»UK Patent Application «GB 2 346990 « A

(43) Date of A Publication 23.08.2000

21} Application No 9903850.7

{22) Date of Filing 20.02.1999

(71) Applicant(s)
International Business Machines Corporation
{Incorporated in USA - New York)
Armonk, New York 10504, United States of America

{72} Inventor(s}
Gordon Douglas Hutchison
Amanda Elizabeth Chessell

(74) Agent and/or Address for Service
JBM United Kingdom Limited
Hursley Park, WINCHESTER, Hampshire, 5021 2JN,
United Kingdom

{51) INTCL’
GO6F 17/30 9/46

(62) UK CL (Edition R)
G4A AFGX AUDB

(56} Documents Cited
GB 2301909 A
TDB Access No. NB112334 & IBM Technical Disclosure
Bulletin, Dec 1991, v34, n7B, pages 334-338

(58) Field of Search
UK CL (Edition Q) G4A AFGX APX AUDB
INT CL® GO6F 9/46 17/30
Online: COMPUTER, EPODOC, INSPEC, JAPIO, TDB,
WPI

(54) Abstract Title

Client/server transaction processing system with automatic distributed co-ordinator set-up into a linear

chain for use of linear commit optimisation

(57) A computing apparatus (e.g process A) for use in a
client/server transaction processing system has: means
31 for sending a transactional requests to a server {e.g.
process C) to request that the server become involved in
processing a distributed transaction, the request
including an indication of a computing apparatus (e.g
process B) to which the server should direct a registration
request to request that a resource 39 local to the server
be registered in the transaction; means 31 for receiving a
reply 12 to the transactional request from the server, the
reply including an indication of an apparatus {e.g.
process C) which is currently the last in a linear chain of
apparatuses that have sent out registration requests in
response to receiving transactional requests; and means
35 for keeping track of the current apparatus which is the
last in the linear chain based on replies received by the
receiving means; wherein the indication sent by the
sending means, along with the transactional request, is
an indication of the current apparatus which is the last in
the linear chain, based on the keeping means.

Vv 0669vE<C 99O

174

\\ 08

\ow
sueajy
uo1433UU0)
\\\oNe
w1$%ﬂﬂ
| 432090 40
| }JOMBWRJ | suealy 21607
| 3Ns3Y0) | puo0lag
331aaq 3bedoys Cog
Cotl weJbosd
0oL uoijednddy

0z

(331AJ3S) PUOIAS

Jajndwo) JIAJIS

3IB4J34V)

™ - 353613
| 423(qQ 401

“xgozmemumn
| BNIS3Y0)!

" 33189 36RJ04S

suealy
Uo1{I3UU0)

€09

09/

or
Jajndwo) ju3id

sued|y 1007
§sSdid

Cos

weJbodd
uoiyednddy
{SJdi4

214

IBE](¢]y
3JN0sa Yy

439[q0

JO}RUIPJQO)
3jeutpJogng

$23(q0
32JN0S3Y

el

mmm JOAJDS

Le

433[00
JO}BUIpPJ00)
Joadng

NEINELS

3/4

Process A Process B

T
erver B
=y

Res Bj

36

Process C

w

‘
4\)
o

10
N

FIG. 3

Process D

L14

CSTaRD)

Receive transactional request from process A

—— 401

Examine propagation context of received
transactional request and determine identity of
process to send registration request to

- 402

Send registration request fo identified processB |~ 403

Keep track of last registered coordinator in linear chain L — 404

Send transactional request to process D

— 40S

Receive registration request from process D

— 406

Receive reply to-transactional request

— 407

Keep track of last registered coordinator in linear chain |— 408

END

FIG. 4

Send reply fo process A |—409

10

15

20

25

30

35

40

45

) 2346990

CLIENT/SERVER TRANSACTION DATA PROCESSING SYSTEM WITH AUTOMATIC
DISTRIBUTED COORDINATOR SET UP INTO A LINEAR CHAIN
FOR USE OF LINEAR COMMIT OPTIMIZATION

Field of the Invention

The invention relates to the field of client/server (also known as
"distributed") computing, where one computing device ("the client™")
requests another computing device ("the server") to perform part of the
client’s work. The client and server can also be both located on the
same physical computing device.

Background of the Invention

Client/server computing has become more and more important over the
past few years in the information technology world. This type of
distributed computing allows one machine to delegate some of its work to
another machine that might be, for example, better suited to perform that
work. For example, the server could be a high-powered computer running a
database program managing the storage of a vast amount of data, while the
client is simply a desktop personal computer (PC) which requests
information from the database to use in one of its local programs.

The benefits of client/server computing have been even further
enhanced by the use of a well-known computer programming technology
called object-oriented programming (OOP), which allows the client and
server to be located on different (heterogeneous) "platforms". 2a
platform is a combination of the specific hardware/software/operating
system/communication protocol which a machine uses to do its work. OOP
allows the client application program and server application program to
operate on their own platforms without worrying how the client
application’s work requests will be communicated and accepted by the
server application. Likewise, the sefver application does not have to
worry about how the O0OP system will receive, translate and send the
server application’s processing results back to the requesting client

application.

Details of how OOP techniques have been integrated with
heterogeneous client/server systems are explained in US Patent No.
5,440,744 and European Patent Published Application No. EP 0 677,943 A2.
These latter two publications are hereby incorporated by reference. '
However, an example of the basic architecture will be given below for. .

P

contextual understanding of the invention’s environment.

As shown in Fig. 1, the client computer 10 (which could, for
example, be a personal computer having the IBM 0S/2 operating system

10

15

20

25

30

35

40

45

installed thereon) has an application program 40 running on its operating
system ("IBM" and "0S/2" are trademarks of the International Business
Machines corporation). The application program 40 will periodically
require work to be performed on the server computer 20 and/or data to be
returned from the server 20 for subsequent use by the application program
40. The server computer 20 can be, for example, a high-powered mainframe
computer running on IBM’s MVS operating system ("MVS" is also a trademark
of the IBM corp.). For the purposes of the present invention it is
irrelevant whether the requests for communications services to be carried
out by the server are instigated by user interaction with the first
application program 40, or whether the application program 40 operates
independently of user interaction and makes the requests automatically
during the running of the program.

wWhen the client computer 10 wishes to make a request for the server
computer 20’s services, the first application program 40 informs the
first logic means 50 of the service required. It may for example do this
by sending the first logic means the name of a remote procedure along
with a list of input and output parameters. The first logic means 50
then handles the task of establishing the necessary communications with
the second computer 20 with reference to definitions of the available
communications services stored in the storage device 60. All the
possible services are defined as a cohesive framework of object classes
70, these classes being derived from a single object class. Defining the
services in this way gives rise to a great number of advantages in terms
of performance and reusability.

To establish the necessary communication with the server 20, the
first logic means 50 determines which object class in the framework needs
to be used, and then creates an instance of that object at the server, a
message being sent to that object so as to cause that object to invoke
one of its methods. This gives rise to the establishment of the
connection with the server computer 20 via the connection means 80, and
the subsequent sending of a request to the second logic means 90.

The second logic means 90 then passes the reguest on to the second
application program 100 (hereafter called the service application)
running on the server computer 20 so that the service application 100 can
perform the specific task required by that request, such as running a
data retrieval procedure. Once this task has been completed the service
application may need to send results back to the first computer 10. The
server application 100 interacts with the second logic means 90 during
the performance of the requested tasks and when results are to be sent
back to the first computer 10. The second logic means 90 establishes
instances of objects, and invokes appropriate methods of those objects,
as and when required by the server application 100, the object instances

10

15

20

25

30

35

40

45

being created from the cohesive framework of object classes stored in the
storage device 110. ’

Using the above technique, the client application program 40 is not
exposed to the communications architecture. Further the service
application 100 is invoked through the standard mechanism for its
environment; it does not know that it is being invoked remotely.

The Object Management Group (OMG) is an international consortium of
organizations involved in various aspects of client/server computing on
heterogeneous platforms with distributed objects as is shown in Fig. 1.
The OMG has set forth published standards by which client computers (e.qg.
10) communicate (in OOP form) with server machines (e.g. 20). As part of
these standards, an Object Request Broker (called CORBA-the Common Object
Request Broker Architecture) has been defined, which provides the object-
oriented bridge between the client and the server machines. The ORB
decouples the client and server applications from the object oriented
implementation details, performing at least part of the work of the first
and second logic means 50 and 90 as well as the connection means 80.

As part of the CORBA software structure, the OMG has set forth
standards related to "transactions" and these standards are known as the
OTS or Object Transaction Service. See, e.g., CORBA Object Transaction
Service Specification i.O, OMG Document 94.8.4. Computer implemented
transaction processing systems are used for critical business tasks in a
number of industries. A transaction defines a single unit of work that
must either be fully completed or fully purged without action. For
example, in the case of a bank automated teller machine from which a
customer seeks to withdraw money, the actions of issuing the money,
reducing the balance of money on hand in the machine and reducing the
customer’s bank balance must all occur or none of them must occur.
Failure of one of the subordinate actions would lead to inconsistency
between the records and the actual occurrences.

Distributed transaction processing involves a transaction that
affects resources at more than one physical or logical location. 1In the
above example, a transaction affects resources managed at the local
automated teller device as well as bank balances managed by a bank’s main
computer. Such transactions involve one particular client computer (e.g,
10) communicating with one particular server computer (e.g., 20) over a
series of client requests which are processed by the server. The OMG’s
OTS is responsible for coordinating these distributed transactions.

An application running on a client process begins a transaction
which may involve calling a plurality of different servers, each of which
will initiate a server process to make changes to its local data

10

15

20

25

30

35

40

45

according to the instructions contained in the transaction. The
transaction finishes by either committing the transaction (and thus all
servers finalize the changes to their local data) or aborting the
transaction (and thus all servers "rollback" or ignore the changes to
their local data made during the transaction). To communicate with the
servers during the transaction (e.g., instructing them to either commit
or abort their part in the transaction) one of the processes involved
must maintain state data for the transaction. According to the OTS
standard, this involves the process setting up a series of objects, one
of which is a coordinator object which coordinates the transaction with
respect to the various servers.

The main purpose of this coordinator object is to keep track of
which server objects are involved in the transaction, so that when the
transaction is finished, each server object involved in the transaction
can be told to commit the changes made locally to the local database
associated with that server object, in a single unified effort. This
ensures that no server object makes a data change final without the other
server objects which are also involved in the same transaction doing so.
thus, each server object which is to join a transaction must first
register with the coordinator object so that the coordinator object will
know of the server object’s existence, its wish to join the transaction,
and where to find the server object (e.g., which server machine the
server object resides on) when it comes time to complete the transaction
(where the coordinator object instructs all server objects to make the
changes to their respective local data final).

A server object responsible for updating data (referred to
hereinbelow as a resource object) gets involved in a transaction when
another server object (or the original client object which started the
transaction) sends a request to the resource object for the resource
object to 4o some work. This latter request carries some information,
called the transaction context, to inform the resource object that the
request is part of a particular transaction. With CORBA version 2, the
transaction context is built by the local CosTransactions::Coordinator
object get_txcontext method. Once a resource object finds out that it is
to be involved in a particular transaction, it then makes a registration
request with the coordinator object.

when the resource object is located in a different operating system
process from the coordinator object, it has been found to be useful to
use a subordinate coordinator object (222 in Fig. 2) located in the same -
operating system process as the resource object (223 or 224). The main
coordinator object is- then called the "superior coordinator object" 211.
During registration of a resource object 223 to the transaction, the
subordinate coordinator 222 is set up locally inside the server machine

10

15

20

25

30

35

40

45

22 which houses the resource object 223 and the resource object 223
communicates directly with this subordinate coordinator object 222 when
it makes a registration request. (It should be noted that while the term
wgserver machine" is used here, the term "server process" could also be
used, to thus indicate that the distributed server objects could, in
fact, be located on the same server machine but on different operating
system processes running on the server machine, and hereinafter the term
ngerver" will be used to refer to both terms.) The subordinate
coordinator 222, in turn, registers itself with the superior coordinator
object 211 (which is located in another process possibly on another
server machine as if it were a resource cbject).

The subordinate coordinator object 222 thus provides a
representation of the existence of the transaction within the server
housing the resource object. Instead of communicating directly with the
superior coordinator object 211, the resource objects 223 and 224 first
communicate with their local subordinate coordinator object 222 which in
turn communicates with the superior coordinator object. This greatly
reduces the number of cross-operating-system-process calls.

oftentimes, a transaction will involve a number of different
processes, each potentially running on a different server machine. For
example, server process 21 (which includes superior coordinator 211) may
call three different processes to take part in a distributed transaction,
and thus each of such processes would result in the creation of a
subordinate coordinator to locally coordinate the transaction in that
process. At the end of the transaction, the superior coordinator would
use the traditional two-phase commit protocol to make sure that each of
the three processes makes its changes final in a unitary "all or nothing”
fashion (i.e., either they all commit their changes or they all roll back
their changes). The two phase commit protocol traditionally involves
sending a prepare call to each of the three subordinate coordinators and
then sending a commit call to each of the three subordinate coordinators,
assuming that they have all voted to commit in response to the prepare
call. This would, thus, involve the superior coordinator 211 sending six
cross-process calls.

A well known optimization of the two phase commit protoccl, which
is often used to reduce the number of total cross process calls in the
two phase commit, is known as the "last agent optimization" (e.g., see
Transaction Processing: Processes and Technigues by Gray and Reuter,
Morgan Kaufman Publishers, Sept. 1992, Section 12.5.3). To summarise this
optimisation, if a transaction root coordinator (e.g., superior
coordinator 211) has N resources (e.g., representing 3 subordinate
coordinators) involved in a transaction it will prepare (i.e., send
prepare flows to) N-1 of them. At this point if all the resources vote

10

15

20

25

30

35

40

45

commit (the usual case) the transaction outcome depends only on the last
resource’s prepare vote. We can therefore combine the prepare and commit
flows to the last resource, this optimised final flow is catered for in
the CORBA CosTransactions specification by the resource: :commit_one phase
method. In this discussion, subordinate coordinators, their resources,
and other resources can be treated the same way and are generically
termed the ‘agents’ involved. With the last agent optimization, the
message flows are halved between the coordinator and the last agent over
the simple case for two phase commit.

A further well known optimization of the two-phase commit protocol
is called the "linear commit"™ optimization (also described in the above
cited Gray et al section). The linear commit optimization is based on
the idea that if we can arrange the systems involved in a distributed
transaction into a linear chain, we can then repeatedly use the last
agent optimization on this chain. This approximately halves the total
number of messages that must be passed between the distributed systems
that are taking place in the distributed transaction completion.

However, while these optimizations are well known in the
transaction processing art, it is heretofore unknown in the context of
client/server distributed transaction processing how to arrange the
coordinators into such a linear chain in an automatic reliable fashion,
and this deficiency in the prior art has been the stimulus which has led
the present inventors to come up with the present invention which will be
described below.

Summary of the Invention

According to a first aspect, the present invention provides a
computing apparatus for use in a client/server transaction processing
system, the apparatus comprising: sending means for sending a
transactional request to a server data processing apparatus to request
that the server data processing apparatus become involved in processing a
distributed transaction, the transactional reguest including an
indication of a computing apparatus which the server data processing
apparatus should direct a registration request to request that a resource
local to the server data processing apparatus be registered in the
transaction; receiving means for receiving a reply to the transactional
request from the server data processing apparatus, the reply including an
indication of an apparatus which is currently the last in a linear chain
of apparatuses that have sent out registration requests in response to
receiving transactional requests; and keeping means for keeping track of -
the current apparatus which is the last in the linear chain based on
replies received by the receiving means; wherein the indication sent to a
server data processing apparatus by the sending means, along with the

10

15

20

25

30

35

40

45

transactional request, is an indication of the current apparatus which is
the last in the linear chain, based on said keeping means.

According to a second aspect, the invention provides a method of
operating the apparatus of the first aspect.

According to a third aspect, the invention provides a program
storage device readable by a machine, tangibly embodying a program of
instructions executable by the machine to perform the method steps of the
second aspect.

Thus, the invention enables the coordinators in a distributed
transaction to line up in a linear chain in an automatic and reliable
fashion, thus allowing the use of the linear commit optimization. Since
the linear commit optimization can then be used, the number of inter-
coordinator message flows during the two-phase commit process can be cut
in half. As present and future object-oriented electronic commerce
applications make substantial use of distributed transactions (because
databases necessary to the transaction are held in various servers), the
present invention will have a real and tangible benefit to such systems
in terms of cutting down significantly on inter-system traffic.

Brief Description of the Drawings
The invention will be better understood by the below description of

preferred embodiments thereof to be read while referring to the following

figures.

Figure 1 is a block diagram of a well-known heterogeneous
client/server architecture using object technoclogy, in the context of
which preferred embodiments of the present invention can be applied;

Figure 2 is a block diagram showing the various objects
instantiated within two co-transactional servers according to a
conventional system;

Figure 3 is a block diagram showing software components according
to a preferred embodiment of the present invention; and

Figure 4 is a flowchart showing the steps carried out by a process
according to a preferred embodiment of the present invention.

Detailed Description of the Preferred Embodiments
An example scenario will now be presented in order to illustrate

how a preferred embodiment of the present invention operates, in
conjunction with figure 3. This example scenario has been chosen for
being fairly typical of how a distributed transaction is carried out.

10

15

20

25

30

35

40

45

In the example we have a distributed transaction running across 4
systenms. (Here a system can be taken to be a discrete operating system
process possibly running on its own dedicated machine (with each machine
in communication with the other machines via a network, such as the
Internet), or all of the processes could be running on the same physical
machine without compromising the example.)

A client application 31 is sited on system A and, while running a
user’s transactional unit of work, the client application 31 makes use of
server applications hosted on the three server systems: ServerB; ServerC
and ServerD.

For each server system the user’s transaction involves, recoverable
resources are accessed as part of the distributed transaction and this
requires that the server systems become involved in the transaction and
the transaction‘’s distributed two phase commit process. The scenario as
the transaction develops will be described below.

During the development of the transaction, the preferred embodiment
of the invention requires that at all times the developing ‘new’ parts of
the distributed transaction tree become located at the ’'end’ of the
current transaction ‘chain’ being built. This results in the transaction
tree becoming linear (in terms of the coordinators involved) thus
improving the potential of the ‘linear commit-’ optimisation.

The user runs the client application 31 ‘CLIENT APP’ in system 'A’,
and while this application is performing a transactional unit of work on
behalf of the user the application code makes a call (flow '1’ in Fig. 3)
to a server application ’‘APP SERVER B’ situated on System ’'B’.

When this call is made system B’s transaction service establishes
the transaction on system B (the destination system) on behalf of the
application. This is done using the ‘transaction context’ that is flowed
along with the application’s request. This establishment of the
transaction context is done similarly at the destination system on
receipt of all application flows (eg flows *1’. ‘5", and '8’ in our
scenario) targeted at transactional objects.

While running the server application B 32 a resource ’'ResBl’ 33 is
registered by the application 32 with the local coordinator ‘CoordB’ 34.
As ’'CoordB’ 34 is not yet registered to be involved in the distributed
transaction completion it makes it’s own register_resource call (flow
'2’) to the Coordinator Reference that was present in the transaction
context currently established (‘CoordA’ 35). Thus, ’CoordB’ 34 is now
linked to the distributed transaction coordinated by ’Coorda’ 35. Thus

10

15

20

25

30

35

40

45

"CoordA’ 35, having completed processing of the register_resource flow
returns and control is returned (flow ‘3’) to the calling system (’B’).

Processing continues in system B, and another resource 3§
(‘ResB2’) is registered into the transaction by a part of the server
application B 32. As ‘CoordB’ 34 is already involved in the transaction
no new register_resource flow (such as ‘2‘,’3’) is needed.

Processing of the user’s server work completes on system ‘B’ and
"B’ returns control to system A (flow ‘4‘). Piggybacked to this flow is
a reference to the coordinator that the returning system (system B)
now believes is at the ‘end’ of the distributed transaction chain of
involved coordinators - in this case a reference to 'CoordB’, this
reference is stored in the returning ’'transaction context’

As the next step in the transaction, the client application 31
calls ‘APP SERVER C 37’ (flow ’5‘) in system C. 1In the prior art
technique, system A passed a reference to system A’s coordinator 35 (this
reference flows in the transaction context piggy backed to flow ‘5’), so
that system C would know that when it is registering a local (to system
C) resource into the transaction, system C should make the register
request to the main coordinator 35 in system A. However, in the
preferred embodiment of the present invention, at flow '5’ in this
scenario (example) system A passes a reference to the coordinator (i.e.
to ‘CoordB’ 34) that ’'CoordA’ 35 currently believes is at the end of the
‘chain’ .,

Thus when the transaction service for server ‘C’ becomes involved
in the transaction, instead of contacting ’'Coorda’ to become joined to
the distributed transaction (as was done in the prior art) (thus forming
a V shaped transaction tree) it will contact ’'CoordB’ 34 forming a linear
chain which can be more efficiently committed using two phase commit with
the linear commit optimisation technique.

Thus ‘CoordC’ 38 flows a register_resource flow (to register system
C’s local resource ResCl 39 into the transaction) to 'CoordB’ 34 (flow
‘6’) as CoordB 34 was the coordinator reference passed to system C in the
transaction context from system A. This flow is similar to flow 2’ and
uses the same apparatus. ‘CoordB’ 34 returns (return flow *7') and
processing continues on system C.

We now have a chain of involved systems ‘A’->’B’->’C’ with control .
(ie the active application thread) now currently in node ‘C’. We can see
that as long as the transaction service for the currently running/active
portion of the transaction is aware of the current ‘last’ coordinator in
the chain and flows a reference to this ‘last’ coordinator with any

10

15

20

25

30

35

40

45

10

outbound transactional flows and returns this (or the updated) reference
on any replies - the transaction will always track the ’'last’ system
(involved via an inter-system register_resource) in the chain and upon
sending this reference (and updating it as above) on any subsequent new
inter-system transactional flows the distributed transaction tree will
form a linear chain of coordinators as desired.

As in our scenario 'CoordC’ 38 is currently last in the chain, when
transactional work is flowed to server application D 41 in system
'pr (flow ‘8’), CoordC’s reference is passed in the transaction context
in this flow. ‘CoordD’ 40 becomes involved in the transaction via a
register_resource flow (to register its local resource ResDl 42) to the
current ‘last’ coordinator (CoordC 38) via flow ‘9’ and return flow ’10°.
In our scenario work flows from system C to D (flow '8’) and returns back
to system ‘C’ (return flow +11‘) and then back finally to system A (flow
*127). Thus, the coordinators are lined up in a linear chain A-->B-->C--
>D, as desired.

In another scenario system ‘D’ could have become involved in the
transaction due to work flowing from any of the systems ‘A’, 'B’ and ‘C’
and once any of these three systems becomes involved in the distributed
transaction tree in the linear chain ‘A’->’B’->’'C’ then any transactional
flows to D from any of ‘A’, ‘B’ or ‘C‘’ will pass a reference to ‘CoordC’
38 piggy-backed with the transaction context.

The steps carried out by a process according to a preferred
embodiment of the present invention will now be described with reference
to the flowchart of Fig. 4. For jllustrative purposes, process C in Fig.
3 will be the representative process described with respect to the
flowchart of Fig. 4.

At step 401, server application C 37 in process C receives a
transactional request (flow 5 in Fig. 3) from client application 31,
requesting that process C become involved in a distributed transaction.
Included in the propagation context of the received transactional request
is an indication that when process C sends out a registration reguest to
register its local resource ResCl 39 in the transaction, process C should
send this registration request to CoordB 34 in process B (because process
B had previously informed process A that process B was the last

coordinator in the linear chain).

At step 402, process C examines the propagation context of the
received transactional request and determines the identity of the process
in which process C should send a registration request to. As explained
in the last paragraph, in our scenario of Fig. 3 the process to send
registration requests to is process B. Thus, at step 403, process C

10

15

20

25

30

35

40

45

T 11

sends a registration request (flow 6) to CoordB 34 of process B. Now
that CoordC 38 of process C has sent a registration request to process B,
CoordC of process C now replaces CoordB of process B as the last
coordinator in the linear chain of registered coordinators in the
transaction. Thus, at step 404, process C keeps track of the last
registered coordinator in the linear chain by, for example, deleting a
memory location which previously stored an indication that CoordB of
process B was the last coordinator in the linear chain and inserting in
that memory location an indication that Coord C of process C is now the
last coordinator in the linear chain of registered coordinators.

At step 405, process C sends (flow 8) a transactional request to
process D to request that process D become involved in the distributed
transaction (note that process C calls process D as a part of the
execution of the transactional request which client application 31 has
sent (via flow 5) to server application C). 1Included in the propagation
context of the transactional request is an indication that when process D
sends out a registration request to register its local resource ResDl 42
in the transaction, process D should send this registration request to
coordC 38 in process C (because process C, as explained in the previous
paragraph has substituted itself in place of process B as the last
coordinator in the linear chain).

At step 406, process C receives a registration request (flow 9)
from process D requesting that process D’s local resource ResD1l 42 be
registered with the transaction. Process C then sends (step 407) a reply
(fElow 10) to the registration request back to process D.

At step 407, once process D is finished performing its part of the
transactional work, process C receives a reply (flow 11) from process D
to the transactional request (flow 8) that process C sent to process D at
step 405. This latter reply (flow 11) includes an indication that
process D is now the last registered coordinator in the linear chain
(since process D has sent a registration request to process C (flow 9).
At step 408, process C then keeps track of the last registered
coordinator in the linear chain by, for example, deleting the memory
location which previously stored an indication that CoordC of process C
was the last coordinator in the linear chain and inserting in that memory
location an indication that Coord D of process D is now the last
coordinator in the linear chain of registered coordinators.

At step 409, when process C has completed its processing of the
transactional request that was received at step 401, process C sends a
reply (flow 12) to the transactional request back to the client
application 31 of process A. Included in the propagation transaction
context of this reply is an indication that process D is now the last

10

15

12

coordinator in the linear chain of registered coordinators. Upon
receiving this reply, process A then updates its own record of the last
coordinator in the linear chain (because process A currently stores
process B as the last coordinator). This way, should client application
31 send a transactional request to a further server E (not shown in Fig.
3), client application 31 will tell server E that when server E registers
with the transaction, server E should send its registration request to
process D (which will then place server E at the end of the linear chain

of registered processes).

Although the preferred embodiment of the invention has been
described in the object-oriented programming environment, the invention
can also be applied to non-object-oriented programming environments.

In the attached claims, the term "apparatus" can be either a

machine or a process running on a machine.

10

15

20

25

30

35

40

45

CLAIMS

1. A computing apparatus for use in a client/server transaction
processing system, the apparatus comprising:

sending means for sending a transactional request to a server data
processing apparatus to request that the server data processing apparatus
become involved in processing a distributed transaction, the
transactional request including an indication of a computing apparatus to
which the server data processing apparatus should direct a registration
request to request that a resource local to the server data processing
apparatus be registered in the transaction;

receiving means for receiving a reply to the transactional request
from the server data processing apparatus, the reply including an
indication of an apparatus which is currently the last in a linear chain
of apparatuses that have sent out registration requests in response to
receiving transactional requests; and

keeping means for keeping track of the current apparatus which is
the last in the linear chain based on replies received by the receiving

means;

wherein the indication sent to a server data processing apparatus
by the sending means, along with the transactional request, is an
indication of the current apparatus which is the last in the linear
chain, based on said keeping means.

2. The apparatus of claim 1, wherein said indication is provided in a
reply as part of a transaction propagation context.

3. The apparatus of claim 1, wherein said apparatus is implemented
according to the Common Object Request Broker Object Transaction Service

specification.

4. The apparatus of claim 1 wherein said client/server system uses the
Internet as a communication medium.

5. A method of operating a computing apparatus for use in a
client/server transaction processing system, the method comprising steps
of:

sending a transactional request to a server data processing
apparatus to request that the server data processing apparatus become
involved in processing a distributed transaction, the transactional

10

15

20

25

30

35

40

14

request including an indication of a computing apparatus to which the
server data processing apparatus should direct a registration request to
request that a resource local to the server data processing apparatus be
registered in the transaction;

receiving a reply to the transactional request from the server data
processing apparatus, the reply including an indication of an apparatus
which is currently the last in a linear chain of apparatuses that have
sent out registration requests in response to receiving transactiomnal
requests; and

keeping track of the current apparatus which is the last in the
linear chain based on replies received via the receiving step;

wherein the indication sent to a server data processing apparatus
via the sending step, along with the transactional request, is an
indication of the current apparatus which is the last in the linear
chain, based on the keeping step.

6. The method of claim 5, wherein said indication is provided in a
reply as part of a transaction propagation context.

7. The method of claim 5, wherein said apparatus is implemented
according to the Common Object Request Broker Object Transaction Service
specification.

8. The method of claim 5 wherein said client/server system uses the
Internet as a communication medium.

9. A program storage device readable by a machine, tangibly embodying
a program of instructions executable by the machine to perform the method
steps of claim S.

10. The program storage device of claim 9, wherein said indication is
provided in a reply as part of a transaction propagation context.

11. The program storage device of claim 9, wherein said apparatus is
implemented according to the Common Object Request Broker Object
Transaction Service specification.

12. The program storage device of claim 9 wherein said client/server

system uses the Internet as a communication medium.

1 AL -

\\:? N
Office ¢ 4

R
INVESTOR IN PEOPLE
B
Application No: GB 9903850.7 Examiner: Geoff Western
Claims searched: 1-12 Date of search: 22 September 1999

Patents Act 1977
Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK ClI (Ed.Q): G4A AFGX APX AUDB
Int Cl (Ed.6): GO6F 9/46 17/30
Other: Online : COMPUTER, EPODOC, INSPEC, JAPIO, TDB, WPI

Documents considered to be relevant:

Category| Identity of document and relevant passage Relevant
to claims

A | GB2301509A (@.B.M.) -

A TDB Access No. NB9112334 & IBM Technical Disclosure Bulletin, Dec
1991, v34, n7B, pages 334-338, "Combining presumed abort two phase -
commit protocols with SNA’s last agent optimization"

X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined with P Document published on or after the declared priority date but before the
one or more other documents of same category. filing date of this invention.
E Patent document published on or after, but with priority date earlier than,
& Member of the same patent family the filing date of this application.

An Executive Agency of the Department of Trade and Industry

