
US007228548B1

(12) United States Patent (10) Patent No.: US 7,228,548 B1
Aldrich et al. (45) Date of Patent: Jun. 5, 2007

(54) NINE LAYER ARCHITECTURE 5,793,368 A * 8/1998 Beer 71.5/747
5,933,837 A * 8/1999 Kung TO7,201

(75) Inventors: Daniel J. Aldrich, Countryside, KS 6,353,819 B1* 3/2002 Edwards et al. 707/2
(US); Frank M. Waterman, Olathe 7,000,238 B2 * 2/2006 Nadler et al. 719,330
KS (US). Brian D. Haner, Ottawa, KS 2004/0100507 A1* 5/2004 Hayner et al. 345,855
(US); Logan Wade, Liberty, MO (US); OTHER PUBLICATIONS

9

Regina H. O'Meara, Lenexa, KS (US) Rick Whiting, CA Ship Database-Management Suite For E-Com
ck

(73) Assignee: Sprint Communications Company merce, May 15, 2000.
L.P., Overland Park, KS (US) * cited by examiner

(*) Notice: Subject to any disclaimer, the term of this Primary Examiner—William Thomson
patent is extended or adjusted under 35 Assistant Examiner LeChi Truong
U.S.C. 154(b) bV 793 davs. (b) by ayS (57) ABSTRACT

(21) Appl. No.: 10/017,850 A province architecture includes a witness province, an
(22) Filed: Nov. 30, 2001 action province, and a yoke province. The witness province

e a V8 may contain a collection layer, an envoy layer, and a
(51) Int. Cl. naturalization layer configured to identify data and transmit

G06F 3/00 (2006.01) data to and from multiple types of user interfaces. The action
(52) U.S. Cl 71.9/310 province may include a naturalization layer, a terminal layer,
(58) Field of Classification Search 71.9/310 a unified global logic interpreter layer, a repository layer, an

- - - - - - - - - - - - - - - - 707/1 00 initiation layer, and an optimization layer are configured to

See application file for complete search histo process logic and generate formatted commands to and from
pp p ry. user interfaces and persistent storage locations. The yoke

(56) References Cited province may include a nomadic layer configured to make

U.S. PATENT DOCUMENTS

5,181,171 A *
5,504,780 A *

1/1993 McCormack et al. TO2/14
4, 1996 Alspector et al. 375,230

connections to varied databases and generate commands to
those databases for the transfer of data.

8 Claims, 3 Drawing Sheets

-vis

iii.3:

3i:38

US 7,228,548 B1 Sheet 1 of 3 Jun. 5, 2007 U.S. Patent

???????????????????

US 7,228,548 B1 Sheet 2 of 3 Jun. 5, 2007 U.S. Patent

rea
is :

raeae

US 7,228,548 B1

2 i.

Sheet 3 of 3 Jun. 5, 2007 U.S. Patent

US 7,228,548 B1
1.

NINE LAYER ARCHITECTURE

RELATED APPLICATIONS

Not Applicable

FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT

Not Applicable

MICROFICHEAPPENDIX

Not Applicable

FIELD OF THE INVENTION

The present invention relates to the field of computer
software architectures.

BACKGROUND OF THE INVENTION

Architectures generally refer to how a system is designed
and how the components of a system operate with each
other. Reference models for computer architectures typically
identify various layers through which a communication or
data will pass or in which computer software or hardware
may operate. Additionally, reference models may identify
how various computer Software and hardware components
undertake functions within a layer. Some reference models
are known as protocols.

For example, the Open Systems Interconnection reference
model (OSIRM) identifies seven layers. They are the appli
cation, presentation, session, transport, network, data link,
and physical layers. The application layer Supports user
functions, such as file transfers and transaction processing.
The presentation layer transferS syntaxes for character cod
ing. The session layer coordinates services, dialogue, and
synchronization. The transport layer coordinates communi
cations for reliable end-to-end communication. The network
layer delivers data within a sub-network and provides
addressing and internetworking. The data link layer deals
with data transmission between two points. The physical
layer provides bit transmission over a physical connection.

Other layered models are referred to as N-tier models.
N-tier models use separate layers to divide functionality of
an architecture. In an N-tier model, data or a communication
passes through each layer before getting to another layer for
processing. Thus, in a three tier model, data must pass
through the second layer to get from the first layer to the
third layer. One Such model may include a graphical user
interface (GUI) layer, an application controller layer, a
business function objects layer, a domain layer, and a
persistence layer.

Current reference models are static and require compliant
objects to relay communications, such as control messages,
requests, and/or data, from one layer to another in spite of
the fact that the relaying layer may perform no useful
function. This requirement results in unnecessary lines of
code required to relay communications and clutters compli
ant objects and requires unnecessary processing cycles.
Thus, new systems and methods are needed to ameliorate the
inherent inefficiencies associated with the current reference
models.

10

15

25

30

35

40

45

50

55

60

65

2
SUMMARY OF THE INVENTION

The present invention is directed to an architecture system
operable on a processor. The architecture system comprises
a first architecture layer, a second architecture layer, and a
transparent layer between the first architecture layer and the
second architecture layer. The transparent layer enables the
first architecture layer and the second architecture layer to
communicate directly without having to communicate via
the transparent layer.

Also, the present invention is directed to an architecture
system operable on a processor. The architecture system
comprises a plurality of architecture layer objects compris
ing at least a first layer object, a second layer object, and a
transparent layer object. The transparent layer object is
layered between the first layer object and the second layer
object, and the transparent layer object is configured to be
hidden for a communication between the first layer object
and the second layer object. The first layer object and the
second layer object are configured to relay the communica
tion between each other by bypassing the transparent layer
object.

Moreover, the present invention is directed to an archi
tecture system operable on a processor. The system com
prises an action province configured with logic to process an
action and to generate at least one query requesting data. The
system also comprises a yoke province configured to receive
the query from the action province, to dynamically identify
a database with a database type to which the query corre
sponds, to initiate a connection with the database to transmit
the query to the database, to retrieve data in response to the
query, and to transmit the data to the action province. The
system further comprises a witness province configured to
identify the action occurring via an input/output interface
and to notify with the action at least one member of a group
consisting of the action province and the yoke province. At
least one member of a group consisting of the witness
province, the action province, and the yoke province com
prises at least one transparent layer configured to enable
communication with a Surrounding layer without having to
communicate via the transparent layer.

Further, the present invention is directed to an architecture
system operable on a processor. The system comprises a
collection layer configured to Support a first set of objects
that operate as a communication interface to receive first
data and to render second data. An envoy layer is configured
to Support a second set of objects to receive the first data
from the collection layer, to condition the first data to a first
form receivable by a lower layer, to receive the second data,
and to condition the second data to a second form receivable
by the collection layer. A naturalization layer is configured
to Support a third set of objects to apply at least one member
of a group consisting of style Support, customization Sup
port, and language Support to the first data or the second
data. An UGLI layer is configured to support a fourth set of
objects configured to apply logic to the first data or the
second data and to direct transfers of the first data and the
second data. A terminal layer is configured to Support a fifth
set of objects configured to portal the first data or the second
data between the UGLI layer and at least one member of a
group consisting of the collection layer, the envoy layer, and
the naturalization layer.
A repository layer is configured to support a sixth set of

objects configured to store the first data or the second data.
An initiation layer is configured to Support a seventh set of
objects configured to initiate storage and retrieval of the first
data or the second data to and from a persistent storage by

US 7,228,548 B1
3

identifying the persistent storage and generating a command
for the persistent storage. An optimization layer is config
ured to Support an eighth set of objects configured to format
the command generated from the initiation layer to a data
base format required by the persistent storage. A nomadic
layer is configured to support a ninth set of objects config
ured to make a connection to the persistent storage and to
pass the formatted command to the persistent storage. At
least one of the layers is configured as a transparent layer to
enable communication between at least two of the other
layers without having to communicate via the transparent
layer.

Further still, the present invention is directed to an archi
tecture system operable on a processor. The system com
prises a collection layer object configured to operate as a
communication interface to receive first data and to render
second data. A naturalization layer object is configured to
apply at least one member of a group consisting of style
Support, customization Support, and language Support to the
first data or the second data. An envoy layer object is
configured to receive the first data from the collection layer,
to condition the first data to a first form receivable by the
naturalization layer, to receive the second data, and to
condition the second data to a second form receivable by the
collection layer. An UGLI layer object is configured to apply
logic to the first data or the second data and to direct
transfers of the first data and the second data. A terminal
layer object is configured to portal the first data or the second
data between the UGLI layer and at least one member of a
group consisting of the collection layer, the envoy layer, and
the naturalization layer.
A repository layer object is configured to store the first

data or the second data. An initiation layer object is config
ured to initiate storage and retrieval of the first data or
second data to and from a persistent storage by identifying
the persistent storage and generating a command for the
persistent storage. An optimization layer object is configured
to format the command generated from the initiation layer to
a database format required by the persistent storage. A
nomadic layer object is configured to make a connection to
the persistent storage and to pass the formatted command to
the persistent storage. At least one of the layer objects is
configured as a transparent layer object to enable commu
nication between at least two of the other layer objects
without having to communicate via the transparent layer
object.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer system operating
an architecture in accordance with an embodiment of the
present invention.

FIG. 2 is a block diagram of provinces for an architecture
in accordance with an embodiment of the present invention.

FIG. 3 is a block diagram of layers for an architecture in
accordance with an embodiment of the present invention.

DETAILED DESCRIPTION

The present invention Supports dynamic performance
application development and maintenance with the ability to
collapse intermediary layers that are not functionally
required, thereby retaining the advantages of a layered
architecture without incurring the associated overhead.
Additionally, the architecture Supports multiple points of
separation, facilitating a high degree of flexibility in inter
face development.

10

15

25

30

35

40

45

50

55

60

65

4
For example, an Oracle database may be queried, or data

may be retrieved from a structured query language (SQL)
database via a pass-through query, originating in a collector
layer as referenced below. The architecture may have nine
layers, seven of which are between the top, collection layer
and the bottom layer, nomadic layer. Six of the seven layers
between the collection layer and the optimization layer may
be collapsed so that the query passes directly from the
collector layer to the optimization layer. The optimization
layer is just above the nomadic layer.

Also, multiple interface types may be interchanged
dynamically. For example, a graphical user interface (GUI)
may be attached either at the naturalization layer or at the
terminal layer, a hand held device interface may attach at the
envoy layer or the naturalization layer, or a voice interface
may be attached at the envoy layer.

Additionally, different interface objects may be selected
to enable collection of information. The present invention
enables live development and maintenance of complex
Support applications with the ability to toggle on and off
desired layers of the architecture as well as to dynamically
select various interfaces.

FIG. 1 depicts an exemplary embodiment of a computer
system operating an architecture of the present invention.
The computer system 102 comprises a processor 104, a
memory 106, a user interface 108, and an input/output
interface 110. The computer system 102 may communicate
with a database 112 and/or a device 114.
The processor 104 processes software and/or firmware to

carry out operations for the computer system 102. The
processor 104 may be configured to control transmitting
communications, including data and messages, to and from
the computer system 102 via the input/output (I/O) interface
110. The processor 104 also may be configured to control
generating information to the user interface 108 and receiv
ing information from the user interface. The processor 104
further may control transmitting data to the memory 106 for
temporary, semi-permanent, and/or permanent storage and
retrieving data from memory.
The memory 106 is configured to store data used by the

processor 104 during operation and to provide access for
that data to the processor. The memory 106 is configured to
store data for temporary, semi-permanent, and/or permanent
storage. Thus, the memory 106 may include volatile
memory and/or non-volatile memory. Examples of Such
memory are random access memory (RAM), non-volatile
RAM (NVRAM), read only memory (ROM), including
programmable read only memory (PROM), erasable pro
grammable read only memory (EPROM), and/or electrically
erasable programmable read only memory (EEPROM). The
memory 106 also may include flash memory or scratch
memory.
The user interface 108 is configured to generate data to a

user and/or receive data from a user. For example, the user
interface 108 may be a graphical user interface (GUI), a web
enabled interface, a voice activated interface, a voice rec
ognition interface, a voice response interface, a simulated
Voice generation interface, an audio interface, a keyboard, a
mouse, and other input and output devices. A GUI or web
enabled interface may include interfaces generated to moni
tors for personal computers and other computers and inter
faces generated for hand held devices, such as a palm pilot,
a wireless phone, or another hand held unit. The user
interface 108 also may include a video interface or an MP3
interface.
The I/O interface 110 communicates with the database

112 and other devices for which communication is required,

US 7,228,548 B1
5

such as the device 114. When communicating with the
database 112, the I/O interface 110 opens a connection to the
database. The I/O interface 110 may push or pull data to or
from the database 112 or transmit or receive other commu
nications, including messages and data, to the device 114.
The I/O interface 110 may be configured to communicate
with any database, including an SQL database, a DB2
database, via XML, an Oracle database, and others.
The I/O interface 110 may be configured to communicate

using wireless and wireline communications. For example,
the I/O interface 110 may be configured to communicate
with the database 112 or the device 114 via a wide area
network (WAN), a radio frequency (RF), a digital wireless
network, a fiber link, a digital service level link, via an
internet protocol (IP) connection, and other modes.
The database 112 is configured to store data. The database

112 may be, for example, an SQL database, an Oracle
database, a DB2 database, and other database types.
The device 114 is a device configured to communicate

with the computer system 102. The device 114 may be, for
example, a personal computer, a server, a wireless based
communication device, an IP device, a router, or another
type of device configured to communicate with the computer
system 102.

FIG. 2 depicts an exemplary embodiment of an architec
ture of the present invention. The province architecture 202
comprises a witness province 204, an action province 206,
and a yoke province 208. An application constructed accord
ing to the province architecture 202 may operate on the
computer system 102.
The witness province 204 identifies actions that are occur

ring via the I/O interface 110 and generates a communica
tion to the action province 206 and/or the yoke province 208
identifying those actions. The witness province 204 may
change dynamically depending on the application created to
operate on the computer system 102 and the actual configu
ration of the computer system. Thus, the witness province
204 may be dynamically changed to Support a web enabled
interface, a voice activation interface, or another interface.
The witness province 204 has the ability to dynamically
change for multiple interfaces while still retaining the ability
to communicate with the action province 206.

The action province 206 provides the intelligence of the
province architecture 202. The action province 206 com
prises portals to and from the witness province 204 and the
yoke province 208. Thus, the action province 206 may
operate independently of the witness province 204 and/or
the yoke province 208. This enables the witness province
204 and the yoke province to interchange with multiple
architectures and with multiple interfaces to other applica
tions. The action province 206 contains logic, business rules,
algorithms, and/or other intelligence specific to each system
(collectively, logic). Additionally, the action province 206
formats communications, such as queries and responses, for
the witness province 204 and the yoke province 208, either
to generate data or to request data.

The yoke province 208 initiates connections to databases
and information. The yoke province 208 may be separable
from the action province 206. Thus, the yoke province 208
may receive a query or other communication from the action
province 206. The yoke province 208 then is responsible for
making a connection to a specific database or other infor
mation repository and executing a query to obtain the
information. The yoke province 208 may communicate with
any database, including an Oracle database, a DB2 database,
an SQL database, and other types of databases.

10

15

25

30

35

40

45

50

55

60

65

6
FIG. 3 depicts an exemplary embodiment of an architec

ture of the present invention. The layer architecture 302
comprises a collection layer 304, an envoy layer 306, a
naturalization layer 308, a terminal layer 310, a unified
global logic interpreter (UGLI) layer 312, a repository 314,
an initiation layer 316, an optimization layer 318, and a
nomadic layer 320.
The collection layer 304 supports objects that operate as

the communication interface for the user interface 108. The
collection layer 304 objects may transmit and receive com
munications to and from the user interface 108. The collec
tion layer 304 may use any type of interface, such as a web
enabled interface, another GUI interface, a byte stream
listener, a voice recognition interface, a Voice generation
interface, an audio interface, and other interfaces.
The envoy layer 306 supports objects that condition

communications for other layers, including data that may be
passed between the collection layer 304 and the naturaliza
tion layer 308. For example, the envoy layer may condition
data received from the collection layer 304, such as from a
byte stream listener, so that the data may be received and
processed by the naturalization layer 308. Conditioning
refers to the process of conforming external data represen
tations to data representations required by Subordinate layers
of the architecture. For example, an envoy layer object may
convert Voice recognition output, such as from a voice
recognition collection layer object, to text that can be used
by another layer object, such as the naturalization layer.
The naturalization layer 308 supports objects that apply

style Support for communications, including data, Such as
language Support and customization Support, so that the data
may be used for a specific interface or for a lower layer. For
example, the naturalization layer 308 objects may format
data for English, Spanish, or German languages for language
support. Also, the naturalization layer 308 may format data
for a particular color for a style Support. Alternately, the
naturalization layer 308 may format data so that it may be
received as a selected media for a customization Support.
Language Support typically refers to a word or to a paring of
words or phrases from English to another language. Such as
Spanish or German. Another more advanced instance of
Language Support may refer to transliteration of words or
phrases between English and another language. Such as
Spanish or German. Customization Support typically refers
to an object or to a word paring of signals or patterns of bytes
to English words that are operative with the context of the
system being developed.
The terminal layer 310 supports objects that operate as a

functional portal to and from the upper three layers. The
terminal layer 310 is the entrance to, and exit from, the
application environment. The terminal layer 310 objects
comprise the first layer of the action province 206, and they
can be configured to pass communications, including data,
to, and receive communications, including data, from, the
naturalization layer 308 objects, which may be configured
for multiple user interfaces. The terminal layer 310 objects
may push and pull information to and from the naturaliza
tion layer 308 objects for varied interfaces. The terminal
layer 310 typically may contain non-computational objects
and methods that are designed with the intent to provide
consolidation, entry, and exits points and unification of
access to other architectural layers.
The UGLI layer 312 supports objects that apply complex

logic, business rules, algorithms, and/or intelligence specific
to a system (collectively, logic) to data. The UGLI layer 312
objects may process data according to logic for a system and
control how data is obtained or transmitted. For example, the

US 7,228,548 B1
7

UGLI layer 312 objects may control generation of data to the
terminal layer 310 objects for transfer of data to the natu
ralization layer 308 for transformation of user interface
specific data from one format to another. Similarly, the
UGLI layer 312 objects may control the directed transfer of 5
data for a communication through the initiation layer 316
objects and the optimization layer 318 objects so that the
data may be obtained by the nomadic layer 320 objects via
a connection to an application specific database.
The repository 314 supports objects that store temporary

and semi-permanent data used by an application. The reposi
tory 314 objects may include flash memory configured to
store and pass data. The data may include live data stored for
temporary use.

The initiation layer 316 supports objects that initiate
storage and retrieval of data to and from persistent storage
locations. For example, the initiation layer 316 objects may
determine that an application requires data from a specified
storage location, such as a specified database. The initiation
layer 316 objects may then may generate and push com
mands that can be recognized and processed by that specific
database. The initiation layer 316 identifies where the data is
stored and generates commands for those databases in a
form recognized by those databases for retrieval of the data.
Similarly, the initiation layer 316 objects may identify where
data can be stored for a particular application. The initiation
layer 316 objects may then generate commands so the data
may be stored in that location.
The optimization layer 318 supports objects that format

the commands generated from the initiation layer 316
objects into the format required by the database to which the
command will be transmitted. Common and popular data
base syntax systems may be stored in an encoded repository.
Queries passing through this layer may contain a reference
to the database type being queried, as well as a query string
containing the originating query syntax. The query string
then is analyzed and formatted specifically for the database
being queried by referring to the syntax system for that
database that is located in the repository.

For example, the optimization layer 318 objects may
receive a command from the initiation layer 316 objects to
retrieve data for a particular query. The initiation layer 316
objects may generate the command for the query. However,
the optimization layer 318 objects may format the command
for the query for a particular database. Thus, the optimiza
tion layer 316 objects may format a command so that it may
be received and processed for the particular database. Such
as an SQL database or another database. The optimization
layer 318 objects may be configured to format commands
for varied databases, including an SQL database, an Oracle
database, a DB2 database, XML based databases, DDL
based databases, and other databases.

Similarly, the optimization layer 318 supports objects that
format communications received from a particular database
so that it may be further processed by the initiation layer 316
objects or other layer objects. For example, the optimization
layer 318 objects may receive a command and data from a
particular database. The optimization layer 318 objects may
format the command and the data so that both the command
and the data may be passed to, and processed by, upper
layers.
The nomadic layer 320 supports objects that make con

nections to various databases based upon requirements from
upper layers. The nomadic layer 320 will receive the for
matted command from the optimization layer 318 objects.
Based upon the formatted command, the nomadic layer 320
objects may make a connection to a specified database. The

10

15

25

30

35

40

45

50

55

60

65

8
nomadic layer 320 objects may transmit the formatted
command to the specified database for execution of the
command. Similarly, the nomadic layer 320 receives com
mands and data back from the database and passes the
commands and data to the optimization layer 318 objects for
further processing, storage, and/or execution. The nomadic
layer 320 objects may be configured to connect to any type
of database, including an SQL database, an Oracle database,
a DB2 database, and XML based database, and DDL based
database, and other databases. A repository database may be
configured to store the information required to establish a
connection to, and execute transactions on, a particular
database. In one embodiment, the same repository that stores
the database syntax systems for various databases also stores
the information required to establish a connection to, and
execute transactions on, a particular database. This reposi
tory database may be provided by an application developer
for each application.

In one embodiment, the collection layer 304, the envoy
layer 306, and the naturalization layer 308 are within a
witness province 204. The terminal layer 310, the UGLI
layer 312, the repository 314, the initiation layer 316, and
the optimization layer 318 are within the action province
206. The nomadic layer 320 is within the yoke province 208.
The structure of the layer architecture 302 enables an

application to communicate via any user interface 108 and
communication to any type of database 112. The witness
province 204 and the yoke province 208 may be stripped
from the action province 206. Thus, the core application may
be developed using the required logic for the action province
206, and the layers 304-308 for the witness province 204
may be dynamically changed or implemented to communi
cate via varied user interfaces. Similarly, the nomadic layer
320 of the yoke province 208 may be stripped from the
layers 310–318 of the action province 206 enabling the
application to communicate with multiple varied databases
while retaining the core logic.

Moreover, an application may be generated so that it uses
the layers 304-308 of the witness province 204 multiple
times with multiple user interfaces. Thus, an application
may be configured to simultaneously use a web enabled
interface, a byte listener, and a voice recognition interface.
Because all communications may travel from the natural
ization layer 308 objects of the varied user interfaces to the
terminal layer 310 objects of the core application, data and
communications can communicate and go through actions
easily and be formatted easily for required style, customi
Zation, and language Support while also being processed by
the UGLI layer 312.

It will be appreciated that the terminal layer 310 objects
may have multiple portals to and from multiple naturaliza
tion layers 308 for a single application. Alternately, the
terminal layer 310 objects for an application may have a
single portal to the naturalization layer 308 of the user
interface, but may be moved to another portal if needed. The
terminal layer 310 objects may be moved, for example, if the
context or environment of the application may change. For
example, an application originally developed for the Web,
may be extended to a standalone PC version, requiring
moving the terminal layer 310 objects.

Also, the nomadic layer 320 objects may generate one or
more connections to one or more databases depending on the
needs of the layers 310–318 of the action province 206. For
a single application, the nomadic layer 320 objects may
connect to one or more databases. Thus, the application is
not tied to any particular database language. The commands
for a specified database are customized based on each

US 7,228,548 B1

instance of the type of database and the connection needed.
This customization of the commands occurs in the optimi
zation layer 318 objects for any required database, and the
connection is made in the nomadic layer 320 objects. Thus,
any language to any database may be coded, and the
nomadic layer 320 objects may parse the code or command
to make a connection to the required database. This also
enables a single application to communicate easily with
multiple types of databases.

In one embodiment, the layers 304-320 are an arrange
ment of system objects designed to Support an application.
The structure of the objects for object oriented programming
systems enhances the ability of the layer architecture 302 or
the province architecture 202 to communicate using varied

10

user interfaces and to communicate with varied databases. 15
For example, one or more objects may be implemented for
the collection layer 304, the envoy layer 306, and the
naturalization layer 308 for a particular user interface. A
different set of objects may be implemented for a different
collection layer 304, a different envoy layer 306, and a
different naturalization layer 308 for a different user inter
face. Those sets of objects may communicate with the same
terminal layer 310 for an application.

Similarly, a first object may be implemented for a
nomadic layer 320 for an application. However, although
another object may be created for another nomadic layer
320, it is not needed. A single object for a single nomadic
layer 320 may operate to communicate with multiple data
bases of this architecture. Only a core set of objects need be
created for the terminal layer 310, the UGLI layer 312, the
repository 314, the initiation layer 316, and the optimization
layer 318. Those core sets of objects can communicate with
the varied objects for the varied user interfaces and the one
or more objects for the nomadic layer 320.
The province architecture 202 and/or the layer architec

ture 302 may include a transparent layer. The transparent
layer enables the layer architecture 302 to skip from a first
layer to a third layer without going through a second layer.
The second layer can collapse and be invisible for a specified
communication, including a message or data. Alternately,
the transparent layer can be configured to not be invisible for
other communications, such as other messages or other data.
Functional methods or specified objects or classes of objects
may be grouped so that a particular layer is configured as a
transparent layer for those methods, objects, or classes of
objects. The concept of a transparent layer for an N-tier layer
architecture is unknown. Typically, data or communications
must go through each layer to get to the next layer.
The architectures 202 and 302 themselves represent an

agreement, or protocol that directs how software will be
developed. A transparent, hidden layer, represents an agree
ment that, for the method or methods affected, the specified
layers will be transparent, or hidden. The capacity to make
that agreement is unique.

The transparent layer may have one or more associated
Surrounding layers. The Surrounding layers are the layers
between which a communication will be passed by bypass
ing the transparent layer. For example, if the envoy layer 306
of FIG. 3 is the transparent layer, then the collection layer
304 and the naturalization layer 308 are the surrounding
layers. As another example, if the envoy layer 306 and the
naturalization layer 308 both are transparent layers, then the
collection layer 304 and the terminal layer 310 are the
Surrounding layers.

For example, the optimization layer 318 may be defined
as a transparent layer. In this example, a command may be
transmitted from the initiation layer 316 to the nomadic

25

30

35

40

45

50

55

60

65

10
layer 320 without passing through the optimization layer
318. The transparent layer may enable applications to save
processing time by not requiring a command or data to pass
through a particular layer, thereby eliminating some pro
cessing of that command or data.

Those skilled in the art will appreciate that variations
from the specific embodiments disclosed above are contem
plated by the invention. The invention should not be
restricted to the above embodiments, but should be mea
sured by the following claims.
What is claimed is:
1. An architecture system operable on a processor com

prising:
an action province comprising:

an UGLI layer object configured to apply logic to an
action and to direct transfers of the action and at least
one query requesting data;

a repository layer object configured to store the data;
an initiation layer object configured to initiate storage

and retrieval of the data to and from a database by
identifying the database and generating the query for
the database; and

an optimization layer object configured to format the
query in a format required by the database;

a yoke province configured to receive the query from the
action province, to dynamically identify the database
with a database type to which the query corresponds, to
initiate a connection with the database to transmit the
query to the database, to retrieve data in response to the
query, and to transmit the data to the action province;
and

a witness province configured to identify the action occur
ring via an input/output interface, to notify with the
action at least one member of a group consisting of the
action province and the yoke province, and to dynami
cally support a plurality of user interfaces, each having
a different interface type:

wherein at least one of the different interface types
comprises a member of a group consisting of a graphi
cal user interface, a web enabled interface, a handled
device interface, a Voice simulation interface, a voice
response interface, a Voice activated interface, a voice
recognition interface, and an audio interface; and

wherein at least one member of a group consisting of the
witness province, the action province, and the yoke
province comprises at least one transparent layer con
figured to enable communication with a Surrounding
layer without having to communicate via the transpar
ent layer.

2. An architecture system operable on a processor com
prising:

an action province configured with logic to process an
action and to generate at least one query requesting
data;

a yoke province configured to receive the query from the
action province, to dynamically identify a database
with a database type to which the query corresponds, to
initiate a connection with the database to transmit the
query to the database, to retrieve data in response to the
query, and to transmit the data to the action province;
and

a witness province configured to identify the action occur
ring via an input/output interface, to notify with the
action at least one member of a group consisting of the
action province and the yoke province, and to dynami
cally support a plurality of user interfaces, each having
a different interface type, the witness province com
prising:

US 7,228,548 B1
11

a collection layer object configured to operate as a
communication interface to receive the action and to
render second data;

an envoy later object configured to receive the action
from the collection layer, to condition the action to a
first form receivable by a lower layer, to receive the
second data, and to condition the second data to a
second form receivable by the collection layer;

a naturalization layer object configured to apply at least
one member of a group consisting of style Support,
customized support, and language Support to the
action or the second data and to transmit the second
data to the envoy layer object; and

a terminal layer object configured to portal the action or
the second data between the action province and at
least on member of a group consisting of the collec
tion layer, the envoy layer, and the naturalization
layer,

wherein at least one of the different interface types
comprise a member of a group consisting of a graphical
user interface, a web enabled interface, a handled
device interface, a voice simulation interface, a voice
response interface, a Voice activated interface, a voice
recognition interface, and an audio interface;

wherein at least one member of a group consisting of the
witness province, the action province, and the yoke
province comprise at least one transparent layer con
figured to enable communication with a Surrounding
layer without having to communicate via the transpar
ent layer.

3. An architecture system operable on a processor com
prising:

a collection layer configured to Support a first set of
objects that operate as a communication interface to
receive first data and to render second data;

an envoy layer configured to Support a second set of
objects to receive the first data from the collection
layer, to condition the first data to a first form receiv
able by a lower layer, to receive the second data, and to
condition the second data to a second form receivable
by the collection layer;

a naturalization layer configured to Support a third set of
objects to apply at least one member of a group
consisting of style Support, customization Support, and
language Support to the first data or the second data;

an UGLI layer configured to support a fourth set of
objects configured to apply logic to the first data or the
second data;

a terminal layer configured to Support a fifth set of objects
configured to portal the first data or the second data
between the UGLI layer and at least one member of a
group consisting of the collection layer, the envoy
layer, and the naturalization layer;

a repository layer configured to Support a sixth set of
objects configured to store the first data or the second
data;

an initiation layer configured to support a seventh set of
objects configured to initiate storage and retrieval of the
first data or the second data to and from a persistent
storage by identifying the persistent storage and gen
erating a command for the persistent storage;

an optimization layer configured to Support an eighth set
of objects configured to format the command generated
from the initiation layer to a database format required
by the persistent storage; and

a nomadic layer configured to Support a ninth set of
objects configured to make a connection to the persis
tent storage and to pass the formatted command to the
persistent storage;

5

10

15

25

30

35

40

45

50

55

60

65

12
wherein at least one of the layers is configured as a

transparent layer to enable communication between at
least two of the other layers without having to com
municate via the transparent layer.

4. The system of claim 3 wherein the communication
interface comprises at least one member of a group consist
ing of a graphical user interface, a web enabled interface, a
handled device interface, a voice simulation interface, a
Voice response interface, a voice activated interface, a voice
recognition interface, and an audio interface.

5. The system of claim 3 wherein the optimization layer
eighth set of objects further is configured to format other
data received from the persistent storage to another format
receivable by the initiation layer.

6. The system of claim 3 wherein the nomadic layer ninth
set of objects further is configured to receive other data in
response to the formatted command and to pass the other
data to the optimization layer.

7. The system of claim 3 wherein the persistent storage
comprises at least one member of a group consisting of a
structure query language database, an Oracle database, a
DB2 database, and an XML-based database.

8. An architecture system operable on a processor com
prising:

a collection layer object configured to operate as a com
munication interface to receive first data and to render
second data;

a naturalization layer object configured to apply at least
one member of a group consisting of style Support,
customization Support, and language Support to the first
data or the second data;

an envoy layer object configured to receive the first data
from the collection layer object, to condition the first
data to a first form receivable by the naturalization
layer object, to receive the second data, and to condi
tion the second data to a second form receivable by the
collection layer object;

an UGLI layer object configured to apply logic to the first
data or the second data and to direct transfers of the first
data and the second data;

a terminal layer object configured to portal the first data
or the second data between the UGLI layer object and
at least one member of a group consisting of the
collection layer object, the envoy layer object, and the
naturalization layer object;

a repository layer object configured to store the first data
or the second data;

an initiation layer object configured to initiate storage and
retrieval of the first data or the second data to and from
a persistent storage by identifying the persistent storage
and generating a command for the persistent storage;

an optimization layer object configured to format the
command generated from the initiation layer object to
a database format required by the persistent storage;
and

a nomadic layer object configured top make a connection
to the persistent storage and to pass the formatted
command to the persistent storage;

wherein at least one of the layers is configured as a
transparent layer object to enable communication
between at least two of the other layer objects without
having to communicate via the transparent layer object.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,228,548 B1 Page 1 of 1
APPLICATIONNO. : 10/017850
DATED : June 5, 2007
INVENTOR(S) : Daniel J. Aldrich et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 10, line 40; column 11, line 21; and column 12, line 8: replace the word
“handled with --handheld

Column 11, line 11: replace the word “customized with --customization--

Column 11, line 47: after “Second data add text --and to direct transfers of the first data
and the Second data;--

Column 12, line 59: replace the word “top” with--to

Signed and Sealed this

First Day of September, 2009

David J. Kappos
Director of the United States Patent and Trademark Office

