US 20140173397A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2014/0173397 A1l

Pereira et al.

43) Pub. Date: Jun. 19, 2014

(54) AUTOMATED DOCUMENT COMPOSITION
USING CLUSTERS

(76) Inventors: Jose Bento Ayres Pereira, Palo Alto,

CA (US); Keyen Liu, Beijing (CN); Lei

Wang, Beijing (CN); Niranjan

Damera-Venkata, Chennai, Tamil Nadu

(IN)
(21) Appl. No.:
(22) PCT Filed:
(86) PCT No.:

§371 (),
(2), (4) Date:

14/234,154

Jul. 22, 2011

PCT/CN2011/001203

Jan. 22, 2014

Publication Classification

(51) Int.CL
GOGF 1724 (2006.01)
(52) US.CL
CPC oo GOGF 17/248 (2013.01)
1673 G 715/202
(57) ABSTRACT

Systems and methods of automated document composition
using clusters are disclosed. In an example, a method com-
prises determining a plurality of composition scores @ (A,
B), the composition scores each computing separately on a
plurality of worker nodes in the cluster. The method also
includes determining coefficients (T,(A) at a master node in
the cluster based on the composition scores (®,) from each of
the worker nodes. The method also includes outputting an
optimal document (D*) using the coefficients (t,).

00
header 108
__________ i
§
i
3
3
X i
tont image :
3
104 101 :
i
& s Sl
204
paegiepes ngtepiapry fext
: i
: ; 105
i !
: :
; image v
4 il .
! 102 £ fext
’f B
T
/ f
/ :
/ |
202 206

US 2014/0173397 Al

Jun. 19,2014 Sheet 1 of 8

Patent Application Publication

90z 707
/
7
ﬁ, £
| /
/ |
[Ry
e {11
SGT w | m
] 4
) L 201 ;
$
St aBewr
| :
M :
Gt | :
18} S iy
o e YOT
122) QP S———
M |
| Lot “ v0l
: abeuy : ey
m N
H H
H H
: §
L35 N 4
anL iBpeay
0oL

O
e 20t
afei
ooy
ey
161 POl
shpuy fric
07 aprsy
\.\\\»,
0L

US 2014/0173397 Al

Jun. 19,2014 Sheet 2 of 8

Patent Application Publication

o

%5

7

gye N

SEoye 8IS

-t 0AET

annbug

fresyy wyedws g

BIONLG
B8
JUSIIOD

W

BRI
ey

gye M

gmw

74 W

Patent Application Publication Jun. 19, 2014 Sheet 3 of 8 US 2014/0173397 A1

3400
. -
a2 o
A

Patent Application Publication Jun. 19, 2014 Sheet 4 of 8 US 2014/0173397 A1

Fig. 4A s

401 «%
{ Title |
402
_,\ Figure
, Taxt Text
403 "\ Steam Stream
1 2
. 434
F i B
Ig. 4
/- 4008
405a 405b
E ******* N 4050

H i
! Tile . 1
b3
Lot oae s ! i

¥ !5 L= 3 By
%‘sxt Taiﬁ’
$§ﬁea m St 3§3m
111 2
i H

Patent Application Publication Jun. 19, 2014 Sheet S of 8

Fig. 4C

Fig. 4D

US 2014/0173397 Al

f 400C

{“ 4183 {'*4?553
P S S ey
| Ttk i

i
i
{
!
i
!
|

5

"o s Vgt S Y

/- 400D

Tidle

Figure

i

Text
Sheam
1

Teaxt
Stream
2

US 2014/0173397 Al

Jun. 19, 2014 Sheet 6 of 8

Patent Application Publication

T <
o) -
e - - R AW
R TEaE
Ve ~ £05
yauny \
/1 | g1
m\ 1 XXX : i
TN — X X | X £}
IS (™ X X X zL
A fh@ D | = X X P
B R X X% oF
m Mf LG ‘\l 2R ESI &
M 5, xXi % 4
| - o, - A X - £
| T D | g XX e d .
| o X1 X% g el
) Pt ot ey % R ",
\aots e o
N T NTXIRT2
e AT | 4 VIRV
SR ! |
i . P :
eong " A gipdedzd wlodslgislelelvlelzh oS
@ma\
G "Bl
. »

US 2014/0173397 Al

Jun. 19,2014 Sheet 7 of 8

Patent Application Publication

i * »
./.c,s
T 049
sy B .
sfping wemsied | "
Ry 72
054
o
T
5
vy
SBYORUOT ABIOSI] e £
A =,
¥ ™ 5o8
Apyle ..
s ~ 059
ova o

019

™ 69

gyery indhing %
iy Buesannid
‘e ndu

SBALC sonde sy

BISAS
HEtiley THvg!
PRG0N
DBTRLIOYTY

AICRUSIA LUSIBAS

R A

AL

Y2

Patent Application Publication Jun. 19, 2014 Sheet 8 of 8 US 2014/0173397 A1

Fig. 7

89

Oatermining Plurality of
Corposition Soorss 70
On Separate Worker Nodes in g
Cluster

~ 7230
Determining cosfficients (T {i1sta B
Rlaster Nods in the Cluster
¥30

Cutpudting an Optimal Document |
using the Cosfficients

US 2014/0173397 Al

AUTOMATED DOCUMENT COMPOSITION
USING CLUSTERS

BACKGROUND

[0001] Micro-publishing has exploded on the Internet, as
evidenced by a staggering increase in the number of blogs and
social networking sites. Personalizing content allows a pub-
lisher to target content for the readers (or subscribers), allow-
ing the publisher to focus on advertising and tap this increased
value as a premium. But while these publishers may have the
content, they often lack the design skill to create compelling
print magazines, and often cannot afford expert graphic
design. Manual publication design is expertise intensive,
thereby increasing the marginal design cost of each new edi-
tion. Having only a few subscribers does not justify high
design costs. And even with a large subscriber base, macro-
publishers can find it economically infeasible and logistically
difficult to manually design personalized publications for all
of'the subscribers. An automated document composition sys-
tem could be beneficial.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] FIG. 1 shows an example of a template for a single
page of a mixed-content document.

[0003] FIG. 2 shows the example template in FIG. 1 where
two images are selected for display in the image fields.
[0004] FIG. 3A is a high-level diagram showing an
example implementation of automated document composi-
tion using PDM.

[0005] FIG.3Bis ahigh-level diagram showing an example
template library.

[0006] FIGS.4A-D show an example variable template in a
template library.

[0007] FIG. 5 is a high-level illustration of example auto-
mated document composition in server clusters.

[0008] FIG. 6 is a high-level block diagram showing
example hardware that may be implemented for automated
document composition in server clusters.

[0009] FIG. 7 is a flowchart showing example operations
for automated document composition in server clusters.

DETAILED DESCRIPTION

[0010] Automated document composition is a compelling
solution for micro-publishers, and even macro-publishers.
Both benefit by being able to deliver high-quality, personal-
ized publications (e.g., newspapers, books and magazines),
while reducing the time and associated costs for design and
layout. In addition, the publishers do not need to have any
particular level of design expertise, allowing the micro-pub-
lishing revolution to be transferred from being strictly
“online” to more traditional printed publications.

[0011] Mixed-content documents used in both online and
traditional print publications are typically organized to dis-
play a combination of elements that are dimensioned and
arranged to display information to a reader (e.g., text, images,
headers, sidebars), in a coherent, informative, and visually
aesthetic manner. Examples of mixed-content documents
include articles, flyers, business cards, newsletters, website
displays, brochures, single or multi page advertisements,
envelopes, and magazine covers, just to name a few examples.
In order to design a layout for a mixed-content document, a
document designer selects for each page of the document a
number of elements, element dimensions, spacing between

Jun. 19, 2014

elements called “white space,” font size and style for text,
background, colors, and an arrangement of the elements.
[0012] Arranging elements of varying size, number, and
logical relationship onto multiple pages in an aesthetically
pleasing manner can be challenging, because there is no
known universal model for human aesthetic perception of
published documents. Even if the published documents could
be scored on quality, the task of computing the arrangement
that maximizes aesthetic quality is exponential to the number
of pages and is generally regarded as intractable.

[0013] The Probabilistic Document Model (PDM) over-
comes these classical challenges by allowing aesthetics to be
encoded by human graphic designers into elastic templates,
and efficiently computing the best layout while also maxi-
mizing the aesthetic intent. While the computational com-
plexity of the serial PDM is linear in the number of pages and
in content units, the performance is insufficient for interactive
applications, where either a user is expecting a preview before
placing an order, or is expecting to interact with the layout in
a semi-automatic fashion.

[0014] Advances in computing devices have accelerated
the growth and development of software-based document
layout design tools and, as a result, have increased the effi-
ciency with which mixed-content documents can be pro-
duced. A first type of design tool uses a set of gridlines that
can be seen in the document design process but are invisible
to the document reader. The gridlines are used to align ele-
ments on a page, allow for flexibility by enabling a designer to
position elements within a document, and even allow a
designer to extend portions of elements outside of the guide-
lines, depending on how much variation the designer would
like to incorporate into the document layout. A second type of
document layout design tool is a template. Typical design
tools present a document designer with a variety of different
templates to choose from for each page of the document.
[0015] FIG. 1 shows an example of a template 100 for a
single page of a mixed-content document. The template 100
includes two image fields 101 and 102, three text fields 104-
106, and a header field 108. The text, image, and header fields
are separated by white spaces. A white space is a blank region
of a template separating two fields, such as white space 110
separating image field 101 from text field 105. A designer can
select the template 100 from a set of other templates, input
image data to fill the image fields 101 and text data to fill the
text fields 104-106 and the header 108.

[0016] However, many procedures in organizing and deter-
mining an overall layout of an entire document continue to
require numerous tasks that are to be completed by the docu-
ment designer. For example, it is often the case that the
dimensions of template fields are fixed, making it difficult for
document designers to resin images and arrange text to fill
particular fields creating image and text overflows, cropping,
or other unpleasant scaling issues.

[0017] FIG. 2 shows the template 100 where two images,
represented by dashed-line boxes 201 and 202, are selected
for display in the image fields 101 and 102. As shown in the
example of FIG. 2, the images 201 and 202 do not fit appro-
priately within the boundaries of the image fields 101 and
102. With regard to the image 201, a design tool may be
configured to crop the image 201 to fit within the boundaries
of the image field 101 by discarding what it determines as
peripheral portions of the image 201, or the design tool may
attempt to fit the image 201 within the image field 101 by
rescaling the aspect ratio of the image 201, resulting in a

US 2014/0173397 Al

visually displeasing distorted image 201. Because image 202
fits within the boundaries of image field 102 with room to
spare, white spaces 204 and 206 separating the image 202
from the text fields 104 and 106 exceed the size of the white
spaces separating other elements in the template 100 resulting
in a visually distracting uneven distribution of the elements.
The design tool may attempt to correct for this by rescaling
the aspect ratio of the image 202 to fit within the boundaries
of'the image field 102, also resulting in a visually displeasing
distorted image 202.

[0018] The systems and methods described herein use auto-
mated document composition for generating mixed-content
documents. Automated document composition can be used to
transform marked-up raw content into aesthetically-pleasing
documents. Automated document composition may involve
pagination of content, determining relative arrangements of
content blocks and determining physical positions of content
blocks on the pages.

[0019] FIG. 3A is a high-level diagram 300 showing an
example implementation of automated document composi-
tionusing PDM. The content data structure 310 represents the
input to the layout engine. In an example, the content data
structure is an XML file. In a typical magazine example, there
may be a stream of text, a stream of figures, a stream of
sidebars, a stream of pull quotes, a stream of advertisements,
and logical relationships between them. For purposes of’illus-
tration, FIG. 3A shows a stream of text blocks, a stream of
figures, and the logical linkages.

[0020] Intheexample shownin FIG. 3 A, the content 320 is
decoupled from the presentation 325 which allows variation
in the size, number and relationship among content blocks,
and is the input to the automated publishing engine 330.
Adding or deleting elements may be accomplished by addi-
tion or deletion of sub-trees in the XML structure 310. Con-
tent modifications simply amount to changing the content of
an XML leaf-node.

[0021] Each content data structure 310 (e.g., an XML file)
is coupled with a template or document style sheet 340 from
a template library 345. Content blocks within the XML file
310 have attributes that denote type. For example, text blocks
may be tagged as head, subhead, list, pare, caption. The
document style sheet 340 defines the type definitions and the
formatting for these types. Thus the style sheet 340 may
define a head to use Arial bold font with a specified font size,
line spacing, etc. Different style sheets 340 apply different
formatting to the same content data structure 310.

[0022] Itis noted that type definitions may be scoped within
elements, so that two different types of sidebars may have
different text formatting applied to text with a subhead
attribute. The style sheet also defines overall document char-
acteristics such as, margins, bleeds, page dimensions,
spreads, etc. Multiple section of the same document may be
formatted with different style sheets.

[0023] Graphic designers may design a library of variable
templates. An example template library 345 is shown in high-
level in FIG. 38. Having human-developed templates 340a-c
addresses creating an overarching model for human aesthetic
perception. Different styles can be applied to the same tem-
plate via style sheets as discussed above.

[0024] FIGS. 4A-D show an example variable template in
the template library. The template parameters (©’s) represent
white space, figure scale factors, etc. The design process to
crests a template may include content block layout, specifi-

Jun. 19, 2014

cation of dimension (x and y) optimization paths and path
groups, and specification of prior probability distributions for
individual parameters.

[0025] A content block layout is illustrated in FIG. 4A. A
designer may place content rectangles 401-404 on the design
canvas 400. Three types of content blocks are supported in
this example, including title 401, figure 402, and text blocks
403-404. It is noted that text blocks 403-404 represent
streams of text sub-blocks, and may include headings, sub-
headings, list items, etc. The types and formatting of sub-
blocks that go in a text stream are defined in the document
style sheet. Each template has attributes, such as background
color, background image, first page template flag, last page
template flag etc. that allow for common template customi-
zations.

[0026] To specify paths and path groups, the designer may
draw vertical and horizontal lines 405a-c¢ across the page
indicating paths what the layout engine optimizes. Specifica-
tion of a path indicates the designer goal that content blocks
and whitespace along the path conform to specified path
heights (widths). These path lengths may be set to the page
height (width) to encourage the layout engine to produce full
pages with minimized under and overfill. Paths may be
grouped together to indicate that text flow from one path to the
next. FIG. 4B is a design canvas 400B showing an example
path 405a-c¢ and path group 410 specification. Further, con-
tent may be grouped together as a sidebar. FIG. 4C is a design
canvas 400C showing a sidebar grouping 415a-b where the
figure and text stream are grouped together into a sidebar.
Thus FIG. 4B shows two Y paths grouped into a single Y-path
group 410, and FIG. 4C shows two Y paths grouped into two
Y-Path groups 415a-b. The second Y-path group 4155 con-
tains a sidebar grouping. Text is not allowed to flow outside a
sidebar or from one Y-path group to the next.

[0027] When the designer selects variable entry (e.g., inthe
user interface), the figure areas and X and Y whitespaces are
highlighted for parameter specification (e.g., as illustrated by
design canvas 400D in FIG. 4D). The parameters are set to
fixed values inferred from the position on the canvas. The
designer clicks on parameters that are to be variable and
enters a minimum value, a maximum value, a mean value and
a precision value for each desired variable. This process
specifies a “prior” Gaussian distribution for each of the tem-
plate parameters. It is a “prior” Gaussian distribution in the
sense that it is specified before seeing actual content. For
figures, width and height ranges, and a precision value for the
scale factor are specified. The mean value of the scale param-
eter is automatically determined by the layout engine based
on the aspect ratio of en actual image so as to make the figure
as large as possible without violating the specified range
conditions on width and height. Thus the scale parameter of a
figure has a truncated Gaussian distribution with truncation at
the mean. The designer can make aesthetic judgments regard-
ing relative block placement, whitespace distribution, figure
scaling etc. The layout engine strives to respect this designer
“knowledge” as encoded into the prior parameter distribu-
tions.

[0028] The layout engine includes three components. A
parser parses style sheets, templates, and input content into
internal data structures. An inference engine computes the
optimal layouts, given content. A rendering engine renders
the final document.

[0029] There are three parsers, one each for style sheets,
content, and templates. The style sheet parser reads the style

US 2014/0173397 Al

sheet for each content stream and creates a style structure that
includes document style and font styles. The content parser
reads the content stream and creates an array of structures for
figures, text and sidebars respectively.

[0030] The text structure array (also referred to herein as a
“chunk array”) includes information about each independent
“chunk” of text that is to be placed on the page. A single text
block in the content stream may be chunked as a whole if text
cannot flow across columns or pages (e.g., headings and text
within sidebars). However, if the text block is allowed to flow
(e.g., paragraphs and lists), the text is first decomposed into
smaller chunks that are rendered atomically. Each structure in
the chunk array can include an index in the array, chunk
height, whether a column or page break is allowed at the
chunk, the identity of the content block to which the chunk
belongs, the block type and an index into the style array to
access the style to render the chunk. The height of a chunk is
determined by rendering the text chunk at all possible text
widths using the specified style in an off screen rendering
process. In en example, the number of lines and information
regarding the font style and line spacing is used to calculate
the rendered height of a chunk.

[0031] Each figure structure in the figure array encapsulates
the figure properties of an actual figure in the content stream
such as width, height, source filename, caption and the text
block identity of a text block which references the figure.
Figure captions are handled similar to a single text chunk
described above allowing various caption widths based on
where the caption actually occurs in a template. For example,
full width captions span text columns, while column width
captions span a single text column.

[0032] Each content sidebar may appear in any sidebar
template slot (unless explicitly restricted), so the sidebar
array has elements that are themselves arrays with individual
elements describing allocations to different possible sidebar
styles. Each of these structures has a separate figure array and
chunk array for figures and text that appear within a particular
template sidebar.

[0033] The inference engine is part of the layout engine.
Given the content, style sheet, and template structures, the
inference engine solves for a desired layout of the given
content. In en example, the inference engine simultaneously
allocates content to a sequence of templates chosen from the
template library, and solves for template parameters that
allow maximum page fill while incorporating the aesthetic
judgements of the designers encoded in the prior parameter
distributions. The inference engine is based on a framework
referred to as the Probabilistic Document Model (PDM),
which models the creation and generation of arbitrary multi-
page documents.

[0034] A given set of all units of content to be composed
(e.g., images, units of text, and sidebars) is represented by a
finite set ¢ that is a particular sample of content from a random
set C with sample space comprising sets of all possible con-
tent input sets. Text units may be words, sentences, lines of
text, or whole paragraphs. Text units may be words, sen-
tences, lines of text, or whole paragraphs. To use lines of text
as an atomic unit for composition, each paragraph is decom-
posed first into lines of fixed column width. This can be done
if text column widths are known and text is not allowed to
wrap around figures. This method is used in all examples due
to convenience and efficiency.

[0035] The term c' denotes a set comprising all sets of
discrete content allocation possibilities over one or more

Jun. 19, 2014

pages, starting with and including the first page. Content
subsets that do not form valid allocations (e.g., allocations of
non-contiguous lines of text) do not exist in ¢'. If there are 3
lines of text and 1 floating figure to be composed, e.g., c={1;,
L, L, £} while c={{1,, }, {1, L}, {1, L, L}, {fy }, {1, £, }, {1,
L, f;}, {115, 15, £, }} U {0}. It is noted that the specific order
of elements within an allocation set is not necessary, because
{1, 1,, £;} and {1,, f}, 1,} refer to an allocation of the same
content. However an allocation {1, 15, f;} & ¢' means that
lines 1 and 3 cannot be in the same allocation without includ-
ing line 2. In addition, ¢'includes the empty set to allow for the
possibility of a null allocation.

[0036] The index of a page is represented by i=0. C, is a
random set representing the content allocated to pagei. C=i €
¢'is a random set of content allocated to pages with index 0
through i. Hence:

€U oG,

[0037] If C,=C,, |, then C/~0 (i.e., page i has no content
allocated). For convenience of this discussion, C_,=0 and all
pages i=0 have valid content allocations to the previous i-1

pages.

[0038] The probabilistic document model (PDM) is a
probabilistic framework for adaptive document layout that
supports automated generation of paginated documents for
variable content. PDM encodes soft constraints (aesthetic
priors) on properties, such as, whitespace, image dimensions,
and image resealing preferences, and combines all of these
preferences with probabilistic formulations of content allo-
cation and template choice into a unified model According to
PDM, the i page of a probabilistic document may be com-
posed by first sampling random variable T, from a set of
template indices with a number of possible template choices
(representing different relative arrangements of content),
sampling a random vector 6, of template parameters repre-
senting possible edits to the chosen template, and sampling a
random set C, of content representing content allocation to
that page (or “pagination”). Each of these tasks is performed
by sampling from an underlying probability distribution.

[0039] Thus, arandom document can be generated from the
probabilistic document model by using the following sam-
pling process for page i=0 with C_ ~0;

[0040] sample template t, from P ,(T,)
[0041] sample parameters 0, from P (©,lt,)
[0042] sample content c_; from P (C_/lc_; , 0, 1))
€7 CaiCuin1
[0043] The sampling process naturally terminates when the

content runs out. Since this may occur at different random
page counts each time the process is initiated, the document
page count [is itselfa random variable defined by the minimal
page number at which C_,=c. A document V in PDM is thus
defined by a triplet D of random variables representing the
various design choices made in the above equations.

[0044] For a specific content ¢, the probability of producing
document D of I pages via the sampling process described in
this section is simply the product of the probabilities of all
design (conditional) choices made during the sampling pro-
cess. Thus,

US 2014/0173397 Al

I=i
P(D; D = l_[P(Csi | Cuimr, O3, THP(O; | THIP(T))
i=0

[0045] The task of computing the optimal page count and
the optimizing sequences of templates, template parameters,
content allocations that maximize overall document probabil-
ity is referred to herein as the model inference task, which can
be expressed as:

(D, I") = argmaxP(D;)
D,I=1

[0046] The optimal document composition may be com-
puted in two passes. In the forward pass, the following coef-
ficients are recursively computed, for all valid content allo-
cation sets A > B as follows

YA B,T)= mélx[P(ﬁ | 8,0, TPO|T)

Pi(A, B) = max¥(A, B, TIPT), 1= 0,

5

Ti(A) = mBng), (A, B)yri_1(B),iz=1

[0047] In the equations above, T,(A)=D,(A, 0). Computa-
tion of T,(A) depends on ®,(A, B), which in turn depends on
Y(A, B, T). In the backward pass, the coefficients computed
in the forward pass are used to infer the optimal document.
This process is very fast, involving arithmetic and lookups.
The entire process is dynamic programming with the coeffi-
cients T,(A), D,(A, B) and Y(A, B, T) playing the role of
dynamic programming tables. The following discussion
focuses on parallelizing the forward pass of PDM inference,
which is the most computationally intensive part.

[0048] The innermost function Y(A, B, T) can be deter-
mined as a score of how we content in the set A-B is suited for
template T. This function is the maximum of a product of two
terms. The first term P (AIB, ®, T) represents how we content
fills the page and respects figure references, while the second
term PP (fIT) assesses how close, the parameters of a template
are to the designer’s aesthetic preference. Thus the overall
probability (or “score”) is a tradeoff between page fill and a
designer’s aesthetic intent. When there are multiple param-
eters settings that fill the page equally well, the parameters
that maximize the prior (and hence are closest to the template
designer’s desired values) are favored.

[0049] The function ®,(A, B) scores how well content A-B
can be composed onto the i” page, considering all possible
relative arrangements of content (templates) allowed for that
page. P (1) allows the score of certain templates to be
increased, thus increasing the chance that these templates are
used in the final document composition.

[0050] Finally function T,(A) is a pure pagination score of
the allocation A to the first i pages. The recursion T,(A) means
that the pagination score for an allocation A to the first i pages,
T,(A) is equal to the product of the best pagination score over
all possible previous allocations B to the previous (i-1) pages
with the score of the current allocation A-B to the i? page (A,
B).

Jun. 19, 2014

[0051] The PDM process can be used to back out the opti-
mal templates to compose each page of the document com-
position. The way in which these calculations are distributed
among different computational units in a server cluster pro-
cessing environment has to do with the degree of dependency
and synchronization mechanisms. Three types of degrees of
dependency can be distinguished among the computations:
(a) independent computations, (b) dependent computations,
and (c) partially dependent computations.

[0052] An example of independent computations is the
sums involved in the component-wise sum of two vectors (a,
b). The sum of each component, (a,+b,) is unrelated to the sum
the other components. Therefore, it does not matter if the
threads to which each of these sums is assigned can commu-
nicate with each other.

[0053] An example of dependent computations is the cal-
culations involved in obtaining all the values of a recursion,
such as x,,,=f (x,). Proceeding to compute x,, occurs after
computing X,. Hence, all of these computations can be com-
puted by the same thread sequentially. There can be less
benefit in having different threads to compute these different
X,, either inside different thread-blocks or using the same
thread-blocks.

[0054] An example of partially dependent computations is
the comparisons involved in determining the maximum value
over a set of values using parallel reduction, e.g., max, ¢
..32)0,. At aninitial stage, b1 is computed as b, =max(a,, a,),
b2=max(a,, a,3), . . . b;s=max(a, 4, a;,). However, computa-
tions cannot proceed to the next process, e.g., computing
¢,=max{b,, bg}, c,mmax{b,, by}, .. . c,=max{bg, bs}), until
all b’s have been calculated. In short, there is some depen-
dency among the computations, and although at a given level
(e.g., b;s level) each comparison can be done in a separate
thread, all threads should belong to the same block so that
after each process the output can synchronize before going to
the next process in the reduction.

[0055] The automated publishing can be executed in a
server cluster processing environment using these general
notions of dependency. In an example, serial procedures (e.g.,
shown herein as algorithms) may be mapped to multiple
server nodes using a computational paradigm known as
“MAP-REDUCE.” MAP-REDUCE is a software framework
first introduced in the computing industry to support distrib-
uted computing on large data sets on clusters of computers.
MAP-REDUCE is now available on many commercial cloud
computing offerings.

[0056] InaMAP operation, a master node converts an input
“problem” into smaller “sub-problems,” and distributes those
sub-problems to “worker” nodes. The worker node processes
the sub-problem, and passes a result back to a master node. In
the REDUCE operation the master node then takes the results
from all of the sub-problems and combines the results to
obtain a solution to the input problem.

[0057] FIG. 5 is a high-level illustration of example auto-
mated document composition in server clusters. In this
example it can be seen how the computation of ®s may be
distributed to the worker nodes. It can also be seen how the
collected data can be “REDUCED” to compute the rs on the
master node.

[0058] In an example, the sub-problems sent to the server
nodes are the computation of the ®,(A, B) for all:

ABEC

US 2014/0173397 Al

[0059] The set A-B can be effectively bound to represent
the content allocated to a page. This implies that all legal
subsets A and B do not need to considered in building ®,(A,
B), but those that are close enough are considered so that the
content A-B can reasonably be expected to fit on a page. The
computation of (A, B) depends on i since the maximization
over allowed templates for each page in ®@,(A, B) occurs over
sub-libraries that depend on i. However, since in practice the
number of distinct template sub-libraries is quite small (typi-
cally first, last, odd and even page templates are drawn from
distinct libraries), the computation of @ (A, B) for any i can be
reduced to computation of @4, (A, B), @,,. (A, B), D, (A,
B)and @, (A, B). This means that each distributed server
node essentially computes odd (A, B) and even (A, B) for
most content. As a simplification (without loss of generality)
all templates for all pages are sampled from a single template
library, so the subscript can he dropped and @ (A, B) can be
written as®(A, B).

[0060] FIG. 5 shows how the computation of the ®s can be
distributed to the worker nodes, and shows how the collected
data may be reduced to compute the ts on the master node. To
provide intuition about the mapping, each content allocation
set in ¢' is associated with a number. Close numbers represent
close sets, and supersets receive larger numbers than subsets.
Therefore, a grid of possible content allocations (A, B) can be
assumed, as shown in FIG. 1. Because A-B represents the
content allocated to a page, it is bounded by page dimensions.

[0061] Accordingly, relatively few diagonal and neighbor-
ing elements are actually computed (regions designated “X”
in FIG. 5), although each node 510a-c¢ receives a block of
computation (blocks inside boundaries 501-503 without an
“X” designation in FIG. 5). The content allocations lie along
the diagonal of the grid if there is a single possible content
ordering (no floating elements).

[0062] It is noted that the illustration shown in FIG. 5 is
intended to provide a visual representation showing that a
small portion of the entire grid has meaningful allocations for
which (A, B) are computed. In general, for each A the allowed
B’s are in a neighborhood which can be expressed as:

N{d)={B:d(4-B)sf}

[0063] The function d(A-B)returns a vector of the counts of
various page elements in the set A-B. f is a vector that
expresses what is meant to be close by bounding the numbers
of various page elements allowed on a page. For example
f=[100(lines), 2(figures), 1(sidebar)]”. This eliminates an
allocation where d(A-B)=[110(lines), 2(figures), 1(sidebar)]
T

[0064] The master node 520 receives all the computed ®s
from worker nodes 510a-c, and computes the T(A) coeffi-
cients. Master node 520 also performs a sequential backward
pass algorithm (associated with the procedure) to obtain the
final document D*. Pseudo code for the Map and Reduce
functions is shown for an example below by Algorithms 2 and
3. With reference to FIG. 5, instead of a full block decompo-
sition, a row-based decomposition is used for the Map opera-
tion. Thus each Map computes (A, B) for a given A for B’s in
the neighborhood of A. Line 3 in the example Algorithm 1
may be computed efficiently if the distributions are param-
eterized.

Jun. 19, 2014

Algorithm 1 Code to compute ®(A, B) in Map step

1: ®(A,B)=0

2:forall Te Qdo

3: W(A,B,T)=maxg P(AB, 0, T)P(OIT)
4: if ®(A, B) <W(A, B, T)P (T) then

5: DA, B)=P(A,B,T)P(T)

6: endif

7: end for

Algorithm 2 Map(key = A, value = f)

—

:forallBecl:A—BeNj(A) do
Emit key = “I”, value = (A, B, ®(A, B))
: end for

W N

Algorithm 3 Reduce(key = “1”, values = (A, B, ®(A,B)) VA, B

1:7o(A) = Bo(A,),V Aec!

2T (A)=0,VAec!,Viz1

3: forall Ado

4: for all B corresponding to specific A do
5: fori=1toIdo

6: ift,(A) = ®(A, B)r,_ (B) then
7: T(A) = D(A, BT, (B)

8: end if

9: end for

10: end for

11: Emit key=(i,A) value =1; (A)

12: end for

[0065] The information that each computer receives ini-
tially is a data structure containing the layout information of
each piece involved in composing the document. This struc-
ture includes the dimensions of each picture, the layout of
each template, the structure of each side bar and the size of
each line of text, it is noted, however, that this structure does
not include the actual lines of text or images that go into
composing the final document. The structures therefore a
small byte size.

[0066] A simple formula is deduced that shows how the
theoretical total operation time depends on the number of
computers, N, among which the work is distributed. Let the
number of sets A for which to compute (A, B) be N, a
constant. Now assume A is fixed, since there is a restriction on
the maximum content per page, the number of sets B for
which are going to compute (A, B), is bounded by a constant.
In the beginning, the same data structure is broadcast to all of
the nodes. This takes a fixed time tD. After that, each of the N
nodes computes a set of coefficients. This computation is
done in parallel among all nodes, and takes a time propor-
tional to NI N. After all the coefficients are computed, the
coefficients are transmitted to the (N+1)th node. Since there is
one receiving node, and because the amount of information to
be transmitted by each node is proportional to the number of
coefficients, this takes a time that is proportional to Nx(N/
N). After the Reducer receives all the coefficients, this node
computes the T,(A) coefficients and determines the optimal
document.

[0067] FIG. 6 is a high-level block diagram 600 showing
example hardware that may be implemented for automated

US 2014/0173397 Al

document composition. In this example, a computer system
600 is shown that can implement any of the examples of the
automated document composition system 621 that are
described herein. The computer system 600 includes a pro-
cessing unit 710 (CPU), a system memory 620, and a system
bus 630 that couples processing unit 610 to the various com-
ponents of the computer system 600. The processing unit 610
typically includes one or more processors, each of which may
be in the form of any one of various commercially available
processors. The system memory 620 typically includes a read
only memory (ROM) that stores a basic input/output system
(BIOS) that contains start-up routines for the computer sys-
tem 600 and a random access memory (RAM). The system
bus 146 may be a memory bus, a peripheral bus or a local bus,
and may be compatible with any of a variety of bus protocols,
including PCI, VESA, Microchannel, ISA, and EISA. The
computer system 600 also includes a persistent storage
memory 640 (e.g., a hard drive, a floppy drive, a CD ROM
drive, magnetic tape drives, flash memory devices, and digital
video disks) that is connected to the system bus 630 and
contains one or more computer-readable media disks that
provide non-volatile or persistent storage for data, data struc-
tures and computer-executable instructions.

[0068] A user may interact (e.g., enter commands or data
with the computer system 600 using one or more input
devices 650 (e.g., a keyboard, a computer mouse, a micro-
phone, joystick, and touch pad). Information may be pre-
sented through a user interface that is displayed to a user on
the display 660 (implemented by, e.g., a display monitor), that
is controlled by a display controller 665 (implemented by,
e.g., a video graphics card). The computer system 600 also
typically includes peripheral output devices, such as a printer.
One or more remote computers may be connected to the
computer system 600 through a network interface card (NIC)
670.

[0069] As shown in FIG. 6, the system memory 620 also
stores the automated document composition system 621, a
graphics driver 622, and processing information 623 that
includes input data, processing data, and output data.

[0070] The automated document composition system 621
can include discrete data processing components, each of
which may be in the form of any one of various commercially
available data processing chips. In some implementations, the
automated document composition system 621 is embedded in
the hardware of any one of a wide variety of digital and analog
computer devices, including desktop, workstation, and server
computers. In some examples, the automated document com-
position system 621 executes process instructions machine-
readable instructions, such as but not limited to computer
software and firmware) in the process of implementing the
methods that are described herein. These process instruc-
tions, as well as the data generated in the course of their
execution, are stored in one or more computer-readable
media. Storage devices suitable for tangibly embodying these
instructions and data include ail forms of non-volatile com-
puter-readable memory, including, for example, semiconduc-
tor memory devices, such as EPROM, EEPROM, and flash
memory devices, magnetic disks such as internal hard disks
and removable hard disks, magneto-optical disks, DVD-
ROM/RAM, and CD-ROM/RAM.

[0071] FIG. 7 is a flowchart showing example operations
for automated document composition in server clusters.
Operations 700 may be embodied as machine readable
instructions on one or more computer-readable medium.

Jun. 19, 2014

When executed on a processor, the instructions cause a gen-
eral purpose computing device to be programmed as a spe-
cial-purpose machine that implements the described opera-
tions. In an example implementation, the components and
connections depicted in the figures may be used.

[0072] An example of a method of automated document
composition in server clusters may be carried out by program
code stored on non-transient computer-readable medium and
executed by processor(s).

[0073] Inoperation 710, determining a plurality of compo-
sition scores O (A, B), the composition scores each comput-
ing separately on a plurality of worker nodes in the duster.
[0074] Inoperation 720, determining coefficients (t,)(A) at
a master node in the cluster based on the composition scores
(®,) from each of the worker nodes.

[0075] In operation 730, outputting an optimal document
(D*) using the coefficients (T,).

[0076] The operations shown and described herein are pro-
vided to illustrate example implementations, it is noted that
the operations are not limited to the ordering shown. Still
other operations may also be implemented.

[0077] Inan example of further operation, A and B may be
subsets of original content a (C). The composition scores may
be for allocating content (A) to the first i pages in a document,
and allocating content (B) to the first i-1 pages in the docu-
ment. The composition scores may represent how well con-
tent A-B fits the ith page over templates T from a library of
templates used to lay out original content (C).

[0078] Infurtheroperations, all Bs are computed for a given
A by a single worker node.

[0079] Inanother example of further operations, all worker
nodes may receive a data structure including layout informa-
tion of each component for composing the document. The
layout information may include dimensions of each compo-
nent for composing the document. The layout information
may include layout of each template for composing the docu-
ment. The layout information may include structure of each
component for composing the document. The layout infor-
mation may not include actual text or images.

[0080] Itisnoted that the example embodiments shown and
described are provided for purposes of illustration and are not
intended to be limiting. Still other embodiments are also
contemplated.

1. A method of automated document composition using
clusters, comprising:

determining a plurality of composition scores @ (A, B), the

composition scores each computing separately on a plu-
rality of worker nodes in the cluster;

determining coefficients (t,)(A) at a master node in the

duster based on the composition scores (®,) from each of
the worker nodes; and

outputting an optimal document (D*) using the coefficients

(T):

2. The method of claim 1, wherein A and B are subsets of
original content (C).

3. The method of claim 1, wherein the composition scores
are for allocating content (A) to the first i pages in a document,
and allocating content (B) to the first i-1 pages in the docu-
ment.

4. The method of claim 1, wherein the composition scores
represent how well content A-B fits the ith page over tem-
plates T from a library of templates used to lay out original
content (C).

US 2014/0173397 Al

5. The method of claim 1, wherein all Bs are computed for
a given A by a single worker node.

6. The method of claim 1, wherein all worker nodes receive
a data structure including layout information of each compo-
nent for composing the document.

7. The method of claim 6, wherein the layout information
includes dimensions of each component for composing the
document.

8. The method of claim 6, wherein the layout information
includes layout of each template for composing the docu-
ment.

9. The method of claim 6, wherein the layout layout infor-
mation includes structure of each component for composing
the document.

10. The method of claim 6, wherein the layout information
does not include actual text or images.

11. A system comprising a computer readable storage to
store program code executable for automated document com-
position using clusters, the program code comprising instruc-
tions to:

determine a plurality of composition scores (A, B)ona

plurality of worker nodes in the cluster;

determine coefficients (t,)(A) at a master node in the clus-

ter based on the composition scores (¥,) from each of the
worker nodes; and

output an optimal document (D*) using the coefficients

(T):

12. The system of claim 11, wherein the worker nodes are

provided in a cloud computing environment.

Jun. 19, 2014

13. The system of claim 11, wherein serial operations are
mapped to multiple worker nodes using “MAP-REDUCE.”
14. The system of claim 13, wherein in a MAP operation,
the master node converts input into sub-problems and distrib-
utes the subproblems to the worker nodes.
15. The system of claim 14, wherein the worker nodes
process the sub-problem, and return results back to the master
node.
16. The system of claim 15, wherein in a REDUCE opera-
tion the master node combines the results from all of the
worker nodes to determine the coefficients (t,).
17. A system comprising a computer readable storage to
store program code executable by a multi-core processor to:
separately compute a plurality of composition scores ®,(A,
B) on a plurality of worker nodes in a cluster;

compute coefficients (t,)(A) at a master node in the cluster
based on the composition scores (®,) from each of the
worker nodes; and

output an optimal document (D*) using the coefficients

(T):

18. The system of claim 17, wherein the worker nodes
execute “MAP-REDUCE” in a cloud computing environ-
ment.

19. The system of claim 17, wherein all Bs ace computed
for a given A by a single worker node.

20. The system of claim 17, wherein all worker nodes
receive a data structure including layout information of each
component of the document.

#* #* #* #* #*

