
(19) United States
US 2005O256854A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0256854A1
Rajamani et al. (43) Pub. Date: Nov. 17, 2005

(54) COMPILE TIME OPCODES FOR EFFICIENT
RUNTIME INTERPRETATION OF
VARIABLES FOR DATABASE QUERIES AND

(22) Filed: Apr. 12, 2005

Related U.S. Application Data
DML STATEMENTS

(60) Provisional application No. 60/571,333, filed on May
(75) Inventors: Kumar Rajamani, Santa Clara, CA 14, 2004.

(US); Namit Jain, Santa Clara, CA
(US) Publication Classification

Correspondence Address: (51) Int. C.7 - GO6F 7/00

BINGHAM, MCCUTCHEN LLP (52) U.S. Cl. .. 707/3
THREE EMBARCADERO CENTER
18 FLOOR (57) ABSTRACT
SAN FRANCISCO, CA 94111-4067 (US)

(73) Assignee: ORACLE INTERNATIONAL COR
PORATION, REDWOOD SHORES,
CA

(21) Appl. No.: 11/104,993

Client Computer
110

A method System and program for performing a query in
which context and information including opcodes accom
panies an execution plan for the query. The opcodes deter
mine operations to retrieve a set of bind variables. The
execution plan and context information shared by a plurality
of application programs.

Server
Application

Application Pigm
Program -

112

Bind Buffer
188

for instantiation
of server query application

query Compilation
131 Engine ---

40
Bind Buffer

186
for instantiation
of client query

Network
Connection

116 Shared Memory
160

Execution
Plan and Execution
Context for Engine
client query 180

Execution
Plan and
context for
server query

Patent Application Publication Nov. 17, 2005 Sheet 1 of 3 US 2005/025,6854A1

Client Computer
110

Server
Application

Application Program
Program 122
112

Bind Buffer
188

for instantiation
of server query application

query Compilation
131 Engine ---

140
Bind Buffer

186
for instantiation
of client query

Network
Connection

116 Shared Memory
160

Execution
Plan and Execution
Context for Engine
client query 180

Execution
Plan and
Context for
server query

Fig. 1

Patent Application Publication Nov. 17, 2005 Sheet 2 of 3 US 2005/0256854A1

Receive a SQL statement from an application program at a compilation engine
210

Compile an execution plan for the SQL statement
220

During the compilation, Determine information about a context of the SQL
statement issued by the application program

230

Compile a set of actions to be performed by an execution engine-to retrieve
bind values for bind variables based on the context information

240

Store the execution plan and the set of actions in a shared memory-location
250

Retrieve the execution plan and the set of actions from the shared memory at
an execution engine

260

Before executing the query, Perform the set of actions to retrieve the bind
values for the bind variables

270

Execute the SQL statement using the retrieved bind values
280

Fig. 2

Patent Application Publication Nov. 17, 2005 Sheet 3 of 3 US 2005/025,6854A1

Storage
Device
1410

Processor(s)
407

Communications
Interface
1414

1415
Communications
Link

Fig. 3

US 2005/0256.854 A1

COMPLE TIME OPCODES FOR EFFICIENT
RUNTIME INTERPRETATION OF WARIABLES

FOR DATABASE QUERIES AND DML
STATEMENTS

CROSS REFERENCE AND RELATED
APPLICATION

0001. This application claims benefit of U.S. Provisional
Application Ser. No. 60/571,333 filed on May 14, 2004
entitled “Compile Time Opcodes for Efficient Runtime
Interpretation of Variables for Database Queries and DML
Statements.” This application is hereby incorporated and is
fully set forth herein.

BACKGROUND

0002. A set of actions is generated at the compile time of
a Statement. The actions can be stored as opcodes, or
processes to be performed at execution time of the state
ment. The opcodes are used by an execution engine to
determine which processes to perform in order to retrieve
values for the variables in the statement. After the values are
retrieved, the statement is executed.
0003) For example, most DML statements, and some
queries (such as those with a WHERE clause), have a
program to pass and receive data to the database server as
part of a SQL or native language statements(PL/SQL). Such
data can be constant or literal data, which is usually
unknown when the program is compiled. This data is
referred to as bind variables in a database server.

0004. In a database application, most of the queries and
DML statements usually contain multiple bind variables.
The user input is read at runtime for input bind variables, and
the output is sent back for output bind variables.
0005 Reading and writing the bind data values for the
bind variables (bind processing) can be very expensive
because of the context under which the reading and writing
are processed. A large part of the runtime for a query is due
to re-determining metadata about this context, which was
available but not captured, when the query was compiled.
Bind processing can vary a lot depending on the metadata
and user/language context. If this metadata is not captured at
compile time, a lot of time needs to be spent at runtime to
gather the relevant information in order to determine which
actions to take when performing bind processing.

SUMMARY

0006 An example method of performing a query
includes: retrieving an execution plan and context informa
tion for the query, and retrieving bind values for bind
Variables of the query based on the context information.
Another example method of performing a query includes:
receiving a SQL statement having a plurality of bind vari
ables at a compilation engine, compiling an execution plan
for the SQL statement, determining information about a
context of the SQL statement, and compiling a set of bind
actions for the SQL statement which, when executed by an
execution engine, causes the execution engine to gather bind
values for the bind variables.

BRIEF DESCRIPTION OF THE DRAWINGS

0007 FIG. 1 shows an example of a compiled query plan
with context information.

Nov. 17, 2005

0008 FIG. 2 shows an example of a method of gener
ating and using context information to execute a statement.
0009 FIG. 3 illustrates an example system that can
provide compile time opcodes for efficient runtime interpre
tation of variables for database queries and dml statements.

DETAILED DESCRIPTION

0010) By gathering information at compile time, and
Storing it as interpretable opcodes in the shared query
context, the decisions about which actions to perform during
bind processing at runtime can be made significantly faster.
Bind variables are processed based on the usage context. For
e.g. bind values may be present in the network or server
buffers depending on whether the query is issued by an
external or an internal client. Prior to interpretable opcodes,
the usage context information was not captured in the shared
query context. At runtime, the usage context information is
re-determined, thus causing significant performance over
head. To reduce the performance overhead, the usage con
text information for the bind variables is captured at compile
time. This context information can be stored in the form of
opcodes. This makes the runtime processing of the statement
much faster, because the execution engine retrieves the bind
values for the bind variables of the statement by performing
operations associated with the captured context information.
This is faster than conventional approaches of execution,
which have to re-determine the context information during
runtime to be able to retrieve the bind values.

0.011) An advantage of gathering usage context informa
tion at compile time and storing it as opcodes is much better
performance, and more control over critical sections. By
gathering information at compile time, and storing it as
interpretable opcodes in the shared query context, decisions
at runtime are made significantly faster: The opcodes can be
used by any application for reducing the runtime for pro
cessing input/output variables by gathering more metadata
information at compile time.
0012. An example of a compiled query plan with context
information is shown in FIG.1. A client, such as an external
application program 112 running on a computer 110, issues
a query 131 over a network connection, such as the internet
for example. For example, the application program can issue
a SQL statement 130 to retrieve data from a database. The
query may also be issued by an internal application program
122 running on the server itself 120: The statement is
compiled by a compilation engine 140 to generate an
execution plan 155 for the query. During compilation, the
context of the Statement is determined and stored with the
execution plan. The context includes factors such as whether
the query is issued by an external program or by the server,
whether the query is recursive, and whether the statement is
SQL or PLSQL, for example.
0013 The query plan and the context information 155 are
stored in memory 160, and are retrieved by an execution
engine 180 each time the query is executed. The memory can
be shared by multiple application programs, so that a query
that is compiled once can be executed multiple times. The
context information is used to determine which operations to
perform at execution engine 180 in order to gather values for
the Statement's bind variables when the statement is
executed. For example, if the context information indicates
that the Statement was issued by an external application

US 2005/0256.854 A1

program, then the execution engine will populate the bind
buffer 186 with values for the bind variables retrieved from
the wire 116. If the context information indicates that the
Statement was issued by the Server, then the values for the
bind variables can be retrieved from the server's memory
and stored in bind buffer 188. In one embodiment, the
context information is compiled by engine 140 into a set of
actions to be taken by execution engine 180 in order to place
bind values into a bind buffer. After the bind values are
gathered, the execution engine 180 executes the query.
During execution, values for variables are read from the bind
buffer.

0.014 FIG. 2 shows an example of a method of gener
ating and using context information to execute a Statement.
An application program issues a Statement, which is
received by a compilation engine, 210. The engine compiles
an execution plan, 220. The engine also determines infor
mation about the context of the statement, 230. The engine
uses the context information to compile a set of actions that
will retrieve Specific values for variables in the Statement,
240. The set of actions is stored along with the correspond
ing execution plan in a shared memory, 250. To execute the
Statement, an execution engine retrieves the execution plan,
including the Set of actions, from memory, 260. The execu
tion engine performs the Set of actions, which populates a
buffer with values for variables in the statement, 270. Then,
the Statement is executed by the execution engine, 280,
using the values in the buffer.
0.015 Therefore, by storing the context information with
the query plan, the execution time for the query is improved,
because this information does not have to be gathered during
the execution time. Also, actions related to the context
information can also be generated at compilation time, based
on the context information, and provided to the execution
engine. During execution, the engine reads the context
information, which can be in the form of opcodes. The
engine interprets the operations that are indicated by the
opcodes, and performs the operations in order to populate
the bind buffer with bind values for the statement's bind
variables.

0016 Elimination of Dispatch Overhead
0.017. An advantage of generating and storing compile
time opcodes is reducing dispatch overhead (the time needed
to determine where bind values are located) during execu
tion time. The effective cost of the leaf actions (the time
needed to retrieve the bind values from their locations) is
much Smaller compared to the dispatch overhead that
appears in these components. One way to reduce or elimi
nate the dispatch overhead is to create a compiled Set of
actions that the runtime engine executes. In this manner, the
runtime engine is Spoon-fed the Sequence of bind operations
to perform in order to populate the bind buffer with bind
values for the bind variables.

0.018 Containing Future Regressions
0019. An advantage of this approach is that if the leaf
operations are closely guarded, the performance of Simple
Statements will not regreSS when new functionality is added.
0020. This is because new functionality will use a new
leaf operation which should not affect the performance
Sensitive code path. Hence, Slow deterioration of code,
which causes slowing the whole System (functionality bloat)
can be contained.

Nov. 17, 2005

0021. Overall Contribution of Bind Code Path
0022. The bind code path (In/Out) constitutes a large part
of TPCC. AS TPCC instructions are reduced to improve
performance, the bind code path may constitute a much
larger proportion of the overall code. Hence, optimizing this
Segment of the codepath increases the efficiency of the code.
0023 Examples of Bind Operations which are Processed
to Populate the Bind Buffer with Bind Values
0024. Each bind processing action accesses the bind
buffer, to either copy or point the bind buffer into the user
buffer in order to assign the associated bind variable to the
corresponding bind value.
0025 Most rpi binds should be no copy, meaning the bind
processing includes a pointer assignment.

0026 ATWO task (a statement issued from an external
client) bind may be a copy bind, meaning that data is moved
from the network buffer to the kernel bind buffer.

0027 Context Information
0028. A dispatch cost to determine which leaf operations
(bind processes) to perform may be much more than the cost
of performing the leaf operations themselves. Thus, context
information reduces the dispatch cost of the various leaf
operations through better compilation to a constant, which
may be very Small.
0029) Leaf Operations Enumerated
0030 Here is a list of examples of leaf operations that
In/Out binds may be subject to (the parentheses contain a
descriptive name of a Suggested opcode)

0031 1. EB-Bind (Dealing with a In bind opcode)
0032) 2. T Twotask (Twotask cursor)
0033 3. S-Scalar (Scalar bind)

0034) A-Array (Indexed table bind)
0035 X-Don't care (Can be scalar or array)

0036 4. S-sql (Bind targeted into SQL statement)
0037 P-plsql (Bind targeted into PLSQL Begin
... End Block)

0038
0039) 5. I-In (In bind)
0040 N-Not out (Pure In bind)
0041) X-Don't care

0.042) 6.O-Out (Out bind)
0043) N-Not in (Pure Out bind)
0044) X-Don't care

0.045 7. C–Copy (Copy)
0046) N-Nocopy
0047 X-Don't care

0.048 8. Extras:
0049 NE-no extra
0050 NS-no skip

X-Don't care (can be Sql or pisql)

US 2005/0256.854 A1

0051 FN-function
0.052 DP-duplicate
0053 SB-shift bind page
0054) LT literal bind

0.055 An opcode can be used to skip long values to be
read later.

0056. A pure In bind is an In bind which is definitely not
an out bind, and a pure Out bind is an Out bind which is not
an In bind.

0057. An example of a format for out bind opcode is as
follows:

0.058 1. OB-Out bind opcode
0059 2. T Twotask (external application)

0060) R-Rpi (internal application)
0061 X-Don't care (can be either twotask or

rpi)
0062) 3. S-Scalar

0063) A-Array
0064 X-Don't care (can be scalar or array)

0065. 4. R-dml Returning
0066 P-Plsal
0067. X-Don't care

0068). 5. Extras:
0069. NE-no extra
0070 IR-Indicator and Return code
0071 PI-Put Indicator
0072 PR-Put Return code
0073 SB-Shift Bind
0074 RC Ref Cursor
0075 ST STart transfer of data

0.076 An extra opcode to start transfer needed only for
non-recursive clients may be used.
0.077 Additional examples of leaf operations are:
0078. Two task scalar sql In copy bind The server reads
an In bind from the wire into the kernel bind buffer. The bind
buffer pointer is pointed at the user buffer.
007.9 Two task scalar plSql In copy bind The server
reads an In bind from the wire into the kernel bind buffer.
For plSql, no change may be needed to the bind buffer
pointer.

0080 Recursive scalar In nocopy bind- The kernel
points the kernel side bind buffer into the user bind buffer as
it has been determined that no conversions may be required.
This no-copy optimization may be applied for recursive Sql.
This may be the default case for any recursive binding when
no copy is in effect.
0.081 Recursive scalar sql pure In nocopy bind- The
kernel doesn’t touch the bind buffer, but instead points the
bind buffer into the location of the bind value as it has been

Nov. 17, 2005

determined that no conversions may be required. This no
copy optimization may be applied for recursive Sql.

0082 Recursive scalar sql pure Innocopy noskip bind
The kernel uses the same Scalar copy repeatedly. This will
happen when Sql issued through plSql uses a Scalar value in
the binding for a multi row operation and Specifies that the
value does not need to be copied because it is not an Out
bind.

0083 Recursive scalar sql pure In nocopy function
bind-In this case a bind buffer is populated lazily by a
callback, and the user buffer is pointed at the lazily popu
lated buffer. These are used for binding plsol collections.
0084. Scalar In duplicate bind- The kernel points the
duplicate bind buffer to the main bind. buffer that already has
the bind data. This may apply for all Statements, whether
top-level or recursive.

0085. Twotask array plSql In bind-In this case, the
current length of the array is read from the wire. Following
this, each element of the array is two task Scalar copied into
the kernel bind buffer.

0086 Scalar pure Out bind- The bind values are skipped
for each iteration other than the first one.

0087 Array pisql Out bind- The bind values are skipped
for each iteration other than the first one.

0088 Shift bind-Control instruction. This opcode takes
in one operand, which is the bind position to shift to. This
may be used when processing binds not in Standard order or
when bind buffers spill into different pages of the underlying
Segmented array.

0089. Two task scalar pure Innocopy literal bind-In this
case, the bind value is obtained from an internal buffer
maintained by the literal replacement code.

0090 Skip long bind-In this case, a long bind is encoun
tered in Sql. This is skipped and is read after the other bind
values are read.

0091 Unoptimized bind-No optimizations are per
formed, instead, the process goes through Standard checks to
determine context information and associated actions.

0092 Start transfer of out binds-An indication is sent
that a batch of columns is coming. This may be used for
two-task clients, and may be Sent at the beginning.

0093. Two task scalar Plsdl- The server sends a scalar
value for a plSql bind variable. Indicators and return codes
are also calculated, and are Sent later, as needed.

0094. Two task scalar plSql ref cursor The server sends
the describe information of the ref cursor along with the data
(cursor number). The bind buffers described by plSql are also
freed.

0095 Recursive scalar plSql-The server writes the sca
lar value into the bind buffer for the plsol bind variable.
Indicators and return codes are also calculated, and are Sent
later, as needed.

0096. Two task array plSql- The server sends the array
value for the plSql bind variable. Indicators and return codes
may not be sent to the client.

US 2005/0256.854 A1

0097. Two task array Plsql with indicator The server
Sends the array value along with the indicator and return
codes for the plsol bind variable.
0.098 Recursive array Plsdl-The server writes the array
values for a plSql bind variable into the bind buffer for that
bind along with the indicator and return code.
0099 Two task put indicator. The indicator for a scalar
plSql bind is Sent back to the client.
0100 Two task put return code-the return code for a
Scalar plSql bind is Sent back to the client.
0101 Shift bind- The bind position is changed to the
bind position specified with the operand of shift bind. The
bind buffer is also readjusted. This may happen if the bind
crosses a page boundary or an Out bind occurs immediately
after an In bind.

0102) Two task scalar dml returning. The values for diml
returning columns, along with the indicator and return
codes, are Sent back to the client.
0103 Eof of page bind- The bytecodes themselves may
be present in more than one page. This opcode marks the end
of an existing page and the beginning of a new one.
0104. Eof of file bind-All binds have been done.
0105 Sharing Criteria Changes
0106 As the system moves to an opcode based compi
lation and eXecution approach for processing bind Values,
the following enhancements may be performed to sharing
criteria. Such changes provide Separate opcodes to deal with
different circumstances, and can include:

0107 1. Top-level and recursive cursors (execution
plans) are not shared.

0.108 2. Longs and non-long binds are not shared.
0109) 3. Scalar plSql binds are not shared by others.
0110 4. Collections may not be shared with other
types of binds.

0111 5. The limiting value of longs is the same for
two cursors to be shared.

0112) 6. Intra-call cursors and inter-call cursors are
not shared (this can be applied to Selects, because
dmls complete in a single call). Additional optimi
Zations may be performed So that plSql can specify
whether the underlying Sql complete in a Single call
So that nocopy bind buffers can be allocated.

0113 7. Binds with buffers and without buffers are
not shared.

SYSTEMARCHITECTURE OVERVIEW

0114. The execution of the sequences of instructions
required to practice the invention may be performed in
embodiments of the invention by a computer system 1400 as
shown in FIG. 3. In an embodiment of the invention,
execution of the Sequences of instructions required to prac
tice the invention is performed by a single computer System
1400. According to other embodiments of the invention, two
or more computer systems 1400 coupled by a communica
tion link 1415 may perform the sequence of instructions
required to practice the invention in coordination with one

Nov. 17, 2005

another. In order to avoid needlessly obscuring the inven
tion, a description of only one computer system 1400 will be
presented below; however, it should be understood that any
number of computer systems 1400 may be employed to
practice the invention.
0.115. A computer system 1400 according to an embodi
ment of the invention will now be described with reference
to FIG. 3, which is a block diagram of the functional
components of a computer System 1400 according to an
embodiment of the invention. AS used herein, the term
computer system 1400 is broadly used to describe any
computing device that can Store and independently run one
or more programs.

0116 Each computer system 1400 may include a com
munication interface 1414 coupled to the bus 1406. The
communication interface 1414 provides two-way commu
nication between computer systems 1400. The communica
tion interface 1414 of a respective computer system 1400
transmits and receives electrical, electromagnetic or optical
Signals, that include data Streams representing various types
of Signal information, e.g., instructions, messages and data.
A communication link 1415 links one computer system 1400
with another computer system 1400. For example, the
communication link 1415 may be a link to the internet
through a telephone line, cable line, optical fiber, or an
electromagnetic wave. The communication link may also be
a LAN, in which case the communication interface 1414
may be a LAN card, or the communication link 1415 may
be a PSTN, in which case the communication interface 1414
may be an integrated services digital network (ISDN) card
or a modem.

0117. A computer system 1400 may transmit and receive
messages, data, and instructions, including program, i.e.,
application, code, through its respective communication link
1415 and communication interface 1414. Received program
code may be executed by the respective processor(s) 1407 as
it is received, and/or stored in the storage device 1410, or
other associated non-volatile media, for later execution.
0118. In an embodiment, the computer system 1400
operates in conjunction with a data Storage System 1431,
e.g., a data Storage System 1431 that contains a database
1432 that is readily accessible by the computer system 1400.
The computer system 1400 communicates with the data
storage system 1431 through a data interface 1433. A data
interface 1433, which is coupled to the bus 1406, transmits
and receives electrical, electromagnetic or optical signals,
that include data Streams representing various types of Signal
information, e.g., instructions, messages and data. In
embodiments of the invention, the functions of the data
interface 1433 may be performed by the communication
interface 1414.

0119) Computer system 1400 includes a bus 1406 or
other communication mechanism for communicating
instructions, messages and data, collectively, information,
and one or more processors 1407 coupled with the bus 1406
for processing information. Computer system 1400 also
includes a main memory 1408, Such as a random access
memory (RAM) or other dynamic Storage device, coupled to
the bus 1406 for storing dynamic data and instructions to be
executed by the processor(s) 1407. The main memory 1408
also may be used for Storing temporary data, i.e., variables,
or other intermediate information during execution of
instructions by the processor(s) 1407.

US 2005/0256.854 A1

0120) The computer system 1400 may further include a
read only memory (ROM) 1409 or other static storage
device coupled to the bus 1406 for storing static data and
instructions for the processor(s) 1407. A storage device
1410, Such as a magnetic disk or optical disk, may also be
provided and coupled to the bus 1406 for storing data and
instructions for the processor(s) 1407.
0121 A computer system 1400 may be coupled via the
bus 1406 to a display device 1411, such as, but not limited
to, a cathode ray tube (CRT), for displaying information to
a user. An input device 1412, e.g., alphanumeric and other
keys, is coupled to the bus 1406 for communicating infor
mation and command selections to the processor(s) 1407.
0122) According to one embodiment of the invention, an
individual computer system 1400 performs specific opera
tions by their respective processor(s) 1407 executing one or
more Sequences of one or more instructions contained in the
main memory 1408. Such instructions may be read into the
main memory 1408 from another computer-usable medium,
such as the ROM 1409 or the storage device 1410. Execu
tion of the Sequences of instructions contained in the main
memory 1408 causes the processor(s) 1407 to perform the
processes described herein. In alternative embodiments,
hard-wired circuitry may be used in place of or in combi
nation with Software instructions to implement the inven
tion. Thus, embodiments of the invention are not limited to
any specific combination of hardware circuitry and/or Soft
WC.

0123 The term “computer-usable medium,” as used
herein, refers to any medium that provides information or is
usable by the processor(s) 1407. Such a medium may take
many forms, including, but not limited to, non-volatile,
Volatile and transmission media. Non-volatile media, i.e.,
media that can retain information in the absence of power,
includes the ROM 1409, CD ROM, magnetic tape, and
magnetic discs. Volatile media, i.e., media that can not retain
information in the absence of power, includes the main
memory 1408. Transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com
prise the bus 1406. Transmission media can also take the
form of carrier waves; i.e., electromagnetic waves that can
be modulated, as in frequency, amplitude or phase, to
transmit information signals. Additionally, transmission
media can take the form of acoustic or light waves, Such as
those generated during radio wave and infrared data com
munications.

0.124. In the foregoing specification, the invention has
been described with reference to specific embodiments
thereof. It will, however, be evident that various modifica
tions and changes may be made thereto without departing
from the broader spirit and scope of the invention. For
example, the reader is to understand that the Specific order
ing and combination of process actions shown in the proceSS
flow diagrams described herein is merely illustrative, and
the invention can be performed using different or additional
proceSS actions, or a different combination or ordering of
proceSS actions. The Specification and drawings are, accord
ingly, to be regarded in an illustrative rather than restrictive
SCSC.

Nov. 17, 2005

We claim:
1. A method of performing a query, comprising:
retrieving an execution plan and context information for

the query; and
retrieving bind values for bind variables of the query

based on the context information.
2. The method of claim 1, further comprising:
compiling the execution plan for the query;
determining the context information for the query; and
Storing the compiled execution plan and the context

information in a memory that can be shared by a
plurality of application programs.

3. The method of claim 1, further comprising:
storing the retrieved bind values in a bind buffer.
4. The method of claim 1, wherein the context information

comprises opcodes to identify one or more operations to
perform to retrieve the bind values.

5. The method of claim 1, wherein the context information
includes information to identify a bind variable from the
group consisting of inbound or outbound information, Sql or
plSql information, copy or no-copy information, recursive
query information, Scalar or array information, two task or
rpi information, internal client or external client information.

6. A method comprising:
receiving a SQL Statement having a plurality of bind

Variables at a compilation engine,
compiling an execution plan for the SQL Statement;
determining information about a context of the SQL

Statement; and
compiling a set of bind actions for the SQL Statement

which, when executed by an execution engine, causes
the execution engine to gather bind values for the bind
variables.

7. The method of claim 6, further comprising:
Storing the execution plan and the Set of bind actions for

the SQL Statement in a shared memory location.
8. The method of claim 7, further comprising:
Sending the execution plan and the Set of actions to an

execution engine.
9. The method of claim 8, further comprising:
executing the Set of actions to gather bind values, and
storing the bind values in a bind buffer.
10. The method of claim 9 further comprising:
executing the execution plan using the bind values in the

bind buffer.
11. A computer program product embodied on computer

readable medium, the computer readable medium having
Stored thereon a Sequence of instructions which, when
executed by a processor, causes the processor to execute a
method for performing a query, the method comprising:

retrieving an execution plan and context information for
the query; and

retrieving bind values for bind variables of the query
based on the context information.

12. The computer program product of claim 11, further
comprising:

US 2005/0256.854 A1

compiling the execution plan for the query;
determining the context information for the query; and
Storing the compiled execution plan and the context

information in a memory that can be shared by a
plurality of application programs.

13. The computer program product of claim 11, further
comprising:

storing the retrieved bind values in a bind buffer.
14. The computer program product of claim 11, wherein

the context information comprises opcodes to identify one or
more operations to perform to retrieve the bind values.

15. The computer program product of claim 11, wherein
the context information includes information to identify a
bind variable from the group consisting of inbound or
outbound information, Sql or plSql information, copy or
no-copy information, recursive query information, Scalar or
array information, two task or rpi information, internal client
or external client information.

16. A computer program product embodied on computer
readable medium, the computer readable medium having
Stored thereon a Sequence of instructions which, when
executed by a processor, causes the processor to execute a
method, the method comprising:

receiving a SQL Statement having a plurality of bind
variables at a compilation engine;

compiling an execution plan for the SQL Statement;
determining information about a context of the SQL

Statement; and
compiling a set of bind actions for the SQL Statement

which, when executed by an execution engine, causes
the execution engine to gather bind values for the bind
variables.

17. The computer program product of claim 16, further
comprising:

Storing the execution plan and the Set of bind actions for
the SQL Statement in a shared memory location.

18. The computer program product of claim 17, further
comprising:

Sending the execution plan and the Set of actions to an
execution engine.

19. The computer program product of claim 18, further
comprising:

executing the Set of actions to gather bind values, and
storing the bind values in a bind buffer.
20. The computer program product of claim 19 further

comprising:
executing the execution plan using the bind values in the

bind buffer.
21. A System for performing a query, the System com

prising:

Nov. 17, 2005

logic for retrieving an execution plan and context infor
mation for the query; and

logic for retrieving bind values for bind variables of the
query based on the context information.

22. The System of claim 21, further comprising:
logic for compiling the execution plan for the query;
logic for determining the context information for the

query; and
logic for Storing the compiled execution plan and the

context information in a memory that can be shared by
a plurality of application programs.

23. The system of claim 21, further comprising:
logic for storing the retrieved bind values in a bind buffer.
24. The system of claim 21, wherein the context infor

mation comprises opcodes to identify one or more opera
tions to perform to retrieve the bind values.

25. The system of claim 21, wherein the context infor
mation includes information to identify a bind variable from
the group consisting of inbound or outbound information,
Sql or plSql information, copy or no-copy information,
recursive query information, Scalar or array information, two
task or rpi information, internal client or external client
information.

26. A System comprising:
logic for receiving a SQL Statement having a plurality of

bind variables at a compilation engine;
logic for compiling an execution plan for the SQL State

ment,

logic for determining information about a context of the
SQL statement; and

logic for compiling a set of bind actions for the SQL
Statement which, when executed by an execution
engine, causes the execution engine to gather bind
values for the bind variables.

27. The system of claim 26, further comprising:
logic for Storing the execution plan and the Set of bind

actions for the SQL Statement in a shared memory
location.

28. The system of claim 27, further comprising:
logic for Sending the execution plan and the Set of actions

to an execution engine.
29. The system of claim 28, further comprising:
logic for executing the Set of actions to gather bind values,

and

logic for storing the bind values in a bind buffer.
30. The system of claim 29 further comprising:
logic for executing the execution plan using the bind

values in the bind buffer.

k k k k k

