Office de la Propriete Canadian CA 2916550 C 2017/08/29

Intellectuelle Intellectual Property

du Canada Office (11)(21) 2 91 6 550
Un organisme An agency of

d'Industrie Canada Industry Canada (12) BREVET CANADIEN

CANADIAN PATENT
(13) C

(22) Date de depot/Filing Date: 2010/07/09 (51) CLInt./Int.Cl. B64C 23/06 (2006.01),
(41) Mise a la disp. pub./Open to Public Insp.: 2011/01/13 B63B 1/36 (2006.01), F15D 1/12 (2006.01)

(45) Date de délivrance/lssue Date: 2017/08/29 (72) Inventeur/inventor:

IRELAND, PETER S., AU
(62) Demande originale/Original Application: 2 /67 139 L
(73) Proprietaire/Owner:

(30) Priorites/Priorities: 2009/07/10 (US61/224,481); IRELAND, PETER S.. AU
2010/07/08 (US12/832,966)
(74) Agent: BRION RAFFOUL

(54) Titre : GENERATEURS DE TOURBILLONS ELASTOMERIQUES
(54) Title: ELASTOMERIC VORTEX GENERATORS

(57) Abrege/Abstract:

A method of improving aerodynamic performance of folls by the application of conformal, elastomeric vortex generators. The novel
use of elastomers allows the application of various forms of vortex generators to sections that have been problematic from
engineering and cost considerations. A novel and efficient vortex generator profile Is identified, which develops an additional co
rotating vortex at low energy expenditure. The mechanisms allow for the application of transverse vortex generators, or Gurney
Flaps/Lift Enhancement Tabs/Divergent Trailing Edges, to propellers, rotorblades, and to wings/flaps/ control trailling edges. Cove
Tabs are additionally described using an elastomeric transverse vortex generator to achieve performance improvements of a high
lift device.

SRR f f f [ ]
R RN N
: "c‘:‘? R - e
AR =0y g s ¥, "'.’
e ATy

I*I ) . Prven, B
C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPIC 48 & 2%% ;g

i SRR OERRIA » JO SV SN AN
OPIC - CIPO 191 .




CA 02916550 2015-12-31

Attorney Ref: 1112P002CA02

ABSTRACT

e

A method of 1mproving aerodynamic performance of foils by the

]

application of conformal, elastomeric vortex generators. The

novel use of elastomers allows the application of wvarious forms

yr-u
pa—

OL vortex generators to sections that have been problematic from

"

engineering and cost considerations. A novel and e

fficient

vortex generator profile 1s identified, which develops an

additional co rotating vortex at low energy expenditure. The

mechanisms allow for the application of transverse vortex

generators, or Gurney Flaps/Lift Enhancement Tabs/Divergent

Trailing Edges, to propellers, rotorblades, and to wings/flaps/

control trailing edges. Cove Tabs are additionally described

using an elastomeric transverse vortex generator to achieve

performance 1mprovements of a high 1lift device.




—

CA 02916550 2015-12-31

Attorney Ref: 1112P0CZCA02

APPLICATION OF ELASTOMERIC VORTEX GENERATORS

Field of the Invention:

The present invention relates to improving foil aerodynamics and,
more particularly, to improving lift and drag characteristics. It provides
novel material and properties to —he field of boundary layer modificaltcn

and separated flow
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control, and particularly in the use cf blade, ramp, Gurney Flap/ Lift

Enhancing tab or divexgent trailing edge vortex generating systems.,

BACKGROUND OF THE INVENTION

Performance of a foil or surface 1n a flow of fluid such as air oOr
water is critical for a system performance, affecting lift, drag and

vibration cf a systen.

The leading section of the foil is usually an arsa of 1ncreasing
thickness and results in a thin laminar boundary layer until such point
that viscous draqg, surface friction or pertuberances causes turbulence to
occur 1in the boundary laver. The turbulent boundary iayer has
characteristically higher drag than the laminar flow region, however may
also have improved stability of flow. The cdevelopment of an adverse
pressure gradient results 1in separation of the flow from the surface, and
a further large increase in drag occurs trom this point rearwards. While a
fo1l section may be designed to maintain a large area ©of laminar boundary

layer, practical limitations of manufacture and cleanliness generally

preclude widescale laminar boundary layer cevelopment.



CA 02916550 2015-12-31

Attorney Ref: 1112P002CAQ2Z

Noise signature of a blade, or other foil is affected by the vortex
development 1in the wake of the section. Additionally, 1ift and drag
performance can bhe affected greatly by the use of trailing edge modiflers.
In practice, this performance is not attained due to constraints of

engineering a suitable mecnanism.

Micro Vortex generators, microVG's, are fabraicated from a rigaid
material such as aluminium are used to reenergise boundary lavyers. Large
- Eddy Breakup Units, or LEBU's are occasicnally used to ad-ust & boundary
layer condition, and are constructed from rigld materials. A drag
modifving surface is manufactured by 3M under the tradename "Riblet". This
surface is a thin textured film, designed to provide a reenrgising of the
boundary lavyer to reduce surface drag. Alternatively, a rigid surface may
be deformed by fluting or indentations that act as a form of flow

modifier.

To change acoustic signature and/or lift/drag perforamnce, fluting
of the trailing edge of a foil or section has been accomplished, and tabs
such as lift enhancing tabs or gurrey tabs have been applied 1in

experimentation. Fluting has been
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accomplished ¢cn jet engine exhaust systems in current art.
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Currert boundary layer modifiers such as micro VG's and LEBU's are
rigid in structure. The material they are made from allows limitced flexure
of the structure, and will not permit the underlvyving surface to flex.
Where there is substantial structural flexing and the modifier extends
over any length, these sclutions are unable to be used without affecting
the torsional or flexing characteristics of the underlying structure. This
can result in serious aeroelastic effects, causing structural failure oOr
damage, and are inherently impacted by any alternating loads, bending or
flexing resulting in materiel fatigue. The micro VG's, and similar current
ArT vortex generators are often characterised as being "micro™, however as
a percehtage of the boundary layer height, they are multiples of the
laminar boundary layer height in the region of the forward chord of the
blade, whereas conventional desicn optimisation ¢f micro VG's indicate
that their height should be less than the boundary layer and generally of
the order of 20% or less of the boundary layer thickness to minimise drag

losses, while maintaining effectiveness of developing streamwise vortices.
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Structural mass of any addition to a foil must be considered for
the tenslle loading of the foi1l, particularly for a blade, and also the
location on the blade relative to the chort must be considered: welght
added at the trailing edge is potentially adverse to the dynamic stability
of the fcil (flutter). This may be offset by related aerodymanic effects
1f those effects move the centre of pressure rearward more than the weight
addition shifts the centre of mass of the foill section. Addition oT mass
to a rotor system increases inertial loading in the feathering axis,
pitching axis, and increases radial shear lcads. Therefore, mimimum mass

needs to be achieved at all times.

Fluting of a section involves complex engineering, and can result
in structural problems such as material fatigue. Gurney tabs are
predominately mechanical devices, and the structure adds weigiht and
additionally affects torsional and bending moments of inertia of a
structure. This may cause boncd or fastener failure over time through

fatigue and incompatibility of the attachment systcm,

19
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SUMMARY OF TH.

Ll

INVENTION

In a first aspect, this document discloses an elastomeric

vortex generator for improving flow on a foil or a series of
foils, thereby improving lift, drag, angle of attack capability
or lift-to-drag ratios, the elastomeric vortex generator

comprilsing: a means for forming transverse vortices, and a base

surtace for attachment to a foil or aero/hydrodynamic surface,

wherein the means for forming transverse vortices is elastomeric

and 1is configured to be bonded to the foil or aero/hydrodynamic

surface, the means further comprising: a front surface

configured at an angle normal to a free stream aero/hydrodynamic
flow to generate a first vortex, and a rear surface configured
at an angle normal to the free stream aero/hydrodynamic flow to
generate a second vortex, whereby a body of the means for

forming transverse vortices is configured for force balance

petween the first and second vortex forces so as to provide

minimum force loading on the base surface, and the first and

second vortices are configured to reenergize a downstream

boundary layer, improving lift, drag, angle of attack capability

or lift-to-drag ratios.

In accordance with the present invention, there is provided

new and enhanced alternatives for the application of vortex-

20a
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generating mechanisms. These mechanisms are fabricated from

clastomeric materials, either by extrusions cut to form or by

sheet stock cut to beneficial designs.

ﬁ

The use of elastomeric materials in a vortex—-generating

device 1s counterintuitive, in that the prior art has developed

using either rigid-formed structures or air jet systems, and the

ability of an elastomeric compound to retain a stabilised form

arlses from the surprising fact that the vorticities on each

side of a blade once established are, in the main, both stable
and both series of vortices support the structure between them,

thereby retaining the structure in place when subjected to high

velocity Newtonian fluid flows. This 1s valid for blade and

20b
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tabs such as Gurney Flaps/Lift Enhancement Tabs, which are able to be
fcrmed form either an L or T form blade running transversely proximate to
the trailing edge of a foil, or surprisingly, as a rectangular extrusion

(0r machined strip) section of elastomeric material.

The profiles ¢f klade vortex generators additionally are improved
by the incorporation cof multi bladed sections, which 1ncrease the total
fluid entrainment in vortices. these are described as F, or U forms with
multiple parallel blades being fabricated in section, and the vortex
generator being completed by trimming the extrusion to the desired length
and lengthﬁise profile. This arrangement results 1n an additional central
vortice pneing produced, which is co rotational with the 2 vortices chat
are produced from a single kblade generator, however the total drag 1is
nominally unchanged, as the ccntral vortex efficiently develops 1n a
chanel. Testing to date indicates that the vortex generator of multiple
blades is effective at developing vortices, however comparative

performance s not completed.

The uvse of elastomeric materials allows the designer new freedom

Lo prace a flow modiZier such as these items 1n areas
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that are either sensitive to mass, such as the trailing edge of an aileron
or other surface subject to flulter considerations, and in areas where the
existing dynamic flexure and torsion of the structure would preclude
safety attaching any additional structure which has different material
properties te the substrate. This condition also includes cescs where the
materials may have bccecn common, but the fabrication results in variation
0f the bending and torsional properties of the flow modifier and the
substrate. A particular case in point 1s attempting to place a transverse
device such as a Gurney Flap cr Lift Enhancement Tab to the trailing edge
0of a helicopter rotor, where the attachment base and tab form an L or T
form that increases rgidity in an area subject to cyclical bending loads,
which cause spanwise distortion of the bladec from a straight span. Such
applicaiton of current art structure cof vortex generators would generate
high fatigue loads at the bond, resulting in failure or alternatively
transftfers high loads to the end sections of a strongly bonded/connected
tab to blade, where the structura. properties of the section with the tab
vary from the section without such reinforcement. In the case of a rocor,
additilonally the increase in rgidity of the trailing edge by the
applcaition ¢of a rigid form of tab results in a change in characteristics

between the trailing edge bending and the
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leading c¢dge Dbehavior to these c¢vclical 1loads, and resu.fs in

torsional variations being introduced.

Gurney Flaps/Lift Enhancement Tabs have been the subject of
substantial research, however the primary focus has been on the blade form
extending normal to the lower rear surface of the foil. One series of
experiments did evaluate alternative rigid forms, including triangular and
concave profiles, at relatively low velocities, in the area of high lift
capability, and separately current art has described rigid mechanisms of a
divergent trailing edge to & foil at high wvelocities, and low angles of
attack, consistent with cruise conditions for sulksonic c¢crulse. The flow
structure of a trailing edge tab is in the main consistent with the
structure of the dviergent trailing edge. The etficiency of a low aspect,
below 0.5% chcrd blade form tab located witbhin 2 x the tab heighlt of the
trailing edge of a foil is beneficial, and éffects both 1ow speed
performance of 1iZt, angle of attack capability and lift drag ratio, and
at high speed can improve liZt/drag ratic and additionally increasing the
critical drag rise mach number, through lowering of the suction peak.
F'light testing indicates that an elastomeric rectangular section bonded to
the trailling edge in the manner of a Gurney Flap, acts as both a Gurney

Flap, and as a Divergent
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Trailing Edge device.

zesting of an elastomeric Lift Enhancing Tab was conducted on an

aircraft preopellor, and also a helicopter Main Rotor.

In the case 0f the propeller, the l.6mm high x lZmm wide
elastomeric tape of EPDM foam was bonded to the pressure face trailing
edge c¢f the left hand engines propeller of the twin engined aircraft, a
PA23-250., Spanwise location was varied in testing, however the applicaiton
of the tape with the tape aft face parallel, and 1l.omm forward of the
trailing edge of the blade in chordwise location, and extending as a
continuous fape from 40%span to 8% span resulted 1n i1mproved performance
of the propeller. In comparison to baseline performance, the power
settings to achieve eguilivalent thrust from the enignes resulted in a
reduction of fuel flow required and manifold pressure of approximately
20%. where equal fuel flows and manifold pressures were used on boith
engines, the indicated airspeed achieved by the aizcraft was increased by
approximately S5KIAS, with a notable assymetry in thrust evident supporting
improved performance from the modified propellor. Application of the tape
to the tip region, approximately 95% span, resulted in some wear ¢f the

leading edge of the outer section of the Lape, 1n sandy
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ecnvironemntal conditions.

A limited test of elastomeric Lift Enhancement Tabs was conducted
on an RZ22 helicopter main rotor. Acoustic signature varliation was
immediately noted, and a rcduction in blade vortex interaction was also
noted, but not empiriceally recorded due to testing constraints. The power
required to hover was reduced by aproximately 15% from baseline, for a
3.0mm x 12mm x 1.0m tab section localted 3.0mm forward of the lower
trailing edge of the blade, in the mid span area, apprcximately 40-75%
span. Of note, the normal lcw rotor RPM stall occured at B80% RPM for the
baseline {(manufacturer guidance wvalue given as 83% for test conditions),
whereas with the elastomeric teab, the stall occurred at 68%xPM. In the
baseline case, the anti torgue demanded to maintain directional control,
approaches the control limit, whereas in the elastomeric tap test case,
the control authorityv remaining was greater than baseline, even though the
reduced RPM substantially reduces the anti torque force developed at the
lower RPM. This finding is consistent with the tab developing lower drag,
and 1ncreasing lift coéfficient. The additional conclusion 1s that the
secvticn of the span with the tab also increases the component of total

1ift that is produced, and reduces the aerodynamic loading at the tip of

the blade,
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which 1s consistent with the reduction in blade vortex interaction. A
reduction in vibration while passing through translational 1lift is also
consistent with this conclusion. High speed flight was conducted up to
manuiacturers VNE, but was of a limited nature, howefver no adverse
tehavicr was noted. Autorotation was not evaluated due to the limited
nature of the testing, however, guick stop manoceuvers which enter

autorotative flow conditions were conducted and were unremarkable.

The application of a tab in the cove of a wing/flap system has been
shown by current art to be beneficial to improving flow attchment over the
flap upper surface at high flap deflections. The current art uses a
Cransverse blade 1n this area to achieve the transverse vortex that
initilates the rather complex and interesting separated flow structure that
resu.ts in the ccntinued attachment of the boundary laver to the flap in
cond.tions where normally the boundary layer would have separated. The
invention as an elastomeric box or rectangular section has been applied in
this area in f£light test and acts as a Cove Tab, resulting in fully
attached flow over & simple flap at 50 degrees flap deflection, as
indicated by tuft testing. Lift and drag performance was as expected for

Che appliciation of a current art Cove Tab. When combined with a series of
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clastomeric blade vortex generators on the flap upper leading edge, and a
series of elastomeric blade vortex generators in the area of the outer
wing leading edge outboard of the flaps, the test aircraft, a PA23-250
which normally stalled at 52KIAS, had a resultant stall of 39KiAS,
evaluated by GPS method. The cruise performance of this aircraft was
improved by 2ZKIAS where the elastomeric Cove Tab acted as a flap gap seal
in the flap retracted position. Drag in the landing configuration was
reduced markedly, and aerodynamic vibration related to flow separation
from the flaps was absent. Total fly by noise was diminished from the
lower power setting required. It should be noted that Cove tabs are
primarily beneficial at high deflections, and at lower deflections may
cause a slight reduction in coefficient of 1lift. In testing, 1t was forund
that the perfcrmance shift was significant to the extent that the aircraft
with full flap deflectiorn on takeoff performed tc the same level as the

aircrafts baseline performance with 1/4 or 1/2 flap deployment.

It would be advantageous to provide a structure of a vortex
generator that dces not alter the Zorsional and bending characteristics of

the substrate structure
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It would also ke advantageous to provide a vortex generator 1n a
material that allows for conformal attachment to a surfacce witn simple or

complex curvatures.

It would further be advantageous to provide increased
vorticity for a given drag value, to minimise the slze of a virtex

generalor.

It is advantageous to provlide a structure for a vortex
generating device that is tolerant of operational damage, whereby 1t
may be deformed by excessive forces or impacts but revert to the

design shape on removal of such disturbances.

It is advantageous to have a low density and mass material for a
vortex generator applied at or near the rear of a foll section to

minimise adverse aeroelastic dynamics.

BRIEEF DESCRIPTION OF TIE DRAWINGS

A complete understanding of the present invention may be

obtained by reference to the accompanyiling drawings, when
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considered in conjunction with the subsequent, detailed

description, in which:

Figure 1 1s a Top perspective view of a generic foil;

Figure 2 is a section view of an of a foil showing general fiow

condlitions;

Figure 3 is a top perspective view of an alternatlive blade form

elastomeric extrusions, and vertical tCrimming.

Figure 4 is a top persp=ctive view of a representative applicalion
0f conformal elastomeric blade vortex generators to an aerodynamic

surtace:;

Ficure 5 is a front perspective view of an elastomeric vortex

generator appliled around the radius of a leading edge;

Figure 6 1is a bottom perspective view 0f a 2 element wing and
fiap svestem, with an extruded elastomeric vortex generator fitted in

the flap cove;

Figure 7 is a bottom detail view cf a flap cove and tab
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location;

Figure 8 is a bottom detail view of a deflected flap showing the
location of an extruded elastomeric cove tab, and a representation of a
Dlade vortex generator mounted on the upper forward chord of the flap

alement:;

Figure ¢ 1s a top gerspeaective view of an extrusion oI ogivadl

elastomeric vortex generator stock;

Figure 10 is a top perspective view of an extrusion of an ogival
profile elastomeric stock trimmed vertically in a v form to produce a

conformal elastocemric vortex generator; and

Ficure 11 is a bottom perspective view of a foll section with an
elastemeric section acting as a gurney flap/lift enhancing

tab/divergent trailing ecge element.

F'or purposes of clarity and brevity, like elements and
components will bear the same designations and numbering throughout

the Figures.
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DESCRIPTION OF THE PREFERRED EMBODIMENT

Figure 1 is a top perspective view of a generic foil,
representation of a foil or aero/hydrodynamic surface 10, showing the
general arrangement for the following figures. A foil leading edge 26 is
identifable, as is the foil trailing cedge 28. Representative flow
directions are shown by annotation with an arrow head, ir this case as
streamwlise flow 94, flowing from left to right in the image. Short
streamwisc flow 94 or spanwise flow 90 arrcows indicate that the flow
referred to 1s on the underside of the image. The arrows for aft face
vortice 80, foreward face vortice 78 are indicative only of general flow
location, and in the case of a transverse vortex, the direction of the
convection of the vortex core is dependent on the incident angle of the
streamwise flow 94 and the presence of spanwisc flow 90 migration. It is
Lest considered that the rotaional flow of the vortex is generally
perpendicular to the direction of the vortex arrow, such that the arrow

indicates an approximation of the core center.

Figure 2 is a section of a foil showing general flow ccnditions,

peing a representative arrangement of the boundary laver development of an

arbitrary foil. it shows, gqualitatively,
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the general location of the upper boundary laver transition point 32,
lower boundary layer transition point 34, separation point 36, a laminar
boundary layer region 38, turbulent boundary laver region 40, and
separated flow region 42. These flow conditions are highly dependent on
the foil, and Reynclds Number of a foil moving relative to a fluid. The
exact location of vortex generators applied to any structure require a
determination of the conditions of the boundary laver for the desired
operating condition. In general however, it i1is noted that a vortex
generator in the laminar bpoundary layer will have relatively high drag
for a given height, due to the thin nature of the boundary laver. in this
location, sub boundary layer vortex generators 24 are desirable from a
drag outcome, but the mechanical constraints of fabrication may require a
minimum height to be accepted. The vortex generator is usually located
Cowards the rear of the extent of laminar flow for the condition that the
applicaiton is desired. A Gurney Flap 56, Lift Enhancing Tab, or Divergent
Trailing Edge transverse vortex generator exists in an area of thickened

turbulent boundary laver.

Figure 3 is a top perspective of alternative blade form elastomeric

extrusions, and vertical trimming representation of
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alternative arrangements for elastomeric blade vortex generators. Upper
left tc right are a U form double blade 66, F form vortex generator 68,
single blade extrusion 70, with a series of L form extrusion 72 sections
below, showing different trim line 64 configurations. A representaticn ot
streamwise flow 94 is shown with approximate lcoatlions of vortex

develcocpment shown.

Figure 4 is a top perspective view of representatlve application
of conformal elastomeric blade vortex cenerators to an aerodynamic

surface.

Figure 5 is a front perspective view of detail of an
cslastomeric vortex generator applied around the radius of a leading

cdge.

Figure 6 1s a bottcm perspective view of a 2 element wing and
flap 56 system, with an extruded elastomeric vortex generator [ltted in

the flap cove >4..

Figure 7 is bottcm detail view of a flap cove 52 and tab

location.

33



CA 02916550 2015-12-31

Attorney Ref: 1112PCQO2CAQZ2

Figure 8 is a bottom detail view of deflected flap 56 showing the
lccaticon of an extruded elastomeric cove tab 92, and a representation of a

blade vortex generator mounted on the upper forward chord of the flap 56

element.

Figure 9 is a top perspective view o0f extrusion of ogival
elastomeric vortex generator stock. This 1s manufactured from an EPDM type
matesrial or other elastomeric compound that achieves the desired mass,

wear and adhesion properties.

Figure 10 is a top perspective view of an extrusicn of an ogiwval
profile clastomeric stock trimmed vertically in a V form to produce a
conformal elastoemric vortex gensrator. The trim line 64 achieved by a
rotary profile cutter, laser or water jei, results in a ramp vortdex
generator being produced. The trimmed sides may De angled as i1ndilicated,
endsavouring to achieve a relative angle of the side to the freestream
flow of ketween 15 and 25 degrees, or alternatively and more efficiently,
may be planform profiled to an ogival shape consistent with a NACA 1inlet
planform. The ramp angle is dependent on the use but data IZIrom NACA
references indicate that between 4 and 8 degrees of rise from the leading
2dge of the ramp to the top 1s desirable. This profile wedge form may aiso

be advantagely adijusted to
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incorporate an ogival form.

Figure 11 1s a bottom perspective of a foil section with an
elastomeric section acting as a Gurney Flap 56/Lift Enhancing
Tab/Divergent Trailing Edge element. This is alsc a representative
location for the employment of an L form elastomeric vortex generator
appllied as a Gurney Flap/Lift Enhancement Tab/Divergent Trailing Edge 88,
or an inverted T form single blace extrusion 70, where the base is
provided such that the trailing base element does not extend past the
trailing edge. It should also be noted that the symmetrical positioning of
Cransverse trailing edge forms such as these may be applied in special
conditions, where pitching moment is excessive, or the foil is subject to
both positiive and negative angles of attack, such as for a rudder or
alleron system. In such a case, the mass will naturally be greater,
however the effect is generally to shift the lift ccefficient correlaticn

to angle of attack to a higher angle per degree of angle of attack.
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Having thus described the 1invention, what 1s desired to be
protected by Letters Patent 1s presented in the subsequently appended

claims.
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What 1s claimed 1is:

1. An elastomeric vortex generator for improving flow on a
foi1l or a series of foils, thereby improving lift, drag, angle
of attack capability or 1lift-to-drag ratios, the elastomeric
vortex generator comprising:

a means for forming transverse vortices, and

a base surface for attachment to a fo1ll or
aero/hydrodynamic surface,
wherelin the means for forming transverse vortices

- 1s elastomeric and

- 1s configured to be bonded to the foil or
aero/hydrodynamic surface,
the means further comprising:

- a front surface configured at an angle normal to a free
stream aero/hydrodynamic flow to generate a first vortex, and

- a rear surface configured at an angle normal to the free

stream aero/hydrodynamic flow to generate a second vortex,

whereby

- a body of the means for forming transverse vortices 1s
configured for force balance between the first and second vortex
forces so as to provide minimum force loading on the base

surface, and
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- the first and second vortices are configured to
reenergize a downstream boundary layer, improving 1lift, drag,

angle of attack capability or lift-to-drag ratios.

2. The elastomeric vortex generator in accordance with claim
1, wherein the means for forming vortices 1is configured to be
bonded directly onto a surface of the foil or aero/hydrodynamic
surface to 1improve flow on a foil or series of foils, thereby
improving lift, drag, angle of attack capability or lift-to-drag

ratios.

3. The elastomeric vortex generator in accordance with c¢laim
2, the elastomeric vortex generator being for improving flow on
a foil or series of foils, thereby improving 1lift, drag, angle

of attack capability or 1lift to drag ratios, wherein the means

for forming vortices 1s passive or immobile, bondable, and is a

conformal elastomeric extrusion or section for forming vortices.

4 . The elastomeric vortex generator as recited 1in claim 3,

wherein the means has a profile 1n one of: a U form, an F
profile, an inverted T profile, and an L profile, the means
being located on the surface of a section that is within 20% of
a chord of a wing, flap or foil or aero/hydrodynamic surface on

which the elastomeric vortex generator 1i1is applied thereon, and
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1s for developing vortices to re-energise the boundary layer, or

to adjust existing flow to improve 1lift, drag or 1lift/drag

ratios.

5. The elastomeric vortex generator as recited 1in claim 1,
wherein the means is formed as a conformable, bondable, gurney
tab that 1s aligned transversely to free stream,

- 1s parallel to trailing edge,

- 1s positioned on the lower surface, for generating an off
body recirculation field and for increasing total 1ift and
reducing drag, resulting in:

- 1ncreased aft aerodynamic loading,

- a reduction 1n leading edge suction, and

- reduced adverse pressure gradient development thereby
increasing total 1lift, and reducing drag at low speeds, and

increasing the critical Mach number/drag divergence Mach of the

foi1l.

¥ The elastomeric vortex generator as recited in claim 1,

wherein the means for forming vortices

- 1s conformal, and

- has a bondable F form double blade for efficiently

developing vortices,
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- 1s rotated anticlockwise such that a bonding surface is
the vertical stroke of the F form, and

- 1s for efficliently developing vortices and for developing
a trapped vortex between the twin blades thus formed, the twin
blades being normal to a substrate surface and are aligned with

an extruded axis.

7. The elastomeric vortex generator as recited claim 1,
wherein the means has a low profile wedge or ogival section, or
F, T or U ogival' section, or F, 1inverted T or U section
extrusion, that 1s aligned with an aft face at, or forward from

a lower trailing edge of a foil section, and wherein the means

- enhances 1li1ft at low velocities, and

- 15 configured to develop a transverse vortex proximate to

the trailing edge thereby inducing an increase in the wake exit

angle and local velocity at an upper trailing edge, resulting 1in

increased aft aerodynamic loading and reduction in leading edge
suction, thereby reducling upper surface velocities while
maintalning total 1lift, and therefore reduces drag and increases
the critical Mach number of the foil resulting in:

- 1lncreased aft aerodynamic loading,

- a reduction 1n leadlng edge suction, and

- reduced adverse pressure gradient development thereby

increasing total 1ift, and reducing drag at low speeds, and
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increasing the critical Mach number/drag divergence Mach of the

foi1l.

8. The elastomeric vortex generator as recited 1n claim 1,
wherein the means 1s formed as a conformable, bondable, gurney

tab that 1s aligned transversely to free stream, 1s parallel to

trailing edge,

- has a constant span wise height from substrate,

- 1s positioned on a lower surface,

- 1s for generating an off body recirculation field and for
increasing total lift and reducing drag and genérating a
transverse vortex proximate to the trailing edge which induces
an 1ncrease 1n the wake exit angle and local velocity at an
upper trailing edge, resulting in:

- 1ncreased aft aerodynamic loading,

-~ a reduction 1in leading edge suction, and

- reduced adverse pressure gradient development thereby
increasing total 1lift, and reducing drag at low speeds, and

increasing the critical Mach number/drag divergence Mach of the

foil.

9. The elastomeric vortex generator as recited in claim 1,
whereln the means 1s a conformal, bondable double blade with one

of: an U form and a F form, wherein the double blade results in
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trapped vortices, and 1s for efficiently developing vortices and

1s for maintaining a stable generator structure.

10. The elastomeric vortex generator as recited in claim 4,
whereilin the means 1s a conformal, bondable double blade with one

of: an U form and a F profile, wherein the double blade results
in trapped vortices, and is for efficiently developing vortices

and 1s for maintaining a stable generator structure.
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