US 20160092336A1

a2y Patent Application Publication o) Pub. No.: US 2016/0092336 A1

a9 United States

Atanasiu et al.

43) Pub. Date: Mar. 31, 2016

(54) CODE ANALYSIS FOR CLOUD-BASED
INTEGRATED DEVELOPMENT
ENVIRONMENTS
(71) Applicants: Radu-Florian Atanasiu, Darmstadt
(DE); Anne Keller, Darmstadt (DE);
Wei Wei, Griesheim (DE); Heiko
Witteborg, Griesheim (DE); Wolfgang
Pfeifer, Kerzenheim (DE)

(72) Inventors: Radu-Florian Atanasiu, Darmstadt
(DE); Anne Keller, Darmstadt (DE);
Wei Wei, Griesheim (DE); Heiko
Witteborg, Griesheim (DE); Wolfgang
Pfeifer, Kerzenheim (DE)

(21) Appl. No.: 14/500,164

(22) Filed: Sep. 29, 2014

Publication Classification

(51) Int.CL
GOGF 11/32 (2006.01)
GOGF 11/36 (2006.01)
GOGF 9/455 (2006.01)
(52) US.CL
CPC oo GOGF 11/323 (2013.01); GOGF 9/455
(2013.01); GOGF 11/3664 (2013.01); GO6F
11/3636 (2013.01)
(57) ABSTRACT

The disclosure generally describes computer-implemented
methods, software, and systems, including methods for gen-
erating visualizations. On a client side, a user request is
received for an inter-entity call visualization. Code analysis
data is accessed. A visualization model is built. The visual-
ization is shown. User inputs are received for interacting with
the visualization. The visualization is updated based on the
received user inputs. On a server side, a request is received for
code analysis data. The requested data collected, including
running analyzers for any available data. The requested data
is sent. The code analysis data can be used for other purposes
than visualizations.

100
N :/30
CLIENT DEVICE
~—
132~ DEVELOPER MEMORY
INTERFACE 112
-
134~]" cope J—
NAVIGATOR ~—
LOCAL
136~ VISUALIZATION VISUALIZATION
TOOL DATA
144
138 -___—
140 \-’W

130

CLIENT
DEVICE

102

SERVER

MEMORY 120

112 r| INTERFACE |
114 /| ANALYSIS INTERFACE |

CODE

REPOSITORY [122

116 r‘ CODE ANALYZERS |
118 /{ PROCESSOR |

i

ENTITY ’
DICTIONARY | 124

Patent Application Publication = Mar. 31,2016 Sheet 1 of 8 US 2016/0092336 A1
100
N i
CLIENT DEVICE
-
132~] DEVELOPER MEMORY
INTERFACE 142
—
N Lo L
NAVIGATOR
LOCAL
136~ VisUALZATIoN | || VISUALIZATION
144
—
138~ processor |
140~ |INTERFACE
GUl - 150
130
CLIENT : .
DEVICE [T]
o]
102
110
\
SERVER VEVORY 120
T~
P INTERFACE S
12 CODE 129
114 -] ANALYSIS INTERFACE REPOSITORY
__—/
| J —
CODE ANALYZERS
116 - ENTITY
DICTIONARY | 124
118—| PROCESSOR —_—
FIG. 1

US 2016/0092336 Al

Mar. 31, 2016 Sheet2 of 8

Patent Application Publication

¢ DIA

20l

1£44
822~ 3090830 oe 2N IETTIER nll
ANOLISOdTY 314
SI0IAYIS WHO41Vd
NOLLVWHOANI (4 JONVHO 3713 NO SISATVNY ()
JNILNNY 139 Y d 31vadn /INALNOD 3114 avay
-y
aziz~J wazawny | | w3zawww | -eziz O
OINVNAQ ILVIS zw —
— 290 0le
z SISATYNY d
Ny N
LINSTHSISATYNY)
ﬁ s1ins \m S /" 3137130 /31vadn /av3d ALYIED
1474 YIAVISISATYNY 300D
/ 707 (INvHdvs 69) SIS (44 3714 a3
80¢ YIAYIS SISATYNY 139 ' ¥ /N3O
¥IZITVNSIA NOILYOIAYN A
301 3OVAYILNI
oze-l mo | °°° 3a00 |81z O
INIWdOT3AIA N
$30IAY3S HIWNSNOD SISATYNY
m_mA 0z (Y¥3smoud) IN3MD Q
A 90z~ @ su3do1anaa |_
00¢ L

US 2016/0092336 Al

Mar. 31, 2016 Sheet 3 of 8

Patent Application Publication

Ve 'DIA Zoun{yoeq|[eo
e . |aungxoeqjes

. EYLE

18lqo eWSIXIoWOS
lqopuooagh
ole .nou.m W %0Bq||ED .____. ”M__M%__smm
20l¢

D\ 0L
zpoyenedijojoid ‘ 101€

/ POLIBPUCDSS

yolLe /
. A S \O
\\ e -
\

OSIEL
10L€ \\ \\f\ o€ B0LE
() Pl AT ()
/ -
LpoyiapyedAooid Ml o oungpajsau
Jeq — NOM
-90¢
A
O (O}roe
<00} 100}

US 2016/0092336 Al

Mar. 31, 2016 Sheet4 of 8

Patent Application Publication

0€E <

poupajypuodes lqoisiAN

poyreisay laoisu4AN

0ce

d¢ ‘DIA

| poytapyadAiojoud‘iqoisa AN
()

O [qoIsn4AN ‘

<57V

SH3TTVI »

‘ Jeq

9ce

Patent Application Publication

346b~

342~ :

Mar. 31, 2016 Sheet S of 8 US 2016/0092336 Al

340

1

a MyFirstObj ()

a firstMethod ()

a secondMethod ()

a prototypeMethod1 ()
a MySecondObj ()

a firstMethod ()

a secondMethod ()

a prototypeMethod2 ()

4 bar (param, callback)

344 -

346a-"

[[#> nestedFunc ()

[> secondMethod ()

[¢> callback ()

> SomeExternalObject ()
7> MySecondObj ()

[¢> prototypeMethod2 ()
[@> MyFirstObj ()

[¢> prototypeMethod1 ()
R foot ()

R foo2 ()

4 nestedFunc

> 344a
4 foot ()

%344b
a f002 ()

a callbackFunc1 (something)
a callbackFunc2 (something)

FIG. 3C

US 2016/0092336 Al

Mar. 31, 2016 Sheet 6 of 8

Patent Application Publication

¥ "DIA
qcey ~ JWYN
Y3ALINVEVd | |
BeCr ~ JdAL
Y3ALIAVEVd | |
WAL
Y3LINVEVd
ocvy
. SALVAIANYD
00Ss | viv
ONIHOLYW NOILYD0T H
Lad arhy
QIALINT | | QIALNT | |
eglLy J1VAIANYD Byl] aITvo
WAL
31VAIANYD W3LITIVO
9l [A% 4

Ul ~
SINFWNOD |
AN
SYALANVEVD |
0LY ~
3d09S -
90l ~
SYITIVO
POLY " Upoy
NOILYD01 | o
0Ly o
IdALALIINT M ZALIINT |
aoLy -~ a0y -
JONIYILTY LSV LALIINT
B0l ey -
(37gv1 HSYH)
g0 | UM QI ALIINS AMYNOILOIQ ALILN3
*10)74 AN

Patent Application Publication = Mar. 31,2016 Sheet 7 of 8 US 2016/0092336 A1

500

¢

502~ RECEIVE STATIC INFORMATION FOR ENTITIES
USING INFORMATION FROM A DATA DICTIONARY

A J

504 RECEIVE DYNAMIC INFORMATION FOR
™ ENTITIES USING INFORMATION ASSOCIATED

WITH THE ENTITIES RECEIVED AT RUN-TIME

A
506~ RECEIVE A REQUEST FOR A VISUALIZATION

A J
507 ~ ANALYZE THE RECEIVED STATIC
AND DYNAMIC INFORMATION

Y
GENERATE, BASED ON THE ANALYZING,
508 INSTRUCTIONS FOR A VISUALIZATION

!

RECEIVE USER INPUTS FOR
510 INTERACTING WITH THE VIZUALIZATION

A
UPDATE THE VISUALIZATION BASED
512 ON THE RECEIVED USER INPUTS

FIG. 5A

520

3

522~ EVALUATE A CODE REPOSITORY TO DETERMINE
ENTITIES AND RELATIONSHIPS AMONG ENTITIES

!

STORE INFORMATION FOR THE ENTITIES AND THE
524 | DETERMINED RELATIONSHIPS IN A DATA DICTIONARY

FIG. 5B

Patent Application Publication

Mar. 31, 2016 Sheet 8 of 8

540

¢

US 2016/0092336 Al

542~ RECEIVE A USER REQUEST FOR AN
INTER-ENTITY CALL VISUALIZATION
544~] ACCESS CODE ANALYSIS DATA
546~] BUILD VISUALIZATION MODEL
\
"y SHOW VISUALIZATION

\

A

RECEIVE USER INPUTS FOR
550" INTERACTING WITH

THE VISUALIZATION

\

A

552

UPDATE THE VISUALIZATION BASED
ON THE RECEIVED USER INPUTS

FIG

560

\

. 5C

562~

RECEIVE A REQUEST FOR
CODE ANALYSIS DATA

\

A

564 ~_

COLLECT REQUESTED DATA,
INCLUDING RUNNING ANALYZERS

FOR UNAVAI

LABLE DATA

\

A

566 -]

SEND REQUESTED DATA

FIG

. 5D

US 2016/0092336 Al

CODE ANALYSIS FOR CLOUD-BASED
INTEGRATED DEVELOPMENT
ENVIRONMENTS

TECHNICAL FIELD

[0001] The present disclosure relates to computer-imple-
mented methods, software, and systems for software devel-
opment.

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0002] This application is a co-pending application of U.S.
application Ser. No. , filed on Sep. 29, 2014 entitled
“VISUALIZATIONS OF INTER-ENTITY CALLS”; the
contents of which are incorporated herein by reference.

BACKGROUND

[0003] Many modern software development platforms
have integrated layers that support a full spectrum of appli-
cation life cycle activities such as an integrated development
environment (IDE) for application development, a runtime
for execution and debugging, a web service for public con-
sumption of hosted applications, a database for persistency,
and/or other layers for other purposes. Environments having
such layers have become a trend in modern cloud-computing
networks.

[0004] For computing languages such as JAVASCRIPT,
used for application development, software engineers (“de-
velopers,” “software developers,” etc.) increasingly need
proper IDE tools to make the usage of the computing lan-
guages more productive. However, the lack of such IDE tools
often forces developers to instead use sophisticated text edi-
tors. The lack of an advanced code analysis infrastructure is
one of the reasons for the non-existence of such IDEs.
[0005] Changes in a software platform architecture can
present opportunities and challenges in how modern software
applications can be designed, developed, analyzed, executed,
and/or maintained, and the changes can influence software
development using IDEs. For example, an IDE based in a
cloud platform can be accessed through web services such
that a developer can use in an Internet browser. Current imple-
mentations of such cloud-based IDEs are often primitive and
may lack features common to dedicated IDEs installed
locally on a developer’s computer, such as ECLIPSE, NET-
BEANS, and VISUAL STUDIO. Examples of features that
may be lacking from primitive IDEs can include code
completion, refactoring, outlining, and/or other features,
some of which may require static or runtime analysis of
application code. Ideally, such analyses should be easily
available, aggregated and ready for use by a user, such as a
software developer. These conditions can be considered, for
example, in the design and development of cloud-based dis-
tributed software development environments.

[0006] An important difference in a cloud-based develop-
ment environment as opposed to locally-installed IDE’s is
that a cloud-based IDE is generally shared by multiple or all
of the developers working on the platform. With traditional
IDEs, such as ECLIPSE, the IDE is typically installed sepa-
rately on each developer’s computer, so that the IDE’s usage
is isolated from others (apart, for example, from the use of
versioning control to synchronize code). In the cloud-based
IDE, for example, information can be more readily and easily
shared among developers, which can be beneficial in sce-

Mar. 31, 2016

narios such as code reuse, team collaboration, and/or other
scenarios. An example consequence is that, when code analy-
sis is designed and built for such a shared IDE, the same
analysis should not be run separately by each developer
repeatedly.

[0007] When developing software applications, having an
understanding of the source code (simply called “code” from
here on) is important for developers. More specifically, it is
crucial to understand dependencies between different code
artifacts, e.g., functions and/or other software components.
Understanding dependencies can be important for both pure
software development tasks, as well as for tasks that deal with
existing code artifacts such as refactoring and maintenance.
In some implementations, code visualizations, including
visualizations that are part of a cloud-based computer code
analysis, can be used in making the structure of a program
more understandable, e.g., aiding the developer in under-
standing the code.

SUMMARY

[0008] The disclosure generally describes computer-
implemented methods, software, and systems for providing
an entity dictionary derived from code analysis, and for pro-
viding visualizations based on the entity dictionary. For
example, a system for providing visualizations includes at
least one processor. The system further includes an inter-
entity call visualization system, including instructions oper-
able, when executed by the at least one processor, for gener-
ating instructions for displaying and interacting with
visualizations. The instructions are operable to provide plural
visualizations showing relationships among entities. The
instructions are further operable to receive user inputs asso-
ciated with the display of a given visualization. The instruc-
tions are further operable to perform one or more operations
on the visualization based on the received user inputs. The
system further includes an analysis layer for retrieving static
and dynamic analysis data from multiple analyzers and
aggregating the static and dynamic analysis data in a form of
an entity dictionary for use by the inter-entity call visualiza-
tion system. The system further includes a client device for
displaying visualizations received from the inter-entity call
visualization system.

[0009] In another example, computer-implemented meth-
ods are included for providing visualizations. One computer-
implemented method includes receiving static information
for entities using information from an entity dictionary that
identifies entities in the entity dictionary. The entity dictio-
nary includes, for each entity, an abstract syntax tree refer-
ence, an entity type, a location, a list of called entities, a list of
called-by entities, a scope, a parameter set including param-
eter items, and comments. For each called entity, the entity
dictionary includes a called entity identifier, a location, and a
set of candidate call entities. For each parameter item, the
entity dictionary includes a parameter type and a parameter
name. For each candidate called entity, the entity dictionary
includes a candidate entity identifier and a matching score.
The computer-implemented method further includes receiv-
ing dynamic information associated with the entities received
at run-time. The computer-implemented method further
includes receiving a request for a visualization, the visualiza-
tion including a hierarchical representation of inter-entity
calls, including inter-entity calls between entities in a same
source code file or between entities in different files, includ-
ing source code files of weakly-typed, prototype-based lan-

US 2016/0092336 Al

guages. The computer-implemented method further includes
analyzing the received static and dynamic information. The
computer-implemented method further includes generating,
based on the analyzing, instructions for presenting the visu-
alization. The computer-implemented method further
includes receiving user inputs for interacting with the visual-
ization. The computer-implemented method further includes
updating the visualization based on the received user inputs.
[0010] Other implementations of this aspect include corre-
sponding computer systems, apparatus, and computer pro-
grams recorded on one or more computer storage devices,
each configured to perform the actions of the methods. A
system of one or more computers can be configured to per-
form particular operations or actions by virtue of having
software, firmware, hardware, or a combination of software,
firmware, or hardware installed on the system that in opera-
tion causes or causes the system to perform the actions. One
or more computer programs can be configured to perform
particular operations or actions by virtue of including instruc-
tions that, when executed by data processing apparatus, cause
the apparatus to perform the actions.

[0011] The foregoing and other implementations can each
optionally include one or more of the following features,
alone or in combination. In particular, one implementation
can include all the following features:

[0012] Ina firstaspect combinable with any of the previous
aspects, the entities are entities associated with computer
code.

[0013] In asecond aspect combinable with any of the pre-
vious aspects, the visualization is one of an inter-entity, call-
directed graph visualization, an inter-entity, call-collapsible
tree visualization, and an inter-entity call-outline list visual-
ization.

[0014] In a third aspect combinable with any of the previ-
ous aspects, the visualization is integrated with an integrated
development environment (IDE) including an editor.

[0015] In a fourth aspect combinable with any of the pre-
vious aspects, the IDE is cloud-based and the visualization is
part of a cloud-based computer code analysis.

[0016] Inafifth aspect combinable with any of the previous
aspects, user actions in either one of a given visualization or
the IDE cause actions to occur in the other.

[0017] In a sixth aspect combinable with any of the previ-
ous aspects, the one or more operations include hiding ele-
ments of the visualization, exposing elements of the visual-
ization, changing a central focus of the visualization,
displaying additional information associated with a particular
element.

[0018] In a seventh aspect combinable with any of the pre-
vious aspects, the one or more operation include switching
the display to a different visualization and causing associated
elements in the visualization or the editor to be highlighted.

[0019] The subject matter described in this specification
can be implemented in particular implementations so as to
realize one or more of the following advantages. First, visu-
alizations can make it easier for programmers to distinguish,
at design time, instantiations of functions or objects defined
within the code, including for prototype-based, weakly-typed
languages. Second, programmers can understand the flow of
programming logic and be able to interact or navigate to
certain points in the flow, which can be useful when creating,
maintaining or debugging applications, especially if visual-
izations are tightly woven into the capabilities of an IDE. For
example, a machine-readable structure can hold a represen-

Mar. 31, 2016

tation of the code that abstracts away some features, while at
the same time implicitly embedding other features.

[0020] An integrated system, for example, can provide
code analysis results to developers using IDEs and other
tools. For example, a code analysis layer can be centralized
and built directly into a cloud platform, serving all developers
at once. The centralized code analysis layer can be more
efficient in terms of computational resource usage and more
powerful, e.g., by having knowledge about all the code and
other software artifacts on the platform. The code analysis
layer can provide static information that can be made even
more accurate using runtime information. The code analysis
results can allow a developer, for example, to respond more
quickly to code changes. For example, a central repository
can provide triggers to run code analysis whenever a file is
created, saved, and/or deleted. Other advantages will be
apparent to those skilled in the art.

[0021] The details of one or more implementations of the
subject matter of this specification are set forth in the accom-
panying drawings and the description below. Other features,
aspects, and advantages of the subject matter will become
apparent from the description, the drawings, and the claims.

DESCRIPTION OF DRAWINGS

[0022] FIG. 1 is a block diagram illustrating an example
environment for providing and updating inter-entity call visu-
alizations.

[0023] FIG. 2isablock diagram of an example cloud-based
code analysis system.

[0024] FIG. 3A shows an example graph visualization.
[0025] FIG. 3B shows an example tree visualization.
[0026] FIG. 3C shows an example outline visualization.
[0027] FIG. 4 is a diagram an example structure of an entity
dictionary.

[0028] FIG. 5A is a flowchart of an example method for

providing and updating inter-entity call visualizations.
[0029] FIG. 5B is a flowchart of an example method for
generating an entity dictionary.

[0030] FIG. 5C is a flow diagram of an example method for
providing an inter-entity call visualization.

[0031] FIG. 5D is a flow diagram of an example method for
handling an analysis request.

[0032] Like reference numbers and designations in the
various drawings indicate like elements.

DETAILED DESCRIPTION

[0033] The following detailed description is presented to
enable any person skilled in the art to make, use, and/or
practice the disclosed subject matter, and is provided in the
context of one or more particular implementations. Various
modifications to the disclosed implementations will be
readily apparent to those skilled in the art, and the general
principles defined herein may be applied to other implemen-
tations and applications without departing from scope of the
disclosure. Thus, the present disclosure is not intended to be
limited to the described and/or illustrated implementations,
but is to be accorded the widest scope consistent with the
principles and features disclosed herein.

[0034] This disclosure generally describes computer-
implemented methods, software, and systems for providing
an entity dictionary derived from code analysis, including
cloud-based code analysis, and for providing visualizations
based on this dictionary. Generating and presenting the visu-

US 2016/0092336 Al

alizations, for example, can help a developer understand the
structure and behavior of large programs and/or programs
that are comprised of several entities (e.g., functions, etc.) in
the same source file, including cloud-based programs and/or
computer code.

[0035] Visualizations may have associated general require-
ments and/or design goals. For example, visualizations
should be easily accessible, show relevant information in a
non-cluttered view, and use well-established visual meta-
phors for represented entities. Visual components of visual-
izations, for example, can include directed graph edges that
represent function calls. Furthermore, visualizations should
allow the developer to interactively explore the code with the
visualization as a basis.

[0036] Insomeimplementations, allowing the developer to
interactively explore the code with the visualization can be
achieved, for example, through a tight integration of the visu-
alization and an editor or IDE. The integration, for example,
can make use of editor or IDE features such as code naviga-
tion and code highlighting. Lastly, for weakly-typed lan-
guages, the visualization can show both the discernible struc-
ture of the program and provide other information.

[0037] Code analysis can be used in addition to visualiza-
tion and other tools to allow a clear picture of what the
programming code represents. For example, information
about the code can be extracted statically, by means of parsing
the programming code and inferring its properties using the
syntax and semantics imposed by the programming language.
Information about the code can also be extracted during
execution of the code, thus obtaining runtime information.

[0038] Some dynamic, prototype-based, weakly-typed
computing languages, such as ECMASCRIPT (more popu-
larly known as JAVASCRIPT), can complicate code analysis
and the ability to create visualizations. For instance, comput-
ing languages that allow a program and its subordinate enti-
ties to reside in the same file can complicate some parts of
software development, such as code completion, code pre-
view, code navigation, detecting variable scope or variable
type, visualizing function/object dependencies, function
calls, object instantiations, refactoring, and/or other capabili-
ties that make a software development environment more
user-friendly.

[0039] In some implementations, a data structure can be
used to hold information about the program, so as to provide
an intermediate representation. The information can support
consumption by automatic and non-automatic processes, for
example, including displaying information about the pro-
gram in a visual manner, and locating blocks of code for other
software development purposes. Data structures to support
these processes, for example, can represent program infor-
mation in the form of a dictionary-like structure, such as using
an abstract syntax tree representation of the program, as
described below.

[0040] FIG. 1 is a block diagram illustrating an example
environment 100 for providing and updating inter-entity call
visualizations. Specifically, the illustrated environment 100
includes, or is communicably coupled with, a server 110 and
at least one client device 130. For example, a user, such as a
developer, can interact with user interfaces presented on the
client device 130 using information provided by the server
110. The environment 100 shown in FIG. 1 provides a high-
level, conceptual understanding, but a more detailed archi-
tecture is provided below with respect to FIG. 2.

Mar. 31, 2016

[0041] At a high level, the server 110 comprises an elec-
tronic computing device operable to perform code analysis
and handle requests from client devices 130 for information
associated with the code, including code analysis results. The
server 110 can also request the analysis of code, such as when
requests are received, and store the code analysis results for
use by plural developers using plural client devices 130. For
example, the server 110 can provide the processing and sup-
port necessary for client devices 130 to present visualizations
to multiple developers.

[0042] For example, although FIG. 1 illustrates a single
server 110, the environment 100 can be implemented using
two or more servers 110, as well as computers other than
servers, including a server pool. Indeed, the server 110 may
be any computer or processing device. According to some
implementations, the server 110 may also include, or be com-
municably coupled with, an e-mail server, a Web server, a
caching server, a streaming data server, and/or other suitable
server(s). In some implementations, components of the serv-
ers 110 may be distributed in different locations and coupled
using the network 102.

[0043] The server 110 includes an interface 112, an analy-
sis interface 114, plural code analyzers 116, a processor 118,
and amemory 120. The interface 112 is used by the server 110
for communicating with other systems in a distributed envi-
ronment, connected to the network 102 (e.g., the client device
130), as well as other systems (not illustrated) communicably
coupled to the network 102. Generally, the interface 112
comprises logic encoded in software and/or hardware in a
suitable combination and operable to communicate with the
network 102. More specifically, the interface 112 may com-
prise software supporting one or more communication pro-
tocols associated with communications such that the network
102 or interface’s hardware is operable to communicate
physical signals within and outside of the illustrated environ-
ment 100.

[0044] Theanalysisinterface 114, for example, can serve as
the main communication interface for client devices 130. For
example, based on requests received from one or more client
devices 130, the analysis interface 114 can assemble and
aggregate information about developed applications, e.g., by
accessing source code files and associated meta-information.
The analysis interface 114 can also identify and/or provide
information associated with relationships between files. For
example, the analysis interface 114 can access previously
generated analysis results, e.g., from the entity dictionary
124, or if necessary, the analysis interface 114 can invoke the
code analyzers to perform additional analysis.

[0045] The code analyzers 116, for example, can perform
various kinds of analysis associated with code. As described
in more detail below, static analysis can be performed on
source code, and dynamic analysis can be performed at runt-
ime, such as by a debugger.

[0046] The processor 118, for example, can execute
instructions and manipulate data to perform the operations of
the server 110. Although illustrated as the single processor
118 in FIG. 1, two or more processors 118 may be used
according to particular needs, desires, or particular imple-
mentations of the server 110.

[0047] The server 110 also includes the memory 120, or
multiple memories 120. The memory 120 may include any
type of memory and/or database module. The memory 120
may store various objects or data, including caches, classes,
frameworks, applications, backup data, business objects,

US 2016/0092336 Al

jobs, web pages, web page templates, database tables, reposi-
tories storing business and/or dynamic information, and any
other appropriate information including any parameters, vari-
ables, algorithms, instructions, rules, constraints, or refer-
ences thereto associated with the purposes of the server 110.
Additionally, the memory 120 may include any other appro-
priate data, such as VPN applications, firmware logs and
policies, firewall policies, a security or access log, print or
other reporting files, as well as others. In some implementa-
tions, memory 120 includes a code repository 122 that
includes program files, each potentially containing multiple
entities, e.g., functions and/or other components). In some
implementations, memory 120 also includes an entity dictio-
nary 124, e.g., that is a data dictionary that includes inter-
entity call information for entities identified in the source
code in the code repository 122. More details of the entity
dictionary 124 are provided below with respect to FIG. 4.
Other components within the memory 120 are possible.
[0048] The illustrated environment of FIG. 1 also includes
the client device 130, or multiple client devices 130. The
client device 130 may be any computing device operable to
connect to, or communicate with, at least the server 110 via
the network 102 using a wire-line or wireless connection. In
general, the client device 130 comprises an electronic com-
puter device operable to receive, transmit, process, and store
any appropriate data associated with the environment 100 of
FIG. 1.

[0049] The illustrated client device 130 includes a devel-
oper interface 132. For example, the developer interface 132
can serve as an interface between a user using the client
device and code-related resources, such as an IDE and/or
other resources.

[0050] The illustrated client device 130 further includes a
code navigator 134. The code navigator 134, for example, can
provide services for use by a developer for displaying and
moving to different portions of source code. For example, the
code navigator 134 can allow the developer to jump from a
function call to the corresponding function definition, e.g.,
within an editor or in an IDE.

[0051] The illustrated client device 130 further includes a
visualization tool 136. The user of the client device 130, for
example, can use the visualization tool 136 as a front end to
the server 110 for requesting and displaying visualizations.
During use of the visualization tool 136, for example, data
that supports the visualization(s) currently being viewed can
be stored (e.g., cached) in the local visualization data 144.
[0052] Theillustrated client device 130 further includes an
interface 140, a processor 138, and a memory 142. The inter-
face 140 is used by the client device 130 for communicating
with other systems in a distributed environment—including
within the environment 100—connected to the network 102,
e.g., the server 110, as well as other systems communicably
coupled to the network 102 (not illustrated). Generally, the
interface 140 comprises logic encoded in software and/or
hardware in a suitable combination and operable to commu-
nicate with the network 102. More specifically, the interface
140 may comprise software supporting one or more commu-
nication protocols associated with communications such that
the network 102 or interface’s hardware is operable to com-
municate physical signals within and outside of the illustrated
environment 100.

[0053] As illustrated in FIG. 1, the client device 130
includes the processor 138. Although illustrated as the single
processor 138 in FIG. 1, two or more processors 138 may be

Mar. 31, 2016

used according to particular needs, desires, or particular
implementations of the environment 100. Generally, the pro-
cessor 138 executes instructions and manipulates data to per-
form the operations of the client device 130. Specifically, the
processor 138 executes the functionality required to send
requests to the server 110 and to receive and process
responses from the server 110.

[0054] In some implementations, the illustrated client
device 130 includes local visualization data 144. For
example, the local visualization data 144 can include data
supporting the visualization that has been previously received
from the server 110, e.g., for the visualization(s) currently
being presented by the visualization tool 136.

[0055] The illustrated client device 130 also includes a
memory 142, or multiple memories 142. The memory 142
may include any memory or database. The memory 142 may
store various objects or data, including caches, classes,
frameworks, applications, backup data, business objects,
jobs, web pages, web page templates, database tables, reposi-
tories storing business and/or dynamic information, and any
other appropriate information including any parameters, vari-
ables, algorithms, instructions, rules, constraints, or refer-
ences thereto associated with the purposes of the client device
130. Additionally, the memory 142 may include any other
appropriate data, such as VPN applications, firmware logs
and policies, firewall policies, a security or access log, print or
other reporting files, as well as others.

[0056] The illustrated client device 130 is intended to
encompass any computing device such as a smart phone,
tablet computing device, PDA, desktop computer, laptop/
notebook computer, wireless data port, one or more proces-
sors within these devices, or any other suitable processing
device. For example, the client device 130 may comprise a
computer that includes an input device, such as a keypad,
touch screen, or other device that can accept user information,
and an output device that conveys information associated
with the operation of the server 110 or the client device 130
itself, including digital data, visual information, or a graphi-
cal user interface (GUI) 150, as shown with respect to and
included by the client device 130. The GUI 150 interfaces
with at least a portion of the environment 100 for any suitable
purpose, including generating a visual representation of a
Web browser. In particular, the GUI 150 may be used to view
and navigate various Web pages located both internally and
externally to the server 110.

[0057] FIG. 2is ablock diagram of an example cloud-based
code analysis system 200. The system 200 includes a server
202 that can provide code analysis services to at least one
client 204, such as including browsers and/or other applica-
tions. For example, each of one or more developers 206, such
as software developers, can use a client 204 to interact with
various software development tools, including IDEs. The
tools can include, for example, visualizations that are based
on code analysis provided by the server 202 for presentation
to the developers 206 using clients 204. Clients 204 can be
connected to the server 202 using the network 102, as
described above. The server 202 can be located at a central
facility or can include and/or logically connect plural servers
202 at different locations that are connected using the net-
work 102. In some implementations, elements of the cloud-
based code analysis system 200 are represented, or imple-
mented by, similar and/or different components in the
environment 100.

US 2016/0092336 Al

[0058] A code analysis layer 208, that is the main compo-
nent in the server 202, can provide code analysis information
(e.g., including meta-information) for use by the developers
206. The code analysis information can be extracted by the
server 202 from a variety of code analysis sources, and can
provide the developers 206 with information about software
code that is being developed or used. The code analysis infor-
mation can be provided, for example, to a user interaction
layer for facilitating the development of code and/or other
code-related functions. In some implementations, the user
interaction layer can include the client 204, including a
browser and/or other applications. The code analysis infor-
mation can be used in other ways, such as for coding helpers
(e.g., including auto-completion, refactoring and navigation),
visual representations of the code (e.g., visualizations 300,
320 and 340 described below with reference to FIGS.
3A-3C), evaluation of the code, performance information,
and for other functions. The code analysis layer 208 may also
be regarded as a black box—a service for performing analysis
of files on request.

[0059] In some implementations, components of the code
analysis layer 208 can include an analysis interface 210 that
can serve as the main communication and information aggre-
gation component. The analysis interface 210 can perform a
variety of functions, such as providing communication with
front-end components, including clients 204 and other web-
based development environments that request and/or receive
code analysis results provided by the server 202. Other func-
tions of the analysis interface 210 can include assembling and
aggregating information about developed applications, iden-
tifying and providing information associated with relation-
ships between files (e.g., as identified by analyzers 212),
deciding when to run different types of analyses, updating an
analysis results database 214, monitoring file changes, and
updating the analysis results database 214 accordingly for an
entire application associated with a particular file.

[0060] In some implementations, the code analysis layer
208 is not a visualization-specific system. For example, the
code analysis layer 208 can provide code analysis data in a
form of the data structure described below with reference to
FIG. 4. For example, in addition to consumption by the visu-
alizations described below with respect to FIGS. 3A-3C, the
code analysis data can be consumed by IDE features such as
code completion or refactoring. In general, producing the
analysis data in a form of the data structure described below
with reference to FIG. 4 provides a loose coupling between
the code analysis layer 208 and visualizers that produce the
visualizations 300, 320 and 340.

[0061] The analyzers 212 can include, for example, a static
analyzer 212a that uses code-related files and/or programs as
input and provides code analysis results as an output. For
example, the code analysis results can be determined as a
result of processing the code-related files and/or programs in
a structured manner. The analysis interface 210 can store the
code analysis results in the analysis results database 214, for
example. The analyzers 212 can also include, for example, a
dynamic analyzer 21254, described below.

[0062] The analysis results database 214 can include, for
example, a repository for storing code analysis results in the
context of an application that is being analyzed. In addition,
the stored code analysis results for a file can be correlated
with different versions of files and/or applications, such as
identified by configuration control systems. The analysis
results database 214 can also act as support for access rights

Mar. 31, 2016

control. For example, access rights can control whether cer-
tain information can be presented to a certain developer,
based on whether the developer has access to the related files
orresources from which the analysis information is generated
or inferred.

[0063] The code analysis layer 208 can support and/or
facilitate analysis consumer services 216. The services can
include, for example, front-end services that allow developers
206 to interact with web-based development environments
and make use of code analysis results exposed by the analysis
interface 210. Services exposed by the analysis interface 210
can include, for example, code auto-completers, code navi-
gation 218, refactoring, code suggestion, code pattern analy-
sis, and flow visualizer services 220 (described below with
reference to FIGS. 3A-3C). Services of the code analysis
layer 208 can be useful, for example, in high-access, high-
availability, multi-user development environments, such as
where resource usage is a concern and access times are to be
minimized. In some implementations, for efficiency pur-
poses, the code analysis layer 208 can run the analyzers 212
only when they are needed. For example, if multiple devel-
opers 206 open the same file at substantially the same time,
the analysis can be run once, and the code analysis results can
be shared by the multiple developers 206.

[0064] The following example scenario shows how the
code analysis layer 208 can support development activities.
For example, the developer 206 may use a development inter-
face 222, such as or including an IDE, to create the develop-
er’s own application. Use of the IDE, for example, may open
several files within the application. In order to access file
contents and metadata, the IDE can, for example, communi-
cate with platform services 224, including the file repository
service 226 that has access to a source code repository. At
some point during coding, for example, the developer 206
may need to jump from a function call to the corresponding
function definition using the code navigator 218 or some
other component of the analysis consumer services 216. At
this point, through an IDE interface, the code navigator 218
can request analysis of the file. Analysis can occur within the
code analysis layer 208, and the IDE can receive correspond-
ing code analysis results by communicating with the analysis
interface 210. This is just one example of how the code
analysis layer 208 can communicate with other components
and aggregate code analysis data from various sources.
[0065] Subsequently, the analysis interface 210 can check
to see whether a new analysis of the sent file is needed. If new
analysis is not needed, then the analysis results database 214
entry corresponding to that file can be returned to the IDE,
e.g., to the same or a different developer 206. Otherwise, a
new analysis can be performed, and the results can be stored
in the analysis results database 214. For example, the analysis
interface 210 can aggregate the results from the analyzers 212
(e.g., analyzers 212a and 2125) that perform the new analysis.
[0066] In some implementations, the analyzers 212 can
communicate with various components of platform services
224, such as a debugger 228. For example, a dynamic ana-
lyzer 2125 can obtain execution results from the debugger
228 in real time. At the same time, an analysis can be per-
formed on content provided by the file repository service 226.
For example, the data used during the analysis can be aggre-
gated, filtered, and/or processed in other ways, depending on
the specific needs of each of the analyzers 212.

[0067] In some implementations, the code analysis layer
208 can support development of scripting languages, such as

US 2016/0092336 Al

for use in JAVASCRIPT applications. For example, the code
analysis layer 208 can be incorporated into, and accessible by,
an IDE. The IDE, for example, can be integrated into a
browser on the client 204 that offers a browser-based inte-
grated development environment for creating applications
using information from the server 202.

[0068] The analysis interface 210 can act as an agent
between repositories of code files, one or more IDEs, and
various other code analysis components that are chosen for
execution, for example, based on event trigger and handling.
In some implementations, the analysis interface 210 can
include a parser to retrieve an abstract syntax tree from script-
ing code and/or other source code, e.g., accessing only the
code elements that are needed based on the type of analysis is
to be performed. In some implementations, parsers can be
implemented using Esprima parsers or some other suitable
parsers.

[0069] The analysis interface 210 can include static analy-
sis components to retrieve structural code. The analysis inter-
face 210 can provide, for example, a collection of services
based on the static and runtime analysis: such as code comple-
tion, code navigation (code preview, locating and navigating
to function definition), refactoring, code suggestion, code
pattern, and so on. For example, the static analyzer 212a or
some other static analyzer can perform analysis of static code.
The analysis can include producing an entity dictionary that
includes information such as the collection of entities and
their hierarchies, relations between entities such as function
calls, and other information. The entity dictionary, e.g.,
implemented as a hash table, can be the basis for all other
static and runtime analyses, as the entity dictionary can be
used to organize the information and track results. Elements
of entity dictionaries are described below with respect to FIG.
4

[0070] Runtime analysis components, for example, can
retrieve runtime information during code execution, such as
runtime data and control flow, performance and profiling, and
other runtime data. Runtime information, for example, can
serve to enrich code analysis results obtained by the static
analyzer 212a, including to improve the accuracy of the infor-
mation. Accuracy can be improved, for example, for infor-
mation associated with candidates, parameter values, and in
other areas. For example, during runtime analysis, a compo-
nent that uses the debugger 228 can execute a certain function
call and gather information along the execution. The gathered
information can then be presented to the developer 206 for a
better understanding of the code being executed, such as the
runtime values of variables in a certain execution state, spe-
cific database content, and other information.

[0071] Insomeimplementations, the analysis interface 210
can consist mainly of two interaction agents. For example, a
first communication agent can provide communications, e.g.,
to communicate with front-ends of Web IDEs. For example,
the first communication agent can listen for and react to
events such as opening/closing of files, file saves, tab
changes, cursor moves, keystrokes, and/or other events in
order to decide whether a certain analysis is needed or
whether the visual presentation of certain analysis results
need to be updated/reloaded. A second communication agent
can communicate with the analyzers 212 for notifications
regarding whether analysis results are readily available or if
the analyzers 212 need additional information, e.g., from the
IDE or other front-end. The analysis interface 210 can also
control maintaining the collection of analyzers 212 and visu-

Mar. 31, 2016

alizers, as well as having access to the source code repository
in case file contents and other software artifacts/information
(such as timestamps, file versions) are needed.

[0072] Thecode analysis results can be stored, for example,
as column-based tables in the analysis results database 214.
Besides persistency, the analysis results database 214 com-
ponent can also be responsible for controlling access rights.
In some implementations, SQLSCRIPT or some other script-
ing language, for example, can take into consideration which
folders and/or files a certain user has access to in order to
determine whether the same user should have access to code
analysis results that are based on the same folders and/or files.
Because SQLSCRIPT can reside and execute in the database
layer, for example, the scripts can directly access database
content without intermediate data transmission and transfor-
mation, thus making their execution more efficient.

[0073] One important role of the static analyzer 212a is to
construct the entity dictionary, as mentioned above, e.g., from
the abstract syntax tree of JAVASCRIPT code. The entity
dictionary can store key information that enables other static
analyses and assists runtime analyzers (e.g., dynamic ana-
lyzer 2125). Entity dictionaries, together with other analysis
results, can be stored in the analysis results database 214. The
entity dictionary for a particular source code file need only to
be constructed once, and the entity dictionary is fully avail-
able in that form until a time when the source code file is
modified, the only point in time requiring an update to the
corresponding entity dictionary.

[0074] Services that use entity dictionaries can include, for
example, code preview and navigation. For example, for a
given function, the entity dictionary can be consulted to find
where the function is defined, the callers of the function, the
functions that the given function calls, and other information.
Information from the entity dictionary can be used to provide
to the developer 206, for example, corresponding documen-
tation (e.g., using JAVADOC style comments), code snippets
of the function, or other information. Information from the
entity dictionary can also allow the developer 206 to jump
directly to whatever files and specific positions in the file in
which the function definition occurs.

[0075] As described in more detail below with respect to
FIGS. 3A-3C, visual representations (or “visualizations”) of
code can help a developer to understand the application being
programmed or maintained. Visualizations can include, for
example, code highlighting and code navigation, and can
allow interaction with the visualization by the developer. In
some implementations, visualizations can be based on a code
analysis infrastructure. Visualizations, for example, can be
especially useful for prototype-based, weakly-typed pro-
gramming languages, such as ECMASCRIPT or other lan-
guages. In some implementations, visualizations described
with respect to FIGS. 3A-3C can be presented by the flow
visualizer services 220.

[0076] Visualizations can provide at least two main benefits
and/or features: visual representations of application code
and integration of the representations with an IDE. For
example, visual representations of application code can
enable the developer to visualize entities (e.g., functions,
objects, methods or other software components) and their call
dependencies, and can provide call candidates that reflect the
inherent uncertainty of call dependencies in scripting lan-
guages. In some implementations, visualizations can be

US 2016/0092336 Al

enriched to display additional information, such as structural
information, code documentation, runtime metadata, and/or
other information.

[0077] IDE integration of the representations can be used,
for example, to update the focus of the visualization based on
code selection or cursor position in the code editing window.
For example, a developer can use visualizations for code
highlighting, code navigation, and interaction with other IDE
components, such as the debugger 228. Integration can occur,
for example, with different variants or formats of visualiza-
tions, such as graph visualizations, tree visualizations, and
outline visualizations. Specific examples of different visual-
izations are described below with respect to FIGS. 3A-3C.

[0078] Visualization variants can have a primary purposeto
visualize entity calls, and each variant can have one or more
distinct advantages over other variants, such as how each
variant may best be used by a user (e.g., developer). For
example, different visualization variants can present com-
plexities of analyzed program in different ways, including
complexities associated with calls, e.g., many calls and call-
ers vs. many entities vs. depth of call hierarchy. Further, each
of'the visualization variants may have different requirements
associated with vertical and/or horizontal screen space
required to present the variants. Each of the visualization
variants may also be used differently, e.g., by a developer,
based on how the visualization responds to changes in screen
space and manipulation of the visualization by the developer.

[0079] In some implementations, some visualization vari-
ants can be integrated side-by-side, or the variants can be
organized in tabbed views or inside a carousel element. Addi-
tionally, the user might be allowed to configure a preferred
(e.g., default) visualization. In some implementations, the
variant of a visualization can be selected automatically, e.g.,
based on which variant is likely to present information in the
best way.

[0080] The generation and rendering of each of the differ-
ent visualization variants can rely on the same set of infor-
mation about the program and/or code fragment currently in
focus. For example, the information needed for generating a
visualization can include a list of entities and a call hierarchy,
such as a schema described below with respect to FIG. 4. In
some implementations, the information can further include
information for enriching the visualization, such as additional
entity-related information, source code location, documenta-
tion, performance data, and/or other information. Visualiza-
tions can also identify call candidates for a particular entity,
such as for prototype-based, weakly-typed languages for
which entity dependencies may only be estimated. In some
implementations, data used for enhancing visualizations can
be obtained by collecting and aggregating data from static and
runtime code analysis, including retrieving meta-information
from other sources, such as from a source code repository or
a debugger (e.g., the debugger 228).

[0081] FIG.3A shows an example graph visualization 300.
For example, the graph visualization 300 can be an inter-
entity, call-directed graph (IeC directed graph) visualization
300. The graph visualization 300 can show, for example, a
graphical representation of the calls associated with a central
entity. The representation can include, for example, both out-
going inter-entity calls, e.g., the calls that are contained in the
definition of the entity, and incoming calls, e.g., the external
entities from which the entity is called. In some implementa-
tions, the representation can also show recursive calls.

Mar. 31, 2016

[0082] Interms of complexity of the analyzed program, the
graph visualization 300 can be suitable for programs with
many entities, as user controls/features can be used to hide
particular entities in the visualization. For example, the graph
visualization 300 can provide a good overview view of the
first level of the call hierarchy. The graph visualization 300
may be less suitable for programs with many calls and callers,
e.g., as the graph visualization 300 may become cluttered. In
terms of screen space, the graph visualization 300 can provide
a compact visualization since it only shows one level of the
call hierarchy. In some implementations, using the graph
visualization 300, for example, the user can manipulate the
visualization by selecting a central entity.

[0083] Inthe graph visualization 300, entities such as func-
tions and/or objects are represented as nodes in a graph, and
calls between the entities are represented as directed edges of
the graph. As shown in FIG. 3A, the graph visualization 300
is focused on the entity 302 (e.g., “bar”) that is currently
selected in the editor, and the entity 302 is represented by the
central node of the graph. In some implementations, the entity
302, being the focus of the graph, can be represented in red or
some other color, or shading can be used.

[0084] Entities 304a and 3045 (e.g., “fool” and “fo02”)
that are callers of the central entity are represented in the
graph visualization 300 by nodes connected with arrows 306
pointing towards the central node (e.g., entity 302, “bar”). In
some implementations, in order to emphasize that the entities
304 are predecessors in a possible flow of execution, the
corresponding nodes can be drawn above of the central node,
as is the case for the graph visualization 300.

[0085] Entities 3104-310; that are called by the central
entity are represented by nodes connected with an arrow
pointing away from the central entity. As these entities are
likely to be located “under” the central entity in the call stack
of an execution, they are also drawn below the central node.
Recursive calls (i.e., the central entity calling itself) can be
represented as circle-like arrow pointing back to the central
node.

[0086] In some implementations, since a computer lan-
guage associated with the graph visualization 300 may be
weakly-typed, there may be plural entity candidates
addressed by a call. For example, multiple entities to the same
method, e.g. “secondMethod” for the entities 31056 and 310c¢,
can be associated with the same call and can be expressed by
using an arrow with a dashed edge, as shown for arrows 3125
and 312c¢.

[0087] In some implementations, the graph visualization
300 can include representations for passing callback func-
tions as a parameter, which is a widely-used pattern in some
languages such as ECMASCRIPT. While callback functions
can allow inversion of control and can help to create generic,
reusable code, callback functions can also make it difficult to
identify behavioral dependencies in the code. The graph visu-
alization 300 can facilitate the tracing of callback structures
by highlighting callback functions, e.g., using yellow in
multi-color displays, and as indicated using vertical hash fill
forthe “callback” node 310d. The graph visualization 300 can
provide a list of functions, callback function 3144 (e.g., “call-
backFuncl”) and callback function 3145 (“callbackFunc2”).
In the graph visualization 300, callback functions 314a and
3145 can represent functions that can be passed to the central
entity as parameters for the callback function, e.g., entity
nodes connected to the “callback” node 3104d.

US 2016/0092336 Al

[0088] Insome implementations, in order to reduce clutter
from the graph visualization 300, common helper methods
can be filtered out. For example, “console.log” in the case of
ECMASCRIPT and framework methods such as JQUERY
can be removed from the graph visualization 300 in order to
focus on application-unique methods.

[0089] In some implementations, the graph visualization
300 can provide additional information and/or controls to the
user. For example, some controls can be in the form of a
tooltip can be used for accessing documentation associated
with a given entity.

[0090] Insomeimplementations, different navigation tech-
niques can be provided to allow the graph visualization 300 to
be integrated with an IDE. As an example, navigation can
include changing the position of the cursor in the code dis-
played in a currently-selected editor window, e.g., to a differ-
ent portion of the code that has a different method name.
Changing the cursor position in the editor, for example, can
result in a corresponding change of the rendered graph, e.g.,
resetting the central entity. In some implementations, the user
can click on nodes and edges in the graph. For example,
clicking on a node in the graph can result in a change in the
editor in which the corresponding entity is shown and/or
highlighted within the definition source code. Double click-
ing on a node in the graph, for example, can set the cursor to
the beginning of the definition of the method associated with
the node, which can also reset the central entity. In some
implementations, clicking on an edge in the graph can high-
light, within the editor, the corresponding call in the code, and
double-clicking on the node can cause an update to the cursor
position within the editor. Other types of controls, operations,
and integration between the graph visualization 300 and an
IDE are possible.

[0091] In some implementations, when the target (or sub-
ject) of the code highlighting and/or code navigation is
located in another file, the file that contains the source code
can be opened in an additional editor window or tab. If the
source location of the entity’s definition is not contained in
the input data provided by the static analyzer 212a (or other-
wise not available to the user), then the node (e.g., “someEx-
ternalObject” node 310¢) can be greyed out to indicate that
the node cannot be used for navigation.

[0092] In some implementations, the graph visualization
300 can interact with other components of an IDE. For
example, the graph visualization 300 can be integrated with
the debugger 228, e¢.g., to show concrete parameter values for
the current program execution. In another example, the graph
visualization 300 can be used to start the debugger 228 for the
central entity, such as by using a context menu command.

[0093] FIG. 3B shows an example tree visualization 320.
For example, the tree visualization 320 can be an inter-entity,
call-collapsible tree (IeC collapsible tree) visualization. The
tree visualization 320 shows calls 322 and callers 324 of a
selected central entity, e.g., “bar” root entity 326. Compared
to the graph visualization 300, the tree visualization 320
offers an extra grouping of calls 322 and callers 324 visual-
ized as branches of the tree. When the case exists that calls
322 have calls of their own, and/or when callers 324 are called
by other entities, the tree visualization 320 can display the
complete tree, including the additional nesting. In some
implementations, controls can be provided to collapse or
expand various nesting, including user-selectable calls, call-
ers, and associated branches of the tree.

Mar. 31, 2016

[0094] Interms of complexity ofa given analyzed program,
the tree visualization 320 can be especially suitable for pro-
grams with many entities, because part of the tree can be
selectively hidden in this visualization. The tree visualization
320 can also provide a good overview of the entire call hier-
archy. For example, for programs that have several calls 322
and callers 324, the tree visualization 320 can be collapsed to
support clarity. For example, a large amount of screen space
may be required for deep call hierarchies, and having the
ability to collapse branches of the tree can compensate for
this. However, if less screen space is available, the visualiza-
tion can quickly become less clear. To control the amount of
information displayed in the tree visualization 320, the user
can directly manipulate the tree visualization 320 by collaps-
ing nodes at different levels.

[0095] Entities in the tree visualization 320 are represented
by nodes in the tree. The currently-selected entity, e.g., “bar”
root entity 326, is represented as the root of the tree. There are
two branches that originate from the root, e.g., a callers
branch 328 and a calls branch 330. The callers branch 328, for
example, represents entity calls to the selected entity. The
calls branch 330, for example, represents calls originating
from (e.g., called by) the selected entity. In some implemen-
tations, collections of callers and calls can be filtered to
exclude common functions, or functions that are outside of
the application’s scope.

[0096] Further entity calls can be added to the tree visual-
ization 320 as nodes with increasing depth from the root. For
example, if an entity B that is called from a central entity A
contains a call to an entity C, then the node representing B is
a child of A’s “calls” node, and C is a child node of B.
Parent-child relationships can be applied to depict a hierarchy
of callers, e.g., represented as a multi-level tree under the
“callers” node.

[0097] Recursive calls, when they exist, can be represented
in the tree visualization 320 similarly to other calls. For
example, a recursive call by entity X to itself, entity X, can be
represented by having entity X as a child of entity X’s “calls”
node. As such, an entity can be represented multiple times in
a graph.

[0098] The tree structure of the tree visualization 320 can
facilitate the clustering of call and/or caller groups. For
example, the tree structure can aggregate candidates for a
certain entity call or callback functions.

[0099] As described for the graph visualization 300, the
tree visualization 320 can be annotated with additional infor-
mation. For example, entity containment information can be
derived from a node’s name. Other ways are possible for
displaying entity meta-data, such as tooltips or using different
distinguishing display techniques, such as varied color
schemes, different thicknesses of nodes and/or edges, differ-
ent font families, and/or varying the size and/or decoration of
a node’s name.

[0100] Insome implementations, the tree visualization 320
can be integrated with an IDE, e.g., integrated with the code
editor component. For example, the tree visualization 320 can
automatically update the central entity of the tree upon the
occurrence of a cursor position change. In another example, a
single click on a node representing an entity call can cause
highlighting to occur to the respective call in the editor. If the
corresponding code is located in another file, for example, the
file can be opened in a new editor window (if not yet opened)
and can be automatically selected.

US 2016/0092336 Al

[0101] Different techniques can be used to navigate, or
show navigation options, within the tree visualization 320.
For example, non-navigable nodes can be greyed out, e.g., for
nodes for which no additional information is available to the
user. A double click on a node, for example, can unfold or
collapse the underlying nodes.

[0102] Similar to the graph visualization 300, the tree visu-
alization 320 can be integrated with other IDE components.
For example, regarding purposes associated with debugging,
the tree visualization 320 can be especially suitable for pro-
viding a visualization of the stack trace of the current program
execution. Other forms of integration between the tree visu-
alization 320 and an IDE are possible.

[0103] FIG. 3C shows an example outline visualization
340. For example, the outline visualization 340 can be an
inter-entity call-outline list (IeC outline list) visualization.
The outline visualization 340 can show, for example, a list of
all functions that are associated with a given file. For example,
for the “bar” element 342, functions 344 are listed, the listed
functions including other entities that call or are called by
“bar.”” Additionally, inter-entity calls can be shown for a
selected entity. The outline visualization 340 can be inte-
grated with an IDE. The integration can support, for example,
navigation by the user between the outline visualization 340
canthe IDE. The integration can further include, for example,
code highlighting in the IDE that is triggered through the
outline visualization 340. Other links to the corresponding
code in an IDE can be provided.

[0104] Interms of complexity of an analyzed program, the
outline visualization 340 can perform relatively well, mainly
due to the fact that a longer list of entities can still easily be
read. Filtering, as described above, and/or sorting of entities
can be used. However, the outline visualization 340 may not
be as well-suited for deep call hierarchy, as the visualization
uses indentation which can become less useful visually as
hierarchical levels are added. In terms of screen space, the
outline visualization 340 can be more economical than other
visualizations and can also adapt easily to reduced screen
space, such as by using scroll bars. In the outline visualization
340, the user has the possibility to manipulate the visualiza-
tion in various ways, including to select a central entity.
[0105] In the outline visualization 340, all entities associ-
ated with a specific file are listed. For example, each list entry
can represent one specific entity and can be shown in the
outline visualization 340 using the pattern: entityName
(paraml, param?2, . . ., paramX). Each one of the entries in the
outline visualization 340 can have its list of entities be folded
orunfolded. For example, a folded entity representation (e.g.,
“foo1” entity 346a) hides the entities underneath the entity.
An unfolded entity representation (e.g., “MySecondObj”
entity 3465) display associated entities underneath the entity.
In some implementations, placing a cursor over (or selecting
in some other way) an entity will cause the entity to be
unfolded.

[0106] As shown in FIG. 3C, indentation is used in the
outline visualization 340 to indicate elements that are con-
tained under a particular entity. For example, elements asso-
ciated with the “bar” element 342, including functions 344,
are indented below the “bar” element 342. Elements indented
beneath, and associated with, an element can include called
entities (e.g., functions 344a) and calling entities (e.g., func-
tions 3445b).

[0107] Insome implementations, in the unfolded view, dif-
ferent types of entities can be depicted in different ways,

Mar. 31, 2016

including using different icons and/or colors to represent
incoming, recursive and outgoing entity calls. For example,
called entities (e.g., functions 344a) can be indicated using
icons that have arrows (e.g., yellow arrows) pointing out of
the particular entity. Calling entities (e.g., functions 3445)
can be indicated using icons that have arrows (e.g., red
arrows) pointing into the particular entity. In some implemen-
tations, different text colors or intensities can be used, e.g.,
normal or black text for entities for which additional infor-
mation is available, and greyed out or lighter text for entities
for which additional information is not available. In some
implementations, to avoid clutter, entity calls can be depicted
as entityName(), e.g., and expanded to the full path of the
entity (e.g., object.entityName) only upon mouse-over or
upon some other pre-determined user selection or control.
Call candidates and callbacks can be grouped into a sub-list of
the list element that represents the respective entity call.
[0108] In some implementations, lists can be tailored to
meet the preferences of the developer. For example, common
functions can be filtered out or the sequence of'the entities can
be changed from an ordering based on the appearance in the
script to an alphabetical order. Additionally, searching for a
certain entity can be supported by filtering the list according
to auser-provided search term, or by highlighting entities that
match the search.

[0109] In some implementations, the outline visualization
340 can be enriched with additional information. For
example, entity-specific performance runtime data can be
provided in a column next to the list or in some other appro-
priate manner.

[0110] The outline visualization 340 can be integrated with
an IDE. For example, clicking on (or otherwise selecting) an
entity in the outline visualization 340 can result in highlight-
ing being applied to the entity in the editor. In another
example, a double click on an entity in the outline visualiza-
tion 340 can move the cursor to the corresponding entity in the
IDE, and also can select the entity as a new central and
unfolded entity in the outline visualization 340. A single click
on an entity call in the outline visualization 340, for example,
can cause highlighting of the corresponding entity call in the
editor. A double click on an entity call in the outline visual-
ization 340, for example, can cause highlighting of the entity
declaration in the editor. Positioning the cursor in the editor to
a different entity, for example, can set the selected entity as
the new central entity in the outline visualization 340 and
automatically unfold the entry.

[0111] In some implementations, the outline visualization
340 can allow a deep integration, not only with the editor, but
with other components and functionality of an IDE. For
example, a context menu associated with the list elements can
be used to trigger a program-wide refactoring of the repre-
sented entities (e.g., renaming, extraction). In some imple-
mentations, the outline visualization 340 can also be inte-
grated as an extension of a tree-based file navigator
component, e.g., the tree visualization 320. For example,
using the extension can allow the user to unfold a file node in
the tree visualization 320 and use structures of the outline
visualization 340 as a child structure inside of the tree visu-
alization 320.

[0112] Thevisualizations 300,320 and 340 can be based on
analysis of one or more code languages and other sources. For
example, the visualizations 300, 320 and 340 can be based on
cross-language entity relationships determined from multiple
modules and/or source files. The following code provides an

US 2016/0092336 Al

example of client-side ECMASCRIPT code that represents
the visualizations 300, 320 and 340:

var MyFirstObj = function() {
return {
firstMethod : function() { },
secondMethod : function() { }
i
I8
MyFirstObj.prototype = {
prototypeMethod1 : function() {
this.firstMethod();
this.secondMethod();

b
var MySecondObj = function() {
return {
firstMethod : function() { },
secondMethod : function() { }
b
b
MySecondObj.prototype = {
prototypeMethod? : function() {
this.firstMethod();
this.secondMethod();

g

function bar(param, callback) {
function nestedFunc() {
¥
nestedFunc();
param.secondMethod();
callback();
console.log(“Cannot navigate™);
var obj = “this is a random string”;
obj = new SomeExternalObject();
obj = new MySecondObj();
obj.prototypeMethod2();
obj = new MyFirstObj();
obj.prototypeMethod1();

function fool(){
var param = new MySecondObj();
bar(param, callbackFuncl);

function foo2(){
var param = new MyFirstObj();
bar(param, callbackFunc2);

function callbackFuncl (something) {
something.secondMethod();

function callbackFunc2(something) {
something.secondMethod();

}

[0113] FIG.4 is a diagram an example structure of an entity
dictionary 400. For example, an entity dictionary can exist for
one or more files containing software code, such as a com-
puter program and associated functions or other components
that are all contained in the same file. Other program files, for
example, can have an associated entity dictionary having the
same or a different structure (e.g., for a different language
type). In some implementations, portions of the entity dictio-
nary can exist for and be shared by a group of related pro-
grams in multiple files. The entity dictionary 400 can include
information about objects, functions and their interactions,
such as calls, parent-child relationships, and other informa-
tion. For example, the information for the entity dictionary
400 can be obtained from code for an application written in
any language, including weakly-typed scripting languages
such as JavaScript. The data structure on which the entity
dictionary 400 is based, for example, can provide direct

Mar. 31, 2016

access to entity meta-data for various users. Example users
can include any consumer (e.g., a developer) that needs to
make rapid queries with respect to advanced code analysis, or
can use the information in an integrated use with an IDE.
[0114] In some implementations, the data structure on
which the entity dictionary 400 can be instantiated as a hash
table. For example, entries in the hash table can represent
objects, functions, or other computer software items. Each
entry in the data structure is uniquely identified, e.g., using a
hierarchical encoding based on the place of its definition in
the program. Parent-child relationships between entries can
be represented by hierarchically-encoded unique identifiers
or in some other way. Interactions, such as calls, between
entities represented by the entries can be explicitly described
as attributes of the entries. In some implementations, an entire
program can be reconstructed syntactically from its corre-
sponding hash table.

[0115] Insomeimplementations, each file of a program can
have its own corresponding hash table 402, e.g., an instance of
the data structure. The data structure can contain information
about artifacts present in the program (e.g., application), such
as elements that are analyzed to generate the visualizations
300, 320, and 340. Each hash table 402 includes entries for
entity names 404a-404» that correspond to the names of or
identifiers for functions or other code artifacts.

[0116] In some implementations, the data structure can be
implemented using a hash table, e.g., containing entries 406
of the form of “(KEY, VALUE)” pairs. KEY 408, for
example, can represent a unique identifier for a code artifact,
such as the name of a function or an object, e.g., indexed by
entity names 404a-404n. The unique identifier can be
inferred, for example, from its definition name or its place of
declaration, thus uniquely indicating the place in the code
declaration hierarchy. Anonymous and immediately executed
functions can be handled, for example, in a distinctive man-
ner, based on their definition in the current scope.

[0117] VALUE 410, for example, can represent a complex
structure containing attributes that are determined from
analysis of the application code. For example, the attributes
can include attributes 410a-410/ for a specific one of the
entities (e.g., entity “BAR”) with entity names 404a-4047. An
attribute can be, for example, a reference or structure contain-
ing a partition of an abstract syntax tree (AST), e.g., AST
reference 410a corresponding to the part of the code referring
to the current artifact described by KEY.

[0118] An entity type attribute 4105, for example, can be a
type attribute that indicates the type of the referenced code
artifact. Example entity types include “function,” “object”
and other types. For example, the “BAR” entity may have an
entity type of “function.”

[0119] A location attribute 410c, for example, can be an
attribute that identifies location information. For example, the
location information can define start and end lines and col-
umns positions within a program, such as a program source
file. The location of the “BAR” entity, for example, can
include the lines and columns that “BAR” occupies in the
source file that includes “BAR.”

[0120] A calls attribute 410d, for example, can include
information for a list of called entities. The list can identify a
list of artifacts, including functions or objects, that are called
or instantiated within the current entity, e.g., the “BAR”
entity. Each item of the list of called items can contain several
sub-attributes, e.g., identified in a call item structure 412.
Each called item in the list of called items can be indexed (and

US 2016/0092336 Al

linked to the calling entity) using a hash table artifact refer-
ence to the called artifact, e.g., using a KEY identifier 414a
for direct access.

[0121] A location sub-attribute 4145, for example, can
include location information, e.g., start and end lines and
columns positions of the call in the calling program. The
location information can include information that facilitates
navigation to other files and to other file types. For example,
the navigation can include navigation in any of the visualiza-
tions 300, 320 and 340 that may occur if the user selects a
control or performs an operation that changes the central
entity, causes an entity to be highlighted, or for some other
reason.

[0122] A candidates sub-attribute 414¢, for example, can
identify a list of candidates for callback functions. The list can
either include a hash table artifact reference or can reference
(or point to) the above-mentioned reference. The list of call-
backs can contain calls of two types. For example, a candidate
call can be a call to a callback function passed as arguments.
In this example, each item of the list can be a reference to an
actual code artifact (e.g., using the KEY identifier for direct
access) that is being used as callback. In another example, a
candidate call can be a call to acomputed (inferred) candidate
item 416. In this example, each item of the list can be a
structure containing a candidate entity ID 418a and a match-
ing score 418b. The candidate entity ID 418a, for example,
can be a reference to an actual code artifact (e.g., usinga KEY
identifier for direct access). The matching score 4185, for
example, can identify a degree of probability that the call
actually references this item. The probability can be com-
puted using various techniques, such as using string-match-
ing algorithms, static analysis inference, or other techniques.
[0123] A callers attribute 410e, for example, can identify
and/or define a list of callers taking the form of a list. Each
item in the list can reference the hash table artifacts that call
the current entity (vice-versa to the calls attribute).

[0124] A scope attribute 410f, for example, can include a
structure that describes, on a per variable basis, different
initialization values (pointing to code artifacts described as
hash table KEY's) that occur in the current artifact. Additional
information (e.g., a list of locations where a variable is used)
can be used to facilitate variable navigation and refactoring.
[0125] A parameters attribute 410g, for example, can
include information that identifies a list of parameters, e.g.,
parameter items 420. For example, each parameter item 420
can define a current entity’s parameters. For a function such
as function f(a,b), for example, the parameters attribute 410g
can consist of alist of two items. Each item can be represented
using a parameter item 420, having an associated parameter
type 422a (e.g., “identifier”), a parameter name 4225 (e.g.,
“a” or “b”), and location information (e.g., the position of the
parameter in the parameter list, such as first, second).

[0126] A comments attribute 4104, for example, can
include a list of comments preceding, or associated with, the
entity definition. For example, comments can include or pro-
vide tooltips and code documentation.

[0127] In some implementations, other attributes, in addi-
tion to the attributes 410a-410%, can include references or
structures that contain program-related data derived from
sources other than static code analysis. For example, the other
attributes can include runtime information or repository
metadata, e.g., used for enhancing static analysis results. For
instance, if a variable at a certain step for a specific run (given
specific input parameters) will be initialized based on a con-

Mar. 31, 2016

dition, then only that initialization is subsequently taken into
account. This information can be used, for example, as
opposed to the static analysis result, which displays informa-
tion about both cases—either satisfying or not satisfying the
condition.

[0128] FIG. 5A is a flowchart of an example method 500 for
providing and updating inter-entity call visualizations. For
clarity of presentation, the description that follows generally
describes method 500 in the context of FIGS. 1-2, 3A-3C, and
4. However, it will be understood that the method 500 may be
performed, for example, by any other suitable system, envi-
ronment, software, and hardware, or a combination of sys-
tems, environments, software, and hardware as appropriate.
For example, the client device 130 and/or its components can
be used to execute the method 500, e.g., using information
accessed from the server 110.

[0129] At 502, static information is received for entities
using information from an entity dictionary. As an example,
the static information for source code can be received from a
source code repository using the file repository service 226,
as described above with reference to FIGS. 2 and 4. The entity
dictionary can include, for example, an entity hash table that
identifies entities in the entity dictionary. Each entity in the
hash table can include, for example, an abstract syntax tree
(AST) reference, an entity type, a location, a list of called
entities, a list of called-by entities, a scope, a parameter set
including parameter items, and comments. For each called
entity, the entity dictionary can include, for example, a called
entity identifier, a location, and a set of candidate call entities.
For each parameter item, the entity dictionary can include, for
example, a parameter type and a parameter name. For each
candidate called entity, the entity dictionary can include, for
example, a candidate entity identifier and a matching score.

[0130] In some implementations, the entities are entities
associated with computer code. For example, the entities can
include functions and/or other components of ECMAS-
CRIPT or some other computing language.

[0131] At 504, dynamic information is received for entities
using information associated with the entities received at
run-time. For example, information about code that is being
executed can be received from the debugger 228 or from some
other source.

[0132] At506, a request for a visualization is received. For
example, the server 202 can receive a request from the client
204 for a visualization, such as when the developer 206 per-
forms an action in the development interface 222.

[0133] At 507, the static and dynamic information are ana-
lyzed. As an example, the static analyzer 212a can perform
static analysis on source code stored in the source code
repository, as described above with reference to FIGS. 2 and
4. The dynamic analyzer 2125, for example, can analyze the
information. The analysis interface 210 can store the analysis
results, for example, in the analysis results database 214.

[0134] At 508, based on the analyzing, instructions are
generated for a visualization. For example, the analysis inter-
face 210 can generate the visualization, e.g., using informa-
tion from the analysis results database 214 in combination
with associated information stored for a program file and
accessible from the file repository service 226. In some
implementations, the analysis interface 210 can request that
the analyzers 212 perform static and/or dynamic analysis,
e.g., if the analysis results are out-of-date e.g., if the file was
updated and saved in the meantime.

US 2016/0092336 Al

[0135] In some implementations, the visualization is an
inter-entity, call-directed graph visualization, an inter-entity,
call-collapsible tree visualization, or an inter-entity call-out-
line list visualization. For example, the visualizations can
show relationships in graphs, trees or outlines, as described
above with respect to FIGS. 3A-3C. Other forms of visual-
izations are possible.

[0136] In some implementations, the visualization is inte-
grated with an integrated development environment (IDE)
including an editor. For example, visualizations such as visu-
alizations 300, 320 and 340 can be integrated with IDEs or
other tools, as described above with respect to FIGS. 3A-3C
[0137] At 510, user inputs for interacting with the visual-
ization are received. For example, the flow visualization ser-
vice 220 can receive or detect inputs by the developer 206 that
can require that the visualization that is presented be updated
in some way. If necessary, development interface 222 can
request additional or updated information from the analysis
interface 210, or the.

[0138] At 512, the visualization is updated based on the
received user inputs. As an example, the flow visualization
service 220 can present the updated visualization if the infor-
mation needed is already stored locally at the client 204 or if
new information is received from the analysis interface 210.
[0139] Insome implementations, user actions in either one
of a given visualization or the IDE cause actions to occur in
the other. For example, referring to FIGS. 3A-3C, user actions
relative to the visualizations 300, 320 or 340 can cause asso-
ciated actions to occur in coincident IDEs or various IDE
components, e.g., editor windows.

[0140] In some implementations, the one or more opera-
tions include hiding elements of the visualization, exposing
elements of the visualization, changing a central focus of the
visualization, displaying additional information associated
with a particular element, switching the display to a different
visualization, causing associated elements in the visualiza-
tion or the editor to be highlighted.

[0141] FIG.5Bis aflowchart of an example method 520 for
generating an entity dictionary. For clarity of presentation, the
description that follows generally describes method 520 in
the context of FIG. 1. However, it will be understood that the
method 520 may be performed, for example, by any other
suitable system, environment, software, and hardware, or a
combination of systems, environments, software, and hard-
ware as appropriate.

[0142] At 522, a code repository is evaluated to determine
entities and relationships among entities. For example, refer-
ring to FIG. 1, code analyzers 116 can analyze code in the
code repository 122, such as a program file that includes
plural functions in the same file or multiple files containing
multiple functions.

[0143] At 524, information for the entities and the deter-
mined relationships is stored in the entity dictionary. For
example, an entity hash table is stored that identifies entities
in the entity dictionary. For each entity, an abstract syntax tree
reference, an entity type, a location, a list of called entities, a
list of called-by entities, a scope, a parameter set including
parameter items, and comments are stored. For each called
entity, a called entity identifier, a location, and a set of can-
didate call entities are stored. For each parameter item, a
parameter type and a parameter name are stored. For each
candidate called entity, a candidate entity identifier and a
matching score are stored. The stored data, for example, can
be stored consistent with the elements shown in FIG. 4.

Mar. 31, 2016

[0144] FIG.5C isa flow diagram of an example method 540
for providing an inter-entity call visualization. For clarity of
presentation, the description that follows generally describes
method 540 in the context of FIGS. 1 and 2. However, it will
be understood that the method 540 may be performed, for
example, by any other suitable system, environment, soft-
ware, and hardware, or a combination of systems, environ-
ments, software, and hardware as appropriate. In some imple-
mentations, the method 540, when combined with method
560 described below with reference to FIG. 5D, can replace
the method 520. For example, the method 540 can be a client-
side, visualizer-specific method supporting the different
types of visualizations described above.

[0145] At 542, a user request is received for an inter-entity
call visualization. For example, the request can be received
when the user clicks on a menu entry that adds a visualizer
view to the IDE.

[0146] At544, code analysis data is accessed. For example,
the code analysis layer 208 can be called to provide code
analysis data for the entities of interest (e.g., the entries to be
visualized).

[0147] At 546, a visualization model is built. For example,
based on the received analysis data, the visualizer can gener-
ate a visualization model containing the information to be
shown in the graph/tree/list (e.g., depending on the visualizer
type).

[0148] At 548, the visualization is shown. For example, the
specific visualization model is rendered.

[0149] At 550, user inputs are received for interacting with
the visualization. For example, the user inputs can be received
after the user clicks on a node in the graph/tree/list.

[0150] At 552, the visualization is updated based on the
received user inputs. As an example, in addition to updating of
the visualization, additional code analysis data can be
retrieved. In another example, other IDE components can be
updated, such as by highlighting code in the editor.

[0151] FIG. 5D is a flow diagram of an example method
560 for handling an analysis request. For clarity of presenta-
tion, the description that follows generally describes method
560 in the context of FIGS. 1 and 2. However, it will be
understood that the method 560 may be performed, for
example, by any other suitable system, environment, soft-
ware, and hardware, or a combination of systems, environ-
ments, software, and hardware as appropriate. In some imple-
mentations, the method 560, when combined with method
540 described above, can replace the method 520. For
example, the method 560 can be performed by the server-
side, code analysis layer.

[0152] At 562, a request is received for code analysis data.
For example, the request can originate from a component that
is responsible for code completion, or from the inter-entity
call visualizer tool.

[0153] At 564, the requested data collected, including run-
ning analyzers for any available data. As an example, the
analysis interface 210 can check to see if the requested enti-
ties are available in the existing entity dictionary, and if not,
analysis can be run, as described above with reference to FIG.
5B.

[0154] At 566, the requested data is sent. For example,
provide the collected data, as described above with reference
to FIG. 4.

[0155] In some implementations, other processes can exist
that support the systems and methods described herein. For
example, a method can exist for updating the entity dictionary

US 2016/0092336 Al

if a file is created, updated or deleted. In another example, a
method can exist for enriching the entity dictionary with
information collected from other sources, e.g., if runtime/
debugger information is available.

[0156] The preceding figures and accompanying descrip-
tion illustrate example processes and computer implement-
able techniques. But example environment 100 (or its soft-
ware or other components) contemplates using,
implementing, or executing any suitable technique for per-
forming these and other tasks. It will be understood that these
processes are for illustration purposes only and that the
described or similar techniques may be performed at any
appropriate time, including concurrently, individually, in par-
allel, and/or in combination. In addition, many of the steps in
these processes may take place simultaneously, concurrently,
in parallel, and/or in different orders than as shown. More-
over, example environment 100 may use processes with addi-
tional steps, fewer steps, and/or different steps, so long as the
methods remain appropriate.

[0157] Implementations of the subject matter and the func-
tional operations described in this specification can be imple-
mented in digital electronic circuitry, in tangibly-embodied
computer software or firmware, in computer hardware,
including the structures disclosed in this specification and
their structural equivalents, or in combinations of one or more
of them. Implementations of the subject matter described in
this specification can be implemented as one or more com-
puter programs, i.e., one or more modules of computer pro-
gram instructions encoded on a tangible, non-transitory com-
puter-storage medium for execution by, or to control the
operation of, data processing apparatus. Alternatively or in
addition, the program instructions can be encoded on an
artificially-generated propagated signal, e.g., a machine-gen-
erated electrical, optical, or electromagnetic signal that is
generated to encode information for transmission to suitable
receiver apparatus for execution by a data processing appa-
ratus. The computer-storage medium can be a machine-read-
able storage device, a machine-readable storage substrate, a
random or serial access memory device, or a combination of
one or more of them.

[0158] The term “data processing apparatus,” “computer,”
or “electronic computer device” (or equivalent as understood
by one of ordinary skill in the art) refers to data processing
hardware and encompasses all kinds of apparatus, devices,
and machines for processing data, including by way of
example, a programmable processor, a computer, or multiple
processors or computers. The apparatus can also be or further
include special purpose logic circuitry, e.g., a central process-
ing unit (CPU), a FPGA (field programmable gate array), or
an ASIC (application-specific integrated circuit). In some
implementations, the data processing apparatus and/or spe-
cial purpose logic circuitry may be hardware-based and/or
software-based. The apparatus can optionally include code
that creates an execution environment for computer pro-
grams, e.g., code that constitutes processor firmware, a pro-
tocol stack, a database management system, an operating
system, or a combination of one or more of them. The present
disclosure contemplates the use of data processing appara-
tuses with or without conventional operating systems, for
example LINUX, UNIX, WINDOWS, MAC OS,
ANDROID, IOS or any other suitable conventional operating
system.

[0159] A computer program, which may also be referred to
ordescribed as a program, software, a software application, a

29 <

Mar. 31, 2016

module, a software module, a script, or code, can be written in
any form of programming language, including compiled or
interpreted languages, or declarative or procedural lan-
guages, and it can be deployed in any form, including as a
stand-alone program or as a module, component, subroutine,
or other unit suitable for use in a computing environment. A
computer program may, but need not, correspond to a filein a
file system. A program can be stored in a portion of a file that
holds other programs or data, e.g., one or more scripts stored
in a markup language document, in a single file dedicated to
the program in question, or in multiple coordinated files, e.g.,
files that store one or more modules, sub-programs, or por-
tions of code. A computer program can be deployed to be
executed on one computer or on multiple computers that are
located at one site or distributed across multiple sites and
interconnected by a communication network. While portions
of'the programs illustrated in the various figures are shown as
individual modules that implement the various features and
functionality through various objects, methods, or other pro-
cesses, the programs may instead include a number of sub-
modules, third-party services, components, libraries, and
such, as appropriate. Conversely, the features and function-
ality of various components can be combined into single
components as appropriate.

[0160] The processes and logic flows described in this
specification can be performed by one or more programmable
computers executing one or more computer programs to per-
form functions by operating on input data and generating
output. The processes and logic flows can also be performed
by, and apparatus can also be implemented as, special purpose
logic circuitry, e.g., a CPU, a FPGA, or an ASIC.

[0161] Computers suitable for the execution of a computer
program can be based on general or special purpose micro-
processors, both, or any other kind of CPU. Generally, a CPU
will receive instructions and data from a read-only memory
(ROM) or a random access memory (RAM) or both. The
essential elements of a computer are a CPU for performing or
executing instructions and one or more memory devices for
storing instructions and data. Generally, a computer will also
include, or be operatively coupled to, receive data from or
transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto-optical disks, or optical
disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device,
e.g., amobile telephone, a personal digital assistant (PDA), a
mobile audio or video player, a game console, a global posi-
tioning system (GPS) receiver, or a portable storage device,
e.g., a universal serial bus (USB) flash drive, to name just a
few.

[0162] Computer-readable media (transitory or non-transi-
tory, as appropriate) suitable for storing computer program
instructions and data include all forms of non-volatile
memory, media and memory devices, including by way of
example semiconductor memory devices, e.g., erasable pro-
grammable read-only memory (EPROM), electrically-eras-
able programmable read-only memory (EEPROM), and flash
memory devices; magnetic disks, e.g., internal hard disks or
removable disks; magneto-optical disks; and CD-ROM,
DVD+/-R, DVD-RAM, and DVD-ROM disks. The memory
may store various objects or data, including caches, classes,
frameworks, applications, backup data, jobs, web pages, web
page templates, database tables, repositories storing business
and/or dynamic information, and any other appropriate infor-
mation including any parameters, variables, algorithms,

US 2016/0092336 Al

instructions, rules, constraints, or references thereto. Addi-
tionally, the memory may include any other appropriate data,
such as logs, policies, security or access data, reporting files,
as well as others. The processor and the memory can be
supplemented by, or incorporated in, special purpose logic
circuitry.

[0163] To provide for interaction with a user, implementa-
tions of the subject matter described in this specification can
be implemented on a computer having a display device, e.g.,
a CRT (cathode ray tube), LCD (liquid crystal display), LED
(Light Emitting Diode), or plasma monitor, for displaying
information to the user and a keyboard and a pointing device,
e.g., a mouse, trackball, or trackpad by which the user can
provide input to the computer. Input may also be provided to
the computer using a touchscreen, such as a tablet computer
surface with pressure sensitivity, a multi-touch screen using
capacitive or electric sensing, or other type of touchscreen.
Other kinds of devices can be used to provide for interaction
with a user as well; for example, feedback provided to the user
can be any form of sensory feedback, e.g., visual feedback,
auditory feedback, or tactile feedback; and input from the
user can be received in any form, including acoustic, speech,
or tactile input. In addition, a computer can interact with a
user by sending documents to and receiving documents from
a device that is used by the user; for example, by sending web
pages to a web browser on a user’s client device in response
to requests received from the web browser.

[0164] The term “graphical user interface,” or “GUL” may
be used in the singular or the plural to describe one or more
graphical user interfaces and each of the displays of a par-
ticular graphical user interface. Therefore, a GUI may repre-
sent any graphical user interface, including but not limited to,
a web browser, a touch screen, or a command line interface
(CLI) that processes information and efficiently presents the
information results to the user. In general, a GUI may include
a plurality of user interface (UI) elements, some or all asso-
ciated with a web browser, such as interactive fields, pull-
down lists, and buttons operable by the business suite user.
These and other UI elements may be related to or represent
the functions of the web browser.

[0165] Implementations of the subject matter described in
this specification can be implemented in a computing system
that includes a back-end component, e.g., as a data server, or
that includes a middleware component, e.g., an application
server, or that includes a front-end component, e.g., a client
computer having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described in this specification, or any com-
bination of one or more such back-end, middleware, or front-
end components. The components of the system can be inter-
connected by any form or medium of wireline and/or wireless
digital data communication, e.g., a communication network.
Examples of communication networks include a local area
network (LAN), a radio access network (RAN), a metropoli-
tan area network (MAN), a wide area network (WAN),
Worldwide Interoperability for Microwave Access
(WIMAX), a wireless local area network (WLAN) using, for
example, 802.11 a/b/g/n and/or 802.20, all or a portion of the
Internet, and/or any other communication system or systems
at one or more locations. The network may communicate
with, for example, Internet Protocol (IP) packets, Frame
Relay frames, Asynchronous Transfer Mode (ATM) cells,
voice, video, data, and/or other suitable information between
network addresses.

Mar. 31, 2016

[0166] The computing system can include clients and serv-
ers. A client and server are generally remote from each other
and typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

[0167] In some implementations, any or all of the compo-
nents of the computing system, both hardware and/or soft-
ware, may interface with each other and/or the interface using
an application programming interface (API) and/or a service
layer. The API may include specifications for routines, data
structures, and object classes. The API may be either com-
puter language independent or dependent and refer to a com-
plete interface, a single function, or even a set of APIs. The
service layer provides software services to the computing
system. The functionality of the various components of the
computing system may be accessible for all service consum-
ers via this service layer. Software services provide reusable,
defined business functionalities through a defined interface.
For example, the interface may be software written in JAVA,
C++, or other suitable language providing data in extensible
markup language (XML) format or other suitable format. The
API and/or service layer may be an integral and/or a stand-
alone component in relation to other components of the com-
puting system. Moreover, any or all parts of the service layer
may be implemented as child or sub-modules of another
software module, enterprise application, or hardware module
without departing from the scope of this disclosure.

[0168] While this specification contains many specific
implementation details, these should notbe construed as limi-
tations on the scope of any invention or on the scope of what
may be claimed, but rather as descriptions of features that
may be specific to particular implementations of particular
inventions. Certain features that are described in this specifi-
cation in the context of separate implementations can also be
implemented in combination in a single implementation.
Conversely, various features that are described in the context
of a single implementation can also be implemented in mul-
tiple implementations separately or in any suitable sub-com-
bination. Moreover, although features may be described
above as acting in certain combinations and even initially
claimed as such, one or more features from a claimed com-
bination can in some cases be excised from the combination,
and the claimed combination may be directed to a sub-com-
bination or variation of a sub-combination.

[0169] Similarly, while operations are depicted in the draw-
ings in a particular order, this should not be understood as
requiring that such operations be performed in the particular
order shown or in sequential order, or that all illustrated
operations be performed, to achieve desirable results. In cer-
tain circumstances, multitasking and parallel processing may
be advantageous. Moreover, the separation and/or integration
of'various system modules and components in the implemen-
tations described above should not be understood as requiring
such separation and/or integration in all implementations, and
it should be understood that the described program compo-
nents and systems can generally be integrated together in a
single software product or packaged into multiple software
products.

[0170] Particular implementations of the subject matter
have been described. Other implementations, alterations, and
permutations of the described implementations are within the
scope of the following claims as will be apparent to those

US 2016/0092336 Al

skilled in the art. For example, the actions recited in the claims
can be performed in a different order and still achieve desir-
able results.

[0171] Accordingly, the above description of example
implementations does not define or constrain this disclosure.
Other changes, substitutions, and alterations are also possible
without departing from the spirit and scope of this disclosure.

What is claimed is:

1. A computer system, comprising:

at least one processor;

an inter-entity call visualization system, including instruc-

tions operable, when executed by the at least one pro-

cessor, for generating instructions for displaying and

interacting with visualizations to:

provide plural visualizations showing relationships
among entities;

receive user inputs associated with the display of a given
visualization; and

perform one or more operations on the visualization
based on the received user inputs;

an analysis layer for retrieving and analyzing static and

dynamic analysis data from multiple analyzers and
aggregating the static and dynamic analysis data in a
form of an entity dictionary for use by the inter-entity
call visualization system; and

a client device for displaying visualizations received from

the inter-entity call visualization system.

2. The computer system of claim 1, wherein the entities are
entities associated with computer code.

3. The computer system of claim 1, wherein the plural
visualizations include:

an inter-entity, call-directed graph visualization;

an inter-entity, call-collapsible tree visualization; and

an inter-entity call-outline list visualization.

4. The computer system of claim 1, wherein inter-entity
call visualization system is integrated with an integrated
development environment (IDE) including an editor.

5. The computer system of claim 4, wherein the IDE is
cloud-based and the visualization is part of a cloud-based
computer code analysis.

6. The computer system of claim 4, wherein user actions in
either one of a given visualization or the IDE cause actions to
occur in the other.

7. The computer system of claim 1, wherein the one or
more operations include hiding elements of the visualization,
exposing elements of the visualization, changing a central
focus of the visualization, displaying additional information
associated with a particular element, switching the display to
a different visualization, causing associated elements in the
visualization or the editor to be highlighted.

8. A computer-implemented method for generating an
entity dictionary, comprising:

evaluating a code repository to determine entities and rela-

tionships among entities; and

storing information for the entities and the determined

relationships in an entity dictionary that includes for

each entity:

an abstract syntax tree reference, an entity type, a loca-
tion, a list of called entities, a list of called-by entities,
a scope, a parameter set including parameter items,
and comments;

for each called entity, a called entity identifier, a loca-
tion, and a set of candidate call entities;

Mar. 31, 2016

for each parameter item, a parameter type and a param-
eter name; and

for each candidate called entity, a candidate entity iden-
tifier and a matching score.

9. The computer-implemented method of claim 8, wherein
the entities are entities associated with computer code.

10. The computer-implemented method of claim 8,
wherein the relationships among entities are represented by
visualizations that include:

an inter-entity, call-directed graph visualization;

an inter-entity, call-collapsible tree visualization; and

an inter-entity call-outline list visualization.

11. A computer-readable media, the computer-readable
media comprising computer-readable instructions embodied
on tangible, non-transitory media, the instructions operable
when executed by at least one computer to, the instructions
for:

evaluating a code repository to determine entities and rela-

tionships among entities; and

storing information for the entities and the determined

relationships in an entity dictionary that includes for

each entity:

an abstract syntax tree reference, an entity type, a loca-
tion, a list of called entities, a list of called-by entities,
a scope, a parameter set including parameter items,
and comments;

for each called entity, a called entity identifier, a loca-
tion, and a set of candidate call entities;

for each parameter item, a parameter type and a param-
eter name; and

for each candidate called entity, a candidate entity iden-
tifier and a matching score.

12. The computer-readable media of claim 11, wherein the
entities are entities associated with computer code.

13. The computer-readable media of claim 11, wherein the
relationships among entities are represented by visualizations
that include:

an inter-entity, call-directed graph visualization;

an inter-entity, call-collapsible tree visualization; and

an inter-entity call-outline list visualization.

14. A computer-implemented method, comprising:

providing plural visualizations showing relationships

among entities;

receiving user inputs associated with the display of a given

visualization;

performing one or more operations on the visualization

based on the received user inputs;

retrieving and analyzing static and dynamic analysis data

from multiple analyzers; and

aggregating the static and dynamic analysis data in a form

of an entity dictionary for use by an inter-entity call
visualization system.

15. The computer-implemented method of claim 14, com-
prising displaying

visualizations received from the inter-entity call visualiza-

tion system.

16. The computer-implemented method of claim 14,
wherein the entities are entities associated with computer
code.

17. The computer-implemented method of claim 14,
wherein the plural visualizations include:

an inter-entity, call-directed graph visualization;

an inter-entity, call-collapsible tree visualization; and

an inter-entity call-outline list visualization.

US 2016/0092336 Al
16

18. The computer-implemented method of claim 14,
wherein the inter-entity call visualization system is integrated
with an integrated development environment (IDE) including
an editor.

19. The computer-implemented method of claim 14,
wherein the IDE is cloud-based and the visualization system
performs cloud-based computer code analysis.

20. The computer-implemented method of claim 19,
wherein user actions in a given visualization causes actions to
occur in the IDE.

21. The computer-implemented method of claim 14,
wherein the one or more operations include hiding elements
of the visualization, exposing elements of the visualization,
and changing a central focus of the visualization.

22. The computer-implemented method of claim 21,
wherein the one or more operations include displaying addi-
tional information associated with a particular element,
switching the display to a different visualization, and causing
associated elements in the visualization or the editor to be
highlighted.

Mar. 31, 2016

