 —	0 0 —
Barnyardgrass Blackgrass Corn Crabgrass, Large Foxtail, Giant	_ 0				0 — 0	0 — 0	0 30 10 — 40	50 10 — 50	50 20 — 70	10 10 — 20	0 0 — 0	0 20 — 20	10 10 — 0	0 0 — 0
Barnyardgrass Blackgrass Corn Crabgrass, Large Foxtail, Giant Galium			 0 10		0 0 0	0 — 0 10	0 30 10 — 40 90	50 10 — 50 100	50 20 — 70 100	10 10 — 20 80	0 0 - 0 10	0 20 — 20 20	10 10 — 0 50	0 0 - 0 10
Barnyardgrass Blackgrass Corn Crabgrass, Large Foxtail, Giant Galium Kochia					0 0 0 0 	0 0 10 0 	0 30 10 — 40	50 10 — 50 100 90	50 20 — 70	10 10 — 20	0 0 — 0	0 20 — 20	10 10 — 0	0 0 - 0 10
Barnyardgrass Blackgrass Corn Crabgrass, Large Foxtail, Giant Galium Kochia Morningglory			 0 10		0 0 0	0 — 0 10	0 30 10 40 90 80	50 10 — 50 100	50 20 70 100 100	10 10 — 20 80 100	0 0 0 10 0	0 20 — 20 20 0	10 10 — 0 50 20	0 0 0 - 0 10 10 -
Barnyardgrass Blackgrass Corn			0 10 0 20		0 	0 	0 30 10 — 40 90 80	50 10 — 50 100 90	50 20 70 100 100	10 10 — 20 80 100	0 0 - 0 10 0	0 20 — 20 20 0	10 10 — 0 50 20	0 0 - 0 10 10

Morningglory

				-	ΓABL	Е В-с	ontinı	ıed						
Velvetleaf Wheat	0	0	30 0	10 0	20 0	30 0		_ 0	— 10	 10	_ 0		_ 0	_ 0
							Comp	ounds						
125 g ai/ha	218	219	220	221	222	223	224	225	226	227	228	229	230	231
						stemer								
Barnyardgrass Blackgrass	0 0	0 0	40 90	90 60	0 10	10 0	50 70	0	70 70	60 70	70 100	70 80	60 70	10 0
Corn	0	0	20	50	30	0	20	0	30	20	30	30	10	0
Crabgrass, Large	_	_		_	_	_	_	_	_	_	_	_	_	_
Foxtail, Giant	0	0	80	90	0	10	50	0	70	60	90	80	70	10
Galium	10	30	100	100	90	50	100	0	100	80	100	100	100	20
Kochia Morningglory	0	0	100	100	30	10	100	0	100	80	100	100	100	40
Pigweed	40	10	100	90	100	60	100	0	100	90	100	100	90	40
Ragweed	0	30	10	50	20	10	100	0	40	30	40	100	100	0
Ryegrass, Italian	0	0	40	40	0	0	0	0	50	30	90	20	0	0
Velvetleaf Wheat	-0		50	30	20			0	 50	20	 50	40	10	
- Tracti														
								ompour						
125 g ai/ha			232	23:	3	234		236	23′	7	238		239	
					Po	stemer	gence							
Barnyardgrass			0	10)	0		30	0		30		0	
Blackgrass			0	10		10		40	0		0		0	
Corn			0	10)	10		30	0		20		20	
Crabgrass, Laı Foxtail, Giant	rge		0	- 0	- 1	0		30	0		10		-0	
Galium			0	C		0		100	0		40		0	
Kochia			0	C)	0		90	0		80		0	
Morningglory			_	_	-	_		_	_		_		_	
Pigweed Ragweed			40 0	20		20 10		70 20	0		20 0		20 0	
Ryegrass, Itali	an		0	C		0		20	0		0		0	
Velvetleaf			_	_	-	_		_	_		_		_	
Wheat			0	C)	0		20	0		0		0	
							Comp	ounds						
31 g ai/ha	15	38	70	73	89	90	91	96	97	103	104	105	106	107
					Po	stemer	gence							
Barnyardgrass	0	0	0	0	10	0	0	10	0	0	10	10	0	0
Blackgrass	_	0	0	0	10	0	0	10	0	30	70	70	0	0
Crabgrass, Large	0	0	0	0	10	0	0	0	0	0	10	10	0	0
Foxtail, Giant	0	0	-0	0	10	0	0			40	20	40	0	0
Galium	_	20	0	0	10	0	0	100	10	90	90	70	0	Ō
Kochia	_	0	0	0	50	0	0	70	60	0	50	30	0	0
Morningglory	0	_	_	_	_	_	_		_		_	_	_	_
Pigweed Ragweed	60	0	10 0	0	60 10	0	0	100 50	60 20	30 20	90 10	90 10	0	0
Ryegrass, Italian	_	0	0	0	0	0	0	30	0	0	0	0	0	0
Velvetleaf	0	_	_	_	_	_	_	_	_	_	_	_	_	_
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							Comp	ounds						
31 g ai/ha	108	109	110	111	112	113	114	115	116	117	118	119	120	121
					Po	stemer	gence							
Barnyardgrass	0	60	0	0	10	60	10	0	10	0	70	0	50	50
Blackgrass	ō	50	0	0	0	60	10	0	20	0	60	0	70	50
Corn	0	10	0	0	10	10	30	0	20	0	50	0	30	20
Crabgrass, Large	_		_	_	_		_	_	_			_	_	_
Foxtail, Giant Galium	0 3 0	60 50	0 20	0 10	10 30	60 90	20 70	0	20 60	0	90 100	0 30	40 100	70 100
Kochia	0	0	10	20	60	100	70	0	90	0	100	0	90	90
Morningglory	_		10	20	50	100	/0	9	20	,	100	V	20	20

				-	ΓABL	Е В-с	ontinu	ıed						
Pigweed	0	80	10	0	30	100	100	0	100	0	100	40	100	100
Ragweed	0	60	30	10	20	50	0	0	20	0	30	10	40	50
Ryegrass, Italian	0	10	0	0	0	20	10	0	0	0	20	0	30	50
Velvetleaf Wheat			0				10	0	10	0	20			
-							Comp	ounds						
31 g ai/ha	122	124	125	126	127	128	129	130	131	132	133	140	141	142
					Po	stemer	gence							
Barnyardgrass	0	0	10	80	30	0	0	40	50	20	20	0	0	0
Blackgrass	0	0	10	60	30	0	0	50	50	20	30	0	0	0
Corn	0	0	0	20	20	0	0	20	20	10	10	0	0	0
Crabgrass, Large Foxtail, Giant		-0	-0	60	50			 50	50	30	20	0	0	-0
Galium	10	60	50	90	80	10	10	80	80	80	70	0	0	0
Kochia	10	40	60	90	90	20	0	90	60	30	90	0	0	0
Morningglory	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Pigweed	20	70	70	100	100	20	10	90	100	70	90	0	0	10
Ragweed	0	10	0	30	20	0	0	40	40	20	20	0	0	0
Ryegrass, Italian	0	0	0	40	30	0	0	30	40	10	10	0	0	0
Velvetleaf Wheat	0		0	10	10		0	30				0	0	
							Comp	ounds						
31 g ai/ha	143	144	145	146	147	149	150	154	155	162	163	164	165	166
or g arma	143	144	143	140				134	133	102	103	104	103	100
					Po	stemer	gence							
Barnyardgrass	10	30	40	0	0	10	0	0	0	10	0	0	0	0
Blackgrass	30	80	70	0	0	10	0	0	0	30	20	0	20	0
Corn	40	30	30	0	0	10	0	0	0	20	0	0	0	0
Crabgrass, Large	_	_		_	_	_	_	_	_		_	_		_
Foxtail, Giant Galium	10 50	80 100	70 100	0 30	0	10 90	0	0	0	10 90	0 20	0 10	10 20	0 20
Kochia	100	100	100	50	0	90	0	0	0	90	10	0	20	0
Morningglory	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Pigweed	90	100	100	30	0	90	10	0	0	100	20	0	30	20
Ragweed	0	20	20	0	0	10	0	0	0	0	30	20	30	10
Ryegrass, Italian	0	20	20	0	0	0	0	0	0	0	0	0	0	0
Velvetleaf	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Wheat	20	30	20	0	0	0	0	0	0	20	0	0	0	0
							Comp	ounds						
31 g ai/ha	173	174	175	176	177	178	187	188	189	196	197	198	210	211
					Po	stemer	gence							
Barnyardgrass	30	0	0	10	10	0	0	0	0	0	0	10	0	0
Blackgrass	30	40	Ö	0	0	10	Ö	Ö	Ö	Ö	Ö	10	10	10
Corn	10	0	0	10	0	0	0	0	0	0	0	10	0	0
Crabgrass, Large	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Foxtail, Giant	30	0	0	20	10	10	0	0	0	0	0	30	0	10
Galium	50	60	20	30	50	80	0	0	0	60	10	100	50	60
Kochia Morningglory	70	60	0	30	30	80	0	0	0	0	0	80	50	40
Pigweed	60	50	50	90	50	100	0	0	0	20	10	100	50	20
Ragweed	40	20	20	10	10	100	0	0	0	10	0	100	10	0
Ryegrass, Italian	0	0	0	0	0	0	0	0	0	0	0	10	0	0
Velvetleaf	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							Comp	ounds						
31 g ai/ha	212	213	214	216	218	219	220	221	222	223	224	225	226	227
					Po	stemer	gence							
Barnyardgrass	0	0	0	10	0	0	10	10	0	0	30	0	10	10
Blackgrass	10	0	0	0	0	0	60	30	0	0	40	0	10	10
Corn	10	ő	Ö	ő	Ö	Ö	10	20	0	ő	0	0	20	10
Crabgrass, Large	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Foxtail, Giant	10	0	0	0	0	0	30	10	0	0	20	0	10	10

				,	ΓABL	Е В-с	ontinu	ied						
Galium Kochia	60 90	50 60	0	20 10	0	20 0	90 90 —	90 80	30 20	30 0	80 70	0 0	60 100	70 40
Morningglory Pigweed	90	30	0	10	0	10	100	90	30	20	70	0	50	60
Ragweed	20	10	0	0	0	20	0	10	0	0	50	0	10	10
Ryegrass, Italian Velvetleaf	0	0	0	0	0	0	0	0	0	0	0	0	10	0
Wheat	0	0	0	0	0	0	10	20	0	0	0	0	0	0
							Comp	ounds						
31 g ai/ha	228	229	2:	30	231	232	233	2.	34	236	237	2	38	239
					Po	ostemerg	gence							
Barnyardgrass	30	20		0	0	0	0		0	0	0		0	0
Blackgrass	60	30	:	20	0	0	0		0	20	0		0	0
Corn Crabgrass, Large	20	0	_	0	0	0	0	_	0	0	0	_	0	0
Foxtail, Giant	40	50		0	0	0	0		0	0	0		0	0
Galium	100	80		80	0	0	0		0	30	0		0	0
Kochia Morningglory	100	90		80	20	0	0	_	0	20	0	2	20	0
Pigweed	100	70	_	60	20	10	0		0	30	0	1	10	0
Ragweed	30	100	,	70	0	0	0		0	0	0		0	0
Ryegrass, Italian Velvetleaf	20	0		0	0	0	0	1	0	0	0		0	0
Wheat		0	_	0	0	0	0	-	0	0	0	-	0	0
							Comp	ounds						
1000 g ai/ha	1	2	3	5	6	7	8	9	10	12	23	31	33	34
					P	reemerg	ence							
- I								20		20	40			
Barnyardgrass Corn	80 0	0	60 0	0	0	10 0	30 0	20 0	0	20 0	40 0	0	0	0
Crabgrass, Large		10	40	Ŏ	ō	40	80	70	10	80	100	80	80	10
Foxtail, Giant Kochia	100	10	70	0	0	20	60	60	0	90	100	30	10	10
Morningglory	20				0			0		0				
Pigweed	100	100	50	90	70	40	100	90	10	90	100	0	40	100
Ragweed	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Ryegrass, Italian Velvetleaf	80	20	90	20	20	10	30	10	0	70	80	0	0	10
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•							Comp	ounds						
1000 g ai/ha	35	36	40	46	55	57	61	148	171	172	186	191	192	193
					P	reemerg	ence							
Barnyardgrass	100	30	50	80	100	100	20	0	70	0	20	100	100	100
Corn	30	0	0	0	_	_	0	_	_	_	_	_	_	_
Crabgrass, Large Foxtail, Giant	100 100	100 90	70 100	100 100	100	100	50 40	0	100	30	100	100	100	100
Kochia		—			100	100		0	90	20	100	100	100	100
Morningglory	90	10	0	10	_	_	0	_	_	_	_	_	_	_
Pigweed	10	100	100	100	100	90	90	0	100	90	100	100	100	100
Ragweed Ryegrass, Italian	_	_	_	_	100 100	90 80	_	0	0 10	0	70 0	90 90	20 50	80 0
Velvetleaf	100	_	90	20		_	50	_	_	_	_	_	_	_
Wheat	60	0	0	10	_	_	0	_	_	_	_	_	_	_
								Con	pound	S				
	1000 g ai/	'ha			19	4		19	5		2	235		
						I	Preemer	gence						
	Barnyardg	grass			10	0		40)			0		
	Corn				_	-		_	-			_		
	Crabgrass Foxtail, G					- 0		30	-)			0		
	Kochia	14111			10			30				0		
	Morningg	lory			_	_		-	-			_		

TABLE B-continued

				-	IADL	L D-C	Ontini	icu						
	Pigweed Ragweed Ryegrass,				100 30 50	0		60 10 0)			0 0 0		
	Velvetleaf Wheat	f							-			_		
							Comp	ounds						
500 g ai/ha	4	10	11	13	14	16	17	18	19	20	21	22	23	24
					Pi	reemerg	ence							
Barnyardgrass	0	0	0	0	0	0	0	0	0	0	50	0	30	80
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	40
Crabgrass, Large Foxtail, Giant	80 50	0	0	10 10	20 30	10 10	10 0	20 10	50 70	70 60	100 100	0	80 70	100 90
Kochia	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Morningglory	0	0		0	0		_	0	0	0	0	0	0	0
Pigweed Ragweed	70 —	30	30	8 0	100	20	0	30	20 —	20	90 —	0	90	4 0
Ryegrass, Italian		_						_	_			_		_
Velvetleaf Wheat	30 0	0	10 0	10 0	20 0	20 0	10 0	0	0	20 0	20 0	0	50 0	0
							Comp	ounds						
500 g ai/ha	25	26	27	28	29	30	32	37	41	42	43	44	45	47
					Pi	reemerg	ence							
Barnyardgrass	70	30	80	60	0	0	90	0	0	70	20	10	0	0
Corn	0	0	0	0	0	0	0	_	0	0	0	0	0	_
Crabgrass, Large Foxtail, Giant	90 90	100 90	100 90	100 90	30 10	20 10	100 100		10 20	90 100	30 70	70 10	20 20	30
Kochia	_	_	_	_	_	_	_	0	_	_	_	_	_	70
Morningglory Pigweed	10 100	0 100	0 100	0 8 0	0 50	0 3 0	30 100	— 40	0	0 90	10 0	0 10	0	— 60
Ragweed Ryegrass, Italian	_	_	_	_	_	_	_	0	_	_	_	_	_	60 0
Velvetleaf	100	80	60	60	0	0	100	_	0	70	10	20	0	_
Wheat	0	0	0	0	0	0	10	_	0	0	0	0	0	_
							Comp	ounds						
500 g ai/ha	48	49	50	51	52	53	54	58	59	60	62	63	64	123
					Pi	reemerg	ence							
Barnyardgrass Corn	40	0	10	10	0	100	100	100	10	100	100 20	100 30	100 20	0
Crabgrass, Large	. —										100	100	100	
Foxtail, Giant	50	20	50	60	0	100	100	100	60	100	100	100	100	0
Kochia	80	70	60	70	30	100	100	100	0	100	_	_	_	0
Morningglory Pigweed	100	30	100	100	 50	100	100	100	30	100	90 100	60 100	60 100	0
Ragweed	60	0	50	50	0	50	70	80	0	50	_	_	_	0
Ryegrass, Italian	50	0	50	0	0	40	60	20	0	30	_	_	_	0
Velvetleaf Wheat	_	_	_	_	_	_	_	_	_	_	100 30	90 40	90 30	_
							Comp	ounds						
500 g ai/ha	134	135	136	137	138	139	151	152	153	156	157	158	159	160
				-21		reemerg					,			
Barnyardgrass	90	60	100	10	0	0	0	0	100	20	80	100	60	80
Corn	60	0	40		_	_	_	_			-		_	
Crabgrass, Large		100	100	_	_	_	_	_	_	_	_	_	_	_
Foxtail, Giant	100	100	100	0	0	0	0	0	100	80	100	100	90	100
Kochia Morningglory	 80	10	— 90	10	0	0	0	0	100	40	100	100	30	90
Pigweed	100	100	100	20	0	0	0	0	100	100	100	100	100	100

					TABI	LE B-c	ontinu	ıed						
Ragweed	_	_	_	0	0	0	0	0	40	0	70	20	0	0
Ryegrass, Italian	100	_		0	0	0	0	0	20	0	90	20	0	0
Velvetleaf Wheat	100 20	60 0	100 30	_	_	_	_	_	_	_	_	_	_	_
Wilcat	20		30	_	_						_	_		
							Comp	ounds						
500 g ai/ha	161	167	168	169	170	179	180	181	182	183	184	185	190	199
					I	Preemerg	gence							
Barnyardgrass	0	10	100	30	20	90	80	10	20	80	90	70	0	0
Corn	_	_	_	_	_	_	_	_	_	_	_	_	_	0
Crabgrass, Large	_		— 100	— 90	— 90	1.00	100	40	— 40	— 90	— 90	— 90	10	10
Foxtail, Giant Kochia	0	30 30	100	90	80	100 100	100 100	40 0	30	100	100	100	10 0	0
Morningglory	_	_	_	_	_	_	_	_	_	_	_	_	_	0
Pigweed	0	20	100	100	100	100	100	80	40	100	100	100	10	30
Ragweed	0	10	80	20	60	40	70	0	10	60	50	90	0	_
Ryegrass, Italian	0	0	100	20	20	40	70	0	10	40	10	0	0	10
Velvetleaf Wheat	_	_	_	_	_	_	_	_	_	_	_		_	10 0
							Comp	ounds						
500 g ai/ha	200	201	202	20)3	204	205	206	207	208	20)9	215	217
					I	Preemers	gence							
D 1	100		90			`		20	00			10	00	1.0
Barnyardgrass Corn	100 100	0	80 0	(30 0	10 0	30 0	90 0	0		10 0	90	10
Crabgrass, Large	100	0	100	Ò		100	70	60	100	0	10		_	_
Foxtail, Giant Kochia	100	0	100	_) –	100	70 —	60	100	0		00	90 0	30 0
Morningglory	100	0	20	(10	0	0	30	0		0	_	_
Pigweed Ragweed	100	0	100	-) —	100	90 —	80	100	90 —	- 10	00 —	90 0	70 0
Ryegrass, Italian	— 90	0		-	_			 40		10	-	0	0	10
Velvetleaf Wheat	90	0	60 20			60 0	0	0	30 0	10 0		0	_	_
							Comp	ounds						
125 g ai/ha	4	10	11	13	14	15	16	17	18	19	20	21	22	23
					I	Preemers	gence							
Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Corn	ő	ő	ő	Ö	Ö	ő	0	ő	ő	ő	ő	ő	ő	ő
Crabgrass, Large	10	0	0	0	0	0	0	0	0	0	10	60	0	40
Foxtail, Giant	10	0	0	0	0	0	0	0	0	0	10	70	0	20
Kochia Morningglory		0	0	0	0	0	_	_	0	0	0	-0	0	0
Pigweed	30	0	0	0	0	0	0	0	0	0	0	30	0	50
Ragweed	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Ryegrass, Italian	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Velvetleaf Wheat	0	0	10 0	0	0	0	0	0	0	0	0	0	0	10 0
								ounds						
125 '/		25	26	27	20	20			20	41	42	42		45
125 g ai/ha	24	25	26	27	28	29	30	32	38	41	42	43	44	45
					I	Preemerg	gence							
Barnyardgrass	10	10	0	10	0	0	0	90	0	0	20	0	0	0
Corn	100	0	0	0	0	0	0	100	_	0	0	0	0	0
Crabgrass, Large Foxtail, Giant	100 20	50 40	10 0	80 60	40 30	10 0	0	100 90		0	50 70	0	10 0	0
Kochia			_	_		_	_	—	0	_	_	_	_	_
Morningglory	0	0	0	0	0	0	0	0	_	0	0	0	0	0
Pigweed	0	60	0	80	40	20	0	100	40	0	50	0	0	0
Ragweed	_	_	_	_	_	_	_	_	0	_	_	_	_	_
Ryegrass, Italian Velvetleaf	0	10	10	20	0	0	0	90	0	0	50	0	0	0
Wheat	0	0	0	0	o	0	0	0	_	0	0	0	0	0

TABLE B-continued

						Е В-с		ounds						
105 1/1-	47	40	40	50	£1				50	50	(0)			
125 g ai/ha	47	48	49	50	51	52	53	54	58	59	60	62	63	64
						reemerg								
Barnyardgrass Corn		0	0	0	0	0	90 —	60 —	60	0	80	80	90 10	60 0
Crabgrass, Large Foxtail, Giant	10	10		0	10	 0	— 90	100	— 90	10		100 100	100 100	100 90
Kochia	60	60	0	10	10	0	100	80	80	0	90	_	_	_
Morningglory Pigweed	30		 20	— 60	 50	— 40	100	100	100	 0	100	60 100	30 100	0 100
Ragweed	10	50	0	0	50	0	100	60	70	0	20	_	_	_
Ryegrass, Italian	0	40	0	20	0	0	10	30	0	0	0	_		_
Velvetleaf Wheat	_	_	_	_	_	_	_	_	_	_	_	90 20	70 20	80 0
							Comp	ounds						
125 g ai/ha	70	73	89	90	91	96	97	103	104	105	106	107	108	109
	,,,		- 07			reemerg		105	101	105	100	107	100	
Dannyandanasa	0		70	0	0			50	90	90	0		0	100
Barnyardgrass Corn	0	0	70 —	_	_	20 —	0	50 —	8 0	—	_	0	_	100
Crabgrass, Large	 0		— 90				20	— 90	— 100	— 100	 0	_ 0		— 100
Foxtail, Giant Kochia	0	0	0	0	0	40 70	30 30	10	100	100	0	0	0	30
Morningglory	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Pigweed Ragweed	0	0	100 0	20 0	0	100 0	50 0	100 10	100 0	100 0	0	0	0	100 70
Ryegrass, Italian	0	0	0	0	0	0	0	0	10	20	0	0	0	10
Velvetleaf Wheat	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Wileat							_							
405								ounds						
125 g ai/ha	110	111	112	113	114	115	116	117	118	119	120	121	122	123
					P:	reemerg	ence							
Barnyardgrass Corn	40	20	30	100	20	0	30	0	100	0	100	90	0	0
Crabgrass, Large	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Foxtail, Giant	70	50	70	100	30	0	90	0	100	50	100	100	0	0
Kochia Morningglory	0	10	50	100	20	0	60	0	100	10	90	100	10	0
Pigweed	70	80	70	100	80	0	100	0	100	50	100	100	50	0
Ragweed Ryegrass, Italian	0	10 0	0 10	70 60	20 20	0	20 20	0	30 80	0	30 90	20 80	0	0
Velvetleaf	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Wheat				_			_	_	_	_	_		_	
							Comp	ounds						
125 g ai/ha	124	125	126	127	128	129	130	131	132	133	134	135	137	138
					P	reemerg	ence							
Barnyardgrass Corn	30	50	100	90 —	0	0	90 —	100	60	70	70 20	10 0	0	0
Crabgrass, Large	_	_	_	_	_	_	_	_	_	_	100	80	_	_
Foxtail, Giant Kochia	100 60	90 40	100 90	100 90	10 0	0	100 70	100 10	90 0	90 90	90 —	60	0	0
Morningglory	—			—	_	_	_	_	_	—	10	0	_	_
Pigweed	100	80	100	100	40	0	100	100	100	100	100	90	0	0
Ragweed	10 10	0 10	10 100	30 90	0	0	20 50	60 90	40 30	10 50	_	_	0	0
	10	10	100	90	U	U	30	90	30	30	_	_	U	U
Ryegrass, Italian Velvetleaf	_	_	_	_	_	_	_	_	_		40	20	_	_

TABLE B-continued

				-	LADL	Е В-с								
							Comp	ounds						
125 g ai/ha	139	140	141	142	143	144	145	146	147	149	150	151	152	153
					Pı	reemerg	ence							
Barnyardgrass	0	0	0	0	90	100	100	30	0	70	20	0	0	0
Corn	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Crabgrass, Large Foxtail, Giant	0	0	0	20	100	100	100	20	0	100	20	0	0	30
Kochia	0	0	0	0	90	100	100	0	0	80	0	0	0	20
Morningglory	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Pigweed	0	0	0	0	100	100	100	70	0	100	20	0	0	100
Ragweed	0	0	0	0	30	50 90	20 40	0	0	10	0	0	0	0
Ryegrass, Italian Velvetleaf	_	_	_	0	60	90	40	0	0	10	_	0	_	0
Wheat	_	_	_	_	_	_	_	_	_	_	_	_	_	_
							Comr	ounds						
125 g ai/ha	154	155	156	157	158	159	160	161	162	163	164	165	166	167
123 g ai/lia	134	133	130	157				101	102	103	104	103	100	107
					Pı	reemerg	ence							
Barnyardgrass Corn	0	0	0	20	90	0	0	0	100	0	0	10	0	0
Crabgrass, Large	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Foxtail, Giant	0	0	20	80	90	20	50	0	100	0	0	10	0	0
Kochia	0	0	20	100	100	0	30	0	70	0	0	60	0	0
Morningglory	_	_		100				_	100				_	_
Pigweed Ragweed	0	0	80 0	100 20	90 0	40 0	90 0	0	100 20	30 40	30 0	80 50	60 20	0
Ryegrass, Italian	0	0	0	20	0	0	0	0	40	0	0	0	0	0
Velvetleaf	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Wheat	_	_	_	_	_	_	_	_	_	—	_	_	_	_
							Comp	ounds						
125 g ai/ha	168	169	170	173	174	175	176	177	178	179	180	181	182	183
					Pi	reemerg	ence							
Barnyardgrass	100	20	0	90	0	0	50	50	70	10	20	0	0	30
Corn	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Crabgrass, Large	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Foxtail, Giant	100	50	60	100	40	0	90	70	90	80	90	0	0	80
Kochia	100	70	30	100	0	0	20	20	20	100	100	0	0	80
Morningglory Pigweed	100	100	100	100	80		90	90	100	100	100	10	0	90
Ragweed	70	100	20	70	0	0	0	0	0	100	50	0	0	0
Ryegrass, Italian	80	0	0	20	0	0	10	0	10	20	20	0	0	20
Velvetleaf	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Wheat		_		_	_						_	_		
							Comp	ounds						
125 g ai/ha	184	185	187	188	189	190	196	197	198	199	200	201	202	203
					P	reemerg	ence							
													10	0
Barnyardgrass	10	20	0	20	0	0	10	0	40	0	100	0		
Corn	10	20	0	20	0	0	10 —	0	_	0	20	0	0	0
Corn Crabgrass, Large	_	_	_	_	=	_	_	_	_	0 0	20 100	0	0 90	0
Corn Crabgrass, Large Foxtail, Giant	_ _ 20	 30	 _ 0	 40	 _ 0	 0	 20	 _ 0	— — 90	0 0 0	20	0	0	
Corn Crabgrass, Large Foxtail, Giant Kochia	_	_	_	_	=	_	_	_	_	0 0 0 —	20 100 100 —	0 0 0 —	0 90 70 —	0 0 —
Corn Crabgrass, Large Foxtail, Giant Kochia Morningglory	_ _ 20	 30	 _ 0	 40	 _ 0	 0	 20	 _ 0	90 30	0 0 0	20 100	0	0 90 70 — 0	0
Corn Crabgrass, Large Foxtail, Giant Kochia	 20 20 —		 0 0 —	40 30	 0 0	 0 0 —		 0 0	90 30	0 0 0 —	20 100 100 — 20	0 0 0 —	0 90 70 —	0 0 — 0
Corn Crabgrass, Large Foxtail, Giant Kochia Momingglory Pigweed			0 0 0 —	 40 30 100	 0 0 	0 0 0 -			90 30 - 100	0 0 0 —	20 100 100 — 20	0 0 0 —	0 90 70 — 0	0 0 — 0
Corn Crabgrass, Large Foxtail, Giant Kochia Momingglory Pigweed Ragweed	20 20 20 — 80 0	30 40 — 90 10	0 0 0 — 0 0	 40 30 100 0	 0 0 0 0	 0 0 0 0		 0 0 0 0	90 30 — 100 10	0 0 0 —	20 100 100 — 20	0 0 0 —	0 90 70 — 0	0 0 — 0

TABLE B-continued

							Comp	ounds						
125 g ai/ha	204	205	206	207	208	209	210	211	212	213	214	215	216	217
					Pı	eemerg	ence							
Barnyardgrass	0	0	0	10	0	0	80	50	60	40	0	40	10	0
Corn	0	0	0	0	0	0	_	_	_	_	_	_	_	_
Crabgrass, Large	90	30	10	100	0	70	_	_	_	_	_	_	_	_
Foxtail, Giant <i>Kochia</i>	60	20	10	70	0	30	90 90	100 80	100 90	80 50	0	20 0	0	0
Morningglory		0	0	0	0	0	-	_	9 0		_	_	_	_
Pigweed	100	10	50	90	0	90	100	100	100	100	0	20	0	10
Ragweed	_	_	_	_	_	_	20	30	40	0	0	0	0	0
Ryegrass, Italian	_	_	_	_	_	_	10	0	40	0	0	0	0	0
Velvetleaf	0	0	30	0	0	0	_	_	_	_	_	_	_	_
Wheat	0	0	0	0	0	0	_	_	_	_	_	_	_	_
							Comp	ounds						
125 g ai/ha	218	219	220	221	222	223	224	225	226	227	228	229	230	231
					Pı	eemerg	ence							
Barnyardgrass	50	0	100	90	0	0	50	0	100	50	100	90	70	10
Corn	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Crabgrass, Large		_	100		_	_		_	1.00		100			10
Foxtail, Giant Kochia	60 0	0	100 90	90 70	0	0	90 90	0	100 90	90 50	100 100	90 100	90 100	10 0
Morningglory	_	_		_	_	_		_		_	100	100	100	_
Pigweed	90	0	100	100	90	10	100	0	100	80	100	100	100	20
Ragweed	0	0	10	0	0	0	_	0	20	0	30	90	80	0
Ryegrass, Italian	0	0	30	40	0	0	0	0	20	10	70	30	0	0
Velvetleaf	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Wheat	_	_	_	_	_	_	_	_	_	_	_	_	_	_
,														
							C	ompoun	ds					
125 g ai/ha			232	233	3	234		ompoun 236	237	7	238		239	
125 g ai/ha		:	232	233		234 reemerg	:			7	238		239	
125 g ai/ha Barnyardgrass		:	232	233			:			7	238		239	
		:				eemerg	:	236	237	7				
Barnyardgrass Corn Crabgrass, Lar	ge	;	20	0		eemerg 0 —	:	80	0	7	40 —		0 —	
Barnyardgrass Corn Crabgrass, Lar Foxtail, Giant	rge		20 — — 10	0		0 — — 0	ence	80 — — 90	0 - 0	7	40 — — 20		0 _ 0	
Barnyardgrass Corn Crabgrass, Lar Foxtail, Giant Kochia	ge		20	0		eemerg 0 —	ence	80	0		40 —		0 —	
Barnyardgrass Corn Crabgrass, Lar Foxtail, Giant Kochia Morningglory	ge	;	20 — — 10 0	0		0 — — 0 0	ence	80 90 100	0	7	40 — — 20 0		0 — 0 0	
Barnyardgrass Corn Crabgrass, Lar Foxtail, Giant <i>Kochia</i> Morningglory Pigweed	ge	:	20 — — 10	0		0 — — 0	ence	80 — — 90	0 - 0	7	40 — — 20		0 _ 0	
Barnyardgrass Corn Crabgrass, Lar Foxtail, Giant <i>Kochia</i> Morningglory			20 — — 10 0 — 30	0 		0 — — 0 0	ence	80 90 100	0 	7	40 — 20 0 —		0 0 0 	
Barnyardgrass Corn Crabgrass, Lar Foxtail, Giant Kochia Morningglory Pigweed Ragweed Ryegrass, Italia Velvetleaf			20 ————————————————————————————————————	0		0 — 0 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0	ence	80 — 90 100 — 1100	0 	7	40 20 0 10		0 0 0 0	
Barnyardgrass Corn Crabgrass, Lar Foxtail, Giant Kochia Morningglory Pigweed Ragweed Ryegrass, Italia			20 ————————————————————————————————————	0		0 — 0 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0	ence	80 90 100 1100 1100	0 	7	40 20 0 10		0 0 0 0	
Barnyardgrass Corn Crabgrass, Lar Foxtail, Giant Kochia Morningglory Pigweed Ragweed Ryegrass, Italia Velvetleaf Wheat	an		20 ————————————————————————————————————	0 0 0 0 0 0 0	Pr	0	ence	80	0 0 0 0 0 0 0 0		40 — 20 0 — 10 0 0	105	0 	103
Barnyardgrass Corn Crabgrass, Lar Foxtail, Giant Kochia Morningglory Pigweed Ragweed Ryegrass, Italia Velvetleaf Wheat		38	20 ————————————————————————————————————	0	P1	0 	ence Comp	80 90 100 1100 1100	0 	103	40 20 0 10	105	0 0 0 0	107
Barnyardgrass Corn Crabgrass, Lar Foxtail, Giant Kochia Morningglory Pigweed Ragweed Ryegrass, Italia Velvetleaf Wheat	an 15	38	20 ————————————————————————————————————	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P1 89	0	Comp. 91	80 — 90 100 — 100 0 30 — 50 sounds	0 	103	40 — 20 0 — 10 0 0 —		0 	
Barnyardgrass Corn Crabgrass, Lar Foxtail, Giant Kochia Morningglory Pigweed Ragweed Ryegrass, Italia Velvetleaf Wheat	15 0		20 ————————————————————————————————————	0 0 0 0 0 0 0	P1	0 	ence Comp	80	0 0 0 0 0 0 0 0		40 — 20 0 — 10 0 0	105	0 	100
Barnyardgrass Corn Crabgrass, Lar Foxtail, Giant Kochia Momingglory Pigweed Ragweed Ryegrass, Italia Velvetleaf Wheat	15 0 0	38	20 ————————————————————————————————————	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P1 89	0	Comp. 91	80 — 90 100 — 100 0 30 — 50 sounds	0 	103	40 — 20 0 — 10 0 0 —	20	0 	
Barnyardgrass Corn Crabgrass, Lar Foxtail, Giant Kochia Momingglory Pigweed Ragweed Ryegrass, Italia Velvetleaf Wheat	15 0 0 0	38	20 ————————————————————————————————————	73	89 Pr 10	90	Comp 91 ence 0	80 — 90 100 — 100 0 30 — 90 90 90 90 90 90 90 90 90 90 90 90 90	97 0 0 0 0 0 0 0 0 0	103	40 	20 	0	0
Barnyardgrass Corn Crabgrass, Lar Foxtail, Giant Kochia Morningglory Pigweed Ragweed Ryegrass, Italia Velvetleaf Wheat Barnyardgrass Corn Crabgrass, Large Foxtail, Giant	15 0 0	38	20 ————————————————————————————————————	73	89 P1 10 — 40	90 eeemerg 0 0 0 0 0 0 0 0 -	Comp 91	236 80 90 100 0 30 100 0 110	97 0 0 0 0 0 0 0 0 0 0 0 0 0	103	40 	20 — — 70	0 	0
Barnyardgrass Corn Crabgrass, Lar Foxtail, Giant Kochia Morningglory Pigweed Ragweed Ryegrass, Italia Velvetleaf Wheat Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Kochia	15 0 0 0	38	20 ————————————————————————————————————	73	89 Pr 10	90	Comp 91 ence 0	80 — 90 100 — 100 0 30 — 90 90 90 90 90 90 90 90 90 90 90 90 90	97 0 0 0 0 0 0 0 0 0	103	40 	20 	0	0
Barnyardgrass Corn Crabgrass, Lar Foxtail, Giant Kochia Morningglory Pigweed Ragweed Ryegrass, Italia Velvetleaf Wheat Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Kochia Morningglory	15 0 0 0 0 -	38	20 ————————————————————————————————————	73	89 P1 10 	90	Comp 91	80 — 90 100 — 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0	97 0 0 0 0 0 0 0 0 0 0 0 0 0	103 0 50 0	40 	20 — — 70 0	0 	0
Barnyardgrass Corn Crabgrass, Lar Foxtail, Giant Kochia Morningglory Pigweed Ragweed Ryegrass, Italia Velvetleaf Wheat Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Kochia Morningglory Pigweed	15 0 0 0	38 0 0 0 0	20 ————————————————————————————————————	73	89 P1 10 — 40 0	90	Compress 91 ence 0	80 90 100 0 30 100 0 0 100 50 100 50 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	103 0 50 0 100	40 	20 — 70 0 — 100	0 	0
Barnyardgrass Corn Crabgrass, Lar Foxtail, Giant Kochia Morningglory Pigweed Ragweed Ryegrass, Italia Velvetleaf Wheat Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Kochia Morningglory Pigweed Ragweed Ragweed	15 0 0 0 0 -	38 0 0 0 0	20 ————————————————————————————————————	73	89 P1 10 40 0 - 100 0	90 eemerg 0 0 0 0 0 0 0 0 0 0 0 0 0	Comp 91 ence 0 0 0 0 0	236 80 90 100 100 0 30 10 50 10 50 90 0	97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	103 0 — 50 0 — 100 0	40 	20 70 0 100 0	0 	0
Barnyardgrass Corn Crabgrass, Lar Foxtail, Giant Kochia Morningglory Pigweed Ragweed Ryegrass, Italia Velvetleaf	15 0 0 0 0 -	38 0 0 0 0	20 ————————————————————————————————————	73	89 P1 10 — 40 0	90	Compress 91 ence 0	80 90 100 0 30 100 0 0 100 50 100 50 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	103 0 50 0 100	40 	20 — 70 0 — 100	0 	0

TABLE B-continued

					IABL.		_							
							Comp	ounds						
31 g ai/ha	108	109	110	111	112	113	114	115	116	117	118	119	120	121
					Pı	eemerg	ence							
Barnyardgrass	0	40	0	0	10	70	0	0	0	0	70	0	90	70
Corn Crabgrass, Large	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Foxtail, Giant	0	80	-0	-0	10	90	10	0	40	0	100	0	100	100
Kochia	0	0	0	0	0	100	20	0	60	0	80	0	80	60
Morningglory	_	_	_	_	_	_		_		_	_	_	_	_
Pigweed Ragweed	0	90 20	10 0	10 0	30 0	100 30	70 0	0 0	70 0	0 0	100 20	0	100 10	100 10
Ryegrass, Italian	0	0	0	0	0	10	Ö	0	0	0	20	0	40	30
Velvetleaf	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Wheat	_	_	_	_	_	_	_	_	_	_	_	_	_	_
							Comp	ounds						
31 g ai/ha	122	124	125	126	127	128	129	130	131	132	133	140	141	142
					Pı	eemerg	ence							
Barnyardgrass	0	0	0	90	70	0	0	50	80	20	30	0	0	0
Corn	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Crabgrass, Large Foxtail, Giant		20	 10	100	100	0	0	90	100	60	— 70	0	0	0
Kochia	0	10	0	80	80	0	0	50	0	0	50	0	0	0
Morningglory	_	_	_	_	_	_	_	_	_	_	_	_	—	_
Pigweed	10 0	40 0	0	100	100	0	0	100	100	90 0	90	0	0	0
Ragweed Ryegrass, Italian	0	0	0	10 40	10 30	0	0	10 20	20 20	0	0	0	0	0
Velvetleaf	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Wheat	_	_		_	_	_	_	_	_	_	_	_	_	_
							Comp	ounds						
31 g ai/ha	143	144	145	146	147	149	150	154	155	162	163	164	165	166
					Pı	eemerg	ence							
Barnyardgrass	20	80	70	0	0	10	0	0	0	20	0	0	0	0
Corn	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Crabgrass, Large	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Foxtail, Giant Kochia	70 30	100 90	90 90	0	0	70 20	0	0	0	90 70	0	0	0	0
Morningglory	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Pigweed	90	100	100	0	0	80	0	0	0	80	0	0	30	40
Ragweed	0	0	0	0	0	0	0	0	0	0	0	0	20 0	0
Ryegrass, Italian Velvetleaf	0			0	0					0	0	U	Ü	Ü
t CI v Cu Cai	_	_	_	_	_		_	_	_	_	_	_	_	_
Wheat	_	_	_ _	_	_	_	_ _	_ _	_	_	_	_	_	_
		_	_ 	_	_	_	_	ounds	_	_	_	_	_	_
	173	174	175	176	177	178	_		189	196	197	198	210	211
Wheat	173	_		176		178	Comp	ounds	189	196	197	198	210	211
Wheat 31 g ai/ha Barnyardgrass	173	_		176			Comp	ounds	189	196	197	198	210	211
Wheat 31 g ai/ha Barnyardgrass Corn	60	174	175	10	Pı	reemerg	Comp 187 ence	ounds 188						
Wheat 31 g ai/ha Barnyardgrass Corn Crabgrass, Large	60	174	175	10 	0 —	20 —		0 0	0 —	0	0	10 	10 	10 —
Wheat 31 g ai/ha Barnyardgrass Corn	60	174	175	10	P1	reemerg	Comp 187 ence	ounds 188						
Wheat 31 g ai/ha Barnyardgrass Corn Crabgrass, Large Foxtail, Giant	60 — — 50	174	175 0 —	10 — — 60	0 — — — 10	20 — — 60	Comp 187 ence 0 0 0 0	0 	0 — 0 0	0 — 0 0	0 — 0 0	10 — — 70	10 — — 40	10 — — 10
Wheat 31 g ai/ha Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Kochia Momingglory Pigweed	60 — 50 70 — 80	174 0 0 0	175 0 0 0 0	10 — 60 0 — 30	0 10 0 50	20 — 60 10 — 90	Comp 187 ence 0 0 0 0	0 — 0 0 — 0	0 0 0 	0 0 0 	0 0 0 	10 — 70 0 — 30	10 — 40 50 —	10 — 10 20 — 100
Wheat 31 g ai/ha Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Kochia Morningglory Pigweed Ragweed	60 — 50 70 — 80	174 0 0 60 0	175 0 0 0 0 0	10 — 60 0 — 30	0 10 0 50	20	Comp 187 ence 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	10 — 70 0 — 30 0	10 — 40 50 — 100	10 — 10 20 — 100 0
Wheat 31 g ai/ha Barnyardgrass Corn Crabgrass, Large Foxtail, Giant Kochia Momingglory Pigweed	60 — 50 70 — 80	174 0 0 0	175 0 0 0 0	10 — 60 0 — 30	0 10 0 50	20 — 60 10 — 90	Comp 187 ence 0 0 0 0	0 — 0 0 — 0	0 0 0 	0 0 0 	0 0 0 	10 — 70 0 — 30	10 — 40 50 —	10 — 10 20 — 100

TABLE B-continued

							Comp	ounds						
31 g ai/ha	212	213	214	216	218	219	220	221	222	223	224	225	226	227
					P	reemerg	ence							
Barnyardgrass	10	0	0	0	0	0	10	20	0	0	10	0	30	10
Corn	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Crabgrass, Large	_	_	_	_		_				_	_	_	_	_
Foxtail, Giant	60	0	0	0	0	0	70	50	0	0	40	0	60	40
Kochia	40	10	0	0	0	0	50	50	0	0	60	0	70	0
Morningglory	_	_	_	_		_	_		_	_	_	_	_	_
Pigweed	100	80	0	0	0	0	100	100	20	0	90	0	100	40
Ragweed	0	0	0	0	0	0	0	0	0	0	_	0	0	0
Ryegrass, Italian	0	0	0	0	0	0	0	20	0	0	0	0	0	0
Velvetleaf		_			_	_	_	_		_				_
Wheat	_	_		_	_	_	_	_	_	_	_	_	_	_
							Comp	ounds						
31 g ai/ha	228	229	2.	30	231	232	233	23	34	236	237	2.	38	239
					P	reemerg	ence							
Barnyardgrass	50	50	1	0	0	0	0	()	10	0		0	0
Corn	_	_	_	_		_	_	_	_	_	_	_	_	_
Crabgrass, Large	_	_	_	_		_	_	_	_	_	_	-	_	_
Foxtail, Giant	90	90	6	0	0	0	0	()	10	0		С	0
Kochia	70	80	6	i0	0	0	0	()	30	0		С	0
Morningglory	_	_	-	_	_	_	_	_	_	_	_	-	_	_
Pigweed	100	100		0	0	20	0	()	60	0		С	0
Ragweed	0	70	2	:0	0	0	0	()	0	0		С	0
Ryegrass, Italian	30	0		0	0	0	0	()	0	0		С	0
Velvetleaf	_	_	-	_	_	_	_	-	_	_	_	-	_	_
Wheat														

Test C

[0467] Plant species in the flooded paddy test selected from rice (*Oryza sativa*), small-flower umbrella sedge (*Cyperus difformis*), ducksalad (*Heteranthera limosa*), and barnyardgrass (*Echinochloa crus-galli*) were grown to the 2-leaf stage for testing. At time of treatment, test pots were flooded to 3 cm above the soil surface, treated by application

of test compounds directly to the paddy water, and then maintained at that water depth for the duration of the test. **[0468]** Treated plants and controls were maintained in a greenhouse for 13 to 15 days, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table C, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

TABLE C

250 g ai/ha							Comp	ounds						
Flood	4	10	11	12	13	14	16	17	18	19	20	21	22	23
Barnyardgrass	0	0	0	10	0	0	0	0	0	0	0	0	0	0
Ducksalad	0	0	0	40	40	40	0	0	0	0	0	0	0	60
Rice	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sedge, Umbrella	0	0	0	0	0	0	0	0	0	0	0	0	0	40
250 g ai/ha							Compo	ounds						
Flood	24	25	26	27	28	29	30	32	35	38	41	42	43	44
Barnyardgrass	0	0	0	0	0	0	0	0	65	0	0	0	0	0
Ducksalad	0	30	0	30	0	0	0	90	100	60	0	0	0	0
Rice	0	0	0	0	0	0	0	20	80	0	0	0	0	0
Sedge, Umbrella	40	20	0	40	0	0	0	85	100	30	0	0	0	0
250 g ai/ha							Compo	ounds						
Flood	45	46	47	48	49	50	51	52	53	54	55	57	58	59
Barnyardgrass	0	20	0	0	0	0	0	0	20	0	25	0	0	0
Ducksalad	0	60	0	0	O	30	30	0	80	60	100	90	80	0
Rice	0	35	0	0	0	0	0	0	20	0	25	0	0	0
Sedge, Umbrella	0	50	0	0	0	0	0	0	75	0	90	75	40	0

TABLE C-continued

250 g ai/ha							С	ompo	ounds						
Flood	60	62	63	64	70	73	89	90	96	97	103	1	04	105	106
Barnyardgrass	20	35	60	35	0	0	0	0	15	0	60		20	45	0
Ducksalad	80	100	100	95	0	0	30	0	90		40		75	40	0
Rice Sedge, Umbrella	30 50	40 90	25 85	0 8 0	0	0	0 80	0	30 100	0 50	30 80		0 80	35 70	0
250 g ai/ha									ounds						
Flood	107	108	109	110	111	112		13	114	115	116	117	118	119	120
Barnyardgrass Ducksalad	0	0	30 85	0 3 0	0	0 30		0 95	0 75	0	0 95	0	50 100	0 40	90 100
Rice	0	0	35	0	0	0		15	15	0	30	0	45	0	90
Sedge, Umbrella	0	0	80	60	0	95		95	75	0	90	0	100	40	95
250 g ai/ha							С	ompo	ounds						
Flood	121	122	123	124	125	126	1	27	128	129	130	131	132	133	134
Barnyardgrass	60	0	0	0	0	95		50	0	0	65	75	30	40	0
Ducksalad	90	0	0	80	80	100		00	0	0	90	95	40	80	40
Rice Sedge, Umbrella	45 90	0 0	0 30	0 85	0 90	75 100		60 00	0	0	30 90	60 95	20 75	40 80	0 75
250 g ai/ha							С	ompo	ounds						
Flood	135	136	137	138	139	140	1-	41	142	143	144	145	146	147	149
Barnyardgrass	0	0	0	0	0	0		0	0	30	98	45	0	0	0
Ducksalad	0	40	20	20	30	0		30	0	85	90	90	0	0	80
Rice	0	0	0	0	20	0		0	0	35	40	35	0	0	0
Sedge, Umbrella	0	40	0	0	0	0		0	0	100	85	95	0	0	65
250 g ai/ha							С	ompo	ounds						
Flood	150	151	152	153	154	155	1	56	157	158	159	160	161	162	163
Barnyardgrass	0	0	0	0	0	0		0	0	0	0	0	0	0	0
Ducksalad Rice	0	0	0 0	0	0	0		0	40 0	50 0	0	0	0	0 0	0
Sedge, Umbrella	Ö	0	0	0	0	0		0	40	0	0	0	0	0	0
250 g ai/ha							С	ompo	ounds						
Flood	164	165	166	167	168	169	1	70	171	173	174	175	176	177	178
Barnyardgrass	0	0	0	0	90	0		0	0	0	0	0	0	0	40
Ducksalad	0	0	0	0	90	0		0	0	80	0	0	75	60	90
Rice	0	0	0	0	40	0		0	0	0	0	0	0	20	0
Sedge, Umbrella	0	0	0	0	90	0		0	0	60	0	0	30	40	85
250 g ai/ha							С	ompo	ounds						
Flood	179	180	181	182	183	184	1	85	186	187	188	189	190	191	192
Barnyardgrass	0	0	0	0	0	0		0	0	0	0	0	0	20	0
Ducksalad Rice	80 40	90 0	0 0	0	85 0	0		0	0	50 0	30 0	0	0	80 0	60 0
Sedge, Umbrella	80	80	0	0	75	0		0	0	0	0	0	0	85	40
250 g ai/ha									ounds						
Flood	102	104	106	107	109	199				202	202	204	205	206	207
	193	194	196	197	198			00	201	202	203	204	205	206	207
Barnyardgrass	0	0	30	20	40	0		90	0	0	0	0	0	0	0
Ducksalad Rice	65 0	80 0	55 0	0	85 25	0		00 35	0	8 0 0	0	0	0	70 0	30 0
Sedge, Umbrella	0	0	70	0	25 100	80		33 00	0	80	0	0	0	70	30
- Cinorella		· ·	70	v	100	80	1		· ·	50	7	v	- 0	70	30

TABLE C-continued

250 g ai/ha							Comp	ounds						
Flood	208	209	210	211	212	213	214	215	216	217	218	219	220	221
Barnyardgrass	0	0	0	0	0	0	0	0	0	20	0	0	20	0
Ducksalad	0	0	85	70	75	75	0	0	0	40	0	0	80	100
Rice	0	0	0	0	20	0	0	0	0	0	0	0	0	0
Sedge, Umbrella	0	0	40	20	75	0	0	0	0	0	0	0	75	95
250 g ai/ha							Comp	ounds						
Flood	222	223	224	225	226	227	228	229	230	231	232	233	234	236
Barnyardgrass	0	0	0	0	20	0	40	55	40	0	0	0	0	0
Ducksalad	30	65	70	0	85	98	85	90	85	65	0	0	0	75
Rice	0	0	0	0	20	0	0	15	20	0	0	0	0	0
Sedge, Umbrella	0	70	65	0	65	85	90	90	85	70	0	0	0	40
250	g ai/ha							Com	pounds					
Floo	d				2:	37			238			239		
Barn	yardgra	ISS			()			20			0		
	csalad					0			45			0		
Rice					(C			15			0		
Sedg	e, Umb	rella)			65			0		

Test D

[0469] Seeds of plant species selected from blackgrass (Alopecurus myosuroides), Italian ryegrass (Lolium multiflorum), winter wheat (Triticum aestivum), galium (catchweed bedstraw, Galium aparine), corn (Zea mays), large (Lg) crabgrass (Digitaria sanguinalis), giant foxtail (Setaria faberii), johnsongrass (Sorghum halepense), lambsquarters (Chenopodium album), morningglory (Ipomoea coccinea), yellow nutsedge (Cyperus esculentus), pigweed (Amaranthus retroflexus), ragweed (common ragweed, Ambrosia elation), soybean (Glycine max), barnyardgrass (Echinochloa crus-galli), oilseed rape (Brassica napus), waterhemp (common waterhemp, Amaranthus rudis), and velvetleaf (Abutilon theophrasti) were planted into a blend of loam soil and sand and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

[0470] At the same time, plants selected from these crop and weed species and also *kochia* (*Kochia scoparia*), wild oat (*Avena fatua*), and chickweed (common chickweed, *Stellaria media*) were planted in pots containing Redi-

Earth® planting medium (Scotts Company, 14111 Scott-slawn Road, Marysville, Ohio 43041) comprising spaghnum peat moss, vermiculite, wetting agent and starter nutrients and treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments.

[0471] Plant species in the flooded paddy test consisted of rice (Oryza sativa), small-flower umbrella sedge (Cyperus difformis), ducksalad (Heteranthera limosa), and barnyardgrass (Echinochloa crus-galli) grown to the 2-leaf stage for testing. At time of treatment, test pots were flooded to 3 cm above the soil surface, treated by application of test compounds directly to the paddy water, and then maintained at that water depth for the duration of the test.

[0472] Treated plants and controls were maintained in a greenhouse for 13 to 15 days, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table D, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

TABLE D

250 g ai/ha Postemergence	Compound 62
Barnyardgrass	95
Blackgrass	60
Chickweed	100
Corn	10
Crabgrass, Large	65
Foxtail, Giant	55
Galium	100
Johnsongrass	85
Kochia	100
Lambsquarters	100
Morningglory	98
Nutsedge, Yellow	10
Oat, Wild	60
Oilseed Rape	100
Pigweed	100

TABLE D-continued

					TAI	BLE D	-contini	ied						
			gweed							85				
			egrass, Ita	ılian						40				
			ybean							98				
			vetleaf terhemp							85 100				
			neat							40				
125 g ai/ha							Co	mpounds						
		52	5.1		57	50		*	62	06	112	116	110	120
Postemergence	50	53	54		57	58	60	62	63	96	113	116	118	120
Barnyardgrass	0			15	10	5	10	30	10	5	25	30	30	40
Blackgrass	0 5			50 100	15	5	20	40 98	25 100	20 98	40 95	35 90	35 98	55 100
Chickweed Corn	5			20	75 10	30 5	75 5	98 15	100	98 5	95 25	10	98 15	15
Crabgrass, Large	5			15	10	5	5	50	35	10	25	40	20	65
Foxtail, Giant	35			75	20	30	10	20	20	10	10	60	20	25
Galium	60		75	90	95	55	65	100	70	98	90	90	98	100
Johnsongrass	0	5	5	15	5	5	5	75	45	10	10	_	45	85
Kochia	15			100	100	80	90	100	100	100	100	100	100	100
Lambsquarters	5			98	80	90	75	100	90	95	90	100	95	100
Morningglory	20	55	85	85	65	65	40	95	70	30	80	30	80	100
Nutsedge, Yellow	_		_	5	5	0	5	5	5	5	15	25	10	15
Oat, Wild	0 30			40 100	15 90	0 75	5 90	50 98	35 100	20 65	25 90	15 70	50 95	60 95
Oilseed Rape Pigweed	30			100	90 75	75 75	90 70	100	95	65 98	100	70 90	95 98	95 100
Ragweed	15			90	98	60	70	65	55	40	90	75	85	85
Ryegrass, Italian	0			15	0	0	0	30	30	10	5	10	5	50
Soybean	40			95	90	75	95	98	98	35	75	95	90	95
Velvetleaf	40			85	80	85	80	75	40	35	70	75	85	100
Waterhemp	40	100	75	100	98	75	70	98	98	100	90	100	98	100
Wheat	5	0	5	35	20	10	20	10	5	10	5	5	5	0
125 g ai/ha							Comp	ounds						
Postemergence	121	130	131	143	144	145	149	153	162	168	169	170	178	179
Barnyardgrass	45	25	20	65	15	30	10	5	15	75	5	5	20	5
Blackgrass	50	30	30	30	75	80	30	0	45	20	25	5	15	20
Chickweed	100	95	100	80	95	100	60	25	85	100	80	100	80	95
Corn	25	10	25	10	5	10	5	5	5	20	10	5	10	15
Crabgrass, Large Foxtail, Giant	55 40	25 25	20 15	35 50	20 25	20 20	15 30	10 5	20 20	40 60	10 55	10 40	15 25	5 30
Galium	95	100	95	100	95	90	95	80	80	100	75	80	85	75
Johnsongrass	60	100	45	30	50	40	10	10	20	20	5	5	10	5
Kochia	100	100	100	100	100	100	100	60	100	100	95	100	100	100
Lambsquarters	100	100	100	100	95	95	85	50	95	90	80	80	90	100
Morningglory	98	85	95	100		80	80	25	75	85	65	98	90	90
Nutsedge, Yellow	20	25	10	5	5	10	5	5	10	15	5	10	5	5
Oat, Wild	70	60	35	5	10	15	5	0	10	30	10	10	5	20
Oilseed Rape	95	95	85	65	_		85	85	_	100	60	25	95	100
Pigweed	100	98	100	100	100	98	90	70	100	98	98	98	90	98
Ragweed	98	40	75 25	30	75	65	45	55	50	55	35	10	35	60
Ryegrass, Italian	55 95	15 95	25 65	15	10	10 75	0 65	0 90	5 50	15 90	15 25	5 35	5 45	20 70
Soybean Velvetleaf	95 85	100	85	60 65	98	80	65	50		90	30	25	75	70
Waterhemp	100	98	98	100	100	100	100	65	100	98	90	85	90	98
Wheat	0	35	0	5	10	10	10	10	5	35	10	15	10	35
125 g ai/ha							Co	mpounds						
Postemergence	18	0 1	83	185	191	192	198	200	212	221	224	228	229	230
Barnyardgrass		5	5	5	10	5	35	15	25	10	15	35	10	5
Blackgrass			20	0	5	5	15	90	10	40	0	35	10	10
Chickweed			70	5	90	55	95	100	80	100	80	100	85	80
Corn			20	5	10	10	15	15	15	10	5	10	5	15
Crabgrass, Large		5 5	10	10	20	10	30 25	35 15	15	30 35	10	45 40	5 15	10
Foxtail, Giant Galium	4 10		5 95	5 5	5 85	15 50	25 98	15 100	10 8 0	35 100	40 60	40 100	15 80	10 95
Johnsongrass			95 10	5	5	5	35	40	20	15	5	60	25	93 5
Kochia	10		00	30	90	95	100	100	100	100	100	100	98	100
Lambsquarters			75	20	85	75	75	98	98	98	85	95	85	70
Morningglory			90	65	85	45	85	98	98	85	80	75	35	70
Nutsedge, Yellow		5	5	30	10	5	10	15	5	10	5	10	10	5
Oat, Wild			25	5	5	5	10	55	10	35	0	55	10	10
Oilseed Rape			00	0	90	50	90	100	35	90	98	98	80	75
	-	_												

						TAE	LE D)-cor	ntinue	1						
Pigweed	ç	98	95	50	60)	55	100)	98	100	100	90	98	80	85
Ragweed		55	65	25	6.		45	60		40	60	75	70	60	60	55
Ryegrass, Italian	2	20	10	0	4		0	10)	35	5	10	0	25	5	5
Soybean		35	90	45	95		85	60		98	90	90	75	80	70	85
Velvetleaf		55	55	25	50		55	55		75	90	100	60	80	70	65
Waterhemp Wheat		98 80	98 30	30 0	65		70 5	98		.00 20	100 15	100 0	85 15	100 10	85 10	80 15
62 g ai/ha									Comp	ounds						
Postemergence	3:	5	50	53	54	55	,	57	58	60	62	63	96	113	116	118
Barnyardgrass		20	0	25	5	1		5	0	10	35		5	20	20	20
Blackgrass		50	0	20	5	3		0	0	5	25		10	10	5	15
Chickweed	10		5	80	5	9		55	15	60	95		90	90	30	90
Corn	2	20	0	0	5	1	0	5	5	5	10		5	20	5	15
Crabgrass, Large	1	.0	0	15	5	1	0	10	5	5	35	10	5	25	25	15
Foxtail, Giant	1	.5	5	25	10	4	0	20	15	5	25	10	10	10	10	10
Galium	8	35	5	95	55	9	0	65	60	50	85	70	80	90	70	90
Johnsongrass		35	0	5	5	1		5	0	0	25		5	5	20	10
Kochia	10		5	100	80	10		95	60	55	100		85	100	100	95
Lambsquarters)5	50	100	5	9		70	60	55	98		90	95	80	90
Morningglory		8	10	85	75	8		45	45	25	95		40	85	10	85
Nutsedge, Yellow Oat, Wild		5 15	0	30	5	4	5	5 5	0	0	5 40		5 20	5 10	10 10	10 15
*		13 18			50	10			60		90		65	90		
Oilseed Rape Pigweed		78 95	10 5	95 90	80	10		75 55	40	65 55	100		98	90 95	55 90	60 95
Ragweed		75 75	5	55 55	5	6		60	65	33 40	60		98 10	93 90	60 60	93 55
Ryegrass, Italian		20	0	5	0	1		0	03	0	5		10	5	5	5
Soybean)5	20	95	50	9		85	60	95	95		55	65	30	60
Velvetleaf		55	0	70	40	7		70	60	65	70		35	70	70	70
Waterhemp	9	8	0	90	80	9		75	55	50	98	98	98	85	90	95
Wheat	1	.0	5	0	0	3	0	15	10	5	20	5	0	5	5	0
62 g ai/ha								C	Compou	nds						
Postemergence	120	121	130) 13:		143	144	1	145	149	153	156	162	168	169	170
Barnyardgrass	25	25	10			10	10		10	5	5	5	15	10	5	5
Blackgrass	60	30	20			20	15		25	0	0	5	30	15	0	5
Chickweed	100	100	80			60	95		95	30	20	70	60	100	70	90
Corn	10	20	10			5	10		5	5	5	5	5	10	10	5
Crabgrass, Large Foxtail, Giant	35 15	40 15	20 10			15 10	15 25		10 20	10 10	5 5	10 35	10 10	15 40	10 25	5 40
Galium	100	100	95			70	90		80	70	70	70	60	95	70	65
Johnsongrass	40	60	9.			30	10		5	15	5	10	10	5	0	0
Kochia	100	100	100			100	100	1	100	100	40	45	100	100	90	85
Lambsquarters	100	100	100			98	90		85	80	30	40	75	85	35	40
Morningglory	80	90	8.5			90	85		85	70	15	65	75	85	55	70
Nutsedge, Yellow	10	5	20) :	5	5	5		5	5	5	5	5	10	0	5
Oat, Wild	55	70	3.5	5 20)	5	5		15	0	0	0	5	20	5	5
Oilseed Rape	90	95	75			60	95		_	60	60	45	40	100	10	40
Pigweed	100	100	98			100	100		98	95	40	75	100	95	80	98
Ragweed	70	75	75			10	70		50	30	25	15	40	55	25	10
Ryegrass, Italian	10	40	10			0	10		10	0	0	0	5	5	5	5
Soybean Velvetleaf	70 100	90 80	98 75			60 50	95 75		75 75	65 40	70 60	30 25	40 75	40 45	15 20	10 25
Waterhemp	100	100	7: 98			100	100	,	75 100	95	35	25 90	100	45 98	20 90	100
Wheat	0	0				5	10	,	5	0	5	10	5	30	10	100
wneat	U															
62 g ai/ha	0								Compou	nds						
	178	179	180) 183	3	185	191		Compou 192	nds 198	200	212	221	224	228	229
62 g ai/ha Postemergence	178	179							192	198						
62 g ai/ha				5 ;	5	185	191 5 0				200 10 40	212 15 0	221 5 5	224 10 5	228 20 25	229 5 15
62 g ai/ha Postemergence Barnyardgrass	178	179	4	5 5	5	0	5		192	198 20	10	15	5	10	20	5
62 g ai/ha Postemergence Barnyardgrass Blackgrass Chickweed Corn	178 10 10 60 5	179 5 15 95 10	85 10	5 5 5 65 0 15	5 5 5	0 0 5 5	5 0 70 10		5 0 50 5	198 20 10 60 15	10 40 100 10	15 0	5 5 80 5	10 5	20 25 98 10	5 15 80 5
62 g ai/ha Postemergence Barnyardgrass Blackgrass Chickweed Corn Crabgrass, Large	178 10 10 60 5 20	179 5 15 95 10 5	85 10	5 65 5 65 6 15 6 5	5 5 5 5	0 0 5 5 10	5 0 70 10 10		5 0 50 5 10	198 20 10 60 15 20	10 40 100 10 25	15 0 30 10 10	5 5 80 5 25	10 5 40 5 10	20 25 98 10 35	5 15 80 5 5
62 g ai/ha Postemergence Barnyardgrass Blackgrass Chickweed Corn Crabgrass, Large Foxtail, Giant	178 10 10 60 5 20 5	179 5 15 95 10 5 40	85 85 10 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 5	0 0 5 5 10 5	5 0 70 10 10 5		5 0 50 5 10 25	198 20 10 60 15 20 15	10 40 100 10 25 10	15 0 30 10 10	5 5 80 5 25 5	10 5 40 5 10 5	20 25 98 10 35 20	5 15 80 5 5 5
62 g ai/ha Postemergence Barnyardgrass Blackgrass Chickweed Corn Crabgrass, Large Foxtail, Giant Galium	178 10 10 60 5 20 5 98	179 5 15 95 10 5 40 70	85 10 30 100	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5	0 0 5 5 5 10 5	5 0 70 10 10 5 85		5 0 50 5 10 25 50	20 10 60 15 20 15 98	10 40 100 10 25 10	15 0 30 10 10 15 65	5 5 80 5 25 5 100	10 5 40 5 10 5 60	20 25 98 10 35 20 98	5 15 80 5 5 5 5
62 g ai/ha Postemergence Barnyardgrass Blackgrass Chickweed Corn Crabgrass, Large Foxtail, Giant Galium Johnsongrass	178 10 10 60 5 20 5 98 15	179 5 15 95 10 5 40 70 5	85 85 10 5 30 100	5 65 65 65 65 65 65 65 65 65 65 65 65 65	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 5 5 5 10 5 5 5	5 0 70 10 10 5 85 5		5 0 50 5 5 10 25 50 5	20 10 60 15 20 15 98 35	10 40 100 10 25 10 100 45	15 0 30 10 10 15 65 20	5 5 80 5 25 5 100 15	10 5 40 5 10 5 60 5	20 25 98 10 35 20 98 25	5 15 80 5 5 5 65 0
62 g ai/ha Postemergence Barnyardgrass Blackgrass Chickweed Corn Crabgrass, Large Foxtail, Giant Galium Johnsongrass Kochia	178 10 10 60 5 20 5 98 15 100	179 5 15 95 10 5 40 70 5 100	85 10 30 100 5	5 65 65 65 65 65 65 65 65 65 65 65 65 65	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 5 5 5 10 5 5 5	5 0 70 10 10 5 85 5 85		5 0 5 5 5 10 25 5 5 5 90	198 20 10 60 15 20 15 98 35 100	10 40 100 10 25 10 100 45 100	15 0 30 10 10 15 65 20 100	5 5 80 5 25 5 100 15 100	10 5 40 5 10 5 60 5	20 25 98 10 35 20 98 25 100	5 15 80 5 5 5 65 0 98
62 g ai/ha Postemergence Barnyardgrass Blackgrass Chickweed Corn Crabgrass, Large Foxtail, Giant Galium Johnsongrass Kochia Lambsquarters	178 10 10 60 5 20 5 98 15 100 75	179 5 15 95 10 5 40 70 5 100 75	85 10 30 100 5 100	5 5 65 5 65 65 65 65 65 65 65 65 65 65 6	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 5 5 5 10 5 5 5 5	5 0 70 10 10 5 85 5 85 70		5 0 5 5 5 10 25 5 5 5 5 90 40	198 20 10 60 15 20 15 98 35 100 70	10 40 100 10 25 10 100 45 100 85	15 0 30 10 10 15 65 20 100 98	5 5 80 5 25 5 100 15 100 95	10 5 40 5 10 5 60 5 95	20 25 98 10 35 20 98 25 100 90	5 15 80 5 5 5 65 0 98 70
62 g ai/ha Postemergence Barnyardgrass Blackgrass Chickweed Corn Crabgrass, Large Foxtail, Giant Galium Johnsongrass Kochia Lambsquarters Momingglory	178 10 10 60 5 20 5 98 15 100 75 100	179 5 15 95 10 5 40 70 5 100 75 85	36 83 10 30 100 6 100 98	5 5 65 65 65 65 65 65 65 65 65 65 65 65	5 5 5 5 5 5 5 5 5 5 7	0 0 5 5 10 5 5 5 5 5 5 15	5 0 70 10 10 5 85 5 85 70 60		5 0 50 5 5 10 25 50 5 5 90 40	198 20 10 60 15 20 15 98 35 100 70 80	10 40 100 10 25 10 100 45 100 85 85	15 0 30 10 10 15 65 20 100 98 75	5 5 80 5 25 5 100 15 100 95	10 5 40 5 10 5 60 5 95 80 35	20 25 98 10 35 20 98 25 100 90 80	5 15 80 5 5 5 65 0 98 70 25
62 g ai/ha Postemergence Barnyardgrass Blackgrass Chickweed Corn Crabgrass, Large Foxtail, Giant Galium Johnsongrass Kochia Lambsquarters	178 10 10 60 5 20 5 98 15 100 75	179 5 15 95 10 5 40 70 5 100 75	85 10 30 100 5 100	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 5 5 5 10 5 5 5 5	5 0 70 10 10 5 85 5 85 70		5 0 5 5 5 10 25 5 5 5 5 90 40	198 20 10 60 15 20 15 98 35 100 70	10 40 100 10 25 10 100 45 100 85	15 0 30 10 10 15 65 20 100 98	5 5 80 5 25 5 100 15 100 95	10 5 40 5 10 5 60 5 95	20 25 98 10 35 20 98 25 100 90	5 15 80 5 5 5 65 0 98 70

					TA	BLE D	-contin	ıed							
Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp Wheat	80 85 20 5 35 60 85 5	85 98 50 5 70 30 95 30	80 75 35 5 70 35 90 15	100 85 60 5 75 55 75 30	0 35 15 0 35 10 25 0	60 30 60 0 75 30 70	5 55 15 0 55 30 55 5	60 90 55 10 30 55 95		100 85 60 35 90 70 98 25	20 100 55 0 85 60 100 5	90 98 45 20 85 80 100 5	50 85 55 0 65 30 85	80 95 60 15 80 65 95	60 70 70 0 45 45 80 5
			62 g ai/ha Postemerge	ence						Comp 23					
			Barnyardgr Blackgrass Chickweed Corn Crabgrass, Foxtail, Gi Galium Johnsongra Kochia Lambsquar Morninggle Nutsedge, Oat, Wild Dilseed Ra Pigweed Ragweed Ryegrass, I Soybean Velvetleaf Waterhemp Wheat	Large ant ss ss ters ory Yellow pe						11 77 8 8 100 8 8 77 75 5 6 5 5 7	0 0 0 0 5 5 0 0 5 5 5 5 5 5 6 0 0 8 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				
31 g ai/ha							Co	mpounds							
Postemergence	3:	5	50	53	54	55	57	58	60	62	63	96	113	116	118
Barnyardgrass Blackgrass Chickweed Corn Crabgrass, Large Foxtail, Giant Galium Johnsongrass Kochia Lambsquarters Momingglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp Wheat 31 g ai/ha	4 8 8 8 8 8 5 5 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 15 0 0 5 0 0 5 5 0 0 5 5 5 0 0 0 0	10 40 80 0 20 20 85 0 100 80 — 10 80 90 50 5 90 60 90	5 5 5 0 5 30 55 0 55 0 55 5 75 — 0 20 80 0 0 0 10 10 5 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 10 75 10 10 50 90 5 100 85 70 5 15 95 85 40 5 75 50 90 5	5 0 50 5 5 5 10 50 0 90 40 45 5 5 5 5 0 0 90 40 45 5 5 5 5 5 5 5 5 5 6 7 7 7 7 7 7 7 7 7	0 0 10 0 5 0 45 0 50 75 45 0 0 10 25 45 0 45 0 45 0 45 0 45 0 45 0 0 45 0 0 0 0	0 0 0 50 0 5 5 40 0 50 20 40 0 50 35 30 0 65 50 35 35 30 65 35 35 35 35 35 35 35 35 35 35 35 35 35	50 20 70 10 55 25 85 25 98 85 5 30 80 98 65 5 80 98 65 5	10 10 65 5 5 5 70 5 70 5 95 85 40 0 45 25 85 0	0 10 85 15 5 90 0 65 40 5 20 45 95 10 5 5 90	15 15 85 10 20 5 80 5 100 85 75 5 15 5 90 60 5 5 5 60 80 0	5 5 15 10 5 5 60 20 100 60 10 5 5 10 75 35 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 10 70 10 10 15 90 5 85 85 85 5 10 30 95 45 0 60 75 90 0
Postemergence .	120	121	130	131	143	144	145	149		153	156	157	162	168	169
Barnyardgrass Blackgrass Chickweed Corn Crabgrass, Large Foxtail, Giant Galium Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild	15 35 100 15 25 10 98 30 100 100 98 10 40	25 25 100 20 10 10 90 35 100 100 75 10 45	10 5 80 25 20 5 90 5 95 100 80 5	10 5 80 5 5 10 85 5 90 98 75 0	5 10 50 5 10 10 70 5 100 80 —	5 15 80 5 10 10 85 10 100 80 85 5	5 20 80 5 10 10 80 5 100 85 85 85	5 0 30 5 5 5 10 60 10 90 70 60 0		5 0 20 0 5 0 70 0 50 35 5 0	0 5 45 5 5 10 60 5 30 35 15 5	5 5 75 5 5 20 70 0 90 55 35 10	10 30 60 5 5 10 60 5 100 65 65 65	5 15 98 5 5 35 95 5 100 85 85 5	5 0 40 5 5 5 70 0 60 40 15 0 5

						TAB	LE D-c	continue	ed						
Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp Wheat	85 100 55 5 70 85 100	80 98 65 10 60 80 95	80 95 60 5 55 80 85 5	45 98 45 5 15 65 90	:	50 90 5 0 30 30 50 5	80 98 60 5 80 55 85	70 95 50 0 60 70 90 5	30 85 30 0 40 30 80	40 20 10 0 40 20 10	40 60 10 0 25 15 70 5	25 65 25 5 35 40 75 0	5 90 30 0 10 40 98	100 85 50 5 75 40 90	5 80 5 0 5 10 90 5
31 g ai/ha								Compo	unds						
Postemergence	170	178	179	180	1	83	185	191	192	198	200	212	221	224	228
Barnyardgrass Blackgrass Chickweed Corn Crabgrass, Large Foxtail, Giant Galium Johnsongrass Kochia Lambsquarters Momingglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean Velvetleaf	0 0 65 5 5 30 50 0 60 40 30 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 5 5 5 10 5 80 10 95 70 100 5 80 80 85 5 40	0 5 80 10 5 5 80 5 100 75 65 5 5 75 90 25 5 45	0 0 60 5 5 5 50 75 0 90 80 55 5 60 75 40 0	:	5 5 5 60 115 5 5 65 5 5 95 65 5 75 5 5 85 85 85 85 85 85 85 85 5 5 5	0 0 0 0 0 5 0 0 0 10 25 0 0 0 35 0 0 35 0 0 0 0 0 0 0 0 0 0 0	5 0 55 5 10 5 70 5 80 70 65 5 0 40 30 40 0 65 30	5 0 50 0 5 25 50 5 80 50 0 5 0 0 5 20 5 3 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 5 60 10 15 15 75 20 95 55 55 5 5 5 5 5 5 0 98 55 0 25 45	10 30 95 5 10 20 100 20 100 80 50 5 30 85 85 55 25	5 0 30 5 10 10 60 5 100 80 98 5 0 — — 100 40 0 7 0	5 10 85 0 10 5 80 5 100 95 65 5 10 95 5 5 25 5	5 0 15 5 5 5 5 5 5 70 75 35 0 0 10 85 55 0	20 15 85 10 20 10 98 10 100 85 65 5 20 85 95 35 5
Waterhemp Wheat	80 20	80 5	90 10	75 5		80 20	25 0	60 0	40 0	85 0	90 10	98 5	85 0	75 0	95 5
	31	g ai/ha					-				Comp	ounds			
	Ро	stemergen	ice					229				230			
16 g ai/ha	BI CI CC Cr Fo Ga Jo No No Oi Oi Ra Ry So Vee Wi	umyardgra- ackgrass iickweed orn adgrass, I. axtail, Giau ilium hnsongrass ochia mbsquarte orningglor itsedge, Yut, Wild lseed Rap gweed igweed ig	arge nt s ers y ellow					5 10 60 20 0 5 70 0 90 70 25 0 10 70 60 50 0	pounds			5 10 65 0 5 5 85 0 85 70 5 0 60 65 40 70 5 5			
Postemergence	3	5	50	53	54	55	57	58	60	63	96	113	116	118	120
Barnyardgrass Blackgrass Chickweed Corn Crabgrass, Large Foxtail, Giant Galium Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow	1 3 8 1 1 10 8	15 35 35 5 10 5 70 3 10 00 80	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 5 5 0 10 40 60 0 90 70 50	0 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5	5 5 70 10 5 40 80 5 98 75 70 0	0 0 30 0 5 0 40 0 75 60 5	0 0 5 0 5 0 5 0 40 0 35 10 20	0 0 45 0 5 0 30 0 50 20 0	5 5 60 5 5 0 60 5 90 10 50 0	0 0 60 5 5 0 70 0 25 65 85	10 5 70 5 10 5 80 5 90 70 85 5	5 0 5 5 5 5 5 60 10 100 40 15 5	10 5 75 5 10 5 85 5 95 75 85 5	10 20 95 15 30 10 98 5 98 100 85

Mar. 21, 2019

					TAB	LE D-c	continue	ed						
Oat, Wild Oilseed Rape Pigweed	1 4 8	5 0	0 5 0	70 85 6	0 5 5 95 0 85	0 30 30	0 5 20	5 60 20	0 60 85	15 40 98	10 80 90	5 50 75	5 5 80	35 80 98
Ragweed Ryegrass, Italian	4	5 0	5		0 25 0	20 0	20 0	15 0	10 0	0	80 5	40 0	80 0	40 5
Soybean	6		5		5 65	40	55	65	35	15	80	40	75	90
Velvetleaf	5	0	0		0 35	10	60	40	10	20	60	55	65	70
Waterhemp	7		0		5 85	60	35	15	85	85	85	70	85	90
Wheat		0	0	0	0 5	0	0	0	0	0	0	70	0	0
16 g ai/ha							Compo							
Postemergence	121	130	131	143	144	145	149	153	156	157	162	168	169	170
Barnyardgrass Blackgrass	20 5	10 0	10 5	5 10	5 5	5 15	5	5 0	0	5 5	5 0	5 10	5 0	0
Chickweed	95	80	65	45	70	70	5	20	5	50	50	65	5	30
Corn	10	10	5	5	5	5	Ö	0	5	5	5	5	ō	5
Crabgrass, Large	15	10	5	10	5	5	5	0	5	5	5	5	5	5
Foxtail, Giant	10	5	10	5	5	5	5	0	5	40	10	35	0	5
Galium	80	65	80	50	80	80	60	70	20	60	60	70	55	50
Johnsongrass	35	0	5	0	5	5	5	0	0	0	5	5	0	0
Kochia	98	90	85	100	100	100	90	50	10	80	100	100	40	5
Lambsquarters	98	85	95	80	85	70	55	15	25	25	50	55	5	10
Morningglory	65	55	70	95	85	85	25	5	5	20	45	40	15	30
Nutsedge, Yellow	5	0	0	0	5	5	0	0	0	5	0	5	0	0
Oat, Wild	25	5	10	0	0	5	0	0	0	0	5	10	0	0
Oilseed Rape	70 98	60 85	60 85	50 75	25 85	60 90	20 85	50 20	5 65	5 65	5 75	85 60	0 75	5 60
Pigweed	20	8 3	30	/3 0	83 25	10	83 5	10	5	20	73 20	20	/3 5	5
Ragweed Ryegrass, Italian	0	0	0	0	0	0	0	0	0	0	0	5	0	0
Soybean	55	50	30	30	60	50	30	35	15	10	25	45	5	10
Velvetleaf	75	80	45	30	35	60	10	5	10	10	20	40	10	5
Waterhemp	95	75	85	85	85	85	80	5	35	75	95	80	55	65
Wheat	0	5	0	0	5	5	0	0	0	0	0	10	0	0
16 g ai/ha							Compo	unds						
Postemergence	178	179	180	183	185	191	192	198	200	212	220	221	224	228
Barnyardgrass	10	0	0	5	0	5	5	10	5	5	10	0	5	15
Blackgrass	0	5	0	0	0	0	0	5	30	0	.5	5	0	15
Chickweed	50	70	60	30	0	50	0	5	60	10	40	75	10	85
Corn	0	5	5	10 5	0	5	0	5 10	5	5 5	5	0	0	5
Crabgrass, Large Foxtail, Giant	5		5		U	5	5	10	10		15	10	5	15 10
roxian, Giani	0	5			25								0	
Calium	0 75	5	60	5	35	5	10	10	5 75	10	5	35	0	
Galium Johnsongrass	75	5 70	60 65	5 65	0	40	35	10 70	75	60	60	80	40	85
Johnsongrass	75 10	5 70 0	60 65 0	5 65 0	0	40 5	35 0	10 70 5	75 15	60 5	60 5	80 0	40 5	85 10
Johnsongrass <i>Kochia</i>	75 10 90	5 70 0 90	60 65 0 85	5 65 0 90	0 0 0	40 5 50	35 0 50	10 70 5 60	75 15 95	60 5 90	60 5 100	80 0 98	40 5 35	85 10 100
Johnsongrass <i>Kochia</i> Lambsquarters	75 10	5 70 0 90 70	60 65 0	5 65 0	0	40 5 50 50	35 0	10 70 5 60 10	75 15 95 70	60 5 90 40	60 5 100 70	80 0 98 85	40 5	85 10 100 85
Johnsongrass <i>Kochia</i> Lambsquarters Morningglory	75 10 90 25	5 70 0 90	60 65 0 85 70	5 65 0 90 35	0 0 0 10	40 5 50	35 0 50 35	10 70 5 60	75 15 95	60 5 90	60 5 100	80 0 98	40 5 35 55	85 10 100
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow	75 10 90 25 70	5 70 0 90 70 30	60 65 0 85 70 40	5 65 0 90 35 65	0 0 0 10 0	40 5 50 50 65	35 0 50 35 0	10 70 5 60 10 55	75 15 95 70 55	60 5 90 40 75	60 5 100 70 75	80 0 98 85 65	40 5 35 55 15	85 10 100 85 65
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild	75 10 90 25 70 5	5 70 0 90 70 30 5	60 65 0 85 70 40	5 65 0 90 35 65 5	0 0 0 10 0	40 5 50 50 65 0	35 0 50 35 0	10 70 5 60 10 55 5	75 15 95 70 55 5	60 5 90 40 75 10	60 5 100 70 75 5	80 0 98 85 65 5	40 5 35 55 15 0	85 10 100 85 65 5
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed	75 10 90 25 70 5	5 70 0 90 70 30 5	60 65 0 85 70 40 0	5 65 0 90 35 65 5	0 0 0 10 0 0	40 5 50 50 65 0	35 0 50 35 0 0	10 70 5 60 10 55 5	75 15 95 70 55 5	60 5 90 40 75 10	60 5 100 70 75 5 5	80 0 98 85 65 5	40 5 35 55 15 0	85 10 100 85 65 5
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed	75 10 90 25 70 5 0 35	5 70 0 90 70 30 5 0 40	60 65 0 85 70 40 0 5	5 65 0 90 35 65 5 0	0 0 0 10 0 0 0	40 5 50 50 65 0 0 0 35 30	35 0 50 35 0 0 0	10 70 5 60 10 55 5 5	75 15 95 70 55 5 20 70	60 5 90 40 75 10 0	60 5 100 70 75 5 5	80 0 98 85 65 5 5 70 95 35	40 5 35 55 15 0 0	85 10 100 85 65 5 10 65
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ryegrass, Italian	75 10 90 25 70 5 0 35 80 5	5 70 0 90 70 30 5 0 40 80 30 0	60 65 0 85 70 40 0 5 70 30	5 65 0 90 35 65 5 0 5 55 15	0 0 0 10 0 0 0 0 0 10 10	40 5 50 50 65 0 0 0 35 30 0	35 0 50 35 0 0 0 0 15 0	10 70 5 60 10 55 5 5 30 85 30 0	75 15 95 70 55 5 20 70 90 30 20	60 5 90 40 75 10 0 10 100 35	60 5 100 70 75 5 5 10 85 25 0	80 0 98 85 65 5 70 95 35 5	40 5 35 55 15 0 0 0 85 30	85 10 100 85 65 5 10 65 85 20
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean	75 10 90 25 70 5 0 35 80 5 0	5 70 0 90 70 30 5 0 40 80 30 0 25	60 65 0 85 70 40 0 5 70 30 0 45	5 65 0 90 35 65 5 0 5 55 15 0 65	0 0 0 10 0 0 0 0 0 10 10 10	40 5 50 50 65 0 0 0 35 30 0 45	35 0 50 35 0 0 0 0 15 0	10 70 5 60 10 55 5 5 30 85 30 0	75 15 95 70 55 5 20 70 90 30 20 60	60 5 90 40 75 10 0 10 100 35 0 60	60 5 100 70 75 5 5 10 85 25 0	80 0 98 85 65 5 70 95 35 5 35	40 5 35 55 15 0 0 0 85 30 0 35	85 10 100 85 65 5 10 65 85 20 0
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ragweed Ryegrass, Italian Soybean Velvetleaf	75 10 90 25 70 5 0 35 80 5 0	5 70 0 90 70 30 5 0 40 80 30 0 25 15	60 65 0 85 70 40 0 5 70 30 0 45 45	5 65 0 90 35 65 5 0 5 15 0 65 33	0 0 0 10 0 0 0 0 0 10 10 10 15 5	40 5 50 50 65 0 0 35 30 0 45	35 0 50 35 0 0 0 0 15 0 0	10 70 5 60 10 55 5 5 30 85 30 0 10 50	75 15 95 70 55 5 20 70 90 30 20 60 30	60 5 90 40 75 10 0 100 35 0 60 20	60 5 100 70 75 5 5 10 85 25 0 10 25	80 0 98 85 65 5 70 95 35 5 35 70	40 5 35 55 15 0 0 0 85 30 0 35 10	85 10 100 85 65 5 10 65 85 20 0 60 35
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp	75 10 90 25 70 5 0 35 80 5 0 15 60	5 70 0 90 70 30 5 0 40 80 30 0 25 15 60	60 65 0 85 70 40 0 5 70 30 0 45 45	5 65 0 90 35 65 5 0 5 55 15 0 65 30 80	0 0 0 10 0 0 0 0 0 10 10 10 15 5 5	40 5 50 50 65 0 0 35 30 0 45 15 25	35 0 50 35 0 0 0 0 15 0 0 10 20 20	10 70 5 60 10 55 5 5 30 85 30 0 10 50 85	75 15 95 70 55 5 5 20 70 90 30 20 60 30 80	60 5 90 40 75 10 0 10 100 35 0 60	60 5 100 70 75 5 5 10 85 25 0 10 25 80	80 0 98 85 65 5 70 95 35 5 70 70	40 5 35 55 15 0 0 85 30 0 35 10 70	85 10 100 85 65 5 10 65 85 20 0 60 35
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ragweed Ryegrass, Italian Soybean Velvetleaf	75 10 90 25 70 5 0 35 80 5 0 15 60 70	5 70 0 90 70 30 5 0 40 80 30 0 25 15 60 5	60 65 0 85 70 40 0 5 70 30 0 45 45	5 65 0 90 35 65 5 0 5 15 0 65 33	0 0 0 10 0 0 0 0 0 10 10 10 15 5	40 5 50 50 65 0 0 35 30 0 45	35 0 50 35 0 0 0 0 15 0 0	10 70 5 60 10 55 5 5 30 85 30 0 10 50	75 15 95 70 55 5 20 70 90 30 20 60 30	60 5 90 40 75 10 0 10 100 35 0 60 20 80	60 5 100 70 75 5 5 5 10 85 25 0 10 25 80 0	80 0 98 85 65 5 70 95 35 5 35 70	40 5 35 55 15 0 0 0 85 30 0 35 10	85 10 100 85 65 5 10 65 85 20 0 60 35
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp	75 10 90 25 70 5 0 35 80 5 0 15 60 70 0	5 70 0 90 70 30 5 0 40 80 30 0 25 15 60 5	60 65 0 85 70 40 0 5 70 30 0 45 45 40 5	5 65 0 90 35 65 5 0 5 55 15 0 65 30 80	0 0 0 10 0 0 0 0 0 10 10 10 15 5 5	40 5 50 50 65 0 0 35 30 0 45 15 25	35 0 50 35 0 0 0 0 15 0 0 10 20 20	10 70 5 60 10 55 5 5 30 85 30 0 10 50 85	75 15 95 70 55 5 5 20 70 90 30 20 60 30 80	60 5 90 40 75 10 0 10 100 35 0 60 20 80	60 5 100 70 75 5 5 10 85 25 0 10 25 80 0	80 0 98 85 65 5 70 95 35 5 70 70	40 5 35 55 15 0 0 85 30 0 35 10 70	85 10 100 85 65 5 10 65 85 20 0 60 35
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp	75 10 90 25 70 5 0 35 80 5 0 15 60 70 0	5 70 0 90 70 30 5 0 40 80 30 0 25 15 60 5	60 65 0 85 70 40 0 5 70 30 0 45 45 40 5	5 65 0 90 35 65 5 0 5 55 15 0 65 30 80	0 0 0 10 0 0 0 0 0 10 10 10 15 5 5	40 5 50 50 65 0 0 35 30 0 45 15 25	35 0 50 35 0 0 0 0 15 0 0 10 20 20	10 70 5 60 10 55 5 5 30 85 30 0 10 50 85	75 15 95 70 55 5 5 20 70 90 30 20 60 30 80	60 5 90 40 75 10 0 10 100 35 0 60 20 80	60 5 100 70 75 5 5 10 85 25 0 10 25 80 0	80 0 98 85 65 5 70 95 35 5 70 70	40 5 35 55 15 0 0 85 30 0 35 10 70	85 10 100 85 65 5 10 65 85 20 0 60 35
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp	75 10 90 25 70 5 0 35 80 5 0 15 60 70 0	5 70 0 90 70 30 5 0 40 80 30 0 25 15 60 5 g ai/ha	60 65 0 85 70 40 0 5 70 30 0 45 45 40 5	5 65 0 90 35 65 5 0 5 55 15 0 65 30 80	0 0 0 10 0 0 0 0 0 10 10 10 15 5 5	40 5 50 50 65 0 0 35 30 0 45 15 25	35 0 50 35 0 0 0 0 0 15 0 0 10 20 0	10 70 5 60 10 55 5 5 30 85 30 0 10 50 85	75 15 95 70 55 5 5 20 70 90 30 20 60 30 80	60 5 90 40 75 10 0 10 100 35 0 60 20 80	60 5 100 70 75 5 5 10 85 25 0 10 25 80 0	80 0 98 85 65 5 70 95 35 5 70 70	40 5 35 55 15 0 0 85 30 0 35 10 70	85 10 100 85 65 5 10 65 85 20 0 60 35
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp	75 10 90 25 70 5 0 35 80 5 0 15 60 70 0	5 70 0 90 70 30 5 0 40 80 30 0 25 15 60 5 g ai/ha stemerge:	60 65 0 85 70 40 0 5 70 30 0 45 45 40 5	5 65 0 90 35 65 5 0 5 55 15 0 65 30 80	0 0 0 10 0 0 0 0 0 10 10 10 15 5 5	40 5 50 50 65 0 0 35 30 0 45 15 25	35 0 50 35 0 0 0 0 15 0 0 10 20 20 0	10 70 5 60 10 55 5 5 30 85 30 0 10 50 85	75 15 95 70 55 5 5 20 70 90 30 20 60 30 80	60 5 90 40 75 10 0 10 100 35 0 60 20 80	60 5 100 70 75 5 5 10 85 25 0 10 25 80 0	80 0 98 85 65 5 70 95 35 5 70 70	40 5 35 55 15 0 0 85 30 0 35 10 70	85 10 100 85 65 5 10 65 85 20 0 60 35
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp	75 10 90 25 70 5 0 35 80 5 0 15 60 70 0	5 70 0 90 70 30 5 0 40 80 30 0 25 15 60 5 g ai/ha stemerge:	60 65 0 85 70 40 0 5 70 30 0 45 45 40 5	5 65 0 90 35 65 5 0 5 55 15 0 65 30 80	0 0 0 10 0 0 0 0 0 10 10 10 15 5 5	40 5 50 50 65 0 0 35 30 0 45 15 25	35 0 50 35 0 0 0 0 15 0 0 10 20 20 0	10 70 5 60 10 55 5 5 30 85 30 0 10 50 85	75 15 95 70 55 5 5 20 70 90 30 20 60 30 80	60 5 90 40 75 10 0 10 100 35 0 60 20 80	60 5 100 70 75 5 5 10 85 25 0 10 25 80 0 0 0 0 0 0 0 0 0 0 0 0 0	80 0 98 85 65 5 70 95 35 5 70 70	40 5 35 55 15 0 0 85 30 0 35 10 70	85 10 100 85 65 5 10 65 85 20 0 60 35
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp	75 10 90 25 70 5 0 35 80 5 0 15 60 70 0	5 70 0 90 70 30 5 0 40 80 30 0 25 15 60 5 g ai/ha stemerge: rnyardgrasckgrass tickweed	60 65 0 85 70 40 0 0 5 70 30 0 45 45 40 5	5 65 0 90 35 65 5 0 5 55 15 0 65 30 80	0 0 0 10 0 0 0 0 0 10 10 10 15 5 5	40 5 50 50 65 0 0 35 30 0 45 15 25	35 0 50 35 0 0 0 0 15 0 0 10 20 20 0	10 70 5 60 10 55 5 5 30 85 30 0 10 50 85	75 15 95 70 55 5 5 20 70 90 30 20 60 30 80	60 5 90 40 75 10 0 10 100 35 0 60 20 80	60 5 100 70 75 5 5 10 85 25 0 10 25 80 0	80 0 98 85 65 5 70 95 35 5 70 70	40 5 35 55 15 0 0 85 30 0 35 10 70	85 10 100 85 65 5 10 65 85 20 0 60 35
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp	75 10 90 25 70 5 0 35 80 5 0 15 60 70 0 Ba Bl Ch Cc Cr	5 70 0 90 70 30 5 0 40 80 30 0 25 15 60 5 g ai/ha stemerge: rnyardgraackgrass tickweed rn abgrass, 1	60 65 0 85 70 40 0 5 70 30 0 45 45 40 5	5 65 0 90 35 65 5 0 5 55 15 0 65 30 80	0 0 0 10 0 0 0 0 0 10 10 10 15 5 5	40 5 50 50 65 0 0 35 30 0 45 15 25	35 0 50 35 0 0 0 0 15 0 0 10 20 20 0	10 70 5 60 10 55 5 5 30 85 30 0 10 50 85	75 15 95 70 55 5 5 20 70 90 30 20 60 30 80	60 5 90 40 75 10 0 10 100 35 0 60 20 80	60 5 100 70 75 5 5 10 85 25 0 10 25 80 0	80 0 98 85 65 5 70 95 35 5 70 70	40 5 35 55 15 0 0 85 30 0 35 10 70	85 10 100 85 65 5 10 65 85 20 0 60 35 90
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp	75 10 90 25 70 5 0 35 80 5 0 15 60 70 0 16 Po Baa BI Ct Cc Cr Fo	5 70 0 90 70 30 5 0 40 80 30 0 25 15 60 5 g ai/ha stemerge: rnyardgrasckgrass tickweed	60 65 0 85 70 40 0 5 70 30 0 45 45 40 5	5 65 0 90 35 65 5 0 5 55 15 0 65 30 80	0 0 0 10 0 0 0 0 0 10 10 10 15 5 5	40 5 50 50 65 0 0 35 30 0 45 15 25	35 0 50 35 0 0 0 0 15 0 0 10 20 20 0	10 70 5 60 10 55 5 5 30 85 30 0 10 50 85	75 15 95 70 55 5 5 20 70 90 30 20 60 30 80	60 5 90 40 75 10 0 10 100 35 0 60 20 80	60 5 100 70 75 5 5 10 85 25 0 10 25 80 0	80 0 98 85 65 5 70 95 35 5 70 70	40 5 35 55 15 0 0 85 30 0 35 10	85 10 100 85 65 5 10 65 85 20 0 60 35 90
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp	75 10 90 25 70 5 0 35 80 5 0 15 60 70 0 Ba Bl Ct Cc Cr Foo	5 70 0 90 70 30 5 0 40 80 30 0 25 15 60 5 g ai/ha stemerge: rnyardgrackgrass ickweed rn ackgrass, ; xtail, Gia	60 65 0 85 70 40 0 5 70 30 0 45 45 40 5	5 65 0 90 35 65 5 0 5 55 15 0 65 30 80	0 0 0 10 0 0 0 0 0 10 10 10 15 5 5	40 5 50 50 65 0 0 35 30 0 45 15 25	35 0 50 35 0 0 0 0 15 0 0 10 20 20 0	10 70 5 60 10 55 5 5 30 85 30 0 10 50 85	75 15 95 70 55 5 5 20 70 90 30 20 60 30 80	60 5 90 40 75 10 0 10 100 35 0 60 20 80	60 5 100 70 75 5 5 10 85 25 0 10 25 80 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0	80 0 98 85 65 5 70 95 35 5 70 70	40 5 35 55 15 0 0 85 30 0 35 10	85 10 100 85 65 5 10 65 85 20 0 60 35
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp	75 10 90 25 70 5 0 35 80 5 0 15 60 70 0 16 Po Ba Bla Bl	5 70 0 90 70 30 5 0 40 80 30 0 25 15 60 5 g ai/ha stemerge: rnyardgraackgrass tickweed rn abgrass, 1 xtail, Gia	60 65 0 85 70 40 0 5 70 30 0 45 45 40 5	5 65 0 90 35 65 5 0 5 55 15 0 65 30 80	0 0 0 10 0 0 0 0 0 10 10 10 15 5 5	40 5 50 50 65 0 0 35 30 0 45 15 25	35 0 50 35 0 0 0 0 15 0 0 10 20 20 0	10 70 5 60 10 55 5 5 30 85 30 0 10 50 85	75 15 95 70 55 5 5 20 70 90 30 20 60 30 80	60 5 90 40 75 10 0 10 100 35 0 60 20 80	60 5 100 70 75 5 5 10 85 25 0 10 25 80 0 0 0 0 0 5 5 80 0 0 0 0 0 0 0 0 0 0 0 0 0	80 0 98 85 65 5 70 95 35 5 70 70	40 5 35 55 15 0 0 85 30 0 35 10	85 10 100 85 65 5 10 65 85 20 0 60 35
Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp	75 10 90 25 70 5 0 35 80 5 0 15 60 70 0 16 Po Ba Bl Ct Cc Cr Fo Ga Joo Ka	5 70 0 90 70 30 5 0 40 80 30 0 25 15 60 5 g ai/ha stemerge: rmyardgraackgrass ickweed orn abgrass, 1 didium hnsongrasi	60 65 0 85 70 40 0 5 70 30 0 45 440 5	5 65 0 90 35 65 5 0 5 55 15 0 65 30 80	0 0 0 10 0 0 0 0 0 10 10 10 15 5 5	40 5 50 50 65 0 0 35 30 0 45 15 25	35 0 50 35 0 0 0 0 15 0 0 10 20 20 0	10 70 5 60 10 55 5 5 30 85 30 0 10 50 85	75 15 95 70 55 5 5 20 70 90 30 20 60 30 80	60 5 90 40 75 10 0 10 100 35 0 60 20 80	60 5 100 70 75 5 5 10 85 25 0 10 25 80 0 0 0 0 5 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	80 0 98 85 65 5 70 95 35 5 70 70	40 5 35 55 15 0 0 85 30 0 35 10	85 10 100 85 65 5 10 65 85 20 0 60 35

TABLE D-continued

	1A	BLE D-continued		
Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp Wheat		0 0 45 55 35 0 20 15 60		0 0 50 60 30 0 550 225 65 5
8 g ai/ha			Compounds	
Postemergence	35	156	157	220
Barnyardgrass Blackgrass Chickweed Corn Crabgrass, Large Foxtail, Giant Galium Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp	10 30 50 5 5 5 5 80 0 95 75 25 5 5 80 40 0 40 30 75	0 0 5 0 0 0 0 20 0 0 10 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 10 0 5 20 50 0 20 25 5 5 5 0 15 0 10 15 5	10 0 40 5 5 5 5 5 5 5 5 5 6 100 35 25 0 0 0 5 80 15 0 10 10 10 10 10 10 10 10 10
Wheat 4 g ai/ha	0	0	0 Compoun	0
Postemergence		157	2	220
Barnyardgrass Blackgrass Chickweed Corn Crabgrass, Large Foxtail, Giant Galium Johnsongrass Kochia Lambsquarters Morningglory Nutsedge, Yellow Oat, Wild Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp Wheat		0 0 5 0 0 0 10 0 0 20 0 0 0 0 0 0 35 5 0 0 0 0 0 0 0 0 0 0 0		5 0 10 5 5 5 5 5 5 5 0 0 0 5 0 45 15 0 0 0 5 5 7 5 15 0 0 0 15 15 15 15 15 15 15 15 15 15 15 16 16 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16
2 g ai/ha Postemergence	e		Compound 220	
Barnyardgrass Blackgrass Chickweed Corn Crabgrass, La Foxtail, Giant Galium Johnsongrass Kochia Lambsquarter Morningglory	rge		5 0 5 0 5 0 5 0 50 0 20 55 35	

TABLE D-continued

					TA	BLE D-	continue	ed						
		Ozer Oi Pişi Ra Rayı Soo Ve WW. W. Soo Ve WW. Soo Ve WW	atsedge, Y tt, Wild lseed Rap gweed gweed egrass, It ybean lvetleaf aterhemp heat 0 g ai/ha eemergen trnyardgra ackgrass om abgrass, I txtail, Gia dium hnsongras mbsquart orningglo	ce Large nt ss	IAI	BLE D-	continue	ed		0 0 0 70 5 0 115 5 15 0 mpound 62 100 90 70 100 100 100 98 100				
		Oi Pig Ra Ry So Ve Wa	itsedge, Y lseed Rap gweed gweed egrass, It ybean lvetleaf aterhemp heat	pe						60 100 100 85 95 95 100 100 50				
125 g ai/ha							Compo	unds						
Preemergence	53	54	55	57	58	60	62	63	104	113	118	120	131	144
Barnyardgrass Blackgrass Corn Crabgrass, Large Foxtail, Giant Galium Johnsongrass Lambsquarters Momingglory Nutsedge, Yellow Oilseed Rape Pigweed Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp Wheat	95 95 5 100 100 98 55 100 40 5 100 100 85 60 80 100 100 5	95 70 0 100 95 85 40 85 15 100 100 35 30 20 100 100 0	100 90 80 100 100 100 100 98 100 70 100 100 95 98 100 60	85 60 30 100 90 80 100 45 20 100 100 50 95 100 100 50	80 95 20 100 98 100 50 100 45 15 100 100 5 85 100 100 0	75 70 5 100 95 98 45 100 20 5 100 100 90 30 95 100 100 0	100 90 60 100 100 100 90 98 98 10 100 75 90 85 100 100 40	100 90 15 100 100 98 85 95 60 5 98 100 70 90 60 100 100	70 30 0 100 100 70 65 90 25 0 50 100 60 5 25 65 100	100 80 40 100 100 90 100 98 95 60 100 100 90 70 80 100 100 20	100 90 30 100 95 100 98 90 65 100 100 85 60 95 100 100	100 90 75 100 100 90 98 100 75 45 100 100 100 90 50 100 50 50 50 50 50 50 50 50 50	100 95 65 100 100 90 85 98 85 70 95 100 25 90 85 98 100 5	100 95 65 100 100 98 100 100 100 85 100 100 98 95 100 100 25
125 g ai/ha							C	Compoun	ds					
Preemergence		145		158	1	68	179		180	183	3	200	22	9
Foxtail, Giant Galium Johnsongrass Lambsquarters Morningglory	Barnyardgrass 100 20 Blackgrass 95 90 Corn 45 15 Crabgrass, Large 100 100 Foxtail, Giant 100 100 Galium 100 100 Johnsongrass 95 40 Lambsquarters 100 80 Morningglory 100 70 Nutsedge, Yellow 45 5 Oilseed Rape 100 98			10 10 10 10 10 10 10	00 90 55 00 00 00 00 98 00 45	35 80 5 100 85 98 65 100 15 25 100		80 70 30 100 100 98 90 90 100 30 100	100 100 92 43 100 40	0 5 0 0 5 5 5 0 0 0 5 5	100 90 20 100 100 95 100 100 90 15 100	10 8 4 10 9 9 7, 9 4 4 10	5 0 0 8 8 8 0 5 5 5 0	

					TAE	BLE D)-continu	ed						
Ragweed Ryegrass, Italian Soybean Velvetleaf Waterhemp Wheat		100 85 90 100 100		50 20 95 70 100	10 9 8 10 10 8	5 5 0 0	60 80 45 100 100 35		55 65 80 100 100 30	10 50 80 100 100		80 90 85 100 100 40	6 9 10 9	95 50 95 90 98
62 g ai/ha							Compo	ounds						
Preemergence	32	35	53	54	55	57	58	60	62	63	104	113	118	120
Barnyardgrass	98	100	40	10	100	75	65	30	98	98	25	98	100	90
Blackgrass	35	90	90	40	90	50	80	10	90	90	0	70	60	90
Corn	0	15	100	0	35	5	10	0	30	15	0	25	30	25
Crabgrass, Large	100	100	98	90	100	100	100	100	100	98	98	100	100	100
Foxtail, Giant	95 75	100	98	95 60	100	100	85	40 100	100	98	90 75	100	100	98 90
Galium Johnsongrass	75 85	100 98	100 35	10	100 85	90 40	100 20	150	100 75	98 70	75 15	98 90	95 85	95
Lambsquarters	100	100	100	85	100	100	100	85	95	90	90	98	95	90
Morningglory	0	90	45	5	100	35	0	10	55	25	25	85	85	60
Nutsedge, Yellow	25	5	0	0	55	20	0	0	5	0	0	15	15	35
Oilseed Rape	100	100	100	100	100	100	100	90	98	98	30	100	100	95
Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Ragweed	70	80	55	10	90	100	75	65	65	55	55	85	70	25
Ryegrass, Italian	10	80	15	5	85	5	0	0	60	80	0	60	65	90
Soybean Volvetleef	65 85	85	55	20 85	95	95	80	65	70 100	45 100	25 70	90 100	80	60 100
Velvetleaf Waterhemp	85 98	100 100	100 100	85 100	100 100	100 100	100 100	100 100	100	100	100	100	100 100	100
Wheat	5	15	0	0	25	0	0	0	100	100	5	100	0	5
62 g ai/ha								npounds				- 10		
_		121	1.42	1.44	1.15			-	170	190	1	02	200	220
Preemergence		131	143	144	145		158	168	179	180		83	200	229
Barnyardgrass Blackgrass		85 90	98 90	100 95	85 95		35 50	100 90	15 45	35 60		30 0	100 90	65 70
Corn		60	100	15	10		5	25	0	5		0	10	5
Crabgrass, Large		100	100	100	100		85	100	75	100		98	100	100
Foxtail, Giant		100	100	100	100		85	100	85	85		80	100	90
Galium		90	80	98	100		100	100	90	98		95	100	98
Johnsongrass		80	80	100	90		10	85	20	60		20	85	45
Lambsquarters		85	85	100	100		100	100	100	100		90	95	80
Morningglory		35	55	100	90		15	80	0	5		5	70	35
Nutsedge, Yellow Oilseed Rape		5 85	5 95	50 100	30 100		5 90	15 100	0	0 100	1	0 00	0 100	10 100
Pigweed Kape		100	100	100	100		100	100	100	100		00	100	100
Ragweed		0	40	100	75		70	100	40	15	1	0	70	55
Ryegrass, Italian		35	70	80	70		Ö	95	15	50		15	85	20
Soybean		50	25	90	75		45	55	30	60		35	40	60
Velvetleaf		80	85	100	100		40	100	85	90		90	100	100
Waterhemp Wheat		100	100 0	100 25	100 5		100	100 45	90 0	95 0		95 0	100 20	98 0
31 g ai/ha							Compo							
_	32	35	53	54	55	57	58	60	62	62	104	112	110	120
Preemergence									62	63		113	118	
Barnyardgrass Blackgrass	55 30	75 90	5 25	5 5	85 90	20 5	5 5	5 5	50 5	65 85	10 0	95 40	60 10	75 60
Blackgrass Corn	30 0	90	25 10	0	20	0	20	0	3 35	85 5	0	40	10 5	35
Crabgrass, Large	98	100	95	75	100	85	20 90	55	35 95	98	85	100	100	100
Foxtail, Giant	85	98	95 85	10	100	90	15	55 5	95 95	80	80	100	100	98
Galium	65	100	95	85	100	70	98	85	100	98	80	90	98	98
Johnsongrass	75	60	0	0	75	10	10	0	30	35	20	70	70	55
Lambsquarters	98	98	100	60	100	100	100	80	100	90	80	98	90	95
Morningglory	5	55	0	0	50	20	25	0	25	0	5	35	5	30
Nutsedge, Yellow	0	5	0	0	10	10	0	0	0	0	0	10	0	5
Oilseed Rape	100	100	100	85	100	100	98	98	100	98	0	100	98	90
Pigweed	98	100	100	100	100	85	100	100	100	100	100	100	100	100
Ragweed	75	75	40	40	75	35	35	55	0	20	25	55	20	0
Ryegrass, Italian	0	30	10	5	35	0	0	0	40	40	0	10	5	35
Soybean	25	60	25	10	35	65	35	55	60	15	20	40	75	10
Velvetleaf	55	85	100	70	100	100	100	100	90	100	50	85	70	75
Waterhemp	100	100	100	85	100	90	100	100	100	100	100	100	100	100
Wheat	0	5	0	0	0	0	0	0	0	0	0	5	0	0

TABLE D-continued

31 g ai/ha							Comp	ounds						
Preemergence	131	143	144	145	i	157	158	168	:	179	180	183	200	229
Barnyardgrass	75	70	80	85		5	5	75		5	0	5	95	55
Blackgrass	80	15	95	90		5	15	90		30	0	0	90	15
Corn	10	5	5	5		0	0	15		0	0	0	0	5
Crabgrass, Large Foxtail, Giant	100 100	100 100	98 100	100 100		40 20	90 55	100 100		65 30	75 60	70 35	100 100	85 70
Galium	30	80	98	98		85	50	100		90	80	50	98	80
Johnsongrass	30	60	75	75		5	0	95		0	10	5	60	10
Lambsquarters	80	85	100	100)	100	100	100		100	100	85	98	80
Morningglory	40	35	75	55		10	15	70		0	0	0	45	0
Nutsedge, Yellow		0	30	100		0	0	5		0	0	0	0	0
Oilseed Rape Pigweed	50 100	85 100	100 100	100 100		100 100	50 75	100 100		95 100	95 98	100 60	100 100	100 100
Ragweed	0	30	85	60		0	60	45		30	5	0	5	50
Ryegrass, Italian	20	5	60	35		5	0	95		5	0	ŏ	80	20
Soybean	10	10	75	60		50	25	30		0	25	10	10	35
Velvetleaf	65	75	100	100		75	25	100		65	85	80	100	90
Waterhemp	100	98	100	100		100	100	100		90	95	100	100	100
Wheat	0	0	5	0)	5	0	5		0	0	0	5	0
16 g ai/ha								ounds						
Preemergence	32	35	53	54	55	57	58	60	63	104	113	118	120	131
Barnyardgrass	5	65	0	0	25	5	5	0	30	0	30	10	25	30
Blackgrass	0	70	5	5	15	5	0	0	30	0	10	0	70	5
Corn Crabgrass, Large	0 90	0 100	5 65	0 10	5 100	0 75	5 25	0 5	0 65	0 65	0 98	0 100	0 98	0 98
Foxtail, Giant	35	90	10		100	73 50	23	0	30	30	98 85	98	98 95	98 80
Galium	25	100	85		100	80	0	98	75	90	90	60	90	95
Johnsongrass	45	10	0	0	30	0	10	0	5	5	10	10	50	0
Lambsquarters	95	100	100		100	80	25	10	95	65	85	90	70	75
Morningglory	0	0	0	0	10	10	10	0	0	5	20	30	0	0
Nutsedge, Yellow		0	20 80	0	0	0	0	0	0	0	0	0	0	0
Oilseed Rape Pigweed	80 100	98 100	80 95		100 100	100 75	60 50	80 75	70 95	100	98 100	85 100	50 100	10 100
Ragweed	60	40	0	10	70	25	100	15	75	40	40	85	0	0
Ryegrass, Italian	0	0	0	0	15	0	0	0	0	0	5	0	5	0
Soybean	15	30	0	0	25	_	30	35	5	10	35	80	75	5
Velvetleaf	40	85		15	90	100	85	60	40	25	70	80	50	20
Waterhemp	100	100	100		100	100	100	80	90	100	100	100	100	100
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16 g ai/ha							Comp	ounds						
Preemergence	143	144	14	5	157	158		168	179	9	180	183	200	229
Barnyardgrass	20 10		6 1		0	0		35 85	0		0	5 0	35 85	15 15
Blackgrass Corn	0			0	5	0		85 0	0		0	0	85	15
Crabgrass, Large	98		8		5	25		100	10		30	5	98	75
Foxtail, Giant	85		8		ő	5		100	5		5	5	95	5
Galium	10		9		80	0		100	90		75	50	85	40
Johnsongrass	15		1		0	0		35	0		0	0	25	10
Lambsquarters	70		10		100	75		90	75		95	80	75	35
Morningglory Nutsedge, Yellow	10 0		1	5 0	0	5		5 5	0		0	0	5 0	0
Oilseed Rape	0		4		40	40		95	30		70	50	85	90
Pigweed	100		10		100	70		85	30		80	50	100	100
Ragweed	0	75	2		0	80		35	25		0	0	0	35
Ryegrass, Italian	5			0	0	0		70	0		0	0	30	0
Soybean	5		1		0	0		5	0		5	0	100	5
Velvetleaf Waterhemp	30 100		9 10		45 100	35 100		85 100	15 75		75 40	40 10	100 98	70 95
Wheat	0			0	0	0		0	0		0	0	0	0
8 g	; ai/ha							С	ompou	nds				
Pre	emergence		3	32		3	35			143		15	57	
Rai	rnyardgrass			0			5			5			0	
	ckgrass			0			70			0			0	
Co	-			0			0			0			0	
Cra	abgrass, Large		1	00			80			60			0	

TABLE D-continued

				IABLE	D-conunu	ea				
Foxtail, Giant			0		70		40		0	
Galium			0		85		10		80	
Johnsongrass			0		0		35		0	
Lambsquarters			95		100		25		25	
Morningglory			0		0		0		0	
Nutsedge, Yel	low		60		0		0		0	
Oilseed Rape			50		85		0		0	
Pigweed			100		100		90		100	
Ragweed			75		55		0		0	
Ryegrass, Itali	ian		0		0		0		0	
Soybean Velvetleaf			10 5		10 65		0 35		0 5	
Waterhemp			100		100		95		70	
Wheat			0		0		93		0	
Wilcat			0							
		ai/ha emergence					Compo 157			
		nyardgrass					0			
		ckgrass					0			
	Cor		_				0			
		bgrass, Larg tail, Giant	ţe.				0			
		ium					70			
		nsongrass					0			
		nsongrass					0			
		rningglory					0			
		sedge, Yello	w				ő			
		seed Rape	•••				0			
		weed					20			
		weed					0			
		grass, Italia	n				0			
		bean	-				0			
		vetleaf					ő			
		erhemp					o o			
	Wh						0			
250 g ai/ha						Compounds				
Flood	1	32	40	53	55	144	14	.5 178	180	221
	0		0	0						
Barnyardgrass Ducksalad	0	20 95	40	80	30 90	35 100	35 95		10 75	60 90
Rice	0	15	0	0	0	40	35		0	40
Sedge, Umbrella	0	90	50	75	100	95	90		80	95
	-	90	30	13	100	93		, ,,	80	93
125 g ai/ha						npounds				
Flood	1	32	40	53	55	144		145	178	180
Barnyardgrass	0	10	0	0	10	15		0	0	10
Ducksalad	0	65	20	80	85	90		95	70	75
Rice	0	0	0	0	0	25		15	0	0
Sedge, Umbrella	0	65	30	70	85	95		90	60	75
62 g ai/ha					Cor	npounds				
Flood	1	32	40	53	55	144	145	178	180	221
Barnyardgrass	0	0	0	0	0	0	0	0	0	40
Ducksalad	0	60	0	50	80	85	85	65	0	80
Rice	0	0	0	0	0	85 15	15	0	0	15
Sedge, Umbrella	0	40	0	0	75	80	75	60	50	80
31 g ai/ha						ompounds				
Flood	1	32	40	53	55			145	178	180
Barnyardgrass	0	0	0	0	0		0	0	0	0
Ducksalad	0	0	0	40	75			80	40	0
Rice	0	0	0	0	0		0	0	0	0
Rice Sedge, Umbrella		0 0	0	0	0 75			0 60	0 30	0 0

Mustard, Wild

Oat, Wild

Test E

[0473] Seeds of plant species selected from bluegrass (annual bluegrass, Poa annua), blackgrass (Alopecurus myosuroides), canarygrass (Phalaris minor), chickweed (common chickweed, Stellaria media), galium (catchweed bedstraw, Galium aparine), downy bromegrass (Bromus tectorum), field poppy (Papaver rhoeas), field violet (Viola arvensis), green foxtail (Setaria viridis), deadnettle (henbit deadnettle, Lamium amplexicaule), Italian ryegrass (Lolium multiflorum), kochia (Kochia scoparia), lambsquarters (Chenopodium album), oilseed rape (Brassica napus), pigweed (Amaranthus retroflexus), Russian thistle (Salsola iberica), chamomile (scentless chamomile, Matricaria inodora), speedwell (bird's-eye speedwell, Veronica persica), spring barley (Hordeum vulgare), spring wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), wild mustard (Sinapis arvensis), wild oat (Avena fatua), wild radish (Raphanus raphanistrum), windgrass (Apera spicaventi), winter barley (Hordeum vulgare), and winter wheat (Triticum aestivum) were planted into a silt loam soil and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant. At the same time, these species were planted in pots containing Redi-Earth® planting medium (Scotts Company, 14111 Scottslawn Road, Marysville, Ohio 43041) comprising spaghnum peat moss, vermiculite, wetting agent and starter nutrients and treated with postemergence applications of the test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage).

[0474] Treated plants and controls were maintained in a controlled growth environment for 7 to 21 days after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table E, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

		7	Γ AB LE	ЕЕ				
125 g ai/ha				Comp	pounds			
Postemergence	35	53	55	62	144	145	168	200
Barley, Spring	25	10	20	25	45	30	25	35
Barley, Winter	30	10	10	35	45	40	15	25
Blackgrass	60	25	40	75	85	80	60	75
Bluegrass	60	5	25	60	65	70	15	70
Bromegrass, Downy	30	5	10	40	75	55	35	35
Buckwheat, Wild	95	95	95	100	100	100	100	100
Canarygrass	60	40	30	55	85	65	55	60
Chamomile	10	0	5	10	95	30	10	15
Chickweed	100	65	70	90	100	95	90	100
Deadnettle	80	65	80	70	_	100	80	90
Field Poppy	100	80	95	75	100	100	100	100
Field Violet	75	70	90	85	100	100	95	95
Foxtail, Green	55	25	60	65	100	98	75	55
Galium	85	75	85	90	100	100	85	90
Kochia	90	80	85	95	100	100	85	90
Lambsquarters	90	75	90	95	100	95	95	95
Mustard, Wild	100	95	95	100	100	100	95	100
Oat, Wild	60	25	50	60	90	80	65	35
Oilseed Rape	100	80	95	100	100	100	100	100
Pigweed	90	90	95	95	100	100	95	90
Radish, Wild	95	90	80	100	100	100	85	95
Russian Thistle	_	_	_	_	98	100	_	_
Ryegrass, Italian	60	5	20	35	65	40	25	40
Speedwell	100	100	100	100	100	100	100	100
Wheat, Spring	40	35	45	40	75	55	40	35
Wheat, Winter	40	35	40	35	70	55	35	25
Windgrass	40	20	40	65	55	60	40	45
62 g ai/ha				Comj	pounds			
Postemergence	35	53	55	62	144	145	168	200
Barley, Spring	10	10	15	20	35	20	15	25
Barley, Winter	5	5	5	20	35	30	10	20
Blackgrass	55	10	20	40	60	65	35	55
Bluegrass	40	5	15	55	55	65	10	55
Bromegrass, Downy	15	5	10	20	40	55	25	25
Buckwheat, Wild	90	90	95	95	100	100	95	95
Canarygrass	55	25	30	45	65	40	25	45
Chamomile	5	5	5	5	80	30	10	10
Chickweed	75	60	70	80	100	100	70	100
Deadnettle	70	60	70	65	_	100	75	80
Field Poppy	80	80	100	70	100	100	100	100
Field Violet	75	70	85	70	100	90	90	75
Foxtail, Green	55	10	50	25	80	40	60	45
Galium	75	75	80	75	100	98	80	75
Kochia	80	70	85	90	100	100	85	85
Lambsquarters	85	65	85	95	98	95	90	90
1							- 1	

95

10

40

35

100

65

100

100

35

100

30

95

		TABL	E E-ce	ontinu	ed			
Oilseed Rape	95	80	90	80	100	100	95	100
Pigweed	90	90	95	95	100	100	95	90
Radish, Wild	85	90	80	90	100	100	80	85
Russian Thistle Ryegrass, Italian			1.5		95	90	20	25
Speedwell	25 100	95	15 100	30 100	40 100	25 100	20 90	25 100
Wheat, Spring	25	20	25	25	45	45	25	20
Wheat, Winter	25	15	30	30	35	35	25	15
Windgrass	30	10	25	30	25	20	25	35
31 g ai/ha				Comp	ounds			
Postemergence	35	53	55	62	144	145	168	200
Barley, Spring	5	5	10	15	25	15	15	15
Barley, Winter	0	5	0	10	20	15	10	10
Blackgrass	35	5	10	30	50	35	25	35
Bluegrass	20	0	0	35	45	60	5	35
Bromegrass, Downy	5	0	0	15	35	35	15	10
Buckwheat, Wild	85	65	95	80	95	100	95	70
Chamamila	25 5	10 5	20 5	35 5	60 75	25 30	15 5	35 10
Chamomile Chickweed	75	50	55	70	100	85	45	75
Deadnettle	60	30	50	35		100	55	60
Field Poppy	75	65	90	55	100	100	85	80
Field Violet	65	50	70	65	90	100	75	80
Foxtail, Green	35	10	45	20	50	30	60	35
Galium	80	75	85	70	95	95	75	75
Kochia	75	55	70	75	100	100	80	85
Lambsquarters	80	70	80	95	95	90	85	85
Mustard, Wild	85	75	85	100	100	100	95	95
Oat, Wild	15	5	15	25	25	30	10	20
Oilseed Rape	80	75	75	80	100	100	85	85
Pigweed	90	85	90	90	100	100	80	90
Radish, Wild	75	60	70	70	100	100	75	80
Russian Thistle	_	_	_	_	90	85	_	_
Ryegrass, Italian	5	0	20	20	15	10	10	10
Speedwell	100	60	80	95	100	100	75	100
Wheat, Spring	10	10	15	20	35	35	20	10
Wheat, Winter Windgrass	15 25	5 5	15 10	20 20	30 20	20 10	10 15	5 20
			10			10	15	20
16 g ai/ha		52			npounds	1.45	1.60	200
Postemergence	35	53	55	62	144	145	168	200
Barley, Spring	5	5	10	10	15	15	10	10
Barley, Winter	0	5	0	5	30	15	5	5
Blackgrass	20	0	5	15	25	25	15	15 20
Bluegrass Bromegrass, Downy	15 5	0	5	10 10	25 25	15 25	10 5	5
Buckwheat, Wild	75	70	65	75	100	100	65	65
Canarygrass	10	5	10	25	35	15	15	10
Chamomile	5	5	5	0	80	20	5	5
Chickweed	65	30	55	65	85	80	50	65
Deadnettle	40	20	20	35	_	100	20	50
Field Poppy	70	60	85	40	100	100	55	75
Field Violet	60	25	65	60	95	65	75	70
Foxtail, Green	20	10	30	15	40	15	20	25
Galium	70	75	70	70	80	95	75	70
Kochia	75	50	65	65	100	98	80	70
Lambsquarters	80	65	75	75	80	90	75	75
Mustard, Wild	90	65	70	75	100	100	75	75
Oat, Wild	10	5	10	15	20	15	5	10
Oilseed Rape	70	70	75	65	100	70	70	75
Pigweed	85	85	85	90	98	100	90	85
Radish, Wild	65	60	75	65	100	95	70	65
Russian Thistle	_	_	20	1.0	85	80	_	_
Ryegrass, Italian	0	0	20	10	5	5	5	5
Speedwell Wheat Spring	75	60	75 5	70	100	100	80	70
Wheat, Spring Wheat, Winter	0 5	10 5	5 0	5 10	25 20	30 15	10 5	5 0
Windgrass	10	5	5	10	10	5	10	10
1111251400	10	3	3	10	10	,	10	10

TABLE E-continued

105 17		17 1111/1	J 15-CO	nunued				
125 g ai/ha				Compo	ounds			
Preemergence	35	53	55	62	144	145	168	200
Barley, Spring	_	35	50	0	65	80	35	_
Barley, Winter		25	35	5	55	85	40	_
Blackgrass	95	30	100	65	100	75	100	100
Bluegrass Brownson Downw	70 25	25 15	100 55	75 20	85 55	90 60	100 40	100 80
Bromegrass, Downy Buckwheat, Wild	100	100	100	100	100	100	100	100
Canarygrass	100	95	100	90	100	100	100	100
Chamomile	70	_	_	65	100	100	_	75
Chickweed	100	100	100	100	100	100	100	100
Deadnettle	95	65	0	100	100	100	100	100
Field Poppy	90	100	100	100	100	100	100	95
Field Violet	100	100	100	100	100	100	100	100
Foxtail, Green	100	55	100	85	100	100	100	100
Galium	100	100	100	100	100	100	100	100
Kochia Lambsquarters	100 100							
Mustard, Wild	95	100	100	100	100	100	100	100
Oat, Wild	35	25	45	20	75	85	50	75
Oilseed Rape	100	100	100	100	100	100	100	100
Pigweed	100	100	100	100	100	100	100	100
Radish, Wild	100	90	100	100	100	100	100	95
Russian Thistle	_	_	_	_	100	100	_	_
Ryegrass, Italian	75	25	50	25	100	70	75	85
Speedwell	100	100	100	100	100	100	100	100
Wheat, Spring	_	10	35	10	55	70	30	_
Wheat, Winter Windgrass	100	30 50	20 100	5 50	35 100	75 98	30 100	100
	100	30	100			96	100	100
62 g ai/ha				Compo	ounds			
Preemergence	35	53	55	62	144	145	168	200
Barley, Spring	_	35	45	0	45	45	30	_
Barley, Winter		30	10	5	55	30	25	
Blackgrass Bluegrass	65 35	25 20	60 10	15 10	98 40	60 10	100 80	90 95
Bromegrass, Downy	35	15	55	10	35	35	10	45
Buckwheat, Wild	90	100	100	80	100	85	100	100
Canarygrass	95	65	100	50	100	100	100	100
Chamomile	70	_	_	60	100	100	_	60
Chickweed	95	100	100	100	100	100	100	100
Deadnettle	95	50	0	40	100	100	80	100
Field Poppy	90	100	100	100	100	100	100	95
Field Violet	90	60	100	35	100	100	100	1.00
Foxtail, Green Galium	90 100	20 60	100 70	65 65	95 100	55 100	100 100	100 55
Kochia	100	55	100	85	100	100	100	100
Lambsquarters	90	100	100	95	100	100	100	100
Mustard, Wild	95	100	100	95	100	100	95	85
Oat, Wild	45	10	35	15	65	30	35	30
Oilseed Rape	100	100	100	65	100	100	65	100
Pigweed	100	100	100	100	100	100	100	100
Radish, Wild	100	100	100	95	100	85	100	95
Russian Thistle	_	_			100	60	_	_
Ryegrass, Italian	35	25	50	15	70	50	30	30
Speedwell Wheet Spring	100	100	100	95	100	100	100	100
Wheat, Spring Wheat, Winter	_	10 25	15 10	0	40 25	20 25	20 10	_
Windgrass	85	35	100	50	100	75	100	100
31 g ai/ha				Compo	ounds			
	35	53	55			1.45	1.60	200
Preemergence	33			62	144	145	168	200
Barley, Spring	_	35	10	0	25	25	15	_
Barley, Winter	_	10	10	0	35 75	15	5	7.5
Blackgrass	60	10	15	15	75 15	50	35	75
Bluegrass Bromegrass, Downy	35 35	10 15	10 20	5 0	15 10	0 20	10 10	70 35
Buckwheat, Wild	33 75	100	100	35	100	100	65	33 75
Canarygrass	55	20	20	0	80	75	15	55
Chamomile	10	_	_	65	20	100	_	25
Chickweed	100	100	100	75	100	100	80	90

	1	TABLI	E E-co	ntinue	d			
Deadnettle	80	10	0	20	100	100	50	90
Field Poppy	80	100	100	75	100	100	100	90
Field Violet	70	25	80	10	100	100	100	50
Foxtail, Green	90	10	25	40	35	45	100	25
Galium	55	30	100	60	70	100	60	25
Kochia	65	15	100	5	100	100	100	100
Lambsquarters	85	75	100	85	100	100	100	85
Mustard, Wild	60	100	100	80	100	100	80	95
Oat, Wild	0	0	15	10	30	30	10	0
Oilseed Rape	95	75	100	25	80	100	40	100
Pigweed	95	20	100	100	100	100	100	100
Radish, Wild	95	70	100	40	80	15	45	70
Russian Thistle	_	_	_	_	65	10	_	_
Ryegrass, Italian	25	10	0	0	25	20	0	25
Speedwell	100	70	100	95	100	100	100	100
Wheat, Spring	_	5	15	0	15	15	15	_
Wheat, Winter	_	15	10	0	15	20	10	_
Windgrass	80	15	25	15	75	25	15	55
16 g ai/ha				Comp	ounds			
Preemergence	35	53	55	62	144	145	168	200
Barley, Spring	_	35	10	0	10	15	0	
Barley, Winter	_	15	5	0	30	10	0	_
Blackgrass	30	10	0	5	15	10	10	25
Bluegrass	0	10	0	0	10	0	0	20
Bromegrass, Downy	0	0	20	0	10	10	0	10
Buckwheat, Wild	60	65	65	25	85	100	0	65
Canarygrass	40	10	10	0	35	40	15	10
Chamomile	5	_	_	0	15	5	_	25
Chickweed	55	100	65	65	100	100	100	70
Deadnettle	35	10	0	15	90	0	10	60
Field Poppy	75	100	100	65	100	100	80	80
Field Violet	15	50	70	0	95	100	85	_
Foxtail, Green	5	10	10	20	20	0	10	_
Galium	25	25	10	5	20	25	60	15
Kochia	25	10	55	0	98	60	35	70
Lambsquarters	65	60	95	35	100	100	45	10
Mustard, Wild	20	90	80	25	90	95	80	85
Oat, Wild	0	0	0	0	35	25	10	0
Oilseed Rape	60	50	20	10	35	50	10	60
Pigweed	90	30	75	95	100	100	55	100
Radish, Wild	100	50	70	25	80	15	0	80
Russian Thistle	_	_	_	_	15	0	_	_
Ryegrass, Italian	0	10	0	0	10	10	0	0
Speedwell	100	100	100	95	100	95	100	100
Wheat, Spring	_	5	15	0	5	15	15	_
Wheat, Winter	_	15	5	0	0	0	5	_
Windgrass	35	0	5	0	10	10	0	15

Test F

[0475] Seeds of plant species selected from corn (Zea mays), soybean (Glycine max), velvetleaf (Abutilon theophrasti), lambsquarters (Chenopodium album), wild poinsettia (Euphorbia heterophylla), palmer pigweed (Amaranthus palmeri), waterhemp (common waterhemp, Amaranthus rudis), surinam grass (Brachiaria decumbens), large (Lg) crabgrass (Digitaria sanguinalis), Brazilian crabgrass (Digitaria horizontalis), fall panicum (Panicum dichotomiflorum), giant foxtail (Setaria faberii), green foxtail (Setaria viridis), goosegrass (Eleusine indica), johnsongrass (Sorghum halepense), ragweed (common ragweed, Ambrosia elation), barnyardgrass (Echinochloa crus-galli), sandbur (southern sandbur, Cenchrus echinatus), arrowleaf sida (Sida rhombifolia), Italian ryegrass (Lolium multiflorum), dayflower (Virginia (VA) dayflower, Commelina virginica), field bindweed (Convolvulus arvensis), cocklebur (common cocklebur, Xanthium strumarium), morningglory (Ipomoea coccinea), nightshade (eastern black nightshade, Solanum ptycanthum), kochia (Kochia scoparia), yellow nutsedge (Cyperus esculentus), and hairy beggarticks (Bidens pilosa), were planted into a silt loam soil and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

[0476] At the same time, plants from these crop and weed species and also waterhemp_RES1, (ALS & Triazine resistant common waterhemp, *Amaranthus rudis*), and waterhemp_RES2, (ALS & HPPD resistant common waterhemp, *Amaranthus rudis*) were treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm for postemergence treatments (1- to 4-leaf stage).

[0477] Treated plants and controls were maintained in a greenhouse for 14 to 21 days, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table F, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

TABLE F

125 g ai/ha							Compo	unds					
Postemergence	35	53	58		62	96	144	145	149	179	200	212	221
Arrowleaf Sida	98	98	90		98	95	100	95	98	100	95	100	98
Barnyardgrass	20	10	5		20	20	75	70	10	0	25	10	70
Beggarticks	70	60	65		80	40	75	70	50	50	10	40	70
Corn	20	10	5		10	10	10	20	15	15	25	0	20
Crabgrass, Brazil	40	20	10		10	25	55	50	25	30	20	35	75
Dayflower, VA	80	60	10		65	70	85	85	50		35	50	80
Field Bindweed Horseweed	70	60	50		75	50 10	90 25	90 40	75 20	50 10	35	70 10	80 30
Kochia		98	75			95	23 95	100	95	95	_	100	100
Panicum, Fall	50	60	15		60	25	60	80	40	10	15	10	60
Pigweed, Palmer	100	100	60		.00	90	100	100	100	85	100	98	100
Poinsettia, Wild	80	70	60		50	50	65	80	70	35	80	60	80
Ragweed	_	_	_		_	40	90	70	35	50	_	50	80
Ryegrass, Italian	0	0	0		10	10	40	15	5	0	20	0	5
Sandbur	0	10	10		0	0	20	15	10	10	5	10	0
Soybean Waterhemp	98 100	95 100	95 90		.00	80 95	95 100	95 100	90 98	90 100	90 100	95 100	95 100
Waterhemp_RES1	100	100	75		.00	95 95	100	100	100	100	98	98	98
Waterhemp_RES2	100	100	80		.00	95	100	100	100	100	98	100	100
62 g ai/ha							Compo	unds					
Postemergence	35	53	55	58	62	96		145	149	179	200	212	221
Arrowleaf Sida	98	100	100	75	98	90	100	98	95	85	95	85	98
Barnyardgrass	10	0	35	0	20	20		50	10	0	15	0	30
Beggarticks	65	50	70	50	50	40	70	65	40	40	10	40	70
Corn	15	0	20	5	5	10		20	10	10	20	0	10
Crabgrass, Brazil	35	20	30	10	15	20		40	20	20	20	30	45
Dayflower, VA	50	50		20	25	70		75	40	_	15	40	80
Field Bindweed Horseweed	50	50	70 20	30	50	20		80 20	50 10	35 10	35	60 15	10
Kochia		— 95	98	60	_	75		95	90	90	_	100	100
Panicum, Fall	50	15	30	10	10	10		50	20	15	5	100	40
Pigweed, Palmer	100	100	98	70	100	95		100	98	85	100	100	100
Poinsettia, Wild	50	70	45	50	50	60	70	80	60	20	60	50	70
Ragweed		_	55	_	_	20		60	30	40	_	30	70
Ryegrass, Italian	0	5	10	0	10	0		10	10	0	15	0	0
Sandbur	0	5	15	0	0			5	15	5	0	0	0
Soybean Waterhemp	95 100	95 100	95 100	90 80	65 100	40 100		95 100	90 95	75 95	65 98	75 95	98 95
Waterhemp_RES1	100	95	100	70	100	95		100	90	100	95	95 95	100
Waterhemp_RES2	100	100	100	75	100	90		100	100	100	98	98	95
31 g ai/ha							Compo	unds					
Postemergence	35	53	55	58	62	9	6 144	145	149	179	200	212	221
Arrowleaf Sida	95	98	95	60	95			95	85	80	85	70	90
Barnyardgrass	0	0	50	0	20			25	5	0	0	0	25
Beggarticks Corn	60 15	40 0	55 15	50 0	10		0 60 5 5	50 10	30 10	50 0	5 10	40 0	60 10
Crabgrass, Brazil	30	15	40	5	10		5 50	20	20	20	15	30	25
Dayflower, VA	40	30	70	10	5			60	20	_	25	20	70
Field Bindweed	35	50	25	20	35			75	50	25	35	40	75
Horseweed	_	_	15	_	_		0 0	20	20	0	_	0	5
Kochia	_	80	95	30	_	7.		100	80	75	_	90	98
Panicum, Fall	40	20	40	0	5			10	20	10	5	0	15
Pigweed, Palmer	95	90	98	50	95			100	95	90	98	75	90
Poinsettia, Wild	50	60	35 55	60	40			75 50	40	15	40	40	75 60
Ragweed Ryegrass, Italian		_	55	_	_	2		50	40	40	_	20	60
Ryegrass, Italian Sandbur	0	0	0 25	0	0		0 20 0 15	5 5	10 5	0	0	0	0
Soybean	85	95	23 70	70	40			95	85	50	40	50	95
Waterhemp	90	93 98	90	65	100			98	95	95	95	90	98
Waterhemp_RES1	90	90	100	65	100			98	85	90	90	80	95
Waterhemp_RES2	95	90	100	70	100			90	95	100	95	95	98

TABLE F-continued

				Т.	ABLE	F-cont	inued					
16 g ai/ha							Compoun	ıds				
Postemergence	35	53	58	62	96	144	145	149	179	200	212	221
Arrowleaf Sida	80	90	70	80	70	100	95	75	70	75	75	80
Barnyardgrass	0	0	0	15	0	10	10	0	0	0	0	15
Beggarticks	50 10	30 0	40 0	5	0	70 10	55	5 0	20	0	25 0	50
Corn Crabgrass, Brazil	20	10	5	0	0	40	5 20	20	5 10	10	20	5 20
Dayflower, VA	40	40	5	0	20	50	50	10		0	30	60
Field Bindweed	30	55	10	40	5	70	70	60	15	20	30	70
Horseweed	_	_	_	_	0	0	0	0	0		0	0
Kochia	_	60	40	_	65	95	98	60	65	_	50	95
Panicum, Fall	40	5	0	0	0	25	10	10	15	5	0	10
Pigweed, Palmer	75	65	50	70	70	90	95	65	70	95	30	85
Poinsettia, Wild	40	50	30	35	0	50	70	50	15	50	35	65
Ragweed	_	_	_	_	15	50	30	10	45	_	20	50
Ryegrass, Italian	0	0	0	0	0	10	10	0	0	0	0	0
Sandbur Soybean	0 8 0	0 80	0 50	0 20	0 4 0	10 65	5 95	0 50	0 60	0 20	0 50	0 60
Waterhemp	85	95	60	90	75	100	95 95	85	70	80	90	90
Waterhemp_RES1	80	85	20	85	85	90	95	80	90	75	70	85
Waterhemp_RES2	90	80	60	80	85	98	95	95	95	95	70	90
8 g ai/ha							Comp	ounds				
Postemerge	ence		3:	5		53	5	8	62		200	
Arrowleaf			60			70		0	65		65	
Barnyardgr				0		0		0	10		0	
Beggarticks	5		50			15	4		5		0	
Corn Crabgrass,	Daggil		10 10			0		0 5	0		0 10	
Dayflower,			10			30		5 5	0		0	
Field Binds			20			30	1		40		20	
Kochia	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_	_		50		0	_		_	
Panicum, F	all		30	0		0	1		0		5	
Pigweed, P			60	0		70	5	0	90		85	
Poinsettia,	Wild		30	0		50	3	0	25		35	
Ryegrass, I	talian			0		0		0	0		0	
Sandbur				0		0		0	0		0	
Soybean			70			40		0	10		15	
Waterhemp			70 90			80 70	6 1		80 80		75 70	
Waterhemp Waterhemp			90			70	6		80		75	
125 g ai/ha						(Compound	ls				
Preemergence	35	53	58		62	96	144	145	149	168	179	200
Arrowleaf Sida	100	100	98	3	100	90	100	98	100	100	90	100
Barnyardgrass	65	50	15	;	25	0	100	75	35	100	5	60
Beggarticks	50	20	20)	0	20	0	25	0	0	0	0
Cocklebur	0		_		_	_	_		_	_	_	_
Corn	20	15	0		0	0	35	60	0	35	40	0
Crabgrass, Brazil	100	90	75		100	5	100	100	85 85	100	25	100
Crabgrass, Large Dayflower, VA	100 95	98 95	80 80		98 80	95 20	100 95	100 70	85 40	100 90	60 85	100 90
Field Bindweed	50	93	0		0	40	70	95	25	70	0	30
Foxtail, Giant	100	95	40		75	20	100	100	85	100	20	100
Foxtail, Green	98	90	25		90	25	100	100	50	100	15	100
Goosegrass	95	60	75		75	60	100	95	60	100	0	98
Johnsongrass	65	5	20		40	98	70	85	15	100	10	90
Kochia	100	100	30		95	90	100	100	90	100	98	100
Lambsquarters	100	98	100		100	100	100	100	100	100	100	100
Morningglory	65	0	10		50	25	95	35	10	75	25	15
Nightshade	100	98	98		100	90	100	98	100	98	100	98
Nutsedge, Yellow	35	20	0		0	0	0	0	15	20	0	35
Panicum, Fall	100	98	100		100	70	100	100	100	100	75	100
Pigweed, Palmer	_	100	35		100	100	100	100	100	100	65	100
Poinsettia, Wild	40	0	20		35	25	35	65	35	90	0	70
Ragweed	70	40	75		35	35	85	80	20	98	0	40
Ryegrass, Italian	70	0	0)	40	30	100	90	40	70	10	40

				TA	ABLE	F-c	ontini	ıed						
Sandbur Soybean Surinam Grass	65 90 35	0 35 0	75	5	35 40 10		0 0 0	95 75 80	95 40 25		10 30 15	90 40 100	0 35 0	75 50 35
Velvetleaf Waterhemp	100 100	100 100	100 100		100 100	8 10		100 100	100 100		.00	100 100	100 100	100 100
62 g ai/ha							Comp	ounds						
Preemergence	35	53	55	58	;	62	96	5 1	14	145	149	168	179	200
Arrowleaf Sida	100	100	100	7.		95	8		00	98	65	100	80	100
Barnyardgrass Beggarticks	10 20	20 30	85 0	1	0 0	0		0	70 0	30 30	15 0	80 0	0	30 0
Corn	ō	0	40		0	Ō			40	40	ō	40	0	ō
Crabgrass, Brazil	100	85	100	3:		100			98	95	35	100	15	100
Crabgrass, Large	75 90	80 50	100 40	6.	5	70 30	6		00 85	98 35	70 5	98 70	35 35	95 70
Dayflower, VA Field Bindweed	50	0	10		0	0	6		65	65	35	50	0	30
Foxtail, Giant	70	70	98		0	65			95	85	40	100	30	100
Foxtail, Green	75	20	70		0	40	3			100	50	100	0	100
Goosegrass	75 25	10	50 90		5 0	5	4 5		95	80 100	40 0	98	0 10	95 25
Johnsongrass Kochia	35 100	0 50	100		0	35 35	6			100	75	35 100	70	35 80
Lambsquarters	100	95	100	9		95	10			100	100	100	100	98
Morningglory	30	0	98	1		0	3		65	15	0	15	35	0
Nightshade	98 10	98 0	98 0	9	0 0	98 0	6	5 1 0	00 0	98 0	98 0	98 0	100	98 10
Nutsedge, Yellow Panicum, Fall	100	95	100	9		95	5		00	95	98	100	50	98
Pigweed, Palmer	_	100	100	3		100	10			100	100	100	35	100
Poinsettia, Wild	70	0	30	2		25			20	65	0	50	0	60
Ragweed	40 65	30 0	50 30	2	5 0	40 0	5		95 40	65 40	35 20	65 65	0	35 20
Ryegrass, Italian Sandbur	40	0	0		0	0	3 4		+0 50	25	0	65	0	40
Soybean	70	Ö	50	3.		10			40	15	ō	20	0	30
Surinam Grass	20	0	10		0	15			75	0	15	70	0	10
Velvetleaf Waterhemp	100 100	100 100	100 100	10i 9i		100 100	8 10			100 100	85 100	100 100	90 100	100 100
31 g ai/ha	100	100	100			100		ounds		100	100	100	100	100
Preemergence	35	53	55	58	62		96	144	14:	 5	149	168	179	200
Arrowleaf Sida	100	65	98	35	70		70	100	90		35	100	80	100
Barnyardgrass	20	0	10	0	0		0	20		5	0	25	0	0
Beggarticks	20	0	0	0	0		0	0	3:	5	0	0	0	0
Cocklebur Corn	0 30								_)				
Crabgrass, Brazil	98	5	75	0	75		0	95	80		15	100	0	98
Crabgrass, Large	75	15	98	50	25		30	100	9:		0	95	0	85
Dayflower, VA	65	0	60	0	0		0	30)	0	10	0	50
Field Bindweed Foxtail, Giant	50 70	0 20	0 90	0	0 35		0	60 90	50 6:		50 20	60 98	0	30 65
Foxtail, Green	30	0	20	0	10		30	95	40		0	100	0	98
Goosegrass	60	0	5	5	0		40	60	70		0	95	0	80
Johnsongrass	0	0	20	0	20		60	0	20		0	30	0	5
Kochia Lambsquarters	85 100	20 95	100 100	0 65	20 95		0 100	100 100	99 100		0	100 100	0 100	50 98
Morningglory	0	0	30	10	0		35	0	100		0	0	0	0
Nightshade	98	90	98	80	70		0	98	80		80	98	65	60
Nutsedge, Yellow	0	0	0	0	0		0	0)	0	0	0	0
Panicum, Fall Pigweed, Palmer	100	0 90	90 75	65 0	0 75		40 98	100 100	100		80 90	95 100	0	35 100
Poinsettia, Wild	35	0	0	20	30		0	0)	0	0	0	20
Ragweed	0	0	40	0	25		20	0	70)	25	35	0	10
Ryegrass, Italian	15	0	0	0	0		0	0	20		0	30	0	0
Sandbur Soybean	10 40	0	0 4 0	0 20	0		10 0	10 10	3:	5	0 0	30 0	0	5 20
Surinam Grass	0	0	0	0	15		0	75)	0	65	0	0
Velvetleaf	70	90	100	100	75		60	100	9		70	75	65	80
Waterhemp	100	95	100	75	98		100	100	100)	100	100	95	100
16 g ai/ha								npounds						
Preemergence		35	53	58	62	96	144	1-	45	149	168	3 17	9	200
Arrowleaf Sida Barnyardgrass		80 0	20 0	0	20 0	50 0	95 0		5 0	0	95			65 0

			-	ΓABL	E F-c	ontinue	d				
Beggarticks	0	0	0	0	0	0	0	0	0	0	0
Corn	0	0	0	0	0	0	0	0	0	0	0
Crabgrass, Brazil	95	0	0	0	0	75	5	0	65	0	90
Crabgrass, Large	60	0	20	0	0	80	10	0	65	0	50
Dayflower, VA	25	0	0	0	0	0	0	0	5	0	15
Field Bindweed	35	0	0	0	0	40	0	0	40	0	0
Foxtail, Giant	10	0	0	15	0	15	0	0	65	0	35
Foxtail, Green	0	0	0	0	25	25	5	0	70	0	10
Goosegrass	0	0	0	0	50	75	0	0	80	0	70
Johnsongrass	0	0	0	0	20	0	0	0	0	0	0
Kochia	40	0	0	_	0	98	75	0	95	0	25
Lambsquarters	98	65	0	90	5	100	100	_	100	98	0
Morningglory	0	0	0	0	35	0	0	0	0	0	0
Nightshade	95	35	65	0	0	98	90	0	5	_	35
Nutsedge, Yellow	0	0	0	0	0	0	0	0	0	0	0
Panicum, Fall	35	0	35	0		95	65	0	35	0	70
Pigweed, Palmer	_	0	0	80	80	100	100	25	98	0	85
Poinsettia, Wild	30	0	0	0	0	0	0	0	0	0	0
Ragweed	0	0	0	20	0	0	0	20	10	0	0
Ryegrass, Italian	0	0	0	0	0	0	25	0	15	0	0
Sandbur	10	0	0	0	0	0	0	0	10	0	5
Soybean	35	0	10	0	0	_	0	0	0	0	0
Surinam Grass	0	0	0	0	0	0	0	0	50	0	0
Velvetleaf	70	65	70	35	0	80	35	10	35	15	25
Waterhemp	100	0	75	85	40	98	100	35	100	95	98

8 g ai/ha			Compounds			
Preemergence	35	53	58	62	200	
Arrowleaf Sida	50	0	20	0	0	
Barnyardgrass	0	0	0	0	0	
Beggarticks	0	0	0	0	0	
Corn	0	0	0	0	0	
Crabgrass, Brazil	0	0	0	0	0	
Crabgrass, Large	0	0	0	0	0	
Dayflower, VA	0	0	0	0	0	
Field Bindweed	0	0	0	0	0	
Foxtail, Giant	0	0	0	0	0	
Foxtail, Green	0	0	0	0	0	
Goosegrass	0	0	0	0	10	
Johnsongrass	0	0	0	0	0	
Kochia	0	0	0	10	20	
Lambsquarters	90	65	_	70	0	
Morningglory	0	0	0	0	0	
Nightshade	75	_	0	0	0	
Nutsedge, Yellow	0	0	0	0	0	
Panicum, Fall	0	0	0	0	0	
Pigweed, Palmer	_	0	0	10	0	
Poinsettia, Wild	20	0	0	0	0	
Ragweed	0	0	0	0	0	
Ryegrass, Italian	0	0	0	0	0	
Sandbur	0	0	0	0	0	
Soybean	0	0	0	0	0	
Surinam Grass	0	0	0	0	0	
Velvetleaf	40	0	20	0	0	
Waterhemp	100	0	20	80	70	

Test G

[0478] Three plastic pots (ca. 16-cm diameter) per rate were partially filled with sterilized Tama silt loam soil comprising a 35:50:15 ratio of sand, silt and clay and 2.6% organic matter. Separate plantings for each of the three pots were as follows. Seeds from the U.S. of monochoria (Monochorea vaginalis), small-flower umbrella sedge (Cyperus difformis), hardstem bulrush (Scirpus juncoides), and redstem (purple redstem, Ammannia coccinea), were planted into one 16-cm pot for each rate. Seeds from the U.S. of rice flatsedge (Cyperus iria), bearded sprangletop (Leptochloa fascicularis), one stand of 9 or 10 water seeded rice seedlings (Indica rice, Oryza sativa), and two stands of 3 or 4 transplanted rice seedlings (Oryza sativa cv. 'Japonica-

M202') were planted into one 16-cm pot for each rate. Seeds from the U.S. of barnyardgrass (*Echinochloa crus-galli*), and late watergrass (*Echinochloa oryzicola*) were planted into one 16-cm pot for each rate. Plantings were sequential so that crop and weed species were at the 2.0 to 2.5-leaf stage at time of treatment.

[0479] Potted plants were grown in a greenhouse with day/night temperature settings of 30/27° C., and supplemental balanced lighting was provided to maintain a 16-hour photoperiod. Test pots were maintained in the greenhouse until test completion.

[0480] At time of treatment, test pots were flooded to 3 cm above the soil surface, treated by application of test compounds directly to the paddy water, and then maintained at

that water depth for the duration of the test. Effects of treatments on rice and weeds were visually evaluated by comparison to untreated controls after 21 days. Plant response ratings, summarized in Table G, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

TABLE G

	Comp	pounds	_	Comp	ounds
250 g ai/ha	35	55	125 g ai/ha	35	55
		Flo	ood		
Barnyardgrass	100	100	Barnyardgrass	100	100
Bulrush, Hardstem	100	100	Bulrush, Hardstem	100	100
Flatsedge, Rice	100	100	Flatsedge, Rice	100	100
Monochoria	100	100	Monochoria	100	100
Redstem	100	100	Redstem	90	100
Rice, Transplanted	100	100	Rice, Transplanted	45	80
Rice, Water Seeded	100	100	Rice, Water Seeded	100	100
Sedge, Umbrella	100	100	Sedge, Umbrella	100	100
Sprangletop, Brdd.	100	100	Sprangletop, Brdd.	100	100
Watergrass, Late	100	100	Watergrass, Late	40	75
	Comp	pounds	_	Comp	ounds
64 g ai/ha		pounds 55	 32 g ai/ha	Comp	ounds 55
64 g ai/ha		55	32 g ai/ha		
64 g ai/ha Barnyardgrass		55			
Barnyardgrass	35	55 Flo	ood	35	55
	35	55 Flo 75	ood Barnyardgrass	35	55
Barnyardgrass Bulrush, Hardstem Flatsedge, Rice	35 45 95	55 Flo 75 100	Barnyardgrass Bulrush, Hardstem	35 30 0	0 80 85
Barnyardgrass Bulrush, Hardstem	35 45 95 100	75 100 100	Barnyardgrass Bulrush, Hardstem Flatsedge, Rice	35 30 0 100	55 0 80
Barnyardgrass Bulrush, Hardstem Flatsedge, Rice <i>Monochoria</i> Redstem	35 45 95 100 100	75 100 100 100	Barnyardgrass Bulrush, Hardstem Flatsedge, Rice Monochoria	35 30 0 100 98	0 80 85 100
Barnyardgrass Bulrush, Hardstem Flatsedge, Rice <i>Monochoria</i> Redstem Rice, Transplanted	35 45 95 100 100 85	55 Flo 75 100 100 100 95	Barnyardgrass Bulrush, Hardstem Flatsedge, Rice Monochoria Redstem	35 30 0 100 98 0	55 0 80 85 100 85 20
Barnyardgrass Bulrush, Hardstem Flatsedge, Rice <i>Monochoria</i> Redstem Rice, Transplanted Rice, Water Seeded	35 45 95 100 100 85 30	55 Flo 75 100 100 100 95 60	Barnyardgrass Bulrush, Hardstem Flatsedge, Rice Monochoria Redstem Rice, Transplanted	35 30 0 100 98 0 15	55 0 80 85 100 85 20 45
Barnyardgrass Bulrush, Hardstem Flatsedge, Rice Monochoria	35 45 95 100 100 85 30 70	55 Flo 75 100 100 100 95 60 100	Barnyardgrass Bulrush, Hardstem Flatsedge, Rice Monochoria Redstem Rice, Transplanted Rice, Water Seeded	35 30 0 100 98 0 15 60	55 0 80 85 100 85

What is claimed is:

1. A compound selected from Formula 1, N-oxides and salts thereof,

Q is a 5- or 6-membered aromatic heterocylic ring, bound to the remainder of Formula 1 through a carbon atom, and optionally substituted with 1 to 4 R¹;

Z is O or S;

each R^1 is independently halogen, cyano, nitro, $SF_5, CHO, C(=\!O)NH_2, C(=\!S)NH_2, SO_2NH_2, C_1\text{-}C_4$ alkyl, $C_2\text{-}C_4$ alkenyl, $C_2\text{-}C_4$ alkynyl, $C_1\text{-}C_4$ haloalkyl, $C_2\text{-}C_4$ haloalkynyl, $C_3\text{-}C_6$ cycloalkyl, $C_3\text{-}C_6$ halocycloalkyl, $C_4\text{-}C_8$ alkylcycloalkyl, $C_4\text{-}C_8$ cycloalkylalkyl, $C_2\text{-}C_6$ alkylcarbonyl, $C_2\text{-}C_6$ haloalkylcarbonyl, $C_2\text{-}C_6$ alkoxycarbonyl, $C_3\text{-}C_7$ cycloalkylcarbonyl, $C_2\text{-}C_8$ alkylaminocarbonyl, $C_3\text{-}C_1$ 0 dialkylaminocarbonyl, $C_1\text{-}C_4$ alkoxy, $C_3\text{-}C_4$ alkenyloxy, $C_3\text{-}C_4$

alkynyloxy, C_1 - C_4 haloalkoxy, C_3 - C_4 haloalkenyloxy, C_3 - C_4 haloalkynyloxy, C_3 - C_6 cycloalkoxy, C_3 - C_6 halocycloalkoxy, C_4 - C_8 cycloalkylalkoxy, C_2 - C_6 alkoxyalkyl, C_2 - C_6 haloalkoxyalkyl, C_2 - C_6 alkoxyhaloalkyl, C_2 - C_6 alkoxyalkoxy, C_2 - C_4 alkylcarbonyloxy, C_2 - C_6 cyanoalkyl, C_2 - C_6 cyanoalkyl, C_2 - C_6 cyanoalkyl, C_2 - C_6 alkylthioalkyl, C_3 - C_4 hydroxyalkyl, C_2 - C_4 alkylthioalkyl, C_3 - C_4 hydroxyalkyl, C_3 C_3 -C

R² is halogen, cyano, nitro, C₁-C₄ alkoxy, C₁-C₄ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, SO_nR^{2A}, C₁-C₄ haloalkyl or C₃-C₆ cycloalkyl;

each R³ is independently halogen, cyano, hydroxy, nitro, amino, CHO, C(=O)NH₂, C(=S)NH₂, SO₂NH₂, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C4-C8 alkylcycloalkyl, C₄-C₈ cycloalkylalkyl, C₂-C₆ alkylcarbonyl, C_2 - C_6 haloalkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C₃-C₇ cycloalkylcarbonyl, C₁-C₄ alkoxy, C₃-C₄ alk-enyloxy, C₃-C₄ alkynyloxy, C₁-C₄ haloalkoxy, C₃-C₄ haloalkenyloxy, C₃-C₄ haloalkynyloxy, C₃-C₆ cycloalkoxy, C₃-C₆ halocycloalkoxy, C₄-C₈ cycloalkylalkoxy, C_2 - C_6 alkoxyalkyl, C_2 - C_6 haloalkoxyalkyl, C₂-C₆ alkoxyhaloalkyl, C₂-C₆ alkoxyalkoxy, C₂-C₄ alkylcarbonyloxy, C_2 - C_6 cyanoalkyl, C_2 - C_6 cyanoalkyl, C_2 - C_6 cyanoalkoy, C_2 - C_4 alkylthioalkyl, $Si(CH_3)_3$, $C \equiv CSi(CH_3)_3$, $C (\equiv N)R(R^{3A})(R^{3B})$, $C (\equiv NOR^{3C})H$, $C (\equiv NR^{3D})H$, $C (\equiv N^{3D})H$, $C (\equiv N^{3$ SO_nR^{3E} ; or a phenyl ring optionally substituted with up to 5 substituents independently selected from R^{3F} ; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R^{3F} on carbon atom ring members and R3G on nitrogen atom ring members; or pyrimidinyloxy;

m is 0, 1, 2 or 3;

1

each n is independently 0, 1 or 2;

each R^{1A} , R^{2A} and R^{3E} is independently C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 , alkylamino or C_2 - C_6 dialkylamino;

each R^{1B} is independently H or C₁-C₄ alkyl;

each R^{1C} is independently hydroxy, halogen, cyano, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy or C_1 - C_6 haloalkoxy;

each R^{1D} is independently cyano, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy or C_2 - C_6 alkylcarbonyl;

each R^{3A} is independently C_1 - C_4 alkyl or C_1 - C_4 haloalkyl; each R^{3B} is independently H, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl;

each R^{3C} is independently H or C₁-C₄ alkyl;

each R^{3D} is independently H, amino, C_1 - C_4 alkyl or C_1 - C_4 alkylamino;

each R^{3F} is independently hydroxy, halogen, cyano, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy or C_1 - C_6 haloalkoxy; and

each R^{3G} is independently cyano, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy or C_2 - C_6 alkylcarbonyl;

2. A compound of claim 1 wherein

Q is selected from Q-1 through Q-55 wherein r is 0, 1, 2 or 3; and s is 0 or 1;

each R¹ is independently halogen, cyano, SF₅, CHO, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₂-C₆ alkylcarbonyl, C₂-C₆ haloalkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₁-C₄ alkoxy, C₃-C₄ alkenyloxy, C₃-C₄ alkynyloxy, C₁-C₄ haloalkoxy, C₃-C₄ haloalkenyloxy, C₂-C₆ alkoxyalkyl, C₂-C₆ haloalkoxyalkyl, C₂-C₆ cyanoalkyl, C₁-C₄ hydroxyalkyl, C₂-C₄ alkylthioalkyl or SO_nR¹-²;

R³ is independently halogen, cyano, CHO, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ cycloalkyl, C_3 - C_6 halocycloalkyl, C_4 - C_8 alkylcycloalkyl, C_2 - C_6 alkylcarbonyl, C₂-C₆ haloalkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₁-C₄ alkoxy, C₃-C₄ alkenyloxy, C₃-C₄ alkynyloxy, C₁-C₄ haloalkoxy, C₃-C₄ haloalkenyloxy, C_3 - C_4 haloalkynyloxy, C_3 - C_6 cycloalkoxy, C_3 - C_6 halocycloalkoxy, C_2 - C_6 alkoxyalkyl, C_2 - C_6 haloalkoxyalkyl, C_2 - C_4 alkylcarbonyloxy, C_2 - C_6 cyanoalkyl, $C(=O)N(R^{3A})(R^{3B})$, $C(=NOR^{3C})H$, SO_nR^{3E} ; or a phenyl ring optionally substituted with up to 5 substituents independently selected from R^{3F}; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R^{3F} on carbon atom ring members and R^{3G} on nitrogen atom ring members;

Z is O; and

m is 0, 1 or 2.

3. A compound of claim 2 wherein

each R^1 is independently halogen, cyano, CHO, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 haloalkyl, C_2 - C_4 haloalkenyl, C_2 - C_4 haloalkynyl, C_1 - C_4 alkoxy, C_3 - C_4 alkenyloxy, C_3 - C_4 alkynyloxy, C_1 - C_4 haloalkoxy, C_3 - C_4 haloalkenyloxy, C_3 - C_4 haloalkynyloxy, C_2 - C_6 alkoxyalkyl, C_2 - C_6 haloalkoxyalkyl, C_1 - C_4 hydroxyalkyl, C_2 - C_4 alkylthioalkyl or $SO_nR^{1.4}$;

 R^2 is halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl;

each R³ is independently halogen, cyano, CHO, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₂-C₆ alkylcarbonyl, C₂-C₆ haloalkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₂-C₆ alkoxyalkyl, C₂-C₆ haloalkoxyalkyl, C₂-C₆ cyanoalkyl, SOₙR³E; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R³F on carbon atom ring members and R³G on nitrogen atom ring members; and

4. A compound of claim 3 wherein

Q is selected from Q-7 through Q-24;

each R¹ is independently halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy or SO_nR^{1,4};

 R^2 is halogen or C_1 - C_4 alkyl;

each R^3 is independently halogen, cyano, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_1 - C_4 haloalkyl, C_2 - C_6 alkylcarbonyl, C_2 - C_6 haloalkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_2 - C_6 alkoxyalkyl or C_2 - C_6 haloalkoxyalkyl; and

each R^{1A} is independently C_1 - C_4 alkyl or C_1 - C_4 haloalkyl.

5. A compound of claim 4 wherein

Q is selected from Q-16 and Q-18;

each R^1 is independently halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl or C_1 - C_4 haloalkoxy;

R² is halogen or CH₃; and

each R³ is independently halogen, cyano, C₁-C₄ alkyl or C₁-C₄ haloalkyl.

6. A compound of claim 3 wherein

Q is selected from Q-43, Q-44, Q-45, Q-48, Q-49 and O-50:

each R¹ is independently halogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy or SO_nR^{1,4};

 R^2 is halogen or C_1 - C_4 alkyl;

each R^3 is independently halogen, cyano, $C_1\text{-}C_4$ alkyl, $C_2\text{-}C_4$ alkenyl, $C_2\text{-}C_4$ alkynyl, $C_1\text{-}C_4$ haloalkyl, $C_2\text{-}C_6$ alkylcarbonyl, $C_2\text{-}C_6$ haloalkylcarbonyl, $C_2\text{-}C_6$ alkoxycarbonyl, $C_1\text{-}C_4$ alkoxy, $C_1\text{-}C_4$ haloalkoxy, $C_2\text{-}C_6$ alkoxyalkyl or $C_2\text{-}C_6$ haloalkoxyalkyl; and

each R^{1A} is independently C_1 - C_4 alkyl or C_1 - C_4 haloalkyl.

7. A compound of claim 6 wherein

Q is selected from Q-43, Q-44 and Q-45;

each R¹ is independently halogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl or C₁-C₄ haloalkoxy;

R² is halogen or CH₃; and

each R^3 is independently halogen, cyano, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl.

8. A compound of claim **1** selected from the group consisting of

5-chloro-2-[2-(5-chloro-2-pyridinyl)phenoxy]pyrimidine,

5-chloro-2-[2-[5-(fluoromethyl)-3-isoxazolyl]phenoxy] pyrimidine,

2-[2-(3-bromo-5-isoxazolyl)phenoxy]-5-chloropyrimidine

5-chloro-2-[2-[5-(trifluoromethyl)-2-pyridinyl]phenoxy] pyrimidine,

5-chloro-2-[3-chloro-2-(5-chloro-2-pyridinyl)phenoxy] pyrimidine,

4-[2-[(5-bromo-2-pyrimidinyl)oxy]phenyl]-2-(trifluoromethyl)pyrimidine,

2-[2-(2-bromo-5-thiazolyl)phenoxy]-5-(trifluoromethyl) pyrimidine,

5-chloro-2-[4-methyl-2-[2-(trifluoromethyl)-4-pyridinyl] phenoxy]pyrimidine,

5-chloro-2-[2-[5-(difluoromethyl)-3-isoxazolyl]phenoxy] pyrimidine,

5-chloro-2-[2-[3-(difluoromethyl)-5-isoxazolyl]phenoxy] pyrimidine,

5-chloro-2-[2-[5-(difluoromethyl)-3-isoxazolyl]-3-fluorophenoxy]pyrimidine,

5-bromo-2-[2-[5-(difluoromethyl)-3-isoxazolyl]phenoxy] pyrimidine,

m is 0 or 1.

- 5-chloro-2-[2-[3-(trifluoromethyl)-5-isoxazolyl]phenoxy]pyrimidine,
- 5-chloro-2-[2-[3-(difluoromethyl)-5-isoxazolyl]-3-fluorophenoxy]pyrimidine,
- 5-bromo-2-[2-[3-(difluoromethyl)-5-isoxazolyl]-3-fluorophenoxy]pyrimidine,
- 5-chloro-2-[2-[5-(trifluoromethyl)-3-isoxazolyl]-3-fluorophenoxy]pyrimidine and
- 5-chloro-2-[2-[5-(trifluoromethyl)-3-isoxazolyl]phenoxy]pyrimidine.
- 9. A herbicidal composition comprising a compound of claim 1 and at least one component selected from the group consisting of surfactants, solid diluents and liquid diluents.
- 10. A herbicidal composition comprising a compound of claim 1, at least one additional active ingredient selected from the group consisting of other herbicides and herbicide safeners, and at least one component selected from the group consisting of surfactants, solid diluents and liquid diluents.
- 11. A herbicidal mixture comprising (a) a compound of claim 1, and (b) at least one additional active ingredient selected from (b1) through (b16) and salts of compounds of (b1) through (b16).
- 12. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of claim 1.

* * * * *