
(12) United States Patent
Pistoia et al.

USOO898.4642B2

US 8,984,642 B2
*Mar. 17, 2015

(10) Patent No.:
(45) Date of Patent:

(54) DETECTING SECURITY VULNERABILITIES
N WEBAPPLICATIONS

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Marco Pistoia, Amawalk, NY (US); Ori
Segal, Tel Aviv (IL); Omer Tripp,
Har-Adar (IL)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

(21) Appl. No.: 13/785,254

(22) Filed: Mar. 5, 2013

(65) Prior Publication Data

US 2013/0179979 A1 Jul. 11, 2013

Related U.S. Application Data
(63) Continuation of application No. 13/174,628, filed on

Jun. 30, 2011, now Pat. No. 8,695,098.

(51) Int. Cl.
G06F II/00 (2006.01)
G06F 2/57 (2013.01)
H04L 29/06 (2006.01)

(52) U.S. Cl.
CPC G06F2I/577 (2013.01); H04L 63/1433

(2013.01)
USPC .. 726/25

(58) Field of Classification Search
CPC G06F 21/577; H04L 63/1433; H04L

63/1416

118

STATIC
ANALYZER

116

PARAMETER
CONSTRAINTS

striano

SERVER-SIDE

USPC .. 726/22 25
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,451,352 B1 * 1 1/2008 Moore et al. 714,38.14
7,752,609 B2 7/2010 Rioux

(Continued)

FOREIGN PATENT DOCUMENTS

CN 101.1597.32 4/2008

OTHER PUBLICATIONS

Hsu, F. “Input Validation of Client-Server Web Applications
Through Static Analysis'. University of California, Davis; date
unknown; all pages.

(Continued)

Primary Examiner — Anthony Brown
(74) Attorney, Agent, or Firm — North Shore Patents, P.C.;
Michele Liu Baillie

(57) ABSTRACT

Method to detect security vulnerabilities includes: interacting
with a web application during its execution to identify a web
page exposed by the web application; statically analyzing the
web page to identify a parameter within the web page that is
constrained by a client-side validation measure and that is to
be sent to the web application; determining a server-side
validation measure to be applied to the parameter in view of
the constraint placed upon the parameter by the client-side
validation measure; statically analyzing the web application
to identify a location within the web application where the
parameter is input into the web application; determining
whether the parameter is constrained by the server-side vali
dation measure prior to the parameter being used in a secu
rity-sensitive operation; and identifying the parameter as a
security vulnerability.

2 Claims, 3 Drawing Sheets

WEB

100

BLACK-BOX
TESTER

112

CLIENT-SIDE
WALIDATION
MEASURES

WALIDATION
MEASURES

US 8,984,642 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2003. O159063 A1
2006/0259973 A1
2010, 0169974 A1

OTHER PUBLICATIONS

8/2003 Apfelbaum et al.
11/2006 Sima et al.
7, 2010 Calendino et al.

Alawarneh, S. et. al., “Developing a Semantic Architecture for Input
Validation in e-Systems'; UbiCC Journal, vol. 4. No.3, Special Issue
on ICIT 2009 Conference; 2009: pp. 501-508.
Johnson, P. et al., “10 Steps to Securing Your Web Applications'.
Unisys Corporation; 2006; all pages.
Balzarotti. D. et al., “Saner: Composing Static and Dynamic Analysis
to Validate Sanitization in Web Applications'; 2008 IEEE Sympo
sium on Security and Privacy; 2008; pp. 387-401.

Aljawarneh, S. et al., “A Semantic Data Validation Service for Web
Applications'; Journal of Theoretical and Applied Electronic Com
merce Research, ISSN 0718-1876, Electronic Version; vol. 5, Issue 1:
Apr. 2010; pp. 39-55.
Monga, M. et al. "A Hybrid Analysis Framework for Detecting Web
Application Vulnerabilities'; SESS’09; May 19, 2009; Vancouver,
Canada; pp. 25-32.
Wassermann, G. et al., “Static Detection of Cross-Site Scripting
Vulnerabilities'; ICSE'08; May 10-18, 2008; Leipzig, Germany; pp.
171-180.
Mao, C., “Experiences in Security Testing for Web-Based Applica
tions'; ICIS 2009; Nov. 24-26, 2009; Seoul, Korea; pp. 326-330.
Petukhov et al., “Detecting Security Vulnerabilities in Web Applica
tions. Using Dynamic Analysis with Penetration Testing'; OWASP
AppSec Europe 2008 Conference, May 19-22, 2008, Ghent, Bel
gium, pp. 1-16.

* cited by examiner

| -61

US 8,984,642 B2 Sheet 1 of 3 Mar. 17, 2015 U.S. Patent

9 || ||

U.S. Patent Mar. 17, 2015 Sheet 2 of 3 US 8,984,642 B2

START

PERFORMBLACK-BOX TESTING OF A WEB
APPLICATION TO DENTIFY WEB PAGES

200 EXPOSED BY THE WEB APPLICATION

ANALYZE WEB PAGES TO DENTIFY CLIENT-SIDE
VALIDATED PARAMETER

202

DETERMINE SERVER-SIDEVALIDATION
MEASURES TO BE APPLIED TO THE PARAMETER

204

PERFORMSTATIC ANALYSIS ON THE WEB
APPLICATION TO DENTIFY CANDIDATE

206 PARAMETER INPUT

IS THE PARAMETER
CONSTRAINED BY SERVER
SIDEVALIDATION BEFORE
BEING USED IN A SECURITY
SENSITIVE OPERATION?

REPORT PARAMETER AS A SECURITY
VULNERABILITY

FINISH

Fig. 2

210

U.S. Patent Mar. 17, 2015 Sheet 3 of 3 US 8,984,642 B2

/
S.

US 8,984,642 B2
1.

DETECTING SECURITY VUILNERABILITIES
IN WEB APPLICATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application relates to co-pending U.S. patent
application Ser. No. 13/174,628, filed on Jun. 30, 2011.

BACKGROUND

Internet-based computer software applications, or “web”
applications, may be Vulnerable to malicious attacks if they
do not properly validate user inputs before processing them
and using them in security-sensitive operations. A common
practice is to perform Such validation by constraining user
inputs at the web application interfaces with which users
interact. Thus, for example, an HTML-based web page that is
presented to a user may include parameters that are to be
populated only via drop-down boxes with a limited set of
predefined values for selection by the user, as well as hidden
parameters that are not meant to be directly modified by the
user, where the parameters are then to be forwarded to the
underlying web application

BRIEF SUMMARY

Embodiments provide detection of security vulnerabilities
in web applications. In one embodiment, a method includes
interacting with a web application during its execution to
identify a web page exposed by the web application; and
statically analyzing the web page to identify a parameter
within the web page that is constrained by a client-side vali
dation measure and that is to be sent to the web application.
The method further includes determining a server-side vali
dation measure to be applied to the parameter in view of the
constraint placed upon the parameter by the client-side vali
dation measure; and statically analyzing the web application
to identify a location within the web application where the
parameter is input into the web application. The method fur
ther includes determining whether the parameter is con
strained by the server-side validation measure prior to the
parameter being used in a security-sensitive operation; and
identifying the parameter as a security Vulnerability where
the parameter is not constrained by the server-side validation
measure prior to the parameter being used in the security
sensitive operation.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments will be understood and appreciated
more fully from the following detailed description taken in
conjunction with the appended drawings in which:

FIG. 1 is a simplified conceptual illustration of a system for
detecting security Vulnerabilities in web applications that
employ client-side validation, constructed and operative, in
accordance with an embodiment of the invention;

FIG. 2 is a simplified flowchart illustration of an exemplary
method of operation of the system of FIG. 1, operative in
accordance with an embodiment of the invention; and

FIG. 3 is a simplified block diagram illustration of an
exemplary hardware implementation of a computing system,
constructed and operative, in accordance with an embodi
ment of the invention.

DETAILED DESCRIPTION

The invention is now described within the context of one or
more embodiments, although the description is intended to be

10

15

25

30

35

40

45

50

55

60

65

2
illustrative of the invention as a whole, and is not to be
construed as limiting the invention to the embodiments
shown. It is appreciated that various modifications may occur
to those skilled in the art that, while not specifically shown
herein, are nevertheless within the true spirit and scope of the
invention.
As will be appreciated by one skilled in the art, aspects of

the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi
ment combining Software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module' or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read
able program code embodied thereon.
Any combination of one or more computer readable medi

um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any Suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical data storage device, a mag
netic data storage device, or any Suitable combination of the
foregoing. In the context of this document, a computer read
able storage medium may be any tangible medium that can
contain, or store a program for use by or in connection with an
instruction execution system, apparatus, or device.
A computer readable signal medium may include a propa

gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for

aspects of the present invention may be written in any com
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may

US 8,984,642 B2
3

be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow
chart illustrations and/or block diagrams, can be imple
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, Such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

Reference is now made to FIG. 1, which is a simplified
conceptual illustration of a system for detecting security Vul
nerabilities in web applications that employ client-side vali
dation, constructed and operative in accordance with an
embodiment. In the system of FIG. 1, in one embodiment, a
black-box tester 100, such as IBM Rational AppScanTM, com
mercially-available from International Business Machines
Corporation, Armonk, N.Y., is configured to interact with a
web application 102 during its execution in accordance with
conventional black-box testing techniques to identify any
statically or dynamically generated web pages exposed by
web application 102. Web application 102 may be any com
puter-based software application that may be hosted by a
computer server 104 and accessed by one or more client
computers 106 via a computer network 108, such as the
Internet.

In one embodiment, a constraint manager 110 is configured
to statically analyze the web pages identified by black-box
tester 100 to identify parameters within the web pages that are
constrained by one or more predefined client-side validation
measures 112 and that are to be sent to web application 102 at
server 104. Such client-side validation measures 112 may, for
example, include:

where the parameter is a hidden parameter,
where the parameter is a parameter to which a value is

assigned by selecting from among a list of pre-defined
values, such as via drop-down box; and

where the parameter is a parameter for which a client-side
test is performed to determine whether its value con
forms to a regular expression.

In one embodiment, constraint manager 110 may deter
mine one or more server-side validation measures 114 that

5

10

15

25

30

35

40

45

50

55

60

65

4
should be applied to a given parameter in view of the con
straints placed upon the parameter by client-side validation
measures 112. Such server-side validation measures 114 may,
for example, include:
where the parameter is a hidden parameter, that web appli

cation 104 checks for a correlation between its value and
the values of other client-supplied parameters. For
example, if the candidate parameter with a web page is a
Boolean hidden field called is Admin, which is set by
JavaScript TM code within the web page when the user
inputs a username and password, the client-side con
straint is that is Admin is correlated with the input
username and password;

where the parameter is a parameter to which a value is
assigned by selecting from among a list of pre-defined
values, such as via drop-down box, that web application
104 checks that the value belongs to a fixed set of values
or a predefined range of values; and

where the parameter is a parameter for which a client-side
test is performed to determine whether its value con
forms to a regular expression, that web application 104
performs the same test.

In one embodiment, constraint manager 110 may store
identified parameters together with their applicable server
side validation measures 114 in a data store of parameter
constraints 116.

In one embodiment, a static analyzer 118 may be config
ured to statically analyze web application 104, such as by
building a control-flow model and a data-flow model of web
application 104, to identify locations within web application
104 where web page parameters are input into web applica
tion 104. For any given parameter so identified, static ana
lyzer 118 queries constraint manager 110, or alternatively
accesses parameter constraints 116 directly, to determine
which constraints should be applied to the parameter, and
whether these constraints are applied to the parameter by web
application 104 prior to the parameter being used in a secu
rity-sensitive operation. Static analyzer 118 identifies as a
security Vulnerability any parameter that is not constrained
within web application 104 by applicable server-side valida
tion measures 114 prior to the parameter being used in a
security-sensitive operation. Static analyzer 118 provides a
report on the identified security vulnerabilities of web appli
cation 104, such as to an operator of black-box tester 100 or
static analyzer 118.

Reference is now made to FIG. 2 which is a simplified
flowchart illustration of an exemplary method of operation of
the system of FIG. 1, operative in accordance with an embodi
ment. In the method of FIG. 2, in one embodiment, black-box
testing of a web application may be performed during its
execution to identify any statically or dynamically generated
web pages exposed by the web application (block 200). The
system statically analyzes identified web pages to identify
any parameters within the web pages that are constrained by
one or more predefined client-side validation measures and
that are to be sent to the web application (block 202). The
system determines one or more server-side validation mea
sure that should be applied to a given parameter in view of the
constraints placed upon the parameter by client-side valida
tion measures (block 204). The system performs static analy
sis on the web application to identify locations within the web
application where web page parameters are input into the web
application (block 206). If a parameter is not constrained
within the web application by applicable server-side valida
tion measures prior to the parameter being used in a security

US 8,984,642 B2
5

sensitive operation (block 208), the system identifies the
parameter as a security Vulnerability and reported (block
210).
The system of FIG. 1 and method of FIG.2 may be dem

onstrated in the context of the following example in which
black-box tester 100 interacts with web application 104 dur
ing its execution and is presented with a web page having a
log-in form. In one embodiment, constraint manager 110
analyzes the web page, determines that the log-in form
includes a hidden flag which indicates whether the user is an
administrator, and determines that the hidden flag should be
correlated with values held by other parameters coming from
the user. In one embodiment, static analyzer 118 finds the
relevant set of calls within web application 104 in the form

where <x> and <y> are placeholders for variable identifiers
whose static types are HttpServletRequest and Boolean,
respectively. Static analyzer 118 then checks whether the
value of <y> is used to directly or indirectly control the flow
of the execution without web application 104 first checking
whether this value is correlated with values held by other
parameters coming from the user. Static analyzer 118 reports
the hidden flag as a security vulnerability if security-sensitive
operations reachable from the getParameter statement are
dominated solely by a test on <y>, as server-side validation
measures are not found that adequately constrain the hidden
flag, since a simple manipulation of the hidden flag before it
is sent to web application 104 may be sufficient to turn an
ordinary user into an administrator, potentially giving the
ordinary user absolute control over the application.

Referring now to FIG. 3, block diagram 300 illustrates an
exemplary hardware implementation of a computing system
with which one or more components/methodologies (e.g.,
components/methodologies described in the context of FIGS.
1-2) may be implemented, according to an embodiment.
As shown, the techniques for controlling access to at least

one resource may be implemented in accordance with a pro
cessor 310, a memory 312, I/O devices 314, and a network
interface 316, coupled via a computer bus 318 or alternate
connection arrangement.

It is to be appreciated that the term “processor as used
herein is intended to include any processing device, such as,
for example, one that includes a CPU (central processing
unit) and/or other processing circuitry. It is also to be under
stood that the term “processor may refer to more than one
processing device and that various elements associated with a
processing device may be shared by other processing devices.
The term “memory” as used herein is intended to include

memory associated with a processor or CPU, such as, for
example, RAM, ROM, a fixed memory device (e.g., hard
drive), a removable memory device (e.g., diskette), flash
memory, etc. Such memory may be considered a computer
readable storage medium.

In addition, the phrase “input/output devices' or "I/O
devices as used herein is intended to include, for example,
one or more input devices (e.g., keyboard, mouse, Scanner,
etc.) for entering data to the processing unit, and/or one or
more output devices (e.g., speaker, display, printer, etc.) for
presenting results associated with the processing unit.
The flowchart and block diagrams in the figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments. In this regard,
each block in the flowchart or block diagrams may represent
a module, segment, or portion of code, which comprises one
or more executable instructions for implementing the speci

10

15

25

30

35

40

45

50

55

60

65

6
fied logical function(s). It should also be noted that, in some
alternative implementations, the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in Succession may, in fact, be executed
Substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function
ality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina
tions of blocks in the block diagrams and/or flowchart illus
tration, can be implemented by special purpose hardware
based systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

It will be appreciated that any of the elements described
herein may be implemented as a computer program product
embodied in a computer-readable medium, Such as in the
form of computer program instructions stored on magnetic or
optical storage media or embedded within computer hard
ware, and may be executed by or otherwise accessible to a
computer (not shown).

While the methods and apparatus herein may or may not
have been described with reference to specific computer hard
ware or software, it is appreciated that the methods and appa
ratus described herein may be readily implemented in com
puter hardware or Software using conventional techniques.

While the invention has been described with reference to
one or more specific embodiments, the description is intended
to be illustrative of the invention as a whole and is not to be
construed as limiting the invention to the embodiments
shown. It is appreciated that various modifications may occur
to those skilled in the art that, while not specifically shown
herein, are nevertheless within the true spirit and scope of the
invention.

What is claimed is:
1. A method implemented by a hardware processor, com

prising:
interacting, by the hardware processor, with a web appli

cation during its execution to identify a web page
exposed by the web application, the web application
being hosted by a server and accessible by a client com
puter;

statically analyzing the web page to identify a hidden
parameter within the web page that is constrained by a
client-side validation measure and that is to be sent to the
web application, the hidden parameter to indicate an
authorization level of a user of the client computer;

determining a server-side validation measure to be applied
to the hidden parameter comprising the web application
checking for a correlation between a value of the hidden
parameter and a value of at least one other parameter
from the user;

statically analyzing the web application to identify a loca
tion within the web application where the hidden param
eter is input into the web application;

querying for the server-side validation measure to be
applied to the hidden parameter;

determining whether the web application checks for the
correlation between the value of the hidden parameter
and the value of the at least one other client-supplied
parameter according to the server-side validation mea
Sure prior to the hidden parameter being used in a secu
rity-sensitive operation; and

identifying the hidden parameter as a security Vulnerability
where the web application does not check for the corre
lation between the value of the hidden parameter and the

US 8,984,642 B2
7

value of the at least one other client-supplied parameter
prior to the hidden parameter being used in the security
sensitive operation.

2. The method of claim 1 further comprising building a
control-flow model and a data-flow model of the web appli- 5
cation.

