
USOO7843462B2

(12) United States Patent (10) Patent No.: US 7,843.462 B2
POOn (45) Date of Patent: Nov.30, 2010

(54) SYSTEMAND METHOD FOR DISPLAYING A (58) Field of Classification Search 345/418,
DIGITAL VIDEO SEQUENCE MODIFIED TO
COMPENSATE FOR PERCEIVED BLUR

(75) Inventor: Eunice Poon, Scarborough (CA)
(73) Assignee: Seiko Epson Corporation, Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 685 days.

(21) Appl. No.: 11/852,133

(22) Filed: Sep. 7, 2007

(65) Prior Publication Data

US 2009/OO67.509 A1 Mar. 12, 2009

(51) Int. Cl.
G06T L/60 (2006.01)
G06T II/40 (2006.01)
G09G 5/36 (2006.01)
G09G 5/00 (2006.01)
H04N 9/64 (2006.01)
H04N L/46 (2006.01)
G06K 9/46 (2006.01)
G09G 5/02 (2006.01)
HO4N I/40 (2006.01)
HO4N 7/26 (2006.01)
HO4N 7/64 (2006.01)
G06K 9/40 (2006.01)

(52) U.S. Cl. 345/582: 34.5/530: 34.5/548;
345/602:345/552; 348/251: 348/241; 348/615;

348/208.13: 358/524; 358/533: 358/461;
382/236; 382/254; 382/264; 382/274

Receive Digital
Video Sequence (DWS)

Frt C.

rocess OWS to
Precompensate for

ficti Eir

Display
OCsessed WS

345/581–582,589, 600-602,611, 612, 618,
345/530, 545,536 538,547, 552,548,555;
348/155,352,251, 241, 407,430,497, 533,

348/578, 615, 699, 607; 358/524–525,532–533;
375/240.26; 382/255

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,764,787 A 6/1998 Nickerson
6,026.232 A * 2/2000 Yogeshwar et al. 71.5/719
6,496.538 B1 12/2002 Drysdale
6,549,576 B1 4/2003 Moriyoshi
6,707,853 B1 3/2004 Cook et al.
6,778,607 B2 8/2004 Zaccarin et al.
6,842,483 B1 1/2005 Alu et al.
7.054,500 B1* 5/2006 Lillevold 382,260
7.596.280 B2 * 9/2009 Bilbrey et al................ 382.274

2004/01906 17 A1* 9, 2004 Shen et al. 375,240.16

(Continued)
Primary Examiner Sajous Wesner
(74) Attorney, Agent, or Firm—Mark P. Watson

(57) ABSTRACT

A system for displaying a digital video sequence includes a
graphics processing unit (GPU) and a display device. The
GPU receives and modifies the digital video sequence to
compensate for perceived blur based on motion between
frames of the digital video sequence. The display device
displays the modified digital video sequence. A method and
computer readable medium having computer readable code is
also provided.

21 Claims, 7 Drawing Sheets

iSO.

US 7,843.462 B2
Page 2

U.S. PATENT DOCUMENTS 2006, OO67406 A1 3/2006 Kitada et al.
2006/010991.0 A1 5/2006 Nagarajan

2004/0227763 A1 11/2004 Wichman et al. 2006, O120612 A1 6/2006 Manjunath et al.
2004/0247029 A1 12/2004 Zhong et al. 2006, O126739 A1 6/2006 Stoner
2004/0264570 A1 12/2004 Kondo et al. 2006/0182356 A1* 8, 2006 Lillevold 382,236
2005/0179814 A1 8, 2005 Pau et al. 2006/0280249 A1* 12/2006 Poon 375,240.16
20050190844 Al 9, 2005 Kadono et al. 2008.0004073 A1 1/2008 John et al. 455,556.1
2005/0265454 A1 12/2005 Muthukrishnan et al. 2009,025.6918 A1* 10, 2009 Rabinowitz et al. 348,208.4
2006/0002474 A1 1/2006 Au et al. 2010/0214448 A1* 8, 2010 Ouzilevski et al. 348,231.99
2006.0056513 A1 3, 2006 Shen et al.
2006.0056708 A1 3, 2006 Shen et al. * cited by examiner

U.S. Patent Nov.30, 2010

Programmable
Fragment
Processo

Sheet 1 of 7 US 7,843.462 B2

Receive Digital
Video Sequence (DVS)

rt C.

OceSS WS to
PreCompensate for

witi

Display
Processed DVS

Textures
-Programs
-Switchable
Framebuffers

U.S. Patent Nov.30, 2010 Sheet 2 of 7 US 7,843.462 B2

KFrane Ready)

Frate

s
Frame

re- Wanted

1 Next N No.
<Frame wantegxi.

Adjust luminance
600

< of iterations

Sharpening

Overdrive

RGB Conversion

US 7,843.462 B2 Sheet 3 of 7 Nov.30, 2010 U.S. Patent

º "501-? ----DOELIGTIGE, ET
• || || || || || || ~ || ~ || || No.oaeo |

| || || || ~ | ° || ~ || || 1:Ewras No. Tº TTT: DE ETTETTINGENEEN

U.S. Patent Nov.30, 2010 Sheet 4 of 7 US 7,843.462 B2

NTA, CHECK PONTS

SECOND STAGE PONS K> THIRD STAGE POINTS

U.S. Patent Nov.30, 2010 Sheet 5 Of 7 US 7,843.462 B2

U.S. Patent Nov.30, 2010 Sheet 6 of 7 US 7,843.462 B2

X92 320x240 3

are Size

FG

. GPucPU
Frane (as f}s

Time per Frame Rate Time Per Frame Rate Rio
Frame (ms) (fps)

40.17 24.89 15.56 62.5 2.58
256 x 192 77,70 12.87 35.01 2ese 222
320x240 11521 868 I 48.07 | zoso | 240

Y eru Processingine

ColorSpace Conversion
viction Estirratic

Motion Biu Compensation
votion Sharpening
Overdrive
Frame Display

:)

US 7,843.462 B2

Processing Time (ms)

Processing Time (ms)

Sheet 7 Of 7 Nov.30, 2010

C
EC
c

Processing irne (mis)

Processing line (ms)

.

r

U.S. Patent

US 7,843,462 B2
1.

SYSTEMAND METHOD FOR DISPLAYINGA
DIGITAL VIDEO SEQUENCE MODIFIED TO
COMPENSATE FOR PERCEIVED BLUR

FIELD OF THE INVENTION

The present invention relates generally to image process
ing and more particularly to a method and system for display
ing a digital video sequence modified to compensate for per
ceived blur.

BACKGROUND OF THE INVENTION

Moving objects in digital video displayed on a hold-type
display device Such as a liquid crystal display (LCD) device
can appear blurry to an observer. The perceived blur is known
to be caused in part by the relatively slow LC response of the
liquid crystal cells. When compared with an impulse-type
device such as a cathode ray tube (CRT) device, for example,
an LCD device has a much slower brightness transition
response time. The perceived blur is also caused in part by
prolonged light emission inherent in the sample-and-hold
driving technique commonly employed by LCD devices,
which results in formation of after-images on the human
retina. These after-images produce a blurred visual percep
tion as the video sequence is being observed.

Various methods have been proposed to compensate for
perceived blur. These include methods that modify the hold
type device itself (for example by black frame insertion or
backlight blinking), and those that pre-process frames of the
digital video sequence prior to display on the hold-type
device in order to compensate for motion blur (such as low
pass filtering, or inverse filtering).

U.S. Patent Application Publication No. 2005/0265454 to
Muthukrishnan et al. discloses a motion estimation algorithm
for predictive coding of a digital video stream. A best match
of a given blockina current frame is foundby identifying a set
of predictor search points in a reference frame based on a
median vector of an adjacent, already-coded macro block, a
Zero motion vector, a temporally co-located macroblock, Sur
rounding macroblock motion vectors and a global motion
vector. A Sum of Absolute Difference (SAD) between the
given block and each reference block in the reference frame
that is centered on the respective predictor points is then
calculated. The predictor point corresponding to the lowest
SAD is then used as the center of a further diamond search
within a given pixel range to identify a better match (i.e., one
that yields a lower SAD). Ifa better match is found, a diamond
search within a reduced pixel range is conducted about the
center of the better match. The process continues with pro
gressively reduced pixel ranges for a predetermined number
of iterations, or until the minimum SAD stays at the center of
a current diamond search. The motion vector for the given
block is then deemed to correspond to the center of the last
diamond search.

U.S. Patent Application Publication Nos. 2006/0056513
and 2006/0056708 to Shen et al. disclose a method for accel
erating video encoding using both a central processing unit
(CPU) to encode the video and a graphics processing unit
(GPU) to perform motion estimation for use during the
encoding. A particular video frame is identified by the CPU
and provided to the GPU for processing. The GPU conducts
motion estimation using block matching, during which refer
ence pixel blocks within a search window are compared with
a current pixel block in the current frame to find a reference
pixel block yielding a minimum SAD. The motion vector
representing motion estimation of a pixel block is provided by

10

15

25

30

35

40

45

50

55

60

65

2
the GPU to the CPU in order to encode the current frame into
a digital video data stream. A depth buffer is employed by the
GPU to accelerate motion estimation.

U.S. Pat. No. 5,764,787 to Nickerson discloses a method of
estimating motion between Successive video frames during
encoding of the video frames into a video stream. During the
method, a current pixel block in a current frame is compared
using SAD or Sum of Squares of Differences (SSD) with a
plurality of reference pixel blocks within a search window in
a reference frame to determine a best match. Only half of the
pixels in the current pixel block, distributed in a checkerboard
pattern, are compared thereby to reduce computational load.

U.S. Pat. No. 6,496.538 to Drysdale discloses a method and
apparatus for estimating motion between video frames during
encoding of a set of video frames. During the method, a first
macroblock from a video frame in the set is compared to a
second macroblock in a reference video frame to determine a
differential value. The differential value is then compared to
a comparison value. If the differential value is no smaller than
the comparison value, the differential value is compared to a
minimal differential value. If the differential value is less than
or equal to the minimal differential value, the differential
value is stored as the new minimal differential value, thereby
to establish a better macroblock match.

U.S. Pat. No. 6,549,576 to Moriyoshi discloses a method
for detecting motion vectors between blocks of pixels in
frames for compression coding a digital video sequence. Dur
ing the method, a current image is divided into pixel blocks
and the difference in position between each pixel block in the
current image and its best match in a search range of a refer
ence image is determined. A motion vector for a pixel block
residing in the same position in the reference frame is set as
the predictive vector, and the end position of the predictive
vector is set to a scan start position. Scanning during search
ing is spirally performed from the scan start position toward
the vicinity of the outside of the search range so as to locate
high probability matches early in the search.

U.S. Pat. No. 6,707,853 to Cook et al. discloses a method
for compensating for motion between frames in a digital
Video sequence for the purpose of digitally encoding the
Video sequence. During the method, a picture in a sequence is
reconstructed by predicting the colors of pixels in pixel mac
roblocks using motion vectors that have previously been
obtained for forward and/or backward reference pictures in
the sequence.

U.S. Pat. No. 6,778,607 to Zaccarin et al. discloses a
method for multi-rate encoding of video sequences. During
the method, motion information relating a frame to previ
ously-encoded frames is calculated using both spatial and
frequency-domain representations of the frame and a previ
ous frame. Motion compensation prior to encoding is per
formed in the frequency-domain.

U.S. Pat. No. 6,842,483 to Au at al. discloses a method for
estimating motion between Successive images in a digital
Video sequence using block-matching. During the method, a
search is performed for a pixel block of a previous frame that
is similar to a current pixel block of a current frame. A search
area based on points in the previous frame is arranged in
Successively larger diamond-shaped Zones. The diamond
shaped Zones may be centered on the corresponding position
of the pixel block in the previous frame, or centered on a point
that is based on a previous prediction of motion. The search in
Successive Zones for the best matching pixel block in the
previous frame continues until a threshold number of dia
mond shaped Zones have been searched.

U.S. Patent Application Publication No. 2004/0227763 to
Wichman et al. discloses a coprocessor for conducting

US 7,843,462 B2
3

motion estimation between frames in order to encode or
decode a digital video stream. During motion estimation, one
(1) motion vector over a 16x16 pixel macroblock and four (4)
motion vectors over four (4) 8x8 pixel blocks in a frame are
computed. The coprocessor and a processor cooperate to
perform both single motion vector searches for the full mac
roblock and multiple motion vector searches for the four (4)
8x8 blocks.

U.S. Patent Application Publication No. 2004/0247029 to
Zhong et al. discloses a method for estimating motion
between frames in a digital video sequence. During the
method, a plurality of predicted start motion vectors are
selected. Coarse block motion searches using the plurality of
predicted start motion vectors are performed to obtain a SAD
value and an associated vector. A fine block motion search is
then conducted using as a starting position the motion vector
of the best match resulting from the coarse search. The pre
dicted start motion vectors are preferably vectors correspond
ing to macroblocks both above and to the left of the current
macroblock. The coarse searches are preferably 16x16 dia
mond searches and the fine searches include both an 8x8
search and a half-pixel search.

U.S. Patent Application Publication No. 2004/0264570 to
Kondo et al. discloses a method for encoding and decoding
pictures in a series of moving pictures. Storage of motion
vectors used for predictive coding of pictures is controlled
such that fewer motion vectors than the number of reference
pictures is stored. If a required motion vectoris stored, coding
is conducted using the required motion vector. Otherwise,
coding is performed using a motion vector corresponding to a
neighboring block.

U.S. Patent Application Publication No. 2005/0179814 to
Pau et al. discloses a method for de-interlacing digital images
formatted according to the Phase-Alternate-Line (PAL) dis
play system, in order to display the images on non-PAL
devices.

U.S. Patent Application Publication No. 2005/0190844 to
Kadono et al. discloses a method for estimating motion
between frames in a digital video sequence, in order to per
form compression coding of the video sequence. During the
method, a reference block in a reference picture is defined as
a search center. An error between a current block in a current
picture and the reference block, and an error between the
current block and each of neighboring reference blocks of the
reference block, are then calculated. The reference block
having the minimum error is identified. Based on the mini
mum error, it is determined whether or not motion estimation
should be terminated. Based on the position of the reference
block having the minimum error, a reference block removed
by two pixels or more from the search center is set as the next
search center, and the calculation is repeated based on the
next search center. The method proceeds iteratively until the
value of the newest minimum reaches a threshold value, at
which point the search is terminated.

U.S. Patent Application Publication No. 2006/0002474 to
Au et al. discloses a method forestimating motion of multiple
frames during compression of digital video. During the
method, macroblocks and their respective locations in a cur
rent frame are defined. Both a search region for each macrob
lock in the reference frame, and a search point for each
relative displacement of a macroblock within the search
region are defined. A hierarchy of modes, or levels, of pos
sible subdivision of each macroblock into smaller, non-over
lapping regions is then constructed. An "elaborated search
(i.e., a pixel-precision search) for each macroblock for the
highest level of subdivision of the macroblock is then con
ducted to find a macroblock match. Then, a small diamond

10

15

25

30

35

40

45

50

55

60

65

4
search around the motion vector obtained from the highest
level elaborated search is conducted. The best motion vector
for the macroblock is the motion vector corresponding to the
subdivision of the macroblock in the reference frame that has
the Smallest mismatch measure (i.e., SAD).

U.S. Patent Application Publication No. 2006/0067406 to
Kitada et al. discloses an apparatus for decoding a compres
Sion-encoded motion video stream. The apparatus imple
ments a motion compensation procedure that generates an
inter-frame prediction signal corresponding to an undecoded
picture, using previously-decoded pictures. Motion vector
information for generating the inter-frame prediction signal is
separated from the motion video stream by an entropy decod
ing unit.

U.S. Patent Application Publication No. 2006/0109910 to
Nagarajan et al. discloses a method for interpolating motion
vectors with Sub-pixel accuracy during compression coding
of digital video. A block matching process for calculating a
full-pixel motion vector for each block comprises comparing
pixel blocks in a current frame with reference pixel blocks in
a search range in a reference frame. The method by which the
motion vector is interpolated is based on the orientation of the
calculated full-pixel motion (i.e., horizontal, vertical or
diagonal).

U.S. Patent Application Publication No. 2006/0120612 to
Manjunath et al. discloses a method for estimating motion
between frames in a digital video sequence during video
sequence encoding. During the method, a motion vector pre
dictor is calculated based on motion vectors previously cal
culated for a frame's video blocks that are proximal to the
current video block. The motion vector predictor is used as a
basis from which to search for a prediction video block for
encoding the current video block. A difference block indica
tive of differences between the current video block and the
prediction video block is then calculated and used to encode
the current video block.

U.S. Patent Application Publication No. 2006/0126739 to
Stoner et al. discloses a method for optimizing motion esti
mation during encoding of a digital video sequence. During
the method, a SAD value is calculated between a current
macroblock in a current frame and each of a plurality of
reference macroblocks within a search range in a reference
frame. SAD values are then calculated for all microblocks of
a smallest block size within the macroblock. The SAD values
of the smallest microblocks are used to calculate the SAD
values for microblocks of other sizes within the macroblock
(i.e., by summing the SAD values for microblocks in different
combinations). The motion vectors corresponding to the low
est of the SAD values from the various-sized microblocks in
each macroblock are then deemed to be the macroblock
motion vectors.

While it is well-known to estimate motion between frames
in a digital video sequence for encoding digital video,
improved techniques for pre-compensating for perceived blur
in a digital video sequence displayed on a hold-type device
are desired.

It is therefore an object to provide a novel system and
method for displaying a digital video sequence modified to
compensate for perceived blur.

SUMMARY OF THE INVENTION

According to one aspect there is provided a system for
displaying a digital video sequence, comprising:

US 7,843,462 B2
5

a graphics processing unit (GPU) receiving and modifying
the digital video sequence to compensate for perceived blur
based on motion between frames of the digital video
sequence; and

a display device displaying the modified digital video 5
Sequence.

According to an embodiment, the GPU comprises a pro
grammable fragment processor, texture memory storing
frames of the digital video sequence, program memory Stor
ing a computer program executable by the programmable 10
fragment processor. The computer program comprises pro
gram code estimating motion between pixels in a current
frame and a previous frame; and program code filtering pixels
in the current frame based on the estimated motion to com
pensate for perceived blur. 15

According to another aspect, there is provided a method for
displaying digital video, comprising:

modifying an input digital video sequence using a graphics
processing unit (GPU) to compensate for perceived blur
based on motion between frames; and 2O

providing the modified digital video sequence to a display
device.

According to yet another aspect, there is provided a com
puter readable medium having a computer program thereon
that is executable by a graphics processing unit (GPU) for
displaying digital video, the computer program comprising:

computer program code modifying the digital video
sequence to compensate for perceived blur based on motion
between frames; and

computer program code providing the modified digital
Video sequence to a display device.
The methods and systems described herein increase the

perception of sharpness in digital video displayed on a hold
type display, and do not suffer from excessive noise amplifi
cation as is common in many known inverse filtering meth
ods. Furthermore, use of the GPU for motion estimation and
compensation results in a significant performance increase
over methods using only a central processing unit (CPU).

25

30

BRIEF DESCRIPTION OF THE DRAWINGS 40

Embodiments will now be described more fully with ref
erence to the accompanying drawings, in which:

FIG. 1 is a block diagram of a system for decoding a digital
Video stream into a digital video sequence and displaying the
digital video sequence using a display device;

FIG. 2 is a block diagram of a graphics processing unit
(GPU) in the system of FIG. 1;

FIG. 3 is a block diagram of a method for processing and
displaying a digital video sequence;

FIG. 4 is a program flow diagram showing the flow of
processing operations performed on a digital video sequence
frame during the method of FIG. 3;

FIG. 5 is a table correlating the data inputs and outputs of ss
several fragment shader programs used by the graphics pro
cessing unit of FIG. 2;

FIG. 6 is a diagram showing candidate motion vector end
points used during estimation of motion of pixel blocks
between digital video sequence frames; 60

FIG. 7A is an illustrative vector field showing motion vec
tors of pixel blocks between two frames:

FIG. 7B is the vector field of FIG. 7A after a vector Smooth
ing operation;

FIG. 8 is a graph illustrating the differences in overall 65
processing times between a central processing unit (CPU)
and a GPU during motion blur pre-compensation;

45

50

6
FIG. 9 is a table correlating the overall processing times of

FIG.8 with processing times per frame and frame rates;
FIG. 10 is a table including the differences between a GPU

and a CPU in the individual processing times of various
processing operations during motion blur pre-compensation;
and

FIG. 11 is a set of graphs illustrating the differences in
individual processing times of various processing operations
of FIG. 10.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

For ease of understanding, perceived blur in a digital video
image caused by a hold-type display Such as an LCD device
that uses a sample and hold display format will firstly be
discussed. As a digital video sequence is input to an LCD
device, each digital video image, or frame of the digital video
sequence is displayed and Sustained on the LCD device for
one frame interval. While viewing a scene in motion, the
human eyes actively track the scene with Smooth pursuit eye
movement so as to generate a stabilized image on the human
retina, as described by M.J. Hawken and K. R. Gegenfurtner
in the publication entitled “Pursuit Eye Movements to Second
Order Motion Targets” (Journal of the Optical Society of
America A, 18(9), pp. 2292-2296, 2001). The human visual
system then undertakes visual temporal low pass filtering in
order to perceive a flicker-free image.
The tracking behavior of the human eye causes integration

of frame data over at least one frame interval, resulting in
perceived blur. The combination of the LCD device and the
tracking behavior of the human visual system therefore
results in a spatial low pass filtering effect. Methods for
pre-compensating for motion blur in a digital image captured
with a digital camera using estimates of motion direction and
motion extent of the image are described in United States
Patent Application Publication No. 2005/0231603, the con
tent of which is incorporated herein by reference. Methods for
pre-compensating for perceived motion blur in a digital video
sequence are described in United States Patent Application
Publication No. 2006/0280249, the content of which is incor
porated herein by reference.

In the following description, a system and method for
displaying a digital video sequence modified to compensate
for perceived blur is provided. The system comprises a graph
ics processing unit (GPU) that receives and modifies the input
digital video sequence to compensate for perceived blur
based on motion between frames of the digital video
sequence, and a display device displaying the modified digital
Video sequence.

FIG. 1 is a block diagram of a system 50 for displaying a
digital video sequence modified to compensate for perceived
blur. System 50 comprises memory 100 storing a digital video
stream 150. The digital video stream 150 may be encoded
according to an MPEG (Moving Pictures Expert Group) stan
dard. A Central Processing Unit (CPU) 200 receives and
decodes the digital video stream 150 into a digital video
sequence 250 of frames. CPU200 provides the digital video
sequence 250 to a graphics processing unit (GPU)300, which
processes the digital video sequence 250 to compensate for
perceived blur based on motion between the frames thereby to
create a modified digital video sequence 350. GPU 300 pro
vides the modified digital video sequence 350 to an LCD
device 400 for display.

In this embodiment, the CPU200 is a Pentium4 2.26 GHz
system with a Windows 2000 Professional English Version

US 7,843,462 B2
7

operating system. The GPU 300 is a NVIDIA GeForce 6000
Series or higher, with ForceWare Graphics Driver Version 81
or higher.

FIG. 2 is a block diagram of the GPU 300. The GPU 300
includes a programmable fragment processor 310, and
memory 312. Memory 312 includes data memory for three
(3) textures for storing a current frame of the digital video
sequence 250, a vector map lookup table, and an overdrive
lookup table. Variable definitions for these textures are set out
in Table 1 below:

TABLE 1.

Texture Description

RGB Frame Data
Vector Map Lookup Table
Overdrive Lookup Table

static GLuintm ImpegTexID
static GLuintm VectorMapTexID
static GLuint moverdriveTexID

Memory 312 also stores a framebuffer object for holding
intermediate frame results during processing. The variable
definition of the framebuffer object is set out in Table 2 below:

TABLE 2

Framebuffer Object Parameters

#define MQI NUM MIPMAP (2)
static CFrameBufferInterface *m pFBMQI NUM MIPMAP);

As will be understood, use of the framebuffer object per
mits direct rendering to textures. This permits increased per
formance because data does not have to be copied from the
default frame buffer. The framebuffer object itself stores a
pointer array with a base level and a block level, each with
respective texture attachments. The texture attachments have
16-bit float type precision, and the RGBA color format. The
RGBA color format of the texture attachments provides
access to four single-channel luminance images from each
texture, permitting efficient memory access.

The base level includes four (4) texture attachments for
storing previous frame data, pre-processed frame results, a
rendering buffer, and a frame motion vector map. Each of the
base level texture attachments are the same size as a current
frame. The variable definitions of the framebuffer object tex
ture attachments are set out in Table 3 below:

TABLE 3

Base Level Textures Description

Previous Frame Data
Pre-processed Frame Results
Rendering Buffer
Frame Motion Vector Map

static intm nSrcTexID
static intm nDestTexID
static intm nBufferTexID
static intm nMotionTexID

The block level of the pointer array includes three (3)
texture attachments, each of which are one-eighth (/s) the
size of the current frame, for block motion estimation.
Memory 312 also includes two off-screen framebuffers.

The off-screen framebuffers are used formulti-pass rendering
of textures in the framebuffer objects, as will be described.
Two off-screen framebuffers are required because textures in
framebuffer objects cannot be read from and written to simul
taneously.
Memory 312 also includes program memory for storing an

OpenGL (Open Graphics Library) application written using
the GLUT (OpenGL Utility Toolkit) library. OpenGL is an
industry standard graphics application programming inter

10

15

25

30

35

40

45

50

55

60

65

8
face (API) for two-dimensional (2D) and three-dimensional
(3D) graphics applications. In general, the OpenGL API pro
cesses graphics data representing objects to be rendered, that
is received from a host application, and renders graphical
objects on a display device for viewing by the user.
The OpenGL application includes vertex shader and frag

ment shader programs. General descriptions of the vertex
shader programs are shown in Table 4 below:

TABLE 4

Vertex Shader
Program Description

vertex 01 fourkernel Pre-computes texture coordinates in a 2 x 2
kernel neighborhood and stores results in
TEXCOORDO
Pre-computes texture coordinates in a 3 x 3
kernel neighborhood and stores results in
TEXCOORDO and TEXCOORDO

vertex O1 ninekernel

General descriptions of the fragment shader programs are
shown in FIG. 5 below:

TABLE 5

Fragment Shader
Program Description

Extracts luminance channel from RGB
color space
Computes absolute difference for zero
block motion vector
Computes Sum of Absolute Difference
(SAD) in block for zero block motion
Wector

Computes absolute difference for first
level block motion search
Computes Sum of Absolute Difference
(SAD) for first-level block motion search
Computes absolute difference for second
level block motion search
Computes Sum of Absolute Difference
(SAD) for second-level block motion
search
Smoothes frame motion field using vector
median filter
GetS motion blur simulation parameters
in lookup table
Calculates spatial and
gradients
Sets frame pre-processing weights
Simulates perceived frame after
motion blurring
Updates current guess
for motion blurring
Sharpens frame along motion blur
directions
Performs overdrive by comparing previous
and current frames
Inserts pre-processed channel into RGB
color space

ragment 01 rgb2gray

ragment 02 absdiff 0

ragment 03 Sumdiff O

ragment 04 abscliff 1

ragment 05 Sumdiff 1

ragment 06 absdiff 2

ragment 07 Sumdiff 2

ragment 08 Vecnedian

ragment 09 vecmap

ragment 10 imggrad emporal frame

ragment 11 setweight
ragment 12 Simblur

ragment 13 update o pre-compensate

ragment 14 sharpen

ragment 15 overdrive

ragment 16 gray2rgb

The vertex shader programs serve to reduce the workload
of the fragment shader programs by pre-computing texture
coordinates of the convolution kernels. The fragment shader
programs are compiled at run-time using the known
NV fragment program fp40 profile.
The vertex shader and fragment shader programs are writ

ten in C++ and Cg, with the C++ compiler being Microsoft
Visual Studio C++ 6.0. The Cg compiler is Cg Compiler 1.4.
OpenGL Version 2.0 with OpenGL Framebuffer Object
Extension is employed.
FIG.3 shows the general steps employed by the system 50

during processing and displaying of a digital video sequence.

US 7,843,462 B2

Initially, the vertex shader and fragment shader program code
is compiled by setting up the Windows OpenGL development
environment with header files gl.h., gluh, gluth and gltext.h,
libraries opengl32.lib, glu32.lib and glut32.lib and DLLs
opengl32.dll, glu32.dll and glut32.dll.
The Cg development environment is set up with header

files cg..hand cgGL.h, libraries cg...lib and cgGL.lib and DLLs
cg.dll and cgGL.dll. The standard GLUT display and callback
functions are used to create a video playback window. Video
playback is synchronized with the VSYNC signal of display
device 400 if the video synchronization option is on, and
otherwise may proceed as quickly as possible.
When it is desired to display a digital video sequence on the

LCD device 400, the CPU 200 retrieves the digital video
stream from memory 100. Once retrieved, the CPU 200
decodes the digital video stream and outputs each frame F of
the resultant digital video sequence (DVS) 250 to the GPU
200. The GPU 200 processes the frames of the DVS 250
resulting in output frames O. that are modified to compensate
for perceived motion blur (step 600). The modified output
frames O form a processed DVS350 that is displayed by the
LCD device 400 (step 700).

FIG. 4 is a program flow diagram showing the flow of
processing operations performed on a current frame of the
DVS 250. FIG. 5 is a table correlating the data inputs and
outputs of the fragment shader programs used during motion
pre-compensation.

First, an MPEG decoding thread is initiated on the CPU
200, for decoding the MPEG digital video stream 150
retrieved from memory 100 into a digital video sequence 250.
After each frame is decoded, the CPU 200 sets the
m FramesReady Event event flag, and waits for a m Frame
WantedEvent event flag from the GPU 300 before continuing
to decode the next frame in the digital video sequence.

The GPU 300 upon receipt of a current frame, binds the
current frame to texture mpegTexID, and then sets the
m FrameWantedEvent flag so as to signal the CPU200 that
another frame may be provided to the GPU 300. Using frag
ment shader program fragment 01.jgb2gray, the GPU 300
converts the current frame from the RGB colorspace to the
YIQ colorspace using a simple linear transformation. The
luminance channel of the current frame is then extracted and
stored at m nDestTexID (see Table 3 and FIG. 5). Motion
between pixels in the current frame stored at m nDestTexID
and those in a previous frame stored at m nSrcTexID is then
estimated.

During estimation of the motion between pixels in the
current frame and the previous frame, the current frame,
having a height h and width w, is divided into bxb pixel
blocks, wherein b=8 such that there are sixty-four (64) pixel
blocks. A motion vector field V, having dimensions of h/8x
w/8 is then initialized. A search is then conducted for each
pixel block in the current frame to find its best match within
the previous frame.

During the search, a search window having a radius r 16
pixels and its center at the position in the previous frame
corresponding to the pixel block is defined. Twelve (12) can
didate motion vectors (including a Zero vector) are then iden
tified based on the search window in various directions and
distances from its center. In particular, five (5) candidate
motion vectors extending from the search window center in
the shape of a "+" are defined at a distance of drf4, four (4)
candidate motion vectors extending from the search window
center in the shape of an “X” are defined at a distance of 2d,
and four (4) candidate motion vectors extending from the
search window center in the shape of a "+" are defined at a
distance of 3d.

5

10

15

25

30

35

40

45

50

55

60

65

10
FIG. 6 is a diagram showing end points of the candidate

motion vectors used during inter-frame motion estimation of
pixel blocks.

Using fragment shader programs fragment 02 absdiff
0, fragment 03 Sumdiff 0, fragment 04 absdiff 1 and
fragment 04 Sumdiff 1 to calculate the Sum of Absolute
Differences (SAD) for the Zero vector and the first level block
motion searches, candidate matching pixel blocks having
centers defined by respective candidate motion vectors are
then compared with the current pixel block in the current
frame. The SAD is calculated according to Equation 1, below:

SAD(i, i, u, v) = (1)
E. E.

The best match is then identified as the candidate matching
pixel block that yields the lowest SAD. If the best match is the
candidate matching pixel block that corresponds to the Zero
vector, searching is complete and motion of pixels in the pixel
block is deemed to be zero. Otherwise, the search is further
refined. During refinement of the search, eight (8) additional
candidate motion vectors extending from the center of the
best match by a distanced in respective directions are defined.
Using fragment shader programs fragment 06 absdiff 2
and fragment 07 Sumdiff 2, additional candidate match
ing pixel blocks having centers defined by respective ones of
the additional candidate motion vectors are then compared
with the pixel block in the current frame. If none of the
additional candidate matching pixel blocks yields a SAD that
is lower than that of the current best match, the current best
match is considered to be the final match, and motion of the
block is deemed to correspond to the candidate motion vector
of the final match. Otherwise, the additional candidate match
ing pixel block yielding the lower SAD is deemed to be the
new best match. The search is then further refined based on
eight (8) additional candidate motion vectors extending from
the center of the new best match by a distance d/2 in respective
directions, using fragment shader programs fragment
06 absdiff 2 and fragment 07 sumdiff 2.
The process described above continues with progressive

refinements using fragment shader programs fragment
06 absdiff 2 and fragment 07 sumdiff 2 and additional
motion vectors extending progressively smaller distances
from the centers of the previous best matches. The search is
terminated either when the lengths of additional candidate
motion vectors are less than one (1) pixel, or when further
refinement fails to yield an additional candidate matching
pixel block with a lower SAD than that of the current best
match.

The position in the vector field corresponding to the block
position in the current frame is then updated with the motion
vector corresponding to its best match in the previous frame.
The process described above is conducted for each of the
blocks in the current frame.

FIG. 7A is an illustrative vector field showing motion vec
tors of pixel blocks between two frames. Following popula
tion of the vector field with the motion vectors corresponding
to the best matches for the pixel blocks in the current frame,
the vector field is then Smoothed by fragment shader program
fragment 08 vecmedian with a vector median filter. The
result of the application of the vector median filter on the
vector field of FIG. 7A is illustrated in FIG. 7B.

US 7,843,462 B2
11

With a motion vector having been obtained for each pixel
block, the motion vector map is complete. The fragment
shader program fragment 09 Vecmap then converts the
motion vector map from one-eighth (/s) the size of the current
frame to the size of the current frame using bilinear interpo
lation of the motion vectors. Each pixel in the current frame is
thereby allocated a respective motion vector having a direc
tion and an extent.

In the event that there are no motion vectors, then no
motion pre-compensation is required. In this case, the output
frame O, is equal to the current frame F.
Where there has been motion estimated between the cur

rent frame F., and the previous frame F., however, motion
blur pre-compensation is conducted in order to generate an
output frame O, for the current frame F. The pre-compensat
ing used by the system 50 is a modification of the technique
disclosed in above-mentioned U.S. Patent Application Pub
lication No. 2005/0231603, as will be described.

Given the current frame F., and the previous frame F.,
fragment shader program fragment 10 imggrad calculates
both an intra-difference frame and an inter-frame differences
at each pixel location, based on its respective motion vector.
The differences are stored as weights for used by fragment
shader program fragment 11 setweight to set the amount of
correction to be performed on each pixel.
A filter bank is constructed and, for each motion vector, a

linear blurring filter f is created with sizes and direction 0.
corresponding to the respective motion vector, and added to
the filter bank. For example, where K-2, a first of the two (2)
blurring filters f based on a motion vector with direction
0=0 and extent s =5 pixels would be as follows:

The second of the two (2) blurring filters f, based on a
motion vector with direction 0-90° and extents 3 pixels
would be as follows:

An initial guess frame is established by setting the current
frame F, as the initial guess image for output frame O. A
guess pixel is selected from the guess image and a blur filter
corresponding to the guess pixel is retrieved from the filter
bank. If the blur filter does not have an extent that is at least
one (1) pixel, then the next pixel is selected. Otherwise, the
edge magnitude of the guess pixel is estimated in the motion
direction of the blur filter using a Sobel edge filter, and stored
as a weighting factor in W(x,y). The Sobeledge filter opera
tion and weighting is conducted according to Equations (2),
(3) and (4) below:

(2)
-101
-2O2
-101

10

15

25

30

35

40

45

50

55

60

65

12

-continued

dy = O, (x, y) & O. O. O.
(3)

W(x, y) = cos dx(x,y) + sin dy(x, y) (4)

The guess pixel is then blurred using the blur filter by
convolving the output frame pixel O(x,y) with the filter f to
obtain blurred pixel B(x,y). An error between the pixel in the
frame F, and the blurred guess pixel is determined by sub
tracting the blurred pixel B(x,y) from the current frame pixel
F(x,y) to obtain error E, (x,y). Error E(x,y) is then blurred
using the blur filterf, and weighted using the edge magnitude
that had been obtained as a weighting factor. The guess pixel
is then updated with the weighted and blurred error according
to Equation (5) below:

where:

B is a constant step size.
If there are more pixels to select in the guess image, then

the next pixel is selected for pre-processing as described
above. Otherwise, the total adjustment to output frame O,
across all pixels is calculated to determine the overall differ
ence AE between the guess image and the current frame F., as
calculated across all pixels according to Equation (6) below:

AE =XXIf x E, (x,y)x W, (x,y) (6)
y x

If the overall difference AE is below a pre-defined error
threshold, then pre-compensation is complete for the current
frame F. The resultant output frame O, is sharpened with
fragment shader program fragment 14 sharpen using a
directional sharpening filter tuned to the motion direction at
each pixel location, and stored in rendering buffer m nBuf
ferTexID. Otherwise, a pixel in the updated guess image is
selected and the process described above is re-iterated until
complete.
Once the sharpening operation on output frame O, has

been completed, an overdrive operation is performed using
fragment shader program fragment 15 overdrive. The
results of the overdrive operation are stored as pre-processed
frame results in m nDestTexID. Overdrive provides addi
tional compensation for the relatively slow response time of a
hold-type device. During overdrive, the driving Voltage
applied to each device pixel is adjusted by an amount propor
tional to a gray level transition. This technique is described by
H. Okurama, M. Akiyama, K. Takotoh, and Y. Uematsu in the
publication entitled “A New Low Image-Lag Drive Method
For Large-Size LCTVs.” (SID'02 Digest, pp. 1284-1287,
2002).
Once overdrive has been completed on output frame O,

the fragment shader program fragment 16 gray2rgb inserts
the output frame O, into the luminance channel Y of the YIQ
frame stored at mpegTexID, converts the frame into RGB
color space and provides the modified RGB frame data to the
LCD device 400.
The two off-screen framebuffers are used to achieve multi

pass rendering by Swapping the source and target texture IDs

US 7,843,462 B2
13

at the end of each rendering pass. In this way, the target
texture from the first pass is used as the source for the second
pass.

Performance of the system 50 has been found to be better
than that provided by systems employing only a CPU for
motion pre-compensating. The test environment used to
evaluate the performance of the system 50 included a Pen
tium4 2.26 GHZ, CPU with a Windows 2000 Professional
English Version operating system, 256MB RAM, and a bus
speed of 266 MHz. GPU was a NVIDIA GeForce 6600 Series
GPU, with 256MB DDR RAM. Metrics were obtained using
the performance counter function provided by the
kernel32.lib library, and results were verified using the g|E-
Bugger OpenGL profiler version 2.3. For each evaluated
implementation option, the time taken to process 100 frames
of a test Video sequence was measured. Each video sequence
was measured five times, and the average frame processing
time was captured.

Five (5) video sequences were used during performance
evaluation. These were:

1. A Foreman real video sequence of a static background
with a Subject moving in the foreground and having a reso
lution of 176x144 pixels;

2. A Vision Chart animated video sequence of a vision
chart in various font sizes scrolling from left to right under
constant motion and having a resolution of 256x192 pixels;

3. A Road real video sequence of a camera panning from
left to right capturing the motion of a fast-moving vehicle and
having a resolution of 320x240 pixels;

4. A Football real video sequence of multiple fast-moving
subjects in the foreground and having a resolution of 352x240
pixels; and

5. A TwoDogs real video sequence of two dogs moving in
different directions and having a resolution of 640x480 pix
els.

All real video sequences were saved in MPEG format,
while the animated sequence was created by causing a BMP
image to move using DirectX and saving the result to an
MPEG file. A frame rate of 30-fps (frames per second) was
used in all of the test video sequences.

The total individual processing times taken by the GPU and
the CPU to complete all operations in the algorithm were
compared. These operations included: colorspace conver
Sion, motion estimation, motion blur compensation, motion
sharpening and overdrive. FIG. 8 is a graph illustrating the
differences in overall GPU and CPU processing times during
modification of frames to compensate for perceived blur, for
several frame sizes. FIG. 9 is a table correlating the overall
GPU and CPU processing times of FIG. 8 with processing
times perframe and framerates. Overall, the GPU implemen
tation yielded a performance speed-up factor of about 2.5
times over the counterpart CPU implementation. Perfor
mance speed-up became more pronounced as the frame size
increased.

FIG. 10 is a table including the differences in individual
GPU and CPU processing times for various processing opera
tions during modification of frames to compensate for per
ceived blur. FIG. 11 is a set of graphs illustrating the differ
ences in individual GPU and CPU processing times for the
various processing operations of FIG. 10. From these above
comparison graphs and tables, it was observed that the most
significant performance gain occurred during motion estima
tion, which yielded a five times increase on average. In addi
tion, operations that were highly uniform across all pixels,
such as overdrive, clearly benefitted from the GPU parallel
processing architecture.

5

10

15

25

30

35

40

45

50

55

60

65

14
It was observed that, in most cases, it took longer to com

plete the actual motion blur compensation on the GPU than on
the CPU. This could be due to additional data copying time in
the GPU implementation during use of the off-screen render
targets, which are either read-only or write-only. Other rea
Sons may include the overhead imposed on the iterative ren
dering process by having to Swap between different frame
buffers. Furthermore, in the GPU implementation, the motion
vector is stored separately for each pixel which, while yield
ing Smoother results, inherently increases the time required
for texture fetch.

Although a specific embodiment has been described above
with reference to the Figures, it will be appreciated that alter
natives are possible. For example, while pixel block sizes of
8x8 for block motion estimation were described, larger or
Smaller block sizes may be selected, having an according
effect on the processing time vs. performance trade-off.

Alternatives to the criterion described above for determin
ing that iterative pre-compensation is complete, whereby it is
determined whether the sum of pixel error has changed by
more than a threshold amount, may be employed. For
example, the pixel blurring, comparing, error pixel blurring
and weighting, and combining may be performed iteratively
a predetermined number of times, as required to Suit the
particular implementation.

Although embodiments have been described, those of skill
in the art will appreciate that variations and modifications
may be made without departing from the spirit and scope of
the invention defined by the appended claims.
What is claimed is:
1. A system for displaying a digital video sequence, com

prising:
a graphics processing unit (GPU) receiving and modifying

the digital video sequence to compensate for perceived
blurbased on motion between frames of the digital video
sequence; and

a display device displaying the modified digital video
sequence: and

wherein the GPU comprises:
a programmable fragment processor,
texture memory storing frames of the digital video

sequence; and
program memory storing a computer program execut

able by the programmable fragment processor, the
computer program comprising:

program code estimating motion between pixels in a
current frame and a previous frame; and

program code filtering pixels in the current frame based
on the estimated motion to compensate for perceived
blur, and

wherein the texture memory further stores a vector map
lookup table and an overdrive lookup table.

2. The system of claim 1, wherein the GPU further com
prises:

framebuffer object memory storing intermediate frame
processing results of estimating and filtering by the com
puter program.

3. The system of claim 2, wherein the framebuffer object
memory further stores a pointer array having a base level and
a block level.

4. The system of claim 3, wherein the base level comprises
four texture attachments each being the same size as the
current frame.

5. The system of claim 4, wherein the block level comprises
three texture attachments each being a fraction of the size of
the current frame.

US 7,843,462 B2
15

6. The system of claim 5, wherein the block level texture
attachments are one-eighth (/s) the size of the current frame.

7. The system of claim 1, wherein the estimating motion
program code and the filtering pixels program code comprise:

fragment shader program code; and
Vertex shader program code.
8. The system of claim 1, wherein the GPU comprises:
a plurality of off-screen frame buffers receiving filtered

frames for display by the display device.
9. The system of claim 1, further comprising:
a central processing unit (CPU) decoding a digital video

stream into the digital video sequence and providing
frames of the digital video sequence to the GPU.

10. A method for displaying digital video, comprising:
modifying an input digital video sequence using a graphics

processing unit (GPU) to compensate for perceived blur
based on motion between frames; and

providing the modified digital video sequence to a display
device; and

wherein the modifying comprises:
estimating motion of pixels between frames in the digi

tal video sequence; and
filtering frames based on the estimated motion; and

wherein the estimating comprises:
estimating a motion vector between a current frame and

a previous frame for each of a plurality of pixel blocks
of said current frame thereby to obtain a block motion
vector field, wherein a block motion vector represents
a respective estimated blur direction and blur extent;

smoothing the block motion vector field; and
allocating to each pixel in the current frame, the block

motion vector of its corresponding block in the
smoothed block motion vector field.

11. The method of claim 10, wherein the filtering com
prises:

generating an initial guess frame based on the current
frame;

blurring pixels in the guess frame as a function of their
respective estimated blur directions and blur extents;

comparing each blurred pixel with a respective pixel in the
current frame to generate an error pixel for each respec
tive pixel;

blurring and weighting each error pixel; and
combining each error pixel and its respective pixel in the

initial guess frame thereby to update the guess frame and
compensate for blur.

12. The method of claim 11, wherein the weighting is a
function of the respective pixel motion.

10

15

25

30

35

40

45

16
13. The method of claim 12, wherein the weighting is an

estimate of the edge magnitude of the respective pixel in the
guess image in the direction of pixel motion.

14. The method of claim 13, wherein the edge magnitude is
estimated using a high-pass filter.

15. The method of claim 11 wherein the initial guess frame
is the current frame.

16. The method of claim 15, wherein the weighting is an
estimate of the edge magnitude of the respective pixel in the
guess frame in the direction of pixel motion.

17. The method of claim 12 wherein the pixel blurring,
comparing, error pixel blurring and weighting, and combin
ing are performed iteratively.

18. The method of claim 17 wherein the pixel blurring,
comparing, error pixel blurring and weighting, and combin
ing are performediteratively until the sum of error falls below
a threshold level.

19. The method of claim 17 wherein the pixel blurring,
comparing, error pixel blurring and weighting, and combin
ing are performed iteratively a predetermined number of
times.

20. The method of claim 17 wherein the pixel blurring,
comparing, error pixel blurring and weighting, and combin
ing are performed iteratively until the sum of error fails to
change by more than a threshold amount between Successive
iterations.

21. A non-transitory computer readable medium having a
computer program thereon that is executable by a graphics
processing unit (GPU) to perform the following:

modifying the digital video sequence to compensate for
perceived blur based on motion between frames; and

providing the modified digital video sequence to a display
device; and

wherein the modifying comprises:
estimating motion of pixels between frames in the digi

tal video sequence; and
filtering frames based on the estimated motion; and

wherein the estimating comprises:
estimating a motion vector between a current frame and

a previous frame for each of a plurality of pixel blocks
of said current frame thereby to obtain a block motion
vector field, wherein a block motion vector represents
a respective estimated blur direction and blur extent;

smoothing the block motion vector field; and
allocating to each pixel in the current frame, the block

motion vector of its corresponding block in the
smoothed block motion vector field.

k k k k k

