US 20140173357A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2014/0173357 A1l

ANDERSON et al.

43) Pub. Date: Jun. 19, 2014

(54)

(71)

(72)

(73)

@
(22)

SALVAGING EVENT TRACE INFORMATION
IN POWER LOSS INTERRUPTION
SCENARIOS

Applicant: HGST NETHERLANDS B.V,,
Armsterdam (NL)

MICHAEL ANDERSON,
ROCHESTER, MN (US); KRAIG
BOTTEMILLER, ROCHESTER, MN
(US); ADAM ESPESETH,
ROCHESTER, MN (US); LEE
SENDELBACH, ROCHESTER, MN
Us)

Inventors:

HGST NETHERLANDS B.V,,
Amsterdam (NL)

Assignee:

Appl. No.: 13/719,209

Filed: Dec. 18, 2012

Publication Classification

(51) Int.CL
GOGF 11/07 (2006.01)
(52) US.CL
() SR GOGF 11/0778 (2013.01)
1613 G 714/45
(57) ABSTRACT

Salvaging event trace information in power loss interruption
(PLI) scenarios, for use in solid-state drive (SSD) and hard
disk drive (HDD) storage devices. If volatile state informa-
tion that is salvaged after an inadvertent power loss were to
include event trace information, then such information can
provide a valuable debug resource. Event trace information
from volatile memory is copied to a second memory upon a
power on which is in response to a PLI event. A corrupt state
of context reconstruction data stored on non-volatile memory
is detected, and an indication of the corrupt state is set. The
event trace information is passed to the host if requested
based on the indication.

HOST
DEVICE
104

/ 100

h

0|

v

PRIMARY
INTERFACE

SSD

INTERFACE
1o

102

CONTROLLER WITH
FIRMWARE
12

VOLATILE

ADDRESSING
114

MEMORY
122

L 00

DATA BUFFER CACHE
16

ERROR CORRECTION
CODE (ECC)
18

NON-VOLATILE M

EMORY

120b

NON-VOLATILE MEMORY

120n

NON-VOLATILE MEMORY

Patent Application Publication Jun. 19,2014 Sheet 1 of 2 US 2014/0173357 A1

HOST 100
DEVICE
104

A

106 PRIMARY
~""] INTERFACE

Y

SSD
INTERFACE 102
110

CONTROLLER WITH
FIRMWARE
12
| VOLATILE

MEMORY

ADDRESSING 122
14 I

ERROR CORRECTION
CODE (ECC)
118

DATA BUFFER CACHE
116

NON-VOLATILE MEMORY
120a

NON-VOLATILE MEMORY
120b

NON-VOLATILE MEMORY
120n

FIG. 1

Patent Application Publication Jun. 19,2014 Sheet 2 of 2 US 2014/0173357 A1

UPON A POWER ON IN RESPONSE TO A POWER LOSS INTERRUPTION
EVENT, COPY EVENT TRACE INFORMATION FROM VOLATILE
MEMORY TO A SECOND MEMORY
202

DETECT A CORRUPT STATE OF CONTEXT RECONSTRUCTION DATA
ON THE VOLATILE MEMORY
204

4

SET AN INDICATION OF THE CORRUPT STATE
206

4

PASS THE EVENT TRACE INFORMATION TO A HOST IN RESPONSE
TO AREQUEST FROM THE HOST
208

FIG. 2

US 2014/0173357 Al

SALVAGING EVENT TRACE INFORMATION
IN POWER LOSS INTERRUPTION
SCENARIOS

FIELD OF THE INVENTION

[0001] Embodiments of the invention relate to a fault tol-
erant trace tool used to debug power loss interruption (PLI)
failures, for use with solid-state drives (SSD) and hard disk
drives (HDD).

BACKGROUND

[0002] A solid-state drive (SSD) is a data storage device
that uses integrated circuit assemblies as memory units to
store data persistently. SSD technology uses electronic inter-
faces compatible with traditional block input/output (1/0)
hard disk drives (HDDs). SSDs do not employ any moving
mechanical components, which distinguishes them from tra-
ditional HDDs which store data on rotating magnetic disks
using movable read-write heads.

[0003] Currently, most SSDs use NAND-based flash
memory, which is a form of non-volatile memory which
retains data in the absence of power and which can be elec-
trically erased and reprogrammed (as flash memory was
developed from EEPROM). Further, hybrid drives combine
features of both SSDs and HDDs in the same unit, typically
containing a hard disk drive and an SSD cache to improve
performance of frequently accessed data. Flash memory
stores information in an array of memory cells made from
floating-gate transistors.

[0004] Solid state drives (SSDs) based on flash (NAND)
memory are designed to be tolerant to an interruption of
power and not to lose any data when experiencing such a
power interruption. SSD drives generally have a non-volatile
cache where data is kept, such as DRAM, and this data must
be saved to the NAND memory in the event of a power loss
interruption (PLI) event. Typically, an SSD contains capaci-
tors or some other storage device with a purposefully sus-
tained charge which provide enough power to save data to the
NAND when a PLI interrupt signal is received. Data saved in
response to a PLI event typically includes dirty write cache
data and LBA mapping table information (e.g., indirection
tables), which may include journaling data.

[0005] However, PLI problems typically require significant
diagnostic efforts, which require the developer/trouble-
shooter to have possession of the drive in order to run tools on
the drive to troubleshoot what happened during the power off
sequence. Given the severity of the failure, where typically a
drive may not come “ready” at poweron due to a data coher-
ency sanity check, thus resulting in complete data loss, this
long diagnostic turnaround time is not considered acceptable
to customers.

SUMMARY OF EMBODIMENTS OF THE
INVENTION

[0006] Embodiments of the invention are directed to sal-
vaging event trace information in power loss interruption
(PLI) scenarios, for use in solid-state drive (SSD) and hard
disk drive (HDD) storage devices. If, for example, DRAM
state information that is salvaged after an inadvertent power
loss were to include event trace information, then such infor-
mation can provide a valuable debug resource.

[0007] According to an embodiment, event trace informa-
tion from volatile memory is copied to a second memory upon

Jun. 19, 2014

apower on which is in response to a PLI event. A corrupt state
of context reconstruction data stored on non-volatile memory
is detected, and an indication of the corrupt state is set. The
event trace information may be passed to the host if requested
based on the indication, according to an embodiment.
[0008] With an optional enhancement, in response to a
request from a host the event trace information is passed to the
host for use with a fault tolerant debug tool. The debug tool is
fault tolerant in part because it is configured for inferring a
legitimate trace character from a malformed trace character.
[0009] Embodiments discussed in the Summary of
Embodiments of the Invention section are not meant to sug-
gest, describe, or teach all the embodiments discussed herein.
Thus, embodiments of the invention may contain additional
or different features than those discussed in this section.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] Embodiments ofthe invention are illustrated by way
of'example, and not by way of limitation, in the figures of the
accompanying drawings and in which like reference numer-
als refer to similar elements and in which:

[0011] FIG. 1 is a block diagram illustrating an example
operating environment in which embodiments of the inven-
tion may be implemented;

[0012] FIG. 2 is a flow diagram illustrating a method for
salvaging event trace information in a power loss interruption
(PLI) scenario, according to an embodiment of the invention.

DETAILED DESCRIPTION

[0013] Approaches to a fault tolerant trace tool used to
debug power loss interruption (PLI) failures in a solid-state
drive (SSD) storage device, are described. In the following
description, for the purposes of explanation, numerous spe-
cific details are set forth in order to provide a thorough under-
standing of the embodiments of the invention described
herein. It will be apparent, however, that the embodiments of
the invention described herein may be practiced without these
specific details. In other instances, well-known structures and
devices are shown in block diagram form in order to avoid
unnecessarily obscuring the embodiments of the invention
described herein.

Solid State Drive Configuration

[0014] Embodiments of the invention may be used to man-
age a solid-state drive (SSD) storage device. FIG. 1 is a block
diagram illustrating an example operating environment in
which embodiments of the invention may be implemented.
FIG.1illustrates a generic SSD architecture 100, with an SSD
102 communicatively coupled with a host device 104 through
aprimary communication interface 106. Embodiments of the
invention are not limited to a configuration as depicted in FIG.
1, rather, embodiments may be applicable to operating envi-
ronments other than SSDs, such as also in hard disk drives
(HDDs), and may be implemented in SSD configurations
other than that illustrated in FIG. 1. For example, embodi-
ments may be implemented to operate in other environments
which rely on volatile memory storage components for tem-
porary storage of critical operational information.

[0015] Host device 104 (or simply “host”) broadly repre-
sents any type of computing hardware or software that makes,
among others, data /O requests or calls to one or more
memory device. For example, host 104 may be an operating
system executing on a computer, a tablet, a mobile phone, or

US 2014/0173357 Al

generally any type of computing device that contains or inter-
acts with memory. The primary interface 106 coupling host
device 104 to SSD 102 may be, for example, a computer’s
internal bus or a communication cable or a wireless commu-
nication link, or the like.

[0016] The example SSD 102 illustrated in FIG. 1 includes
an interface 110, a controller 112 (e.g., a controller having
firmware logic therein), an addressing 114 function block,
data buffer cache 116, error correction code (ECC) 118, and
one or more non-volatile memory components 120a, 1205,
120%. Any of the addressing 114 function block, data buffer
cache 116, and ECC 118 may be integrated functionally as
part of the controller 112, as in a System-On-Chip (SOC)
configuration.

[0017] Interface 110 is a point of interaction between com-
ponents, namely SSD 102 and host device 104 in this context,
and is applicable at the level of both hardware and software.
This allows a component to communicate with other compo-
nents via an input/output system and an associated protocol.
A hardware interface is typically described by the mechani-
cal, electrical and logical signals at the interface and the
protocol for sequencing them. Some non-limiting examples
of common and standard interfaces include SCSI (Small
Computer System Interface), SAS (Serial Attached SCSI),
and SATA (Serial ATA).

[0018] An SSD 102 includes a controller 112, which incor-
porates the electronics that bridge the non-volatile memory
components (e.g., NAND flash) to the host, such as non-
volatile memory 120a, 1205, 1207 to host device 104. The
controller typically comprises an embedded processor that
executes firmware-level code.

[0019] Controller 112 interfaces with non-volatile memory
120a, 1205, 1207 via an addressing 114 function block. The
addressing 114 function operates, for example, to manage
mappings between logical block addresses (LBAs) from the
host 104 to a corresponding physical block address on the
SSD 102, namely, on the non-volatile memory 120a, 1205,
1207 of SSD 102. Because the non-volatile memory page and
the host sectors are different sizes, an SSD has to build and
maintain a data structure that enables it to translate between
the host writing data to or reading data from a sector, and the
physical non-volatile memory page on which that data is
actually placed. This table structure or “mapping” may be
built and maintained for a session in the SSD’s volatile
memory 122, such as DRAM or some other local volatile
memory component accessible to controller 112 and address-
ing 114.

[0020] Addressing 114 interacts with data buffer cache 116
and error correction code (ECC) 118, in addition to non-
volatile memory 120a, 1205, 120%. Data buffer cache 116 of
an SSD 102 may use, for non-limiting examples, SRAM or
DRAM as a cache. Data buffer cache 116 serves as a buffer or
staging area for the transmission of data to and from the
non-volatile memory components, as well as serves as a cache
for speeding up future requests for the cached data. Data
buffer cache 116 is typically implemented with volatile
memory so the data stored therein is not permanently stored in
the cache, i.e., the data is not persistent.

[0021] ECC 118 is a system of adding redundant data, or
parity data, to a message, such that it can be recovered by a
receiver even when a number of errors were introduced, either
during the process of transmission, or on storage.

[0022] Finally, SSD 102 includes one or more non-volatile
memory 120a, 1205, 120z components. For a non-limiting

Jun. 19, 2014

example, the non-volatile memory components 120a, 1205,
1207 may be implemented as flash memory (e.g., NAND or
NOR flash), or other types of solid-state memory available
now or in the future. The non-volatile memory 120a, 1205,
1207 components are the actual memory electronic compo-
nents on which data is persistently stored. The non-volatile
memory 120a, 1205, 1207 components of SSD 102 can be
considered the analogue to the hard disks in hard-disk drive
(HDD) storage devices.

[0023] Inadditiontoa SSD storage device, embodiments of
the invention may also be used to manage a hard disk drive
(HDD) storage device. For example, a generic HDD archi-
tecture may comprise an HDD communicatively coupled
with a host device through a primary communication inter-
face, similar to the SSD configuration 100 illustrated in FIG.
1 in which SSD 102 is connected to host 104 through a
primary communication interface 106. Further, an HDD com-
prises a controller with firmware communicatively coupled to
volatile memory, similar to controller 112 and volatile
memory 122 of SSD 102. The comparisons between HDD
components and SSD components are meant to be conceptual
rather than identical. Therefore, it is noted that HDD control-
lers are different from SSD controller 112, and are designed to
perform some dissimilar as well as some similar functions.
However, both HDDs and SSDs comprise a controller with
some firmware embedded/encoded therein, which communi-
cates with some form of volatile memory, such as DRAM.

Introduction

[0024] Embodiments of the invention are described relat-
ing to techniques for salvaging event trace information in a
power loss interruption (PLI) scenario. Embodiments are
applicable to, and may be implemented in and/or for, a solid-
state drive (SSD) storage device as well as a hard disk drive
(HDD) storage device. Consequently, use of these techniques
enables obtaining a useable trace from a customer HDD or
SDD drive with just a simple memory dump and avoiding the
customer having to send in the drive to the factory for analy-
sis. Salvaging event trace information is typically relevant
and applicable to, for non-limiting examples, firmware devel-
opment and drive validation and qualification testing.

[0025] A conventional code debugging process for embed-
ded systems, generally, is to perform a memory dump, which
is a snapshot of the state of internal system memory such as
instruction memory, data memory, DRAM, and the like. Basi-
cally, the snapshot would provide the state of the system
which a developer or debugger could use to try to understand
a problem within the system. Such memory dumps are typi-
cally performed either periodically or in response to an inter-
rupt event.

[0026] A relatively new class of issues that a firmware
developer may need the firmware to support is a power loss
interruption (PLI) event and a corresponding response and
recovery. For example, support for a PLI event would typi-
cally need to handle “dirty write data” which has been write
cached and already acknowledged to the host but not yet
stored on the non-volatile media. Additionally, with SSDs
there is the need to save the indirection data tables which map
logical data addresses to physical memory locations. By
nature, PLI events are temporally unexpected and, therefore,
corresponding support for such events is a non-trivial and
challenging process. Thus, the firmware may not always react
optimally to a PLI event in the first instance.

US 2014/0173357 Al

[0027] Consequently, firmware tracing information is one
of'the more valuable debug tools for a developer. Event trace
information is likened to a log, listing execution information
associated with the previous hundreds or thousands of
executed commands. Trace information may include, for
example, identification of the last line of code executed, code
variables, and the like, all of which are important pieces of
information for a debugger. However, memory dumps typi-
cally give priority to firmware data structures and possibly to
user data, but tracing information is treated as lower priority
information to extract from the system upon a system failure.
Therefore, tracing information may never be saved persis-
tently because the short-term sustained charge available for
processing when a system experiences a power failure may
not even be enough to get to the tracing information.

[0028] As discussed, some shortcomings of convention
memory dump processes are that the memory dumps are
performed periodically, and that data structures and user data
are given priority. Additionally, there are instances when sys-
tem failures occur when one or more interrupt sequences are
disabled and, consequently, no state data is saved persistently.

Dynamic Random-Access Memory (DRAM)

[0029] DRAM possesses some interesting inherent physi-
cal properties. Although considered volatile, DRAM is
known to actually exhibit some characteristics of non-volatile
memory over a relatively short period of time. That is, after
power cycling a system, the internal DRAM can hold its state
for some period of time without power, for example, possibly
for 30 seconds up to a couple minutes. Some bits may be
dropped or flipped but the data in DRAM is still relatively in
tact for the period immediately after a power loss. Further, a
controller memory manager may employ ECC protection on
the DRAM (single bit correct, double bit detect) which can
correct some errors in the data.

Method for Salvaging Event Trace Information

[0030] Based on the foregoing characteristic of DRAM,
during a power up situation after a power down event,
whereby the power up typically occurs within a few seconds
of'the power down, one can essentially look back in time at the
DRAM state at the time of the power down and going back to
the last DRAM refresh. If the DRAM state information that is
salvaged after an inadvertent power loss were to include event
trace information, then such information can provide a valu-
able debug resource. For example, such event trace informa-
tion may be used to understand and debug how firmware is
responding to particular events, namely failure events, such as
a power loss interruption failure.

[0031] FIG. 2 is a flow diagram illustrating a method for
salvaging event trace information in a power loss interruption
(PLI) scenario, according to an embodiment of the invention.
The process illustrated in FIG. 2 may be implemented in an
SSD such as SSD 102 (FIG. 1). More specifically, the process
illustrated in FIG. 2 may be implemented in controller 112
(FIG. 1) of SSD 102, according to an embodiment. The pro-
cess logic may be implemented as analog or digital hardware
circuitry within SSD 102 or, preferably, as firmware instruc-
tions executed by a processor, such as CPU 204 (FIG. 2) oran
MPU, within the SSD 102.

[0032] Atblock 202 of FIG. 2, event trace information from
volatile memory is copied to a second memory. For example,
event trace information is copied from volatile memory 122

Jun. 19, 2014

(FIG. 1) to a dedicated portion of volatile memory 122 or to
one or more non-volatile memory 120a, 1205, 120z (FI1G. 1).
The copying of event trace information from volatile memory
to a second memory is performed upon a power on which, in
an embodiment, is in response to a power loss interruption
event. This is an optimum time to copy the event trace infor-
mation to memory, before data is reset or overwritten upon the
responsive power on cycle, and because the most current
information will be recaptured, i.e., reflecting any processing
that has occurred since the last periodic trace save. Further,
this copying of event trace information is in conjunction with
a“cold” reset, in which the power was actually off, rather than
a “warm” reset, which is not in response to a power off
scenario.

[0033] At block 204, a corrupt state of context reconstruc-
tion data stored on non-volatile memory is detected. Typi-
cally, upon a power on sequence the firmware will try to
reconstruct its state based on what information is available on
non-volatile, or persistent, media. This process is referred to
herein as context reconstruction because the firmware is
attempting to reconstruct the context, or state, in which it was
executing at the time of the failure. Further, the firmware is
configured to detect a corrupt state of data that it is pro-
grammed to use for reconstruction purposes. For non-limiting
examples, the firmware may detect that it is unable to com-
pletely rebuild indirection (LBA) tables or that there is dirty
write data that has not been written down to persistent
memory, and the like.

[0034] Atblock 206, an indication of the corrupt state is set.
For example, upon detecting a corrupt state of data the firm-
ware may set a flag or a bit which indicates that a corrupt state
is present. By setting this indication, the firmware is effec-
tively notifying the host about the corrupt state, because the
host is able to access and read the indication as set. For
example, an program external to the storage device (e.g., atest
or validation program) reads the flag and requests the event
trace information, from the time of the PLI event, from the
storage device to the host. Note that this is not a good time to
save the event trace information to non-volatile memory
because the saving process may actually change the current
state of the information.

[0035] At block 208, the event trace information is passed
to the host in response to a request from the host or an
application program executing on the host, for example, in
response to the corrupt state indication. This information can
be passed to the host using the conventional storage device
interface (e.g., SAS) or via a side-band debug interface.

Fault Tolerant Debug Tool

[0036] For a debug process, essentially any amount of
legitimately formed trace information can be helpful in pro-
viding some degree of insight into the problem being ana-
lyzed. Thus, the more legitimately formed trace information
that one has available, the better the problem analysis which
can be performed.

[0037] According to an embodiment, the event trace infor-
mation is passed to a fault tolerant debug tool which may
execute on the host. The debug tool is a post-processing tool
that parses and analyzes event trace data. Even though event
trace information is usually well-formed, a robust debug tool
should be tolerant of malformed event trace information and
characters. Such a debug tool is fault tolerant, at least in part,
in that the tool should continue its processing even when it
encounters corrupt data, as well as make intelligent assump-

US 2014/0173357 Al

tions about malformed information to arrive at a “best guess”
as to how the malformed information should be legitimately
formed. Alternatively, and probably more typically, once the
trace information is retrieved (usually by the customer drive
qualification engineer) it is passed to the SSD development
team and parsed offline.
[0038] According to an embodiment, the fault tolerant
debug tool comprises an inference engine configured for
inferring a legitimate trace character from a malformed trace
character. This inference is based on the assumption or rec-
ognition that each bit representing the event trace information
will normally decay from a “1” to a “0” as the system and
constituent volatile memory is losing power due to the PLI
event. The exact implementation of such fault tolerance into a
debug tool will vary based on numerous factors, such as based
on the implementation of the corresponding firmware, based
on the formation of the corresponding event trace informa-
tion, and based on the implementation of the debug tool itself,
and the like.
[0039] In the foregoing specification, embodiments of the
invention have been described with reference to numerous
specific details that may vary from implementation to imple-
mentation. Thus, the sole and exclusive indicator of what is
the invention, and is intended by the applicants to be the
invention, is the set of claims that issue from this application,
in the specific form in which such claims issue, including any
subsequent correction. Any definitions expressly set forth
herein for terms contained in such claims shall govern the
meaning of such terms as used in the claims. Hence, no
limitation, element, property, feature, advantage or attribute
that is not expressly recited in a claim should limit the scope
of'such claim in any way. The specification and drawings are,
accordingly, to be regarded in an illustrative rather than a
restrictive sense.
What is claimed is:
1. A method comprising:
upon a powering on in response to a power loss interruption
event in a storage device, copying event trace informa-
tion from a first volatile memory to a second memory;
detecting a corrupt state of context reconstruction data
stored on a non-volatile memory; and
setting an indication of the corrupt state.
2. The method of claim 1, further comprising:
in response to a request from said host, passing said event
trace information to said host.
3. The method of claim 1, wherein said first volatile
memory is Dynamic Random-Access Memory (DRAM).
4. The method of claim 1, wherein said second memory is
the same memory as said first volatile memory.
5. The method of claim 1, wherein said second memory is
NAND flash memory.
6. The method of claim 1, further comprising:
in response to a request from said host, passing said event
trace information to said host, for use with a fault toler-
ant debug tool that comprises an inference engine con-
figured for inferring a legitimate trace character from a
malformed trace character.
7. The method of claim 1, further comprising:
in response to a request from said host, passing said event
trace information to a fault tolerant debug tool that
executes on said host;
wherein said fault tolerant debug tool comprises an infer-
ence engine configured for inferring a legitimate trace
character from a malformed trace character.

Jun. 19, 2014

8. The method of claim 7, wherein said inference engine is
configured for inferring a legitimate trace character from a
malformed trace character based on an assumption that each
bit representing said event trace information will decay from
a“1”to a“0” as said first volatile memory is losing power due
to said power loss interruption event.

9. A solid-state drive controller storing one or more
sequence of instructions which, when executed by one or
more processors, causes performance of:

copying event trace information from a first volatile

memory to a second memory upon a powering on in
response to a power loss interruption event in a storage
device;

detecting a corrupt state of context reconstruction data

stored on a non-volatile memory; and

setting an indication of the corrupt state.

10. The controller of claim 9, wherein said one or more
sequence of instructions which, when executed by one or
more processors, causes performance of:

passing said event trace information to said host in

response to a request from said host.

11. The controller of claim 9, wherein said first volatile
memory is Dynamic Random-Access Memory (DRAM).

12. The controller of claim 9, wherein said one or more
sequence of instructions which, when executed by one or
more processors, causes performance of:

in response to a request from said host, passing said event

trace information to said host, for use with a fault toler-
ant debug tool that comprises an inference engine con-
figured for inferring a legitimate trace character from a
malformed trace character.

13. The controller of claim 9, wherein said one or more
sequence of instructions which, when executed by one or
more processors, causes performance of:

in response to a request from said host, passing said event

trace information to a fault tolerant debug tool that
executes on said host;

wherein said fault tolerant debug tool comprises an infer-

ence engine configured for inferring a legitimate trace
character from a malformed trace character.

14. A storage device comprising:

a communication interface for communicating with a host;

one or more non-volatile media;

a volatile memory; and

a controller storing one or more sequence of instructions

which, when executed by one or more processors, causes

performance of:

copying event trace information from said volatile
memory to a second memory upon a powering on in
response to a power loss interruption event in a stor-
age device;

detecting a corrupt state of context reconstruction data
stored on said non-volatile media; and

setting an indication of the corrupt state.

15. The storage device of claim 14, wherein said one or
more sequence of instructions which, when executed by one
or more processors, causes performance of:

in response to a request from said host, passing said event

trace information to said host.

16. The storage device of claim 14, wherein said volatile
memory is Dynamic Random-Access Memory (DRAM).

17. The storage device of claim 14, wherein said second
memory is said volatile memory.

US 2014/0173357 Al

18. The storage device of claim 14, wherein said second
memory is NAND flash memory.

19. The storage device of claim 14, wherein said one or
more sequence of instructions which, when executed by one
or more processors, causes performance of:

in response to a request from said host, passing said event

trace information to said host for use with a fault tolerant
debug tool;

wherein said fault tolerant debug tool comprises an infer-

ence engine configured for inferring a legitimate trace
character from a malformed trace character.

20. The storage device of claim 19, wherein said inference
engine is configured for inferring a legitimate trace character
from a malformed trace character based on an assumption
that each bit representing said event trace information will
decay from a “1” to a “0” as said first volatile memory is
losing power due to said power loss interruption event.

#* #* #* #* #*

Jun. 19, 2014

