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ponent signals of a wavelength division multiplexed signal. 
The apparatus comprises a first filter and a second filter. The 
first filter modulates the component signals according to a 
static attenuation profile, thereby providing coarsely modu 
lated component signals. The second filter is coupled to the 
first filter to receive the coarsely modulated component sig 
nals and to modulate the coarsely modulated component sig 
nals according to a dynamic attenuation profile, thereby pro 
viding finely modulated component signals. 
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TWO-STAGE GAIN EOUALIZER 

FIELD OF THE INVENTION 

The present invention relates to a method of and an appa 
ratus for gain equalizing. More particularly, this invention 
relates to a two-stage gain equalizer including static attenua 
tion and dynamic attenuation. 

BACKGROUND OF THE INVENTION 

In modem wavelength division multiplexed (WDM) opti 
cal transmission systems, there is a need to dynamically 
equalize the gain of the various data-carrying channels as they 
pass through the optical network. A large number of factors, 
including attenuation through the fiber itself, unequal ampli 
fication as a function of wavelength as the channels pass 
through cascaded Erbium Doped Fiber Amplifiers (EDFAs), 
and others contribute to channel qualities that can degrade the 
performance and bit-error rate of the system overall. A 
Dynamic Gain Equalizer (DGE) module equalizes WDM 
channels or groups of channels to ensure optimal amplifica 
tion and optical signal-to-noise ratio (OSNR), thus minimiz 
ing the bit-error rate (BER) for each channel, while extending 
transmission distance and expanding usable bandwidth. 

Historically, the chief contributor to gain unevenness has 
been the EDFA. Due to the inherent gain response of the 
EDFA's operation, there is always a modest imbalance in the 
gain applied as a function of wavelength. In typical network 
applications, multiple EDFAS are employed along the total 
span of the network to boost the signal as it is attenuated 
through the fiber. As each of the EDFAs imparts a character 
istic gain profile to the band, the total unevenness increases in 
an additive manner. The net result after several EDFAs can be 
a wholly objectionable power imbalance across the various 
channels in the band. 

In order to compensate for this effect, manufacturers of 
EDFAs typically insert a static optical element called a Gain 
Flattening Filter (GFF) into the optical path inside their 
EDFA modules. AGFF is typically manufactured by depos 
iting a large number of thin films onto a piece of optical glass. 
The characteristics of the thin films (their thickness and indi 
ces of refraction, for example) are carefully selected and 
controlled during deposition Such that they create optical 
resonances and interferences that effect the transmission of 
light as a function of wavelength. If properly designed, a GFF 
can be created in such a way that it completely offsets the 
effects of the EDFA for a given total input power. 

FIGS. 1A-1C illustrate the effect of a GFF attenuation 
profile on an EDFA gain profile. FIG. 1A illustrates a repre 
sentation of a gain profile of a typical EDFA. The gain profile 
indicates how different wavelength signals are attenuated to 
varying degrees as the signals are impacted by the EDFA. 
FIG. 1B illustrates an attenuation profile of a typical GFF 
used to offset the effects of the EDFA imparting the gain 
profile illustrated in FIG. 1A. Ideally, the attenuation profile 
of a GFF will be the inverse of the gain profile of a corre 
sponding EDFA. FIG. 1C illustrates the resultant gain of an 
EDFA with GFF where the EDFA includes the gain profile of 
FIG. 1A and the GFF includes the attenuation profile of FIG. 
1C. A flat resultant gain, as illustrated in FIG. 1C, indicates 
that the GFF completely offsets the power imbalance effects 
of the EDFA. 

In practice, however, there are a number of factors which 
render the simple “EDFA plus GFF formula inadequate. 
First, while EDFAs have characteristic gain profiles, there can 
be some manufacturing variability between unit-to-unit and 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
lot-to-lot. The GFFs are even more notoriously difficult to 
manufacture with consistent performance, due to the large 
number of different thin films that must be deposited with 
high repeatability and consistency. Small changes in manu 
facturing conditions can result in significant changes in per 
formance, making the GFF both expensive and inconsistent. 
The films on the GFFs can also bleach over their lifetime, 
rendering them less effective overtime. Furthermore, in mod 
ern optical networks, where specific optical channels may be 
frequently dropped or added, there is a need to dynamically 
effect the gain profile. The profile of the EDFA changes as a 
result of total power, so as channels are added or dropped, the 
profile itself changes. A Solution that relies wholly upon a 
static GFF cannot provide adequate flatness to satisfy these 
changing network requirements. 
DGEs have been proposed as a next-generation Substitute 

for GFFs. Because they are variable, they can be configured in 
the field to optimally flatten a specific set of EDFAs after they 
are actually powered up. Because they are dynamic, they can 
respond to changing network conditions as channels are 
added and dropped. 
A number of factors effect the design of the DGE. For 

example, the DGE should have adequate dynamic range and 
attenuation slope to flatten the total gain imbalance in the 
system. Generally, the greater the dynamic range and attenu 
ation slope of the DGE, the greater the number of EDFAs that 
can be cascaded. AS EDFAS are added to lengthen a single 
optical span, each EDFA adds its characteristic gain imbal 
ance, requiring greater dynamic range and attenuation slope 
at the DGE for compensation. Thus, there is a rather direct 
con-elation between the dynamic range and attenuation slope 
of the DGE and the length of the optical span than can be 
achieved. 
As a practical matter, however, the desire to increase the 

dynamic range of the DGE can be offset by other factors. For 
example, it may be more expensive to implement a DGE with 
wide dynamic range. A DGE that is designed to have a wide 
dynamic range may induce greater insertion losses when 
operating in its transparent, or non-attenuation, mode. When 
operated close to the limit of its dynamic range, a DGE may 
exhibit degraded performance interms of polarization depen 
dent losses (PDL), chromatic dispersion or other objection 
able effects. 
What is needed is again equalizer that dynamically attenu 

ates and increases the dynamic range, but does so at a lower 
COSt. 
What is needed is again equalizer that dynamically attenu 

ates and increases the dynamic range, but does so without 
significantly increasing deleterious effects Such as PDL and 
insertion loss. 

SUMMARY OF THE INVENTION 

In one aspect of the present invention, an apparatus selec 
tively adjusts power levels of component signals of a wave 
length division multiplexed signal. The apparatus comprises 
a first filter and a second filter. The first filter modulates the 
component signals according to a static attenuation profile, 
thereby providing coarsely modulated component signals. 
The second filter is coupled to the first filter to receive the 
coarsely modulated component signals and to modulate the 
coarsely modulated component signals according to a 
dynamic attenuation profile, thereby providing finely modu 
lated component signals. 

In another aspect of the present invention, a light modulator 
selectively adjusts power levels of component signals of a 
wavelength division multiplexed signal. The light modulator 
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comprises a plurality of elements selectively operable in a 
first mode and a second mode. The plurality of elements are 
configured to continually apply a predetermined Static attenu 
ation profile. When in the first mode, the component signals 
are modulated according to the static attenuation profile, 
thereby providing coarsely modulated component signals. 
When in the second mode, the component signals are modu 
lated according to the static attenuation profile and a dynamic 
attenuation profile, thereby providing finely modulated com 
ponent signals. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1A illustrates a representation of a gain profile of a 
typical EDFA. 

FIG. 1B illustrates an attenuation profile of a typical GFF 
used to offset the effects of the EDFA imparting the gain 
profile illustrated in FIG. 1A. 

FIG.1Cillustrates the resultant gain of an EDFA with GFF 
where the EDFA includes the gain profile of FIG. 1A and the 
GFF includes the attenuation profile of FIG. 1C. 

FIG. 2 illustrates the additive effect of an integrated device 
according to an embodiment of the present invention. 

FIG. 3 illustrates an attenuation profile of a two-stage gain 
equalizer according to an embodiment of the present inven 
tion 

FIG. 4 illustrates a preferred embodiment of the DGE. 
FIG. 5 illustrates a grating light valve type device of the 

preferred two-stage gain equalizer of the present invention. 
FIG. 6 illustrates a cross-section of the grating light valve 

type device in a reflection mode. 
FIG. 7 illustrates a cross-section of the grating light valve 

type device in a diffraction mode. 
FIG. 8 illustrates a top-down view of the grating light valve 

array of FIGS. 5-8 and its corresponding attenuation profile. 
FIG. 9 illustrates a first embodiment of the two-stage gain 

equalizer according to the present invention and its corre 
sponding attenuation profile. 

FIG. 10 illustrates a second embodiment of the two-phase 
gain equalizer of the present invention and its corresponding 
attenuation profile. 

FIG. 11 illustrates a third embodiment of the two-phase 
gain equalizer of the present invention and its corresponding 
attenuation profile. 

FIG. 12 illustrates a fourth embodiment of the two-phase 
gain equalizer of the present invention and its corresponding 
attenuation profile. 

FIG. 13 illustrates a fifth embodiment of the two-phase 
gain equalizer of the present invention and its corresponding 
attenuation profile. 

DETAILED DESCRIPTION OF THE 
EMBODIMENTS 

The present invention overcomes the aforementioned defi 
ciencies of the background art by providing a two-stage gain 
equalizer. In a first stage, a static filter comprising a static 
attenuation profile performs a coarse modulation on a 
received WDM signal, thereby providing a coarsely modu 
lated WDM signal. Then, in a second stage, a dynamic filter 
comprising a dynamic gain profile performs a fine modula 
tion on the coarsely modulated WDM signal, thereby provid 
ing a finely modulated WDM signal. The dynamic filter pref 
erably includes a dynamic gain equalizer (DGE), and more 
preferably, the DGE includes a spatial light modulator. Pref 
erably, the spatial light modulator comprises a grating light 
valve type device (GLV type device). Preferably, the static 
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4 
filter comprises a filter with static GFF-like functionality. In 
this manner, the two-stage integrated gain equalizer of the 
present invention first removes a predictable first order 
unevenness within a given gain profile of the WDM signal, 
and then fine-tunes the removal of the remaining unevenness 
utilizing a DGE. 

There are a number of advantages of a DGE with integrated 
GFF functionality. The first advantage is a wider overall gain 
capability. FIG. 2 illustrates the additive effect of an inte 
grated device according to the embodiments of the present 
invention. If a static filter has an attenuation range of 10 dB. 
for example, and a dynamic filter has an attenuation range of 
12 dB, then the combined effect can be additive. That is, the 
combined attenuation range of an integrated Static and 
dynamic filter is 22 dB in this case. 

In a practical sense, data collected from various EDFAs 
indicates a range of potential gain profile curves. In designing 
the two-stage gain equalizer of the present invention, the most 
conservative gain profile is considered. The inverse of the 
most conservative gain profile is used as the attenuation pro 
file of the static filter. This is done because in a best case 
scenario, at least the attenuation of the most conservative gain 
profile must be performed in order to obtain gain flattening. In 
many cases, a given EDFA includes again profile showing 
greater gain than the most conservative gain profile, yet falls 
within the known range of gain profiles. In this case, the 
portion of the gain profile that is greater than the most con 
servative gain profile is attenuated by the dynamic filter of the 
present invention. In known cases, a given EDFA imparts at 
least as much gain as the most conservative gain profile. A 
portion of the gain profile that corresponds to the most con 
servative gain profile is attenuated statically by the static 
filter. The remaining portion is attenuated dynamically, which 
accounts for the variances in the gain profiles for all EDFAs. 
Although this concept is applied to gain profiles associated 
with EDFAs, it should be clear that the concept of the present 
invention can also be applied to gain profiles associated with 
other types of amplifiers. 
A second advantage of the two-stage gain equalizer is a 

higher degree of accuracy provided by the dynamic filter. 
Instead of combining the ranges of the static and dynamic 
filters to widen the overall gain capability, the dynamic range 
of the DGE can be reduced to improve its accuracy. To better 
illustrate this point, refer to FIG. 3. FIG. 3 illustrates an 
attenuation profile of a two-stage gain equalizer according to 
the present invention as it is applied to an exemplary gain 
profile of a given EDFA. It should be clear that the gain profile 
illustrated in FIG. 3 is for a random EDFA and that the 
attenuation profile can be designed to take any required shape 
depending upon the nature of the amplification device. It 
should also be clear that although the amplification device is 
an EDFA, the principles of the present invention can be 
applied to gain profiles imparted by other amplification 
devices. The specific gain profile and Subsequent explanation 
of the corresponding attenuation profile as illustrated in FIG. 
3 are to aid in understanding and should not limit the scope of 
the present invention. 
A gain profile 10 is a data point for a specific EDFA. As 

discussed above, a range of gain profiles exists for all known 
EDFAS. This range includes a most conservative gain profile, 
or a minimum gain profile 15, and a maximum gain profile 20. 
As is clear from FIG. 3, the gain profile 10 lies between the 
minimum gain profile 15 and the maximum gain profile 20. In 
designing the two-stage gain equalizer, the maximum pos 
sible gain must be accounted for in the event that the actual 
gain profile hits this maximum. This maximum possible gain 
is represented in FIG.3 at point A. If a desired resultant gain 
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is represented by a resultant gain 50, then the maximum 
possible range at point A is range R. Range R is the difference 
between the gain at point A and the desired resultant gain, at 
the same wavelength. Within the DGE, there are drive elec 
tronics that enable the spatial light modulator to modulate an 
incident light beam in a step-wise function. The drive elec 
tronics essentially take a maximum attenuation correspond 
ing to the maximum possible gain and divides it by a discrete 
number of steps. If for example, the drive electronics use 8 
bits to represent these discrete steps, the number of discrete 
steps is 256. More or less steps can be designed into the DGE. 
Where the DGE is to attenuate the entire maximum possible 
gain, range R, then the size of each discrete step, also known 
as a step width, is R/256. In general, the larger the step width, 
the less accurate the DGE is in attenuating a signal to a desired 
level. In the case where a discrete signal, represented in FIG. 
3 at point C, is to be attenuated to the resultant gain 50, a larger 
step width makes it less likely that the DGE will attenuate the 
signal exactly to the resultant gain 50. Instead, it is more likely 
that the closest step is slightly higher or slightly lower than the 
resultant gain 50. 

However, by using a static filter with GFF-like functional 
ity before using the DGE, the DGE will no longer need to 
attenuate the entire maximum possible gain, range R. By 
reducing the necessary attenuation range, the step width of 
the DGE is reduced, thereby improving the attenuation accu 
racy. The static filter includes a static attenuation profile 30 
that approximates the inverse of the minimum gain profile 15. 
It is a design intent that the static filter attenuates a static 
portion 40 corresponding to a portion of the gain profile 10 
that corresponds to the minimum gain profile 15. Once the 
static filter is applied, the DGE need only attenuate a dynamic 
portion 45 that corresponds to a remaining portion of the gain 
profile 10. It should be clear from FIG. 3 that the entire 
dynamic portion 45 is only applied when the gain profile 10 is 
the maximum gain profile 20. In the case where the gain 
profile 10 is less than the maximum gain profile 20, only a 
portion of dynamic portion 45 is utilized by the DGE. Since 
the static filter attenuates a range S corresponding to the 
minimum gain profile 15, the necessary maximum dynamic 
attenuation range is no longer range R. Instead, the maximum 
dynamic attenuation range is range R minus range S., which 
results in range D. By first using the static filter, the step width 
of the DGE can be reduced to a range D/256. Since range Dis 
smaller than range R, the step width is reduced. The smaller 
step width produces finer resolution, which results in 
improved attenuation accuracy by the DGE. The step width 
described above is defined in relation to range D, which 
conforms to the known range of gain profiles for EDFAs. 
However, it should be clear that the range of the DGE can be 
Smaller or larger than the range D depending on the design 
specifications of the system. 
By first using a static filter, a two-stage gain equalizer can 

be designed to either increase the overall attenuation range or 
improve the overall attenuation accuracy. If the intention is to 
increase the overall attenuation range, then the step width for 
the DGE remains the same as if the DGE where operating 
without the static filter. In this case, the attenuation capabili 
ties of the static filter and the dynamic filter are additive and 
the overall attenuation range is increased. If, on the other 
hand, the intention is to improve attenuation accuracy, then 
the step width is reduced, thereby refining the resolution of 
the DGE. Clearly, there is a trade-off between overall attenu 
ation range and attenuation resolution. Just as clearly, the 
two-stage gain equalizer of the present invention can be 
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6 
designed to meet any necessary specification that lies 
between the maximum and minimum values for these trade 
offs. 
A third advantage of the two-stage gain equalizer is the 

ability to avoid using the extreme range of the DGE compo 
nent. The DGE includes the spatial light modulator, prefer 
ably a grating light valve type device. Spatial light modula 
tors, and grating light valve type devices in particular, 
modulate light using diffraction. In a non-attenuating state, 
the spatial light modulator acts as a flat mirror. In this state, 
effects due to PDL, insertion loss and others, are minimized. 
However, once elements of the spatial light modulator are 
actuated, diffraction occurs. As diffraction increases, so do 
the deleterious effects associated with PDL. Maximum dif 
fraction, as well as maximum PDL, occurs at the extreme 
range of the DGE. When designing a DGE, the worst case 
scenario for PDL must be accounted for in device specifica 
tions. So, if by including a static filter the necessary extreme 
range of the DGE is reduced, then the specifications account 
ing for PDL, and other deleterious effects that worsen near the 
extreme end of the range of the device are improved. 

For example, if a system includes a 15 dB specification for 
total dynamic range and the system only includes a DGE, then 
the entire 15 dB is to be attenuated by the DGE. On the other 
hand, if a static filter comprising a 5 dB range is first used, 
then the DGE need only attenuate 10 dB. For the DGE, a 15 
dB dynamic range entails a more severe design constraint 
than a 10 dB dynamic range. So, when a design specification 
calls for a challenging total dynamic range, there are trade 
offs between achieving the total dynamic range and introduc 
ing PDL, excessive insertion loss, etc. Therefore, if the 
dynamic range can be relieved, then other design specifica 
tions can be more easily or better achieved. 
A fourth advantage of the two-stage gain equalizer is that 

deleterious effects such as PDL, insertion loss, etc. are more 
evenly distributed across the wavelength spectrum. Certain 
effects of the DGE, such as PDL, can be plotted as a function 
of attenuation. In the case of no attenuation there is typically 
only a minimal amount of PDL. As attenuation is increased, 
PDL worsensas Some function of a characteristic response. In 
the case of a DGE, an attenuation profile is applied as a 
corrective function for a given gain profile. For any portion of 
the gain profile that has a relatively steep gain-to-wavelength 
slope, there is a correspondingly steep attenuation-to-wave 
length slope of the attenuation profile. For a portion of the 
attenuation profile that has a steep attenuation-to-wavelength 
slope, neighboring wavelengths will have significantly differ 
ent PDL since the neighboring wavelengths experience sig 
nificantly different attenuations. Similar variances exist for 
other deleterious effects such as insertion loss, etc. Instead, if 
a GFF-like static filter is first applied, the slope of the attenu 
ation profile for the DGE is much less steep. This can be seen 
in FIG.3. Notice that the dynamic portion 45 has a much more 
constant range than that of the entire attenuation profile 35. A 
more constant range leads to a flatter attenuation profile, and 
therefore a flatter slope, attributable to the DGE. With a flatter 
slope, neighboring wavelengths experience more similar 
PDL. As a result, the PDL across the wavelength spectrum is 
more evenly distributed, which is desirable. 
A fifth advantage of the two-stage gain equalizer is that 

Some degree of gain equalizing will occur even in the case of 
a power failure. A DGE is inoperative during power failure, 
however, a GFF is not power dependent. Therefore, during 
loss of power the static attenuation profile is still applied. 
A sixth advantage of the two-stage gain equalizer is that the 

production specifications of the static filter can be relaxed. In 
an ideal case, the static filter completely predicts the nominal 
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unevenness of the gain profile. If the static filter is used as the 
sole means for attenuating a given gain profile, then the 
attenuation profile of the static filter must be precisely manu 
factured to exactly offset the gain profile. In the case of the 
two-stage gain equalizer, the attenuation profile of the static 
filter only needs to be close to completely offsetting the given 
gain profile, where the dynamic filter can “make up the dif 
ference' for any discrepancy. 

Preferably, within the two-stage gain equalizer of the 
present invention, the dynamic filter is a dynamic gain equal 
izer (DGE). Such a DGE is described in U.S. application Ser. 
No. 10/051,972 filed on Jan. 15, 2002, and entitled 
“METHOD AND APPARATUS FOR DYNAMIC EQUAL 
IZATION IN WAVELENGTH DIVISION MULTIPLEX 
ING” which is hereby incorporated by reference. FIG. 4 
illustrates a preferred embodiment of the DGE. A. WDM 
signal S1 entering port 105 of a circulator 110 is output at port 
115 to a collimating lens 120. The collimated signal S1 is then 
transmitted to a bidirectional diffraction grating 125, where 
component wavelengths w, . . . . W., of the signal S1 are 
diffracted at different angles. Although a diffractive grating is 
preferably used to de-multiplex the signal S1 into component 
wavelengths w, . . . . W, alternative means can be used, 
including but not limited to a prism and a bi-directional de 
multiplexor A transform lens 130 maps the component wave 
lengths w, ..., onto different positions of a diffractive light 
modulator 140 via a quarter wave plate 135. Preferably, the 
diffractive light modulator 140 is a grating light valve type 
device (GLV type device) array onto which each of the com 
ponent wavelengths w, . . . , W, is mapped to a particular 
grating light valve type device within the grating light valve 
type device array. The GLV type device array 140 is an 
addressable dynamic diffraction grating array. By adjusting 
the amount of diffraction, the reflected power can be con 
trolled accurately over a large dynamic range. The reflected 
light returns along the same path into port 115 and finally out 
port 145 via circulator 110 as output signal S2. 
A grating light valve type device 141 within the GLV type 

device array 140 according to one aspect of the embodiments 
of the present invention is illustrated in FIG. 5. The grating 
light valve type device 141 preferably comprises elongated 
elements 142 suspended by first and second posts, 144 and 
145, above a substrate 146. The elongated elements 142 com 
prise a conducting and reflecting Surface 147. The Substrate 
146 comprises a conductor 148. In operation, the grating light 
valve type device 141 operates to produce modulated light 
selected from a reflection mode and a diffraction mode. 

It will be readily apparent to one skilled in the art that the 
conducting and reflecting Surface 147 can be replaced by a 
multilayer dielectric reflector in which case a conducting 
element would also be included in each of the elongated 
elements 142. Further, it will be readily apparent to one 
skilled in the art that the conducting and reflecting surface 147 
can be coated with a transparent layer Such as an anti-reflec 
tive layer. 

FIGS. 6 and 7 illustrate a cross-section of the grating light 
valve type device 141 in a reflection mode and a diffraction 
mode, respectively. The elongated elements 142 comprise the 
conducting and reflecting Surface 147 and a resilient material 
149. The substrate 146 comprises the conductor 148. In 
operation, the grating light valve type device 141 operates to 
produce modulated light selected from a reflection mode and 
a diffraction mode. 

FIG. 6 depicts the grating light valve type device 141 in the 
reflection mode. In the reflection mode, the conducting and 
reflecting surfaces 147 of the elongated elements 142 form a 
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8 
plane so that incident light I reflects from the elongated ele 
ments 142 to produce reflected light R. 
FIG.7 depicts the grating light valve type device 141 in the 

diffraction mode. In the diffraction mode, an electrical bias 
causes alternate ones of the elongated elements 142 to move 
toward the substrate 146. The electrical bias is applied 
between the reflecting and conducting surfaces 147 of the 
alternate ones of the elongated elements 142 and the conduc 
tor 148. The electrical bias results in a height difference 
between the alternate ones of the elongated elements 142 and 
non-biased ones of the elongated elements 142. A height 
difference of a quarter wavelength A/4 of the incident light I 
produces maximum diffracted light including plus one and 
minus one diffraction orders, D and D. 

FIGS. 6 and 7 depict the grating light valve type device 141 
in the reflection and diffraction modes, respectively. For a 
deflection of the alternate ones of the elongated elements 142 
of less than a quarter wavelength W4, the incident light I both 
reflects and diffracts producing the reflected light R and the 
diffracted light including the plus one and minus one diffrac 
tion orders, D and D . In other words, by deflecting the 
alternate ones of the elongated elements less the quarter 
wavelength W4, the grating light valve type device 141 pro 
duces a variable reflectivity. By varying the reflectivity in this 
manner, each wavelength can be equalized as desired. It 
should be born in mind that terms like “equalize' and “equal 
ization” as used with respect to embodiments of the present 
invention are to be broadly interpreted with respect to regu 
lating the power levels of component light signals to any 
pre-determined level of relative power levels. Accordingly, 
the term “equalize' as used herein is not to be limited to any 
one particular curve or ratio, but simply constitutes a regula 
tion or normalization of signal power against any pre-deter 
mined curve or ratio of power levels at different frequencies. 

While FIGS. 6 and 7 depict the grating light valve type 
device 141 having six of the elongated elements 142, the 
grating light valve type device 141 preferably includes more 
of the elongated elements 142. By providing more of the 
elongated elements 142, the elongated elements 142 are able 
to function as groups, which are referred to as pixels. Prefer 
ably, the pixels are groups of six of the elongated elements 
142. Alternatively, the pixels are groups of more or less elon 
gated elements 142. 

It will be readily apparent to one skilled in the art that the 
term “pixel’ is used here in the context of an element of a light 
modulator rather than its more common definition of a picture 
element of a display. 

Referring back to FIG.4, as each of the component wave 
lengths w, . . . . . interact with the GLV type device array 
140, they experience diffraction. A benefit of diffraction is 
that a certain amount of light is “thrown away’ from the 
central path. In this manner, the light mapped onto the GLV 
type device array 140 is dynamically attenuated by the per 
formance of the GLV type device array 140. As each wave 
lengths w, ..., W., impinges the GLV type device array 140, 
the grating light valve type device corresponding to each 
particular wavelength causes all, some, or none of the of the 
impinging light to diffract. In essence, each of the component 
wavelengths, ..., W., is dynamically equalized by discard 
ing all. Some, or none of the signal by diffraction. As the 
elongated elements of a grating light valve type device are 
deflected, the light mapped to that grating light valve type 
device is diffracted by an amount corresponding to the dis 
tance that the elongated elements are deflected, resulting in 
only a portion of the component wavelength being reflected. 
When the elongated elements are not deflected, none of the 
impinging light is diffracted and the entire component wave 



US 7,391,973 B1 
9 

length is reflected. Through this process, each reflected com 
ponent wavelength is dynamically equalized. 
The attenuating function of the GLV type device array 140 

can have any arbitrary shape along the array. The attenuating 
function can be a smoothly varying arbitrary shape, a pass 
band filter for one or more channels, or any other desired 
function. A given attenuation function of the DGE is herein 
referred to as an attenuation profile. 

FIG. 8 illustrates a top-down view of the GLV type device 
array 140 along with its non-actuated attenuation profile. The 
non-actuated attenuation profile is also referred to as a static 
attenuation profile. Non-actuating indicates that the GLV 
type device array 140 is in the reflection mode, or mirror 
state. In other words, the static attenuation profile shown in 
FIG. 8 illustrates the GLV type device array 140 acting as a 
static filter. The flat resultant output of the static attenuation 
profile illustrated in FIG. 8 indicates that the GLV type device 
array 140 does not attenuate the impinging light while in a 
static mode. 

FIGS. 9-13 illustrate various embodiments of the two 
stage gain equalizer of the present invention. Each of the 
embodiments are described as including a linear GLV type 
device as the dynamic attenuating element. It is readily per 
ceived that other types of spatial light modulators can easily 
be substituted for the GLV type device, and the same concepts 
still apply. The static attenuation profiles illustrated in each of 
the FIGS. 10-13 are for illustrative purposes only and are not 
intended to limit the scope of the present invention. 

FIG. 9 illustrates a first embodiment of the two-stage gain 
equalizer according to the present invention. A static filter 150 
is inserted into the optical path of the DGE illustrated in FIG. 
4. Preferably, the static filter 150 is a GFF, although any static 
filter including GFF-like functionality can be used. The static 
filter 150 is preferably positioned between the collimating 
lens 120 and the diffraction grating 125 so that the static filter 
150 receives collimated light. Alternatively, the static filter 
150 can be positioned anywhere within the optical train illus 
trated in FIG. 9. Since the static filter 150 is used in conjunc 
tion with a DGE, normal tolerances for thin-film optical GFFs 
need not be observed, thereby lowering the cost of the GFF 
element. Because the static filter 150 can be readily inserted 
into the sealed environment of a pre-existing DGE package, 
the overall cost of adding the static filter 150 to the system can 
also be reduced. 

FIG. 10 illustrates a second embodiment of the two-phase 
gain equalizer of the present invention. Instead of inserting 
the static filter 150 as in FIG.9, a static filter 160 is used as a 
lid that hermetically seals the GLV type device array 140. 
Preferably, the static filter 160 is a GFF, although any static 
filter including GFF-like functionality can be used. The GLV 
type device array 140 illustrated in FIG. 4 includes a trans 
parent glass lid comprising anti-reflection coatings. In the 
second embodiment, a stack of thin-film coatings is applied to 
the glass lid before the glass lid is sealed onto the GLV type 
device array 140. In this manner, the glass lid with thin-film 
coatings acts as a GFF. As in the first embodiment, tolerances 
on the optical GFF element are reduced, so costs can also be 
reduced. By integrating the GFF with the GLV type device 
array, this second embodiment has one less optical compo 
nent in the system than the first embodiment. This reduces 
cost and complexity since the GFF no longer needs to be 
mounted and aligned as a separate optical element. The static 
attenuation profile of the second embodiment is illustrated in 
FIG. 10. The static attenuation profile is determined while the 
GLV type device array 140 is non-actuated. Therefore, the 
static portion of the resultant output attributable to the GLV 
type device array 140 is the same as that illustrated in FIG.8. 
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10 
So the static attenuation profile in FIG. 10 can be solely 
attributable to the Static filter 160. 

FIG. 11 illustrates a third and preferred embodiment of the 
two-stage gain equalizer of the present invention. AGLV type 
device array 170 is designed to impart a static and dynamic 
attenuation profile. In the third embodiment, the GLV type 
device array 170 replaces the GLV type device array 140 and 
static filter 150 of the first embodiment and replaces the GLV 
type device array 140 and the static filter 160 of the second 
embodiment. In the GLV type device array 170, the gaps 
between the GLV type device ribbons, or elements, are varied 
as a means to produce a static attenuation profile that can be 
varied along the length of the array. As the gaps are widened, 
the width of the adjacent ribbon is narrowed by a correspond 
ing amount. This effect can be seen in FIG. 11. As described 
herein, an increase or decrease in the gap width indicates a 
corresponding decrease or increase in the adjacent ribbon 
width, respectively. The gaps are specified as part of the GLV 
type device manufacturing process. As such, the static attenu 
ation profile that results from the varied gap widths is a fixed 
characteristic of the GLV type device array. By varying the 
gaps between the GLV type device elements, the GLV type 
device array 170 imparts the static, or fixed, attenuation pro 
file without actuating the elements of the GLV type device 
array 170. This static attenuation profile is illustrated in FIG. 
11. The wider the gaps, the larger the attenuation. Although 
the GLV type device array 170 illustrated in FIG. 11 indicates 
that the gaps between adjacent GLV type device ribbons are 
varied, this is also meant to indicate that the gaps between the 
elements within a specific GLV type device pixel or minimum 
addressable element are also varied. Preferably, all gaps 
between elements in the same GLV type device addressable 
element are the same. Alternatively, the gaps between ele 
ments in the same GLV type device addressable element can 
also be varied to further refine the attenuation profile. 

Photolithography is used to produce the varied gap widths. 
In contrast, GFF-like static filters are produced by depositing 
thin-film optical coatings. Such thin-films are difficult to 
manufacture within specifications and they tend to bleach 
over time. Using photolithography tightens control and 
repeatability. Including the GFF-like functionality within the 
design of the GLV type device reduces cost and increases the 
useful life of the device. There is no incremental cost penalty 
associated with fabricating the device using photolithogra 
phy, and the additional GFF-like static filter is removed. 

Accurate design of the GLV type device must take into 
account reflectivity of the base at each of the gaps. While 
attenuation does increase as the gap widens, there is a limit. If 
the gap is increased to its maximum, which correlates to a 
GLV type device ribbon width of Zero, the Fresnal reflection 
from the base is approximately 30%. The use of dielectric 
layers, diffraction structures, etc. can be used to better Sup 
press the reflection. Considering the negative attenuation 
effects due to base reflectivity and that there is a maximum 
achievable attenuation, varying the gap width may not pro 
duce enough attenuation to optimally meet the minimum 
static attenuation profile. In this case, the dynamic range of 
the DGE can be increased to compensate for the shortfall of 
the static attenuation profile. 

For the GLV type device array 170 illustrated in FIG. 11, 
widening the gaps alters PDL effects across the GLV type 
device array. For applications that are PDL sensitive, the GLV 
type device array 170 can be altered to greatly minimize these 
PDL effects. Instead of the ribbons being linear, the ribbons 
are cut as curved Surfaces, in a serpentine-like pattern. Since 
the ribbons form a serpentine pattern, so do the gaps. These 
serpentine gaps can be varied in width similarly to the gap 
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widths in the GLV type device array 170 illustrated in FIG. 
11. In this manner, the serpentine gap widths can be varied to 
achieve a desired static attenuation profile while also mini 
mizing PDL effects. 
The concept of varying gap width to produce a static 

attenuation profile can be broadened beyond GLV type 
devices. Any type of physical media performing dynamic 
attenuation where excess insertion losses are produced as a 
function of its operation can vary the element that causes the 
excess insertion loss to create a static attenuation profile. In 
the case of the GLV type device, the gaps lead to excess 
insertion loss. This concept can also be used in LCDs that 
have cell gaps between each LCD, to MEMS mirrors that 
have gaps between the mirrors, and other types of similar 15 
devices. 

FIG. 12 illustrates a fourth embodiment of the two-stage 
gain equalizer of the present invention. Similar to the third 
embodiment, a GLV type device array 180 is designed to 
impart a static and dynamic attenuation profile. In the fourth 
embodiment, the GLV type device array 180 replaces the 
GLV type device array 140 and either the static filter 150 or 
160 of the first or second embodiments, respectively. In con 
trast to the GLV type device array 170, the gaps between the 
GLV type device ribbons of the GLV type device array 180 are 
constant, but the amount of reflective coating on each GLV 
type device ribbon is varied as a means to produce an attenu 
ation profile that can be varied along the length of the array. 
The reflective layer which overcoats each of the GLV type so 
device ribbons is patterned in such a way that it only reflects 
a portion of the incident light. By changing the coverage of 
the reflective coating that is applied to each GLV type device 
ribbon, the degree of attenuation of the element, or ribbon, 
can be varied along the length of the GLV type device array 35 
180. Although the GLV type device array 180 illustrated in 
FIG. 12 indicates that the amount of reflective coating on each 
of the adjacent GLV type device ribbons is varied, this is also 
meant to indicate that the amount of reflective coating on each 
of the elements within a specific GLV type device pixel or 40 
minimum addressable element are also varied. Preferably, the 
amount of reflective coating on each of the elements in the 
same GLV type device addressable element are the same. 
Alternatively, the amount of reflective coating on each of the 
elements in the same GLV type device addressable element 45 
can also be varied to further refine the attenuation profile. 
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The reflective layer patterns are specified as part of the 
GLV type device manufacturing process. As such, the static 
attenuation profile that results from the varied reflective layer 
patterns is a fixed characteristic of the GLV type device array. 50 
By varying the length 1 of the reflective layers on the GLV 
type device elements, as illustrated in FIG. 12, the GLV type 
device array 180 imparts a static, or fixed, attenuation profile 
without actuating the elements of the GLV type device array 
180. This static attenuation profile is illustrated in FIG. 12. In 55 
the previous embodiments, the reflective layer on each GLV 
type device of the GLV type device arrays 140 and 170 
sufficiently covers the length of each ribbon such that the 
entire incident light impinges the reflective layer. In the GLV 
type device array 180, the length 1 of the reflective layer on 60 
each ribbon is patterned such that the reflective area on each 
ribbon receives all or only a portion of the incident light. The 
effective reflective area is altered geometrically to configure 
to the desired static attenuation of the incident light. The more 
reflective area on the ribbon means more of the incident light 65 
is reflected, thereby limiting the degree of attenuation. The 
less reflective area on the ribbon means less of the incident 
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light is reflected, which leads to greater attenuation. By vary 
ing the reflective area on the ribbons, a desired static attenu 
ation profile is achieved. 

Similar to the third embodiment, varying the reflective area 
on each ribbon is performed using photolithography. As 
above, this approach introduces no additional costs, and 
eliminates the GFF-like static filter. Tighter calibration speci 
fications are necessary to ensure proper optical alignment of 
the incident light on the GLV type device array. Alignment of 
the incident light can be achieved using active alignment with 
feedback. 

FIG.13 illustrates a fifth embodiment of the two-stage gain 
equalizer of the present invention. Similar to the third and 
fourth embodiments, a GLV type device array 190 is designed 
to impart a static and dynamic attenuation profile. In the fifth 
embodiment, the GLV type device array 190 replaces the 
GLV type device array 140 and either the static filter 150 or 
160 of the first or second embodiments, respectively. In con 
trast to the GLV type device arrays 170 and 180, the gaps 
between the GLV type device ribbons and the reflective area 
on each ribbon of the GLV type device array 190 are constant, 
but the edges of each ribbon are serrated as a means to pro 
duce an attenuation profile that can be varied along the length 
of the array. Although the GLV type device array 190 illus 
trated in FIG. 13 indicates that the serration frequency 
between adjacent GLV type devices is varied, this is also 
meant to indicate that the serration frequency between the 
elements within a specific GLV type device are also varied. 
Preferably, all serration frequencies between elements in the 
same GLV type device are the same. Alternatively, the serra 
tion frequency between elements in the same GLV type 
device can also be varied to further refine the attenuation 
profile. 
As can be seen in FIG. 13, the edges between ribbons is cut 

in Such away that light is diffracted at angles 45 degrees away 
from the long axis of the GLV type device array 190. By 
changing the pitch of the edge Serrations, the magnitude of the 
light that is diffracted out of an optical collection system can 
be varied, thereby changing the attenuation along the length 
of the array. In other words, by changing the frequency of the 
serrations, the amount of light that is diffracted, and therefore 
collected, is changed. The higher the Serration frequency, the 
greater the attenuation, as illustrated by the static attenuation 
profile in FIG. 13. 
As with the third and fourth embodiments, the fifth 

embodiment is achieved using photolithography which 
comes without penalties of cost or additional optical ele 
ments. The GLV type device array 190 includes a further 
advantage of being symmetrical in the X-axis and the Y-axis 
of the array, thereby avoiding introduction of any problems 
with PDL that can arise when the two orthogonal polariza 
tions are effected differently. 

It will be readily apparent to one skilled in the art that other 
various modifications may be made to the preferred embodi 
ment without departing from the spirit and scope of the inven 
tion as defined by the appended claims. 
We claim: 
1. An apparatus for selectively adjusting power levels of 

component signals of a wavelength division multiplexed 
(WDM) signal, the apparatus comprising: 

a circulator configured to receive the WDM signal via a 
first port and outputting the WDM signal via a second 
port; 

a collimating lens configured to receive the WDM signal 
from the circulator and to collimate the WDM signal; 

a first filter for receiving the WDM signal from the colli 
mating lens and for modulating the component signals 
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according to a static attenuation profile, thereby provid 
ing coarsely modulated component signals, wherein the 
static attenuation profile includes a predetermined func 
tion in which attenuation varies as a function of the 
wavelength of the component signal; 
de-multiplexing device configured to receive the 
coarsely-modulated component signals from the first 
filter and for diffracting the coarsely-modulated compo 
nent signals at different angles; 
transform lens configured to receive the diffracted 
coarsely-modulated signals from the de-multiplexing 
device and to map the coarsely-modulated signals onto 
different positions in a plane; and 
second filter configured in the plane to receive the 
coarsely-modulated component signals mapped to the 
different positions in the plane and to modulate the 
coarsely-modulated component signals according to a 
dynamic attenuation profile, thereby providing finely 
modulated component signals, wherein the second filter 
includes a dynamic gain equalizer comprising a diffrac 
tive light modulator, the diffractive light modulator 
including a plurality of elements configured to receive 
de-multiplexed component signals, wherein each ele 
ment is controllable to selectively modulate each of the 
component signals according to the dynamic attenuation 
profile, 
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wherein the first filter comprises a transparent glass lid 

with thin-film coatings covering the diffractive light 
modulator of the second filter. 

2. The apparatus according to claim 1 wherein the diffrac 
tive light modulator comprises a grating light valve device. 

3. The apparatus according to claim 1 wherein the first filter 
includes a Gain Flattening Filter. 

4. The apparatus according to claim 3 wherein the Gain 
Flattening Filter is separate from the light modulator. 

5. The apparatus according to claim 1 wherein the diffrac 
tive light modulator comprises a plurality of MEMS ele 
mentS. 

6. The apparatus according to claim 1 wherein the diffrac 
tive light modulator comprises a plurality of liquid crystal 
elements. 

7. The apparatus of claim 1, wherein the de-multiplexing 
device comprises a bidirectional diffraction grating. 

8. The apparatus of claim 1, wherein the de-multiplexing 
device comprises a prism. 

9. The apparatus of claim 1, wherein the de-multiplexing 
device comprises a bidirectional de-multiplexor. 

10. The apparatus of claim 1, further comprising a quarter 
wave plate positioned between the transform lens and the 
second filter. 


