US 20220138322A1

a2y Patent Application Publication (o) Pub. No.: US 2022/0138322 Al

a9y United States

Sharma et al. 43) Pub. Date: May 5, 2022
(54) REDUCING THREAT DETECTION HO4L 9/40 (2022.01)
PROCESSING BY APPLYING SIMILARITY HO4L 9/32 (2006.01)
MEASURES TO ENTROPY MEASURES OF
FILES (52) US. CL
CPC ... GOG6F 21/565 (2013.01); GOG6F 21/577

(71) Applicant: Netskope, Inc., Santa Clara, CA (US)

(72) Inventors: Himanshu Sharma, Milpitas, CA (US);
Abhinav Singh, Sunnyvale, CA (US)

(73) Assignee: Netskope, Inc., Santa Clara, CA (US)
(21) Appl. No.: 17/574,463

(22) Filed: Jan. 12, 2022

Related U.S. Application Data

(63) Continuation of application No. 16/824,591, filed on
Mar. 19, 2020, which is a continuation of application
No. 16/556,183, filed on Aug. 29, 2019, now Pat. No.
10,621,346.

(60) Provisional application No. 62/890,034, filed on Aug.
21, 2019.

Publication Classification

(51) Int. CL
GO6F 21/56 (2013.01)
GO6F 21/57 (2013.01)
Organization Network 102 & Organization(s)
/_getwork(s) 104

| Computers 112a-n lk

/.

| Tablets 122a-n lg

7.

I Cell Phones 132a-n l«

| Smart Watches 142a-n I(\

2

Public Network 145

(2013.01); GO6F 2221/034 (2013.01); HO4L
9/3239 (2013.01); HO4L 63/145 (2013.01)

(57) ABSTRACT

The disclosed technology teaches reducing threat detection
processing by applying similarity measures. The method
includes recognizing that a file is an edited version of a
previously processed file and retrieving, from an archive, at
least an entropy measure of the previously processed file,
and calculating an entropy measure for the edited version of
the file. The method applies a similarity measure to compare
the entropy measures for the edited version and the previ-
ously processed file, avoiding full threat scanning of the file
to detect malware except when the similarity measure
reaches a scanning trigger. When any similarity measure or
combination of similarity measures reaches a trigger, the
technology teaches processing the file by using a threat
detection module to detect malware. Further included is
logging the edited version of the file for further processing
when the similarity measure reaches a logging trigger.

| Cloud-Based Services 108

App Hosting Services 118 |

Email Services 128 |

Video, Messaging and Voice Call
Services 138

File Transfer Services 15 |

Cloud-Based

I
I
I
I
|
I
|
I
I
Streaming Services 148 | :
I
1
I
I
I
1
1
I
Storage Service 168 :

Data Center 152

Broker (N-CASB) 155

Netskope Cloud Access Security

Active Analyzer 165

Extraction Engine 171 RN

- Introspective Analyzer 178

Classification Engine 172 b

Security Engine 173

Management Plane 174

Metadata Store
178

. Content Policies 187

Content Profiles 188

Content Inspection Rules 189

Enterprise Data 197
Clients 198
s " User Identities 199

Data Plane 180 L

J ~ i

Data Center(s) 154

May 5, 2022 Sheet 1 of 11 US 2022/0138322 A1

Patent Application Publication

9T 201AI0S 958I0)S
paseg-pno[)

§ST SOO1AIOS JoJSueRl], o[l

SPT seo1aI0g Surweansg

§CT Sao1A10S
18D 3210 A puk SUISESSIIN ‘09PIA

8TT se01A108 [rEWg

BTT soo1a10g Sunsopy ddy I

I
I
I
I
I
I
I
I
I
I
| —
I
I
I
I
I
I
I
I
" 0T SIIAISG paseg-pnoj)

SPT J10mIdN o1jqng

VIO PST (8)109u)) Be(
[]
G6T sonnuopy Jasn) T+ — V|- 08T sue|d vreq
861 swua1D) 55T h - FLT our|q JuowaSeury
76T wieq osudisyuyg | oSeioig 8T J03IUOIN LT suiSug A1noeg
e, 68T somy uonosadsuy Jusuo) s ~ R ZLT 2uISug uonedIsse[)
TG SO[1JOI JUSIUO B P — T~ —
Mll 1901 #5100 . ﬁ ST ezApuy o>uoummobmg ~. Mt duisug uoyornxy
L8T S9I[0d 12107y
SLT m TOT JozA[euy 9ADDY |
210)§ BIEPEID
\\.m.lg SST (dSVO-N) 1oyo1g
N | A1Inoag $s900y pnop)) adoysjoN
~—

75T Je1ud)) e

pr—

m | TEZFT SoUdIe | 1RWS w

PPN TEZET sououd (D |

b TZLT SPIGEL m

R TeZ]] ssomdwo)) w

) @%oéﬂ H—
(syuoneziuesiQ i TOT SOMION UOHRZIUESIQ |
ezl g AN e

US 2022/0138322 Al

May 5§, 2022 Sheet 2 of 11

Patent Application Publication

601

a1 "D

4)

TET JoreIduan) 1OV u

S8T IozAeuy xog pues u

(
(
~ 997 [emoriddy)

78T ayoe)
AIOWRIA-UT

9T SdI)
P01 Soo1AI0S Alied pIyL

691 JojeuIuIdR(

T SIOA1009Y
o1t

7971 Jojenoe) Aue[ruig g

pue S9INquUNY d1e1S

ﬁ €OT 10109[]0)) BIEPRION

79T (AV) suIA-nuy u
9CT 991AI0C UOTN0L] Jealy],

\, v

SST (ASVD-N) Joyoig AIndag ss900y pnop)) adoysiaN

ST Ie1us) vie(y

(SBES) 901AI0G B SB 9IEMJOS

0T SOOIAIOG paseg-pnoi)

P11 SHOMION dlqnd

> €OT dovHIdIUT J9S) m
i

70T JIomioN uoneziuesi

i - -

May §,2022 Sheet 3 of 11 US 2022/0138322 A1

Patent Application Publication

S8T s1ozheuy
X0qpues
Uylim sauisug
Suruueog
QIBM[BIA

19T
Iaouereq

peo]

'O
99T S9T 1Ny
(snomidsns DI BN €| =55 scpqereq
oY1 ST JUTWNDO(T-U]
, 5
S 4

AN

Son[eA
payde)
osN)

ON

SPT (HH 2yse)

T8T 2Yoe)
KIOWIN-U]

TOT SI0AI00Y

oIt

(744
oue[eyg

peoq

May 5, 2022 Sheet 4 of 11 US 2022/0138322 A1

Patent Application Publication

€ "DIA
IIIII §ST SuIIURDS JBSIY], JOJ OL] MON SINOY— — — — — — — —FSE MO[] 31 MON: — — —
SFE Joje[noe))
) . Kdonug pue
¢ uosuedwo) USEH 19sIeq
{) uawNd0(J
7 uosuedwo))
69T 101U “ < o1y Sunsixyg
1 uosuedwo)
|
I
797 101R21M01R) CIEPEIIN
Areqiug PHE SIMAEIY
onels
A) |
FFE sinsayg ﬁ R 797 aseqeie(
Bunsixg yoleq ; >
4

qar "Dld

u1q300f01d VA ofdwexy
$8F wio] passaidwor)
ur 1duog SurwwesSorg

US 2022/0138322 Al

WX JUDUWNDO(]
SLF 1u91uo)) Juaundo(Uley

[ux-ddy
SO sonaadoig uoneorddy

[WX 9107)
ST wownoo(g Jo samaadord 210D

FF sonsadoig o[1g

May 5§, 2022 Sheet 5 of 11

(LYV H0Od WO V¥ "O1d

T:w,om%_wmw ﬁ so1h1g Q ﬁ owoy, w ﬁozﬁ o w Tmcﬁ% %k@ m s3unig u

§TF 1duog
SurwwesSoig

5 91y 7V (ZTF sonsadoxd
[reuquingp JuaWNOO(] songadoid ddy 210D

E

Patent Application Publication

May §,2022 Sheet 6 of 11 US 2022/0138322 A1

Patent Application Publication

S "OId »
[, woo°913003 mmm//:sdny, WOQARUIYQR/WOD 11 IM) MmMm//:sdny, “ wod-adoysiauy/dny,] :,e1ps,
[mogaruIyqR/WOd 1IM) Mmm//:sdny, < wod-adoysiouy dny,] 1, zupd,
‘[, wogaBUIYqR/WOD 10IM) MM //:sdny, < wod-adoysiouy.dny] 1 11ps9,
} - PurpredAy,
‘[ouoN, ‘PuoN], ‘PuoN,] :1d,
‘[,Pu0N], ‘QuoN], ‘QuoN,] :juswnoop,} :sensedord judawmoop,
‘{00 isal, 20 1S9L, ‘ISL] .epn,
‘[sa8ueyd 20(7 2yl Sunsa], ,PUON], ‘QUON] :193[qns,
‘[ze°LT0] "uotsiaal,
1.Z200:$€:S1160-50-6107.9 “Z00:S€:STLFE-+0-610T.9 Z00:S€:STL60-+0-610Z,] : pagIpow,
‘[Jumouun), ‘puIRyS NysuewWIH, ‘YSuI§ ABUIYqY,] :,AqQpo1jipounse],
T20@ 1891, 20 1SAL, ‘20 182L,] :,uonduosap,
€S ‘Lprorireq, ‘plopired, ‘pIoPiTed,] 101,
T.200:01:12L61-20-6102, Z00:01:12161-20-610T, “Z00:01:1TL61-T0-6102Z.] : paresio,
‘[,auoN, ‘2uoN, ‘puoN,] :sentadoidaios, } : sontadoid o109,
“{l6zrze 108 ‘S6b] | spiom,
‘769 “1¥t ‘169] :Punyelo,
‘[,unop TewIoN, ,Wiop [eULON], ‘unop euuoN] : dredwsy,
Tonug, ‘as[ey, 9s[e}.] :,o0ppaleys,
‘[eey ‘L9] : sydeiSered,
Is 1 1] 1;s08ed,
Tors1 ¥z €] tsou,
Trer ‘il w
‘[,PuoN], ‘QuoN], ‘QuoN] : sired3uipesy,
To ‘0 ‘0] :,A11ndassop,
Lumoujun), ‘,2doysiaN, ‘odoysioN,] :, Auedwon,
TLr8917 ‘1€€€ ‘L1€¢€] 1 seordsyimsivoereyo,
‘T158¥81 ‘1+87 ‘8T8T] i s1o0EIRYD,

705 |\\\\\||| ‘T.0000°9T, 000091, ©,000091] : uoisIoadde,
‘[,PIO A 2O1JJO) OSOIDIIN, ,PIOM IO JOSOIIA], PIOA 1O JOsoIo1AL,] uonesrdde,} ‘_mofoaoax dde,}

May §,2022 Sheet 7 of 11 US 2022/0138322 A1

Patent Application Publication

9O

A asTe] H.mo,ﬁomg!ﬁmﬁ?
“{{} 1uqr00forgeqs,
TL9 —— “{{[0 ‘16 ‘0] :,1008” Qyurerus,
TAIOMIV6 MAZISA+Y/ MTMZEIDEOIZADAAL XNOELSIHTTSHNIG T +AI+PS WY NAZ0ZZ MAdO MUV 6 MATIS A+A/ M TMZAIDEOIZADAAL88TT I,
“HIle ALaDAISwdagoqyobbsz+ xwwsSs: 74019 SLAMAT+SMNHS /HI M THN MY TQ0ZY/ X MSIZZq+ A WWYS ZIMS Y THZ Y Y VWA 96,
“0ffe XL apAyswdagagqyobbsz4 xwwss wy [91 LMAT+SMIAHS HIM THN+MYIGOZYIX MST[72+ L WWYSZIMS) THZ VI VWA 96,
| s ysequis,} :soSueyo YSBywIs,} : JUX JUSWNO0pP,
799 {{198 ‘16 “0] :,21008 Ajureyius,
[M+ATArX 038z AW [FAIPT: MOONH/S NISMM M TDXOA T FEISNIS AT IIWIZIPHINLZT,
“Alq,Abx05z8 xu [3dIpZ: ACONH/XNIS MMM DX O AT TEISNYS AU [JUITIPHINL T,
“aV+LdbX058z8 AW [JAIPT: ATINHAALNIS MMM DX X TGI8 NS A [JUWIZIPHIAL T,
| yseyquus,} :soSuByo YSBYIS,} [JWX 9109,
759 —{{[98 ‘66 ‘0] ;21008 AyLreyruus,
LI0bPOI-+5Z6Sbrgzu [NXH NSO QUADF PE B 6S THOX0R+BPZIGOPIDZADI9OZU+ W FXFFIZIPT HT,
“ONbINOI+SZ6IDY/SNLIINXENSO: QA by N6 S THOX0B+BPZI90ZADMADLLOGSN-+W X FIZIPT +T,
“onIbrOF+SZ6IbY/SA [SINXH NSO qyAgnby A 6§ TIOX(E+2PZI90ZIDMAPI+9QSTW M IXFFIZIPT +T,
| :ysequis,} :,seSueyo yseyuis,} ;juxdde } ;soSueyo yseyws uonoss,
[,o818, 08184, ‘9s18,] :,Joodioalqo,
n—y_Omﬁﬁm. n_Qmﬂﬁm. n;@MH‘QmL .WHUDM;QO|£@NH%.
44} soueyd yseyuwis,
“PT-r0-610T, ,pOUUEDS Ise],
_ HLeLTLT *e€1vT “THOPI] 20218,
V9 (726 “9°0 0] :,95ueyo Jusoiad,} :soSueyo ozisayy,
T€9 ———{[0°001 ‘0°00T 0] :,01008 Ajureyrurs,
‘[,xs0p, “x00p, xo0p’,] | SUOISUNXY,} : SOTURYD IXO QWRUIY,
709 — ——{1¥'$6 56 ‘0] 121008 Aureyrus,
[X00P FOT0610T 21YISAY, “X00PZOTO6T0T 215IS), “X00P' [010610T 2[YIsel,] ;soweudyy, } : soSueyo swreusyy,
19— — {[99°0 ‘7¢'0 ‘0] :,28ueys Adonus sFeiussiad,
[PO9LSBLYECYLT 'O “SSOTTTELIVOET'O ‘68FLOELOLSEOTT 9] ;;sonTea Kdonua} : soFueyo Adonud,} @ sofueyo Arodoxd oy,
AM_H.DAHOZ. n.@ﬁoz. n.OHﬁOZL .‘Hﬁ—g.
‘[puoN], <,auoN], ‘,ouoN,] :,zs8d,
‘[,auoN, ‘,9uoN], ‘suoN;] : rewdd,
‘[auoN, ‘PuoN], ‘duoN,] : sdiysuoneyar,
[Lup10T Sreq oy /sro erpadoyiaudy/sdny, INITIAdAH | °, JPOSION, OV, *, YIoTION/yIx/Sro erpodryim-udy/:sdiy, NI TIAdAH] - pxomsur,

US 2022/0138322 Al

May 5§, 2022 Sheet 8 of 11

Patent Application Publication

b .Mvmrm 8L . { [oniy, ‘o818, 98T,] :somorUy BUA,
T {{{l0 7001 ‘0] :,21008 Ayurerus,
TeMOFAAO AQ+PAXZPNHWIE MIPHINLL: [ASSFA6X A9¥ZX O AU+ VN WXXzZpNoguginue HwzlQOopg AN L 9,
<Cu]usequns, o saSueyd ysequus,} :uiq109foigeqga,
‘[8ffu x £ gnASudAMI TGN OSZ+ AWWSS +H1] 9 IS LM+ ASMGHS /S TINN/AIQOZY/IX MST[ZZq+ A WS ZIMS Y THZ Y VWA 96,
“HIle XL aDASwdago1qyobbsz+ A wwSs: Zy11 916 LMAT+HSMINHS /HIM THN+M N [GOZYIX MST[Z2q+ L WS ZIMS Y THZ VY VIWA96,
“0ffe ALaDAISWdATq[0bbs 7+ A uruSs wpn [946 LMAT+SMNHS /HIM THN+MNIQOZY/IX MSTZZq+ A WW9S ZIMS) THZY Y VIWA:96,
] - ysequurs,} ;| $oSueyd YSeYWIS,} [[WIX JUSUWINO0P,
‘1{le6 ‘16 ‘0] 101008 Aureyrus,
T.3.9bX 03828 Aw{ 13AIPT H/6 IS MMM TPXO AT F6IgNYS AU [FUUZIPHINL L,
‘Alq,abx 03928 w37 ACONH/XNISMAMM ITPXOA T F6IgNYS AW [JULUTIPHINL TT,
LAV+L3bX038Z8 A 137 AFONH/AALNISMM M T PXOA T H6TISNYS AW [FUUZIPHINLTT,
—] . yseyuus,} ;soSueyo yseyuwis,} ;,[Urx 2109,
95l — ‘({16 ‘66 ‘0] ;21008 Ayureyrus,
[+N3PPOF+BZEIANSOINXF NSO QUAJ ZH P F6S TPOX(B+EPZI90ZAOMAPIA (9T (W N FXHFIZIPT T,
0N PO+ SZEIPYSINLIINXP NSO QYAdnbH g [J6 S THOX(B+EPZI90ZIDMAPI+ QSN+ W IXFFIZIPT +T,
“0NIPOI+SZ6IPY/SA [SINXYNSO:q/Adnbt PN [F6S THOX(E+ePZIg0ZIDMAPIH+9qSHW PXFFIZIPT T,
] s ysequis,} : soGueyo ysequus,} ;juxdde} :soSueyo yseywis uonoss,
44} :so8ueyo yseyus,
“FT¥0-610¢, 1 pouuEss isey,
FITEPT “€CTRT “THOPT] 10218,
z°1 ‘9'0 ‘0l :,28ueyo Jucoiad,} : soTuRyd 0zZISO,
‘L0001 “0°001 ‘0] :,01008 Ajurefruus,
[xo0p, “x00p’, “X00p’,] [, SUOISUIXD,} : soTuURYD IXI SWRU L,
LSHSTSPSrSrer st S6 “SherShSrSrstsh 66 0l 121008 Ayreqruus,
‘[X00p €0T06107 9[5S, " XO0P TOTO610T dYISA, “X00P 1010610 O[YIsd] :soweud[y,} :sagueyo oweudyy,
{I891TH989S6T0TH0 0 "LEFILSOISO686L9ET 0 “0] ;,28ueyd> Adonus oFejusorad,
88LY68TTISESYTE L “SBLY6SYTISERITE L ‘68VLOEL6LSEOTE L] sonfea Adonuo,} @ sofueydo Adonud,} ;soSueyd Auodosd oy,

9LL

L.p1oT djreq/piim/So erpadiyim ue// sdny, SINITYAdAH , *, WWOSION,, O\, *, POTIO/1IAy/S10 erpadiyia ud//: sdny, NI TIAd AH,] 1 1xemsur,
4 [,woo 915005 amar//:sdny, < WOqABUIYQE/ WO IORIMT Mmm//sdny, © wioo-adoxsiouy, dny,] :,c1p9,
‘[,mogaruIyqe/Wod IanIM) Masm//:sdny, ¢ wioo adosiouy/dny,] |, 7Ipe,
‘[wogaruIyqe/ oY TR M) Masm//:sdpy, < wioo edossiouy/dny,] ¢ 11ps,
3 purpadAy,
n_u.vgozﬂ n.nuﬁoz_ «.Oﬁoz_w_ H..HA”HH_
‘[,puoN, ‘euoN], puoN,] :juswmoop,} : sonuadosd Jusumoop,

May §,2022 Sheet 9 of 11 US 2022/0138322 A1

Patent Application Publication

48 "Dld

{} : soBueyo yseyus,
‘ “¥T-v0-610¢, ;pouueds sy,

Hrrert “ee1vl “1rov1l ozis,
1z°1 ‘90 ‘0] :,o8ueyd 1u0o1ad,} : so8ueys ozIsory,

“{l0'001 “0°00T 0] ;21008 Kyureqruns,

‘[, xo0p", ‘ x00p", ‘ x00p",] : SUOCISUAIXD,} [,SOTUBYD IXO OSWIRUQ[I,

“1l06°0F “t'$6 "0] ;01008 Ajurejnus,

‘[xo0pusumosop 219[dwod, “ X20p 70106107 21515, “X00P 10106107 O1yIsel,] | sowreus ;,SoSuRyd SWERUL

[L3s9l, ~X0o0p [J3SaL] - 195 - Ut T

‘e ‘Teo ‘o) o8ueyo Adonuo o8ejucoiad,

THO9LSSLYEEHST'9 “SSOTTIELIVOST'Y “68FLEELOLSEOTT 9] (sonfea Adonuo,} :sofueys Adonus,} :soSueyo Apredord oy,

_ “{[,ouoN, ‘,ouoN], ‘PuoN,] :2dd,
88 ‘[auoN], ,2uON], ,2u0N,] :,Zs5d,
‘[,auoN,;, ‘,2uoN], ‘,ouoN,] :Jewsd,

‘[,suoN, ‘,puoN], ouoN,] : sdiysuoneras,

/eqss/Ba0-erpadryia udy/ sy, INITIAdAH | | JHOSION, O\, *, OSION/M1A/B10"eIpadyim ud//:sduy, SINI TIHd AH.] :3xammsu,
A
[, oo noArojurgopueq mma//:sdny, < WOGABUIYQR/ WO IONIMY mmamy/:sdpy, © wod adosiouydny,] :.cups,
‘[ogABUTYQ B/ WO IONIMY MMm//sdpy, “ wod adoysiauy/:dny,] ©,zape,
‘[moqaruTyqR/ WO IoNIIMY Mam,/ sdny, oo odoysiouy/dny,] 1 13ps,
} o qurreday,
[,ou0N], “,uoN], <, ouoN],] : 1dx

8.8

[P0 MreQ

‘[,ouoN], ‘,0uoN;, ‘,ouoN,] :uswmoop,} : senrodoid juowmoop,

V8 Ol “{{} so8ueyo yseyus,
“WT-10-610T, poUURIS Ise],

ATTerT "ecetvl “Trov1] 29218,
‘1271 ‘90 0] ;,28ueyo usoiad} :soSueys ozisoyy,

AP ILS8THILSSTHT LS 07001 ‘0] ;01008 Ajurepruis,

TadAaoxo0p’, < x00p, ‘x00p’] : SUOISUAIXD,} : SOTUBYD IXO QWRUOYY,

SP8 — {08 b6 ‘0] at008 Auepums,
[adA1°X00P"€0TO6TOT SIFHSY, "X0P;T0T0610T 2%@. "X00P TOTO6T0T STISI,] 1,SIUrRUY,} 1s95ULYd Swreuayy,

Lov Lz ‘T o ‘0] :,28ueyo Adonus oFejusorad,

=
o
-

‘[88LY68YTISESYIS L “SSOITELOPOET9 “68¥L6EL6LSEOTT 9] 1 sonfea Adonus,} ;soTueyd Adonus,} :sogueyd Auradoid QE_

9¢8 (43

US 2022/0138322 Al

May §, 2022 Sheet 10 of 11

006

Patent Application Publication

6 "OId

oIem[BW 10919P 0} 9|NPOW UOI0)Rp Jealy) & Suisn Aq
3[1J 2y} $s9001d ‘1953113 B SOYORAI
SoINSBAW A}LIR[TWIS JO UOTIRUIQUIOD JO INSedw AJLIR[Iwis AUe USYA

¢s6

o11F passoooad Ajsnoradid oy) pue UOISIOA PAUPI Y} 10
‘sdnoi3 Aadod uo saysey sy pue ‘sainsesw Adonus dy)
‘sanjea elepejow oy} dredwod o) sarnseaw Anepiuns Ajddy

T~ St6

o1y
a3 Jo aunseaw Adonud ue pue sdnois A11adod ay) Jo saysey dy) 21e[NO[Ed pue Y Ay}
JO Tew103 Junodok ojur Sunye) ‘sdnoiS Aredosd pue sonjea vjepeiaw Ojul 911 oY} 9sied

— $t6

o[passaooad Ajsnorasid o Jo sdnois
A1adoud 303 soysey pue ainseow AdoONUL Uk ‘SINEA BIEPRIDW DAIYIIR UL WOIJ ‘DAY

o[1F passaooid Ajsnorasid Suo 1Sed[18 JO UOISIOA PIJIPD Uk ST I[IJ B JRUl 9ZIUS009Yy

— S$16

May 5, 2022 Sheet 11 of 11 US 2022/0138322 A1l

Patent Application Publication

=
<)
=
Yo

01 "OId

E— 9,01 vLOT —
wbcm $301A9J IndInQ wAISASqng Lol
VOdd 1dD 90BJINU] JOS(} 90BJIOIU] YIOMIIN Nndo
TOT walsAsgng sng
8€01
sao1a2(T Indug
Q0BJIU] J3S() —
o£01 FE01 Ze01
wIsAsqng WNOY NV
a5eI01§ 91y

)|

ST ASVO-N

2201 walsAsqng AJIOWO

US 2022/0138322 Al

REDUCING THREAT DETECTION
PROCESSING BY APPLYING SIMILARITY
MEASURES TO ENTROPY MEASURES OF

FILES

PRIORITY DATA

[0001] This application is a continuation of U.S. patent
application Ser. No. 16/824,591, titled “Efficient Scanning
for Threat Detection Using In-Doc Markers,” filed on 19
Mar. 2020, (Attorney Docket No. NSKO 1030-3) which is
a continuation of U.S. patent application Ser. No. 16/556,
183, entitled “Efficient Scanning for Threat Detection Using
In-Doc Markers”, filed on Aug. 29, 2019, (Attorney Docket
No. NSKO 1030-2), which claims priority to and the benefit
of U.S. Provisional Patent Application No. 62/890,034, filed
onAug. 21, 2019 (Attorney Docket No. NSKO 1030-1). The
priority applications are hereby incorporated by reference
for all purposes.

INCORPORATIONS

[0002] The following materials are incorporated by refer-
ence in this filing:

[0003] U.S. Nonprovisional application Ser. No. 15/213,
250, entitled “LOGGING AND MONITORING USAGE
OF CLOUD-BASED HOSTED STORAGE SERVICES,”
filed on 18 Jul. 2016 (Atty. Docket No. NSKO 1000-6) (now
U.S. Pat. No. 9,998,496, issued on Jun. 12, 2018), which is
a continuation of U.S. Nonprovisional application Ser. No.
14/198,499, entitled “SECURITY FOR NETWORK
DELIVERED SERVICES,” filed on 5 Mar. 2014 (Atty.
Docket No. NSKO 1000-2) (now U.S. Pat. No. 9,398,102,
issued on Jul. 19, 2016), which claims the benefit of U.S.
provisional Patent Application No. 61/773,633, entitled,
“SECURITY FOR NETWORK DELIVERED SERVICES,”
filed on Mar. 6, 15 2013 (Atty. Docket No. NSKO 1000-1);
[0004] U.S. Nonprovisional application Ser. No. 14/198,
508, entitled “SECURITY FOR NETWORK DELIVERED
SERVICES”, filed on Mar. 5, 2014 (Atty. Docket No. NSKO
1000-3) (now U.S. Pat. No. 9,270,765, issued Feb. 23,
2016);

[0005] U.S. Nonprovisional application Ser. No. 14/835,
640, entitled “SYSTEMS AND METHODS OF MONI-
TORING AND CONTROLLING ENTERPRISE INFOR-
MATION STORED ON A CLOUD COMPUTING
SERVICE (CCS)”, filed on Aug. 25, 2015 (Atty. Docket No.
NSKO 1001-2) (now U.S. Pat. No. 9,928,377, issued on
Mar. 27, 2018);

[0006] U.S. Nonprovisional application Ser. No. 15/368,
246, entitled “MIDDLE WARE SECURITY LAYER FOR
CLOUD COMPUTING SERVICES?”, filed on Dec. 2, 2016
(Atty. Docket No. NSKO 1003-3), which claims the benefit
of U.S. Provisional Application No. 62/307,305, entitled
“SYSTEMS AND METHODS OF ENFORCING MULTI-
PART POLICIES ON DATA-DEFICIENT TRANSAC-
TIONS OF CLOUD COMPUTING SERVICES?”, filed on
Mar. 11, 2016 (Atty. Docket No. NSKO 1003-1);

[0007] U.S. Nonprovisional application Ser. No. 16/408,
215, entitled “SMALL-FOOTPRINT ENDPOINT DATA
LOSS PREVENTION (DLP)”, filed on May 9, 2019 (Atty.
Docket No. NSKO 1019-2), a continuation-in-part of U.S.
Nonprovisional patent application Ser. No. 16/000,132,
entitled “METADATA-BASED DATA LOSS PREVEN-
TION (DLP) FOR CLOUD STORAGE?”, filed on Jun. 5,

May 5, 2022

2018 (Atty. Docket No. NSKO 1003-5) (now U.S. Pat. No.
10,291,657 issued on May 14, 2019), which application
claims the benefit of U.S. Provisional Patent Application No.
62/675,692, entitled “SMALL-FOOTPRINT ENDPOINT
DATALOSS PREVENTION (DLP)”, filed on May 23, 2018
(Atty. Docket No. NSKO 1019-1);

[0008] U.S. application Ser. No. 16/408,215 also is a
continuation of U.S. Nonprovisional patent application Ser.
No. 15/368,240, entitled “SYSTEMS AND METHODS OF
ENFORCING MULTI-PART POLICIES ON DATA-DEFI-
CIENT TRANSACTIONS OF CLOUD COMPUTING
SERVICES”, filed on Dec. 2, 2016 (Atty. Docket No. NSKO
1003-2), which application claims the benefit of U.S. Pro-
visional Patent Application No. 62/307,305, entitled “SYS-
TEMS AND METHODS OF ENFORCING MULTI-PART
POLICIES ON DATA-DEFICIENT TRANSACTIONS OF
CLOUD COMPUTING SERVICES”, filed on Mar. 11, 2016
(Atty. Docket No. NSKO 1003-1).

[0009] “Cloud Security for Dummies, Netskope Special
Edition” by Cheng, Ithal, Narayanaswamy, and Malmskog,
John Wiley & Sons, Inc. 2015,

[0010] “Netskope Introspection” by Netskope, Inc.,
[0011] “Data Loss Prevention and Monitoring in the
Cloud” by Netskope, Inc.,

[0012] “Cloud Data Loss Prevention Reference Architec-
ture” by Netskope, Inc.,

[0013] “The 5 Steps to Cloud Confidence” by Netskope,
Inc.,
[0014] “The Netskope Active Platform FEnabling Safe

Migration to the Cloud” by Netskope, Inc.

[0015] “The Netskope Advantage: Three “Must-Have”
Requirements for Cloud Access Security Brokers” by
Netskope, Inc.,

[0016] “The 15 Critical CASB Use Cases” by Netskope,
Inc.
[0017] “Netskope Active™ Cloud DLP” by Netskope,
Inc.,
[0018] “Repave the Cloud-Data Breach Collision Course”

by Netskope, Inc.; and

[0019] “Netskope Cloud Confidence Index™” by
Netskope, Inc.
[0020] which are incorporated by reference for all pur-

poses as if fully set forth herein.

FIELD OF THE TECHNOLOGY DISCLOSED

[0021] The technology disclosed relates generally to pro-
viding security for network delivered services via threat
detection and in particular relates to efficient threat scanning
using in-document markers, for reducing latency while
applying security services in the cloud.

BACKGROUND

[0022] The subject matter discussed in this section should
not be assumed to be prior art merely as a result of its
mention in this section. Similarly, a problem mentioned in
this section or associated with the subject matter provided as
background should not be assumed to have been previously
recognized in the prior art. The subject matter in this section
merely represents different approaches, which in and of
themselves can also correspond to implementations of the
claimed technology.

[0023] Businesses depend on computing systems to sur-
vive, and cloud customers operate in an environment that

US 2022/0138322 Al

spans geographies, networks and systems. The use of cloud
services for corporate functionality is common. According
to International Data Corporation, almost half of all infor-
mation technology (IT) spending will be cloud-based in
2018, “reaching 60% of all IT infrastructures and 60-70% of
all software, services and technology spending by 2020.”
Data is the lifeblood of the businesses and must be effec-
tively managed and protected. With the increased adoption
of cloud services, companies of all sizes are relying on the
cloud to create, edit and store data. This presents new
challenges as users access cloud services from multiple
devices and share data, including with people outside of an
organization. It is easy for data to get out of an organiza-
tion’s control.

[0024] Enterprise companies utilize software as a service
(SaaS) solutions instead of installing servers within the
corporate network to deliver services. The providers of the
solutions offer a service level agreement (SLA), between a
service and a customer, which sets the expectations of
assured availability, performance, security and privacy of
the customer’s data. In turn, the customers expect to be able
to collaboratively create, edit and save their data securely
among multiple customer branches and data centers.
[0025] There are many ways data can be compromised as
the number of data sources increases, including malware
software which has a malicious intent or secretly acts against
the interest of the user, often with malicious links that lead
to unintended access to data.

[0026] An opportunity arises to improve file scan effi-
ciency and threat detection efficacy by as much as ten to
twelve percent, with a resulting potential consequence of
cost and time savings in the security systems utilized by
customers who use SaaS.

BRIEF DESCRIPTION OF THE DRAWINGS

[0027] Inthe drawings, like reference characters generally
refer to like parts throughout the different views. Also, the
drawings are not necessarily to scale, with an emphasis
instead generally being placed upon illustrating the prin-
ciples of the technology disclosed. In the following descrip-
tion, various implementations of the technology disclosed
are described with reference to the following drawings.

[0028] FIG. 1A illustrates an architectural level schematic
of a system for reducing security threat detection overhead.
[0029] FIG. 1B shows a block diagram for reducing threat
detection processing, with organization network, network
security system and cloud-based services.

[0030] FIG. 2 shows a flow diagram overview for receiv-
ing SaaS files and improving threat scanning efficiency for
the files.

[0031] FIG. 3 shows a block diagram, with flow diagram,
for reducing threat detection processing for a document file.

[0032] FIG. 4A shows an example document object model
(DOM) tree structure with various properties accessible for
a file.

[0033] FIG. 4B shows an example of file property groups
for a file, with core properties, application properties, docu-
ment content, and programming scripts.

[0034] FIG. 5 lists example metadata values usable for
analyzing the similarity between properties of the edited
version of a document file and the previously processed file,
with features and property groups that represent the file.

May 5, 2022

[0035] FIG. 6 lists the second portion of the example
metadata of FIG. 5, with additional document metadata
values and similarity hash changes for the file.

[0036] FIG. 7 shows an example of analysis results of
property groups for a scenario in which a macro has been
added to the edited version of the file that was not present in
the previously processed files.

[0037] FIG. 8A shows a snippet of analysis results for an
example in which threat protection service determines that
there has been a change in a file’s extension and captures the
anomaly, so the file gets routed for full threat scanning.
[0038] FIG. 8B shows another snippet of analysis results
for an added URL to the last of a series of saves for a file.
[0039] FIG. 9 illustrates a representative method of reduc-
ing threat protection processing.

[0040] FIG. 10 illustrates a simplified block diagram of a
computer system that can be used for reducing threat pro-
tection processing, according to one embodiment of the
disclosed technology.

DETAILED DESCRIPTION

[0041] The following detailed description is made with
reference to the figures. Sample implementations are
described to illustrate the technology disclosed, not to limit
its scope, which is defined by the claims. Those of ordinary
skill in the art will recognize a variety of equivalent varia-
tions on the description that follows.

[0042] The cloud and web make it easy for users to
collaborate and share documents, but these same capabilities
make the cloud an attractive target for attackers trying to
spread malware and carry out other malicious activity.
Enterprise companies utilize SaaS solutions to deliver ser-
vices, and customers expect their data to be stored securely
in the cloud environment. SaaS solutions offer many busi-
ness applications, including office software for documents,
presentations, worksheets, databases, charts, graphs, digital
paintings, electronic music and digital video; messaging
software, payroll processing software, DBMS software,
management software, CAD software, development soft-
ware, gamification, virtualization, accounting, collaboration,
customer relationship management (CRM), Management
Information Systems (MIS), enterprise resource planning
(ERP), invoicing, human resource management (HRM),
talent acquisition, learning management systems, content
management (CM), Geographic Information Systems (GIS),
and service desk management. For example, customers
regularly create, edit and save files via Microsoft Office 365
and Google Apps, among others, in a cloud environment. A
service level agreement (SLLA) between a service provider
and a customer offers an expected level of availability,
performance, security and privacy of the customer’s data.

[0043] The disclosed technology improves a Netskope
cloud access security broker (N-CASB) system of compre-
hensive threat protection for network delivered cloud and
web services, optimizing the threat scanning process by
scanning a file once and re-scanning its edits only if the new
changes reach a configurable threshold value. The system
being improved is described by this invention: U.S. appli-
cation Ser. No. 15/213,250, entitled “LOGGING AND
MONITORING USAGE OF CLOUD-BASED HOSTED
STORAGE SERVICES,” filed on 18 Jul. 2016 (Atty. Docket
No. NSKO 1000-6), which is a continuation of U.S. appli-
cation Ser. No. 14/198,499, entitled “SECURITY FOR
NETWORK DELIVERED SERVICES,” filed on 5 Mar.

US 2022/0138322 Al

2014 (Atty. Docket No. NSKO 1000-2), which claims the
benefit of U.S. provisional Patent Application No. 61/773,
633, entitled, “SECURITY FOR NETWORK DELIVERED
SERVICES;,” filed on Mar. 6, 15 2013 (Atty. Docket No.
NSKO 1000-1) (now U.S. Pat. No. 9,998,496, issued on Jun.
12, 2018).

[0044] A SaaS application generates a new file identifier as
soon as a new file is created and the file identifier (file ID)
value remains constant throughout the creation, edit and
storage cycles for a single document edited in the same SaaS
application, as long as the file exists in the application. The
file ID does not change even when the file is edited.

[0045] When a file is edited and saved, the N-CASB
generates a new unique file hash and associates the file hash
with the resultant file. In a cloud environment the rate of
change in documents is high, with files typically edited
continuously, which changes the file hashes every time a
save of the file occurs. The generation of a unique file-hash
every time a file gets saved results in a one-to-many map-
ping in cases in which the same file is edited multiple times.
Having the many similar files leads to repetitive security
threat scanning of similar files that are slightly modified,
which introduces efficiency issues and also false positive
issues in which a false positive (FP) identification as a threat
for one version of the file causes repetitive FPs every time
the file is edited and rescanned.

[0046] Current file traffic levels include the receipt of as
many as ten million files per day that need to be secure, and
this level is projected to expand to thirty million files per day
in the near future. Measurement of the impact of files being
scanned by the existing N-CASB led to disclosed technol-
ogy that improves scan efficiency and threat detection effi-
cacy. In an analysis of production data, researchers learned
that only 200,000 unique file IDs were associated with 1.5
million of the hashes in a set of 13 million files. The
disclosed technology saves the security system from rescan-
ning these 1.5 million files on a selective basis. In one
example, a single call center spreadsheet represented 9,023
entries for a single file ID. A calculation of the mean number
of files associated with a single file ID showed that on
average a single file was associated with 6.7 file IDs due in
part to filename changes by customers. A ten to twelve
percent improvement in the number of files to be scanned is
predicted for the measured data set, and even more improve-
ment is anticipated for larger production data sets of SaaS
documents.

[0047] The disclosed technology for reducing threat detec-
tion overhead offers a security services platform that utilizes
fewer resources than existing systems, to administer cus-
tomized security services and policies for organizations. The
disclosed technology improves scanning efficiency by
avoiding repeated rescanning of documents getting edited in
the cloud, and the solution works generically across a wide
range of applications. An example system for reducing
threat detection processing is described next.

Architecture

[0048] FIG. 1A shows an architectural level schematic of
a system 100 for reducing security threat detection overhead.
Because FIG. 1A is an architectural diagram, certain details
are intentionally omitted to improve clarity of the descrip-
tion. The discussion of FIG. 1A will be organized as follows.
First, the elements of the figure will be described, followed

May 5, 2022

by their interconnections. Then, the use of the elements in
the system will be described in greater detail.

[0049] System 100 includes organization network 102,
data center 152 with Netskope cloud access security broker
(N-CASB) 155 and cloud-based services 108. System 100
includes multiple organization networks 104 for multiple
subscribers, also referred to as multi-tenant networks, of a
security services provider and multiple data centers 154,
which are sometimes referred to as branches. Organization
network 102 includes computers 112a-n, tablets 1224a-n, cell
phones 132a-r and smart watches 142a-r. In another orga-
nization network, organization users may utilize additional
devices. Cloud services 108 includes cloud-based hosting
services 118, web email services 128, video, messaging and
voice call services 138, streaming services 148, file transfer
services 158, and cloud-based storage service 168. Data
center 152 connects to organization network 102 and cloud-
based services 108 via public network 145.

[0050] Continuing with the description of FIG. 1A, dis-
closed enhanced Netskope cloud access security broker
(N-CASB) 155 calculates similarity measures for files and
determines whether a file needs to be scanned, securely
processes P2P traffic over BT, FTP and UDP-based stream-
ing protocols as well as Skype, voice, video and messaging
multimedia communication sessions over SIP, and web
traffic over other protocols, in addition to governing access
and activities in sanctioned and unsanctioned cloud apps,
securing sensitive data and preventing its loss, and protect-
ing against internal and external threats. N-CASB 155
includes active analyzer 165 and introspective analyzer 175
that identify the users of the system and set policies for apps.
Introspective analyzer 175 interacts directly with cloud-
based services 108 for inspecting data at rest. In a polling
mode, introspective analyzer 175 calls the cloud-based ser-
vices using API connectors to crawl data resident in the
cloud-based services and check for changes. As an example,
Box™ storage application provides an admin API called the
Box Content API™ that provides visibility into an organi-
zation’s accounts for all users, including audit logs of Box
folders, that can be inspected to determine whether any
sensitive files were downloaded after a particular date, at
which the credentials were compromised. Introspective ana-
lyzer 175 polls this API to discover any changes made to any
of the accounts. If changes are discovered, the Box Events
API™ is polled to discover the detailed data changes. In a
callback model, introspective analyzer 175 registers with the
cloud-based services via API connectors to be informed of
any significant events. For example, introspective analyzer
175 can use Microsoft Office365 Webhooks API™ to learn
when a file has been shared externally. Introspective ana-
lyzer 175 also has deep API inspection (DAPII), deep packet
inspection (DPI), and log inspection capabilities and
includes a DLP engine that applies the different content
inspection techniques on files at rest in the cloud-based
services, to determine which documents and files are sen-
sitive, based on policies and rules stored in storage 186. The
result of the inspection by introspective analyzer 175 is
generation of user-by-user data and file-by-file data.

[0051] Continuing further with the description of FIG. 1A,
N-CASB 155 further includes monitor 184 that includes
extraction engine 171, classification engine 172, security
engine 173, management plane 174 and data plane 180. Also
included in N-CASB 155, storage 186 includes content
policies 187, content profiles 188, content inspection rules

US 2022/0138322 Al

189, enterprise data 197, information for clients 198 and
user identities 199. Content profiles 188 can include SaaS
application and file metadata values associated with a file
with a file ID and a series of files with the same file ID and
different file hashes, including word count, character count,
paragraph count, author, etc. as well as a deep hash of each
component section of the file, including core.xml, document.
xml and VBAProject.bin or another programming script.
Enterprise data 197 can include organizational data, includ-
ing but not limited to, intellectual property, non-public
financials, strategic plans, customer lists, personally identi-
fiable information (PII) belonging to customers or employ-
ees, patient health data, source code, trade secrets, booking
information, partner contracts, corporate plans, merger and
acquisition documents and other confidential data. In par-
ticular, the term “enterprise data” refers to a document, a file,
a folder, a webpage, a collection of webpages, an image, or
any other text-based document. User identity refers to an
indicator that is provided by the network security system to
the client device, in the form of a token, a unique identifier
such as a UUID, a public-key certificate, or the like. In some
cases, the user identity can be linked to a specific user and
a specific device; thus, the same individual can have a
different user identity on their mobile phone vs. their com-
puter. The user identity can be linked to an entry or userid
corporate identity directory but is distinct from it. In one
implementation, a cryptographic certificate signed by the
network security is used as the user identity. In other
implementations, the user identity can be solely unique to
the user and be identical across devices.

[0052] Embodiments can also interoperate with single
sign-on (SSO) solutions and/or corporate identity directo-
ries, e.g. Microsoft’s Active Directory. Such embodiments
may allow policies to be defined in the directory, e.g. either
at the group or user level, using custom attributes. Hosted
services configured with the system are also configured to
require traffic via the system. This can be done through
setting IP range restrictions in the hosted service to the 1P
range of the system and/or integration between the system
and SSO systems. For example, integration with a SSO
solution can enforce client presence requirements before
authorizing the sign-on. Other embodiments may use “proxy
accounts” with the SaaS vendor—e.g. a dedicated account
held by the system that holds the only credentials to sign in
to the service. In other embodiments, the client may encrypt
the sign on credentials before passing the login to the hosted
service, meaning that the networking security system
“owns” the password.

[0053] Storage 186 can store information from one or
more tenants into tables of a common database image to
form an on-demand database service (ODDS), which can be
implemented in many ways, such as a multi-tenant database
system (MTDS). A database image can include one or more
database objects. In other implementations, the databases
can be relational database management systems (RDBMSs),
object-oriented database management systems
(OODBMS:s), distributed file systems (DFS), no-schema
database, or any other data storing systems or computing
devices. In some implementations, the gathered metadata is
processed and/or normalized. In some instances, metadata
includes structured data and functionality targets specific
data constructs provided by cloud services 108. Non-struc-
tured data, such as free text, can also be provided by, and
targeted back to cloud services 108. Both structured and

May 5, 2022

non-structured data are capable of being aggregated by
introspective analyzer 175. For instance, the assembled
metadata is stored in a semi-structured data format like a
JSON (JavaScript Option Notation), BSON (Binary JSON),
XML, Protobuf, Avro or Thrift object, which consists of
string fields (or columns) and corresponding values of
potentially different types like numbers, strings, arrays,
objects, etc. JSON objects can be nested and the fields can
be multi-valued, e.g., arrays, nested arrays, etc., in other
implementations. These JSON objects are stored in a
schema-less or NoSQL key-value metadata store 148 like
Apache Cassandra™ 158, Google’s BigTable™, HBase™,
Voldemort™, CouchDB™, MongoDB™, Redis™, Riak™,
Neo4j™, etc., which stores the parsed JSON objects using
keyspaces that are equivalent to a database in SQL. Each
keyspace is divided into column families that are similar to
tables and comprise of rows and sets of columns.

[0054] In one implementation, introspective analyzer 175
includes a metadata parser (omitted to improve clarity) that
analyzes incoming metadata and identifies keywords,
events, user [Ds, locations, demographics, file type, time-
stamps, and so forth within the data received. Parsing is the
process of breaking up and analyzing a stream of text into
keywords, or other meaningful elements called “targetable
parameters”. In one implementation, a list of targeting
parameters becomes input for further processing such as
parsing or text mining, for instance, by a matching engine
(not shown). Parsing extracts meaning from available meta-
data. In one implementation, tokenization operates as a first
step of parsing to identify granular elements (e.g., tokens)
within a stream of metadata, but parsing then goes on to use
the context that the token is found in to determine the
meaning and/or the kind of information being referenced.
Parsing extracts metadata values and identifies property
groups to be hashed for an incoming file, in some imple-
mentations. Because metadata analyzed by introspective
analyzer 175 are not homogenous (e.g., there are many
different sources in many different formats), certain imple-
mentations employ at least one metadata parser per cloud
service, and in some cases more than one. In other imple-
mentations, introspective analyzer 175 uses monitor 184 to
inspect the cloud services and assemble content metadata. In
one use case, the identification of sensitive documents is
based on prior inspection of the document. Users can
manually tag documents as sensitive, and this manual tag-
ging updates the document metadata in the cloud services. It
is then possible to retrieve the document metadata from the
cloud service using exposed APIs and use them as an
indicator of sensitivity.

[0055] Continuing further with the description of FIG. 1A,
system 100 can include any number of cloud-based services
108: point to point streaming services, hosted services, cloud
applications, cloud stores, cloud collaboration and messag-
ing platforms, and cloud customer relationship management
(CRM) platforms. The services can include peer-to-peer file
sharing (P2P) via protocols for portal traffic such as BitTor-
rent (BT), user data protocol (UDP) streaming and file
transfer protocol (FTP); voice, video and messaging multi-
media communication sessions such as instant message over
Internet Protocol (IP) and mobile phone calling over LTE
(VoLTE) via the Session Initiation Protocol (SIP) and Skype.
The services can handle Internet traffic, cloud application
data, and generic routing encapsulation (GRE) data. A
network service or application, or can be web-based (e.g.,

US 2022/0138322 Al

accessed via a uniform resource locator (URL)) or native,
such as sync clients. Examples include software-as-a-service
(SaaS) offerings, platform-as-a-service (PaaS) offerings, and
infrastructure-as-a-service (laaS) offerings, as well as inter-
nal enterprise applications that are exposed via URLs.
Examples of common cloud-based services today include
Salesforce.com™, Box™, Dropbox™, Google Apps™,
Amazon AWS™, Microsoft Office 365™, Workday™,
Oracle on Demand™, Taleo™, Yammer™, Jive™, and
Concur™.,

[0056] In the interconnection of the elements of system
100, network 145 couples computers 112a-n, tablets 122a-n,
cell phones 132a-n, smart watches 142a-n, cloud-based
hosting service 118, web email services 128, video, mes-
saging and voice call services 138, streaming services 148,
file transfer services 158, cloud-based storage service 168
and N-CASB 155 in communication. The communication
path can be point-to-point over public and/or private net-
works. Communication can occur over a variety of net-
works, e.g. private networks, VPN, MPLS circuit, or Inter-
net, and can use appropriate application program interfaces
(APIs) and data interchange formats, e.g. REST, JSON,
XML, SOAP and/or JMS. All of the communications can be
encrypted. This communication is generally over a network
such as the LAN (local area network), WAN (wide area
network), telephone network (Public Switched Telephone
Network (PSTN), Session Initiation Protocol (SIP), wireless
network, point-to-point network, star network, token ring
network, hub network, Internet, inclusive of the mobile
Internet, via protocols such as EDGE, 3G, 4G LTE, Wi-Fi,
and WiMAX. Additionally, a variety of authorization and
authentication techniques, such as username/password,
OAuth, Kerberos, SecurelD, digital certificates, and more,
can be used to secure the communications.

[0057] Further continuing with the description of the sys-
tem architecture in FIG. 1A, N-CASB 155 includes monitor
184 and storage 186 which can include one or more com-
puters and computer systems coupled in communication
with one another. They can also be one or more virtual
computing and/or storage resources. For example, monitor
184 can be one or more Amazon EC2 instances and storage
186 can be Amazon S3™ storage. Other computing-as-
service platforms such as Rackspace, Heroku or Force.com
from Salesforce could be used rather than implementing
N-CASB 155 on direct physical computers or traditional
virtual machines. Additionally, one or more engines can be
used and one or more points of presence (POPs) can be
established to implement the security functions. The engines
or system components of FIG. 1A are implemented by
software running on varying types of computing devices.
Example devices are a workstation, a server, a computing
cluster, a blade server, and a server farm, or any other data
processing system or computing device. The engine can be
communicably coupled to the databases via a different
network connection. For example, extraction engine 171 can
be coupled via network(s) 145 (e.g., the Internet), classifi-
cation engine 172 can be coupled via a direct network link
and security engine 173 can be coupled by yet a different
network connection. For the disclosed technology, the data
plane 180 POPs is hosted on the client’s premises or located
in a virtual private network controlled by the client.

[0058] N-CASB 155 provides a variety of functions via a
management plane 174 and a data plane 180. Data plane 180
includes an extraction engine 171, a classification engine

May 5, 2022

172, and a security engine 173, according to one implemen-
tation. Other functionalities, such as a control plane, can also
be provided. These functions collectively provide a secure
interface between cloud services 108 and organization net-
work 102. Although we use the term “network security
system” to describe N-CASB 155, more generally the sys-
tem provides application visibility and control functions as
well as security. In one example, thirty-five thousand cloud
applications are resident in libraries that intersect with
servers in use by computers 112a-n, tablets 122a-n, cell
phones 132a-r and smart watches 142q-» in organization
network 102.

[0059] Computers 112a-n, tablets 122a-n, cell phones
132a-n and smart watches 142a-» in organization network
102 include management clients with a web browser with a
secure web-delivered interface provided by N-CASB 155 to
define and administer content policies 187, according to one
implementation. N-CASB 155 is a multi-tenant system, so a
user of a management client can only change content
policies 187 associated with their organization, according to
some implementations. In some implementations, APIs can
be provided for programmatically defining and or updating
policies. In such implementations, management clients can
include one or more servers, e.g. a corporate identities
directory such as a Microsoft Active Directory, pushing
updates, and/or responding to pull requests for updates to the
content policies 187. Both systems can coexist; for example,
some companies may use a corporate identities directory to
automate identification of users within the organization
while using a web interface for tailoring policies to their
needs. Management clients are assigned roles and access to
the N-CASB 155 data is controlled based on roles, e.g.
read-only vs. read-write.

[0060] In addition to periodically generating the user-by-
user data and the file-by-file data and persisting it in meta-
data store 178, an active analyzer and introspective analyzer
(not shown) also enforce security policies on the cloud
traffic. For further information regarding the functionality of
active analyzer and introspective analyzer, reference can be
made to, for example, commonly owned U.S. Pat. No.
9,398,102 (NSKO 1000-2); U.S. Pat. No. 9,270,765 (NSKO
1000-3); U.S. Pat. No. 9,928,377 (NSKO 1001-2); and U.S.
patent application Ser. No. 15/368,246 (NSKO 1003-3);
Cheng, Ithal, Narayanaswamy and Malmskog Cloud Secu-
rity For Dummies, Netskope Special Edition, John Wiley &
Sons, Inc. 2015; “Netskope Introspection” by Netskope,
Inc.; “Data Loss Prevention and Monitoring in the Cloud”
by Netskope, Inc.; “Cloud Data Loss Prevention Reference
Architecture” by Netskope, Inc.; “The 5 Steps to Cloud
Confidence” by Netskope, Inc.; “The Netskope Active Plat-
form” by Netskope, Inc.; “The Netskope Advantage: Three
“Must-Have " Requirements for Cloud Access Security Bro-
kers” by Netskope, Inc.; “The 15 Critical CASB Use Cases”
by Netskope, Inc.; “Netskope Active Cloud DLP” by
Netskope, Inc.; “Repave the Cloud-Data Breach Collision
Course” by Netskope, Inc.; and “Netskope Cloud Confi-
dence Index™” by Netskope, Inc., which are incorporated
by reference for all purposes as if fully set forth herein.
[0061] For system 100, a control plane may be used along
with or instead of management plane 174 and data plane
180. The specific division of functionality between these
groups is an implementation choice. Similarly, the function-
ality can be highly distributed across a number of points of
presence (POPs) to improve locality, performance, and/or

US 2022/0138322 Al

security. In one implementation, the data plane is on prem-
ises or on a virtual private network and the management
plane of the network security system is located in cloud
services or with corporate networks, as described herein. For
another secure network implementation, the POPs can be
distributed differently.

[0062] While system 100 is described herein with refer-
ence to particular blocks, it is to be understood that the
blocks are defined for convenience of description and are not
intended to require a particular physical arrangement of
component parts. Further, the blocks need not correspond to
physically distinct components. To the extent that physically
distinct components are used, connections between compo-
nents can be wired and/or wireless as desired. The different
elements or components can be combined into single soft-
ware modules and multiple software modules can run on the
same hardware.

[0063] Moreover, this technology can be implemented
using two or more separate and distinct computer-imple-
mented systems that cooperate and communicate with one
another. This technology can be implemented in numerous
ways, including as a process, a method, an apparatus, a
system, a device, a computer readable medium such as a
computer readable storage medium that stores computer
readable instructions or computer program code, or as a
computer program product comprising a computer usable
medium having a computer readable program code embod-
ied therein. The technology disclosed can be implemented in
the context of any computer-implemented system including
a database system or a relational database implementation
like an Oracle™ compatible database implementation, an
IBM DB2 Enterprise Server™ compatible relational data-
base implementation, a MySQL™ or PostgreSQL™ com-
patible relational database implementation or a Microsoft
SQL Server™ compatible relational database implementa-
tion or a NoSQL non-relational database implementation
such as a Vampire™ compatible non-relational database
implementation, an Apache Cassandra™ compatible non-
relational database implementation, a BigTable™ compat-
ible non-relational database implementation or an HBase™
or DynamoDB™ compatible non-relational database imple-
mentation. In addition, the technology disclosed can be
implemented using different programming models like
MapReduce™, bulk synchronous programming, MPI primi-
tives, etc. or different scalable batch and stream management
systems like Amazon Web Services (AWS)™, including
Amazon Elasticsearch Service™ and Amazon Kinesis™,
Apache Storm™ Apache Spark™, Apache Kafka™, Apache
Flink™, Truviso™, IBM Info-Sphere™, Borealis™ and
Yahoo! S4™.

[0064] FIG. 1B shows a simplified block diagram for
reducing threat detection processing, with organization net-
work 102 with user interface 103 usable by security admin-
istrators to interact with the network security system and
cloud-based services 108, described relative to FIG. 1A, that
include software as a service (SaaS) 109. Data center 152
includes Netskope cloud access security broker (N-CASB)
155 which includes file receivers 161 for managing file
traffic; cache 182—a short term, hash indexed, memory
based, fast cache that stores the scan result of any file,
indexed by the file’s hash value; and threat protection
service 156, which includes static and dynamic anti-virus
inspection 162. Additionally, an entropy calculation is com-
pleted each time a new file edit gets saved and static

May 5, 2022

attributes and metadata collector 163 stores the results of
parsing, hashing and entropy calculations. Threat protection
service 156 also includes similarity calculator 167 for deter-
mining the level of similarity between new and old values
for file size, file name, file extension and other properties
that represent file features. Also included is determinator
169 which utilizes the results of similarity calculator 167 for
deciding which files need threat scanning. Malware scan-
ning engines with sandbox analyzers 185 execute files
determined to be suspicious and therefore in need of a full
threat scan, to test behavior. In one implementation, as much
as five minutes may be used to execute each of the
executables in the file after scanning. Also included in threat
protection service 156 is alert generator 195 for signaling
that a file contains malware. One security service is a native
service implemented by the security service provider. Third
party services 164 include security service app firewall 166
that controls input, output, and access from, to, or by an
application, by monitoring and potentially blocking the
input, output, or system service calls that do not meet the
configured security services policy. In some implementa-
tions, the services described as third-party services can be
provided by the provider that provides other functions of
N-CASB 155. An example app firewall is web application
firewall (WAF) for HTTP applications. Yet another security
service is intrusion prevention system (IPS) 165 that moni-
tors a tenant’s network for malicious activity or policy
violations, often using a security information and event
management (SIEM) system to collect malicious activity
and policy violations centrally. User-by-user data and the
file-by-file security data are stored in in-memory data store
cache 182. In one implementation, the user-by-user data and
the file-by-file data is stored in a semi-structured data format
like JSON, BSON (Binary JSON), XML, Protobuf, Avro, or
Thrift object, which comprises fields (or columns) and
corresponding values of potentially different types like num-
bers, strings, arrays, and objects.

[0065] FIG. 2 shows a flow diagram overview for receiv-
ing SaaS files and improving threat scanning efficiency for
the files. The disclosed technology applies across a wide
range of applications. SaaS apps 202, 222, 242 send cloud-
based files to load balancer 224 that distributes the files to
file receivers 162 for threat scanning. A first check deter-
mines whether the file has been saved previously, so has a
file ID and file hash value, and static attributes and meta-
information stored in database 262 which utilizes the file ID
as the primary key for fetching and inserting records in the
future. When an existing file has been edited and saved, the
file hash value changes, and the file ID remains the same,
because it has been edited inside the same SaaS application,
in one example embodiment. In-memory cache 182 is a
short term, hash indexed, memory-based, fast cache that
stores the scan result of any file, indexed by the file’s hash
(in one example, MDS5) value. Each cache value has con-
figurable TTL (time to live). File receivers 162 use the scan
results stored in in-memory cache 182 to decide whether to
skip the scanning of the same file if it is received again. That
is, if the received file has the same file ID and hash value
(MD5) as an existing file in in-memory cache 225 then the
check for the received file generates a cache hit 245 and the
metadata for the received file can be retrieved from in-
memory cache 182. In another example, a SHA2 hash
function can be utilized for the file hash. In a third example,
an ssdeep hash function computes context triggered piece-

US 2022/0138322 Al

wise hashes (CTPH), also called fuzzy hashes that can match
inputs that have homologies. Such inputs have sequences of
identical bytes in the same order, although bytes in between
these sequences may be different in both content and length.
In some implementations, a locality preserving hash func-
tion calculates a hash in which the relative distance between
the input values is preserved in the relative distance between
of'the output hash values. That is, input values that are closer
to each other will produce output hash values that are closer
to each other.

[0066] As the flow diagram of FIG. 2 shows, the disclosed
technology determines whether a received file is a newly
created file, with a file ID and hash value, that has not been
stored in in-memory cache 182 or whether an incoming file
has the same file hash value as an existing file scan stored in
in-memory cache 182. In one example that shows a cache
hit, File A with identifiers (MD5: M1, FilelD: F1) arrives at
file receivers 162 which will store the file ID and file hash
value in cache. Later, File B with identifiers (MD5: M1,
FileID: F2) arrives at file receivers 161 and because the
hashed value (MDS5) is the same (M1) for both files, the
cached result can be used; that is, a cache hit is identified. In
a second example, this time for a cache miss, File A with file
identifiers (MD5: M1, FilelD: F1) comes to file receivers
161, which will store the file ID and file hash value in the
cache, and store the file’s features in database 262. Later,
when File B (MD5: M2, FilelD: F1) arrives at file receivers
161, a cache miss will occur because File B has a different
hash value of M2.

[0067] The disclosed technology includes utilizing the
features for File B stored in database 262 and fetched by file
1D, for determining whether the file has changed enough, as
described infra, to warrant threat scanning by malware
scanning engines with sandbox analyzers 185 as a security
mechanism for mitigating vulnerabilities in incoming files.
If the check, via file hash value, for a received file does not
generate a cache hit 245, then in-document marker pre-filter
265 reviews the received file to extract features, identifies
the in-file markers and stores the feature metadata in data-
base 262, indexed by file ID so that metadata for a later,
modified version of the file can be correlated to previously
extracted features, as shown in flow diagram 255 and
described in detail relative to FIG. 3 infra.

[0068] Continuing with the description of the flow over-
view shown in FIG. 2, for files that are determined to be
suspicious 266, load balancer 267 distributes the files to
malware scanning engines with sandbox analyzers 185 for
full threat scanning for threat detection. Malware scanning
engines with sandbox analyzers 185 include static heuristic
analysis in which multiple static heuristics about the file are
extracted, such individual byte level components and
embedded objects, and using the extracted heuristics to
determine the maliciousness of the file. Malware scanning
engines with sandbox analyzers 185 also include dynamic
analysis in which a suspicious file is executed in a contained
sandboxed environment and its runtime behavior is captured
and used to calculate a score. When the score rises above a
configurable threshold, the file is treated as malicious.
[0069] FIG. 3 shows a block diagram for reducing threat
detection processing for a document file, with flow diagram
255. Newly created files are routed via new file flow 354 to
document parser, hash and entropy calculator 345 for the
extraction of static attributes and meta-information elements
to be utilized in the future, for determining whether full

May 5, 2022

threat scanning is warranted, for the edited version of a
previously processed file. Identified static attribute and
metadata elements are stored in database 262 using the file
1D as primary key, along with the unique calculated hash for
storing and accessing the file data. The new file, along with
static attributes and metadata, is routed for threat scanning
358 and the full scan results are stored for future reference.
For files that result in a cache hit 245, in-memory cache can
be examined to learn whether the file has been seen before,
and if yes, analyzing the changes to learn whether the
changes warrant a full threat scan.

[0070] A measure of randomness of data inside a file can
be tracked by calculating entropy each time a new file edit
happens. The well-known Shannon Entropy calculation for
calculating the file’s entropy is utilized, in Python, in one
implementation of the disclosed technology. Gradual change
in entropy means that the data has largely remained in the
same structure as before. A sudden change in entropy
signifies that the structure as well as the content has changed
altogether. For example, for an array that contains the most
recent four entropies of a file: [2.33, 2.39, 2.46, 5.7], the
series of values shows that the entropy has gradually
increased except in the case of the last value. In the example,
the high increase in entropy number in the last edit denotes
a potential malicious behavior as it is deviating from the
normal. This can be an indication of an attack such as
Ransomware which encrypts the files on a user’s system,
which drastically increases the randomness of the content,
thus changing its entropy.

[0071] Continuing with the description of the flow dia-
gram of FIG. 3, when an existing file with file ID is received,
the disclosed system fetches the existing results 344 as static
attributes and metadata for the previous version of the file
identified by the existing file ID from database 262. Docu-
ment parser, hash and entropy calculator 345 parses the
current document file and calculates the hash and the
entropy. Static attributes and metadata are stored in database
262, including date, file name and file extension, and meta-
data in one example, indexed by file ID and hash. Similarity
calculator 167 compares data collected for this version of the
existing file to component data for a set of previous versions
of the file with the same file ID but different file hash values.
Four to five previous edit records are retained for correctly
predicting the rate of changes, in one implementation. In
another implementation a different number of previous edit
records may be retained and compared. Multiple compari-
sons of various components of metadata can generate mul-
tiple similarity results, such as for file size changes, filename
changes, file extension changes and other components of
saved documents, as described in examples infra.

[0072] The disclosed similarity calculator 167 utilizes
multiple types of similarity calculations. In one type, simi-
larity calculator 167 calculates the similarity between num-
bers such as “entropy of file” and “file size”, as the differ-
ence between the new and the old values. Consider the
earlier example entropy array [2.33, 2.39, 2.46, 5.7]. A
simple entropy similarity score calculation example between
first and second edit of the file is: 100-((2.39-2.33)/2.
33*100) which is ~97.5. The similarity percentage means
that the files are 97.5% similar before and after edits. The
disclosed similarity calculator 167 uses a second type of
similarity calculation for calculating the similarity between
non-numeric factors such as file name, file extension, section
of the file such as core.xml, and programming script, in one

US 2022/0138322 Al

implementation. In one example, for file names and exten-
sions cases, similarity calculator 167 utilizes the Leven-
shtein distance, which measures the similarity between two
strings using the Python library called Levenshtein strings
and calling the Levenshtein ratio function to get the simi-
larity score between two filenames. For two filenames:
testfile_20190101.docx and testfile_20190102.docx, the
similarity percentage calculated for the file names is ~96%
similar and the extensions are 100% similar which means no
change between before and after edits.

[0073] For calculating the similarity between different
sections of the file, such as document.xml or core.xml,
similarity calculator 167 utilizes the results of document
parser, hash and entropy calculator 345 that calculates the
hash of the section of the file using Python Hashlib library
which contains ssdeep hashing capability and the ssdeep
compare function for computing the similarity between two
ssdeep hashes, in one implementation. In this case, docu-
ment parser, hash and entropy calculator 345 calculates the
ssdeep hash of various file sections before edit for compari-
son with the ssdeep hash values of the same sections after
edits, to predict the amount of change and the section in
which change occurred. Similarity calculator 167 compares
how similar the hashes are with each saved version of the file
with the same file ID. Determinator 169 considers similarity
hash values for sections of the file, metadata hash values for
changed metadata, as well as file attributes such as number
of characters and number of words in a file. A configurable
similarity score threshold can be utilized by determinator
169 in one implementation of disclosed similarity calculator
167. FIG. 5 and FIG. 6 show example metadata for a file,
along with similarity hash results for file property groups, as
described infra.

[0074] FIG. 4A shows an example document object model
(DOM) tree structure with various property groups acces-
sible for a file. Core properties 412 include metadata such as
the number of words in the file, the author of the file, and a
meta-property that is active when a document includes a
link, for example. Document 416 holds the actual text of the
file and programming script 428 includes information about
visual basic, macros and links embedded in the file. In one
case, if too many characters are added or a new link is added,
a new complete threat scan is warranted to protect the
customer from malware. In one example, programming
script 428 can be VBAProject.bin that includes a com-
pressed form of a visual basic programming script.

[0075] FIG. 4B shows an example of file property groups
445 for a file, with core properties core.xml 455, application
properties App.xml 465 of the application in which the file
was created, edited and saved. Main document content
document.xml 475 contains the body of the document file.
VBA script in compressed form VBAProject.bin 485 will be
present if macros or other JavaScript are present in the file.
In another example, a programming script can be a bound
script attached to a G Suite document or a script embedded
and represented in application properties for a document.
[0076] Threat protection service 156 utilizes static attri-
butes and metadata collector 163, similarity calculator 167
and determinator 169 for analyzing aspects of the file for
determining whether an updated file needs a full threat scan
after being changed, as described next. Document parser
hash and entropy calculator 345 extracts and stores the file
and application metadata values, including word count,
character count and paragraph count and author; and calcu-

May 5, 2022

lates and stores the ssdeep hash of each section of the file
structure of the document file: core.xml 455, app.xml 465,
document.xml 475 and programming script 485, which can
be compressed as VBAProject.bin, in one implementation.
Additional measurements can be implemented for other
types of files. In another embodiment, programming scripts
may be represented by a different set of metadata values
instead of VBAProject.

[0077] If the file has been last scanned beyond the con-
figurable day range, then the file is sent through complete
scanning and is treated as a new file flow 354. The following
checks are completed, in one embodiment. The date when
the file was last scanned is checked and stored. If the file was
most recently scanned more than a configurable number of
days earlier, then the complete file needs full threat scan-
ning. If the file has been scanned within the required
configurable number of days, then the in-doc marker pre-
filter 265 decides whether the file needs full threat scanning.
Document parser and entropy calculator 345 computes the
entropy for the updated file, and similarity calculator 167
computes the similarity between the file’s entropy and its
previous entropies, to ensure that the randomness of data has
remained consistent over time, and to provide an estimate of
the amount of new data added in the document. Next, the
file’s size is compared to the size of previous edits. If the file
size change is within a configurable threshold, the file edits
are accepted as benign. Configurable threshold values can be
adjusted as more data is collected and analyzed, to reduce
threat detection processing.

[0078] The analysis continues by considering the hash of
sections of the document file, to locate what new data has
been added. If the ssdeep hash of main document content
document.xml 475 changes, it indicates that the text of the
file has been changed—adding to or modifying existing text.
Similarity calculator 167 calculates the similarity between
the previous and current ssdeep hash value score between
the previous and current file. If these values fall within a
configurable range, it signifies that the document likely
received additional text. Determinator 169 calculates
changes in additional file properties, including word count,
character count and paragraph count, to further make a
positive assertion that additional text and/or whitespaces
have been added. This conclusion pertains to a normal
document edit, when the values are within the configurable
threshold. In one case in which document text grows by a
large number, for example an increase from 3000 to 50000
for the word count, the ssdeep hash of the document.xml
sections will considerably differ along with other noticeable
differences like changes in word and paragraph counts. If the
ssdeep hash of a programming script, such as VBAProject.
bin or Script, changes or gets introduced, this implies that
the current file edit resulted in changed or added new macro
code inside the file, which indicates a suspicious edit and
that generates a trigger for a full scan of the file. Determi-
nator 169 uses the results of the analysis described to decide
whether to send the updated file for complete threat scan-
ning.

[0079] FIG. 5 lists example metadata values usable for
analyzing the similarity between properties of the edited
version of a document file and the previously processed file,
with features and property groups that represent the file, as
described relative to the DOM shown in FIG. 4A. For
example, the application and app version 502 are listed as
metadata values of the document, as is the number of

US 2022/0138322 Al

characters 522 and the document creator 532. FIG. 6 shows
the second portion of example metadata with additional
document metadata values and similarity hash changes for
the file. Entropy change 612 over the three file saves is
shown as a percentage. Filename similarity score 622 shows
95.4 percent similarity for the filenames that have only a
single digit date change from file save to file save. The file
extension is identical for the three file saves, as docx, so the
similarity score for file extension 632 is 100% as one may
expect. The size of the file almost doubled from file save two
to file save three, which resulted in a 92.2% change 642.
Similarity scores are listed for app.xml 652, core.xml 662
and document.xml 672 property groups. Note that the simi-
larity scores are 99%, 91%, and 91% for the second file save,
but 86%, 86% and 0% respectively for the three property
groups for the third file save. The edited file warrants a new
threat scan, based on these calculations.

[0080] FIG. 7 shows an example of analysis results of
property groups for a scenario in which a macro has been
added to the edited version of the file that was not present in
the previously processed files. The result file shows no
macro inside the file for the first two edits of the file, and
shows that a macro was added in the third edit, as reported
via vba_macro field values of false, false and true 782. The
vba_macro field is utilized as a heuristic check. Addition of
a macro is a suspicious behavior and the file would need to
go through complete threat scanning. The similarity score
was O for the first file save since there was no comparison
point. The similarity score in the second case is 100 since
there is no macro. The third edit gets a new hash value for
macro and the similarity drops to 0 again, as shown in the
field value for similarity_score 776, Similarity scores are
99% and 91% 756 for app.xml for the second and third file
saves, respectively. Determinator 169 decides to send the file
to threat scanning due to the addition of a macro to the file.

[0081] FIG. 8A shows analysis results for another
example, in which threat protection service 156 determines
that there has been a change in a file’s extension 864 with the
file extension changing altogether and flags the anomaly so
the file gets routed for full threat scanning. Note that there
was a slight change in file’s name 836 as well. File name
change similarity calculation 845 shows the file names are
95.4% similar at the second save and only 84% similar at the
third save. This level of similarity is well within a range
expected, except that the file’s extension changed altogether,
so a threat scan is warranted in such case. Also notice the
drastic change in entropy 824 that indicates a possibility of
ransomware attack, in which the file has been encrypted,
leading to drastic change in entropy and also the file’s
extension change to a new weird extension, both behaviors
which are indicators for ransomware type attacks. This file
would definitely be routed for detailed threat scan, as its
extension has changed as well as its entropy, as relevant
indicators.

[0082] FIG. 8B shows another snippet of analysis results
for a series of saves for a file. In this case an added hyperlink
878 is included in the document properties. New URL 878
being added to the document points to potential suspicious
activity. The URL needs to be checked for its reputation and
possible malicious content along with scanning the complete
document through complete scan. Also note that the file-
name 886 has completely changed from the previous file-
name, which warrants a complete threat scan.

May 5, 2022

[0083] The analysis results files described relative to FIG.
5 through FIG. 8B exemplify analysis examples for reducing
threat protection processing needed for network delivered
cloud and web services that optimize the threat scanning
process by scanning a file once and re-scanning its edits only
if the new changes reach a configurable threshold value. A
workflow for reducing threat protection processing is
described next.

Workflow

[0084] FIG. 9 shows a representative method of reducing
threat protection processing. Flowchart 900 can be imple-
mented at least partially with a computer or other data
processing system; that is, by one or more processors
configured to receive or retrieve information, process the
information, store results, and transmit the results. Other
implementations may perform the actions in different orders
and/or with different, fewer or additional actions than those
illustrated in FIG. 9. Multiple actions can be combined in
some implementations. For convenience, this flowchart is
described with reference to a system which includes
Netskope cloud access security broker (N-CASB).

[0085] The method described in this section and other
sections of the technology disclosed can include one or more
of the following features and/or features described in con-
nection with additional methods disclosed. In the interest of
conciseness, the combinations of features disclosed in this
application are not individually enumerated and are not
repeated with each base set of features.

[0086] FIG. 9 begins with action 915 recognizing that a
file is an edited version of a previously processed file.
[0087] Process 900 continues at action 925 with retriev-
ing, from an archive, metadata values, an entropy measure
and hashes for property groups of the previously processed
file.

[0088] Action 935 includes parsing the file into metadata
values and property groups, taking into account format of
the file, and calculating the hashes of the property groups
and an entropy measure for the file.

[0089] Action 945 includes applying similarity measures
to compare the metadata values, the entropy measures, and
the hashes on property groups, for the edited version and the
previously processed file.

[0090] At action 955, when any similarity measure or
combination of similarity measures reaches a trigger, pro-
cessing the file by using a threat detection module to detect
malware.

[0091] Other implementations may perform the actions in
different orders and/or with different, fewer or additional
actions than those illustrated in FIG. 9. Multiple actions can
be combined in some implementations. For convenience,
this flowchart is described with reference to the system that
carries out a method. The system is not necessarily part of
the method.

Computer System

[0092] FIG. 10 is a simplified block diagram of a computer
system 1000 that can be used for reducing threat protection
processing. Computer system 1000 includes at least one
central processing unit (CPU) 1072 that communicates with
a number of peripheral devices via bus subsystem 1055, and
Netskope cloud access security broker (N-CASB) 155 for
providing network security services described herein. These

US 2022/0138322 Al

peripheral devices can include a storage subsystem 1010
including, for example, memory devices and a file storage
subsystem 1036, user interface input devices 1038, user
interface output devices 1076, and a network interface
subsystem 1074. The input and output devices allow user
interaction with computer system 1000. Network interface
subsystem 1074 provides an interface to outside networks,
including an interface to corresponding interface devices in
other computer systems.

[0093] In one implementation, Netskope cloud access
security broker (N-CASB) 155 of FIG. 1A and FIG. 1B is
communicably linked to the storage subsystem 1010 and the
user interface input devices 1038.

[0094] User interface input devices 1038 can include a
keyboard; pointing devices such as a mouse, trackball,
touchpad, or graphics tablet; a scanner; a touch screen
incorporated into the display; audio input devices such as
voice recognition systems and microphones; and other types
of input devices. In general, use of the term “input device”
is intended to include all possible types of devices and ways
to input information into computer system 1000.

[0095] User interface output devices 1076 can include a
display subsystem, a printer, a fax machine, or non-visual
displays such as audio output devices. The display subsys-
tem can include an LED display, a cathode ray tube (CRT),
a flat-panel device such as a liquid crystal display (LCD), a
projection device, or some other mechanism for creating a
visible image. The display subsystem can also provide a
non-visual display such as audio output devices. In general,
use of the term “output device” is intended to include all
possible types of devices and ways to output information
from computer system 1000 to the user or to another
machine or computer system.

[0096] Storage subsystem 1010 stores programming and
data constructs that provide the functionality of some or all
of the modules and methods described herein. Subsystem
1078 can be graphics processing units (GPUs) or field-
programmable gate arrays (FPGAs).

[0097] Memory subsystem 1022 used in the storage sub-
system 1010 can include a number of memories including a
main random access memory (RAM) 1032 for storage of
instructions and data during program execution and a read
only memory (ROM) 1034 in which fixed instructions are
stored. A file storage subsystem 1036 can provide persistent
storage for program and data files, and can include a hard
disk drive, a floppy disk drive along with associated remov-
able media, a CD-ROM drive, an optical drive, or removable
media cartridges. The modules implementing the function-
ality of certain implementations can be stored by file storage
subsystem 1036 in the storage subsystem 1010, or in other
machines accessible by the processor.

[0098] Bus subsystem 1055 provides a mechanism for
letting the various components and subsystems of computer
system 1000 communicate with each other as intended.
Although bus subsystem 1055 is shown schematically as a
single bus, alternative implementations of the bus subsystem
can use multiple busses.

[0099] Computer system 1000 itself can be of varying
types including a personal computer, a portable computer, a
workstation, a computer terminal, a network computer, a
television, a mainframe, a server farm, a widely-distributed
set of loosely networked computers, or any other data
processing system or user device. Due to the ever-changing
nature of computers and networks, the description of com-

May 5, 2022

puter system 1000 depicted in FIG. 10 is intended only as a
specific example for purposes of illustrating the preferred
embodiments of the present invention. Many other configu-
rations of computer system 1000 are possible having more
or less components than the computer system depicted in
FIG. 10.

Particular Implementations

[0100] Some particular implementations and features for
reducing threat detection processing are described in the
following discussion.

[0101] In one disclosed implementation, a method of
reducing threat detection processing includes recognizing
that a file is an edited version of a previously processed file
and retrieving, from an archive, metadata values, an entropy
measure and hashes for property groups of the previously
processed file. The method also includes parsing the file into
metadata values and property group, taking into account
format of the file, and calculating hashes of the property
groups and an entropy measure for the file. Further, the
disclosed method includes applying similarity measures to
compare the metadata values, the entropy measures, and the
hashes on property groups, for the edited version and the
previously processed file, and avoiding full threat scanning
of the file to detect malware except when a similarity
measure or a combination of the similarity measures reaches
a scanning trigger.

[0102] The method described in this section and other
sections of the technology disclosed can include one or more
of the following features and/or features described in con-
nection with additional methods disclosed. In the interest of
conciseness, the combinations of features disclosed in this
application are not individually enumerated and are not
repeated with each base set of features. The reader will
understand how features identified in this method can read-
ily be combined with sets of base features identified as
implementations.

[0103] One implementation of the disclosed method fur-
ther includes logging the edited version of the file for further
processing when the similarity measure or the combination
of the similarity measures reaches a logging trigger. Another
implementation includes performing a full threat scanning of
the edited version of the file when the similarity measure or
the combination of the similarity measures reaches the
scanning trigger.

[0104] For some implementations of the disclosed
method, the hashes for the property groups of the edited
version and the previously processed file are locality pre-
serving hashes. In one implementation, the hashes for the
property groups of the edited version and the previously
processed file are fuzzy hashes.

[0105] For some implementations of the disclosed
method, the metadata values include file size for the edited
version of the file and for the previously processed file, date
for the edited version of the file and date when the previ-
ously processed file was last scanned, and file name and file
extension for the edited version of the file and for the
previously processed file.

[0106] In one implementation of the disclosed computer-
implemented method, the metadata values include file size
for the edited version of the file and for the previously
processed file.

[0107] For some implementations of the disclosed
method, the property groups for the edited version of the file

US 2022/0138322 Al

and for the previously processed file include core properties
of the file, application properties, main document content
and programming scripts. Some implementations further
include calculating and storing a hash for each property
group for the edited version of the file: core properties of the
file, application properties, main document content and
programming scripts.
[0108] Some implementations of the disclosed method
further include applying the similarity measures to more
than one version of the previously processed file. In some
implementations of the disclosed computer-implemented
method, the triggers for the similarity measures are config-
urable values.
[0109] Other implementations of the disclosed technology
described in this section can include a tangible non-transi-
tory computer readable storage media, including program
instructions loaded into memory that, when executed on
processors, cause the processors to perform any of the
methods described above. Yet another implementation of the
disclosed technology described in this section can include a
system including memory and one or more processors
operable to execute computer instructions, stored in the
memory, to perform any of the methods described above.
[0110] The preceding description is presented to enable
the making and use of the technology disclosed. Various
modifications to the disclosed implementations will be
apparent, and the general principles defined herein may be
applied to other implementations and applications without
departing from the spirit and scope of the technology
disclosed. Thus, the technology disclosed is not intended to
be limited to the implementations shown but is to be
accorded the widest scope consistent with the principles and
features disclosed herein. The scope of the technology
disclosed is defined by the appended claims.
What is claimed is:
1. A computer-implemented method of reducing threat
detection processing, including:
recognizing that a file is an edited version of a previously
processed file;
retrieving, from an archive, at least an entropy measure
for the previously processed file;
calculating an entropy measure for the edited version;
applying a similarity measure to compare the entropy
measures for the edited version and the previously
processed file; and
avoiding full threat scanning of the file to detect malware
except when the similarity measure reaches a scanning
trigger.
2. The computer-implemented method of claim 1, further
including:
retrieving, from an archive, metadata values of the pre-
viously processed file;
parsing the file into metadata values and property groups,
taking into account format of the file;
applying a similarity measure to compare the metadata
values and property groups, for the edited version and
the previously processed file; and
avoiding full threat scanning of the file to detect malware
except when a similarity measure or a combination of
the similarity measures reaches a scanning trigger.
3. The computer-implemented method of claim 2, further
including retrieving, from an archive, hashes for property
groups of the previously processed file;

May 5, 2022

calculating the hashes of the property groups for the file;

applying similarity measures to compare the hashes on

property groups, for the edited version and the previ-
ously processed file; and

avoiding full threat scanning of the file to detect malware

except when a similarity measure or a combination of
the similarity measures reaches a scanning trigger.

4. The computer-implemented method of claim 1, further
including logging the edited version of the file for further
processing when the similarity measure or the combination
of the similarity measures reaches a logging trigger.

5. The computer-implemented method of claim 1, further
including performing a full threat scanning of the edited
version of the file when the similarity measure or the
combination of the similarity measures reaches the scanning
trigger.

6. The computer-implemented method of claim 3,
wherein the hashes of the properties of the edited version
and the previously processed file are locality preserving
hashes.

7. The computer-implemented method of claim 3,
wherein the hashes of the properties of the edited version
and the previously processed file are fuzzy hashes.

8. The computer-implemented method of claim 2,
wherein the metadata values include:

file size for the edited version of the file and for the

previously processed file;

date for the edited version of the file, and date when the

previously processed file was last scanned; and

file name and file extension for the edited version of the

file and for the previously processed file.

9. The computer-implemented method of claim 2,
wherein the property groups of the edited version of the file
and for the previously processed file include core properties,
application properties, main document content and program-
ming scripts.

10. The computer-implemented method of claim 3, fur-
ther including calculating and storing a hash for each
property group for the edited version of the file: core
properties, application properties, main document content
and programming scripts.

11. The computer-implemented method of claim 1, further
including applying the similarity measures to more than one
version of the previously processed file.

12. A tangible non-transitory computer readable storage
media, including program instructions loaded into memory
that, when executed on processors cause the processors to
implement a method of reducing threat detection processing,
the method including:

recognizing that a file is an edited version of a previously

processed file;

retrieving, from an archive, at least an entropy measure

for the previously processed file;

calculating an entropy measure for the edited version;

applying a similarity measure to compare the entropy

measures for the edited version and the previously
processed file; and

avoiding full threat scanning of the file to detect malware

except when a similarity measure or a combination of
the similarity measures reaches a scanning trigger.

13. The tangible non-transitory computer readable storage
media of claim 12, further including:

retrieving, from an archive, metadata values of the pre-

viously processed file;

US 2022/0138322 Al

parsing the file into metadata values and property groups,

taking into account format of the file;

applying a similarity measure to compare the metadata

values and property groups, for the edited version and
the previously processed file; and

avoiding full threat scanning of the file to detect malware

except when a similarity measure or a combination of
the similarity measures reaches a scanning trigger.

14. The tangible non-transitory computer readable storage
media of claim 13, further including retrieving, from an
archive, hashes for property groups of the previously pro-
cessed file;

calculating the hashes of the property groups for the file;

applying similarity measures to compare the hashes on

property groups, for the edited version and the previ-
ously processed file; and

avoiding full threat scanning of the file to detect malware

except when a similarity measure or a combination of
the similarity measures reaches a scanning trigger.

15. The tangible non-transitory computer readable storage
media of claim 14, further including logging the edited
version of the file for further processing when the similarity
measure or the combination of the similarity measures
reaches a logging trigger.

16. The tangible non-transitory computer readable storage
media of claim 14, further including performing a full threat
scanning of the edited version of the file when the similarity
measure or the combination of the similarity measures
reaches the scanning trigger.

17. The tangible non-transitory computer readable storage
media of claim 13, wherein the metadata values include:

file size for the edited version of the file and for the

previously processed file;

date for the edited version of the file, and date when the

previously processed file was last scanned; and

May 5, 2022

file name and file extension for the edited version of the

file and for the previously processed file.

18. A system for reducing threat detection processing, the
system including a processor, memory coupled to the pro-
cessor and computer instructions from the non-transitory
computer readable storage media of claim 13 loaded into the
memory.

19. The system of claim 18, further including:

retrieving, from an archive, metadata values of the pre-

viously processed file;

parsing the file into metadata values and property groups,

taking into account format of the file;

applying a similarity measure to compare the metadata

values and property groups, for the edited version and
the previously processed file; and

avoiding full threat scanning of the file to detect malware

except when a similarity measure or a combination of
the similarity measures reaches a scanning trigger.

20. The system of claim 18, further including retrieving,
from an archive, hashes for property groups of the previ-
ously processed file;

calculating the hashes of the property groups for the file;

applying similarity measures to compare the hashes on

property groups, for the edited version and the previ-
ously processed file; and

avoiding full threat scanning of the file to detect malware

except when a similarity measure or a combination of
the similarity measures reaches a scanning trigger.

21. The system of claim 20, wherein the hashes for the
properties of the edited version and the previously processed
file are locality preserving hashes.

22. The system of claim 20, further including calculating
and storing a hash for each property group for the edited
version of the file: core properties, application properties,
main document content and programming scripts.

#* #* #* #* #*

