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(57) ABSTRACT

For controlling a target system, e.g. a gas or wind turbine or
another technical system, a pool of control policies is
provided. The pool of control policies comprising a plurality
of control policies and weights for weighting each of the
plurality of control policies are received. The plurality of
control policies is weighted by the weights to provide a
weighted aggregated control policy. With that, the target
system is controlled using the weighted aggregated control
policy, and performance data relating to a performance of
the controlled target system are received. Furthermore, the
weights are adjusted on the basis of the received perfor-
mance data to improve the performance of the controlled
target system. With that, the plurality of control policies is
reweighted by the adjusted weights to adjust the weighted
aggregated control policy.
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CONTROLLING A TARGET SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This is a continuation of International Application
No. PCT/EP2015/060298, having an international filing date
of May 11, 2015, which claims priority to U.S. application
Ser. No. 14/309,641, having a filing date of Jun. 19, 2014,
the entire contents of both which are hereby incorporated by
reference.

FIELD OF TECHNOLOGY

[0002] The following relates to embodiments of control-
ling a target system.

BACKGROUND

[0003] The control of complex dynamical technical sys-
tems, (e.g., gas turbines, wind turbines, or other plants), may
be optimized by so-called data driven approaches. With that,
various aspects of such dynamical systems may be
improved. For example, efficiency, combustion dynamics, or
emissions for gas turbines may be improved. Additionally,
life-time consumption, efficiency, or yaw for wind turbines
may be improved.

[0004] Modern data driven optimization utilizes machine
learning methods for improving control policies (also
denoted as control strategies) of dynamical systems with
regard to general or specific optimization goals. Such
machine learning methods may allow to outperform con-
ventional control strategies. In particular, if the controlled
system is changing, an adaptive control approach capable of
learning and adjusting a control strategy according to the
new situation and new properties of the dynamical system
may be advantageous over conventional non-learning con-
trol strategies.

[0005] However, in order to optimize complex dynamical
systems, (e.g., gas turbines or other plants), a sufficient
amount of operational data is to be collected in order to find
or learn a good control strategy. Thus, in case of commis-
sioning a new plant, upgrading or modifying it, it may take
some time to collect sufficient operational data of the new or
changed system before a good control strategy is available.
Reasons for such changes might be wear, changed parts after
a repair, or different environmental conditions.

[0006] Known methods for machine learning include rein-
forcement learning methods that focus on data efficient
learning for a specified dynamical system. However, even
when using these methods it may take some time until a
good data driven control strategy is available after a change
of the dynamical system. Until then, the changed dynamical
system operates outside a possibly optimized envelope. If
the change rate of the dynamical system is very high, only
sub-optimal results for a data driven optimization may be
achieved since a sufficient amount of operational data may
be never available.

SUMMARY

[0007] An aspect relates to creating a method, a controller,
and a computer program product for controlling a target
system that allow a more rapid learning of a control policy,
in particular, for a changing target system.

[0008] Embodiments of the present invention a method, a
controller, or a computer program product for controlling a
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target system (e.g., a gas or wind turbine or another technical
system) by a processor, is based on a pool of control policies.
The method, controller, or computer program product is
configured to receive the pool of control policies comprising
a plurality of control policies, and to receive weights for
weighting each of the plurality of control policies. The
plurality of control policies is weighted by the weights to
provide a weighted aggregated control policy. With that, the
target system is controlled using the weighted aggregated
control policy, and performance data relating to a perfor-
mance of the controlled target system are received. Further-
more, the weights are adjusted by the processor on the basis
of the received performance data to improve the perfor-
mance of the controlled target system. With that, the plu-
rality of control policies is reweighted by the adjusted
weights to adjust the weighted aggregated control policy.
[0009] Embodiments of the invention allow for an effec-
tive learning of peculiarities of the target system by adjust-
ing the weights for the plurality of control policies. Usually,
such weights comprise much less parameters than the pool
of control policies itself. Thus, the adjusting of the weights
may require much less computing effort and may converge
much faster than a training of the whole pool of control
policies. Hence, a high level of optimization may be reached
in a shorter time. In particular, a reaction time to changes of
the target system may be significantly reduced. Moreover,
aggregating a plurality of control policies reduces a risk of
accidentally choosing a poor policy, thus increasing the
robustness of the method.

[0010] According to an embodiment of the invention the
weights may be adjusted by training a neural network run by
the processor.

[0011] The usage of a neural network for the adjusting of
the weights allows for an efficient learning and flexible
adaptation.

[0012] According to a further embodiment of the inven-
tion the plurality of control policies may be calculated from
different data sets of operational data of one or more source
systems, preferably by training a neural network. The dif-
ferent data sets may relate to different source systems, to
different versions of one or more source systems, to different
policy models, to source systems in different climes, or to
one or more source systems under different conditions (e.g.,
before and after repair, maintenance, changed parts, etc.).
[0013] The one or more source systems may be chosen
similar to the target system, so that control policies opti-
mized for the one or more source systems are expected to
perform well for the target system. Therefore, the plurality
of control policies based on one or more similar source
systems are a good starting point for controlling the target
system. Such a learning from similar situations is often
denoted as “transfer learning”. Hence, much less perfor-
mance data relating to the target system are needed in order
to obtain a good aggregated control policy for the target
system. Thus, effective aggregated control policies may be
learned in a short time even for target systems with scarce
data.

[0014] The calculation of the plurality of control policies
may use a reward function relating to a performance of the
source systems. Preferably, that reward function is also used
for adjusting the weights.

[0015] Furthermore, the performance data may comprise
state data relating to a current state of the target system.
Then, the plurality of control policies may be weighted
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and/or reweighted in dependence of the state data. This
allows for a more accurate and more effective adjustment of
the weights. In particular, the weight of a control policy may
be increased if a state is recognized where that control policy
turned out to perform well and vice versa.

[0016] Advantageously, the performance data may be
received from the controlled target system, from a simula-
tion model of the target system, and/or from a policy
evaluation. Performance data from the controlled target
system allow to monitor the actual performance of the target
system and to improve that performance by learning a
particular response characteristic of the target system. A
simulation model of the target system, on the other hand,
also allows what-if queries for the reward function. Further-
more, with a policy evaluation a so called Q-function may
be set up, allowing to determine an expectation value for the
reward function.

[0017] Moreover, an aggregated control action for con-
trolling the target system may be determined according to
the weighted aggregated control policy by weighted major-
ity voting, by forming a weighted mean, and/or by forming
a weighted median from action proposals according to the
plurality of control policies.

[0018] According to a preferred embodiment of the inven-
tion the training of the neural network may be based on a
reinforcement learning model, which allows an efficient
learning of control policies for dynamical systems.

[0019] In particular, the neural network may operate as a
recurrent neural network. This allows for maintaining an
internal state enabling an efficient detection of time depen-
dent patterns when controlling a dynamical system. More-
over, many so-called Partially Observable Markov Decision
Processes may be handled like so-called Markov Decision
Processes by a recurrent neural network

[0020] The plurality of control policies may be selected
from the pool of control policies in dependence of a per-
formance evaluation of control policies. The selected control
policies may establish a so called ensemble of control
policies. In particular, only those control policies may be
selected from the pool of control policies which perform
well according to a predefined criterion.

[0021] Furthermore, control policies from the pool of
control policies may be included into the plurality of control
policies or excluded from the plurality of control policies in
dependence of the adjusted weights. This allows to improve
the selection of control policies contained in the plurality of
control policies. So, for example, control policies with very
small weights may be removed from the plurality of control
policies in order to reduce an computational effort.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] Some of the embodiments will be described in
detail, with reference to the following figures, wherein like
designations denote like members, wherein:

[0023] FIG. 1 illustrates an exemplary embodiment of the
invention including a target system and several source
systems together with controllers generating a pool of con-
trol policies.

[0024] FIG. 2 illustrates the target system together with a
controller in greater detail.
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DETAILED DESCRIPTION

[0025] FIG. 1 illustrates an exemplary embodiment of the
invention including a target system TS and several source
systems S1, . .., SN. The target system TS and the source
systems S1, . .., SN may be gas or wind turbines or other
dynamical systems including simulation tools for simulating
a dynamical system. Preferably, the source systems S1, . . .
, SN are chosen to be similar to the target system TS.
[0026] The source systems S1, . . ., SN may also include
the target system TS at a different time, e.g., before main-
tenance of the target system TS or before exchange of a
system component, etc. Vice versa, the target system TS may
be one of the source systems S1, ..., SN at a later time.
[0027] Each of the source systems S1, . . . , SN is
controlled by a reinforcement learning controller RLC1, . .
., or RLCN, respectively, the latter being driven by a control
policy P1, . . ., or PN, respectively. The reinforcement
learning controllers RL.C1, . . . , RLCN each may comprise
a recurrent neural network (not shown) for learning, i.e.
optimizing the control policies P1, . . ., PN. Source system
specific operational data OD1, . . ., ODN of the source
systems S1, . .., SN are collected and stored in data bases
DB1, ..., DBN. The operational data OD1, . ..., ODN are
processed according to the control policies P1, . . ., PN and
the latter are refined by reinforcement learning by the
reinforcement learning controllers RL.C1, . . ., RLCN. The
control output of the control policies P1, . . ., PN is fed back
into the respective source system S1, . . ., or SN via a control
loop CL, resulting in a closed learning loop for the respec-
tive control policy P1, . . . , or PN in the respective
reinforcement learning controller RLC1, . . ., or RLCN. The
control policies P1, . . . , PN are fed into a reinforcement
learning policy generator PGEN, which generates a pool P
of control policies comprising the control policies P1, . . .,
PN.

[0028] The target system TS is controlled by a reinforce-
ment learning controller RL.C comprising a recurrent neural
network RNN and an aggregated control policy ACP. The
reinforcement learning controller RL.C receives the control
policies P1, . . ., PN from the reinforcement learning policy
generator PGEN and generates the aggregated control policy
ACP from the control policies P1, . . ., PN.

[0029] Furthermore, the reinforcement learning controller
RLC receives from the target system TS performance data
PD relating to a current performance of the target system TS,
e.g. a current power output, a current efficiency, etc.. The
performance data PD include state data SD relating to a
current state of the target system TS, e.g. temperature,
rotation speed, etc. The performance data PD are input to the
recurrent neural network RNN for its training and input to
the aggregated control policy ACP for generating an aggre-
gated control action for controlling the target system TS via
a control loop CL. This results in a closed learning loop for
the reinforcement learning controller RLC.

[0030] The usage of pre-trained control policies P1, . . .,
PN from several similar source systems S1, . . ., SN gives
a good starting point for a neural model run by the rein-
forcement learning controller RLC. With that, the amount of
data and/or time required for learning an efficient control
policy for the target system TS may be reduced considerably.
[0031] FIG. 2 illustrates the target system TS together with
the reinforcement learning controller RLC in greater detail.
The reinforcement learning controller RLC comprises a
processor PROC and—as already mentioned above—the
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recurrent neural network RNN and the aggregated control
policy ACP. The recurrent neural network RNN implements
a reinforcement learning model.

[0032] The performance data PD(SD) including the state
data SD stemming from the target system TS are input to the
recurrent neural network RNN and to the aggregated control
policy ACP. Moreover, the control policies P1, . . ., PN are
input to the reinforcement learning controller RLLC. The
control policies P1, . . . , PN may comprise the whole pool
P or a selection of control policies from the pool P.

[0033] The recurrent neural network RNN is adapted to
train a weighting policy WP comprising weights W1, . . .,
WN for weighting each of the control policies P1, . .., PN.
The weights W1, . .., WN are initialized by initial weights
IW1, . . ., IWN received by the reinforcement learning
controller RLC e.g. from the reinforcement learning policy
generator PGEN or from a different source.

[0034] The aggregated control policy ACP relies on an
aggregation function AF receiving the weights W1, ..., WN
from the recurrent neural network RNN and on the control
policies P1, . . ., PN. Each of the control policies P1, . . .,
PN or a pre-selected part of them receives the performance
data PD(SD) with the state data SD and calculates from them
a specific action proposal AP1, . . ., or APN, respectively.
The action proposals AP1, . . . , APN are input to the
aggregation function AF, which weights each of the action
proposals AP1, . . ., APN with a respective weight W1, . .
., or WN to generate an aggregated control action AGGA
from them. The action proposals AP1, . . ., APN may be
weighted e.g. by majority voting, by forming a weighted
mean, and/or by forming a weighted median from the
control policies P1, . . . , PN. The target system TS is then
controlled by the aggregated control action AGGA.

[0035] The performance data PD(SD) resulting from the
control of the target system TS by the aggregated control
action AGGA are fed back to the aggregated control policy
ACP and to the recurrent neural network RNN. From the fed
back performance data PD(SD) new specific action propos-
als AP1, ..., APN are calculated by the control policies P1,
..., PN. The recurrent neural network RNN, on the other
hand, uses a reward function (not shown) relating to a
desired performance of the target system TS for adjusting
the weights W1, .. ., WN in dependence of the performance
data PD(SD) fed back from the target system TS. The
weights W1, . . ., WN are adjusted by reinforcement
learning with an optimization goal directed to an improve-
ment of the desired performance. With the adjusted weights
W1, ..., WN an update UPD of the aggregation function
AF is made. The updated aggregation function AF then
weights the new action proposals AP1, . . . , APN, ie.
reweights the control policies P1, . . ., PN, by the adjusted
weights W1, ..., WN in order to generate a new aggregated
control action AGGA for controlling the target system TS.
The above steps implement a closed learning loop leading to
a considerable improvement of the performance of the target
system TS.

[0036] A more detailed description of the embodiment is
given below:
[0037] Each control policy P1, . . . , PN is initially

calculated by the reinforcement learning controllers RL.C1,
..., RLCN based on a set of operational data OD1, . . .,
or ODN, respectively. The set of operational data for a
specific control policy may be specified in multiple ways.
Examples for such specific sets of operational data may be
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operational data of a single system, e.g. a single plant,
operational data of multiple plants of a certain version,
operational data of plants before and/or after a repair, or
operational data of plants in a certain clime, in a certain
operational condition, and/or in a certain environmental
condition. Furthermore, different control policies from P1, .
. ., PN may refer to different policy models trained on a
same set of operational data.

[0038] When applying any of such control policies spe-
cific to a certain source system to a target system, it
generally may not perform optimally since none of the data
sets was representative for the target system. Therefore, a
number of control policies may be selected from the pool P
to form an ensemble of control policies P1, . . . , PN. Each
control policy P1, . . . , PN provides a separate action
proposal AP1, . . ., or APN, from the performance data
PD(SD). The action proposals AP1, . . ., APN are aggre-
gated to calculate the aggregated control action AGGA of
the aggregated control policy ACP. In case of discrete action
proposals AP1, ..., APN, the aggregation may be performed
using majority voting. If the action proposals AP1, ..., APN
are continuous, a mean or median value of the action
proposals AP1, . .. ; APN may be used for the aggregation.
[0039] The reweighting of the control policies P1, ..., PN
by the adjusted weights W1, . . ., WN allows for a rapid
adjustment of the aggregated control policy ACP, in particu-
lar, if the target system TS changes. The reweighting
depends on the recent performance data PD(SD) generated
while interacting with the target system TS. Since the
weighting policy WP has less free parameters, i.e. the
weights W1, ..., WN, than a control policy usually has, less
data is required to adjust to a new situation or to a modified
system. The weights W1, . . ., WN may be adjusted using
the current performance data PD(SD) of the target system
and/or using a model of the target system (implemented by
e.g. an additional recurrent neural network) and/or using a so
called policy evaluation.

[0040] According to a simple implementation each control
policy P1, . . ., PN may be globally weighted (i.e., over a
complete state space of the target system TS). A weight of
zero may indicate that a particular control policy is not part
of the ensemble of policies.

[0041] Additionally or alternatively, the weighting by the
aggregation function AF may depend on the system state, i.e.
on the state data SD of the target system TS. This may be
used to favor good control policies with high weights within
one region of the state space of the target system TS. Within
other regions of the state space those control polices might
not be used at all.

[0042] Specifically, let P, i=1, . . ., N, denote a control
policy from the set of stored control policies P1, .. ., PN and
let s be a vector denoting a current state of the target system
TS. Then a weight function f(P,,s) may assign a weight W,
(of the set W1, ..., WN) to the respective control policy P,
dependent on the current state denoted by s, i.e. W,=f(P,,s).
A possible approach may be to calculate the weights W,
based on distances (according to a pre-defined metric of the
state space) between the current state s and states stored
together with P, in a training set containing those states
where P, performed well. Uncertainty estimates, e.g. pro-
vided by a probabilistic policy, may also be included in the
weight calculation.

[0043] Preferably, the global and/or state dependent
weighting is optimized using reinforcement learning. The
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action space of such a reinforcement learning problem is the
space of the weights W1, . . ., WN, while the state space is
defined in the state space of the target system TS. For a pool
of e.g. ten control policies the action space is only ten
dimensional and, therefore, allows a rapid optimization with
comparably little input data and little computational effort.
So called meta actions may be used to reduce the dimen-
sionality of the action space even further. So called delayed
effects are mitigated by using the reinforcement learning
approach.

[0044] The adjustment of the weights W1, . . ., WN is
preferably carried out by applying a measured performance
of the ensemble of control policies P1, . . . , PN to a reward
function. The reward function may be preferably chosen
according to the goal of maximizing efficiency, maximizing
output, minimizing emissions, and/or minimizing wear of
the target system TS. In particular, a reward function used to
train the control policies P1, . . . , PN may be used for
training and/or initializing the weighting policy WP.
[0045] With the trained weights W1, . . . , WN the
aggregated control action AGGA may be computed accord-
ing to AGGA=AF(s, AP1, ..., APN, W1, ..., WN) with
AP=P(s), i=1, ..., N.

[0046] Although the present invention has been disclosed
in the form of preferred embodiments and variations
thereon, it will be understood that numerous additional
modifications and variations could be made thereto without
departing from the scope of the invention.

[0047] For the sake of clarity, it is to be understood that the
use of “a” or “an” throughout this application does not
exclude a plurality, and “comprising” does not exclude other
steps or elements.

1) A method for controlling a target system by a processor
on the basis of a pool of control policies, the method
comprising:

a) receiving the pool of control policies comprising a

plurality of control policies,

b) receiving weights for weighting each of the plurality of
control policies,

c) weighting the plurality of control policies by the
weights to provide a weighted aggregated control
policy,

d) controlling the target system using the weighted aggre-
gated control policy,

e) receiving performance data relating to a performance of
the controlled target system,

1) adjusting the weights by the processor on the basis of
the received performance data to improve the perfor-
mance of the controlled target system, and

g) reweighting the plurality of control policies by the
adjusted weights to adjust the weighted aggregated
control policy.
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2) The method as claimed in claim 1, wherein the weights
are adjusted by training a neural network run by the pro-
Cessor.

a) The method as claimed in claim 1, further comprising
receiving operational data of at least one source system,
and

b) calculating the plurality of control policies from dif-
ferent data sets of the operational data.

3) The method as claimed in claim 3, wherein the plurality
of control policies are calculated by training the neural
network or a further neural network.

4) The method as claimed in claim 3, wherein the calcu-
lation of the plurality of control policies uses a reward
function relating to a performance of the at least on source
system, and the reward function is used for the adjusting of
the weights.

5) The method as claimed in claim 1, wherein the per-
formance data comprise state data relating to a current state
of the target system and the weighting and/or the reweight-
ing of the plurality of control policies depends on the state
data.

6) The method as claimed in claim 1, wherein the per-
formance data are received from the controlled target sys-
tem, from a simulation model of the target system, and/or
from a policy evaluation.

7) The method as claimed in claim 1, wherein for con-
trolling the target system an aggregated control action is
determined according to the weighted aggregated control
policy by weighted majority voting, by forming a weighted
mean, and/or by forming a weighted median from action
proposals according to the plurality of control policies.

8) The method as claimed in claim 2, wherein the training
of the neural network is based on a reinforcement learning
model.

9) The method as claimed in claim 2, wherein the neural
network operates as a recurrent neural network.

10) The method as claimed in claim 1, wherein the
plurality of control policies is selected from the pool of
control policies in dependence of a performance evaluation
of control policies.

11) The method as claimed in claim 1, wherein control
policies from the pool of control policies are included into
or excluded from the plurality of control policies in depen-
dence of the adjusted weights.

12) The method as claimed in claim 1, wherein steps d) to
g) of claim 1 are run in a closed learning loop with the target
system.

13) A controller for controlling a target system on the
basis of a pool of control policies, adapted to perform the
method of claim 1.

14) A computer program product for controlling a target
system by a processor on the basis of a pool of control
policies, adapted to perform the method of claim 1.
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