
(19) United States
US 2004.0015617A1

(12) Patent Application Publication (10) Pub. No.: US 2004/0015617 A1
Sangha et al. (43) Pub. Date: Jan. 22, 2004

(54) FLEXIBLE NETWORK INTERFACES AND

(76)

(21)

(22)

(51)

FLEXBLE DATA CLOCKING

Inventors: Onkar S. Sangha, San Jose, CA (US);
Vijay Mahoshwari, Fremont, CA (US);
Ed Kwan, Fremont, CA (US)

Correspondence Address:
SKJERVEN MORRILL LLP
25 METRO DRIVE
SUTE 700
SAN JOSE, CA 95110 (US)

Appl. No.:

Filed:

Publication Classification

Int. Cl. ... G06F 13/00

09/770,345

Jan. 25, 2001

FLEX I/F 210

(52) U.S. Cl. .. 710/10

(57) ABSTRACT

A network data processing System has a port that can be
configured for any one of plural data formats, for example,
for ATM or Frame Relay. The port configuration can be
accomplished without re-manufacturing the network data
processing System. The configuration can be accomplished
by Signals on external pins of integrated circuits forming the
network processing System, and/or by Software. In Some
embodiments, the port can be configured for any one of
plural interfaces used for connection to physical layer
devices, for example, UTOPIA or the serial interface.
Receive and transmit clock signals can be configured to
allow the receive or transmit data to be clocked on either
rising or falling edges of the clock Signals. Other parameters
can also be configured.

SOFTWARE
570

PROC
560

CONFIGURATION DATA

MEMORY
584

DMA
ENGINE
596

MEMORY
594

HDLC/ |

FRAMER

CONFIG.
PNS
240

510

UTOPIA

520

ATM? 12O
SERIAL
530

FRAME
RELAY
540

US 2004/0015617 A1 Jan. 22, 2004 Sheet 1 of 12 Patent Application Publication

ÕTT

US 2004/0015617 A1

CN

| '09|| XA>IOWA LEN

Patent Application Publication

Patent Application Publication Jan. 22, 2004 Sheet 3 of 12 US 2004/0015617 A1

UTOPIA

120

TxData 7.0)

NETWORK DATA
PROCESSING PHY
SYSTEM RxData 7.0) 14O.O

11 O
woot RXSOC

RxEmpty/RXClav

RXCK

FIG. 3 PRIOR ART

Patent Application Publication Jan. 22, 2004 Sheet 4 of 12 US 2004/0015617 A1

SERIAL /F

12O

, TXD

NETWORK DATA
PROCESSING
SYSTEM

110

FIG. 4 PRIOR ART

Patent Application Publication Jan. 22, 2004 Sheet 5 of 12 US 2004/0015617 A1

FLEX I/F 210

SOFTWARE
570

CONFIGURATION DATA
230

CONFIG.

DMA, BLOCK 240
ENGINE 510
596

ATM/
UTOPIA
520

MEMORY
584

ATM/
SERIAL
530

MEMORY
594 |

essessessssssssser--or-s-s-or

Patent Application Publication Jan. 22, 2004 Sheet 6 of 12 US 2004/0015617 A1

CONFIG DATA 230

WAN PORT CONFIG REG
610

DLE TXED COUNT
650

WAN CONTROLREG
620

WAN FRAME SIZES REG
654

FRAME DELIMITER
660

WAN STATUS O REG
630

WAN STATUS 1 REG FRAME DELIMITER MASK s 634 664

DMA BASE ADDR FRAME REG
640 670

DLETX CMD FRAMER CLOCK CNTRL
644 68O

Patent Application Publication Jan. 22, 2004 Sheet 7 of 12 US 2004/0015617 A1

CNTL 598 740 760
750 DMA CMD

DMAADDR DMA cut, DONE

E. E. E.
| FIFO ----------------------------
| LOGIC
| 708 MEMORY 594

780 770

CM Rx FIFO ? k Tx FIFO TX cus

E. E.

Patent Application Publication Jan. 22, 2004 Sheet 8 of 12 US 2004/0015617 A1

TRANSMIT

81O ProceSSOr 560 Writes DMA CMD FIFO 740
and DMA ADDR FIFO 750

820 DMA Engine 596 transfers data to TX FIFO 770,
Writes Status to DMA CMD DOne FIFO 760

8 Processor 560 reads DMA CMD Done FIFO 760,
frees entries in DMA CMD FIFO 740 and DMA ADDR FIFO

750, writes Tx CMD FIFO 714

840 I/O block 510 reads TX CMD FIFO 714, transmits,
Writes status to TX CMD DOne FIFO 724

850 Processor 560 reads Tx CMD DOne FIFO 724,
frees entries in TX FFO 77O and TX CMD FIFO 714

Patent Application Publication Jan. 22, 2004 Sheet 9 of 12 US 2004/0015617 A1

RECEIVE

910
Processor 560 Writes RX CMD FIFO 720

I/O 510 reads RX CMD FIFO 720, Writes received data to
Rx FIFO 780, Writes status to RX CMD Done FIFO 730

Processor 560 reads RX CMD Done FIFO 730, Writes DMA
CMD FIFO 740 and DMA Addr FIFO 750

940 DMA Engine 596 DMA's from memory 594 to memory 584,
WriteS DMADOne FIFO 760

950
Processor 560 reads DMA Done FIFO 760,

frees entries in Rx FIFO 780, DMA CMD FIFO 740, DMA
Addr FIFO 750

FIG. 9

Patent Application Publication Jan. 22, 2004 Sheet 10 of 12 US 2004/0015617 A1

TRANSMIT

Read TX CMD FIFO 714

Transmit from TX FIFO 77O

Write TX CMD DOne FIFO 724

FIG. 1 O

1010

1020

1030

RECEIVE

Read RX CMD FIFO 720

Receive to RX FIFO 78O

Write RX CMD DOne FIFO 73O

FIG 11

1110

1120

1130

Patent Application Publication Jan. 22, 2004 Sheet 11 of 12 US 2004/0015617 A1

72O Rx FIFO Entry 780.1
Rx CMD 2

% Header 3

Payload

FIG. 12

1310 132O 1330 1340

FIG. 13

Payload

1410 1320

F.G. 14

Patent Application Publication Jan. 22, 2004 Sheet 12 of 12 US 2004/0015617 A1

CONFIGURATION
DATA
230

CLK Selection
1510

120.1

RXCLK

ORXCLK OTXCLK
120.3

RxData

TxData

120.4

FIG. 15

US 2004/0015617 A1

FLEXBLE NETWORK INTERFACES AND
FLEXBLE DATA CLOCKING

BACKGROUND OF THE INVENTION

0001. The present invention relates to networks, and
more particularly to methods and apparatus for processing
network data.

0002 FIG. 1 illustrates a prior art network data process
ing system 110 having ports 120.0, 120.1. Each of these
ports 120 is connected to a respective network 130 through
a respective physical layer device 140. The traffic on dif
ferent ports 120 may conform to the same or different
protocols. For example, the traffic on port 120.0 may consist
of ATM cells while the traffic on port 120.1 may consist of
Ethernet frames. System 110 transfers data between its
different ports to deliver data to respective destinations.
0003)
able.

Improved network processing Systems are desir

SUMMARY

0004. In some embodiments of the present invention, a
Single port can receive and/or transmit data according to
different protocols. For example, a single port can handle
both ATM and Frame Relay traffic. The advantage provided
in Some embodiments is that the port can be connected to
different types of physical layer devices. The port can be
configured for a particular protocol without re-manufactur
ing the network data processing System. For example, the
configuration can be accomplished by Signals on eXternal
pins of the network processing System, or by Software
executed by the network processing System, or a combina
tion of the two.

0005. In some embodiments, the invention provides an
apparatus comprising:

0006 a port for receiving and/or transmitting net
work data;

0007 a first circuit for providing a first signal iden
tifying one of a plurality of data formats, wherein the
first signal is to be defined by a Signal provided to the
apparatus from outside of the apparatus, and the first
Signal is changeable without re-manufacturing the
apparatus, and

0008 a hardwired (non-Software-executing) circuit
for processing data according to any one of Said
formats, wherein the circuit is responsive to the first
Signal to proceSS data according to the format Speci
fied by the first signal.

0009. In some embodiments, the invention provides a
method comprising:

0010 generating a first signal identifying one of a
plurality of formats for network data received and/or
transmitted on a port of an apparatus,

0011 receiving and/or transmitting network data on
the port, and processing the data by a hardwired
circuit as having the format identified by the first
Signal;

0012 wherein the first signal is defined by a signal
provided to the apparatus from outside of the appa

Jan. 22, 2004

ratus, and the first signal is changeable without
re-manufacturing the apparatus.

0013 In some embodiments, the invention provides an
apparatus comprising:

0.014 a port for receiving data from a network via a p 9.
physical layer device and/or transmitting data to a
network via a physical layer device;

0015 a first circuit for providing a first signal iden
tifying one of types of interfaces between the port
and physical layer devices, wherein the first signal is
to be defined by a signal provided to the apparatus
from outside of the apparatus, and the first signal is
changeable without re-manufacturing the apparatus,
and

0016 a hardwired (non-software-executing) circuit,
responsive to the first Signal, for receiving and/or
transmitting data on Said port according to the type
of interface Specified by the first signal.

0017. In some embodiments, the invention provides a
method comprising:

0018 generating a first signal identifying one of
types of interfaces for transferring data between a
port of a network data processing System and a
physical layer device, wherein the first signal is to be
defined by a signal provided to the network data
processing System from outside of the network data
processing System, and the first signal is changeable
without re-manufacturing the network data process
ing System;

0.019 a port for receiving data from a network via a p 9.
physical layer device and/or transmitting data to a
network via a physical layer device;

0020 receiving and/or transmitting data on said port
by a hardwired (non-Software-executing) circuit
according to the type of interface Specified by the
first Signal.

0021. In some embodiments, the invention provides an
apparatus comprising:

0022 one or more terminals for carrying data,
wherein the data are provided on the one or more
terminals on a rising edge or a falling edge of a first
clock signal; and

0023 a first circuit for providing a first signal indi
cating whether the data are to be provided on the
falling or rising edge of the first clock Signal.

0024. In some embodiments, the invention provides a
method comprising:

0025 generating a first signal indicating whether
data are to be provided on one or more terminals on
a falling or rising edge of a first clock Signal; and

0026 providing data on the one or more terminals in
accordance with the first signal and the clock signal.

0027 Other features and advantages of the invention are
described below.

BRIEF DESCRIPTION OF THE DRAWINGS

0028 FIG. 1 is a block diagram illustrating a prior art
network data processing System, physical layer devices, and
networks.

US 2004/0015617 A1

0029 FIG. 2 is a block diagram showing a network data
processing System according to one embodiment of the
present invention.
0030 FIGS. 3 and 4 illustrate interface signals for prior
art interfaces between network data processing Systems and
physical layer devices.
0031 FIG. 5 is a block diagram of a flexible network
interface circuit according to Some embodiments of the
present invention.
0.032 FIG. 6 is a block diagram of a configuration data
block in the system of FIG. 5.
0.033 FIG. 7 is a block diagram of a portion of the system
of FIG 5.

0034 FIGS. 8-11 are flow charts illustrating the operation
of the system of FIG. 5 in some embodiment of the present
invention.

0.035 FIG. 12 illustrates data storage in some embodi
ments of the system of FIG. 5.
0036 FIGS. 13 and 14 illustrate frame formats in some
embodiments of the system of FIG. 5.
0037 FIG. 15 is a block diagram illustrating a clocking
scheme for some embodiments of the system of FIG. 5.

DESCRIPTION OF PREFERRED
EMBODIMENTS

0038 FIG. 2 illustrates a network data processing system
110 according to Some embodiments of the present inven
tion. Flexible network interface block 210 in system 110
processes data received and transmitted on a port 120. Port
120 is connected to a physical layer device 140.0. Physical
layer device 140.0 receives data from network 130.0, and
transmits data to the network, via a network media link 220.
The flexibility of block 210 allows the port 120 to be
configured for different kinds of physical layer devices 140.0
and links 220. In some embodiments, port 120 can be
configured for any one of the following interfaces:

0039 (1) UTOPIA interface defined in “UTOPIA
Specification, Level 1, Version 2.01” (The ATM
Forum Technical Committee, Mar. 21, 1994) or
“Utopia Level 2, Version 1.0" (The ATM Forum
Technical Committee, June 1995);

0040 (2) serial interface.
0041) These interfaces are illustrated in FIGS. 3 and 4,
and described in Addendum B below.

0042. When port 120 is configured for the serial inter
face, block 210 can be configured for different data formats
including, for example, ATM (asynchronous transfer mode),
Frame Relay, HDLC, T1, E1 and others. For a description of
ATM, Frame Relay, HDLC, T1 and E1, see B. Forouzan,
“Data Communications and Networking” (2nd ed. 2001); R.
Freeman, “Telecommunication System Engineering”
(1996); W. Stallings, “ISDN and Broadband ISDN with
Frame Relay and ATM (4th ed. 1999). In some embodi
ments, port 120 can be connected to any one of the following
physical layer devices: (1) a device of type MTC-2014.6
available from Alcatel Microelectronics (France); (2) a
device built using a chip set of type G7070-174-001DA or
G7070-174-002DA available from GlobeSpan, Inc. of Red

Jan. 22, 2004

Banks, N.J. Other types of physical layer devices, known or
to be invented, can also be used. This flexibility allows the
port 120 to communicate with different types of networks
130.0 over different types of links 220. Examples of possible
links include a twisted wire cable used for telephone com
munications and for DSL (Digital Subscriber Loop), optical
links, and other types of links, known or to be invented. Both
wide area networks 130.0 (WAN) and local area networks
(LAN) can be supported.
0043. In interface block 210, block 230 stores configu
ration data that define the configuration of port 120 and
interface 210. The configuration data are defined by: (1)
signals on one or more external pins 240 of system 110,
and/or (2) software. Block 210 includes one or more com
puter processors (not shown in FIG. 2) that perform their
functions by executing Software instructions. The Software
can be changed without remanufacturing the System 110.
Other functions of block 210 are “implemented in hardware”
(“hardwired”), that is, these functions are performed by
circuits that do not execute Software instructions. The par
ticular division of functions between Software and "hard
ware” (that is, non-Software-executing hardware), provides
both flexibility and high performance.
0044) Network data processing system 110 may have
other ports connected to physical layer devices. In FIG. 2,
System 110 has a port connected to a physical layer device
140.1 connected to network 130.1. System 110 also has a
port connected to a SLIC or SLAC device 140.2 connected
to a telephone 250. The connections to physical layer
devices 140.1, 140.2 may or may not use flexible network
interfaces similar to interface 210.

0045. In FIG. 2, system 110 is also connected to a
computer 260 via a PCI bus.
0046 FIG. 5 illustrates flexible network interface block
210 in detail. I/O block 510 of block 210 is “implemented
in hardware”, i.e. hardwired (this block does not execute
software instructions). I/O block 510 receives and transmits
data on port 120. In the embodiment of FIG. 5, I/O block
510 includes the following blocks:

0047 1) block 520 for receiving and transmitting
ATM cells when the port 120 is configured for the
UTOPIA interface (FIG. 3);

0048 2) block 530 for receiving and transmitting
ATM cells when the port 120 is configured for the
serial interface (FIG. 4);

0049) 3) block 540 for receiving and transmitting
HDLC or Frame Relay frames when port 120 is
configured for the Serial interface;

0050. 4) block 550 for receiving and transmitting
frames when port 120 is configured for the serial
interface. Block 550 can receive and transmit frames
that do not conform to the HDLC or Frame Relay
protocols. The frame format for block 550 can be
configured by configuration data in block 230.

0051) A computer processor 560 in block 210 executes
Software instructions schematically shown at 570. The soft
ware can be manufactured before the network data process
ing System 110 begins execution. The Software can be
loaded to system 110 from a memory (not shown) connected
to the system 110 via a local (non-network-media) bus, or

US 2004/0015617 A1

via a network. The Software can be changed without
remanufacturing the System 110. In Some embodiments,
flexible network interface 210 is part of an integrated circuit.
In other embodiments, flexible network interface 210 is
assembled from a number of integrated circuits and/or
discrete components.

0.052 Configuration data in block 230 define which of the
blocks 520, 530, 540, 550 is activated. The configuration
data may also define the frame format for the framer
interface block 550, and may define other parameters, as
described below.

0.053 Configuration data in block 230 can be changed
without remanufacturing the circuit 210. In some embodi
ments, some of the configuration data 230 are provided by
configuration pins 240 but can be overwritten by software.
0.054 System 110 may include other software processors

(i.e. processors that execute Software instructions) which
may write and/or read the configuration data in block 230.
0.055 FIG. 6 illustrates registers that store configuration
data in block 230 in some embodiments. “WAN port con
figuration register'610 stores signals provided on pins 240
that define which of the blocks 520, 530, 540, 550 is active.
In the embodiment being described, the term “WAN” in the
name of the register 610 and other registerS is used because
the protocols for which the port 120 can be configured
(ATM, HDLC, Frame Relay) are used extensively in wide
area networks. For this reason, the port 120 is sometimes
called a WAN port. However, the invention is not limited to
WANs or any particular protocols.

0056 Register 610 can be overwritten by software.
0057 The remaining registers in FIG. 6 store other
configuration data, as described below. See in particular
Addendum A. A detailed description of these registers is
provided for illustration and is not limiting.
0.058 Random access memory 584 (FIG. 5) stores data
received on port 120 and other ports of system 110 before
the data are transmitted. The data are processed as needed
before transmission. Processing may include address trans
lation, compression or decompression, or any other proceSS
ing. In some embodiments, memory 584 is external to the
integrated circuit containing the flexible interface block 210.
0059 Buffer manager 590 of flexible interface 210 main
tains buffers in memory 584. Many types of buffer managers
can be used. One Suitable buffer manager is described in
U.S. patent application Ser. No. , Attorney Docket
No. M-9564 US, entitled “Buffer Management for Commu
nication Systems', filed by O. Sangha, et al. On the same day
as the present application and incorporated herein by refer
CCC.

0060 Memory 594 in flexible network interface 210
stores data received and transmitted on port 120. Memory
594 provides intermediate data storage as the data flow
between memory 584 and port 120. The data in memory 594
can be processed by Software.

0061. DMA engine 596 (hardwired) transfers data
between memory 594 and memory 584. Hardwired control
block 598 includes FIFO logic 708 (FIG. 7) which main
tains FIFOs 714, 720, 724, 730, 740, 750, 760 described
below.

Jan. 22, 2004

0062) Memory 594 is used to store: (1) a transmit FIFO
770 (FIG. 7) for data to be transmitted on port 120, and (2)
a receive FIFO 780 for data received on port 120. The FIFOs
770, 780 are maintained by software (e.g. by processor 560).
In some embodiments each of these FIFOs has 8 entries, and
each entry is 64 bytes wide. The invention is not limited to
Such embodiments.

0063 Transmit command FIFO 714 stores transmit com
mands for I/O block 510. Each transmit command includes
a pointer to data in FIFO 770 and the number of bytes to be
transmitted. In some embodiments, FIFO 714 is 8-deep
(through other depths are possible). The format of each
transmit command is described in Addendum A, Table A10.

0064 Receive command FIFO 720 stores receive com
mands for I/O block 510. Each receive command includes a
pointer to a free area in receive FIFO 780, and the number
of bytes in this area. In some embodiments, FIFO 720 is
8-deep, though this is not necessary. The format of each
receive command is described in Addendum A, Table A9.
0065 Memory 594 can be double-ported. One port pro
vides access to microprocessor 560 and the other port
provides access to I/O block 510 and DMA engine 596.
0066 FIG. 8 illustrates data transmission operations that
can be performed by Suitably programming the processor
560. At stage 810, microprocessor 560 gets a pointer to a
block of data in memory 584. This data must be transmitted
on port 120. The pointer is provided by buffer manager 590.
(In some embodiments, buffer manager 590 is hardwired).
Buffer manager 590 also provides the size of the data block
to be transmitted. Microprocessor 560 writes a command to
DMA command FIFO 740 to transfer the data from memory
584 to transmit FIFO 770. As indicated in Addendum A,
Table A5, the command includes a memory 594 destination
address “addr” to which the data are to be written. The
command also includes the number (“wcount”) of 32-bit
words to be written. Processor 560 also writes to DMA
address FIFO 750 (Table A6) the address in memory 584 of
the data to be transferred to FIFO 770. The FIFO 750 is used
to hold the address because in the embodiment being
described the data bus (not shown) used to write the FIFOs
is only 32-bits wide. In other embodiments, FIFO 750, 740
can be combined into a single FIFO.
0067. In the embodiment of Addendum A, the FIFO 750
contains only the least Significant bits of the address in
memory 584. The most significant bits are stored in a base
register 640 (FIG. 6 and Table A7).
0068. At stage 820, DMA engine 596 reads the DMA
command in FIFO 740 and the DMA address in FIFO 750,
and executes the command. The DMA engine transferS the
data from memory 584 to memory 594. When the transfer is
complete, DMA engine 596 writes the command completion
status to DMA command done FIFO 760 (Table A8). In
Some embodiments, each time this FIFO is written, an
interrupt is generated to microprocessor 560. In other
embodiments, an interrupt is generated only when this FIFO
changes from empty to non-empty. In Some embodiments,
no interrupt is generated.

0069 Processor 560 reads DMA command done FIFO
760 (stage 830). The processor can be programmed to read
this FIFO periodically and/or in response to an interrupt.
When an entry in this FIFO indicates completion of the

US 2004/0015617 A1

command, microprocessor 560 writes suitable commands to
transmit command FIFO 714 (Table A10).
0070 Microprocessor 560 can be programmed to process
the data to be transmitted before writing the transmit com
mands. For example, processor 560 can be programmed to
perform ATM segmentation functions. More particularly,
processor 560 can obtain from buffer manager 590: (a) a data
packet to be transmitted over an ATM network, and (b)
information identifying an ATM virtual circuit. Processor
560 reads from memory 594 information specifying how the
data are to be transmitted on this circuit, for example, (i)
which ATM Adaptation Layer is used (AAL5 or AAL2, etc.),
(ii) whether or not the data are to be Scrambled, and So on.
Processor 560 builds ATM headers in transmit FIFO 770,
calculates appropriate check Sums (e.g. CRC32 for AAL5),
Scrambles the data payload, and Segments the packet, to
build ATM cells in transmit FIFO 770.

0071. At stage 840, I/O block 510 reads the transmit
command FIFO 714 and executes the transmit commands by
transmitting the corresponding data in FIFO 770. When a
command has been executed, the I/O block 510 writes the
command completion Status to transmit command done
FIFO 724 (Table A12). In some embodiments, each time this
FIFO is written, an interrupt is generated to microprocessor
560. In other embodiments, an interrupt is generated only
when the FIFO changes from empty to non-empty. In some
embodiments, no interrupt is generated.
0.072 Microprocessor 560 reads the transmit command
done FIFO 724 (stage 850). The microprocessor can be
programmed to read this FIFO periodically and/or in
response to an interrupt. When all of the data in an entry in
transmit FIFO 770 has been transmitted, the microprocessor
deallocates the entry.
0073 FIG. 9 illustrates a data receive operation for one
embodiment. At stage 910, microprocessor 560 writes
receive commands to receive command FIFO 720 (Table
A9). As indicated at 920, when I/O block 510 needs to store
receive data, I/O block 510 reads a receive command from
FIFO 720 and stores the received data in a memory area
Specified by the receive command. Upon completion of each
command, I/O block 510 writes the completion status to
receive command done FIFO 730 (see Table A11). In some
embodiments, each time this FIFO is written, an interrupt is
generated to microprocessor 560. In other embodiments, an
interrupt is generated only when the FIFO changes from
empty to non-empty. In Some embodiments, no interrupt is
generated.

0074 As indicated at 930, microprocessor 560 reads
receive command done FIFO 730. The microprocessor can
be programmed to read this FIFO periodically and/or in
response to an interrupt. When an entry in this FIFO
indicates new data in the receive FIFO 780, the micropro
ceSSor 560 deallocates the corresponding entry in receive
command FIFO 720, and processes the data as needed. For
example, the microprocessor may perform data descram
bling and CRC computations, as described in U.S. patent
application Ser. No. , Attorney Docket No. M-9565
US, entitled “COMPUTATION OF CHECKSUMS AND
OTHER FUNCTIONS WITH THE AID OF SOFTWARE
INSTRUCTIONS", filed on , incorporated herein by
reference. Examples of other processing include the trans
mission convergence function for the ATM-Over-Serial inter

Jan. 22, 2004

face (block 530 in FIG. 5). This function determines the
beginning of each ATM cell based on the HEC (header
error-control) fields of the cells. See W. Stallings, “ISDN
and Broadband ISDN with Frame Relay and ATM" (4 Ed.
1999), pages 433-434, incorporated herein by reference.
0075 Microprocessor 560 can also be programmed to
perform ATM reassembly functions. The AAL type (AAL5,
AAL2, etc.) can be stored in memory 594 for each ATM
Virtual circuit when the circuit is set up.
0.076 Microprocessor 560 obtains from buffer manager
590 addresses at which received data can be stored in
memory 584. Microprocessor 560 writes suitable commands
to DMA command FIFO 740, and Suitable addresses to
DMA address FIFO 750.

0077. At stage 940, DMA engine 596 reads the DMA
command FIFO 740 and DMA address FIFO 750, and
executes the DMA command by transferring the data from
receive FIFO 780 to memory 584. DMA engine 596 writes
the completion status to DMA command done FIFO 760.
0078 Microprocessor 560 reads the DMA command
done FIFO 760 (stage 950), and deallocates the correspond
ing entries in FIFOs 740, 750. When all of the data have
been transferred from an entry in receive FIFO 780, micro
processor 560 deallocates the entry in FIFO 780. In some
embodiments, memory 594 has two separate banks for the
respective transmit and receive FIFOs 770, 780. The
memory access logic (not shown) allows the I/O block 510
to read the memory bank containing the transmit FIFO 770
but not to write that bank, and to write the bank containing
the receive FIFO 780 but not to read that bank. The memory
access logic allows microprocessor 560 to read the bank
containing receive FIFO 780 but not to write that bank, and
to write the bank containing the transmit FIFO 770 but not
to read that bank. The size and complexity of the memory
acceSS logic can thus be reduced.
0079 Microprocessor 560 can be programmed to imple
ment many different functions and to adapt the system 110
to protocol changes without remanufacturing the System
110.

0080 FIG. 10 Summarizes the transmit operation of I/O
block 510. This operation corresponds to stage 84.0 (FIG. 8).
I/O block 510 reads the transmit command FIFO 714 (stage
1010 in FIG. 10), transmits the corresponding data (stage
1020), and writes the transmit command done FIFO 720
(stage 1030). These operations are performed by one of
blocks 520, 530, 540, 550 (FIG. 5) as defined by configu
ration data in block 230. These operations may overlap, for
example, reading the transmit command FIFO 714 may
overlap with transmitting data for a previous transmit com
mand.

0081. The receive operation is illustrated in FIG.1. This
operation corresponds to stage 920 (FIG. 9). I/O block 510
reads the receive command FIFO 720 (stage 1110), writes
the received data to the corresponding location of memory
594 (stage 1120), and writes the received command done
FIFO 730 (stage 1130). These operations may overlap.
0082) Receive FIFO 780 and transmit FIFO 770 can be
replaced by other data Structures merely by changing the
Software executed by microprocessor 560. Memory usage
can be adapted to the particular memory circuitry. For

US 2004/0015617 A1

example, FIG. 12 illustrates an ATM cell stored in an entry
780.1 of receive FIFO 780. In this embodiment, memory
594 is accessed 32 bits (four bytes) at a time. The memory
access is faster if the 32 bits are on a four byte boundary.
Each entry in FIFO 780 starts on a four byte boundary. Each
entry is 64 bytes long. An ATM cell is stored in a single
entry. The cell header is stored in bytes 0-4 of the entry. The
payload is stored in bytes 8-55. A command 720.1 in receive
command FIFO 720 points to the header, and specifies five
bytes. The next command 720.2 in FIFO 720 points to the
payload and Specifies 48 bytes. The payload processing by
microprocessor 560, such as descrambling and CRC32
computation, proceeds therefore faster.
0083 Microprocessor 560 can store ATM cells in trans
mit FIFO 770 in a similar fashion, with each of the header
and the payload being Stored on a 4-byte boundary and with
two transmit commands in FIFO 714 used for a single cell.
0084. When performing the operations of FIGS. 10, 11,
HDLC/Frame Relay block 540 performs bit stuffing on the
data before the data are transmitted. Bits Stuffing is per
formed to prevent a frame delimiter pattern from occurring
anywhere other than at the beginning of the frame. See, for
example, B. Forouzan, “Data Communications and Net
working” (2" ed. 2001), pages 344-345, incorporated herein
by reference. Block 540 performs bit removal on received
data to discard the stuffed bits.

0085. If the port 120 is configured for the serial interface
(block 530, 540, or 550 is active), port 120 may be con
nected to physical layer devices 140.0 which use start of
frame signals (TXSOF, RXSOF; see FIG. 4) to indicate the
beginning of each frame or ATM cell. Alternatively, port 120
may be connected to physical layer devices which do not use
Start of frame Signals. If the Start of frame signals are not
used, the Start of each frame or cell of the received data is
determined as follows.

0086). If the ATM/serial block 530 is active, the start of
each cell is determined by Software performing the trans
mission convergence function on data in receive FIFO 780,
as described above.

0087. If the HDLC/Frame Relay block 540 is active, this
block determines the Start of frame using the Start of frame
delimiter.

0088. The idle pattern transmitted between the frames
can be configured for block 540 via frame register 670 as
either 7E or FF hexadecimal (Addendum A, Table A18, bit
3).
0089 For each block 520, 530, 540, 550, when micro
processor 560 writes data to transmit FIFO 770, micropro
cessor 560 identifies the beginning or the end of each frame
in transmit command FIFO 714 (Addendum A, Table A10,
bit 17). Block 540 inserts the frame delimiter at the start of
each frame when the frame is transmitted.

0090 Framer block 550 can process different frame for
mats. The frame format is determined by configuration data
in block 230. In FIG. 13, the frame includes a start of frame
delimiter 1310, a payload 1320, a check sum (for example,
CRC) 1330, and an end of frame delimiter 1340. Some of
these fields may be absent. In Some embodiments, the length
and value of the starting delimiter 1310, the length and value
of the ending delimiter 1340, the length of the entire frame,

Jan. 22, 2004

the length of checksum 1330, and the type of the checksum
(for example, the CRC generator polynomial) are defined by
the configuration data in block 230. Framer 550 identifies
the beginning of the frame and computes the CRC based on
the configuration data.
0091. In the embodiment of Addendum A, framer 550
does not perform the CRC computation, So the length and
size of field 1330 are not configurable by block 230. The
frame size is configurable (Table A15). The length and size
of the starting delimiter 1310 are also configurable, using the
frame delimiter register 660 (Table A16) and the delimiter
mask register 664 (Table A17). The ending delimiter 1340 is
not configurable. CRC field 1330 and the ending delimiter
may or may not be present in the frame. If present, they are
treated as part of the payload 1320. (This embodiment does
not distinguish between the payload, the CRC, and the
ending delimiter.)
0092 FIG. 14 illustrates another frame format that can
be handled by the framer 550 of Addendum A. The starting
delimiter is absent or consists of a single framing bit 1410.
A Single framing bit is used, for example, in T1 frames
described in R. Freeman, “Telecommunication System
Engineering” (3" ed. 1996), pages 349-352, incorporated
herein by reference; see also B. Forouzan, “Data Commu
nications and Networking” (2" ed. 2001), pages 252-253,
incorporated herein by reference. Frame register 670 (Table
A18), bit 5, specifies whether the frame bit is present in the
frames. The transmit command in FIFO 714 (Table A10), bit
18, specifies whether the frame bit must be transmitted at the
beginning of the corresponding block of data in transmit
FIFO 770. The frame bit value is specified in bit 18 of the
transmit command.

0093. In frame register 670 (Table A18), the “Frame
Mode” bit 4 specifies if the frame format is that of FIG. 13
or that of FIG. 14. If this bit indicates the format of FIG. 14,
framer 550 determines the beginning of each frame of the
received data using the start of frame signal RXSOF (FIG.
4). Frame register 670, bit 31 (Table A18), defines whether
the start of frame signal is active high or low. Framer 550
checks for the frame bit when the start of frame signal
RXSOF is asserted. The frame bit is expected to be 1 if bit
31 is 0; the frame bit is expected to be 0 if bit 31 is 1. The
frame bit is not written to receive FIFO 780.

0094) Framer 550 also checks the frame size (Table A15)
to determine if the received data are valid. Invalid data are
discarded by framer 550 in some embodiments. The frame
size is checked both in the case of FIG. 13 and in the case
of FIG. 14.

0095) A predetermined value in frame size register 654
(Table A15) indicates a variable frame size. If the frame size
is variable, framer 550 does not check the frame size.

0096. In some embodiments, configuration data in block
230 define minimum and/or maximum frame sizes. Framer
550 checks that the frame size conforms to the configuration
data.

0097. Some embodiments allow the software and/or the
Signals on external pins 240 to configure the receive and
transmit clocks for I/O block 510. FIG. 15 illustrates one
such embodiment. Port 120 includes a pin 120.1 which
carries a receive clock signal RXCLK. This may be the Signal
TxClk (FIG. 3) for UTOPIA, or TXCK (FIG. 4) for the

US 2004/0015617 A1

serial interface. Port 120 includes pin or pins 120.3 that carry
receive data RxData. (This corresponds to Signals RxData in
UTOPIA, RXD in case of the serial interface.) I/O block 510
Samples RxData on a positive or negative edge (i.e. rising or
falling edge) of clock RXCLK.
0098. Similarly, port 120 includes a pin 120.2 that carries
the transmit clock TxCLK. Port 120 includes output pin of
pins 120.4 that carry transmit data TxData. I/O block 510
provides the transmit data on pin of pins 120.4 on the rising
or falling edge of clock TxCLK.
0099 Flexible interface 210 can be configured to receive
the clocks RXCLK, TXCLK from the physical layer device
140.0 (FIG. 2), or to generate these clocks from a clock
SYSCLK generated by system 110, depending on configu
ration data in block 230 (in register 680 of FIG. 6).
0100 More particularly, pins 120.1, 120.2 are connected
to inputs of clock selection circuit 1510. Circuit 1510 also
receives SYSCLK on a pin 1520. Based on configuration
data in block 230, circuit 1510 selects one of signals
SYSCLK, RXCLK, TXCLK to generate a clock signal
IORXCLK which clocks the receive operations of I/O block
510. Clock IORXCLK can be generated as any one of the
following Signals:

TABLE 1.

1. IORXCLK can be equal to clock SYSCLK or a multiple or a
fraction of SYSCLK. Therefore, the clock speed of clock
IORXCLK can be controlled.

2. IORXCLK can be equal to RXCLK.
IORXCLK can be equal to TxCLK.

4. IORXCLK can be the inverse of any one of the signals described
as items 1, 2, and 3 in this Table 1.

3.

0101 The transmit operations of I/O block 510 are
clocked by clock IOTXCLK. Clock IOTXCLK is generated
by clock selection circuit 1510 in response to configuration
data in block 230. Any one of the options 1, 2, 3, 4 of Table
1 can be used for clock IOTXCLK. Thus, clock IOTXCLK
can be the clock SYSCLK, or its multiple or a fraction, or
it can be RXCLK, or TxCLK, or the inverse of any of these
clockS.

0102) Clock selection circuit 1510 is constructed as fol
lows in one embodiment. Pin 1520 is connected to an input
of clock divide/multiply circuit 1548 which can adjust the
clock frequency based on configuration data in block 230.
The output of circuit 1548 is connected to inputs of tri-state
inverter 1550 and tri-state buffer 1552. The outputs of
inverter 1550 and buffer 1552 are connected to output
IORXCLK.

0103) The output of circuit 1548 is also connected to
inputs of tri-state inverter 1560 and tri-state buffer 1562. The
outputs of inverter 1560 and buffer 1562 are connected to
output IOTXCLK.
0104 Pin 120.1 (RXCLK) is connected to inputs of
tri-state inverter 1570 and tri-state buffer 1572, and to
outputs of tri-state inverter 1574 and tri-state buffer 1576.
The outputs of inverter 1570 and buffer 1572 and the inputs
of inverter 1574 and buffer 1576 are connected together and
to output IORXCLK.
0105 Pin 120.2 (TxCLK) is connected to inputs of tri
state inverter 1580 and tri-state buffer 1582, and to outputs

Jan. 22, 2004

of tri-state inverter 1584 and tri-state buffer 1586. The
outputs of inverter 1580 and buffer 1582 and the inputs of
inverter 1584 and buffer 1586 are connected together and to
output IOTXCLK.
01.06 Inverters 1550, 1560, 1570, 1574, 1580, 1584 and
buffers 1552, 1562, 1572, 1576, 1582, 1586, are controlled
by configuration data in block 230.
0107 This circuit provides the following capabilities:
0108 OPTION 1. Port 120 can be connected to a physical
layer device that generates the receive clock RXCLK and the
transmit clock TXCLK. In this case, configuration data in
block 230 are set up to disable the inverters and buffers
1550-1562, 1574, 1576, 1584, 1586. Clock IORXCLK is
either RXCLK (buffer 1570 is enabled and inverter 1572 is
disabled) or the inverse of RXCLK (inverter 1572 is enabled
and buffer 1570 disabled). Clock IOTXCLK is either
TxCLK (buffer 1582 is enabled and inverter 1580 is dis
abled) or the inverse of TxCLK (inverter 1580 is enabled
and buffer 1582 is disabled). Hence, I/O block 510 can
Sample the receive data either on the rising or the falling
edge of clock RXCLK, and can transmit data either on the
rising or the falling edge of clock TXCLK. For example,
suppose that I/O block 510 is manufactured to sample the
receive data RxData on the rising edge of clock IORXCLK.
If IORXCLK=RXCLK, then I/O block 510 will sample the
receive data on the rising edge of RXCLK. If IORXCLK is
equal to the inverse of RXCLK, then I/O block 510 will
Sample the receive data on the falling edge of RXCLK.
0109 Similarly, suppose I/O block 510 is manufactured
to drive the transmit data TxData on the rising edge of clock
IOTXCLK. If IOTXCLK=TxCLK, I/O block 510 will drive
the transmit data on the rising edge of clock TxCLK. If
IOTXCLK is the inverse of TxCLK, then the block 510 will
drive the transmit data on the falling edge of clock TxCLK.
0110 OPTION 2. The physical layer device 140.0
expects the system 110 to generate the receive clock RXCLK
and the transmit clock TxCLK. In this case, clock IORX
CLK is either SYSCLK (buffer 1552 is enabled and inverter
1550 disabled) or the inverse of SYSCLK (inverter 1550 is
enabled and buffer 1552 disabled). Clock IOTXCLK is
either SYSCLK (buffer 1562 is enabled and inverter 1560
disabled) or the inverse of SYSCLK (inverter 1560 is
enabled and buffer 1562 is disabled). The frequency of
clocks IORXCLK, IOTXCLK can be adjusted by circuit
1548. Inverters and buffers 1570, 1572, 1580, 1582 are
disabled. Either buffer 1576 or inverter 1574 is enabled,
depending on whether the received data should be sampled
on the rising or falling edge of clock RXCLK. Either buffer
1586 or inverter 1584 is enabled, depending on whether the
transmit data should be driven on the rising or falling edge
of clock TXCLK.

0111 OPTION 3. The physical layer device generates the
receive clock RXCLK, but the transmit clock TxCLK must
be generated by system 110. In this case, the clock IORX
CLK is generated as in Option 1. The transmit clock
IOTXCLK can be generated as in Option 2, or it can equal
to RXCLK or the inverse of RXCLK. Buffer 1586 or inverter
1584 is enabled depending on whether the transmit data
should be driven on the rising or falling edge of clock
TXCLK.

0112 OPTION 4. The physical layer device generates the
transmit clock TxCLK, but expects the system 110 to

US 2004/0015617 A1

generate the receive clock RXCLK. This is similar to Option
3, with clocks RXCLK and TxCLK interchanged.
0113. The embodiments described above, and in the
Addenda below, illustrate but do not limit the invention. The
invention is not limited to any particular circuitry or options
described for particular embodiments. Additional options
and capabilities may be provided consistent with the
intended claims. Some embodiments have leSS capability
than the embodiments described above. For example, in
Some embodiments, the clock signals cannot be configured
as described above in connection with FIG. 15. In other
embodiments, the clock configuration techniques are applied
to non-network circuits. The invention is not limited to any
particular circuits, FIFO depths, the number of bits of any
particular entries, or any formats. The invention is not
limited to FIFOs or any other data structures. The invention
is not limited to UTOPIA or the serial interface. The
invention is not limited to any particular protocols, to
particular Software or hardware, or a particular division of
functions between Software and hardware. Other embodi
ments and variations are within the Scope of the invention,
as defined by the appended claims.
0114. Addendum A
0115 Configuration register 610 has a number of bits that
are initially defined by configuration pins 240 but can be
overwritten by software. These bits specify if the WAN port
120 is to be used for UTOPIA or Serial interface. For the
serial interface, these bits also define whether ATM/serial
block 530, HDLC block 540, or framer block 550 is acti
Vated.

0116. The following Table A1 lists some registers in
flexible network interface 210. In some embodiments,
microprocessor 560 is a MIPS I microprocessor of type
LX4180 available from Lexra, Inc., of San Jose, Calif. This
microprocessor has a coprocessor interface allowing the
microprocessor to read and write coprocessor registers.
Some embodiments of the invention use the coprocessor
interface to access the registers of Table A1.

TABLE A1

Registers in Configuration Data Block 230

Reference
number in FIG.
6 and the table
in which the
register is
described in
detail Register name Description

620; Table A2 WAN control WAN control register
(Cbus (control bus)
accessible, i.e.
accessible to another
microprocessor in the
same integrated circuit
as flexible interface
210)
Status bits
Status bits
Write port of the
DMA command FIFO
740. When the address
of this register is
driven on a
coprocessor interface

630; Table A3 WAN statusO
634: Table A4 WAN status1
Table A5 WAN DMA cmd

Jan. 22, 2004

TABLE A1-continued

Registers in Configuration Data Block 230

Reference
number in FIG.
6 and the table
in which the
register is
described in
detail Register name

Table A6 WAN DMA addr

640; Table A7 WAN DMA base addr

Table A9 WAN rx cmd

Table A10 WAN tx cmd

Description

by processor 560, the
FIFO logic 708 writes
the DMA command
FIFO with the data
driven on the
coprocessor interface
data bus. The register
may or may not
actually exist.
Write port of the 8
words deep DMA
address FIFO 750.
When the address of
this register is driven
on a coprocessor
interface by processor
560, the FIFO logic
708 writes the DMA
address FIFO with the
data driven on the
coprocessor interface
data bus. The register
may or may not
actually exist.
This register holds
DMA base address,
i.e. the 19 most
significant bits of the
address in memory
584. These bits are
concatenated with the
address bits in DMA
command FIFO 740 to
obtain the address for
the DMA transfer
Write port of the
receive command
FIFO 72O. When the
address of this
register is driven on
a coprocessor
interface by processor
560, the FIFO
logic 708 writes the
receive command
FIFO with the data
driven on the
coprocessor interface
data bus. The
register may or may
not actually exist
Write port of transmit
command FIFO 714.
When the address of
this register is driven
on a coprocessor
interface by processor
560, FIFO logic
708 writes the transmit
command FIFO with
the data driven on the
coprocessor interface
data bus. The register
may or may not
actually exist

US 2004/0015617 A1

TABLE A1-continued

Registers in Configuration Data Block 230

Reference
number in FIG.
6 and the table
in which the
register is
described in
detail

Table A11

Table A12

Table A8

644; Table A13

650; Table A14

654; Table A15
660; Table A16
664: Table A17 WAN frame delimiter mask
670; Table A18

0117)

Register name

WAN rx cmd done

WAN tx cmd done

WAN DMA cmd done

WAN IDLE TX CMD

WAN IDLE CNT

WAN frame sizes
WAN frame delimiter

WAN frame

Description

Read port of receive
command done FIFO
730. When the address
of this register is
driven on a
coprocessor interface
by processor 560,
FIFO logic 708 reads
the receive command
done FIFO onto the
coprocessor interface
data bus. The register
may or may not
actually exist
Read port of transmit
command done FIFO
720. Similar to
WAN rx cmd done
(described above in
this table).
Access port for DMA
command done FIFO
760. Similar to
WAN rx cmd done
(described above in
this table).
Idle cell transmit
command
Idle cell transmitted
counter

Frame size
Frame delimiter
Frame delimiter mask
WAN frame info

In the tables below, the “R/W' column indicates if
the register bits can be read or written by Software, e.g. by
microprocessor 560. “X” indicates “don’t care”.

Bitfield Name

31:30 Lstate

29 RX reset

28 Tx reset

27 Debug Write enable

TABLE A2

WAN Control Register 620

Default Description

10 00: run;
1: halt; (default)
O: reset, reset the

flexible interface
210

O Reset receive
interface-this is
a 1-shot that is set
by software and
reset by hardware

O Reset transmit
interface-this is
a 1-shot that is set
by software and
reset by hardware

O Write enable for
bits 26:24 when

Jan. 22, 2004

TABLE A2-continued

WAN Control Register 620

Bit field Name

26:24 Debug

23:11 Reserved
10:9 WAN configure

8 Write enable for bit 7

7 Busy bit

6 Write enable for bits
5:3 when this
register is being
written

5 ODD PRTY

4 EN UTOPIA PRTY

3 EN IDLE INSERTION

2 EN TX TRO ID

1:O TX TRO ID

Default

read.

OO

Description

his register is
being written
For debug
purposes only

Read only
OO: UTOPIA
01: Serial,
non-HDLC
1: Serial, HDLC
O: Cable modem
Read back Owen
his register is
being read
Used for
communication
between
processor 560
and another
processor (not
shown) of system
110. Not pertinent
o this invention.
Read back O
when this is being

: Odd parity for
UTOPIA
O: even parity
Enable Parity for
UTOPIA
Interface
This bit controls
the behavior of
ATM blocks 520,
530 if the
transmit queue
770 is empty. If
this bit is set,
blocks 520, 530
insert idle cells.
Enable bit to
write a transmit
ready queue (not
shown) in buffer
manager 590.
Buffer manager
590 has 4 such
queues for
different
priorities. If this
bit is 1, a write to
this register will
update bits 1:0.
ID for reading
Transmit ready
queue.

0118. On power-up, the LState is “halt”. The software
running on processor 560 programs these 2 bits to “run” to
start the interface 210. The processor 560 software can
program these bits to binary 10 to reset the interface 210 and
the coprocessor interface. On completion of the reset
sequence, the hardware will set LState to “halt” (default).
When a reset is issued all pending commands in the FIFOs
740, 720, 714 will be flushed. A DMA command that has
already started will be allowed to complete; the reset
Sequence will wait until the transfer is finished.

US 2004/0015617 A1

TABLE A3

WAN statusO Register 630

Bitfield Name

31:16
14

13

12

11

1O

6:3

O

reserved
Dma cmd doneq empty

Dma cmdq. full

Temd doneq empty

Temdq. full

Rcmd doneq empty

Rcmdq. full

TFO ACK

TX ACK

TRO empty

Reserved
RX RTN ACK

Rfra empty

R/W default

R OXF

Description

DMA command
done queue 760
empty
DMA command
queue 740 full
Transmit
command done
queue 724 is
empty.
Transmit
command queue
714 is full.
Receive
command done
queue 730 is
empty.
Receive
command queue
720 is ful
Transmit free

queue (a buffer
manager queue)
acknowledge.
Transmit ready
queue (a buffer
manager queue)
ack.
1 = can read

from TXRD 1:0
O = cannot read
from TXRD

1:0 - buffer
manager pre
reading the
queue.
Transmit ready
queue (buffer
manager) status
1: Empty
O: Non-empty
bit 3: TROO, bit
4: TRO1,
bit 5: TRO2, bit
6: TRO3

Receive ready
queue (buffer
manager)
acknowledge
1 = can write into

RXRD 1:0
register
O = cannot write

into RXRD 1:0
register
(previous write in
progress).
Ready free queue
fullness (buffer
manager)
1 = empty, O =
non-empty

Jan. 22, 2004

0119)

TABLE A4

WAN Status1 Register 634

Bit field Name RW default Description

Transmit command
done queue
724 fullness:
O = empty
8 = full
Receive command
done queue
730 fullness:

25:22 Tcmd done qfullness R O

21:18 Rcmd done qfullness R O

17:13 Dma done qfullness R O DMA command

12:8 Dma qfullness R O

transmit command
queue 714
fullness:
O = empty
8 = ful
Receive command
queue 720
fullness:
O = empty
8 = ful

7:4 transmit qfullness R O

3:O receive qfullness R O

0120 DMA, WAN receive and WAN transmit commands
can execute concurrently. Typically, a WAN transmit com
mand is issued from FIFO 714 to operate on data in the
transmit bank of memory 594 while a concurrent WAN
receive command is issued from FIFO 720 to receive data
into the receive bank of memory 594. A DMA command
transferS data into or out of these banks. An arbiter (not
shown) schedules the access to the WAN side port of
memory 594 between the DMA engine 596 and I/O block
510. In some embodiments, the DMA cannot be backed off
once started and hence a small FIFO (not shown) is provided
between I/O block 510 and the memory 594. The bandwidth
required by I/O block 510 and DMA engine 596, is less than
the available bandwidth on the WAN side port.
0121. In some embodiments, the receive and transmit
done queues 730, 724 and the DMA command done queue
760 are each 8 entries deep.
0122) The WAN DMA cmd register is the write port of
the 8 deep DMA command FIFO 740. A write to the register
writes to the youngest entry in the queue. A read from the
register returns the command currently in progress (or if no
command is in progress, the last executed command). A
write to the WAN DMA cmd register is accompanied with
a write to the WAN DMA addr register, which is the write
port of FIFO 750 of 8 words deep. Each entry contains the
32-bit word address that is to be used by the DMA com
mand. A read from the register returns 21 LSBs of the
memory 584 address used by the current DMA command.
The format of a DMA command and the DMA command
register WAN DMA cmd is shown in the following Table
A5:

US 2004/0015617 A1

TABLE A5

DMA Command FIFO 740

Bitfield Name R/W Default Description

15 Ldst R/W X O: load WAN memory 594 from
external memory
1: store WAN memory 594 to
external memory 584.
Number of 32-bit words to transfer
O: reserved
WAN memory 594 word address.

14:10 WCOunt R/W X

0123. These fields are as follows:
0124 Ldst
0.125 To load data from external memory 584 set to 1; to
store data to external memory 584 set to 0.

0126 addr
0127. Address in memory 594. Once DMA is done this
field is inserted into the DMA command done FIFO 760
(Table A8).
0128 weount
0129. This field specifies the number 32-bit words to be
transferred to/from memory 584. If more than 32 words are
to be DMA’ed then multiple DMA commands can be issued.

TABLE A6

Format of an Address in DMA. Address FIFO 750

Bitfield Name R/W Default Description

22:2 addr R/W X Physical word address of external
memory 584

1:O reserved R O Not present in hardware. Is driven
as zero for DMA.

0130

TABLE A7

WAN DMA base addr register 640

Bitfield Name R/W Default Description

31:23 Base addr RAW O Physical base address in external
memory 584

22:O reserved R O Not present in hardware. Is
driven as zero for DMA.

0131)

TABLE A8

Entry in DMA Command Done FIFO 760. and the
WAN DMA Cmd done Register

Bit field Name R/W Default Description

1O Ldst R
9:O Addr R

X This DMA was for: 1-load, O-store
X WAN memory 594 address

Jan. 22, 2004

0132) The WAN rx cmd register is an access port to the
WAN receive command FIFO 720. A read from the port
returns the command that is in progress (or the last command
executed if the command queue is empty).

TABLE A9

Entry of Receive Command in FIFO 720, and
Receive Command Register WAN IX cmd

Bit field Name R/W Default Description

17 Start R/W X
of Cell

To receive data from beginning of
cell. I/O 510 will skip (discard) data
till start of cell or frame.
For UTOPIA interface, check
RxCLAV when this bit is set.
Max. number of bytes to be received.
O: reserved
For UTOPIA, if bit 17 is set, the
Bcount is at least 4.
I/O 510 will write, to receive FIFO
780, “Bcount” bytes or till the end of
cell or frame, whichever is smaller.
WAN memory 594 word address to
store the received data.

16:10 Bcount R/W X

0133) The WAN tx cmd register is an access port to the
transmit command FIFO 714. A read from the port returns
the command that is in progress (or the last command
executed if the command queue is empty). The WAN tx
cmd register is divided into the following bit fields:

TABLE A10

Transmit Command in FIFO 714 and Transmit
Command Register WAN IX cmd

Bit field Name R/W Default Description

19 Frame R/W X O-Invalid
bit 1-Valid
valid The frame bit is transmitted at start

of cell or frame over serial
interface if this bit is 1 and if
WAN frame 5 is 1.
WAN frame 5 is bit 5 of frame
register 670 (Table A18).

18 Frame R/W X Frame bit value. Valid only if bit
bit 19 is 1.
value

17 End of R/W X Beginning of cell. For UTOPIA
Cell interface, generate TxSOC when

transmitting the first byte.
For framer 550, a frame pulse is
generated on line TXSOF if
WAN frame 4 and
WAN frame 5
(i.e. bits 4 and 5 in Table A18
below) are both 1.
For HDLC, it indicates end of
frame. Block 540 will append CRC
at the end of transmission.
Number of bytes to transmit.
O: reserved
Memory 594 address of the data
to be transmitted.

16:10 Bcount R/W X

0134) The WAN rx cmd done register is an access port
to the WAN receive command done FIFO 730. A read from
the port returns the oldest command that was inserted into
the queue.

US 2004/0015617 A1

TABLE A11

Entry in Receive Command Done FIFO
730 and the WAN IX cmd done Register

Bitfield Name R/W Default Description

24 End of Frame R X 0-not end of frame
1-end of frame

23 Frame bit valid R X 0-Invalid
1-Valid

22 Frame bit value R X Frame bit value. Valid
only if bit 23 is 1

21:17 Status R X Receive Status:
For UTOPIA:
21:20: reserved
19: data dropped when
searching RxSOC
18: For UTOPIA, this bit

is set when unexpected
RxSOC is received.
17: parity error
For HDLC/Framer (blocks
540, 550):
21: OVERRUN ERROR
2O: OCTET ERROR
19: FRAME ABORT
18: FRAME ERROR
17: FCS ERROR
Number of bytes received
Memory 594 address of
the received data.

16:10 Bcount
9:O Addr

0135) The WAN tx cmd done register is an access port
to the WAN transmit command done FIFO 724. A read from
the port returns the oldest entry that was inserted into the
FIFO.

TABLE A12

An Entry in Transmit Command Done FIFO 724,
and the WAN IX Cmd done Register

Bitfield Name R/W Default Description

17 Status R X Underrun happened when
transmitting

16:10 Bcount R X Number of bytes transmitted.
9:O Addr R X Memory 594 address storing

the data to be transmitted.

0.136 WAN IDLE CELL INSERTION register 644
(“WAN IDLE TX CMD'): When port 120 is configured
for Utopia, and transmit command queue 714 is empty and
en idle insertion bit (bit 3 in Table A2) is set, the I/O block
510 uses the command in this register to transmit an idle cell.

TABLE A13

WAN IDLE TX CMD Register 644

Bitfield Name R/W Default Description

17 Start R/W O Generate SOC for this command
of Cell

16:10 Bcount Rfw O Number of bytes to be
transmitted.

9:O Addr rfw O WAN memory 594 address to
store the frame/cell to be
transmitted.

Jan. 22, 2004

0137 WAN IDLE CELL INSERTION Counter register
650 (“WAN IDLE CNT): This register counts the number
of idle cell transmitted. It is cleared on read.

TABLE A14

WAN IDLE CNT Register 650

Bit field Name R/W Default Description

31:16 Reserved
15:0 Count R O Number of idle cells transmitted.

Clear on Read of this register

0138)

TABLE A15

WAN frame sizes Register 654

Bit field Name R/W Default Description

31:15 reserved R O
14:0 Frame size RW O Total frame size in bits,

including starting delimiter,
payload and CRC. Used for both
of FIGS. 13 and 14

0139)

TABLE A16

WAN frame delimiter Register 660

Bit field Name R/W Default Description

31:O Delimiter pattern R/W O Delimiter pattern that is for
each frame before the
payload. In some
embodiments, framer 550
strips the delimiter before
writing the data to receive
FIFO 780. In other
embodiments, framer 550
does not strip the delimiter.
In some embodiments,
framer 550 appends the
delimiter to transmit data in
transmit FIFO 770. In other
embodiments, framer 550
does not append the
delimiter; the delimiter is
expected to be in the
transmit FIFO: the delimiter
can be placed into the
transmit FIFO by
microprocessor 560. The
delimiter pattern itself
occupies the bit positions
corresponding to the bits
that are 1 in the delimiter
mask. The other bits are
ignored.
The framer 550
looks for this delimiter
pattern regardless of
WAN frame 1:0. If
software changes the value
of WAN frame 1:0, it
should reverse the delimiter
pattern accordingly.

US 2004/0015617 A1

0140

TABLE A17

WAN frame delimiter mask Register 664

Bitfield Name R/W Default Description

Delimiter mask. All the bits
corresponding to the
delimiter should be 1; the
rest of the bits can be 0.
Any FEBE bit positions
should occupy the LSBs
and the mask value is 0.
The next mask bits
correspond to the delimiter
and should be 1. The upper
bits are unused and should
be 0.

31:O Delimiter mask R/W O

0141. The WAN frame delimiter and WAN frame d
elimiter mask together help the framer 550 determine the
start of a frame. Further, as described below, the mask
register 664 can be programmed to cause the framer 550 to
store the payload of each frame in RX FIFO 780 on a 32-bit
boundary.

0142. The frame format may specify that the delimiter is
followed by error bits which precede the payload. We call
the error bits “FEBE”. This acronym is taken from ISDN,
where it stands for “far end block error”. R. Freeman
“Telecommunication System Engineering” (3rd ed. 1996),
p. 682, incorporated herein by reference. (The invention is
not limited to ISDN.)
0143 To cause the framer to store the payload on a 32-bit
boundary, delimiter mask register 664 can be programmed
as follows. Suppose the delimiter size is 14 bits, and the
FEBE size is 10 bits. The delimiter mask register can be set
to the binary value

0144) 0000 0000 111111111111 1100 0000 0000
(here the most significant bit is written first).

0145. In this value, the fourteen 1’s (corresponding to the
delimiter) and the next ten 0's (corresponding to FEBE) are
right-aligned. The 8 LSBs are 0. This indicates to framer 550
that when the framer detects a start of frame, the framer must
write the first 8 bits (MSBs) of the corresponding RX FIFO
entry with 0. The frame (starting with the frame delimiter)
should be written next. As a result, the payload will be
word-aligned (i.e. Stored on a 32-bit boundary).
0146 In another example, suppose the delimiter is 14

bits, and the FEBE is 34 bits. Let S FEBE be the size of
FEBE, i.e. S FEBE=34. If S FEBE is divided by 32, the
remainder R FEBE is 2. Delimiter mask register 664 can be
written with the value

0147 00000000000000001111111111111100
0148 Here, the fourteen 1’s (corresponding to the delim
iter) and the next two 0's (FEBE) are right-aligned. Framer
550 will store each frame starting with the 17th bit of the
corresponding RX FIFO entry. The first 16 bits of the entry
will be written with 0. The payload will be stored on a word
boundary.

0149) If the delimiter size is some value S. D, then the
mask register can be written with a value in which the

Jan. 22, 2004

R FEBE LSBs are 0’s and the next S D bits are 1’s. This
will cause the payload to be stored on the 32-bit boundary.
This applies to frame formats that have no FEBE (R FEBE=
0). Of course, the mask register does not have to be
programmed this way. Also, this embodiment does not limit
the invention.

TABLE A18

WAN frame Register 670

Bit field Name R/W Default Description

31 Frame pulse R/W 0 0-Active High
-Active Low

30:8 Reserved R O
00-Receive and Transmit
disable
O1-Receive Enable
O-Transmit Enable
1-Receive and Transmit

Enabled
O-No frame bit, e.g., E1
-Frame bit present, e.g.,
T1
O-Unframed mode
-Frame mode, e.g., T1
O-7E
-FF
CRC type in HDLC (used
by block 540): 0–CRC16
-CRC32
O-MSB first
-LSB first
See also
WAN frame delimiter
definition (Table A16)
O-MSB first
-LSB first
See also
WAN frame delimiter
definition (Table A16)

7:6 Rx Tx enable R/W OO

5 Frame bit R/W O

4 Frame Mode R/W O

3 HDLC IDLE R/W O

2 HDLC CRC R/W O

1. TxMSB first R/W O

O Rx MSB first R/W O

0150. When either the transmit command queue 714 or
the receive command queue 720 is empty, an interrupt is
generated to microprocessor 560.
0151. The framer interface in is accomplished through a
combination of hardware and Software.

0152 On the receive side, framer 550 provides the data
to FIFO 780 after there is a delimiter match. The data before
the delimiter match are discarded. It is the responsibility of
software to check FEBE field, CRC, extract EOC (embed
ded operations channel; see R. Freeman "Telecommunica
tions System Engineering” (1996), p. 682) and end-of-frame
data (ending delimiter).
0153. On the transmit side, the Software prepares the
delimiter and FEBE, indicates the beginning of frame
through the transmit command, prepares the payload, CRC,
and end-of-frame data. Software is responsible for inserting
idle cells or any end-of-frame cells/data (the idle cell reg
isters that have been defined are for the Utopia interface
only, not the framer).
0154) Framer 550 does the following:
O155 1. With Frame Sync Pulse
0156 1.1. Receive
0157 Framer 550 uses the frame sync pulse on line
RXSOF to identify the beginning of a frame. The rest of the
behavior is the same as in the case without the Sync pulse
(see below).

US 2004/0015617 A1

0158) 1.2. Transmit
0159. The framer generates a frame sync pulse on line
TXSOF if specified in WAN frame5:4) (both should be 1).
See Table A18. The rest of the behavior is the same as in the
case without the Sync pulse (see below).
0160 2. Without Frame Sync Pulse
0161) 2.1. Receive
0162 The framer looks for the delimiter based on the
delimiter pattern and mask. If it finds a delimiter match, it
passes a portion of the delimiter and the rest of the data to
software (the delimiter match can be an exclusive NOR of
the incoming bit stream followed by an AND). Depending
on the WAN frame delimiter mask, the framer discards
Some of the delimiter pattern itself. This provides a mecha
nism for the framer to provide FEBE/or other similar bits to
Software. This also can be used to byte-align payload data.
Once a delimiter match is found, the framer ignores the rest
of the frame (based on the frame size) and looks for a
delimiter once more. In case there is no match, the framer
renews the search till a delimiter match is found. If there is
a match, the above-mentioned behavior continues.

0163. 2.2. Transmit
0164. Software identifies the beginning of a new frame
by setting the start of cell bit in the transmit command (bit
17, Table A10). If specified, the framer generates a frame
Sync pulse. The data is sent out Serially without any change.

0.165 Some embodiments use a specific frame format
with each frame being 432 bytes. This format uses an 8-bit
header (7-bit delimiter and a 1-bit FEBE) before the payload
that consists of 8 ATM cells. After the payload, there are
EOC, CRC and end-of-frame (EOF) fields. The delimiter
mask programmed in the framer is 0x000000fe. The framer
passes 1 byte to software with the FEBE being the LSB.
Byte-aligned payload Starts next. The framer passes on all
the bytes indicated by the frame size to software. This
includes the EOC, CRC, and RDI fields (Remote Defect
Indicator).
0166. After the initial delimiter match, the framer sus
pends the match check for 432 bytes and expect to find
another delimiter match. If there is no match, the framer
looks for a match from that point onward.

0167 Addendum B

0168 UTOPIA and Serial Interfaces (FIGS. 3, 4)
0169 UTOPIA (FIG. 3)
0170 The following signals are defined as required for
the Transmit interface.

0171 TxData 7...0-Data. Byte-wide true data driven
from ATM (from system 110) to PHY layer. TxData7) is the
MSB.

0172 TxSOC Start Of Cell. Active high signal asserted
by the ATM layer (system 110) when TxData contains the
first valid byte of the cell.

0173 TxEnb*-Enable. Active low signal asserted by
the ATM layer during cycles when TxData contains valid
cell data.

Jan. 22, 2004

0174 TxFull*/TxClav-Full/Cell Available. For octet
level flow control, TxFull is an active low signal from PHY
to ATM layer, asserted by the PHY layer to indicate a
maximum of four more transmit data writes will be
accepted. (Four more write cycles represent at most 4 more
octets for an 8-bit interface, and 8 more octets for a 16-bit
interface.) For cell-level flow control, TxClav is an active
high signal from PHY to ATM layer, asserted by the PHY
layer to indicate it can accept the transfer of a complete cell.
0.175 TxClk-Data transfer/synchronization clock pro
vided by the ATM layer to the PHY layer for synchronizing
transfers on TxData.

0176) The following signals are defined as optional for
the Transmit interface.

0177 TxPrty–Parity. TxPrty is the odd parity bit over
TxData7:0), driven by the ATM layer.
0178 TxRef*-Transmit Reference. Input to the PHY
layer for Synchronization purposes (e.g. 8 kHz marker,
frame indicator, etc.).
0179 The following signals are defined as required for
the Receive interface.

0180 RxData 7 . . . 0–Data. Byte-wide data driven
from PHY to ATM layer. RxData7) is the MSB. Note, to
Support multiple PHY configurations, it is recommended
that RxData be tri-stateable, enabled only when RXEnb* is
asserted.

0181 RXSOC-Start Of Cell. Active high signal asserted
by the PHY layer when RxData contains the first valid byte
of a cell. Note, to support multiple PHY configurations, it is
recommended that RXSOC be tri-stateable, enabled only in
cycles following those with RXEnb asserted.

0182 RxEnb*-Enable. Active low signal asserted by
the ATM layer to indicate that RxData and RXSOC will be
Sampled at the end of the next cycle. Note, to Support
multiple PHY configurations, RXEnb should be used to
tri-state RxData and RXSOC PHY layer outputs. RxData and
RXSOC should be enabled only in cycles following those
with RXEnb asserted.

0183) RXEmpty */RXClav-Empty/Cell Available. For
octet-level flow control, RXEmpty is an active low signal
asserted by the PHY layer to indicate that in the current cycle
there is no valid data for delivery to the ATM layer. For
cell-level flow control, RXClav is an active high Signal
asserted by the PHY layer to indicate it is has a complete cell
available for transfer to the ATM layer. In both cases, this
Signal indicates cycles when there is valid information on
RXData/RXSOC.

0.184 RxClk-Clock. Transfer/synchronization clock
from the ATM layer to the PHY layer for synchronizing
transfers on RXData.

0185. The following signals are defined as optional for
the Receive interface.

0186 RXPrty–Parity. RXPrty is odd parity for RxData
7:0), driven by the PHY layer.
0187 RXRef-Receive Reference. Output from the
PHY layer for synchronization purposes (e.g. 8 kHz marker,
frame indicator, etc.).

US 2004/0015617 A1

0188 Serial Interface (FIG. 4)
0189 Transmit signals:

0190. TXD-Data (1-bit data bus).
0191 TXSOF Transmit Start of Frame.
0192 TXCK-Transmit clock.

0193 Receive signals:
0194 RXD-Data (1-bit data bus).
0195 RXSOF Transmit Start of Frame.
0196) RXCK-Transmit clock.

0.197 A serial interface may have multiple channels. The
transmit and receive Signals described above can be pro
Vided on each channel. For example, a preliminary data
sheet for the chip set part numbers G7070-174-001DA,
G7070-174-002DA available from GlobeSpan, Inc. of Red
Banks, N.J., dated May 25, 1999, and entitled “ADSL
Multi-Mode CPE; Chip Set with Framer", incorporated
herein by reference, describes in page 10 a Serial interface
with two channels A and B. One of these channels can be
used for user data, and the other channel for management
data (e.g. EOC in ISDN, or the Supervisory signaling chan
nel in DS1/T1 frames).
0198 In some embodiments, the pins of port 120 are
multiplexed between UTOPIA and Serial interfaces as
shown in the following table:

Pins of Port 120 Utopia Serial Interface

Pin 1 TxData O. TxD
Pin 2 TxData 1 TxSOF
Pin 3 RxData Ol RxD
Pin 4 RxData 1 RxSOF
Pin 5 RxData 2. RxCK
Pin 6 RxData 3 TXCK

0199. Other pin assignments can also be used.
0200. In some embodiments, the pins of port 120 can be
configured by block 230 for more than two interfaces.

1. An apparatus comprising:
a port for receiving and/or transmitting network data;
a first circuit for providing a first Signal identifying one of

a plurality of data formats, wherein the first Signal is to
be defined by a Signal provided to the apparatus from
outside of the apparatus, and the first signal is change
able without re-manufacturing the apparatus, and

a hardwired (non-Software-executing) circuit for process
ing data according to any one of Said formats, wherein
the circuit is responsive to the first signal to proceSS
data according to the format Specified by the first
Signal.

2. The apparatus of claim 1 wherein:
in a first one of Said formats, the data are fixed size cells,

and

in a Second one of Said formats, the data are frames which
are different from the fixed size cells in allowable size

14
Jan. 22, 2004

or sizes, and/or in a Starting delimiter format, and/or in
an ending delimiter format, and/or in a check Sum
format.

3. The apparatus of claim 2 wherein:
in the first format, the data are fixed size cells having no

Starting delimiter; and
for the Second format, the first signal indicates whether

the frames have a starting delimiter.
4. The apparatus of claim 1 wherein the first Signal is

defined by a signal on one or more external pins of the
apparatus, and/or by Software executed by the apparatus, the
Software being changeable without re-manufacturing the
apparatuS.

5. A method comprising:
generating a first signal identifying one of a plurality of

formats for network data received and/or transmitted on
a port of an apparatus,

receiving and/or transmitting network data on the port,
and processing the data by a hardwired circuit as
having the format identified by the first signal;

wherein the first Signal is defined by a signal provided to
the apparatus from outside of the apparatus, and the
first signal is changeable without re-manufacturing the
apparatuS.

6. The method of claim 5 wherein:

in one of Said formats, the data are fixed size cells, and

in another one of Said formats, the data are frames which
are different from the fixed size cells in allowable size
or sizes, and/or in a Starting delimiter format, and/or in
an ending delimiter format, and/or in a check Sum
format.

7. The method of claim 5 wherein:

in one of Said formats, the data are fixed size cells having
no starting delimiter; and

in another one of Said formats, the data are frames, and the
first signal indicates whether the frames have a Starting
delimiter.

8. The method of claim 5 wherein the first signal is
changeable by Software executed by the apparatus, the
Software being changeable without re-manufacturing the
apparatuS.

9. An apparatus comprising:
a port for receiving data from a network via a physical

layer device and/or transmitting data to a network via
a physical layer device;

a first circuit for providing a first signal identifying one of
types of interfaces between the port and physical layer
devices, wherein the first Signal is to be defined by a
Signal provided to the apparatus from outside of the
apparatus, and the first signal is changeable without
re-manufacturing the apparatus, and

a hardwired (non-Software-executing) circuit, responsive
to the first signal, for receiving and/or transmitting data
on Said port according to the type of interface Specified
by the first signal.

10. The apparatus of claim 9 wherein one of said types of
interfaces has a plurality of pins on which a plurality of data
bits are received or transmitted in parallel, and another one

US 2004/0015617 A1

of Said types of interface provides (i) only one pin on which
the data are received serially one bit at a time and/or (ii) only
one pin on which the data are transmitted Serially one bit at
a time.

11. A method comprising:
generating a first signal identifying one of types of

interfaces for transferring data between a port of a
network data processing System and a physical layer
device, wherein the first signal is to be defined by a
Signal provided to the network data processing System
from outside of the network data processing System,
and the first Signal is changeable without re-manufac
turing the network data processing System;

a port for receiving data from a network via a physical
layer device and/or transmitting data to a network via
a physical layer device;

receiving and/or transmitting data on Said port by a
hardwired (non-Software-executing) circuit according
to the type of interface Specified by the first signal.

12. The method of claim 11 wherein one of said types of
interfaces has a plurality of pins on which a plurality of data
bits are received or transmitted in parallel, and another one
of Said types of interface provides (i) only one pin on which
the data are received serially one bit at a time and/or (ii) only
one pin on which the data are transmitted Serially one bit at
a time.

13. An apparatus comprising:

one or more terminals for carrying data, wherein the data
are provided on the one or more terminals on a rising
edge or a falling edge of a first clock Signal; and

a first circuit for providing a first signal indicating
whether the data are to be provided on the falling or
rising edge of the first clock signal.

14. The apparatus of claim 13 wherein the first signal is
defined by a signal provided to the apparatus from outside of
the apparatus, and the first signal is changeable without
re-manufacturing the apparatus.

15. The apparatus of claim 13 wherein the one or more
terminals are one or more external pins for receiving or
transmitting network data, and the first Signal defines
whether the first clock signal is (i) to be received or
transmitted with the data or (ii) to be generated by the
apparatuS.

Jan. 22, 2004

16. The apparatus of claim 13 wherein:
the one or more terminals are one or more external pins

for receiving network data;
the apparatus further comprises one or more external pins

for transmitting network data on a rising or falling edge
of a Second clock signal;

the first Signal indicates whether the Second clock signal
is to be generated from the first clock signal or from a
third clock signal received by the apparatus on an
external pin other than the one or more external pins of
receiving the network data and the one or more external
pins for transmitting the network data.

17. A method comprising:
generating a first Signal indicating whether data are to be

provided on one or more terminals on a falling or rising
edge of a first clock Signal; and

providing data on the one or more terminals in accordance
with the first Signal and the clock signal.

18. The method of claim 17 wherein the first signal is
defined by a Signal provided to an apparatus having the one
or more terminals from outside of the apparatus, and the first
Signal is changeable without re-manufacturing the appara
tuS.

19. The method of claim 17 wherein the one or more
terminals are one or more external pins for receiving or
transmitting network data by an apparatus, and the first
Signal defines whether the first clock signal is (i) to be
received or transmitted with the data or (ii) to be generated
by the apparatus.

20. The method of claim 17 wherein:

the one or more terminals are one or more external pins
for receiving network data by an apparatus,

the apparatus further comprises one or more external pins
for transmitting network data on a rising or falling edge
of a Second clock signal;

the first Signal indicates whether the Second clock signal
is to be generated from the first clock signal or from a
third clock signal received by the apparatus on an
external pin other than the one or more external pins of
receiving the network data and the one or more external
pins for transmitting the network data.

k k k k k

