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1. 

SYSTEMAND METHOD FOR DISPLAYINGA 
DIGITAL VIDEO SEQUENCE MODIFIED TO 
COMPENSATE FOR PERCEIVED BLUR 

FIELD OF THE INVENTION 

The present invention relates generally to image process 
ing and more particularly to a method and system for display 
ing a digital video sequence modified to compensate for per 
ceived blur. 

BACKGROUND OF THE INVENTION 

Moving objects in digital video displayed on a hold-type 
display device Such as a liquid crystal display (LCD) device 
can appear blurry to an observer. The perceived blur is known 
to be caused in part by the relatively slow LC response of the 
liquid crystal cells. When compared with an impulse-type 
device such as a cathode ray tube (CRT) device, for example, 
an LCD device has a much slower brightness transition 
response time. The perceived blur is also caused in part by 
prolonged light emission inherent in the sample-and-hold 
driving technique commonly employed by LCD devices, 
which results in formation of after-images on the human 
retina. These after-images produce a blurred visual percep 
tion as the video sequence is being observed. 

Various methods have been proposed to compensate for 
perceived blur. These include methods that modify the hold 
type device itself (for example by black frame insertion or 
backlight blinking), and those that pre-process frames of the 
digital video sequence prior to display on the hold-type 
device in order to compensate for motion blur (such as low 
pass filtering, or inverse filtering). 

U.S. Patent Application Publication No. 2005/0265454 to 
Muthukrishnan et al. discloses a motion estimation algorithm 
for predictive coding of a digital video stream. A best match 
of a given blockina current frame is foundby identifying a set 
of predictor search points in a reference frame based on a 
median vector of an adjacent, already-coded macro block, a 
Zero motion vector, a temporally co-located macroblock, Sur 
rounding macroblock motion vectors and a global motion 
vector. A Sum of Absolute Difference (SAD) between the 
given block and each reference block in the reference frame 
that is centered on the respective predictor points is then 
calculated. The predictor point corresponding to the lowest 
SAD is then used as the center of a further diamond search 
within a given pixel range to identify a better match (i.e., one 
that yields a lower SAD). Ifa better match is found, a diamond 
search within a reduced pixel range is conducted about the 
center of the better match. The process continues with pro 
gressively reduced pixel ranges for a predetermined number 
of iterations, or until the minimum SAD stays at the center of 
a current diamond search. The motion vector for the given 
block is then deemed to correspond to the center of the last 
diamond search. 

U.S. Patent Application Publication Nos. 2006/0056513 
and 2006/0056708 to Shen et al. disclose a method for accel 
erating video encoding using both a central processing unit 
(CPU) to encode the video and a graphics processing unit 
(GPU) to perform motion estimation for use during the 
encoding. A particular video frame is identified by the CPU 
and provided to the GPU for processing. The GPU conducts 
motion estimation using block matching, during which refer 
ence pixel blocks within a search window are compared with 
a current pixel block in the current frame to find a reference 
pixel block yielding a minimum SAD. The motion vector 
representing motion estimation of a pixel block is provided by 
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2 
the GPU to the CPU in order to encode the current frame into 
a digital video data stream. A depth buffer is employed by the 
GPU to accelerate motion estimation. 

U.S. Pat. No. 5,764,787 to Nickerson discloses a method of 
estimating motion between Successive video frames during 
encoding of the video frames into a video stream. During the 
method, a current pixel block in a current frame is compared 
using SAD or Sum of Squares of Differences (SSD) with a 
plurality of reference pixel blocks within a search window in 
a reference frame to determine a best match. Only half of the 
pixels in the current pixel block, distributed in a checkerboard 
pattern, are compared thereby to reduce computational load. 

U.S. Pat. No. 6,496.538 to Drysdale discloses a method and 
apparatus for estimating motion between video frames during 
encoding of a set of video frames. During the method, a first 
macroblock from a video frame in the set is compared to a 
second macroblock in a reference video frame to determine a 
differential value. The differential value is then compared to 
a comparison value. If the differential value is no smaller than 
the comparison value, the differential value is compared to a 
minimal differential value. If the differential value is less than 
or equal to the minimal differential value, the differential 
value is stored as the new minimal differential value, thereby 
to establish a better macroblock match. 

U.S. Pat. No. 6,549,576 to Moriyoshi discloses a method 
for detecting motion vectors between blocks of pixels in 
frames for compression coding a digital video sequence. Dur 
ing the method, a current image is divided into pixel blocks 
and the difference in position between each pixel block in the 
current image and its best match in a search range of a refer 
ence image is determined. A motion vector for a pixel block 
residing in the same position in the reference frame is set as 
the predictive vector, and the end position of the predictive 
vector is set to a scan start position. Scanning during search 
ing is spirally performed from the scan start position toward 
the vicinity of the outside of the search range so as to locate 
high probability matches early in the search. 

U.S. Pat. No. 6,707,853 to Cook et al. discloses a method 
for compensating for motion between frames in a digital 
Video sequence for the purpose of digitally encoding the 
Video sequence. During the method, a picture in a sequence is 
reconstructed by predicting the colors of pixels in pixel mac 
roblocks using motion vectors that have previously been 
obtained for forward and/or backward reference pictures in 
the sequence. 

U.S. Pat. No. 6,778,607 to Zaccarin et al. discloses a 
method for multi-rate encoding of video sequences. During 
the method, motion information relating a frame to previ 
ously-encoded frames is calculated using both spatial and 
frequency-domain representations of the frame and a previ 
ous frame. Motion compensation prior to encoding is per 
formed in the frequency-domain. 

U.S. Pat. No. 6,842,483 to Au at al. discloses a method for 
estimating motion between Successive images in a digital 
Video sequence using block-matching. During the method, a 
search is performed for a pixel block of a previous frame that 
is similar to a current pixel block of a current frame. A search 
area based on points in the previous frame is arranged in 
Successively larger diamond-shaped Zones. The diamond 
shaped Zones may be centered on the corresponding position 
of the pixel block in the previous frame, or centered on a point 
that is based on a previous prediction of motion. The search in 
Successive Zones for the best matching pixel block in the 
previous frame continues until a threshold number of dia 
mond shaped Zones have been searched. 

U.S. Patent Application Publication No. 2004/0227763 to 
Wichman et al. discloses a coprocessor for conducting 
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motion estimation between frames in order to encode or 
decode a digital video stream. During motion estimation, one 
(1) motion vector over a 16x16 pixel macroblock and four (4) 
motion vectors over four (4) 8x8 pixel blocks in a frame are 
computed. The coprocessor and a processor cooperate to 
perform both single motion vector searches for the full mac 
roblock and multiple motion vector searches for the four (4) 
8x8 blocks. 

U.S. Patent Application Publication No. 2004/0247029 to 
Zhong et al. discloses a method for estimating motion 
between frames in a digital video sequence. During the 
method, a plurality of predicted start motion vectors are 
selected. Coarse block motion searches using the plurality of 
predicted start motion vectors are performed to obtain a SAD 
value and an associated vector. A fine block motion search is 
then conducted using as a starting position the motion vector 
of the best match resulting from the coarse search. The pre 
dicted start motion vectors are preferably vectors correspond 
ing to macroblocks both above and to the left of the current 
macroblock. The coarse searches are preferably 16x16 dia 
mond searches and the fine searches include both an 8x8 
search and a half-pixel search. 

U.S. Patent Application Publication No. 2004/0264570 to 
Kondo et al. discloses a method for encoding and decoding 
pictures in a series of moving pictures. Storage of motion 
vectors used for predictive coding of pictures is controlled 
such that fewer motion vectors than the number of reference 
pictures is stored. If a required motion vectoris stored, coding 
is conducted using the required motion vector. Otherwise, 
coding is performed using a motion vector corresponding to a 
neighboring block. 

U.S. Patent Application Publication No. 2005/0179814 to 
Pau et al. discloses a method for de-interlacing digital images 
formatted according to the Phase-Alternate-Line (PAL) dis 
play system, in order to display the images on non-PAL 
devices. 

U.S. Patent Application Publication No. 2005/0190844 to 
Kadono et al. discloses a method for estimating motion 
between frames in a digital video sequence, in order to per 
form compression coding of the video sequence. During the 
method, a reference block in a reference picture is defined as 
a search center. An error between a current block in a current 
picture and the reference block, and an error between the 
current block and each of neighboring reference blocks of the 
reference block, are then calculated. The reference block 
having the minimum error is identified. Based on the mini 
mum error, it is determined whether or not motion estimation 
should be terminated. Based on the position of the reference 
block having the minimum error, a reference block removed 
by two pixels or more from the search center is set as the next 
search center, and the calculation is repeated based on the 
next search center. The method proceeds iteratively until the 
value of the newest minimum reaches a threshold value, at 
which point the search is terminated. 

U.S. Patent Application Publication No. 2006/0002474 to 
Au et al. discloses a method forestimating motion of multiple 
frames during compression of digital video. During the 
method, macroblocks and their respective locations in a cur 
rent frame are defined. Both a search region for each macrob 
lock in the reference frame, and a search point for each 
relative displacement of a macroblock within the search 
region are defined. A hierarchy of modes, or levels, of pos 
sible subdivision of each macroblock into smaller, non-over 
lapping regions is then constructed. An "elaborated search 
(i.e., a pixel-precision search) for each macroblock for the 
highest level of subdivision of the macroblock is then con 
ducted to find a macroblock match. Then, a small diamond 
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4 
search around the motion vector obtained from the highest 
level elaborated search is conducted. The best motion vector 
for the macroblock is the motion vector corresponding to the 
subdivision of the macroblock in the reference frame that has 
the Smallest mismatch measure (i.e., SAD). 

U.S. Patent Application Publication No. 2006/0067406 to 
Kitada et al. discloses an apparatus for decoding a compres 
Sion-encoded motion video stream. The apparatus imple 
ments a motion compensation procedure that generates an 
inter-frame prediction signal corresponding to an undecoded 
picture, using previously-decoded pictures. Motion vector 
information for generating the inter-frame prediction signal is 
separated from the motion video stream by an entropy decod 
ing unit. 

U.S. Patent Application Publication No. 2006/0109910 to 
Nagarajan et al. discloses a method for interpolating motion 
vectors with Sub-pixel accuracy during compression coding 
of digital video. A block matching process for calculating a 
full-pixel motion vector for each block comprises comparing 
pixel blocks in a current frame with reference pixel blocks in 
a search range in a reference frame. The method by which the 
motion vector is interpolated is based on the orientation of the 
calculated full-pixel motion (i.e., horizontal, vertical or 
diagonal). 

U.S. Patent Application Publication No. 2006/0120612 to 
Manjunath et al. discloses a method for estimating motion 
between frames in a digital video sequence during video 
sequence encoding. During the method, a motion vector pre 
dictor is calculated based on motion vectors previously cal 
culated for a frame's video blocks that are proximal to the 
current video block. The motion vector predictor is used as a 
basis from which to search for a prediction video block for 
encoding the current video block. A difference block indica 
tive of differences between the current video block and the 
prediction video block is then calculated and used to encode 
the current video block. 

U.S. Patent Application Publication No. 2006/0126739 to 
Stoner et al. discloses a method for optimizing motion esti 
mation during encoding of a digital video sequence. During 
the method, a SAD value is calculated between a current 
macroblock in a current frame and each of a plurality of 
reference macroblocks within a search range in a reference 
frame. SAD values are then calculated for all microblocks of 
a smallest block size within the macroblock. The SAD values 
of the smallest microblocks are used to calculate the SAD 
values for microblocks of other sizes within the macroblock 
(i.e., by summing the SAD values for microblocks in different 
combinations). The motion vectors corresponding to the low 
est of the SAD values from the various-sized microblocks in 
each macroblock are then deemed to be the macroblock 
motion vectors. 

While it is well-known to estimate motion between frames 
in a digital video sequence for encoding digital video, 
improved techniques for pre-compensating for perceived blur 
in a digital video sequence displayed on a hold-type device 
are desired. 

It is therefore an object to provide a novel system and 
method for displaying a digital video sequence modified to 
compensate for perceived blur. 

SUMMARY OF THE INVENTION 

According to one aspect there is provided a system for 
displaying a digital video sequence, comprising: 
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a graphics processing unit (GPU) receiving and modifying 
the digital video sequence to compensate for perceived blur 
based on motion between frames of the digital video 
sequence; and 

a display device displaying the modified digital video 5 
Sequence. 

According to an embodiment, the GPU comprises a pro 
grammable fragment processor, texture memory storing 
frames of the digital video sequence, program memory Stor 
ing a computer program executable by the programmable 10 
fragment processor. The computer program comprises pro 
gram code estimating motion between pixels in a current 
frame and a previous frame; and program code filtering pixels 
in the current frame based on the estimated motion to com 
pensate for perceived blur. 15 

According to another aspect, there is provided a method for 
displaying digital video, comprising: 

modifying an input digital video sequence using a graphics 
processing unit (GPU) to compensate for perceived blur 
based on motion between frames; and 2O 

providing the modified digital video sequence to a display 
device. 

According to yet another aspect, there is provided a com 
puter readable medium having a computer program thereon 
that is executable by a graphics processing unit (GPU) for 
displaying digital video, the computer program comprising: 

computer program code modifying the digital video 
sequence to compensate for perceived blur based on motion 
between frames; and 

computer program code providing the modified digital 
Video sequence to a display device. 
The methods and systems described herein increase the 

perception of sharpness in digital video displayed on a hold 
type display, and do not suffer from excessive noise amplifi 
cation as is common in many known inverse filtering meth 
ods. Furthermore, use of the GPU for motion estimation and 
compensation results in a significant performance increase 
over methods using only a central processing unit (CPU). 

25 

30 

BRIEF DESCRIPTION OF THE DRAWINGS 40 

Embodiments will now be described more fully with ref 
erence to the accompanying drawings, in which: 

FIG. 1 is a block diagram of a system for decoding a digital 
Video stream into a digital video sequence and displaying the 
digital video sequence using a display device; 

FIG. 2 is a block diagram of a graphics processing unit 
(GPU) in the system of FIG. 1; 

FIG. 3 is a block diagram of a method for processing and 
displaying a digital video sequence; 

FIG. 4 is a program flow diagram showing the flow of 
processing operations performed on a digital video sequence 
frame during the method of FIG. 3; 

FIG. 5 is a table correlating the data inputs and outputs of ss 
several fragment shader programs used by the graphics pro 
cessing unit of FIG. 2; 

FIG. 6 is a diagram showing candidate motion vector end 
points used during estimation of motion of pixel blocks 
between digital video sequence frames; 60 

FIG. 7A is an illustrative vector field showing motion vec 
tors of pixel blocks between two frames: 

FIG. 7B is the vector field of FIG. 7A after a vector Smooth 
ing operation; 

FIG. 8 is a graph illustrating the differences in overall 65 
processing times between a central processing unit (CPU) 
and a GPU during motion blur pre-compensation; 

45 

50 

6 
FIG. 9 is a table correlating the overall processing times of 

FIG.8 with processing times per frame and frame rates; 
FIG. 10 is a table including the differences between a GPU 

and a CPU in the individual processing times of various 
processing operations during motion blur pre-compensation; 
and 

FIG. 11 is a set of graphs illustrating the differences in 
individual processing times of various processing operations 
of FIG. 10. 

DETAILED DESCRIPTION OF THE 
EMBODIMENTS 

For ease of understanding, perceived blur in a digital video 
image caused by a hold-type display Such as an LCD device 
that uses a sample and hold display format will firstly be 
discussed. As a digital video sequence is input to an LCD 
device, each digital video image, or frame of the digital video 
sequence is displayed and Sustained on the LCD device for 
one frame interval. While viewing a scene in motion, the 
human eyes actively track the scene with Smooth pursuit eye 
movement so as to generate a stabilized image on the human 
retina, as described by M.J. Hawken and K. R. Gegenfurtner 
in the publication entitled “Pursuit Eye Movements to Second 
Order Motion Targets” (Journal of the Optical Society of 
America A, 18(9), pp. 2292-2296, 2001). The human visual 
system then undertakes visual temporal low pass filtering in 
order to perceive a flicker-free image. 
The tracking behavior of the human eye causes integration 

of frame data over at least one frame interval, resulting in 
perceived blur. The combination of the LCD device and the 
tracking behavior of the human visual system therefore 
results in a spatial low pass filtering effect. Methods for 
pre-compensating for motion blur in a digital image captured 
with a digital camera using estimates of motion direction and 
motion extent of the image are described in United States 
Patent Application Publication No. 2005/0231603, the con 
tent of which is incorporated herein by reference. Methods for 
pre-compensating for perceived motion blur in a digital video 
sequence are described in United States Patent Application 
Publication No. 2006/0280249, the content of which is incor 
porated herein by reference. 

In the following description, a system and method for 
displaying a digital video sequence modified to compensate 
for perceived blur is provided. The system comprises a graph 
ics processing unit (GPU) that receives and modifies the input 
digital video sequence to compensate for perceived blur 
based on motion between frames of the digital video 
sequence, and a display device displaying the modified digital 
Video sequence. 

FIG. 1 is a block diagram of a system 50 for displaying a 
digital video sequence modified to compensate for perceived 
blur. System 50 comprises memory 100 storing a digital video 
stream 150. The digital video stream 150 may be encoded 
according to an MPEG (Moving Pictures Expert Group) stan 
dard. A Central Processing Unit (CPU) 200 receives and 
decodes the digital video stream 150 into a digital video 
sequence 250 of frames. CPU200 provides the digital video 
sequence 250 to a graphics processing unit (GPU)300, which 
processes the digital video sequence 250 to compensate for 
perceived blur based on motion between the frames thereby to 
create a modified digital video sequence 350. GPU 300 pro 
vides the modified digital video sequence 350 to an LCD 
device 400 for display. 

In this embodiment, the CPU200 is a Pentium4 2.26 GHz 
system with a Windows 2000 Professional English Version 
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operating system. The GPU 300 is a NVIDIA GeForce 6000 
Series or higher, with ForceWare Graphics Driver Version 81 
or higher. 

FIG. 2 is a block diagram of the GPU 300. The GPU 300 
includes a programmable fragment processor 310, and 
memory 312. Memory 312 includes data memory for three 
(3) textures for storing a current frame of the digital video 
sequence 250, a vector map lookup table, and an overdrive 
lookup table. Variable definitions for these textures are set out 
in Table 1 below: 

TABLE 1. 

Texture Description 

RGB Frame Data 
Vector Map Lookup Table 
Overdrive Lookup Table 

static GLuintm ImpegTexID 
static GLuintm VectorMapTexID 
static GLuint moverdriveTexID 

Memory 312 also stores a framebuffer object for holding 
intermediate frame results during processing. The variable 
definition of the framebuffer object is set out in Table 2 below: 

TABLE 2 

Framebuffer Object Parameters 

#define MQI NUM MIPMAP (2) 
static CFrameBufferInterface *m pFBMQI NUM MIPMAP); 

As will be understood, use of the framebuffer object per 
mits direct rendering to textures. This permits increased per 
formance because data does not have to be copied from the 
default frame buffer. The framebuffer object itself stores a 
pointer array with a base level and a block level, each with 
respective texture attachments. The texture attachments have 
16-bit float type precision, and the RGBA color format. The 
RGBA color format of the texture attachments provides 
access to four single-channel luminance images from each 
texture, permitting efficient memory access. 

The base level includes four (4) texture attachments for 
storing previous frame data, pre-processed frame results, a 
rendering buffer, and a frame motion vector map. Each of the 
base level texture attachments are the same size as a current 
frame. The variable definitions of the framebuffer object tex 
ture attachments are set out in Table 3 below: 

TABLE 3 

Base Level Textures Description 

Previous Frame Data 
Pre-processed Frame Results 
Rendering Buffer 
Frame Motion Vector Map 

static intm nSrcTexID 
static intm nDestTexID 
static intm nBufferTexID 
static intm nMotionTexID 

The block level of the pointer array includes three (3) 
texture attachments, each of which are one-eighth (/s) the 
size of the current frame, for block motion estimation. 
Memory 312 also includes two off-screen framebuffers. 

The off-screen framebuffers are used formulti-pass rendering 
of textures in the framebuffer objects, as will be described. 
Two off-screen framebuffers are required because textures in 
framebuffer objects cannot be read from and written to simul 
taneously. 
Memory 312 also includes program memory for storing an 

OpenGL (Open Graphics Library) application written using 
the GLUT (OpenGL Utility Toolkit) library. OpenGL is an 
industry standard graphics application programming inter 
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8 
face (API) for two-dimensional (2D) and three-dimensional 
(3D) graphics applications. In general, the OpenGL API pro 
cesses graphics data representing objects to be rendered, that 
is received from a host application, and renders graphical 
objects on a display device for viewing by the user. 
The OpenGL application includes vertex shader and frag 

ment shader programs. General descriptions of the vertex 
shader programs are shown in Table 4 below: 

TABLE 4 

Vertex Shader 
Program Description 

vertex 01 fourkernel Pre-computes texture coordinates in a 2 x 2 
kernel neighborhood and stores results in 
TEXCOORDO 
Pre-computes texture coordinates in a 3 x 3 
kernel neighborhood and stores results in 
TEXCOORDO and TEXCOORDO 

vertex O1 ninekernel 

General descriptions of the fragment shader programs are 
shown in FIG. 5 below: 

TABLE 5 

Fragment Shader 
Program Description 

Extracts luminance channel from RGB 
color space 
Computes absolute difference for zero 
block motion vector 
Computes Sum of Absolute Difference 
(SAD) in block for zero block motion 
Wector 

Computes absolute difference for first 
level block motion search 
Computes Sum of Absolute Difference 
(SAD) for first-level block motion search 
Computes absolute difference for second 
level block motion search 
Computes Sum of Absolute Difference 
(SAD) for second-level block motion 
search 
Smoothes frame motion field using vector 
median filter 
GetS motion blur simulation parameters 
in lookup table 
Calculates spatial and 
gradients 
Sets frame pre-processing weights 
Simulates perceived frame after 
motion blurring 
Updates current guess 
for motion blurring 
Sharpens frame along motion blur 
directions 
Performs overdrive by comparing previous 
and current frames 
Inserts pre-processed channel into RGB 
color space 

ragment 01 rgb2gray 

ragment 02 absdiff 0 

ragment 03 Sumdiff O 

ragment 04 abscliff 1 

ragment 05 Sumdiff 1 

ragment 06 absdiff 2 

ragment 07 Sumdiff 2 

ragment 08 Vecnedian 

ragment 09 vecmap 

ragment 10 imggrad emporal frame 

ragment 11 setweight 
ragment 12 Simblur 

ragment 13 update o pre-compensate 

ragment 14 sharpen 

ragment 15 overdrive 

ragment 16 gray2rgb 

The vertex shader programs serve to reduce the workload 
of the fragment shader programs by pre-computing texture 
coordinates of the convolution kernels. The fragment shader 
programs are compiled at run-time using the known 
NV fragment program fp40 profile. 
The vertex shader and fragment shader programs are writ 

ten in C++ and Cg, with the C++ compiler being Microsoft 
Visual Studio C++ 6.0. The Cg compiler is Cg Compiler 1.4. 
OpenGL Version 2.0 with OpenGL Framebuffer Object 
Extension is employed. 
FIG.3 shows the general steps employed by the system 50 

during processing and displaying of a digital video sequence. 



US 7,843,462 B2 

Initially, the vertex shader and fragment shader program code 
is compiled by setting up the Windows OpenGL development 
environment with header files gl.h., gluh, gluth and gltext.h, 
libraries opengl32.lib, glu32.lib and glut32.lib and DLLs 
opengl32.dll, glu32.dll and glut32.dll. 
The Cg development environment is set up with header 

files cg..hand cgGL.h, libraries cg...lib and cgGL.lib and DLLs 
cg.dll and cgGL.dll. The standard GLUT display and callback 
functions are used to create a video playback window. Video 
playback is synchronized with the VSYNC signal of display 
device 400 if the video synchronization option is on, and 
otherwise may proceed as quickly as possible. 
When it is desired to display a digital video sequence on the 

LCD device 400, the CPU 200 retrieves the digital video 
stream from memory 100. Once retrieved, the CPU 200 
decodes the digital video stream and outputs each frame F of 
the resultant digital video sequence (DVS) 250 to the GPU 
200. The GPU 200 processes the frames of the DVS 250 
resulting in output frames O. that are modified to compensate 
for perceived motion blur (step 600). The modified output 
frames O form a processed DVS350 that is displayed by the 
LCD device 400 (step 700). 

FIG. 4 is a program flow diagram showing the flow of 
processing operations performed on a current frame of the 
DVS 250. FIG. 5 is a table correlating the data inputs and 
outputs of the fragment shader programs used during motion 
pre-compensation. 

First, an MPEG decoding thread is initiated on the CPU 
200, for decoding the MPEG digital video stream 150 
retrieved from memory 100 into a digital video sequence 250. 
After each frame is decoded, the CPU 200 sets the 
m FramesReady Event event flag, and waits for a m Frame 
WantedEvent event flag from the GPU 300 before continuing 
to decode the next frame in the digital video sequence. 

The GPU 300 upon receipt of a current frame, binds the 
current frame to texture mpegTexID, and then sets the 
m FrameWantedEvent flag so as to signal the CPU200 that 
another frame may be provided to the GPU 300. Using frag 
ment shader program fragment 01.jgb2gray, the GPU 300 
converts the current frame from the RGB colorspace to the 
YIQ colorspace using a simple linear transformation. The 
luminance channel of the current frame is then extracted and 
stored at m nDestTexID (see Table 3 and FIG. 5). Motion 
between pixels in the current frame stored at m nDestTexID 
and those in a previous frame stored at m nSrcTexID is then 
estimated. 

During estimation of the motion between pixels in the 
current frame and the previous frame, the current frame, 
having a height h and width w, is divided into bxb pixel 
blocks, wherein b=8 such that there are sixty-four (64) pixel 
blocks. A motion vector field V, having dimensions of h/8x 
w/8 is then initialized. A search is then conducted for each 
pixel block in the current frame to find its best match within 
the previous frame. 

During the search, a search window having a radius r 16 
pixels and its center at the position in the previous frame 
corresponding to the pixel block is defined. Twelve (12) can 
didate motion vectors (including a Zero vector) are then iden 
tified based on the search window in various directions and 
distances from its center. In particular, five (5) candidate 
motion vectors extending from the search window center in 
the shape of a "+" are defined at a distance of drf4, four (4) 
candidate motion vectors extending from the search window 
center in the shape of an “X” are defined at a distance of 2d, 
and four (4) candidate motion vectors extending from the 
search window center in the shape of a "+" are defined at a 
distance of 3d. 
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10 
FIG. 6 is a diagram showing end points of the candidate 

motion vectors used during inter-frame motion estimation of 
pixel blocks. 

Using fragment shader programs fragment 02 absdiff 
0, fragment 03 Sumdiff 0, fragment 04 absdiff 1 and 
fragment 04 Sumdiff 1 to calculate the Sum of Absolute 
Differences (SAD) for the Zero vector and the first level block 
motion searches, candidate matching pixel blocks having 
centers defined by respective candidate motion vectors are 
then compared with the current pixel block in the current 
frame. The SAD is calculated according to Equation 1, below: 

SAD(i, i, u, v) = (1) 
E. E. 

The best match is then identified as the candidate matching 
pixel block that yields the lowest SAD. If the best match is the 
candidate matching pixel block that corresponds to the Zero 
vector, searching is complete and motion of pixels in the pixel 
block is deemed to be zero. Otherwise, the search is further 
refined. During refinement of the search, eight (8) additional 
candidate motion vectors extending from the center of the 
best match by a distanced in respective directions are defined. 
Using fragment shader programs fragment 06 absdiff 2 
and fragment 07 Sumdiff 2, additional candidate match 
ing pixel blocks having centers defined by respective ones of 
the additional candidate motion vectors are then compared 
with the pixel block in the current frame. If none of the 
additional candidate matching pixel blocks yields a SAD that 
is lower than that of the current best match, the current best 
match is considered to be the final match, and motion of the 
block is deemed to correspond to the candidate motion vector 
of the final match. Otherwise, the additional candidate match 
ing pixel block yielding the lower SAD is deemed to be the 
new best match. The search is then further refined based on 
eight (8) additional candidate motion vectors extending from 
the center of the new best match by a distance d/2 in respective 
directions, using fragment shader programs fragment 
06 absdiff 2 and fragment 07 sumdiff 2. 
The process described above continues with progressive 

refinements using fragment shader programs fragment 
06 absdiff 2 and fragment 07 sumdiff 2 and additional 
motion vectors extending progressively smaller distances 
from the centers of the previous best matches. The search is 
terminated either when the lengths of additional candidate 
motion vectors are less than one (1) pixel, or when further 
refinement fails to yield an additional candidate matching 
pixel block with a lower SAD than that of the current best 
match. 

The position in the vector field corresponding to the block 
position in the current frame is then updated with the motion 
vector corresponding to its best match in the previous frame. 
The process described above is conducted for each of the 
blocks in the current frame. 

FIG. 7A is an illustrative vector field showing motion vec 
tors of pixel blocks between two frames. Following popula 
tion of the vector field with the motion vectors corresponding 
to the best matches for the pixel blocks in the current frame, 
the vector field is then Smoothed by fragment shader program 
fragment 08 vecmedian with a vector median filter. The 
result of the application of the vector median filter on the 
vector field of FIG. 7A is illustrated in FIG. 7B. 
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With a motion vector having been obtained for each pixel 
block, the motion vector map is complete. The fragment 
shader program fragment 09 Vecmap then converts the 
motion vector map from one-eighth (/s) the size of the current 
frame to the size of the current frame using bilinear interpo 
lation of the motion vectors. Each pixel in the current frame is 
thereby allocated a respective motion vector having a direc 
tion and an extent. 

In the event that there are no motion vectors, then no 
motion pre-compensation is required. In this case, the output 
frame O, is equal to the current frame F. 
Where there has been motion estimated between the cur 

rent frame F., and the previous frame F., however, motion 
blur pre-compensation is conducted in order to generate an 
output frame O, for the current frame F. The pre-compensat 
ing used by the system 50 is a modification of the technique 
disclosed in above-mentioned U.S. Patent Application Pub 
lication No. 2005/0231603, as will be described. 

Given the current frame F., and the previous frame F., 
fragment shader program fragment 10 imggrad calculates 
both an intra-difference frame and an inter-frame differences 
at each pixel location, based on its respective motion vector. 
The differences are stored as weights for used by fragment 
shader program fragment 11 setweight to set the amount of 
correction to be performed on each pixel. 
A filter bank is constructed and, for each motion vector, a 

linear blurring filter f is created with sizes and direction 0. 
corresponding to the respective motion vector, and added to 
the filter bank. For example, where K-2, a first of the two (2) 
blurring filters f based on a motion vector with direction 
0=0 and extent s =5 pixels would be as follows: 

The second of the two (2) blurring filters f, based on a 
motion vector with direction 0-90° and extents 3 pixels 
would be as follows: 

An initial guess frame is established by setting the current 
frame F, as the initial guess image for output frame O. A 
guess pixel is selected from the guess image and a blur filter 
corresponding to the guess pixel is retrieved from the filter 
bank. If the blur filter does not have an extent that is at least 
one (1) pixel, then the next pixel is selected. Otherwise, the 
edge magnitude of the guess pixel is estimated in the motion 
direction of the blur filter using a Sobel edge filter, and stored 
as a weighting factor in W(x,y). The Sobeledge filter opera 
tion and weighting is conducted according to Equations (2), 
(3) and (4) below: 

(2) 
-101 
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-continued 

dy = O, (x, y) & O. O. O. 
(3) 

W(x, y) = cos dx(x,y) + sin dy(x, y) (4) 

The guess pixel is then blurred using the blur filter by 
convolving the output frame pixel O(x,y) with the filter f to 
obtain blurred pixel B(x,y). An error between the pixel in the 
frame F, and the blurred guess pixel is determined by sub 
tracting the blurred pixel B(x,y) from the current frame pixel 
F(x,y) to obtain error E, (x,y). Error E(x,y) is then blurred 
using the blur filterf, and weighted using the edge magnitude 
that had been obtained as a weighting factor. The guess pixel 
is then updated with the weighted and blurred error according 
to Equation (5) below: 

where: 

B is a constant step size. 
If there are more pixels to select in the guess image, then 

the next pixel is selected for pre-processing as described 
above. Otherwise, the total adjustment to output frame O, 
across all pixels is calculated to determine the overall differ 
ence AE between the guess image and the current frame F., as 
calculated across all pixels according to Equation (6) below: 

AE =XXIf x E, (x,y)x W, (x,y) (6) 
y x 

If the overall difference AE is below a pre-defined error 
threshold, then pre-compensation is complete for the current 
frame F. The resultant output frame O, is sharpened with 
fragment shader program fragment 14 sharpen using a 
directional sharpening filter tuned to the motion direction at 
each pixel location, and stored in rendering buffer m nBuf 
ferTexID. Otherwise, a pixel in the updated guess image is 
selected and the process described above is re-iterated until 
complete. 
Once the sharpening operation on output frame O, has 

been completed, an overdrive operation is performed using 
fragment shader program fragment 15 overdrive. The 
results of the overdrive operation are stored as pre-processed 
frame results in m nDestTexID. Overdrive provides addi 
tional compensation for the relatively slow response time of a 
hold-type device. During overdrive, the driving Voltage 
applied to each device pixel is adjusted by an amount propor 
tional to a gray level transition. This technique is described by 
H. Okurama, M. Akiyama, K. Takotoh, and Y. Uematsu in the 
publication entitled “A New Low Image-Lag Drive Method 
For Large-Size LCTVs.” (SID'02 Digest, pp. 1284-1287, 
2002). 
Once overdrive has been completed on output frame O, 

the fragment shader program fragment 16 gray2rgb inserts 
the output frame O, into the luminance channel Y of the YIQ 
frame stored at mpegTexID, converts the frame into RGB 
color space and provides the modified RGB frame data to the 
LCD device 400. 
The two off-screen framebuffers are used to achieve multi 

pass rendering by Swapping the source and target texture IDs 
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at the end of each rendering pass. In this way, the target 
texture from the first pass is used as the source for the second 
pass. 

Performance of the system 50 has been found to be better 
than that provided by systems employing only a CPU for 
motion pre-compensating. The test environment used to 
evaluate the performance of the system 50 included a Pen 
tium4 2.26 GHZ, CPU with a Windows 2000 Professional 
English Version operating system, 256MB RAM, and a bus 
speed of 266 MHz. GPU was a NVIDIA GeForce 6600 Series 
GPU, with 256MB DDR RAM. Metrics were obtained using 
the performance counter function provided by the 
kernel32.lib library, and results were verified using the g|E- 
Bugger OpenGL profiler version 2.3. For each evaluated 
implementation option, the time taken to process 100 frames 
of a test Video sequence was measured. Each video sequence 
was measured five times, and the average frame processing 
time was captured. 

Five (5) video sequences were used during performance 
evaluation. These were: 

1. A Foreman real video sequence of a static background 
with a Subject moving in the foreground and having a reso 
lution of 176x144 pixels; 

2. A Vision Chart animated video sequence of a vision 
chart in various font sizes scrolling from left to right under 
constant motion and having a resolution of 256x192 pixels; 

3. A Road real video sequence of a camera panning from 
left to right capturing the motion of a fast-moving vehicle and 
having a resolution of 320x240 pixels; 

4. A Football real video sequence of multiple fast-moving 
subjects in the foreground and having a resolution of 352x240 
pixels; and 

5. A TwoDogs real video sequence of two dogs moving in 
different directions and having a resolution of 640x480 pix 
els. 

All real video sequences were saved in MPEG format, 
while the animated sequence was created by causing a BMP 
image to move using DirectX and saving the result to an 
MPEG file. A frame rate of 30-fps (frames per second) was 
used in all of the test video sequences. 

The total individual processing times taken by the GPU and 
the CPU to complete all operations in the algorithm were 
compared. These operations included: colorspace conver 
Sion, motion estimation, motion blur compensation, motion 
sharpening and overdrive. FIG. 8 is a graph illustrating the 
differences in overall GPU and CPU processing times during 
modification of frames to compensate for perceived blur, for 
several frame sizes. FIG. 9 is a table correlating the overall 
GPU and CPU processing times of FIG. 8 with processing 
times perframe and framerates. Overall, the GPU implemen 
tation yielded a performance speed-up factor of about 2.5 
times over the counterpart CPU implementation. Perfor 
mance speed-up became more pronounced as the frame size 
increased. 

FIG. 10 is a table including the differences in individual 
GPU and CPU processing times for various processing opera 
tions during modification of frames to compensate for per 
ceived blur. FIG. 11 is a set of graphs illustrating the differ 
ences in individual GPU and CPU processing times for the 
various processing operations of FIG. 10. From these above 
comparison graphs and tables, it was observed that the most 
significant performance gain occurred during motion estima 
tion, which yielded a five times increase on average. In addi 
tion, operations that were highly uniform across all pixels, 
such as overdrive, clearly benefitted from the GPU parallel 
processing architecture. 
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It was observed that, in most cases, it took longer to com 

plete the actual motion blur compensation on the GPU than on 
the CPU. This could be due to additional data copying time in 
the GPU implementation during use of the off-screen render 
targets, which are either read-only or write-only. Other rea 
Sons may include the overhead imposed on the iterative ren 
dering process by having to Swap between different frame 
buffers. Furthermore, in the GPU implementation, the motion 
vector is stored separately for each pixel which, while yield 
ing Smoother results, inherently increases the time required 
for texture fetch. 

Although a specific embodiment has been described above 
with reference to the Figures, it will be appreciated that alter 
natives are possible. For example, while pixel block sizes of 
8x8 for block motion estimation were described, larger or 
Smaller block sizes may be selected, having an according 
effect on the processing time vs. performance trade-off. 

Alternatives to the criterion described above for determin 
ing that iterative pre-compensation is complete, whereby it is 
determined whether the sum of pixel error has changed by 
more than a threshold amount, may be employed. For 
example, the pixel blurring, comparing, error pixel blurring 
and weighting, and combining may be performed iteratively 
a predetermined number of times, as required to Suit the 
particular implementation. 

Although embodiments have been described, those of skill 
in the art will appreciate that variations and modifications 
may be made without departing from the spirit and scope of 
the invention defined by the appended claims. 
What is claimed is: 
1. A system for displaying a digital video sequence, com 

prising: 
a graphics processing unit (GPU) receiving and modifying 

the digital video sequence to compensate for perceived 
blurbased on motion between frames of the digital video 
sequence; and 

a display device displaying the modified digital video 
sequence: and 

wherein the GPU comprises: 
a programmable fragment processor, 
texture memory storing frames of the digital video 

sequence; and 
program memory storing a computer program execut 

able by the programmable fragment processor, the 
computer program comprising: 

program code estimating motion between pixels in a 
current frame and a previous frame; and 

program code filtering pixels in the current frame based 
on the estimated motion to compensate for perceived 
blur, and 

wherein the texture memory further stores a vector map 
lookup table and an overdrive lookup table. 

2. The system of claim 1, wherein the GPU further com 
prises: 

framebuffer object memory storing intermediate frame 
processing results of estimating and filtering by the com 
puter program. 

3. The system of claim 2, wherein the framebuffer object 
memory further stores a pointer array having a base level and 
a block level. 

4. The system of claim 3, wherein the base level comprises 
four texture attachments each being the same size as the 
current frame. 

5. The system of claim 4, wherein the block level comprises 
three texture attachments each being a fraction of the size of 
the current frame. 
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6. The system of claim 5, wherein the block level texture 
attachments are one-eighth (/s) the size of the current frame. 

7. The system of claim 1, wherein the estimating motion 
program code and the filtering pixels program code comprise: 

fragment shader program code; and 
Vertex shader program code. 
8. The system of claim 1, wherein the GPU comprises: 
a plurality of off-screen frame buffers receiving filtered 

frames for display by the display device. 
9. The system of claim 1, further comprising: 
a central processing unit (CPU) decoding a digital video 

stream into the digital video sequence and providing 
frames of the digital video sequence to the GPU. 

10. A method for displaying digital video, comprising: 
modifying an input digital video sequence using a graphics 

processing unit (GPU) to compensate for perceived blur 
based on motion between frames; and 

providing the modified digital video sequence to a display 
device; and 

wherein the modifying comprises: 
estimating motion of pixels between frames in the digi 

tal video sequence; and 
filtering frames based on the estimated motion; and 

wherein the estimating comprises: 
estimating a motion vector between a current frame and 

a previous frame for each of a plurality of pixel blocks 
of said current frame thereby to obtain a block motion 
vector field, wherein a block motion vector represents 
a respective estimated blur direction and blur extent; 

smoothing the block motion vector field; and 
allocating to each pixel in the current frame, the block 

motion vector of its corresponding block in the 
smoothed block motion vector field. 

11. The method of claim 10, wherein the filtering com 
prises: 

generating an initial guess frame based on the current 
frame; 

blurring pixels in the guess frame as a function of their 
respective estimated blur directions and blur extents; 

comparing each blurred pixel with a respective pixel in the 
current frame to generate an error pixel for each respec 
tive pixel; 

blurring and weighting each error pixel; and 
combining each error pixel and its respective pixel in the 

initial guess frame thereby to update the guess frame and 
compensate for blur. 

12. The method of claim 11, wherein the weighting is a 
function of the respective pixel motion. 
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13. The method of claim 12, wherein the weighting is an 

estimate of the edge magnitude of the respective pixel in the 
guess image in the direction of pixel motion. 

14. The method of claim 13, wherein the edge magnitude is 
estimated using a high-pass filter. 

15. The method of claim 11 wherein the initial guess frame 
is the current frame. 

16. The method of claim 15, wherein the weighting is an 
estimate of the edge magnitude of the respective pixel in the 
guess frame in the direction of pixel motion. 

17. The method of claim 12 wherein the pixel blurring, 
comparing, error pixel blurring and weighting, and combin 
ing are performed iteratively. 

18. The method of claim 17 wherein the pixel blurring, 
comparing, error pixel blurring and weighting, and combin 
ing are performediteratively until the sum of error falls below 
a threshold level. 

19. The method of claim 17 wherein the pixel blurring, 
comparing, error pixel blurring and weighting, and combin 
ing are performed iteratively a predetermined number of 
times. 

20. The method of claim 17 wherein the pixel blurring, 
comparing, error pixel blurring and weighting, and combin 
ing are performed iteratively until the sum of error fails to 
change by more than a threshold amount between Successive 
iterations. 

21. A non-transitory computer readable medium having a 
computer program thereon that is executable by a graphics 
processing unit (GPU) to perform the following: 

modifying the digital video sequence to compensate for 
perceived blur based on motion between frames; and 

providing the modified digital video sequence to a display 
device; and 

wherein the modifying comprises: 
estimating motion of pixels between frames in the digi 

tal video sequence; and 
filtering frames based on the estimated motion; and 

wherein the estimating comprises: 
estimating a motion vector between a current frame and 

a previous frame for each of a plurality of pixel blocks 
of said current frame thereby to obtain a block motion 
vector field, wherein a block motion vector represents 
a respective estimated blur direction and blur extent; 

smoothing the block motion vector field; and 
allocating to each pixel in the current frame, the block 

motion vector of its corresponding block in the 
smoothed block motion vector field. 

k k k k k 


