
United States Patent 19
Bonnell et al. 45) Date of Patent:

54 SYSTEM FORMONITORING AND
MANAGING COMPUTER RESOURCES AND
APPLICATIONS ACROSSA DISTRIBUTED
COMPUTING ENVIRONMENT USING AN
INTELLIGENT AUTONOMOUSAGENT
ARCHITECTURE

75) Inventors: David N. Bonnell, Houston; Kirill L.
Tatarinov; Martin W. Picard, both of
Bellaire, all of Tex.

73) Assignee: BMC Software, Inc., Houston, Tex.

21) Appl. No.: 400,850
22 Filed: Mar 8, 1995
(51) Int. Cl. G06F 12/08; G06F 13/14
52 U.S. Cl. 395/200.32: 395/292; 395/200.53;

364/DIG. 1; 364/DIG. 2
(58) Field of Search 395/800, 187.01,

395/700, 650, 182.02, 115, 146, 166, 150,
200.01, 500, 733, 200.03, 292, 200.06,

200.15, 200.16; 364/DIG. 1, DIG. 2; 340/825.31;
370/95.1, 54

US005655081A

11 Patent Number: 5,655,081
Aug. 5, 1997

5,432,935 7/1995 Kato et al. 395/700
5,440,744 8/1995 Jacobson et al. 395/650

Primary Examiner-Daniel H. Pan
Attorney, Agent, or Firm-Vinson & Elkins L.L.P.
57 ABSTRACT

A method and apparatus are disclosed for monitoring and
managing the applications and resources on a distributed
computer network Preferably, at least one manager software
system runs on at least one of the networked computer
systems designated as a network management computer
system or "console” system. An agent software system runs
on each of the server computer systems in the network to be
monitored. Each respective agent software system carries
outtasks on the computer system in which it is installed such
as discovering which resources and applications are present
on the computer system, monitoring particular aspects of the
resources and applications present on the computer system,
and executing recovery actions automatically when such
actions are warranted. The agents are capable of intelligent,
autonomous operation. Knowledge modules are stored in a
non-volatile storage device at the site of each agent software
system and are loaded and unloaded into server memory
dynamically as consoles register and de-register with the
agents. Consoles may register to receive all information

56) References Cited from the agents or only selected information. An event
management procedure is disclosed for coordinating event

U.S. PATENT DOCUMENTS management between the various consoles throughout the
4,924,378 5/1990 Hershey et al. 395/18701 network.
5,079,695 1/1992 Dysart et al. 395/700
5,167,035 11/1992 Mann et al. 395/182.02 27 Claims, 22 Drawing Sheets

- - - - - - - -
MANAGER'S 49 N OBJECI KNOWLEDGE /47

DATABASE DATABASE
34 - - - - - - - - MANAGER - - - -

EVENT
MANAGER

44 - KNOWLEDGE KNOWLEDGE GRAPHICAL - 50
MODULE DATABASE USER
PARSER MANAGER INTERFACE

OBJECT
SCRIPT DATABASE
PROGRAM MANAGER

581 COMPLER

COMMUNICATIONS
5 6

INTERFACE
TO OTHER
NETWORK

MANAGEMENT
SOFTWARE

5 4.

5,655,081 U.S. Patent

|

r= == ------ r= = = = = = i (S)ETñGOW I |- - - - - - -) r-------- t- - - - - - -| |----!-!!!!!!!!!!!!!!!!--- WEIS?S 83|[\d\\00 1NHWE|0WNWW XèJOMIEN

U.S. Patent Aug. 5, 1997 Sheet 2 of 22 5,655,081

- - - - - - - -

49 N OBJECI SE-47 DATABASE DATABASE
54 a- - - - - - - MANAGER - - - - - FIC. 2

r-a it a

44 - KNOWLEDGE KNOWLEDGE GRAPHICAL
MODULE DATABASE USER
PARSER MANAGER NTERFACE

is, DATABASE
581 COMPLER MANAGER

INTERFACE
TO OTHER

EVENT NETWORK
MANAGER MANAGEMENT

SOFTWARE

--

75-cis
: KNOWLEDGE DAABASE

36 AGENT
a. SOFTWARE SYSTEM FIC 3

-
64 68

62
SCRIPT COMMUNICATIONS COMMAND
PROGRAM EXECUTION
COMPLER MANAGER

DISPATCHER N72 -
SCRIPT RUN a

PROGRAM QUEUE - E.
INTERPRETER KNOWLEDGE SCHEDULUER ------

DAABASE -
66 MANAGER 70 71
APPLICATION PARAMETER
DISCOVERY AND RECOVERY
MANAGER PROCESS ACTION MANAGER

CACHE MANAGER 76
78 80

------------------------------------- -
- - - - - - - - -

PROCESSCACHEN-77

U.S. Patent Aug. 5, 1997 Sheet 3 of 22 5,655,081

38
FIC. 4

INFORMATION APPLICABLE TO ALL CLASSES OF COMPUTERS
• COMMANDS
• SETUP COMMANDS
... INFOBOX COMMANDS

ENVIRONMENT
PARAMETER

COMMAND TYPES
INFORMATION APPLICABLE
TO COMPUTER CLASS 1

- ENVIRONMENT
. PARAMETERS
• COMMAND TYPES
• COMMANDS
. SETUP COMMANDS
... INFOBOX COMMANDS

INFORMATION
APPLICABLE TO

INFORMATION
APPLICABLE TO
COMPUTER COMPUTER

INSTANCE N INSTANCE 'n'
CLASS 1 IN CLASS

ENVIRONMENT . ENVIRONMENT
. PARAMETERS . PARAMETERS
• COMMANDS COMMANDS
INFOBOX INFOBOX
COMMANDS COMMANDS

NFORMATION APPLICABLE
TO APPLICATION CLASS 1

ENVIRONMENT
PARAMETERS

• COMMAND TYPES
• COMMANDS
INFOBOX COMMANDS

- DSCOVERY

NFORMATION
APPLICABLE TO

INFORMATION
APPLICABLE TO
APPLICATION APPLICATION

INSTANCE 1 N INSTANCE 'n'
CLASS 1 IN CLASS 1

ENVIRONMENT ENVIRONMENT
PARAMETERS PARAMETERS

• COMMANDS • COMMANDS

INFORMATION APPLICABLE
TO COMPUTER CLASS 'n'

ENVIRONMENT
PARAMETERS
COMMAND TYPES

... COMMANDS
SETUP COMMANDS
INFOBOX COMMANDS

NFORMATION
APPLICABLE TO
COMPUTER

INSTANCE IN
CLASS 'n'

. ENVIRONMENT
- PARAMETERS . PARAMETERS
COMMANDS COMMANDS

- INFOBOX NFOBOX
COMMANDS COMMANDS

NFORMATION
APPLICABLE TO
COMPUTER

INSTANCE 'n'
IN CLASS 'n'

. ENVIRONMENT

INFORMATION APPLICABLE
TO APPLICATION CASS 'n'

- ENVIRONMENT
- PARAMETERS
• COMMAND TYPES
• COMMANDS
- INFOBOX COMMANDS
- DSCOVERY

INFORMATION
APPLICABLE TO
APPLICATION
INSTANCE 'n'
EN CLASS 'n'

ENVIRONMENT
. PARAMETERS
• COMMANDS

NFORMATION
APPLICABLE TO
APPECATION
NSTANCE 1 IN
CLASS 'n'

ENVIRONMENT
- PARAMETERS
• COMMANDS

U.S. Patent Aug. 5, 1997 Sheet 4 of 22 5,655,081

PATROLV2.0.21 3973F830585795A8
!----

! PATROL Session Knowledge Module
--

VERSION2
COMPUTERS = . FIG. 5d.

NAME = "ALLCOMPUTERS",
COMMANDS = }

NAME = "Login",
AVAILABILITY = AVAILABLE ONLINE,
SECURITY = SECURITY INHERIT,
BASE-COMMAND = }

COMPUTER_TYPE = "ALLCOMPUTERS",
COMMAND TYPE - "OS',
COMMAND TEXT = 769753920 "%:/terminolemulator -sl 500 -sb -n 28/ho

3,
INFOBOX = }

3 NAME = "lp Address",
AVAILABILITY = AVAILABLE ONLINE,
SECURITY = SECURITY INHERIT,
BASE COMMAND = }

COMPUTER_TYPE = "ALLCOMPUTERS",
COMMAND TYPE = "OS',
COMMAND TEXT = 759992599 "%ECHO %8/ipAddress"

,
SETUP = }

NAME = "Terminal Emulater",
AVAILABILITY = AVAILABLEALWAYS,
SECURITY = SECURITY INHERIT,
BASE COMMAND =

COMPUTER_TYPE = "ALLCOMPUTERS",
COMMAND TYPE = "PSL",
COMMAND TEXT = 759992599 "set (\"/terminolemulatorV", \"xterm\");"
COMPUTER_TYPE = "ULTRIX",
COMMAND TYPE = "PSL",
COMMAND_TEXT = 759992599 "set (\"terminolemulator\", \"dxterm\");"

,
ENVIRONMENT = "PATH" = "/bin/usr/bin/etc/usr/etc/usr/ucb:/usr/bsd/quoto:/usr/sl
PARAMETERS = } NAME = "PrinterDiscovery",

PARAM_TYPE = STANDARD,
ACTIVE = True,
MONITOR = Folse,
CHECK = Folse,
BASE COMMAND = }

: COMPUTER_TYPE
COMMAND TYPE

T

3.
COMMAND TEX

START = "ASAP",
EXECUTION = "1",

"ALL COMPUTERS",
"PSL",
766297889 "set (\"/prnDiscoveryPollTimeV", 300);"

U.S. Patent Aug. 5, 1997 Sheet 5 of 22 5,655,081

FIG. 6b

3 NAME = "CPU Utilization",
AVAILABILITY = AVAILABLE ONLINE,
SECURITY = SECURITY INHERIT,
BASE COMMAND =

COMPUTER_TYPE = "ALLCOMPUTERS".
COMMAND TYPE = "PSL",
COMMAND TEXT = LOAD "cputrend analysis.psi"

,
TASK = }

SHOWTIMER = TRUE,
INTERACTIVE = FALSE,
ATTNPOPUP = TRUE

.
INFOBOX = }

NAME = "System Lood",
AVAILABILITY = AVAILABLE ONLINE,
SECURITY = SECURITY INHERIT,
BASE COMMAND =

COMPUTER_TYPE = "ALLCOMPUTERS",
COMMAND TYPE = "PSL",
COMMAND TEXT = 759992618 "print (get (\"/SYSTEM/SYSTEM/uptlood\"))

3.
PARAMETERS = }

3 NAME = "USRPROCColl",
PARAM_TYPE = COLLECTOR,
ACTIVE = True,
MONITOR = False,
CHECK = Folse,
BASE COMMAND =

COMPUTER_TYPE = "ALLCOMPUTERS",
COMMAND TYPE = "PSL",

.
COMMAND TEXT = LOAD "usr proc-collector.psi."

START = "ASAP",
POLLTIME = '600',
EXTERNAL POLLING = Folse

44656

U.S. Patent Aug. 5, 1997 Sheet 6 of 22 5,655,081

PSL Seriol No.: 765773959 FIC. 6O. ? uSr-proccollector.ps
| Copyright 1993-94 Patrol Software, Inc. as on unpublished licensed work.

Copyright 1994 BMC Software, Inc. as an unpublished licensed work.

The source code created in 1994, is o trade secret which is the property
of BMC Software, Inc. All use, disclosure, and/or reproduction not specifically
| authorized by BMC Software, Inc., is prohibited.

This program moy also be protected under the copyright and trode Secret lows
of non-U.S. countries. All right reserved.
f
Copyright (c) 1993, 1994 Patrol Software
Copyright (c) 1994 BMC Software, Inc.
f
File : uSr procCollector.ps
Author : H Kusumo
i. Platform : ALL

Description: The script retrieve user information and
process information from who ond psi process
function. This script colculate number of user
login, session, process, as well as Overage
process per user

ZOMBIE = "<defunct>";

it get machine type
machine type = get ("/oppType");
cmd = "who":

if execute user info commond
buf = system (cmd);
it check if buffer is empty or command not found
if (buf = " '
e exit;) :

elsif (index (buf, "not found")
print ("SYSTEM.SYSTEM:USRColl: Warning environment is not set properly, switch to sil
exit;

no session = 0;
process user information
no user = 0;
user list =
foreach entry (buf)

I get user nome
name = nthorg (entry, 1);
it check if it is root ignore it
if (name = "root")

no session + +

check if this user is not in the user list
if (index (user list, name user list = G.T. nome . "Win";

no user ++,

U.S. Patent Aug. 5, 1997 Sheet 7 of 22 5,655,081

FIC, 6b

if process process information
process info = process ("*");
no process = 0;
no user process = 0; no zombie-process = 0;
foreach entry (process info):

check if this is zombie process
if (index (entry, ZOMBIE):

no zombie process ++;

if (nthorg (entry, 3) = "root"):
no user process + +;

no process + +;

calculate overage user process
if (no user l=0& (no user-process l=0) avgus proclint (nd user procéS$ / no-user);

else

i set global variobles
Set 8/SSESSENSE no user); set ("/SYSTEM/SYSTEM/usrnoSession", no session); set ("/SYSTEM/SYSTEM/usrAvgusrProc", ovg.usr proc);
set ("/SYSTEM/SYSTEM/procNumProcs", no process);
set ("/SYSTEM/SYSTEM/procuserProcs', no user-process);
set ("/SYSTEM/SYSTEM/procNoZombieProcess", no zombie process);

exit;

get global porometers
f R. ("/USERS/USERS")):

Set SASEASE no-user); set ("/USERS/USERS/USRNoSession/value", no session);
Set &ASSESSEE no user-process); set ("/USERS/USERS/USRAvgusrProc/value", ovgusr-proc);

if (exists"/SYSTEM/SYSTEM")
set ("/SYSTEM/SYSTEM/SYSNoUser/value", no user);
set ("/SYSTEM/SYSTEM/SYSNumProcs/value", no process);
set ("/SYSTEM/SYSTEM/SYSAvgUsrProc/value", ovgusr-proc);

if (exists ("/PROCESS/PROCESS")):
set ("/PROCESS/PROCESS/PROCNumProcs/value", no process);

U.S. Patent Aug. 5, 1997 Sheet 8 of 22 5,655,081

FIC 7

MANAGER SOFTWARE PARSES KNOWLEDGE
MODULE, EXTRACTING INFORMATION AND

CREATING KNOWLEDGE DATABASE.

96

MANAGER SOFTWARE ACCEPTS INPUT 98
NFORMATION INDICATING WHAT TYPES
OF COMPUTERS ARE TO BE MANAGED.

MANAGER SOFTWARE SEARCHES KNOWLEDGE 100
DATABASE FOR KNOWLEDGE PERTINENT

TO COMPUTERS THAT ARE TO BE MANAGED.

MANAGER SOFTWARE SENDS MESSAGE(S) TO
AGENT CONTAINNG: KNOWLEDGE PERTINENT

TO COMPUTER IN WHICH AGENT IS INSTALLED,
WHICH RESOURCE CLASSES TO LOOK FOR ON THAT

COMPUTER, AND WHICH SCRIPT PROGRAMS SHOULD BE
USED TO LOOK FOR THE RESOURCE CLASSES.
MANAGER SOFTWARE ALSO SENDS THE SCRIPT

PROGRAMS THAT WILL BE NECESSARY.

110

AGENT SOFTWARE RECEIVES THE MESSAGE(S),
PARSES THE INFORMATION, CREATES A

KNOWLEDGE DATABASE WITH THE INFORMATION,
AND STORES THE SCRIPT PROGRAMS.

112

KNOWLEDGE DATABASE MANAGER WITHIN AGENT
SOFTWARE CREATES JOBS AND PLACES THEM IN

THE RUN QUEUEF RECEIVED KNOWLEDGE INDICATES 114
THAT PERIODIC MONITORING PROCEDURES SHOULD

BE DONE FOR PARTICULAR RESOURCES

U.S. Patent Aug. 5, 1997 Sheet 9 of 22 5,655,081

AcENS in RTMANAGER
INDICATES SOFTWARE I

116-DISCOVERY SENDSSIGNAL-118
PROCEDURE TO INITIATE
SYF BSEE EEE FREE. FIC. g.

READ KNOWLEDGE DATABASE ON
SERVER TO FIND NAME OF A

RESOURCE CLASS THAT
SHOULD BE SEARCHED FOR

120

FOUND A
RESOURCE CLASS
TO SEARCH FOR

p

NO

136

WERE ANY NO
RESOURCES DISCOVERED

ON THE SERVER
p

READ KNOWLEDGE DATABASE ON
SERVER TO FIND NAME

AND LOCATION OF SCRIPT
PROGRAM THAT WILL

SEARCH FOR THIS RESOURCE YES
SEND MESSAGE TO
MANAGER INDICATING

LOCATE THE SCRIPT PROGRAM WHAT RESOURCES 138
WERE DISCOVERED

HAS SCRIPT
PROGRAM BEEN
COMPLED YET

p

RECEIVE MESSAGE(S)
FROM MANAGER

CONTAINING MORE
KNOWLEDGE AND
SCRIPT PROGRAMS

USEFUL IN MANAGING
THE DISCOVERED

RESOURCES

COMPLE
SCRIPT PROGRAM 140

INTERPRET SCRIPT PROGRAM
TO SEARCH FOR

PRESENCE OF THE RESOURCE

STORE RESULTS OF SEARCH

U.S. Patent Aug. 5, 1997 Sheet 10 of 22 5,655,081

14 AGENTsivir INDICAES HAT TRANGER softwarESENDs-144 MONITORNG PROCEDURE I SIGNAL TO INITIATE
SHOULD BE EXECUTED } t MONITORING PROCEDURE

AGENT'S RUN QUEUE SENDS JOB TO COMMAND EXECUTION MANAGER 46

COMMAND EXECUTION MANAGER DETERMINES THAT JOBS FOR 148
PURPOSE AND MONITORING A RESOURCE AND THEREFORE
PASSES IT TO PARAMETER AND RECOVERY ACTION MANAGER

F SCRIPT IF OPERATING PARAMETER AND RECOVERY T PE"/ Action RANGERBEDES SSE"
154 S OB A SCRIPT LANGUAGE

COMMAND TYPE OR AN OPERATING
FEND THE PERTINENT SYSTEM COMMAND TYPE
SCRIPT PROGRAM

156 FIND AND EXECUTE
OPERATING SYSTEM

COMMANDS DESIGNATED
NKNOWLEDGE DATABASE
AS BEING NECESSARY

FOR COLLECTING THIS DATA

SCRIPT PROGRAM
BEEN COMPLED

p

COMPLE
SCRIPT PROGRAM

158
NTERPRET SCRIPT PROGRAM TO COLLECT DATA

STORE WALUE OF COLLECTED DATA IN A WARIABLE 162

PARAMETER AND RECOVERY ACTION MANAGER
CHECKS WALUE AGAINST THRESHOLD 164

INFORMATION FROM KNOWLEDGE DATABASE

160

IS
RECOVERY

PROCECURE INDICATED
BASED ON VALUE AND

THRESHOLDS

YES
FIG. 9

EXECUTE RECOVERY
PROCEDURE INDICATED IN
KNOWLEDGE DATABASE

SEND MESSAGE TO MANAGER INDICATING 170 168
STATUS OF MONITORED RESOURCE

166

U.S. Patent Aug. 5, 1997 Sheet 11 of 22 5,655,081

FIC. 1 O

DETERMINE FROM READING 172
KNOWLEDGE DATABASE WHCH

RECOVERY ACTION
SHOULD BE EXECUTED

COMMAND EXECUTION MANAGER
DETERMINES F INDICATED

RECOVERY ACTION IS AN OPERATING F IF SYSTEM COMMAND TYPE OR A SCRIPT OPERATING
PROGRAM SCRIPT LANGUAGE COMMAND TYPE SYSTEM

TYPE TYPE
174

178

FIND THE PERTINENT FEND AND EXECUTE OPERATING
SCRIPT PROGRAM SYSTEM COMMANDS INDICATED IN

KNOWLEDGE DATABASE AS BEING
NECESSARY TO TAKE
THIS RECOVERY ACTION

SCRIPT PROGRAM
BEEN COMPLED

p
176

COMPLE
18O SCRIPT PROGRAM

182
INTERPRET SCRIPT
PROGRAM TO TAKE
RECOVERY ACTION

184

5,655,081 Sheet 12 of 22 Aug. 5, 1997 U.S. Patent

r------------------s - - - - - - - ->«-, æ,

m r - a reas -

f- - - - - - -n |- - - - - - -1 | || NEAE I != - - - - - -1 t- - - - - - -0 = = ~ ~ ~ ~ t- - - - - - -0

ZZ

Ind1n0/IndNI
- - - - - - - - - - - - - - m -

/ /

r----------------------------- L------------------------- IndIn0/IndNI
0

9 |

r-------- i (S)WW80088 v-07 l- - - - - - -1 r- - - - - - -n !-- - - - - - -1

U.S. Patent Aug. 5, 1997 Sheet 13 of 22 5,655,081

75-E's
99.222s. FIG. 12

s AGENT SOFTWARE SYSTEM
- - - - - - - - - - - - - - - -6
64- SCRIPT COMMAND

PROGRAMMER EXECUTION
COMPLER COMMUNICATIONS MANAGER

72
SCRIPT

66/1 REME DSPATCHER RUN ful
INTERPRETER QUEUE QUEUE

no SCHEDULER - - - - -
APPLICATION KNOWLEDGE t

78 DISCOVERY DATABASE MANAGER 71
MANAGER PARAMETER AND

RECOVERY
EVENT PROCESS ACTION

2101 MANAGER 76-? CACHE MANAGER MANAGER

- - - - - - - - ----- PROCESS ? EVENT N7 N 206 REPOSITORY -- CACHE -- 77 REPOSITORY. 208

- - - - - - n s
MANAGER'S FIG. 13 BE KNOWLEDGEN 49- DATABASE ES47

L------- MANAGER LS- 200
SOFTWARE SYSTEM 4,

f-------------|-----------|-------- ---
44 NKNOWLEDGE GRAPHICAL 50

MODULE KNOWLEDGE USER
PARSER DAABASE INTERFACE

MANAGER

- SCRIPT OBJECT
PROGRAM DATABASE

58 COMPER MANAGER

INTERFACE TO
OTHER

NETWORK. R. MANAGEMENT 54.
SOFTWARE

COMMUNICATIONS
- P - - - - - - - - - - - - - - - - - -

- mosta as a m

EVENT CACHEY-212

U.S. Patent Aug. 5, 1997 Sheet 14 of 22 5,655,081

214 208 FIC. 14 216 218

DATA REPOSITORY

PARAMETER IDENTIFICATION MEASUREMENT TIME VALUE

FIC. 16

KNOWLEDGE MODULES ARE STORED ON 240
NON-VOLATILE MEDIA AT SITE OF SERVER COMPUTER SYSTEM

AGENT PROCESS BEGINS RUNNING 242

ACENT CHECKS CONFIGURATION FELE TO DETERMINE
WHICH RESOURCES ARE TO BE MONITORED AND MANAGED 244

AT ALL TIMES (DEFAULT RESOURCES)

AGENT LOADS KNOWLEDGE MODULES THAT CORRESPOND TO
THE DEFAULT RESOURCES, CREATING A KNOWLEDGE DATABASE 246

AGENT'S KNOWLEDGE DATABASE MANAGER PLACES JOBS IN
RUN QUEUE IF LOADED KNOWLEDGE

INDICATES THAT PERIODIC MONITORNG PROCEDURES 248
SHOULD BE DONE FOR PARTICULAR RESOURCES

5,655,081 Sheet 15 of 22 Aug. 5, 1997 U.S. Patent

|(|) : | . || ~

OZZ

U.S. Patent Aug. 5, 1997 Sheet 16 of 22 5,655,081

FIC. 1 7 250

254 TABLE OF REGISTERED CONSOLES 2 56

ADDRESS AND OTHER PONTER TO EVENT
NFORMATION IDENTIFYING CONSOLE CONTEXT FOR CONSOLE

O CONSOLE A CONTEXT A
CONSOLEB CONTEXT B

CONSOLE C CONTEXT C

58 26

252

ENTRY
NUMBER

2 O

FIG. 19
console sends MEssace To AGENT DENTIFYING THE CONSOLE - 296

298
ACENT SENDS MESSAGE TO CONSOLE DENTIFYING THE AGENT

CONSOLE SENDS REGISTRATION MESSAGE TO AGENT INDICATING
WHICH RESOURCES IT DESERES TO RECEIVE INFORMATION

ABOUT. MESSAGE MAY CONTAIN A IS OF:
APPLICATION CLASSES

. . APPLICATION INSTANCES
PARAMETERS

MESSAGE MAY ALSO CONTAIN
EVENT FILTERS FOR THIS CONSOLE

300

AGENT STORES INFORMATION RECEIVED IN REGISTRATION
MESSAGE AND ASSOCATES IT WITH CONSOLE DENTIFIER 302

ACENT CREATES A LIST OF KNOWLEDGE MODULES CORRESPONDING
TO RESOURCES IDENTIFIED IN REGISTRATION MESSAGE 304

AGENT CHECKS TO SEE WHICH CORRESPONDING KNOWLEDGE
MODULES HAVE ALREADY BEEN LOADED, AND LOADS ONLY THOSE 306

NEEDED BUT NOT ALREADY PRESENT IN MEMORY

5,655,081 Sheet 17 of 22 Aug. 5, 1997 U.S. Patent

797

|

(SJBINIOG) ISIT BONVISNI u l-U0
TTT—L?T?TI, 98Z

1SIT BONVISN|| 88Z W Z !

U.S. Patent Aug. 5, 1997 Sheet 18 of 22 5,655,081

REGISTRATION INFORMATION

CONSOLE 1 INTERESTED IN
FIC. 20

KNOW APPLICATION A --- OWLEDGE DATABASE
- - - - KNOWLEDGE

APPLICATION C n MODULE A

CONSOLE 2 INTERESTED in
APPLICATION A SPS
APPLICATION B- a

the elecochesteele KNOWLEDGE

MODULE C

CONSOLE 'n' INTERESTED IN Sp;

APPLICATION D

CONSOLE SENDS MESSAGE
TO ACEN INDICATING THAT
CONSOLE IS NO LONGER
INTERESTED IN CERTAIN
EVENTS, PARAMETERS

OR RESOURCES

CONSOLE SENDS MESSAGE
TO AGENT INDICATING
THAT CONSOLE SHOULD
BE DE-REGISTERED FROM

AGENT ENTRELY

308 310

312 AGENT MODIFIES REGISTRATION INFORMATION TO
REFLECT CHANGE(S) REQUESTED BY CONSOLE

F CONSOLE INDICATED THAT IT IS TO BE
DE-REGISTERED ENTIRELY, OR THAT IT IS
NO LONGER INTERESTED IN A PARTICULAR
RESOURCE, AGENT ASKS: ARE ANY OTHER

CONSOLES REGISTERED TO RECEIVE
INFORMATION ABOUT THAT RESOURCE

FIC. 21

316

AGENT ASKS: IS THE
RESOURCE A DEFAULT
RESOURCE TO BE
MONITORED ANYWAY?

AGENT UNLOADS FROM MEMORY THE KNOWLEDGE
MODULE(S) CORRESPONDING TO THAT RESOURCE

U.S. Patent Aug. 5, 1997 Sheet 19 of 22 5,655,081

520 FIC. 22
y EVENT FILTER

322 FILTER TYPE: (PASS OR FAIL)

(EVENT SOURCE: (NAME OF OBJECT WHERE EVENT
524 OCCURRED, SUCH AS APPLICATION NAME,

INSTANCE NAME OR PARAMETER NAME)

EVENT SEVERITY: (SEVERITY LEVEL, SUCH AS "ALARM,"
328 "WARNING." OR "INFORMATION ONLY")

326 EVENT TYPE: (SUCH AS STATE-CHANGE, ERROR, ETC)

(

FIG. 23
EXAMPLE CHAIN OF EVENT FILTERS

COMPRISING EVENT FILTERS A AND B

EVENT FILTER A EVENT FILTER B

FILTER TYPE PASS FILTER TYPE: FAI
EVENT SOURCE:
EVENT SOURCE: s

EVENT SEVERTY: INFORMATIONAL

EVENT SOURCE: i.
EVENT TYPE is

EVENT SEVERITY:

FIC. 26
CONSOLE SENDS MESSAGE TO AGENT INFORMING AGENT THAT

CONSOLE USER HAS ACKNOWLEDGED THE OCCURENCE OF A SPECIFIED EVENT

ACENT MODIFES EVENT REPOSITORY WITH A RECORD OF THE
ACKNOWLEDGEMENT, AND ASSOCIATES THE RECORD WITH THE EVENT

AND WITH A CONSOLE DENTIFIER FOR THE ACKNOWLEDGING CONSOLE

348

350

FOR EVERY OTHER CONSOLE REGISTERED TO RECEIVE INFORMATION ABOUT THE
RESOURCE ASSOCIATED WITH THIS EVENT, AGENT SENDS A MESSAGE

TO THAT CONSOLE INDICATING THAT THE EVENT HAS BEEN ACKNOWLEDGED
AND DENTIFYING WHICH CONSOLE ACKNOWLEDGED IT

RECIPIENT CONSOLES MODIFY THEIR OWN EVENT CACHES ACCORDINGLY

352

354

U.S. Patent Aug. 5, 1997 Sheet 20 of 22 5,655,081

FIC. 24
FOR ALL DEFAULT RESOURCES AND

ALL RESOURCES FOR WHICH CONSOLES HAVE
REGISTERED TO RECEIVE INFORMATION.

CHECK THE STATE OF THE RESOURCE ACCORDING TO
THE INFORMATION CONTAINED IN THE KNOWLEDGE
MODULE (STORED IN THE KNOWLEDGE DATABASE)

CORRESPONDING TO THIS RESOURCE

HAS THE
STATE OF THE

RESOURCE CHANGED
RELATIVE TO THE LAST

"CURRENT STATE' STORED
FOR THIS
RESOURCE

334

YES
556

EXECUTE EVENT
PROCESSENG ROUTINE

CALCULATE THE WALUE OF ALL PARAMETERS FOR
THIS RESOURCE ACCORDING TO THE INFORMATION

CONTAINED IN THE KNOWLEDGE MODULE 338
(STORED IN THE KNOWLEDGE DATABASE)
CORRESPONDING TO THIS RESOURCE

LOG THE PARAMETERS INTO THE PARAMETER REPOSITORY 359

FOR EVERY PARAMETER CALCULATED, AND FOR
EVERY CONSOLE REGISTERED TO RECEIVE THE
REAL-TIME WALUE OF THAT PARAMETER, SEND

THE WALUE OF THE PARAMETER TO THE CONSOLE
340

FOR
EVERY PARAMETER,
HAS THE WALUE OF

THE PARAMETER CROSSED
THE THRESHOLD STORED IN THE

CORRESPONDING
KNOWLEDGE

MODULE

YES

EXECUTE EVENT
PROCESSING ROUTINE

CONTINUE WITH NEXT RESOURCE 346

U.S. Patent Aug. 5, 1997 Sheet 21 of 22 5,655,081

FIG. 26

EVENT PROCESSING ROUTINE

LOG THE EVENT INTO THE EVENT REPOSITORY

EOR EVERY CONSOLE REGISTERED.

: . ACCESS THE INTEREST MASK ASSOCATED WITH THE OBJECT
ORIGINATING THE EVENT (WHETHER IT BE THE APPLICATION INTEREST MASK,
THE INSTANCE INTEREST MASK, OR THE PARAMETER INTEREST MASK).

LE THE INTEREST MASK INDICATES THAT THIS CONSOLE IS INTERESTED
IN THE EVENT, THEN.

- ACCESS THE EVENT CONTEXT FOR THIS CONSOLE
- FOR EVERY EVENT FELER IN THE EVENT CHAIN...

3 O IF THE EVENT DOES NOT SATISFY THE EVENT SOURCE,
EVENT TYPE AND EVENT SEVERTY CONDITIONS LISTED
IN THE EVENT FILTER AND THE EVENT FILTER IS A
"PASS" TYPE FILTER THENREJECT THE EVENT AND
DO NOT SEND A NOTIFICATION TO THE CONSOLE (EXIT
THIS "FOR-NEXT LOOP AND CONTINUE WITH "NEXT
REGISTERED CONSOLE").

O ELSE IF THE EVENT DOES SATISFY THE EVENT SOURCE,
EVENT TYPE AND EVENT SEVERITY CONDITIONS LSTED
IN THE EVENT FILTER AND THE EVENT FILTER IS A
"FAIL" TYPE FILTER), THEN REJECT THE EVENT AND DO
NOT SEND A NOTIFICATION TO THE CONSOLE (EXIT THIS
"FOR-NEXT" LOOP AND CONTINUE WITH "NEXT
REGISTERED CONSOLE").

NEXT EVENT FILTER
- SEND NOTIFICATION OF EVENT TO THE CONSOLE

NEXT REGISTERED CONSOLE

U.S. Patent Aug. 5, 1997 Sheet 22 of 22 5,655,081

FIC. 27b.
CONVERT TRAP TO

EVENT AND FORWARD
TO ALL INTERESTED

SNMP TRAPS CONSOLES
AGENT - T - T -D-COLLECTOR - - --> CONSOLE

358
REGISTER AS

SNMP MANAGER
REGISTER AS
MANAGER

362 364

5,655,081
1.

SYSTEM FORMONITORNG AND
MANAGING COMPUTER RESOURCES AND
APPLICATIONS ACROSSA DISTRIBUTED
COMPUTING ENVIRONMENT USING AN
INTELLIGENT AUTONOMOUSAGENT

ARCHITECTURE

FIELD OF THE INVENTON

This invention relates generally to computer networks. 1.
More specifically, the invention relates to a method and
apparatus for centrally monitoring and managing the
computers, applications and other resources present in a
distributed computing environment.

BACKGROUND

The data processing resources of business organizations
are increasingly taking the form of a distributed computing
environment in which data and processing are dispersed
over a network comprising many interconnected, heteroge
neous and geographically remote computers. Among the
reasons for this approach are to offload non-mission-critical
processing from the mainframe, to provide a pragmatic
alternative to centralized corporate databases, to establish a
single computing environment, to move control into the
operating divisions of the company, and to avoid having a
single point of failure. For example, many business entities
have one client/server network installed in each regional
office, in which a high-capacity computer system operates as
the "server” supporting many lower-capacity "client” desk
top computers. The servers in such a business entity are also
commonly connected to one another by a higher-level net
work known as a wide area network. In this manner, users
at any location within the business entity can theoretically
access resources available in the company's network regard
less of where the resource is located,
The flexibility gained for users with this type of arrange

ment comes with a price, however. It is very difficult to
manage such a diverse and widely-dispersed network for
many reasons. Servers installed in the wide area networkare
frequently not all of the same variety. One regional office
may be using an IBM machine with a UNDX operating
system, while another regional office may be using a DEC
machine with a VMS operating system. Also, applications
present on the servers throughout the network vary not only
in terms of type, but also product release level within an
application type. Moreover, the applications available are
changed frequently by users throughout the network, and
failure events in such a network are usually difficult to catch
until after a failure has already occurred. Thus, a need exists
for an efficient and flexible enterprise management system.
By way of background, one computer network manage

ment system was implemented in the fashion shown sche
matically in FIG. 1. In FIG. 1, a network management
computer system 10 is coupled via network 12 to server
computer system 14 and a plurality of other server computer
systems. The hardware present in each of the computer
systems may be of any conventional type such as is typically
found on server computers in a client/server network envi
ronment. Moreover, the hardware configuration of each of
the computer systems need not be the same. For example,
network management computer system 10 might be built
around a computer sold by International Business Machines
Corporation operating with the well-known UNIX operating
system, while server computer system 14 might be built
around a computer sold by Digital Equipment Corporation
operating with the well-known VMS operating system. The

15

20

25

30

35

40

45

50

55

65

2
other server computer systems in the network might be built
around yet other hardware/software platforms. In addition,
all of the server computers in the network might be coupled
to a variety of supported client computers such as desk-top
computers, workstations and other resources. It is
anticipated, however, in FIG. 1 that network management
computer system 10 and each of the server computer sys
tems in the network will be equipped with some sort of CPU
16, 18, some sort of conventional input/output equipment

0 20, 22 such as a keyboard and a display monitor, some sort
of conventional data storage device 24, 26 such as a disk or
tape drive or CD ROM drive, some sort of random access
memory ("RAM") 28, 29, and some sort of conventional
network communication hardware 30, 32 such as an ETH
ERNET interface unit for physically coupling the computer
system to network 12. In the system of FI6. 1, network 12
may be implemented using any conventional network pro
tocol such as TCP/IP. In the configuration shown in FIG. 1,
a manager software system34 is stored on storage device 24
in network management computer system 10; one agent
software system is installed on each of the server computer
systems in the network, such as agent software system 36
shown stored on storage device 26 in server computer
system 14; at least one knowledge module 38 is stored on
storage device 24 in network management computer system
10; and at least one script program 40, 42 is stored on each
of the storage devices 24, 26 throughout the computer
network.

FIG. 2 illustrates the main components for implementing
the manager software system34 shown in the system of FIG.
1. Knowledge module parser 44 is responsible for accessing
knowledge module 38 and parsing the information therein
for use by knowledge database manager 46, which in turn
creates and maintains a database 47 of knowledge that is
more readily useable by manager software system 34 than
would be the data stored in knowledge module 38. Object
database manager 48 creates and maintains a database 49
representing all of the resources and applications
(collectively, "objects”) present on the computer network, as
well as information pertaining to the state of those objects,
in a form that will be readily useable by a graphical user
interface module 50. Databases 47 and 49 may be stored in
RAM or on a storage device such as a hard disk. Graphical
user interface 50 is responsible for communicating with
display driver software in order to present visual represen
tations of objects on the display of network management
computer system 10. Such representations typically take the
form of icons for objects. Also, graphical user interface
module 50 coordinates the representation of pop-up win
dows for command menus and the display of requested or
monitored data. Event manager 52 is responsible for keeping
a record of various occurrences throughout the computer
network, Such as the occurrence of alarm conditions and
their resolution, for the purpose of record keeping and
management convenience. Interface 54 is for the purpose of
interfacing with network management software other than
the manager software system 34 and agent software system
36. For example, users of network management computer
system 10 may make use of software such as Hewlett
Packard Corporation's OPENVIEW product for the purpose
of monitoring low-level network conditions such as broken
physical connections. While using such a third-party
product, the user may open a window and request informa
tion from manager software system 34, in which case
interface 54 will coordinate communication between man
ager software system 34 and such third party product.
Communications module 56 is responsible for handling all

5,655,081
3

communications to and from agent software systems
installed throughout the computer network. Script program
compiler 58 is used when the user of manager software
System 34 wishes to develop script programs for use in
customizing the network management system. Kernel 60
represents all other miscellaneous functions within manager
Software system 34, Such as coordinating the action of the
above-named modules and the communications between
them.

FIG. 3 illustrates the main components of the agent
Software system 36 shown in FIG. 1. Communications
module 62 coordinates message communications to and
from other computers, such as network management com
puter System 10, and parses the information contained in
Such messages. Script program compiler 64 is responsible
for compiling script programs. Such compilation is only
partial, however, resulting in an intermediate code that is not
directly executable, but that is interpretable by script pro
gram interpreter 66. Command execution manager 68 is
responsible for coordinating the execution of commands
dictated from within agent software system 36 by any of its
components. Depending on the command type, executions
of Such commands may entail the use of operating system
commands available on the host server computer, or such
commands may entail the interpretation of script programs
as will be further described below. Run queue scheduler 70
maintains a list of runable jobs or commands, together with
the times at which they should be run and their desired
frequency. By checking a timer within agent software sys
tem 36, run queue scheduler 70 is capable of “waking up”
at appropriate times to route runable jobs or commands to
command execution manager 68. Dispatcher 72 is respon
sible for routing information to and from the appropriate
modules within agent software system 36, and generally
performs a coordinating function similar in nature to that of
kernel 60 in manager software system34. Knowledge data
base manager 74 creates and maintains a database 75, either
in RAM or on a storage device such as a hard disk,
containing knowledge received via messages from manager
Software system 34. The knowledge maintained in agent's
database 75 differs from the knowledge contained in man
ager's database 47, however, in that agent's database 75
typically does not contain information pertinent to the
display of information on the manager's console. Process
cache manager 76 creates and maintains process cache 77,
which is typically stored in RAM. Agent software system 36
fills process cache 77 periodically with information con
cerning the processes that are present on the host server
computer at any given moment. Process cache 77 is also
accessed by other modules within agent software system 36,
Such as application discovery manager 78, for providing
Some of the input information used to determine whether
certain resources are present on the host server. Parameter
and recovery action manager 80 is responsible for monitor
ing certain aspects of resources on the server computer, such
as "disk space remaining.” for example, and is responsible
for taking automatic actions to recover from alarm levels for
Such resources, as will be discussed below.

FIG. 4 is a diagrammatic illustration of the types of
information that is typically stored in a knowledge module
38 and in knowledge databases such as databases 47 and 75.
(Note that knowledge module 38 is usually stored in the
form of a data file containing ASCII text.) There are two
basic broad categories of information represented in a
knowledge module. Category 92 comprises information
related to computers that may be present on any given
network. Category 92 includes information in categories 82,

10

15

20

25

30

35

40

45

50

55

60

65

4
84 and 86. Category 94 comprises information related to
applications that might be present on the computers in any
given network. Category 94 includes information in catego
ries 88 and 90. As can be seen in categories 82 and 88,
various types of information may be stored in a knowledge
module, such as information relating to environment,
parameters, command types, commands, setup commands,
"infobox” commands, and discovery. For example, environ
ment information includes values for environment variables
that are used to execute certain commands. Parameter infor
mation pertains to certain aspects of a computer or applica
tion that are to be monitored, such as “number of users
logged in.” “Command type” information tells an agent
software system how to execute a given command.
("Command type” information might indicate that a given
command is type "operating system,” or type SQL, or that
the command is actually a script program.) "Command”
information, proper, is associated with the definition of a
command, i.e., the text of the actual command, and contains
information displayed in a command menu at the network
manager's console. Setup commands are those that are to be
executed whenever the manager software system 10 estab
lishes a connection with an agent software system 36.
Infobox command information relates to the format for
displaying command output in "pop-up' information win
dows at the manager's console. Discovery information
relates to which application classes are desired to be
Searched for, and also to the names and locations of the
Script programs required to do the searching.
Note that, in knowledge module 38, the above categories

of information are arranged in a hierarchy, such that infor
mation in category 82 will apply to all computers (for
example, IBM and DEC computers), unless overridden by
information in category 84 or 86. By the same token,
information in category 84 would apply to all instances of a
given class of computers (for example, all computers using
the UNIX operating system), unless overridden by informa
tion in category 86. Information in category 86 would apply
only to certain instances of computers in a given class. (For
example, the UNIX computers at the Dallas and Houston
nodes in a wide area network would represent two different
instances within the UNIX computer class.) Similarly, cat
egories 88 and 90 represent a hierarchy of infomation:
Information in category 88 would apply to all applications in
a given class of applications, unless overridden by informa
tion in category 90 pertaining to a specific application
instance within the class. (For example, one application
class might contain information relating to all instances of
version 7 of Oracle Corporation's ORACLE database man
agement System, while another class might contain infor
mation relating to all instances of version 6 of that compa
ny's database management system.) Information in category
90 would apply only to certain instances of the applications
in a class, for example the ORACLE version 7 database
present on a certain server computer system within the
network.

It should be noted that, in the network management
system of FIG. 1, only information types pertinent to a
particular server are sent by management software system
10 to the agent software system 36 installed on that server,
but such pertinent information might include infomation
from all of the above categories.

FIG.5a, which is continued in FIG.5b, is an excerpt from
an actual knowledge module 38. FIG. 6a, which is continued
in FIG. 6b, is an excerpt from an actual script program such
as would be typical for script programs 40 and 42. Script
programs are Written in an interpretable language. In the

5,655,081
5

network management system of FIG. 1, script programs are
stored in network management computer system 10 and
server computer system 14 in their uninterpreted form,
usually in the form of an ASCII text file. In the network
management system of FIG. 1, when a script program 42 is
used for the first time by agent software system 14, it is
compiled and interpreted. Thereafter, the compiled version
of script program 42 is stored so that the next time it is
required it may simply be interpreted from its intermediate
form rather than being compiled again. As can be seen from
the example, a Script program written in an interpretable
language can be used to define a command or routine, such
as (in this example) aroutine for collecting information and
determining the number of users logged into a particular
server computer system 14 as well as the number of pro
cesses per user. Any highlevel language definition could be
used to write the script programs for use in the system of
FIG. 1, provided that the language definition enabled the
programmer to: (1) execute external commands, (2) access
System files, (3) communicate information about the exist
ence and status of resources, (4) allow the exchange of
information between processes, and (5) query and update a
knowledge database such as databases 47 and 75.

FIG. 7 is a flow diagram showing how the network
management system of FIG. 1 was initialized; FIG. 8 is a
flow diagram illustrating how the network management
system of FIG. It was used to discover resources on a server
computer system; FIG. 9 is a flow diagram illustrating how
the network management system of FIG. 1 was used to
monitor resources on a server computer system; and FIG. 10
is a flow diagram illustrating how the network management
system of FIG. 1 was used to execute recovery actions
relating to the resources on a server computer system.
While the above-described network management system

Successfully addressed numerous important problems in the
art, it did not address certain other problems. One such
problem is that of scalability. It is desirable in a large
network to use numerous network management computer
Systems 10, each running its own manager software 34 or
"console” process, and to have agent processes in the
network numbering in the thousands. In network systems
like that shown in FIG. 1, however, a separate agent process
is required in server computer system 14 with its own
knowledge database 75 each time a new manager software
process or "console' process begins to monitor the resources
on server computer system 14. Therefore, multiple agents
would exist on the same server in order to support multiple
consoles. This soon begins to tax the memory and CPU
resources of server computer system 14, decreasing the
server capacity available for other applications.

Additionally, agent software system 36 in the system of
FIG. 1 is dependent upon manager software 34 in at least
two senses. First, knowledge must be transmitted by man
ager 34 to agent 36 when manager 34 desires to begin
monitoring resources on server computer system 14, result
ingin a large flurry of network traffic. Second, if no manager
or console process exists to support agent software system
36, then resources on server computer system 14 will go
un-monitored.

Another class of network management systems have been
implemented according to the well-known Simple Network
Management Protocol (hereinafter "SNMP") as described,
for example, in Marshall T. Rose, The Simple Book (2d ed.,
PTR Prentice-Hall, Inc., 1994). The SNMP protocol speci
fies that only one agent will exist on a given managed node
in a network regardless of the number of console processes
interested in monitoring the resources associated with the

10

15

20

25

30

35

45

50

55

65

6
node. The SNMP protocol is designed such that a set of
information called a Management Information Base
(hereinafter "MIB") will be locally available in storage for
each such agent in the network. The MIB acts to define the
objects, or resources, that can be monitored using the SNMP
protocol. In operation, an SNMP agent will monitor objects
associated with its node in accordance with the information
comprising the MTB independently of the existence of a
console process interested in the objects. However, an
SNMP system is inefficient and inflexible in that a console
must request information from the agent about objects on a
piecemeal basis, one request per piece of information,
causing increased network traffic as well as overhead in the
computer system running the console.

Yet another problem with network management systems
has been inefficient or nonexistent means used to manage
events occurring within the network, resulting in difficulty in
coordinating recovery actions between the various manage
ment consoles throughout the network.

It is therefore an object of the present invention to provide
an enterprise management system that will increase auto
mation and efficiency in network management and decrease
the complexity of Such management.

It is another object of the present invention to provide an
enterprise management system that is easy to implement and
maintain as installed applications and computers change.

It is another object of the present invention to provide an
agent System for use in an enterprise management system
wherein the agent system utilizes the memory and CPU
resources of a server computer system in an efficient manner,
regardless of the number of console systems that are moni
toring the resources on the server.

It is another object of the present invention to provide an
enterprise management system that decreases the amount of
network traffic associated with communication between
agent processes and console processes.

It is another object of the present invention to provide an
enterprise management system that enables the management
of events in a network to be coordinated between the various
console processes in the network.

It is another object of the present invention to provide an
agent system for use in an enterprise management system
wherein the agent system is autonomous and capable of
monitoring and managing the resources on a server com
puter system regardless of whether a console system in the
network is monitoring resources on the server.

Other objects and advantages of the present invention will
be apparent to persons having ordinary skill in the art and
having reference to the following specification and draw
ings.

SUMMARY OF THE INVENTION

The invention is an improved method and software sys
tem for monitoring and managing applications and other
resources in a computer network. The method and system is
preferably to be used in any distributed computing environ
ment in which two or more computer systems are connected
by a network, including environments in which the net
Worked computers are of different types. At least one man
ager software system is installed on and runs on at least one
of the networked computer systems designated as a network
management computer system. The network management
computer Systems act as consoles for monitoring and man
aging resources present on server computer systems in the
network. An agent software system is installed on and runs

5,655,081
7

on each of the server computer systems in the network. Each
respective agent software system carries out tasks on the
computer system in which it is installed such as discovering
which resources and applications are present on the com
puter system, monitoring particular aspects of the resources
and applications present on the computer system, and
executing recovery actions automatically when such actions
are warranted. Each agent is also able to carry on a dialog
of communication with manager software systems via the
network, so that the consoles on the network management
computer systems can provide a continuously updated dis
play representing all resources and applications present
throughout the network as well as the state of each such
resource or application.

Knowledge modules are stored locally at the site of each
server system on which an agent process is to run. Consoles
register with the agents, telling the agents which resources,
parameters and events the console is interested in receiving
information about. In response, the agent loads only those
knowledge modules into its knowledge database as are
necessary to provide the monitoring services required by the
consoles' registrations.

In operation, the agent then continually monitors the state
of each resource registered to be monitored, as well as the
state of certain default resources that are always to be
monitored, and maintains a historical log both of events that
have occurred and also of the values of individual param
eters relevant to the resources. The agent also sends mes
sages to each console registered to receive information; but
the agent only sends information that each console is inter
ested in receiving based on the console's registration
information, thus reducing network traffic.
The enterprise management system of the invention also

provides a unique event management capability. When a
console sends a message to an agent indicating that the
console's user has acknowledged the occurrence of an event,
the agent modifies its event log accordingly, identifying
which console acknowledged the event. The agent then
propagates a message to all other consoles in the network
that are registered with the agent to receive infomation about
the affected resource. Recipient consoles modify their own
event caches in response to the agents message, with the
result that all consoles in the network are automatically
updated and coordinated regarding attempts to handle an
eVent.

When the last console registered with an agent to receive
information about a non-default resource sends a message to
the agent un-registering itself, the agent unloads from its
knowledge database the knowledge that was being used to
provide information to the console. In this manner, server
memory and CPU resources are more efficiently utilized.
The invention also comprises using an agent as an inter

mediary in a large-scale enterprise whereby the agent acts as
a collector, concentrating event information flowing from
lower-level agents for ultimate use by a higher level console.
In such a multi-tiered arrangement, true scalability is
achieved.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer network config
ured to implement a network management System.

FIG. 2 is a block diagram showing the main components
of the manager software system of FIG. 1.

FIG. 3 is a block diagram showing the main components
of the agent software system of FIG. I.

FIG. 4 is a diagrammatic illustration of the types of
information that are stored in a knowledge module accord
ing to the network management system of FIG. 1.

5

10

15

20

25

30

35

40

45

50

55

60

65

8
FIG.5a and 5b comprise a listing of portions of an actual

knowledge module according to the network management
system of FIG. 1.

FIG. 6a and 6b comprise a listing of portions of an actual
Script program according to the network management Sys
tem of FIG. I.

FIG. 7 is a flow diagram illustrating a procedure for
initializing a networkfor operation according to the network
management system of FIG. 1.

FIG. 8 is a flow diagram illustrating a procedure for
discovering resources according to the networkmanagement
system of FIG. 1.

FIG. 9 is a flow diagram illustrating a procedure for
monitoring resources according to the networkmanagement
system of FIG. 1.

FIG. 10 is a flow diagram illustrating a procedure for
executing recovery actions according to the network man
agement system of FIG. 1.

FIG. 11 is a block diagram illustrating a computer net
work configured to implement an enterprise management
system according to a preferred embodiment of the inven
tion.

FIG. 12 is a block diagram illustrating the main compo
nents of a preferred agent software system according to the
invention.

FIG. 13 is a block diagram illustrating the main compo
nents of a preferred manager software system according to
the invention.

FIG. 14 is an illustration of a preferred data structure for
implementing a data repository for storage in an agent
computer system according to the invention.

FIG. 15 is an illustration of preferred data structures for
implementing an event repository for storage in an agent
computer System as well as in a manager computer System
according to the invention.

FIG. 16 is a flow diagram illustrating a preferred proce
dure for initializing an agent software system according to
the invention.

FIG. 17 is an illustration of a preferred data structure for
implementing a table of registered consoles for storage in an
agent computer system according to the invention.

FIG. 18 is an illustration of preferred data structures for
implementing a series of interest masks for storage in an
agent computer system according to the invention.

FIG. 19 is a flow diagram illustrating a preferred proce
dure for registering a console with an agent and dynamically
loading knowledge modules according to the invention.

FIG. 20 is a schematic representation of the dynamic
ioading of knowledge modules in an agent computer system
according to the invention as a result of the registration of
numerous consoles with the agent.

FIG. 21 is a flow diagram illustrating a preferred proce
dure for de-registering a console from an agent according to
the invention and dynamically unloading knowledge mod
ules.

FIG. 22 is an illustration of a preferred data structure for
implementing an event filter according to the invention.

FIG. 23 is an illustration showing an example of how two
event filters can form a filter chain according to the inven
tion.

FIG. 24 is a flow diagram illustrating a preferred proce
dure to be used by an agent for monitoring resources,
checking for event occurrences, and for filtering and com
municating the results to consoles according to the inven
tion.

5,655,081
9

FIG. 25 is a pseudo-code listing disclosing a preferred
event processing routine for use in the procedure of FIG. 24.

FIG. 26 is a flow diagram illustrating a preferred proce
dure for managing events in an enterprise management
system according to the invention.

FIG. 27a is a top view block diagram illustrating an
alternative embodiment of the invention configured to yield
multi-tiered problem management capabilities in a large
scale enterprise.

FIG. 27b is a block diagram illustrating a preferred
procedure for implementing the configuration of FIG. 27a.

DETALED DESCRIPTION OF THE
INVENTION

The invention will now be described in detail with refer
ence FIGS. 11-26, like numbers being used therein to
indicate corresponding components.

General Implementation
The general implementation of the invention will now be

discussed with reference to FIGS. 11-15.
F.G. 11 is a block diagram showing a computer network

configured to implement a preferred embodiment of the
invention. As can be seen from the diagram, much of the
configuration is similar to that of FIG. 1. Manager software
200 and agent software 202 differ, however, from their
counterparts in the system of FIG.1. They differ in that they
are enhanced to perform the functionality that will be
described in more detail below in relation to the other
drawings. There are also three additional components shown
in the network of FIG. 11 that are not shown in FIG. 1. First,
knowledge modules 204 are stored locally at the site of the
server computer systems 14. Second, agent software 202
creates an event log 206 (also called an "event repository”
herein) to be further described below. Third, agent software
202 creates a data log 208 (also called a "data repository”
herein), also to be further described below.

FIG. 12 is a block diagram showing the main components
of a preferred embodiment of agent software system 202. As
can be seen, many of the components correspond to those in
agent software system 36. However, the overall functional
ity of agent software system 202 is enhanced relative to that
of agent software system 36, so as to perform the function
ality to be further described below. Also, agent software
system 202 includes an event manager 210. The function
ality of event manager 210 will be discussed in more detail
below in reference to other drawings.

FIG. 13 is a block diagram showing the main components
of a preferred embodiment of manager software system 200.
As can be seen, many of the components correspond to those
in manager software system 34. However, the overall func
tionality of manager software system 200 is enhanced rela
tive to that of manager software system34, so as to perform
the console registration and event management functionality
to be further described below. Also, manager software
system 200 creates an event cache 212 whose structure is
identical to that of event repository 206 to be described
below.

FIG. 14 shows a preferred data structure for agent soft
ware 202 to use for storing historical application parameter
values and related information in non-volatile memory, such
as on storage device 26. The structure comprises a data
repository 208. Within the records stored in data repository
208, there are several fields. Parameter identification field
214 contains a unique identifier for the parameter, including

10

15

20

25

30

35

40

45

50

55

65

10
the associated application name, instance name and param
eter name. Measurement time field 216 contains an indica
tion of the time at which the value of the parameter was
measured. Value field 218 contains the calculated value of
the parameter. In a preferred embodiment, the logging of
data into data repository 208 by agent 202 can be enabled or
disabled by means of a flag. Preferably, data repository 208
is a circular disk file such that the structure will grow to a
limited number of records, at which point new entries will
cause the oldest records in the file to be overwritten.

FIG. 15 shows a preferred set of data structure for agent
software 202 to use for storing historical information about
events that have occurred. A series of event catalogs 220-24
are provided. Such event catalogs, as can be seen from the
diagram, contain a series of enumerated records, each such
record containing an event description. An event repository
206 is also provided. Within the records comprising event
repository 206, there are a number offields. Catalog number
field 226 contains a reference identifying which of the event
catalogs contains a description of the recorded event. Entry
number field 228 contains the record or entry number of the
event description in the catalog pointed to by field 226.
Event argument field 230 contains variable information that
can be associated with fixed information associated with an
event description. (The use of such argument fields facili
tates the use of multilingual implementations, such that the
same numerical argument may be inserted into descriptions
of an event written in several different languages.) Event
status field 232 contains information such as whether the
event is "open,” “closed,” “acknowledged” or “deleted.”
Event time field 234 records the time at which the event was
generated or detected. Event diary field 236 may contain
textual information about an event. The textual information
may be entered manually by a user or automatically by agent
202. Event ownerfield 238 is used to record an identifier for
the user or console that has acknowledged the event.
Preferably, event repository 206 is stored as a circular disk
file.

Initialization of the Agent
FIG. 16 is a flow diagram illustrating a preferred proce

dure for initializing agent 202. In step 240, knowledge
modules are stored at the site of agent 202 in non-volatile
memory, such as in storage device 26. In step 242, agent
software 202 begins executing. In step 244, agent software
202 checks a configuration file, also preferably stored on
storage device 26, indicating which resources or applica
tions on the server are to be monitored always, regardless of
whether or not a console has registered interest in the
application (such applications are hereinafter called "default
resources'). In step 246, agent 202 loads, from storage
device 26 into knowledge database 75, only the knowledge
modules that correspond to the default applications. In step
248, agent 202 initializes run queue 71 so that the default
applications will be monitored periodically according to the
information and instructions contained in the loaded knowl
edge modules.

Console Registration and De-Registration with
Dynamic Loading and Unloading of Knowledge

Modules

FIG. 17 illustrates a preferred data structure for agent 202
to use in storing registration information about consoles that
register with the agent according to the registration proce
dure that will be discussed in more detail below. As can be
seen, each record or entry in the structure contains a number

5,655,081
11

of fields. Entry number field 252 is mainly shown in the
drawing for illustrative purposes to number the records
indicated in the drawing. Address field 254 is used to contain
information that will identify the console registered, such as
the network address of the console. Event context field 256
is used to point to a list of event filters associated with the
registered console. (A list of event filters is referred to
hereinbelow as a "filter chain,” and is described below in
relation to FIG. 22 and 23.) By way of example, in the
diagram, console A is registered at entry number 0 in the
table, and is associated with event context A. Console B, on
the other hand, is registered an entry number 1 in the table,
and is associated with event context B. The table should
preferably be able to hold a large number of entries, so that
an equally large number of managers 200 may register to
receive information from agent 202.

FIG. 18 illustrates a preferred set of data structures for
agent 202 to use in determining which consoles should
receive various types of available information, according to
a procedure which will be further discussed below. The
diagram shows three basic types of data structures:
application-level structures 262, instance-level structures
264, and parameter-level structures 266. It will be under
stood that all structures on each respective level are intended
to be the same as the other structures shown on the same
level. The structures on application level 262, such as
Structure 268 corresponding to Application A, comprise an
application interest mask 270 and an instance list 272.
Preferably, application interest mask 270 is a bit field, and
instance list 272 is a list of pointers to corresponding
instance-level Structures. The structures on instance level
264 comprise a current state field 276 for storing the current
state of an application instance (for example, "instance is
shut down” or "instance is active”), an instance interest
mask 278, and an instance list 280. Preferably, instance
interest mask278 is a bitfield and parameter list 272 is a list
of pointers to corresponding parameter-level structures. The
structures on parameter level 266 comprise a parameter
instance mask 284 and a parameter value interest mask286.
Preferably, both parameter instance mask284 and parameter
value interest mask 286 are bit fields.
The purpose of the above-referenced interest masks are to

associate all of the information necessary to determine
whether a given registered console is “interested” in receiv
ing information corresponding to the object that owns the
interest mask. The preferred association technique is that the
bit number in the various interest maskbitfield corresponds
to the entry number in table 250 at which the console is
registered. This technique is best explained by way of the
following example: Referring to FIG. 17, it can be seen that
console C has registered with agent 202, and its identifying
information has been placed at entry number 2 in the table
250. Thus, the assertion level of the bit in position number
2 of each interest mask will indicate whether console C is
interested in the information associated with the interest
mask. In FIG. 18, it can be seen at location 288 that console
C is registered to receive information about application A
because the bit in location 288 is asserted. At location 290,
it can be seen that console C is also registered to receive
information about instance AA of application A. At location
292, it can be seen that console C is also registered to receive
information about events associated with parameter A of
instance AA of application A. At location 294, however, it
can be seen that console C is not registered to receive the
value of parameter A each time the parameter is calculated
(elsewhere herein referred to as "real-time” parameter
monitoring) because the bit in location 294 is unasserted.

10

15

20

25

30

35

40

45

50

55

65

12
FIG. 19 is a flow diagram illustrating a preferred proce

dure by which a console 200 may register with an agent 202.
In step 296, the console sends a message to the agent
identifying itself. In step 298, the agent responds to the
console's message, identifying itself in return. In step 300,
the console sends a registration message to the agent. The
registration message preferably contains a list of application
classes and instances in which the console is interested. (The
message may alternatively include a list of instances in
which the console is specifically not interested.) The agent
then makes appropriate entries in the interest masks dis
cussed in relation to FIG. 18 in order to reflect the registering
console's requests. Preferably, the agent assigns the same
values to parameter interest masks as it assigns to associated
instance interest masks. (Non-identical assignments could
be desirable, however, in alternative implementations in
which the console sends other registration information in
addition to the above-described registration information,
such as a list of parameters the console is interested in.) In
step 302, the agent is shown making the appropriate entries
in the data structures discussed above in relation to FIG. 17
and 18, so as to store the registration information and to
associate it with the console's identifier.
The console could also send an event filter or set of

chained event filters for storage in the agent. If the console
does not send an event filter, however, the agent simply
assigns the "default” event filter to the console's event
context. The default filter is a PASS type filter with a
wild-card in each of the event source, event type and event
severity condition fields. (Event filters are described in more
detail below.)

In steps 304 and 306, the agent determines which knowl
edge modules will be required in the agent's knowledge
database 75 in order to service the requests of the registered
console. The agent then proceeds to load the requisite
knowledge modules. However, the agent will not re-load
knowledge modules that are already present in knowledge
database 75, thus avoiding redundancy. This process results
in dynamic loading of knowledge modules, which is illus
trated schematically in FIG. 20. In FIG. 20, it can be seen by
Way of example that, according to the registration informa
tion received in the registration process of FIG. 19, console
1 is interested in applications A and C, console 2 is interested
in applications A and B, and console “n” is interested only
in application D. Thus, only four knowledge modules are
needed in knowledge database 75, knowledge modules
corresponding to applications A, B, C and D. Therefore, only
those knowledge modules are loaded. (Of course, other
knowledge modules may be present in knowledge modules
75 as well, such as those associated with "default'
applications.)

FIG. 21 is a flow diagram illustrating a preferred proce
dure for de-registering a console from an agent either
partially or completely. The procedure may be initiated in a
number of ways. Typically, it will be initiated when a
console sends a message changing its registration
information, as in step 308, or indicating that it should be
de-registered from the agent completely, as in step 310. In
step 312, the agent modifies the data structures of FIG. 17
and 18 accordingly to make the necessary change in regis
tration information, or to delete the necessary information.
For example, to de-register a console entirely, the agent
would delete the console's entry from table 250.

In steps 314, 316 and 318, the agent determines whether
one or more knowledge modules stored in knowledge data
base 75 have become superfluous as a result of the change
in console registration. If so, the superfluous knowledge

5,655,081
13

modules are unloaded from knowledge database 75, thus
making more efficient use of server resources.

Resource Monitoring and Data Reporting with
Event Filtering

Event filtering allows a console interested in a particular
object to be selective about the events it wants to be notified
about in relation to the object.

FIG. 22 illustrates a preferred data structure for imple
menting event filtering. Event filter structure 320 includes
four fields. Field 322 determines whether the event filter is
a PASS type filter or a FAIL type filter. Field 324 may
contain information identifying events by the name of an
object of list of objects potential causing the event. For
example, field 324 might contain an application name,
instance name or parameter name. Field 326 may contain
infomation identifying events by type, such as a state
change event or error event. Field 328 may contain infor
mation identifying events by severity level, such as alarm
severity, warning severity, or simply information-level
severity. Fields 324,326 and 328 may also contain wild-card
characters.

Filtering may be explained by way of example with
reference to FIG. 23. FIG. 23 illustrates a sequence of two
'chained' filters, filters A and B. These two filters are
designed such that if all events generated were tested against
filter A first and then filter B, the result would be that all
events would pass through filter A, but any events of the type
having an infomation-level severity would be screened an
would not pass through filter B. In other words, all events
having a severity level higher than the information level of
severity would pass through both event filters and be rec
ognized.
A preferred procedure for monitoring resources, process

ing events and reporting data to consoles will now be
discussed in relation to FIG. 24 and 25.
As can be seen in step 330, FIG. 24 is a loop that is

repeated for each resource that the agent is supposed to
monitor pursuant to the default list of resources found in the
configuration file during agent initialization and pursuant to
the registration infomation received and stored from regis
tering consoles as described above. In step 332, the agent
checks the state of the resource. In step 334, the agent
determines whether the state of the resource has changed
relative to the information stored, for example, in field 276.
If the state has changed, the agent continues with step 336,
in which it executes the event processing routine of FIG. 25
(to be discussed below). If not, the agent continues with step
338, in which it calculates the value of the parameters
associated with this resource. In step 339, the parameter
values are stored in the data structure described in FIG. 14.
In step 340, the agent sends the calculated parameter values
to all consoles registered to receive "real-time' data for that
instance and parameter. In step 342, the agent compares the
value of every parameter against a threshold (usually stored
in a knowledge module) to determine if a threshold-crossing
event has occurred. If so, then the agent continues with step
344, in which it executes the event processing routing of
FIG. 25. If not, the agent arrives at step 346 and repeats the
loop by returning to step 330 if more resources are to be
monitored.
FIG.25 is a pseudo-code listing for illustrating a preferred

procedure for processing events. It will be understood that
the pseudo-code is shown for purposes of explanation only,
and that persons of ordinary skill in the art may program the
routine differently while still remaining within the scope of

O

15

20

25

30

35

40

45

50

55

65

14
the invention. Each time the routine is executed, a record of
the event is logged into event repository 206. Then, two
nested loops are executed. The outermost loop repeats for all
consoles registered in table 250. The innermost loop repeats
for all event filters in the chain of filters identified by the
event contextinformation stored infield 256 of table 250 for
each registered console. The effect of the routine is that
events are only reported to interested consoles, and even
then only to interested consoles whose event filters are
satisfied by the event. This procedure provides enhanced
performance by, among other things, reducing network
traffic.

Event Management
FIG. 26 is a flow diagram illustrating a preferred proce

dure for managing events in an enterprise management
system like that of FIG. 11. It will be understood that the
procedure of FIG. 26 would begin after the event processing
routing of FIG. 25 sent a message to a console notifying the
console that an event has occurred, and after the user at the
console decided to take responsibility for handling the
reported event. In step 348, after the user taking responsi
bility for the event makes an appropriate entry at his console,
the console sends a message to the agent so indicating. In
step 350, the agent modifies event repository 206 accord
ingly. For example, the agent would modify field 238 to
identify the console or the user taking responsibility for the
event. The agent might also modify field 232 indicating that
the status of the event is “acknowledged.” In step 352, the
agent uses the data structures of FI6. 17 and 18 to send a
message to every console interested in this event. Such a
message would include, for example, an indication of the
fact that a console has taken responsibility for the event, and
an indication of the identity of the responsible console. It
will be understood that all other information pertinent to the
event may also be sent in such a message according to
procedures already described above. In step 354, the con
soles receiving a message sent by the agent in step 352
modify the entries in their own event caches 212. The result
of the procedure is that the information maintained in the
agent's event repository is propagated throughout the net
work to all interested consoles, such that the event manage
ment efforts of all interested consoles will be automatically
coordinated, and Such that all Such consoles will have access
to the same, up-to-date information about the events that
interest them.

Multi-Tiered Problem Management
FIG. 27A and 27B comprise a block diagram illustrating

an alternative embodiment of the invention, configured to
yield multi-tiered problem monitoring and management
capabilities in a large-scale enterprise. In such a
configuration, the network is effectively divided into two or
more tiers, such as tiers 362 and 364. It is to be understood
that agent 356 in the drawing represents a multitude of other
similar agents operating in tier 362 in the network. Collector
358 may be a single intermediary agent, or it may be viewed
for purposes of the illustration as representing a number of
such intermediate agents operating between tiers of a
network, such as between tiers 362 and 364. The effect of the
configuration is to reduce event-related network traffic on
the higher tiers of the network, and also to remove some of
the load of event management from higher level consoles. In
operation, collector 358 registers with agents 356 as an
SNMP manager and therefore begins to receive notification
of SNMP traps. Collector 358 then converts the SNMP traps

5,655,081
15

into an event recognizable by console 360, and collector 358
simultaneously acts as an agent 202 with respect to console
360. (Persons having ordinary skill in the art will readily
understand that Script programs and knowledge modules
such as those discussed above may be used to accomplish
this result without undue experimentation.) In this manner,
collector 358 serves to lessen the burden of problem man
agement placed on higher-level consoles such as console
360. The embodiment of the invention shown in FIG. 27 is
very flexible. For example, as is indicated in the drawing, if
console 360 desires "real-time" parameter data in addition to
simply the event-related information coming from collector
358, then console 360 may also register with agents 356
independently.

Conclusion

While the invention is susceptible to various modifica
tions and alternate forms, specific embodiments have been
shown and described in a manner sufficient to enable persons
having ordinary skill to utilize the invention in practice
without undue experimentation. It will be understood, of
course, that the invention is not limited to the particular
forms disclosed, but rather is to cover all modifications,
equivalents and alternatives falling within the spirit and
scope of the of the invention as defined by the following
claims.
What is claimed is:
1. A method for monitoring and managing computer

system resources and applications in a computer network
utilizing at least one console system and at least one agent
system, said at least one console and at least one agent
Systems each comprising a random access memory and a
non-volatile data storage device, the method comprising the
steps of:

(a) storing, in the non-volatile data storage device, a
plurality of data sets corresponding to information for
monitoring and managing a plurality of resources and
applications;

(b) transmitting a first request from the at least one
console System to the at least one agent system, said
first request specifying a first resource or application
for the at least one agent system to monitor or manage;

(c) determining whether a first data set corresponding to
information for monitoring or managing said first
resource or application already exists in the random
access memory of the at least one agent system;

(d) if the outcome of step (c) indicates that said first data
set does not exist in the random access memory of the
at least one agent system, loading said first data set
from the non-volatile data storage device into the
random access memory of the at least one agent sys
tem;

(e) gathering information about said first resource or
application responsive to the information contained in
said first data set;

(f) determining, responsive to a stored threshold and to
information gathered in step (e), whether an event has
occurred and, if so, what type of event;

(g) transmitting a plurality of messages, from the at least
one agent system to the at least one console system,
said plurality of messages containing information about
said first resource or application;

(h) transmitting a second request from the at least one
console system to the at least one agent system, said
second request specifying that the at least one console

10

5

20

25

30

35

40

45

50

55

60

65

16
system should not receive information about said first
resource or application;

(i) determining whether other of the at least one console
systems should receive information about said first
resource or application;

(j) if the outcome of step (i) indicates that no other of the
at least one console systems should receive information
about said first resource or application, unloading said
first data set from the random access memory of the at
least one agent system.

2. The method of claim 1 wherein said application portion
of said first request includes information identifying a type
of computer application.

3. The method of claim 2 wherein said first request further
includes information identifying an instance within the class
of instances defined by said type of computer application.

4. The method of claim3 wherein said first request further
includes information identifying a first event pertinent to
said instance.

5. The method of claim 4, further including the step of
excluding, from said plurality of messages, any information
about events that are detected in step (f) but that do not
correspond to said first event.

6. The method of claim 1, further including the step of
storing, in the non-volatile data storage device of the at least
one agent system, a first record of information gathered in
step (e) and events detected in step (f).

7. The method of claim 6 wherein, for cases in which said
plurality of messages contains information indicating that
said first event has occurred and in which the at least one
console system wishes to communicate to other of the at
least one console systems that the at least one console
system has learned of the occurrence of said first event, the
method further including the steps of:

transmitting a third request, from the at least one console
system to the at least one agent system, said third
request containing an acknowledgment that said first
event has occurred;

storing a second record of said acknowledgment that said
first event has occurred in the non-volatile data storage
device of the at least one agent system;

determining whether other of the at least one console
systems in the network should receive notification of
said acknowledgment that said first event has occurred;
and, if so,

transmitting a fourth request to at least one other console
system in the network, said fourth request containing
information about said acknowledgment that said first
event has occurred,

8. The method of claim 1 wherein the at least one console
system runs on a first computer system and the at least one
agent system runs on a second computer System.

9. The method of claim 1 wherein the at least one agent
system executes recovery actions responsive to events
detected in step (f), said recovery actions specified by
information contained in said first data set.

10. The method of claim 1 wherein said first data set
contains information specifying computer script programs
for discovering, monitoring or managing said first resource
or application.

11. A method for monitoring and managing computer
system resources and applications utilizing at least one agent
system, said agent system comprising a random access
memory and a non-volatile data storage device, the method
comprising the steps of:

a) storing, in the non-volatile data storage device, a
plurality of data sets corresponding to information for

5,655,081
17

monitoring and managing a plurality of computer
resources and applications;

b) storing, in the non-volatile data storage device, infor
mation indicating which computer resources or appli
cations are to be monitored or managed by the at least
one agent System;

c) reading said information indicating which of said
computer resources or applications are to be monitored
or managed by the at least one agent system;

d) responsive to information readin step (c), loading, into
the random access memory, a first data set correspond
ing to a first computer resource or application to be
monitored or managed by the at least one agent System;

e) gathering information about said first computer
resource or application responsive to information con
tained in said first data set;

f) determining, responsive to a stored threshold and to
information gathered in step (e), whether an event has
occurred and, if so, what type of event; and

g) Storing, in the random access memory, information
gathered in step (e) or information corresponding to
events detected in step (f).

12. The method of claim 11 further including the steps of:
(h) responsive to information read in step (c), determining

whether a second data set corresponding to information
for monitoring and managing a second computer
resource or application already exists in the random
access memory of the at least one agent system;

(i) if the outcome of step (h) indicates that said second
data set does not existin the random access memory of
the at least one agent system, loading said second data
set from the non-volatile data storage device into the
random access memory of the at least one agent sys
ten;

(j) gathering information about said second computer
resource or application responsive to information con
tained in said second data set;

(k) determining, responsive to a stored threshold and to
information gathered in step (), whether an event has
occurred, and if so, what type of event; and

(l) storing, in the random access memory, information
gathered in step () or information corresponding to
events detected in step (k).

13. The method of claim 11 wherein a plurality of data
sets corresponding to a plurality of computer resources or
applications to be monitored or managed by the at least one
agent system are loaded into the random access memory of
the at least one agent system.

14. The method of claim 11 wherein said first data set
contains information specifying computer Script programs
for discovering, monitoring or managing said first computer
resource or application.

15. The method of claim 11 further including the step of
storing, in the non-volatile data storage device, information
gathered in step (e) or information corresponding to events
detected in step (f).

16. The method of claim 11 further including the step of
executing recovery actions responsive to events detected in
step (f), said recovery actions specified by information
contained in said first data set.

17. The method of claim 11 wherein information about
said first computer resource or application is gathered auto
matically according to a predetermined time schedule.

18. The method of claim 11 further including at least one
console system, said console system including a random

5

10

15

20

25

30

35

40

45

50

55

65

18
access memory and a non-volatile data storage device, the
method further comprising the steps of:

h) transmitting a first request from the at least one console
system to the at least one agent system, said first
request specifying a second computer resource or appli
cation for the at least one agent system to monitor or
manage;

i) determining whether a second data set corresponding to
information for monitoring or managing said second
computer resource or application already exists in the
random access memory of the at least one agent Sys
tem;

j) if the outcome of step (i) indicates that said second data
set does not exist in the random access memory of the
at least one agent system, loading said second data set
from the non-volatile data storage device of the at least
one agent system into the random access memory of the
at least one agent system;

k) gathering information about said second computer
resource or application responsive to information con
tained in said second data set;

I) determining, responsive to a stored threshold and to
information gathered in step (k), whether an event has
occurred and, if so, what type of event;

m) transmitting a plurality of messages, from the at least
one agent system to the at least one console system,
said plurality of messages containing information about
said second computer resource or application;

n) transmitting a second request from the at least one
console system to the at least one agent system, said
second request specifying that the at least one console
system should not receive information about said sec
ond computer resource or application;

o) determining whether other of the at least one console
systems should receive information about said second
computer resource or application; and

p) if the outcome of step (o) indicates that no other of the
at least one console systems should receive information
about said second computer resource or application,
unloading said second data set from the random access
memory of the at least one agent system.

19. The method of claim 18 further including the step of
executing recovery actions responsive to events detected in
step (1), said recovery actions specified by information
contained in said data sets.

20. The method of claim 11 further including at least one
console system, said console system including a random
access memory and a non-volatile data storage device, the
method further including the step of transmitting informa
tion gathered about said first computer resource or applica
tion to the at least one console system.

21. A method for monitoring and managing computer
system resources and applications utilizing at least one agent
system, at least one intermediate agent system, and at least
one console system, where the at least one agent system,
intermediate agent system and console system each com
prise a random access memory and a non-volatile data
storage device, the method comprising the steps of:

(a) registering the at least one intermediate agent system
with the at least one agent system, said registration
specifying resources and applications for the at least
one agent system to monitor or manage;

(b) registering the at least one console system with the at
least one intermediate agent system, said registration
specifying resources and applications for the at least
one intermediate agent system to monitor or manage;

5,655,081
19

(c) gathering, by the at least one agent System, informa
tion about said resources and applications monitored or
managed by the at least one agent system;

(d) determining by the at least one agent system, respon
sive to registration information received from the at
least one intermediate agent system, whether the at
least one intermediate agent system should receive
information about said resources and applications
monitored or managed by the at least one agent system;

(e) responsive to the outcome of step (d), transmitting a
plurality of messages from the at least one agent system
to the at least one intermediate agent system, said
plurality of messages containing information about said
resources and applications monitored or managed by
the at least one agent system;

(f) determining by the at least one intermediate agent
system, responsive to registration information received
from the at least one console system, whether the at
least one console system should receive information
about said resources and applications monitored or
managed by the at least one intermediate agent system;

(g) responsive to the outcome of step (f), transmitting a
plurality of messages from the at least one intermediate
agent system to the at least one console system, said
plurality of messages containing information about said
resources and applications monitored or managed by
the at least one intermediate agent system.

22. The method of claim 21 further including a plurality
of intermediate agent systems, the method further including
the steps of:

(h) registering other of the plurality of intermediate agent
systems with the at least one intermediate agent system,
Said registration specifying resources and applications
for the at least one intermediate agent system to moni
tor or manage;

(i) determining by the at least one intermediate agent
system, whether other of the plurality of intermediate
agent systems should receive information about
resources and applications monitored or managed by
the at least one intermediate agent system;

(j) responsive to the outcome of step (i), transmitting a
plurality of messages from the at least one intermediate

10

15

20

25

30

35

40

20
agent system to other of the plurality of intermediate
agent systems, said plurality of messages containing
information about resources and applications moni
tored or managed by the at least one intermediate agent
system.

23. The method of claim 21 further including the steps of:
(h) registering the at least one console system with the at

least one agent system, said registration specifying
resources and applications for the at least one agent
system to monitor or manage;

(i) determining by the at least one agent system, whether
the at least one console system should receive infor
mation about resources and applications monitored or
managed by the at least one agent system;

(j) responsive to the outcome of step (i), transmitting a
plurality of messages from the at least one agent system
to the at least one console system, said plurality of
messages containing information about resources and
applications monitored or managed by the at least one
agent system.

24. The method of claim 21 further including the steps of:
(h) de-registering the at least one console system from the

at least one intermediate agent system;
(i) de-registering the at least one intermediate agent

system from the at least one agent system.
25. The method of claim 21 wherein at least one inter

mediate agent system is used to interface between a plurality
of tiers of a computer network including agent systems,
intermediate agent systems or console systems.

26. The method of claim 21 wherein the at least one
console system runs on a first computer system, the at least
one intermediate agent system runs on a second computer
system, and the at least one agent system runs on a third
computer system.

27. The method of claim 21 wherein the registration
information contains information specifying computer script
programs for discovering, monitoring or managing said
resources or applications.

:: * : :: *

