
(19) United States
US 2004O155885A1

(12) Patent Application Publication (10) Pub. No.: US 2004/0155885 A1
Munshi et al. (43) Pub. Date: Aug. 12, 2004

(54) CACHE INVALIDATION METHOD AND
APPARATUS FOR A GRAPHICS
PROCESSING SYSTEM

(76) Inventors: Aaftab Munshi, Los Gatos, CA (US);
James R. Peterson, Portland, OR (US)

Correspondence Address:
Kimton N. Eng, Esq.
DORSEY & WHITNEY LLP
Suite 3400
1420 Fifth Avenue
Seattle, WA 98101 (US)

(21)

(22)

Appl. No.: 10/775,299

Filed: Feb. 9, 2004

Related U.S. Application Data

(63) Continuation of application No. 09/607,504, filed on
Jun. 28, 2000, now Pat. No. 6,734,867.

Publication Classification

(51) Int. Cl. .. G09G 5/36

ADDRESS
GENERATOR

DATA REO

80

(52) U.S. Cl. .. 345/557

(57) ABSTRACT

A cache for a graphics System Storing both an address tag
and an identification number for each block of data Stored in
the data cache. An address and identification number of a

requested block of data is provided to the cache, and is
checked against all of the address and identification number
entries present. A block of data is provided if both the
address and the identification number of the requested data
matches an entry in the cache. However, if the address of the
requested data is not present, or if the address matches an
entry but the associated identification number does not
match, a cache miss occurs, and the requested graphics data
must be retrieved from a System memory. The address and
identification number are updated, and the requested data
replaces the former graphics data in the data cache. AS a
result, a block of data Stored in the cache having the same
address as the requested data, but having data that is invalid,
can be invalidated without invalidating the entire cache.

DATA OUT

ADDR & D

MEMORY CONTROLLER

WIWO

Patent Application Publication Aug. 12, 2004 Sheet 1 of 4

US 2004/0155885 A1

Z6

~/

Patent Application Publication Aug. 12, 2004 Sheet 2 of 4

US 2004/0155885 A1

08

JETIOHINOO AJOWEN
| | í | | } | | | { | i

NETTO HINOO 3HOWO

100 WIWO

Patent Application Publication Aug. 12, 2004 Sheet 3 of 4

Patent Application Publication Aug. 12, 2004 Sheet 4 of 4 US 2004/0155885 A1

US 2004/O155885 A1

CACHE INVALIDATION METHOD AND
APPARATUS FOR A GRAPHICS PROCESSING

SYSTEM

TECHNICAL FIELD

0001. The present invention is related generally to the
field of computer graphics, and more particularly, to caching
graphics information in a computer graphics processing
System.

BACKGROUND OF THE INVENTION

0002. A graphics accelerator is a specialized graphics
processing Subsystem for a computer System. An application
program executing on a processor of the computer System
generates geometry input data that defines graphics elements
for display on a display device. The application program
typically transfers the geometry information from the pro
ceSSor to the graphics processing System. The graphics
processing System, as opposed to the processor, has the task
of rendering the corresponding graphics elements on the
display device to allow the processor to handle other System
requests. The graphics data is processed per graphics frame
before being rasterized on the display device.
0003. As the use and application of computer graphics
continues to grow, there is an increasing demand for graph
ics processing Systems that provide more realistic image
rendering, Such as more realistic coloring, Shading, and
detailing. There is also an increasing demand for graphics
processing Systems that can realistically render three dimen
Sional (3D) objects, as well as provide seamless animation
of 3D images. Consequently, current graphics processing
Systems must be able to not only process more graphics data,
but also at a faster processing rate. Processing this amount
of data requires not only high-Speed graphics processing
units, but also requires that graphics data be provided to the
processor at high-Speeds. It is often the case where a host
memory of the computer System cannot provide graphics
data at a Sufficient rate to Satisfy this demand, So high-speed
caches have been integrated into graphics processing Sys
tems to Supplement the host memory and provide a limited
quantity of graphics data quickly.
0004 Although data caches facilitate high-speed process
ing, a cache management technique must be employed in
order to maintain the integrity of the cached graphics data.
For example, the data Stored in the cache must be updated
or marked as invalid whenever the graphics data changes,
Such as when new graphics data replaces older graphics data
in the host memory. With respect to texture mapping appli
cations, this may occur at a rate of approximately once per
frame, but can occur more frequently if there are more
texture data than can fit in the host memory at one time, or
less frequently if the texture data are used for a number of
frames. A graphics frame is typically considered to be the
data necessary to produce a full Screen image on the display.
0005 Data caches of conventional graphics processing
Systems are typically not very large. These Smaller caches
may be large enough to Store only the graphics data required
to generate one Scan line of data. With caches Such as these,
a cache management technique that invalidates the entire
cache each time new graphics data replaces older graphics
data in the host memory may be an efficient method for
cache management because invalidating the entire cache can

Aug. 12, 2004

be accomplished Simply and quickly for Smaller-sized
caches. Often times, the entire cache can be invalidated in a
Single clock cycle. Nevertheless, it is often desirable to have
a large cache. For example, one benefit is that a larger cache
increases the chance of a cache "hit,” and consequently,
more data is available to be provided for processing at
high-speed. However, the increase in System performance
provided by a larger cache may not justify the cost of
fabricating a larger cache, which occupies more physical
Space on the die than a Smaller cache.
0006. One reason larger-sized caches provide limited
benefits is that efficient cache management of large caches
is difficult with conventional cache management techniques.
Unlike with Small caches, invalidating the entire cache after
each time new graphics data replaces older graphics data in
the host memory does not result in efficient cache use
because the greater majority of the other data Stored in the
larger-sized cache is not necessarily invalid as well. Addi
tionally, it is difficult to invalidate a particular data block in
the cache whenever new graphics data replaces older graph
ics data in System memory because locating and Setting an
invalidation flag for that particular data block typically
requires complex circuitry. This especially So with a fully
asSociative cache where data may be Stored in any of the
available data blocks.

0007. Therefore, there is a need for a cache management
technique that may be used with various sized data caches to
enhance graphics processing performance.

SUMMARY OF THE INVENTION

0008. A method and apparatus for storing blocks of
graphics data written to a memory in a graphics processing
System. The cache memory includes a first memory for
Storing an address and an associated ID number for each
block of graphics data Stored in the cache memory. The
address Stored in the first memory corresponds to a Storage
location in the memory. The associated ID number stored in
the first memory is assigned to the block of graphics data to
distinguish between blocks of graphics data having the same
address. The cache memory further includes a comparator
coupled to the first memory for generating a signal in
response to receiving a requested address and ID number for
graphics data that matches an address and its associated ID
number Stored in the first memory. A Second memory
coupled to the comparator provides the block of graphics
data corresponding to the matching address and associated
ID number in response to receiving the Signal from the
comparator. However, if the requested address does not
match an entry in the first memory, or the requested address
matches an entry, but the requested ID number does not
match the ID number associated with the matching address,
a cache miss occurs, and the requested graphics data is
retrieved from a system memory. The former address and ID
number, and former graphics data are replaced with the
requested address and ID number, and the retrieved graphics
data, respectively.

BRIEF DESCRIPTION OF THE DRAWINGS

0009 FIG. 1 is a block diagram of a computer system in
which an embodiment of the present invention is imple
mented.

0010 FIG. 2 is a block diagram of a graphics processing
system in the computer system of FIG. 1.

US 2004/O155885 A1

0.011 FIG. 3 is a block diagram of circuitry from a pixel
engine in the graphics processing System of FIG. 2.

0012 FIGS. 4A-C are memory maps for the graphics
processing System of FIG. 2 at various caching StepS.

DETAILED DESCRIPTION OF THE
INVENTION

0013 A cache invalidation method and apparatus for
caching data are described. FIG. 1 illustrates a computer
system 10 in which embodiments of the present invention
are implemented. The computer System 10 includes a pro
cessor 14 coupled to a host memory 18 by a memory/bus
interface 20. The memory/bus interface 20 is also coupled to
an expansion buS 24, Such as an industry Standard architec
ture (“ISA) bus or a peripheral component interconnect
(“PCI”) bus. The computer system 10 also includes one or
more input devices 28, Such as a keypad or a mouse, coupled
to the processor 14 through the expansion bus 24 and the
memory/bus interface 20. The input devices 28 allow an
operator or an electronic device to input data to the computer
system 10. One or more output devices 30 are coupled to the
processor 14 to provide output data generated by the pro
cessor 14. The output devices 30 are coupled to the proces
Sor 14 through the expansion buS 24 and memory/bus
interface 20. Examples of output devices 30 include printers
and a Sound card driving audio Speakers. One or more data
Storage devices 32 are coupled to the processor 14 through
the memory/bus bridge interface 20, and the expansion bus
24 to Store data in or retrieve data from Storage media (not
shown). Examples of Storage devices 24 and storage media
include fixed disk drives, floppy disk drives, tape cassettes
and compact-disk read-only memory drives.

0.014. The computer system 10 further includes a graph
ics processing System 40 coupled to the processor 14
through the expansion bus 0.24 and memory/bus interface
20. Embodiments of the present invention are implemented
within the graphics processing System 40. Optionally, the
graphics processing System 40 may be coupled to the
processor 14 and the host memory 18 through other archi
tectures, Such as through the memory/bus interface 20 and a
high Speed buS 44, Such as an accelerated graphics port
(AGP), to provide the graphics processing System 40 with
direct memory access (DMA) to the host memory 18. That
is, the high speed bus 44 and memory bus interface 20 allow
the graphics processing System 40 to read and write host
memory 18 without the intervention of the processor 14.
Thus, data may be transferred to and from the host memory
18 at transfer rates much greater than over the expansion bus
24. A display 46 is coupled to the graphics processing
System 40 to display graphics images, and may be any type,
such as a cathode ray tube (CRT) for desktop, workstation
or server application, field emission display (FED) or a
liquid crystal display (LCD) or the like commonly used for
portable computer.

0015 FIG. 2 illustrates circuitry included within the
graphics processing System 40, including circuitry for per
forming various three-dimensional (3D) graphics function.
As shown in FIG. 2, a bus interface 60 couples the graphics
processing system 40 to the PCI bus 24. Where the graphics
processing System 40 is coupled to the processor 14 and the
host memory 18 through the high speed data bus 44 and the
memory/bus interface 20, the bus interface 60 will include

Aug. 12, 2004

a DMA controller (not shown) to coordinate transfer of data
to and from the host memory 18 and the processor 14. A
graphics processor 70 is coupled to the bus interface 60 and
is designed to perform various graphics and Video proceSS
ing functions, Such as, but not limited to, generating vertex
data and performing vertex transformations for polygon
graphics primitives that are used to model 3D objects. In a
preferred embodiment, the graphics processor 70 is a
reduced instruction set computing (RISC) processor. The
graphics processor 70 further includes circuitry for perform
ing various graphics functions, Such as clipping, attribute
transformations, rendering of graphics primitives, and gen
erating texture coordinates from a texture map.
0016 A pixel engine 78 is coupled to receive the graphics
data generated by the graphics processor 70, as well as an ID
number assigned by the graphics processor 70 to blocks of
graphics data stored in the host memory 18. Use of the ID
numbers by the graphics processing System 40 will be
explained in greater detail below. The pixel engine 78
contains circuitry for performing various graphics functions,
Such as, but not limited to, texture application, bilinear
filtering, fog, blending, color Space conversion, and dither
ing. A memory controller 80 coupled to the pixel engine 78
and the graphics processor 70 handles memory requests to
and from the host memory 18, and a local memory 84. The
local memory 84 stores both source pixel color values and
destination pixel color values. Destination color values are
stored in a frame buffer (not shown) within the local memory
84. In a preferred embodiment, the local memory 84 is
implemented using random access memory (RAM), Such as
dynamic random access memory (DRAM), or static random
access memory (SRAM). A display controller 88 coupled to
the local memory 84 and to a first-in first-out (FIFO) buffer
90 controls the transfer of destination color values stored in
the frame buffer to the FIFO 90. Destination values Stored in
the FIFO 90 are provided to a digital-to-analog converter
(DAC) 92, which outputs red, green, and blue analog color
signals to the display 46 (FIG. 1).
0017 FIG. 3 illustrates circuitry included within the
pixel engine 78, including circuitry for providing texture
data used in texture mapping functions. Texture mapping
refers to techniques for adding Surface detail, or a texture
map, to areas or Surfaces of the polygons displayed on the
display 46. Stored in the host memory 18 of the computer
System 10, a typical texture map includes point elements
("texels') which reside in a (s,t) texture coordinate space. A
texture image is represented in the host memory 18 as a
bitmap or other raster-based encoded format. The process of
texture mapping occurs by accessing encoded Surface detail
points, or texels, and transferring the texture map teXels to
predetermined points of the graphics primitive being texture
mapped. The individual texels of the texture map data are
applied within the respective polygon with the correct
placement and perspective of their associated polygon.
Thus, color values for pixels in the (x, y) display coordinate
Space are determined based on the color or visual attributes
of texels in the (s,t) texture map that correspond to the pixels
of the graphics primitive. After texture mapping, a version of
the texture image is visible on Surfaces of the graphics
primitive with the proper perspective.
0018. In operation, after the graphics processor 70 has
finished processing the graphics data, Such as generating and
transforming vertex data, and determining which graphics

US 2004/O155885 A1

primitives should be rendered on the display 46, textures are
applied to the displayed primitives. The graphics processor
70 issues a command for the various textures maps required
for rendering the displayed primitives to be read from the
host memory 18. The graphics processor 70 further assigns
an ID number to the blocks of texture data read from the host
memory 18. As will be described below, a variety of
techniques may be used to Select an ID number to assign to
the texture data. The coordinates of each texel used for
rendering the displayed primitives are generated by the
graphics processor 70 and provided along with the ID
number to the address generator 100.

0019. An address generator 100 receives the texture map
coordinates (S, t) from the graphics processor 70, and
converts them to memory addresses corresponding to the
addresses at which the blocks of texture data are Stored in the
host memory 18. The address generator 100 also receives the
ID number from the graphics processor 70. A texture cache
104 coupled to the address generator 100 receives the
memory addresses and the ID numbers to determine whether
the requested block of texture data is present in the texture
cache 104. The ID number may be a 16 bit word included
with other texture State data, Such as a memory address,
texture type, width, and height, provided to the texture cache
104 when checking against the entries. However, in the
present example, only the memory address and the ID
number will be described as being provided to the texture
cache controller 104 in order to simplify explanation.

0020. The texture cache 104 includes a cache controller
108 coupled to the address generator 100, as well as a tag
cache 110 and a data cache 112, which are both coupled to
the cache controller 108. The tag cache 110 includes an ID
portion 110a and an address portion 110b for storing an ID
number and address for each block of texture data Stored in
the data cache 112. The cache controller 108 and the data
cache 112 are coupled to the memory controller 80 to
transfer graphics data between the data cache 112 and either
the local memory 84 or the host memory 18.

0021. In order for there to be a cache hit, both the
memory address and the ID number of the requested texture
data must match an entry in the tag cache 110. If there is a
cache hit, the texture data corresponding to the matching
address and ID number is provided by the data cache 112 to
the next stage (not shown) in the texture data processing.
However, if none of the entries in the tag cache 110 matches
the address and ID number of the requested texture data, or
the address matches, but the ID number associated with that
entry does not match the ID number of the requested texture
data, a cache “miss’ occurs, and a memory request is made
by the cache controller 108 to the memory controller 80 to
obtain the requested texture data from the host memory 18.
After the requested texture data has been retrieved, the data
is written to the data cache 112, and the corresponding
memory address and ID number are written to the tag cache
110. The texture data is then provided to the next texture
processing stage.

0022. As mentioned previously, the ID number assigned
to the blocks of texture data of a texture map may be
assigned in a variety of manners. The ID number is assigned
in a manner to distinguish between blocks of graphics data
having the same memory address. Whenever new texture
data replaces older texture data in the host memory 18, a new

Aug. 12, 2004

ID number is assigned to the blocks of new data. Thus,
invalidating the entire cache each time new data is written to
the host memory 18 can be avoided. In one embodiment, the
ID number corresponds to the frame number of the frame to
be rendered when the blocks of texture data are written into
the host memory 18. AS mentioned previously, a graphics
frame is typically considered to be the data necessary to
produce a full Screen image on the display 46. This method
of assigning ID numbers can be illustrated by the following
example.
0023. In preparation of rendering frame 1, the graphics
processor 70 commands textures A, B, C, and D to be stored
in the host memory 18. These four textures make up a first
working Set of texture data. Each block of texture data for
the textures A, B, C, and D are assigned ID=1, correspond
ing to frame 1, that is, the frame to be rendered when the
textures A, B, C, and D were loaded into the host memory
18. As described previously, the texel coordinates for ren
dering frame 1 are generated by the graphics processor 70,
and are used by the address generator 100 to calculate
memory addresses. The resulting memory addresses are
checked against the entries in the tag cache 110. The blockS
of texture data present in the data cache 112 are immediately
provided the next processing Stages of the pixel engine 78,
while those that are not present are retrieved from the host
memory 18 and written to the texture cache 104 prior to
being provided to Subsequent processing Stages. Depending
on the size of the texture cache 104, by the time frame 1 is
rendered, the requested blocks of texture data from the
textures A, B, C, and D have been written to the texture
cache 104. The memory address and the ID number, ID=1,
are written to the tag cache 110 and the corresponding blockS
of texture data are written to data cache 112. FIG. 4A
represents a memory map of the host memory 18 and the
texture cache 104. The memory map illustrates the location
and the ID number for the respective blocks of each texture,
A, B, C, and D, stored in the host memory 18 and the texture
cache 104. In the present example, it happens that textures
A, B, C, and D are used for frames 2-6, and thus, no
additional texture data may need to be written to the texture
cache 104 for rendering these frames.
0024. In preparation for rendering frame 7, textures B, C,
D, and a new texture E will be referenced during rendering.
The graphics processor 70 replaces texture A with texture E
in the host memory 18 and assigns ID=7 to the blocks of
texture data for texture E, that is, the ID number corresponds
to frame 7. These four textures, B, C, D, and E, make up a
Second working Set of texture data. The updated memory
map is illustrated in FIG. 4B. When texture data from
texture E is requested for application to the graphics primi
tive, the graphics processor 70 provides a texel coordinate
for the texture E, as well the ID number, ID=7, to the address
generator 100. A memory address is calculated, and is
provided along with ID=7 to the cache controller 108 to
check against the entries in the tag cache 110.
0025. As a consequence of replacing texture A with
texture E in the host memory 18, a block of texture data
stored in the texture cache 104 may have the same address
as the calculated memory address for a requested block of
texture data from texture E. However, that block of texture
data is from texture A from when frame 1 was rendered.

0026. Although the calculated memory address may
match an entry in the tag cache 110, the cache controller 108

US 2004/O155885 A1

will not respond with a cache hit because the ID number for
the block of texture data presently Stored in the data cache
(i.e., ID=1 for texture A) does not match the ID number of
the requested block of texture data (i.e., ID=7 for texture E).
Consequently, there is a cache miss, and a memory request
is made by the cache controller 108 to obtain the correct
texture data from the host memory 18. As shown in FIG. 4C,
the texture data retrieved from the host memory 18 is written
to the data cache 112, and the corresponding address and ID
number, ID=7, replace the former entries in the tag cache
110.

0027. The remaining blocks of texture data stored in the
host memory 18, which are from the textures B, C, and D,
are unaffected by the replacement of the texture data from
texture A with the texture data from texture E. Thus, when
texture data from textures B, C, or D are requested, the
graphics processor 70 will provide a texel coordinate and the
appropriate ID number, that is, ID=1, to the address gen
erator 100. ID numbers assigned to the blocks of data
Subsequently written to the host memory 18 will be assigned
according to the method previously described.
0028. In an alternative embodiment, a unique ID number
may assigned to each different texture map. For example,
texture A is assigned ID=1, texture B is assigned ID=2,
texture C is assigned ID=3, and texture D is assigned ID=4.
The ID number is provided to the cache controller 108 and
checked against the entries in the tag cache 110 in the same
manner as described previously.
0029 Applying cache invalidation methods as described
herein allows for a particular block of data in the texture
cache 104 to be invalidated, and to be replaced with new
texture data. It is no longer necessary to invalidate the entire
texture cache 104 when new graphics data replaces older
graphics data in the host memory 18. With such a cache
management method, larger caches may be used efficiently.
Furthermore, although individual blocks may be individu
ally invalidated using this method, conventional circuitry
(not shown) may also be included in the texture cache 104
to quickly reset the entire cache to a predetermined address,
thus, effectively invalidating the entire cache when desired.
Occasional invalidation of the entire cache may be facili
tated by the cache management method described herein.
For example, where the ID numbers are assigned to the
blocks of data based on the frame number, the cache
controller 108 may be programmed to invalidate the entire
cache when the ID numbers reach a particular number. Thus,
the particular number may be selected So that the entire
cache is invalidated following the rendering of a specific
Sequence of frames, or after a specific time period has
elapsed.
0030 The cache invalidation method has been described
herein with respect to large caches, however, it will appre
ciated that a similar technique may be used with Virtually
any size cache, and consequently, the Scope of the present
invention should not be limited by the size of the data cache
in which the cache invalidation method is applied. Addi
tionally, although the embodiments of the cache invalidation
method have been described with Specific application to
caching texture data, Some or all of the principles of the
present invention may be used in other data caching appli
cations as well.

0031. From the foregoing it will be appreciated that,
although Specific embodiments of the invention have been

Aug. 12, 2004

described herein for purposes of illustration, various modi
fications may be made without deviating from the Spirit and
Scope of the invention. For example, if texture data Stored in
the host memory 18 is replaced more than once a frame, the
ID numbers assigned by the graphics processor 70 may be
assigned based on the number of times texture data is
changed rather than on the frame number being rendered.
Accordingly, the invention is not limited except as by the
appended claims.

1. A cache memory System for Storing blocks of graphics
data in a graphics processing System, the cache memory
System comprising:

a first memory to Store an address and an associated ID
number for each block of graphics data Stored in the
cache memory, the address corresponding to a storage
location in the cache memory and the associated ID
number assigned to distinguish between blocks of
graphics data having the same address,

a comparator coupled to the first memory to generate a
Signal in response to receiving a requested address and
ID number for graphics data matching one of the
addresses and associated ID numbers Stored in the first
memory; and

a Second memory coupled to the comparator to provide
the block of graphics data corresponding to the match
ing address and associated ID number in response to
receiving the Signal.

2. The cache memory of claim 1 wherein the first memory
comprises a tag cache to Store the address of each block of
graphics data and an ID cache to Store the associated ID
number.

3. The cache memory of claim 1 wherein the second
memory comprises a data cache.

4. The cache memory of claim 1 wherein the comparator
is included in a cache controller coupled to the first and
Second memories.

5. The cache memory of claim 1 wherein the associated
ID number is assigned to the blocks of graphics data when
written to the memory and corresponds to a frame number
of a graphics frame in which the blocks of graphics data is
first used for rendering.

6. The cache memory of claim 1, further comprising an
invalidation circuit coupled to the first memory to reset the
addresses and asSociated ID numbers in the first memory to
a predetermined value.

7. A cache memory for Storing graphics data in a graphics
processing System, the cache memory comprising:

a first memory means for Storing addresses corresponding
to memory addresses at which the graphics data is
Stored;

a Second memory means for Storing an ID number asso
ciated with the graphics data for each address Stored in
the first memory means,

a comparator means coupled to the first and Second
memories for generating a hit Signal in response to
receiving an address and ID number for requested
graphics data matching an entry Stored in the first and
Second memory means, respectively; and

US 2004/O155885 A1

a data cache means coupled to the comparator for pro
Viding the graphics data corresponding to the matching
address and ID number in response to receiving the hit
Signal.

8. The cache memory of claim 7 wherein the comparator
means is included in a cache controller coupled to the first
and Second memory means.

9. The cache memory of claim 7, further comprising an
invalidation circuit coupled to the first memory to reset the
addresses and associated ID numbers in the first memory to
a predetermined value.

10. A computer System, comprising:

a central processing unit;
a system memory coupled to the CPU;

a bus coupled to the CPU; and
a graphics processing System coupled to the bus having a

graphics processor assigning ID numbers to blocks of
graphics data Stored in the System memory and a
graphics processing Stage receiving a requested address
and ID number for graphics data from the graphics
processor, the graphics processing Stage including a
cache memory for Storing blocks of graphics data
written to the System memory, the cache memory
comprising:

a first memory to Store an address and an associated ID
number for each block of graphics data stored in the
cache memory, the address corresponding to a Stor
age location in the System memory and the associ
ated ID number assigned by the graphics processor
to distinguish between blocks of graphics data hav
ing the same address,

a comparator coupled to the first memory to generate a
Signal in response to receiving a requested address
and ID number from the graphics processor for
graphics data matching one of the addresses and
associated ID numbers stored in the first memory;
and

a Second memory coupled to the comparator to provide
the block of graphics data corresponding to the
matching address and associated ID number in
response to receiving the Signal.

11. The computer system of claim 10 wherein the first
memory comprises a tag cache to Store the address of each
block of graphics data and an ID cache to Store the associ
ated ID number.

12. The computer system of claim 11 wherein the second
memory comprises a data cache.

13. The computer system of claim 11 wherein the com
parator is included in a cache controller coupled to the first
and Second memories.

14. The computer system of claim 11 wherein the asso
ciated ID number is assigned to the blocks of graphics data
when written to the memory and corresponds to a frame
number of a graphics frame in which the blocks of graphics
data is first used for rendering.

15. The computer System of claim 11, further comprising
an invalidation circuit coupled to the first memory to reset
the addresses and associated ID numbers in the first memory
to a predetermined value.

Aug. 12, 2004

16. A computer System, comprising:
a central processing unit;
a system memory coupled to the CPU;

a bus coupled to the CPU; and
a graphics processing System coupled to the bus having a

graphics processor assigning ID numbers to blocks of
graphics data Stored in the System memory and a
graphics processing Stage receiving a requested address
and ID number for graphics data from the graphics
processor, the graphics processing Stage including a
cache memory for Storing blocks of graphics data
written to the System memory, the cache memory
retrieving the cached graphics data by:
comparing the requested address and ID number to

Stored entries in a first memory having an address tag
and associated ID number; and

providing from a Second memory graphics data corre
sponding to one of the Stored entries having an
address tag and an associated ID number matching
the requested address and ID number.

17. The computer system of claim 16 wherein the cache
memory retrieves the cached graphics data by further:

retrieving from a third memory a retrieved graphics data
corresponding to the requested address and ID number
in response to a Stored entry having an address tag
matching the requested address but an associated ID
number not matching the requested ID number;

replacing in the first memory the associated ID number
for the Stored entry and the corresponding graphics data
in the Second memory with the retrieved graphics data;
and

providing from the Second memory the retrieved graphics
data.

18. The computer system of claim 16 wherein the ID
number assigned to blocks of graphics data Stored in the
System memory comprises a value corresponding to a frame
number for a graphics frame being rendered when the blockS
of graphics data are written to the System memory.

19. A method of caching blocks of graphics data Stored in
a memory, comprising:

assigning an ID number to blocks of graphics data Stored
in the memory, the ID number distinguishing between
blocks of graphics data presently and formerly Stored in
the memory;

Storing a tag and an ID number for each cached block of
graphics data;

comparing a requested tag and ID number to the Stored
tags and ID numbers, and

providing the cached block of graphics data correspond
ing to the tag and ID number matching the requested
tag and ID number.

20. The method of claim 19 wherein assigning the ID
number to blocks of graphics data Stored in the memory
comprises assigning a value to the blocks of graphics data
when written to the memory corresponding to a frame
number for which the block of graphics data is first refer
enced.

US 2004/O155885 A1

21. The method of claim 19 wherein assigning the ID
number to the blocks of graphics data Stored in the memory
comprises assigning a unique value to blocks of graphics
data

22. The method of claim 19, further comprising retrieving
the block of graphics data from the memory corresponding
to the requested tag and ID number when none of the Stored
tags and ID numbers match the requested tag and ID
number.

23. A method of retrieving graphics data from a cache,
comprising:

comparing a requested address and ID number to Stored
entries in a first memory having an address tag and
asSociated ID number; and

providing from a Second memory graphics data corre
sponding to one of the Stored entries having an address

Aug. 12, 2004

tag and an associated ID number corresponding to the
requested address and ID number.

24. The method of claim 23, further comprising:
retrieving from a third memory a retrieved graphics data

corresponding to the requested address and ID number
in response to a Stored entry having an address tag
matching the requested address but an associated ID
number not matching the requested ID number;

replacing in the first memory the associated ID number
for the Stored entry and the corresponding graphics data
in the Second memory with the retrieved graphics data;
and

providing from the Second memory the retrieved graphics
data.

