a9y United States

US 20220382521A1

a2y Patent Application Publication o) Pub. No.: US 2022/0382521 Al

KRCMARICIC-BARACKOV et al. @3) Pub. Date: Dec. 1, 2022
(54) SYSTEM AND METHOD FOR ENCRYPTION 30) Foreign Application Priority Data
AND DECRYPTION USING LOGIC
SYNTHESIS Oct. 31, 2019 (EP) oo 19206620.7

(71)
(72)

@1
(22)

(86)

Applicant: QUSIA Ltd, Athenaz (Avusy) (CH)

Inventors: Petar KRCMARICIC-BARACKOV,
Belgrad (RS); Antonio D’ AUGENTIL,
Chiasso T1 (CH); Massimo
BAZZICHI, Athenaz (Avusy) (CH)

Appl. No.:
PCT Filed:

PCT No.:

§ 371 (e)(D),
(2) Date:

{ end }

17/773,505

Oct. 30, 2020

PCT/IB2020/060234

Apr. 29, 2022

NO

Publication Classification

(51) Int. CL
GOGF 7/78 (2006.01)
GOGF 7/575 (2006.01)
(52) US.CL
CPC oo GOGF 7/78 (2013.01); GOGF 7/575
(2013.01)
(57) ABSTRACT

Method decrypting and/or encrypting an input message:
providing at least five of sixteen first order logic functions;
and decrypting and/or encrypting the input message based
on the at least five first order logic functions.

{ begin }

X

A
Moy, £, 1,

merement y

2 inerement x

A

A

A

K=(fv) || K

,,,,,,

NQ

NO .
18z fz

Y
IA

increment z

A

YES

3

E:

¢, = ¢+GA(SE,

fiy) = L JL14C

v+1]z)
e Dl

X

SIyl=a, ({y),S[OLSE,y+1])

Patent Application Publication

cipher key k as bytes

Dec. 1,2022 Sheet 1 of 10

/ 101

/ 100

message m as byles

US 2022/0382521 Al

106

107

103
/ | /
~G O CA L Lk iw, ‘1, .
‘L M, Im . I'm BI ,,,,,,,,,,,, | mh
AW,)=K >l T, (A E) 1A M [n- 1)) M,]
/ I
A 104 P -
\ P] :
Crom mk’z'mki»llu.ulmi ,M’} Imﬂ 'mﬂl f,n,E
» P(M, (n], M [p, +P(&[n -1]}+ C(K[n])])
_________________________ T TUEIp—y
» ED(K) B ELAE LM, mym ",
- v\ R{rfn,-1] XOR K[p]).M, fn,),L,(ED,[n]}

105

108

............

» P fn], M [PKfn -1])+ C(Kfn)]}

110

T

S
=T

T

-

ciphertext ¢ as bytes

Fig. 1

200

Patent Application Publication Dec. 1,2022 Sheet 2 of 10 US 2022/0382521 A1

Index*w"| 0 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15
Funciions offirstorder . c = & %
3 & = g =] o = e
logic (generally accept e 2 8 5 £ o g e = g
ed names), of the form £ 8 Zc § 3 8 £5 8 E 8 4§ e 5 ¢
- £ = @2 § =G P= & 5 g E L 3 oo =2 O
sipl. p2, Ly =1 T 2 EEE 2§ 28 8 B2 E g 0F g 9 =
o el 5 £ ae ¢ 5 2 52 8 8 g8 5 2
£ 5 88 4 I ¢ 5359 2 g g2 & O %&£ 85 g
5 552% § Ry 5 5 83 58 8 ¢ 58w g
nl 3 2 GES 2 B WA 2 O B RO E % CEES #
Proposition”p/ " possé . nwWarrorryrJyv vy v oy v rT.oT
ble truth values B L O L L
%-uFm Fumﬁuf“f “F“MF_F__.FnWFnEi ;Fw“?': m?i E:_“F“
F F F F F F F F F F F F F F F F
Proposition p2” awrorotrrryx vy voyoyorv ot oy tor. T
correspondingpossible 2| F F ¥ F F F ¥ F F F F F F F F F
fruth values O A L O L O L U R A L L
4 F F F F F ¥ ¥ F F F F ¥ F F F F
Truth value *7” as fVF F F F F F F F 7T 7T T T T T T T
deduced by appiying 2l FPFPEFPIT T T YRR EFT T T T
j(f:j (8).p2(n). L{w))= 3] F F Y T F F T T F F T T F F T T
) O O U . S L .
’ 4 ¢ T ¥ T F T ¥ T ¢ T F T F T F T
Shorthand reference = £ F & & O o 0 0 x = & F & g ou
= = = = =
name for each func e 8§ 0o 2z =2 g z zZ g 2 85 © © 2
tion/action = =
Fig. 2
s(pl(s’), p2,)L(%9)=s"
s(pl(s), P20)L,
!
s(p1(s),p20)LAY)S, |
spl).p2¢)LL),
& s - ¥
5 71 wnanp (71 cip 7] xor [7] anp [5
? 4 f4 f4 t4 I

: X N s (5087 L),
I 3 / ’
3 ESZZ(S L J L7,

|
1 (0 FL(19),
s fo i@y, S

Fig. 3

Patent Application Publication Dec. 1,2022 Sheet 3 of 10 US 2022/0382521 A1

1i& 03 4 518178 4 st 13
R EFAN
10 . N N

3

Fig. 4

O
1
1
1

LD -
T LI b e
- L £
b £ £ b
S LD
C e T

-
W.q&
i L% LY

2+ 6 by B 2+ 6 G+ 8 B T+ 1 4+ 4+
Fig. 5

Pole P,

3

ingex §

M Sile it 3T ie J0 10 11 tg 13 1 180 o
fndex ¢ incdex 1D index 20

m Sle|f 3{7ie oo it le (s i1 {5 jo o
index ¢ fecdey {0 index 20

Fig. 6

Patent Application Publication Dec. 1,2022 Sheet 4 of 10 US 2022/0382521 A1

A 5 { ¢ ¢ @ {3 g g @ 3 1 ¥ 1 3 4 1 1
Sfnary symbof 0 0 O it 1 1 1 1 Q o 4] g 1 g 3 4
o G & 1 4 iT} 8 1 i g 0 1 1 g G 1 1
Q 4 O 1 0 3 4] i g 1 g 1 g 1 g 1
é Y 1 e 3 4 8 & 7 S g 18 1 13 13 14 18
Fig. 7
-~ % . A 9 o SOy T o4O oo ow
= % © z = :‘% £ § % § 8 @ © &
o PNy b
“?;‘..zcss'f'fz":rssz’
v 0 1 2 3 4 5 8 7 & 5 16 11 12 13 14 18
Fig. 8
bit 192 bit 23% Bit 246 it 367
C, G,
1o e
Bit§ bit 63 bit 127 Bt 191 Bit 311
} !] ;
k : : , :
I W'z
:'iifj:,.w Bit 368 bit 517
4, L R,
bit & bit 63 bit 64 bit 127 bit 128 bit 191

Fig. 9

US 2022/0382521 Al

Dec. 1,2022 Sheet 5 of 10

Patent Application Publication

e w2 -
- R) o
=T = =
ol BN S - oy
ol ol ! & o
Lo e o] @
=~ o i)
o e (3 o =
LD e @ o~
e LD W3 =3
Ll el o B o g m
o e e e 0 b4
RaRE e B B e o o
[L i
Crow £ < wy

2 ™
Y o

10
1

11
1

o)
i -
-

e g
o o
£)

P

apm

o2 13 14 18

10

8

w

%

WoY
o
ot
(NN
N
“o

HONX
HON
A1l
ONy
T

i

Y o R o ING
& e O e < i

"3

o 2

. e B . J,H

w0 R = E

>

Fig. 11

N N .

WOTHOX] T | HOX-WoW |2 | 2
HONXWOT| 2 | Womewot | 8 | 2
HONKCAN | 2 wox-dne | 1 2
& 1 R R N

HOMXWIE | & | WOTHONX | % | @
ANHONY | 2 Ho-oN | & o
woron | = dnoun [o | E
WOTHONK | | WO | o 2
SOXWOH | & | WorHOX | T
HOXON | & | dNHONK | Z | =
X o HOKWOT | | e~
ANWOE] & | WOTON | T | ©
uosxon | 2 ANHOX | T | e
dNUOX | T | domtoN | £ | W
POTINOY | WoTHodY | 5 oo
wodn | S| uoNddN | 3|

i 5

dMON | AN | = | e

shorthand refersnce

R

L {as poinierfo il }

sharthand refersnce

B

L {as pointer 0 L}

Fig. 12

Patent Application Publication Dec. 1,2022 Sheet 6 of 10 US 2022/0382521 A1

{ ¢ 1 0 14 &8 2 0 4 7 2 0 @
e
O {3 1 2 3 4 5 8 7 8 g 10 H
C
o interpeted 3 % Q. Q. 0 £ 2. g %‘: o & 3.
i e - O L £ ™ .
thro Ségfg?g; . % © § N ©oow = X L=
g =
than R{xﬁ
Fig. 13
o4 03 8 111 o9 ¥ o1 o2 2 5 4 W4 2 8 1
el 8 1 8 W7 O3 4 0t 8 1 4 v T 131 3 2
102 W18 5 4 3 7 1 2 ¥ F 1 5% 18 44 3 |
'8 & 1 2 3 4 5 B ¥ 8 g 10 1 12 13 14 1

Fig. 14

Patent Application Publication Dec. 1,2022 Sheet 7 of 10 US 2022/0382521 A1

{ begin }

X

o £, LK)

ety

A4

s, £ AF +1)2]

kA

(end X is x <} ?

YES

increment x

E-Y

A

S[0=1,[x-1]
S[1SF=L,[x]
y=c =1

NO

v
s
i

<
A

increment v

,,,,,,

E-N

NGO .
mcrement z

K=(fv) || K

Y
et
72l
I
IA

Iaur)

A

N

YES

c,=¢ +Gk(A‘}k(S I -v+1])2z)

o
£

fly) = Lo[L"(C e)]

A

SHf,-yJ=a” (fy),S[OLS[f -y+1])

Fig. 15

Patent Application Publication Dec. 1,2022 Sheet 8 of 10 US 2022/0382521 A1

3 TR

" [N S -
£ wnd Ty ra— T S

VRS PPl {KIY

sy 07 i
L
e o (ke Posl oy R A
by :: ‘
{ inerernent ¥

N
¥

swap M A} with M{m ki

e R ¢ s pncromon LRy

Fig. 16

Patent Application Publication Dec. 1,2022 Sheet 9 of 10 US 2022/0382521 A1

n 1 2 3 4 5

1 1 1 1 0

Kind 1 o 0 1 o

9 0 1 1 g

0 1 o 1 1

1 1 Q 1 1

Ry_y XOR K{n] 0 1 1 o 1

0 1 0 8 g

1 1 1 1 1

‘ 1 0 g 1

me[n} 8 0 1 a

0 it i 0 1

1 1 1 0

EDR,: Sl [NO:NP] [ROM;LCM] [LEMXOR] [ROMGNP] [LOMXNOR]
g 1 8 0 1
g 1 i 1 1 1
=¥ .

1 0 8 8 o

8 0 1 1 1

o ¥ 1 0 1 1

] i 1 1 1 1 0
R'ﬂ, 4

@ 1 1 1 8 0

1 0 H Y 8 0

Fig. 17

Patent Application Publication Dec. 1,2022 Sheet 10 of 10 US 2022/0382521 Al

n 1 2 3 4 5
1 1 1 1 @
Kinj 1 0 0 1 o
0 0 1 1 o
0] 0 1 1
1 1 g 1 1
R, XOR K[n] g 1 1 0 1
g 1 g 0 0
1 i 1 1 1
‘ 1 1 8 o 1
Mg {11 0 1 i 1 o
0 B 1 o 1
1 D 1 1 8
EDSYR, S, {NQ:NF] [ROMLOM] [LOMXOR] [NQLOM] [LCM;XNOE]
0 1 0 0 1
1 1 1 1 1
R 1 8 0 o ¢
o o 1 1 1
0 g 1 o 1 1
R, 1 1 1 1 1 0
o 1 1 1 o 8
1 0 1 g 0 g

Fig. 18

US 2022/0382521 Al

SYSTEM AND METHOD FOR ENCRYPTION
AND DECRYPTION USING LOGIC
SYNTHESIS

REFERENCE DATA

[0001] The present application is a national phase of
international patent application PCT/IB2020/060234 of Oct.
30, 2020, which claims priority of European patent appli-
cation EP19206620.7 of Oct. 31, 2019.

FIELD OF THE INVENTION

[0002] The present invention relates generally to encryp-
tion and decryption, and more particularly to improving the
security level of existing standard encryption algorithm
while optionally adding features usually found in so called
Functional Encryption algorithms. The invention proposes a
novel cipher technique using logic to generate a cipher
algorithm dependent on the encryption key.

DESCRIPTION OF THE PRIOR ART

[0003] Encryption and Decryption

[0004] Encryption as traditionally implemented is gener-
ally a method of protecting the confidentiality of data. As
such, encryption is also used to protect data “at-rest”, as
recorded on digital media, and to protect access to data, and
as encrypted digital access protocol messages, and to con-
fidentially exchanging messages “in-movement” or “over-
the-wire” between at least two parties.

[0005] Other goals and uses for encryption other than
ensuring privacy or confidentiality of communications
include, but are not limited to, data integrity insurance,
entity authentication or identification, message authentica-
tion, data origin authentication, digital signatures, authori-
zation conveyance, authorization validation, access control,
certification or endorsement of information by trusted enti-
ties, verifiable timestamping of events and information,
witnessing and verifying the creation or existence of infor-
mation by an entity other than the creator, receipts of
reception, acknowledgements and confirmations of service
execution, ownership and other ways of providing entities
with social and legal rights of use or transfer to others,
anonymity and partial identity concealment through some
processes, non-repudiation and prevention of denial of pre-
vious commitments or actions, revocations of certifications
or authorisations. The “Handbook of Applied Cryptogra-
phy” by A. Menezes, P. van Oorschot and S. Vanstone, 1997,
CRC Press is a source of background information on these
applications.

[0006] Encryption devices, systems and methods trans-
form a data or message, called the “plaintext”, arranged as
a sequence of letters, numbers and symbols, into another
such sequence which is unintelligible, the “ciphertext”. If
the plaintext has to be separated into segments to execute the
encryption algorithm, each such segments is called a
“block”. If the plaintext is treated symbol by symbol, the
plaintext is alternatively called a “stream”. The transforma-
tion consists of a device, system or method executing a
sequence of instructions over each block, repeated one or
more times over each block. The instruction sequence for the
system, device or method and how it is applied to transform
the data, including a specified number of repetitions called
“rounds”, is called the “encryption algorithm”. To make the
message intelligible again, the same or another device or

Dec. 1, 2022

method must be executing the inverse or opposite transfor-
mations and algorithms with the same key or another key on
the transformed, called the “decryption algorithm”, on the
ciphertext. In addition to the data or message itself, the
sequence of instructions or functions in the algorithm gen-
erally uses at least one or more mathematically linked
strings of number of letters, kept secret, called the “key-
word”, “cipher key” or simply “key”, as a mandatory
parameter; other numbers or letter sequences, whose use is
mandatory or not, may also be used as additional param-
eters.

[0007] The two main types of techniques for transforming
plaintexts into ciphertexts are the substitution of the plain-
texts letters, numbers and other symbols by other symbols
according to a given set of rules, and the transposition of
letters, numbers and other symbols within the message
according to another set of rules, as a well as a combination
of these two types of mechanisms. These rules are, in effect,
the encryption algorithm, while the inverse set of substitu-
tions and permutations are the decryption algorithm. Sub-
stitution is meant to confuse third parties, transposition to
diffuse the confusing information.

[0008] A great example of a substitution cipher is the
classic two thousand year old “Caesar Cipher”, where a each
letter in the message is replaced by a letter for example a
given number of letters “down” in the alphabet (FIG. 1), a
classic variant of which is the ROT13 cipher, substituting
with a letter 13 letters down the Latin alphabet.

[0009] Modern ciphers use much more sophisticated con-
structions including mathematical substitution and transpo-
sition rules exemplified above, including combination
thereof, so called product ciphers, or substitution-permuta-
tion networks.

[0010] Cipher constructions are often applied multiple
times to blocks of plaintext. Each of these repeated appli-
cations sequences of the cipher construction are called loops.
A plaintext block can be as short as a single byte (or 8 bits)
in the case of some stream ciphers, or as large as several
kilobytes, in some other more exotic ciphers. These loops
usually take in a block of the plaintext input, combines it
mathematically or logically with some of the cipher’s
parameters to set up a data structure called the “state” of the
cipher, in which the loops output their results. This state is
then modified by a given set of instructions, which actually
embody the instructions which can render a ciphertext very
difficult to decrypt without the key. Some ciphers also have
one or more inner loops, applied within a higher-level loop,
to each block, moditying the “state”. The specification of the
encryption or decryption sequence, including loops, and
their output format, is the definition of the algorithm. The
innermost loop, or function, may be applied a standard
number of times—i.e. so called “rounds” of the inner “round
function”, in which case the cipher is called a “Feistel”
cipher.

[0011] The encryption and decryption algorithms, together
with the cipher key or keys, as well as any other parameters
and the technical specifications for the implementation of all
of the aforementioned elements, such as the standard length
of a block are together called a “cipher”.

[0012] Cipher Types
[0013] Symmetric Ciphers
[0014] Ciphers which use the same key for both the

encryption and decryption algorithms are called “symmet-
ric” ciphers. With such ciphers, if two parties exchange

US 2022/0382521 Al

messages or data, both the emitter of the message as well as
its recipient must use the exact same cipher and key, and any
other parameters to encrypt and decrypt the message. Mes-
sages are kept secret in symmetric ciphers as long as both
parties keep the at least the secret key secret, this means both
parties must exchange keys securely and confidentially
before communicating for the message or data to be kept
confidential after their transmission. Symmetric ciphers gen-
erally are very efficient from the point of view of compu-
tational efficiency, i.e. the number of computations neces-
sary to achieve the desired result is relatively low. As such,
they are often used for applications where high transmission
performances are necessary: data transfer, video transfers,
video communications, etc. Examples of symmetric ciphers
used commercially and in the industry around the world to
date include the standard American Encryption Standard
AES (originally called Rijndael), Blowfish, CASTS, the
Russian Kuznyechik standard, RC4, the standard Digital
Encryption Standard DES, 3DES, Skipjack, Safer+/++ (used
in short-range Bluetooth wireless communications), and
IDEA. These contemporary commercial symmetric ciphers
often use variants of or constructions using substitution-
permutation networks (AES, Kuznyechik, for example), or
Feistel ciphers (DES, 3DES).

[0015] Symmetric Stream Ciphers

[0016] Symmetric ciphers operating on segments of plain-
text of a given length using a given key used as a parameter
for a looping algorithm are of the type called “block
ciphers”. Ciphers operating on strings of symbols of arbi-
trary length, whereas the key generates a pseudo-random
deterministic sequence combined with the plaintext are
called “stream ciphers”. These ciphers usually apply the
cipher construction functions to a part of the plaintext
sometimes as small as a single character and then reapply the
same construction to the next part. Well-designed stream
ciphers are in effect functions with an extremely long period.
Such ciphers sometime output a “state” data structure which
is re-used for the following loop applications. If the state is
combined with previously computed parts of the ciphertext,
the cipher is called a “self-synchronizing stream cipher”. A
popular construction with extremely good performance
characteristics for stream ciphers are so called “linear shift
registers”. Examples of symmetric ciphers used commer-
cially and in the industry around the world to date include
the AS series, used in GSM communication protocols, or the
Salsa20 family, used in the web HTTPS protocol.

[0017] Asymmetric Ciphers

[0018] Ciphers which use a different key pair for respec-
tively encryption and decryption are called “asymmetric
ciphers” or “public key ciphers”. To use public key ciphers,
both parties each have a pair of mathematically linked keys,
one called the “public key”, which can be freely shared, and
the other the “private key”, which is supposed to be kept
secret.

[0019] To send a message confidentially, the emitter uses
the recipient’s public key encrypt, and which only the
recipient can decrypt using his private key. It is generally
posited that it is mathematically impossible to decrypt the
message with the public key. As such, all private keys are
kept exclusively secret.

[0020] The private and public key are mathematically
linked through “trapdoor one-way functions”, which are
mathematical constructions easy to compute in one direc-
tion, private to public for example, and supposed to be

Dec. 1, 2022

impossible to compute the other direction, public to pri-
vate—so called “computationally infeasible”. Breaking or
solving an asymmetric cipher is thus equivalent to finding an
“easy” solution or a short algorithm to the public to private
key inverse function problem.

[0021] Example of such functions include integer factor-
ization problems, discrete logarithm problem or the subset
sum problem. The main advantage of asymmetric ciphers is
that, as long as nobody finds a practical solution to invert the
trapdoor one-way function, these algorithms remain secure
without need for preliminary confidential exchange of secret
keys—which is a necessity for symmetric ciphers.

[0022] Asymmetric ciphers are however much more com-
plex to put into practice, as their existence gives rise, by
nature, to the need for a way to certify identities and the
linked public keys. Contemporary asymmetric ciphers in
wide commercial or industrial use include the RSA cipher,
the standard Digital Signature Algorithm, the Diffie-Hell-
man and elliptic curve Diffie-Hellman key agreement pro-
tocols.

[0023] The main disadvantage of asymmetric ciphers is
that if a mathematical or operational weakness exists within
the trapdoor function, the entire cipher becomes solvable. In
addition, as used in various communication and communi-
cation security protocols, such ciphers are very vulnerable to
so-called “man-in-the-middle” attacks. Such attacks happen
when, at the moment of key negotiation, the attacker sub-
stitutes itself to both parties relative to each other, which
thereafter do not know that their communication and keys
are being decrypted and re-encrypted by the attacker both
ways, which the attacker can then use to spoof, masquerade,
decrypt, and forge transactions without limit. The solution to
that problem is to us a so-called public-key infrastructure
(PKI)— a set of roles, policies, and procedures needed to
create, manage, distribute, use, store & revoke digital cer-
tificates and manage public-key encryption. These PKI
schemes often require a third-party certificate and/or vali-
dation authority, which themselves are subject to their own
set of security and cryptanalysis issues.

[0024] Key and Parameter Derivation Algorithmically
[0025] Cipher designers specify the keys to be as short as
possible to be practical for commercial and industrial use. In
practice, commercial programs architects cannot realisti-
cally require their users to remember long alphanumeric
suites—passwords are used instead. Sometimes, such pass-
words also need to be verified against a stored, encrypted
keys or within key agreement protocols. In other cases, more
than one parameter is mathematically required to achieve
sufficient security. A solution which is often chosen is to
compute, from a password or single key, all of the variables
required by the cipher, i.e. to “derive” said variables, from
a common secret value.

[0026] The algorithms to achieve are called “key deriva-
tion functions” (KDF), which are used to compute or expand
one or more secret keys from a secret value such as a master
key, a password, or a passphrase, using a pseudorandom
function. The derived values may be longer than the original
master key. KDFs can also be used to obtain keys of a
required format, for example after completing an asymmet-
ric key exchange to get a symmetric key. Used with a
one-use random value, a KDF can also be used to create
longer, more random, stronger keys. Current KDF’s have
very wide industrial and commercial due to their use in both
password verification through hashing and as a parameter

US 2022/0382521 Al

derivation tool. Such algorithm use includes berypt, scrypt,
HKDF, PBKDF2, Argon 2. Due to their use as key verifi-
cation tools in password hashing, they are very often the
target of cryptanalysis.

[0027] Cipher Modes

[0028] A great number of ciphers, mostly symmetric
ciphers, have weaknesses against so-called “known-plain-
text attack”. The attacker hypothesises a location for a given
text and tries to restructure from the ciphertext the rest of the
key. A notable use of that technique was in breaking the
German Enigma code during World War I1. A similar type of
attack, more adapted to asymmetric ciphers, is the “chosen-
plaintext attack”, wherein the attacker finds an operational
way able to get a chose text encrypted and transmitted by
either party. As the encryption algorithm is supposed known,
the key is reconstructed. A major goal for ciphers designers,
as set by Claude Shannon, father of information theory, is for
ciphers to achieve so-called “semantic security”, or cipher-
text indistinguishability under chosen-plaintext attack, in
which no structure can be extracted from the ciphertext,
even if some plaintext is known.

[0029] To keep messages confidential, the cipher designer
must ensure that several ciphertexts from the same plaintext
are different, thus diminishing the information recoverable
by the cryptanalysts. Something must be added to ciphers to
add variability to blocks of symmetric ciphers. The key is
insufficient. This is achieved by adding parameters, some-
times called initialisation vectors, whose value and potential
rules of change are inserted to the cipher algorithm. There
are several types of techniques invented through time, so
called “modes™ in cryptologic jargon, to add such param-
eters or vectors: Electronic Codebook (ECB), Cipher Block
Chaining (CBC), Propagating CBC (PCBC), Cipher Feed-
back (CFB), Output Feedback (OFB). These modes also
sometime also need to validate the correctness of the
received message blocks—its reception without errors—
without which they do not work, which is why they integrate
error correcting codes.

[0030] Most of these modes have proven to have signifi-
cant weaknesses, which gave rise to new modes which were
able to insure not only confidentiality but also the authen-
ticity of their origin through with the addition of message
authentication codes after each block— which by definition
also ensure that error detection is automatic. Encryption
modes standardized by ISO include for example OCB 2.0,
Key Wrap, CCM, EAX, Encrypt-then-MAC (EtM), and
Galois counter Mode (GCM).

[0031] The AES-GCM version of AES is for example
currently supposed to be the most secure variant of the
algorithm, which is why it was included in the HT'TPS suite
of cipher protocols. However, as the main cipher has become
difficult to attach, the authentication tags themselves have
now become the main target of attack for cryptanalysis, with
particular attention given to the mode’s initial values.
[0032] Keyed Message Authentication Function

[0033] In cryptography, an HMAC (sometimes expanded
as either keyed-hash message authentication code or hash-
based message authentication code) is a specific type of
message authentication code (MAC) involving a crypto-
graphic hash function and a secret cryptographic key.
[0034] A cryptographic hash function is a mathematical
algorithm mapping a binary sequence of arbitrary size (often
called the “message™) to a binary string of a fixed size (the
“hash value”, “hash”, or “message digest”) and is a one way,

Dec. 1, 2022

that is, a function which is practically infeasible to invert.
Cryptographic hash functions have many information-secu-
rity applications, notably in digital signatures, message
authentication codes (MACs), and other forms of authenti-
cation.

[0035] Message authentication codes may be used to
simultaneously verity both the data integrity and the authen-
tication of a message, as with any MAC. The cryptographic
strength of the Keyed message authentication function
depends upon the cryptographic strength of the underlying
hash function, the size of its hash output, and the size and
quality of the key. Keyed message authentication functions
do not encrypt the message. Instead, the message (encrypted
or not) must be sent alongside the Keyed message authen-
tication function hash. Parties with the secret key will hash
the message again themselves, and if it is authentic, the
received and computed hashes will match.

[0036] Examples of keyed message authentication func-
tion and codes in wide use include HMAC-SHA256 or
HMAC-SHA3, as part of both IPSec internet protocol and
TLS web cipher suite.

[0037]

[0038] Advances in the field of quantum physics and
quantum computing will probably allow for the creation of
all-purpose quantum computers. At the time of this writing,
it is forecasted that before 2030, such computers will be able
to break within very reasonable time-frames what were
previously thought to be mathematical primitive construc-
tions impervious to attack as used in commercial and
industrial cryptography. Fibre optic networks, and associ-
ated photonic quantum encryption equipment are cost pro-
hibitive to install everywhere. Their usage is limited to small
secure local networks. They will not replace the existing
copper-wire based networks deployed the world over in the
near future. Meanwhile, to attack current encryption algo-
rithms, L. K. Grover proposed a quantum search algorithm
using known plaintexts in 1996, which quadratically dimin-
ishes the key search time for symmetric ciphers. Peter Shor
has shown in 1999 already that quantum computers can
factorize integers in linear time, rendering traditional public
key cryptography algorithms completely ineffective to what
is now called “Shor’s Factoring Algorithm”. New solutions
which are not based on physical phenomena were necessary.

[0039] A variety of alternative solution have been sought
by researchers to build ciphers thought impervious to crypt-
analysis with quantum computers: ciphers combining linear
algebra over lattices with “learning-with-errors™ algorithms,
fundamentally are relying on the shortest or closest vector
linear algebra problems with a unknown noisy function;
code-based ciphers using error correcting Goppa codes;
multivariate polynomials cryptography rely on the difficulty
of solving such algorithm over finite fields; singular isogeny
based ciphers have keys which describe transformation of
singular elliptic curves into other such curves, onto whose
values the plaintext is substituted. All these problems are
currently though to be unsolvable using currently known
mathematical techniques, or are based the current assump-
tion that these problems cannot be solved efficiently in a
practical time-frame by any kind of computer, classical or
quantum. The government of the U.S.A. has for example
started a program to standardize Post Quantum Cryptogra-
phy, which is currently in its second round of selection. The
17 currently chosen candidates use problems based on

Quantum Resistant Ciphers

US 2022/0382521 Al

lattices, codes, hashes, multivariate linear algebra, super
singular elliptic curve isogeny and zero-knowledge proofs.
[0040] However, no such cipher provides a practical solu-
tion across all necessary usage scenarios. Lattice ciphers
have for example large keys impractical for Internet of
Things applications—i.e. generally than 4800 bits, but tech-
niques to reduces these times have very long decryption
times. Some code-based ciphers key sizes are too large for
some applications: around 1 megabyte for public keys, while
private keys are 11 kilobytes long and reducing key length
makes these algorithms vulnerable to attacks. Only ECDH
has an acceptable length of 32 bytes. A few multi-variate
polynomial schemes have been broken. None of the above-
mentioned ciphers support perfect forward secrecy—i.e.
prevent that the compromise of one message or transmission
session leading to compromise other such session. Isogeny-
based ciphers, such as SIDH, while having short key sizes of
330 bytes, and supporting perfect forward secrecy, are
however extremely slow: decryption necessitate 11-13 mil-
liseconds on latest generation general purpose microproces-
sors. Memory usage can be extremely high (minimum 8406
bytes) for some algorithms, precluding their usage on low-
end microcontrollers for Internet-of-Things applications. “A
usability study of post-quantum algorithms” thesis by Mar-
cus Kindberg at Lund University, Sweden, 2017 analyses
and discuss these themes. These wide variety of practical
usability issues have precluded any particular one to be used
in commercial and industrial projects.

[0041] Logic Operators

[0042] Ciphers have historically been built using difficult
numeric or polynomial problems, which usually lent them-
selves well to transformation into simple reliable linear
mechanical, electromechanical or electronic circuits. Logic
has generally been applied used in applying only the most
basic Boolean logic algebra functions of binary addition (i.e.
AND), binary negation (i.e. NOT), and exclusive and inclu-
sive disjunction (i.e. XOR and OR) to sequences of bits,
which it maps directly to basic electronic logic gates.
Algorithms using that reduced logic can be implemented in
relatively simple chips, and compact die sizes.

[0043] First order logic, also known as first order predicate
logic or first-order predicate calculus, has as sixteen different
canonically inference rules in its “propositional calculus”
subset. Such rules, also called “logic operators™, or “logic
connectives” are formalised in Boolean algebra (described
in more detail later). Full first order logic is used in other
fields, but not in cryptography.

BRIEF SUMMARY OF THE INVENTION

[0044] It is the object of the present invention to find a
cipher which can be computed efficiently, and which is
quantum resistant.

[0045] This is solved by a method, apparatus or computer
program according to the independent claims.

[0046] The use of more than the basic two or three logic
operators in cipher allows a very strong protection against
attacks, even when coming from quantum computers, and is
on the other side very efficient to compute as they depend
not on complex mathematical functions. Quantum comput-
ers are very good in solving algebraic problems, particularly
when such problems are presented in polynomial form. All
ciphers of the state of the art are built on algebraic functions
and are thus vulnerable against quantum computer attacks.
By building a cipher based on a set of first order logic

Dec. 1, 2022

functions allows to construct a cipher without using algebra
and makes such ciphers very resistant against quantum
computers.

[0047] This is solved by a method, apparatus or computer
program in which a succession function for counting over
elements is defined with at least two successors for one,
more or each element, wherein the succession function is
used for encrypting and/or decrypting an input message.
[0048] Having a succession function with two successors
for an element, generated with a non-numeric symbolic
logic generator and combined with contextual elements from
the message, gives a non-algebraic succession function,
which makes such ciphers very resistant against quantum
computers. On the other side, the computation of such
succession functions is fast.

[0049] This is solved further by a method, apparatus,
computer program for encrypting and/or decrypting an input
message using one or a combination of the subsequent
embodiments.

[0050] The subsequent embodiments
embodiments of the inventive solutions.
[0051] In one embodiment, at least five first order logic
function from the existing sixteen first order logic functions
are used for encrypting and/or decrypting an input message.
In one embodiment, the sixteen first order logic functions
comprise the following first order logic functions: Contra-
diction (FAL), Non-Disjunction (NOR), Converse Non-
Implication (CNI), Left Projection (NP), Non-Implication
(NIP), Right Projection (NQ), Exclusive Disjunction
(XOR), Inclusive Disjunction (OR), Conjunction (AND),
Equivalence (XNOR), Right Complement (RCM, Converse
Implication (CIP), Left Complement (LCM), Implication
(IP), Non-Conjunction (NAND) and Affirmation (TRUE).
Importantly the inversion (NOT) is not a first order logic
function. The first order logic functions can be realised by a
combination of a subset of the sixteen first order logic
functions, preferably a subset of at least six of the sixteen
first order logic functions. The subset comprises preferably
LCM, RCM, XOR, XNOR, NQ, NP. In one embodiment,
each first order logic function defines four different results or
truth values for the four different combinations of any two
binary input values (first and second proposition) resulting
in four different resulting binary output values (resulting
truth values). Each first order logic function can be applied
in three directions, a first direction with the first and second
proposition as input values resulting in the corresponding
resulting truth value, a second direction with the first propo-
sition and the resulting truth value as input and the second
proposition as output and a third direction, with the second
proposition and the resulting truth value as input and the first
proposition as output. In one embodiment, the sixteen or the
at least six different first order logic functions define each a
different set of four results for the four different combina-
tions of the two binary input values. In one embodiment, at
least six, preferably at least seven, preferably at least eight,
preferably nine, preferably, at least ten, preferably at least
eleven, preferably at least twelve, preferably at least thirteen,
preferably at least fourteen, preferably at least fifteen of the
sixteen first order logic functions are provided, and the input
message is encrypted and/or decrypted based on the at least
six, preferably at least seven, preferably at least eight,
preferably nine, preferably, at least ten, preferably at least
eleven, preferably at least twelve, preferably at least thirteen,
preferably at least fourteen, preferably at least fifteen first

show further

US 2022/0382521 Al

order logic functions. In one embodiment, all sixteen first
order logic functions are provided, and the input message is
encrypted and/or decrypted based on the sixteen first order
logic functions.

[0052] In one embodiment, a residual truth value is asso-
ciated to each of the at least six first order logic functions.
In one embodiment, said residual truth value is computed by
another first order logic function associated in a pair with the
first. In one embodiment, the residual truth value of each first
order logic function comprises at least sixteen residual truth
values. In one embodiment, each first order logic function
defines four residual truth values computed by a first order
logic function associated in a pair with the first, for the four
different combinations of two binary input values (first and
second proposition). Each of the at least six first order logic
functions can thus be applied in at least sixteen directions.
The application of the first direction of the first function of
each first order logic function pair with the first and second
proposition as input values results in the corresponding
resulting truth value and the application of the first direction
of the second function of each second function in the
corresponding paired function results in a corresponding
residual truth value. The application of one of the of each
first order logic function pair with the truth value and the
residual truth value as input and the first proposition and the
second proposition results in a pair of truth and residual truth
values as output. In one embodiment, the four residual truth
values resulting from the four combinations of the two
propositions are chosen as described in the following: for the
first order logic functions NQ, XOR, XNOR, RCM ran-
domly from the two four-tuples (1100) and (0011); for the
first order logic functions NIP, NAND, AND, IP the first two
residual truth values randomly from the four two-tuples
(00), (01), (10), (00) and the last two randomly from the two
two-tuples (01) and (10); for the first order logic functions
NOR, CNI, CIP, OR the first two residual truth values
randomly from the two two-tuples (01) and (10) and the last
two randomly from the four two-tuples (00), (01), (10), (00);
for the first order logic functions FAL, NP, LCM, TRU
randomly from the four four-tuples (1010), (1001), (0110)
and (0101). Randomly shall mean here that within the given
rules, the two first order logic functions could have the same
residual truth values. In one embodiment, the residual truth
values computed by the associated first order logic functions
depend on the cipher key.

[0053] In one embodiment, a generative logic ruleset is
defined, wherein the generative logic ruleset comprises a
logic set comprising the at least six first order functions, in
at least two paired combinations of a first order logic
function and its associated first order logic function used to
compute the residual truth value, and a semiotic set com-
prising a number of symbols in a certain order, wherein the
decryption and/or encryption of the input message is based
on generative logic ruleset.

[0054] In one embodiment, the semiotic set is a list of
different indexes referencing to the number of different
symbols of a reference semiotic set of symbols containing
the number of different symbols in a reference order,
wherein the list of different indexes defines the certain order
of the semiotic set. In one embodiment, the logic set is a list
of indexes (each different) referencing to the at least six
different first order logic function of a reference logic set
containing the at least six different first order logic function
in a reference order each an associated first order logic

Dec. 1, 2022

function used to compute the residual truth value, wherein
the list of different indexes defines an order of the logic set.
In one embodiment, the residual truth values represented by
and first order logic function associated to the first logic
function, associated themselves with the first order logic
functions, are part of the generative logic ruleset and/or
depend on the cipher key. In one embodiment, the semiotic
set comprises the number of different symbols. In one
embodiment, each symbol comprises a binary sequence of
the symbol length, preferably the semiotic set comprises two
power the symbol length different binary symbols in the
certain order.

[0055] In one embodiment, the generative logic ruleset,
the logic set and/or the semiotic set depends on the cipher
key. In one embodiment, the certain order of the semiotic set
depends on a cipher key.

[0056] In one embodiment, a pseudo-random symbol
sequence is determined. In one embodiment, the pseudo-
random symbol sequence depends on a cipher key. In one
embodiment, an initialisation word is derived from the
cipher key and the pseudo-random symbol sequence is
derived from the initialisation word by an expansion func-
tion which increases the length of the pseudo-random sym-
bol sequence compared to the initialisation word. In one
embodiment, symbolic factoring is used as an expansion
function, wherein symbolic factoring uses the logic set and
the semiotic set to derive the pseudo-random symbol
sequence from the initialisation word, wherein an input
symbol sequence is based on the initialisation word, wherein
symbolic factoring combines a first input symbol and a
second input symbol of the input symbol sequence by a first
order logic function selected for the combination of the two
symbols to derive at least one output symbol, wherein an
output symbol sequence is based on the at least one output
symbol, wherein the pseudo-random symbol sequence is
based on the output symbol sequence.

[0057] In one embodiment, the initialisation word is part
of the generative logic ruleset. In one embodiment, the
pseudo-random symbol sequence is a sequence of symbols
with each symbol having a binary length of the symbol
length (as defined in the semiotic set). In one embodiment,
the pseudo-random symbol sequence has at least the length
of the input message, preferably at least twice the length of
the input message, preferably at least three times the length
of the input message. Preferably, the length of the pseudo-
random symbol sequence is chosen such that each symbol of
the pseudo-random symbol sequence is used only once for
encrypting or decrypting the same input message. In one
embodiment, symbolic factoring combines the first input
symbol and the second input symbol of the input symbol
sequence by applying the first order logic function selected
for the combination of the two symbols in the second
direction to derive at least one output symbol.

[0058] In one embodiment, the symbolic factoring recur-
sively repeats the process of combining two symbols out of
the first input symbol, the second input symbol and of the at
least one output symbols by a first order logic function
further selected to derive further output symbols of the at
least one output symbol (preferably the first order logic
function applied in the second direction). Preferably, the
symbolic factoring combines the first input symbol with the
output symbol determined in the previous step (from com-
bining the first input symbol and the second symbol or one
of the output symbols resulting from this combination). In

US 2022/0382521 Al

one embodiment, an expansion factor defines the number of
repetitions of the recursive process applied for two symbols.
Preferably, the expansion factor is part of the generative
logic ruleset. Preferably, the expansion factor depends on or
is derived from the cipher key. The symbolic factoring is
repeated over all symbols of the input symbol sequence.
Preferably, the symbolic factoring is started for a first
symbol and a second symbol, continued for the second
symbol and a third symbol, continued for the third symbol
and a fourth symbol and so on, i.e. the symbolic factoring is
performed between one symbol of the previous couple of
symbols and a new symbol of the input symbol sequence.
Preferably, the symbolic factoring is done on neighbouring
symbols of the input symbol sequence, preferably starting
from the beginning to the end. The symbolic factoring
provides an output symbol sequence which is longer than the
input symbol sequence. The output symbol sequence is
preferably based on the output symbols and/or discards the
inputs symbols. Preferably, the output symbol sequence is
created by concatenating recursively the new output sym-
bols at the start of the output symbol sequence already
determined. In one embodiment, the symbolic factoring is
performed on the initialisation word as input symbol
sequence yielding an output symbol sequence and the sym-
bolic factoring process is repeated recursively with the
preceding/previous output symbol sequence as new input
symbol sequence (until the pseudo-random symbol
sequence results in a sufficient length). In one embodiment,
the generative logic ruleset defines a logic function selection
rule for symbolic factoring for selecting the first order logic
function for each combination of two input symbols. Pref-
erably, the logic function selection rule selects a first order
function of the logic set for two input symbols depending on
the position of one or two of the two input symbols and/or
of the (edit) distance between the two input symbols in the
semiotic set. In one embodiment, the logic function selection
rule comprises a semantic generation root including at least
one random number for each symbol in the semiotic set and
one logic context including a list of references referencing
each one of the first order logic functions of the logic set.
The logic function selection rule selects a value in the
semantic generation root (e.g. based on the position or
distance) which indicates a reference in the logic context
which indicates the selected first order function of the logic
set for the two input symbols. In one embodiment, the value
in the semantic generation root indicates an integer number
indicating the number of positions to count in the logic
context from the previous selected reference to the first order
logic function. If the counter arrives at the end of the logic
context, it counts further at the beginning of the logic
context. In one embodiment, the position or distance deter-
mines the value of the semantic generation root at the index
equal said position or distance. Preferably, the logic context
comprises only a list of references to an arbitrary subset of
the at least six first order logic functions. Thus, the logic
context is preferably smaller than at least five. In one
embodiment, a symbolic implicit inference factor defines the
number of output symbols which are not recorded in the
output symbol sequence of the symbolic factoring. Prefer-
ably, the symbolic implicit inference factor is part of the
generative logic ruleset. Preferably, the symbolic implicit
inference factor depends on or is derived from the cipher
key. In one embodiment, the semantic generation root com-
prises symbolic implicit inference factor times the number

Dec. 1, 2022

of symbols in the semiotic set values. Preferably, the seman-
tic generation root and/or the logic context is part of the
generative logic ruleset. Preferably, the semantic generation
root and/or the logic context depends on or is derived from
the cipher key.

[0059] In one embodiment, decrypting and/or encrypting
the input message comprises at least one processing step
including processing an intermediate input message to
obtain an intermediate output message, wherein the inter-
mediate input message is based on the input message,
wherein an output message of the decryption or encryption
is based on the intermediate output message. Preferably, all,
most or some of the intermediate input/output message(s) is
stored and processed as intermediate message input/output
symbol sequence. In one embodiment, symbols (in the
intermediate message input/output symbol sequence) are
stored and processed as references/indexes/integers refer-
ring to the corresponding symbol in the reference semiotic
set or in the semiotic set. The processing of the symbols as
symbols instead of as sequence of bits accelerates the
processing and reduces the memory consumption. Prefer-
ably, the length in symbols of the intermediate message
input symbol sequence corresponds to the length in symbols
of the intermediate message output symbol sequence. Pref-
erably, the method comprises a plurality of processing steps,
wherein the length in symbols of the intermediate message
input or output symbol sequence corresponds to the length
in symbols of the intermediate message input/output symbol
sequence of the other processing steps. However, the sym-
bols can also be stored and processed as binary numbers or
in many other ways to store and process symbols in the
cipher and the symbol sequences is possible. Therefore,
preferably the input message (which is normally a chain of
character symbols, e.g. ASCII or UNICODE) is transformed
in a sequence of symbols. The symbols can be stored e.g.
simply by a reference to one of the indices/positions of the
reference semiotic set or the semiotic set. For a symbol
length of 4, each symbol can thus be represented by one of
16 values, e.g. by integers between 1 and 16 or 0 and 15.
This reduces the memory consumption for the cipher sig-
nificantly. When the cipher has finished, the output symbol
sequence of the cipher can then be retransformed in the
original format, e.g. in text character symbols.

[0060] Inoneembodiment, the at least one processing step
comprises a structuring step. In one embodiment, the struc-
turing step comprises for encrypting the input message the
following steps: transform the symbols of the intermediate
input message based on the semiotic set and/or the logic
context and based on the pseudo-random symbol sequence
into a transformed symbol sequence. Preferably, the trans-
formation of the symbols of the intermediate input message
is further based on an initialisation symbol sequence. In one
embodiment, the structuring step comprises for decrypting
the input message the following steps: retransform the
symbols of the intermediate input message based on the
semiotic set and/or the logic context and based on the
pseudo-random symbol sequence into a retransformed sym-
bol sequence. Preferably, the retransformation of the sym-
bols of the intermediate input message is further based on an
initialisation symbol sequence.

[0061] Inone embodiment, the at least one processing step
comprises a structuring step. The structuring step comprises
for encrypting the input message the following steps: pro-
viding an initialisation symbol sequence; combining, pref-

US 2022/0382521 Al

erably concatenating the initialisation symbol sequence with
an intermediate input message of the structuring step to
obtain a combined symbol sequence; and transforming the
symbols of the combined symbol sequence based on the
semiotic set and/or the logic context and based on the
pseudo-random symbol sequence into a transformed symbol
sequence, wherein an intermediate output message of the
structuring step depends on the transformed symbol
sequence. The structuring step comprises for decrypting the
input message the following steps: providing an initialisa-
tion symbol sequence; determining a part of a retransformed
symbol sequence based on the initialisation symbol
sequence; retransforming the symbols of intermediate input
message into the retransformed symbol sequence based on
the semiotic set and/or the logic context and based on the
pseudo-random symbol sequence, wherein an intermediate
output message of the structuring step depends on the
retransformed symbol sequence.

[0062] In one embodiment, an initialisation symbol
sequence is provided. The initialisation symbol sequence is
preferably derived from or depends on the cipher key,
preferably the initialisation word, preferably the pseudo-
random symbol sequence. In one embodiment, one symbol
of'the combined symbol sequence is transformed recursively
based the one symbol of the combined symbol sequence,
based on one symbol of the transformed symbol sequence,
preferably the one symbol transformed in the previous
recursion step, based on the semiotic set or the logic context
and based on the pseudo-random symbol sequence. In one
embodiment, one actual symbol of the combined symbol
sequence is transformed recursively based the edit distance
in the semiotic set between one symbol of the transformed
symbol sequence, preferably the one symbol transformed in
the previous recursion step, and one symbol depending on
the actual symbol of the combined symbol sequence and
depending on one symbol of the pseudo-random symbol
sequence. In one embodiment, the intermediate output mes-
sage of the structuring step depends on the last N symbols
from transformed symbol sequence transformed last,
wherein the number N corresponds to the number symbols
of the intermediate input message of the structuring step. In
one embodiment for decryption in the structuring step, one
symbol of the intermediate input message is retransformed
recursively based on the one symbol of the intermediate
input message, based on one symbol of the retransformed
symbol sequence, preferably the one symbol retransformed
in the previous recursion step, based on the semiotic set or
the logic context and based on the pseudo-random symbol
sequence. In one embodiment for decryption in the struc-
turing step, one actual symbol of the intermediate input
message is retransformed based on the inverse function of
the edit distance in the semiotic set between one symbol of
the retransformed symbol sequence, preferably the symbol
retransformed in the previous recursion step, and one sym-
bol depending on the actual symbol of the intermediate input
message and depending on a symbol of the pseudo-random
symbol sequence. In one embodiment, the recursion direc-
tion of the encryption is opposed to the recursion direction
of the decryption. If the encryption starts at the beginning
and stops at the end of the combined symbol sequence, then
the decryption starts at the end of the intermediate input
message and stops at its end. Preferably, the initialisation
symbol sequence is concatenated to the end of intermediate
input message opposite to the end where the encryption

Dec. 1, 2022

recursion starts. In one embodiment, the intermediate output
message of the structuring step of decryption depends on the
last N symbols from the retransformed symbol sequence
retransformed last, wherein the number N corresponds to the
number symbols of the intermediate input message of the
structuring step.

[0063] Inoneembodiment, the at least one processing step
comprises a transposition step. The transposition step com-
prises for encrypting the input message the step of trans-
posing symbols or bits of an intermediate input message of
the transposition step based on the pseudo-random symbol
sequence to obtain a transposed sequence, wherein an inter-
mediate output message of the transposition step depends on
the transposed sequence. The transposition step comprises
for decrypting the input message the step of re-transposing
symbols or bits of an intermediate input message of the
transposition step based on the pseudo-random symbol
sequence to obtain an intermediate output message of the
transposition step.

[0064] In one embodiment, the transposition is performed
by swapping two symbols (symbol-wise transposition). In
another embodiment, the transposition is performed by
swapping two bits (bit-wise transposition). Preferably, the
transposition step goes through the symbols or bits of the
intermediate input message and swaps the actual symbol or
bit with another symbol or bit which has not yet been
swapped/transposed. The symbol which is selected to be
swapped with the actual symbol is chosen based on a
swapping parameter. The swapping parameter comprises
preferably a sequence of swapping parameters. Preferably,
for each swapping action a new sapping parameter in the
sequence of swapping parameters is used. Preferably, each
swapping parameter of the sequence of swapping parameters
corresponds to a symbol in the semiotic set or in the
reference semiotic set. In one embodiment, the swapping
parameter is based on the pseudo-random symbol sequence.
In another embodiment, the swapping parameter is based on
an authentication key. Thus, all symbols or bits are swapped
at least once and/or only once and/or exactly once. Prefer-
ably, a set of attractor poles indicating a subset of positions/
indices of symbols of the intermediate input message is
generated based on the pseudo-random symbol sequence
and the symbol selected for swapping or transposing is
selected based on the set of attractor poles and/or the
pseudo-random symbol sequence. Each attractor pole
defines a starting point (a symbol or bit) in the intermediated
input message for finding a symbol or a bit to be swapped.
Preferably, a certain number of symbols or bits (greater than
2) are swapped based on the same pole, before a new pole
is defined or calculated. The pole is preferably calculated
based on the swapping parameter. In one embodiment, a
succession function for counting is defined, wherein the
succession function defines for different swapping param-
eters or symbols of the sequence of swapping parameters or
for different positions at least two different successor sym-
bols or different successor positions and a successor rule for
deciding which successor symbol or position is currently
applied. In one embodiment, the successor rule is that for
each symbol or position there is a different the successors
symbol or successor position are alternated. In one embodi-
ment, the symbol or bit to be swapped with the current
symbol or bit is based on the application of the successor
function and the swapping parameter (of the current swap-
ping step). In one embodiment, the swapping parameter of

US 2022/0382521 Al

the current step provides a succession number, and the
succession function is applied the succession number of
times to yield a count number. The symbol or bit to be
swapped with the current symbol or bit is preferably based
on the count number. In one embodiment, the symbol or bit
to be swapped with the current symbol or bit is preferably
based on the symbol or bit of the previous swapping step and
the count number, even more preferably the position or
index of the symbol or bit to be swapped with the current
symbol or bit is based on the position or index resulting from
the position or index of the symbol or bit of the previous
swapping step plus the count number. In one embodiment,
the symbol or bit to be swapped with the current symbol or
bit is based on the application of the successor function and
the swapping parameter (of the current swapping step) and
one of the attractor poles. In one embodiment, the symbol or
bit to be swapped with the current symbol or bit is preferably
based on the attractor pole and the count number, even more
preferably the position or index of the symbol or bit to be
swapped with the current symbol or bit is based on the
position or index resulting from the position or index of
attractor pole plus the count number. Preferably, when a new
attractor pole is calculated, the symbol or bit to be swapped
with the current symbol or bit is preferably based on the
attractor pole and the count number, the subsequent symbols
or bit to be swapped with the subsequent symbols depend on
their symbol or bit swapped in the respective preceding
swapping step and the count number determined in the
respective swapping step (until a new attractor pole is
calculated). Since the swapping depends just on the swap-
ping parameter, e.g. the pseudo-random symbol sequence or
the authentication key, it can easily be decrypted, if the
receiver knows the swapping parameter, e.g. the pseudo-
random symbol sequence or the authentication key. On the
other side, the succession function with at least two succes-
sors introduces a high degree of nonlinearity which makes it
very hard to crack a code based on this step.

[0065] In one embodiment, the succession function
defines at least two successors and a rule for deciding under
which condition which of the at least two successors is used.
In one embodiment, the element is a symbol, preferably a
symbol of the semiotic set or the reference semiotic set. In
one embodiment, the element is an integer used for count-
ing. The successor function is preferably used for counting
over bits or symbols of an intermediate input message,
preferably for counting over bits or symbols of an interme-
diate input message for transposing bits or symbols, pref-
erably for swapping bits or symbols. The successor function
defines for a, some or each element a first successor element
and a second successor element, wherein the element, the
first successor and the second successor are different from
each other.

[0066] Inoneembodiment, the at least one processing step
comprises a logic function step. The logic function step
comprises for encrypting the input message the following
steps: providing a logic function pair; transforming a logic
function message based on the logic function pair series into
a transformed logic function message with residual truth
values associated to each symbol of the transformed logic
function message, wherein an intermediate output message
of the logic function pair step for encryption depends on the
transformed logic function message, wherein the logic func-
tion message depends on an intermediate input message of
the logic function pair step for encryption. The logic func-

Dec. 1, 2022

tion pair step comprises for decrypting the input message the
following steps: providing a logic function pair series which
is bijective to the encryption logic function pair series;
re-transforming a transformed logic function message based
on the bijective logic function series into a logic function
message, wherein an intermediate output message of the
logic function pair step for decryption depends on the logic
function message, wherein the transformed logic function
message depends on an intermediate input message of the
bijective logic function pair step for decryption.

[0067] Inone embodiment, the logic function pair series in
the encryption step and in the decryption step must be the
complementary and bijective. In one embodiment, both
logic function series depends on the cipher key, preferably
on the pseudo-random symbol sequence. Preferably, each
logic function entry of each logic function series depends on
a different symbol of the pseudo-random symbol sequence.
In one embodiment, both logic function series comprises a
series whose elements are selected out of the at least six first
order logic functions. The elements of the logic function
series comprise preferably references to the first order logic
functions of the logic set or the reference logic set. The logic
function series could be calculated once and then used in the
subsequent steps or the logic function series could be
calculated “on the fly” such that in each step the correspond-
ing logic function of the series is calculated or such that for
a number of steps the corresponding logic functions of the
series are calculated.

[0068] In one embodiment, the logic function message
depends on the intermediate input message of the logic
function step for encryption and the initialisation symbol
sequence, preferably on the concatenation of the initialisa-
tion symbol sequence and the intermediate input message of
the logic function step for encryption. In one embodiment,
the intermediate output message of the logic function step
for decryption depends on and on the initialisation symbol
sequence, preferably on the logic function message without
the initialisation symbol sequence. In one embodiment, the
intermediate output message of the logic function step for
encryption depends on the last logic number of symbols or
bits of the transformed logic function message, wherein the
logic number of symbols is equal to the number of symbols
or bits of the intermediate input message. The other symbols
or the first symbols are discarded. In one embodiment, the
transformed logic function message depends on the inter-
mediate input message of the logic function step for decryp-
tion.

[0069] Inone embodiment for encryption, the transformed
logic function message is based on the logic function pair
series, the residual truth values associated with the first order
logic functions of the logic function series and the logic
function message. In one embodiment, the values of the
transformed logic function message are determined recur-
sively. In each recursion step for encryption, the logic
function series provides a new first order logic function.
Since the first order logic functions are pseudo-randomly
selected, the first order logic functions of two subsequent
steps can be the same or different. Two input values of the
current recursion step are used to determine based on the
first order logic function of the current recursion step two
output values. Preferably, the first order logic functions are
applied in the first direction resulting in a first output value
depending on the truth values of the first order logic function
of the current recursion step and the second output value on

US 2022/0382521 Al

the residual truth values of the first order logic function of
the current recursion step. Preferably, the first input value
acts as the first proposition for the first order logic function
and the second input value acts as the second proposition for
the first order logic function. However, the first order logic
function could be applied in a different direction, which
however complicates the algorithm. The first input value of
the current recursion step depends preferably on the second
output value of the previous recursion step. Preferably, the
first input value depends preferably on the second output
value of the previous recursion step and a context value from
the current recursion step determined from the cipher key,
preferably from the pseudo-random symbol sequence. Pref-
erably, the context value is a new context value in each
recursion step (but could in some cases have the same
value). Preferably, the first input value of the current recur-
sion step depends on an XOR combination of the second
output value of the previous recursion step and the context
value from the current recursion step. The second output of
the first order logic function of the current step is used then
for the next recursion step. The transformed logic function
message depends on the sequence of the first output values
provided by the sequence of recursion steps. The second
input value is based on a value of the logic function message
of the current recursion step. The logic function step for
encryption gives further out the second output value of the
last recursion step. This second output value of the last
recursion step given out is also called decryption initialisa-
tion value. The other second output values can be discarded.
For the first recursion step, the first value of the intermediate
input message or of the initialization symbol sequence can
be used as second output value of the previous recursion
step.

[0070] In one embodiment for decryption, the logic func-
tion message is based on the logic function pair series, the
residual truth values associated with the first order logic
functions of the logic function series and the transformed
logic function message. In one embodiment, the values of
the transformed logic function message are determined
recursively. In each recursion step for decryption, the logic
function series provides a new first order logic function.
Since the first order logic functions are pseudo-randomly
selected, the first order logic functions of two subsequent
steps can be the same or different. Since the first order logic
functions are pseudo-randomly selected and can be retrieved
from the cipher key, the bijective logic function pair series
can be used for decryption as for encryption such that the
same first order logic function is used in corresponding
values or recursion steps of the encryption and decryption.
Two input values of the current recursion step are used to
determine based on the first order logic function of the
current recursion step two output values. Preferably, the first
order logic functions are applied in the fourth direction
resulting in a first output value depending on the first
proposition of the first order logic function of the current
recursion step and the second output value on the second
proposition of the first order logic function of the current
recursion step. Preferably, the first input value acts as truth
values for the first order logic function and the second input
value acts as the residual truth values for the first order logic
function. However, the first order logic function could be
applied in a different direction (but the direction should be
the inverse of the direction used in the encryption), which
however complicates the algorithm. The second input value

Dec. 1, 2022

of the current recursion step depends preferably on the first
output value of the previous recursion step. Preferably, the
second input value depends preferably on the first output
value of the previous recursion step and a context value from
the previous recursion step (determined from the cipher key,
preferably from the pseudo-random symbol sequence). Pref-
erably, the context value is a new context value in each
recursion step (but could in some cases have the same
value). The context value is the same for corresponding
steps in encryption and decryption. Preferably, the second
input value of the current recursion step depends on an
inverse XOR combination of the first output value of the
previous recursion step and the context value from the
previous recursion step. The first output of the first order
logic function of the current step is used then for the next
recursion step. The transformed logic function message
depends on the sequence of the second output values pro-
vided by the sequence of recursion steps. The logic function
step for decryption receives as a further input a decryption
initial value which is used for determining the second input
value of the first order logic function for the first recursion
step.

[0071] The second input value is based on a value of the
logic function message of the current recursion step. The
value can be a bit or a symbol. If the value is a bit, the logic
function message is transformed bitwise. If the value is a
symbol, the logic function message is transformed symbol-
wise, i.e. that the same logic function of the current recur-
sion step is applied bitwise on all bits of the two input
symbols.

[0072] Inone embodiment, the at least one processing step
comprises for encryption one or more of the following steps:
a structuring step, wherein an intermediate input message of
the structuring step depends on the input message or one of
the intermediate output messages of previous steps; a first
transposition step, wherein an intermediate input message of
the first transposition step depends on the input message or
one of the intermediate output messages of previous steps;
a logic function step, wherein an intermediate input message
of the logic function step depends on the input message or
one of the intermediate output messages of previous steps;
a second transposition step, wherein an intermediate input
message of the second transposition step depends on the
intermediate output message of the logic function step and
on a hash resulting from one of the previous intermediate
input messages or one of the previous intermediate output
messages and/or on an further decryption initialization value
output from the logic function step.

[0073] Inone embodiment, the at least one processing step
comprises for decryption one or more of the following steps:
a second transposition step, wherein an intermediate input
message of the second transposition step depends on the
input message or a previous intermediate output message,
wherein an intermediate output message of the second
transposition step and a decryption initialisation value and/
or a hash is given out from the second transposition step; a
logic function step, wherein an intermediate input message
of'the logic function step depends on the intermediate output
message of the second transposition step and the decryption
initialisation value; a first transposition step, wherein an
intermediate input message of the first transposition step
depends on the input message or a previous intermediate
output message; a structuring step, wherein an intermediate
input message of the structuring step depends on the input

US 2022/0382521 Al

message or a previous intermediate output message, wherein
the output message depends on the intermediate output
message of one of the previous intermediate output mes-
sages.

[0074] Preferably, the hash is calculated based on an
authentication key. The hash can be used to authenticate the
message. By mixing the hash in the output message of
encryption, i.e. in the cipher text, it is very difficult for
attackers to use the hash for cracking the cipher. Also, the
decryption initialisation parameter is mixed in the output
message of the encryption, so that it is very difficult for an
attacker to find the starting point for the recursive method of
the logic function step. Preferably, the swapping parameter
of second transposition step depends on the authentication
key. Preferably, the swapping parameter of first transposition
step depends on the cipher key, preferably on the pseudo-
random symbol sequence. Preferably, the second transposi-
tion step is performed such that the swapping is performed
bitwise. Preferably, the first transposition step is performed
such that the swapping is performed symbol-wise.

[0075] In one embodiment, the encryption and/or decryp-
tion is symmetric or asymmetric.

BRIEF DESCRIPTION OF THE DRAWINGS

[0076] The invention will be better understood with the
aid of the description of an embodiment given by way of
example and illustrated by the figures, in which:

[0077] FIG. 1 shows a schema of an embodiment of the
cipher for encryption

[0078] FIG. 2 shows a complete first order predicate logic
truth table

[0079] FIG. 3 shows a general schema for symbolic fac-
toring

[0080] FIG. 4 shows a non-ordinal succession function

affinity matrix and graph

[0081] FIG. 5 shows how a non-ordinal affinity matrix is
constituted
[0082] FIG. 6 shows an example of a transposition using

the non-ordinal function

[0083] FIG. 7 shows an example of base semiotic set of
binary symbols set 4 bits long

[0084] FIG. 8 shows a standard first order logic connector
set
[0085] FIG. 9 shows an example segmentation of a cipher
key

[0086] FIG. 10 shows a secret semiotic set of binary
symbols

[0087] FIG. 11 shows a secret logic connector set

[0088] FIG. 12 shows an example complete residual set
truth table

[0089] FIG. 13 shows a logic context set
[0090] FIG. 14 shows a semantic root matrix

[0091] FIG. 15 shows the diagram of the symbolic fac-
toring algorithm

[0092] FIG. 16 shows a non-ordinal selection algorithm
diagram
[0093] FIG. 17 shows an example of encryption using

generative logic

[0094] FIG. 18 shows an example of decryption using
generative logic

Dec. 1, 2022

DETAILED DESCRIPTION OF AN
EMBODIMENT OF THE INVENTION

[0095] First, one exemplary embodiment of the method of
the invention will be presented. Second, some general
concepts and terms of the invention will be described and/or
defined. Third, the individual steps of the embodiment of the
invention will be described in more detail.

One Exemplary Embodiment of the Method of the
Invention

[0096] The method of the invention describes the encryp-
tion and/or decryption of a message m exchanged between
at least two subjects. A first subject encrypts the message and
sends the encrypted message to a second subject which
decrypts the encrypted message to obtain the original mes-
sage m. The first subject is preferably an apparatus config-
ured for encrypting the message m as described in the
following and giving out the encrypted message m, prefer-
ably sending the encrypted message m to the second subject.
The second subject is preferably an apparatus configured for
receiving the encrypted message and/or decrypting the
encrypted message to obtain the original message m as
described in the following. The sending of the message m
from the first to the second subject can be by any way
including a network like LAN, WLAN, internet, mobile
phone network, LORA or including also the physical trans-
port of the encrypted message e.g. via a data storage. The
first and second subject are preferably both configured to act
as first or second subject, i.e. being configured to encrypt a
message m and to decrypt an encrypted message. The
apparatus of the first and/or second subject comprises each
preferably a communication section and a processing sec-
tion. The communication section being configured for
receiving an encrypted message and/or for giving out the
encrypted message. The processing section is configured for
processing the described steps of encryption of the message
m and/or for the decryption of the encrypted message m. The
processing section can be a general-purpose processor like a
CPU, a processor for encryption/decryption, a chip for
executing just this encryption and/or decryption or any other
processing means. The processing section could also com-
prise a plurality of sub-processing section as used in multi-
core processors (each core being a sub-processing section)
or in cloud-computing (each processor being a sub-process-
ing section). It shall be distinguished in the following the
cipher scheme and the cipher case. The cipher scheme
defines the cipher parameters and methods independent from
any inputs. This would correspond normally to the software
installed on an apparatus to define the apparatus as first
and/or second subject. The cipher case is defined by the
cipher scheme plus the first level inputs. The cipher case
defines the realisation of the cipher scheme between a group
of at least two subjects defined by the first level inputs. The
method will be described just for two subjects. It is clear that
the first subject could communicate with the present cipher
(encryption/decryption scheme) to multiple second subjects
instead of just one second subject.

[0097] Given

[0098] a set “Aj” of symbols, ordered and indexed by
“u”, each encoded as a short binary sequence of length
“b” (preferably bz4), and stored in memory.

[0099] a set “Lg” of memory addresses for the 16 1%

order logic functions, each stored in memory repre-

US 2022/0382521 Al

sented as a sequence of microcode instructions for the
invention’s system’s processor, ordered and indexed by
“v”, arranged in standard order of the values in binary
base numerals of the representation of each function’s
it’s truth table.

[0100] A keyed message authentication function for the
message m, using a key k, resulting in an Message
Authentication Tag(“MAC”) h such as HMAC (m,
k,)=h, represented as a binary sequence, or any other
function using at least the m and k, as parameters,
preferably represented as a sequence of microcode
instructions for the invention’s system’s processor.

[0101] Inputs

[0102] a message “m” (element 100 in FIG. 1) as a
binary sequence of length preferably 1(m)=768 bits.

[0103] a cipher key “k” (element 101 in FIG. 1) as a
binary sequence of length 1(k)=256 bits, preferably
1(k)=512).

[0104] An authentication key “k,”, for use in a keyed
authentication function (i.e. HMAC)

[0105] Preparation of Generative Logic Ruleset (3)
[0106] k is segmented into several parameters and data
structures, stored in random access memory (graphically
represented by object 103 9z FIG. 1):

[0107] a secret semiotic set “A,” of binary sequence of
length “b”, of 2° el. as unique randomly arranged
values between 1 and 2°, corresponding to index u of
Ag;

[0108] a secret logic set “.,” of 16 elements as unique
randomly arranged values between 1 and 16, each
corresponding to a unique element index v of Lg;

[0109] a secret residual set “R,” of 16 elements
sequences of supplementary truth value each corre-
sponding to a unique element index v of Lz, used to
compute “residual” bits for each function of L,
encoded as sequences of 4 bits in length;

[0110] a secret generative context “C,” as a sequence of
random values between 1 and 16, each corresponding
to an element index ¢ of L;;

[0111] a symbolic expansion factor “f,”, as a numeric
value;
[0112] a symbolic implicit inference factor “f,”, as a

numeric value;
[0113] a semantic generation root “G,”, as an array of
numeric values different than 1(C,);
[0114] an initialisation word “IW.”, as a random

sequence of bits.
[0115] The elements above are accompanied by a selection
function. Some are accompanied as well by an inverse
bijective resolution function (i.e. given a function of L, or
R,, a given answer, and given only one of the initial elements
used in said function, it returns the other used element’s
index): A, (a) and A,7'(a), Ly(v), L(w) and L,”(w), C,(c),
G,(0,p), R,(p1,p2) and R, (r,s, f)—the last two respec-
tively returning the symbol pair which, given a function f,
a result s, and a residual r, when f was applied to said
symbols, resulted in truth s and residual r.
[0116] Setup for the Cipher
[0117] Segment m in short sequences of length b; then
map each one to its symbol index in Az using B(m;Az)=mg,
indexed by n, and with a selection function Mg[n,|; then, (1)
[0118] Derive a pseudo-random symbol sequence “K”
from IW,, (102 in FIG. 1) segmented into symbols of length
b as I, using symbolic factoring within the context of L,

11

Dec. 1, 2022

C., Gy, f, and f, using !,°(I15)=K applied recursively in n,
iterations over I;V[(I(m)/f,)+n,]=n,=(6x1;), as well as any
intermediary sequence thus generated. The K sequence is
indexed by n, with a selection function K[n,]; any given
symbol in a given K sequence may only ever be used once
in the cipher operations below; then,

[0119] Segment an “m,,,, initialization symbol sequence

from K such as m,,,~(m, ;, m;,, . . ., my,)V[(m, ,EAz)

N(1zn,zl(m,,,))], (104 in FIG. 1) with preferably I(m,,,)

<2, Then, applying to successive pairs of elements of m,,,,,,

and resulting intermediary sequences functions from L

selected by Lz(LIk(Clk(n,))) until only two symbol m, ; and

m, , remain; then,

[0120] Compute a generative logic function sequence

“EDg” (105 in FIG. 1) by mapping each element of K to the

corresponding index represented by said symbol of K within

L and the truth values within R, ED=%,, _ AL (K] n,));

R, ' (K[n,]))); ED, indexed with n,, and a selection

function E(n,).

[0121] Encryption
[0122] Transform my into a structuring sequence “M;”,

(106 in FIG. 1) which for mg’s symbols produces a

sequence M; with which m; can be reconstructed

relative to a secret alphabet A, and a context K. and

m,,,, and my are first concatenated, and then, using the

function T with parameters A,, mg+m,,[n-1],
mg+m,,;[n], K[n], which returns the edit distance
between symbols a,, a,, and a given symbol given by
K, in A,. The resulting recursive sequence X, _,""“T is
computed with 1;=I(m,,,,)+l(mg); only the fast I(mg)
elements in the sequence are recorded in My. My is
indexed by n;, and accompanied by a selection function
M;[ng]; then,

[0123] Transpose the elements of M; into a sequence
“M,”, (107 in FIG. 1) using a symbol selection function
mapped over M; by a totally ordered set T, generated
from k, and contextually evolving over K. The symbols
of M; are sequentially permuted around a set of poles
“p” whose relative position over M; is generated by K,
using the attractor function P(M;[n:],Ms[p+P(K[n;
—-1D+C(K[n;D]). M is indexed by n, and accompanied
by a selection function M,[n,].

[0124] Infer a symbol sequence M, using the generated
logic sequence ED (108 in FIG. 1) by sequentially
applying the logic function pair sequence ED, recur-
sively to M, using an application function R(K, M,, E,
n,) such as R((r,, xor K[n]), M,, E[n,])=(M,[n,]; r,,),
with r,=m, ;, so that a resulting sequence M,, indexed
by n, and accompanied by a selection function M,[n,],
which is computed recursively by Mg:Zntzl”’:Zf[R(K,
M, E, n)\/r(K, M,, E, n,~1)], discarding all r,, symbols
but recording the last r,, in memory. Symbols of M, and
r,, may be substituted by equivalents in A;; then,

[0125] Calculate the authentication tag h for M (109 in
FIG. 1) using the given function HMAC (m, k,)~h
substituting m for M concatenated with m,,,,, so that
h=HMAC((Ms;\/m,,,,), k,). k, may alternatively be
given in embodiments another value, such as a segment
of K of sufficient length; then,

[0126] Transpose the concatenation of the h authenti-
cation tag and r,, into Mg, (110 in FIG. 1) using the
same transposition as for M, above, except in this case
transposing bits of the concatenation (h\/r,)=h, within
Mg;, using the modified transposition function P(h,[n,],

US 2022/0382521 Al

[P(K[n ~1D+C(K[n,])]), thus forming the final cipher-

text sequence ¢, (200 in FIG. 1) which can be then

recorded as bytes ready for storage or transmission.
[0127] Decryption

[0128] Perform all the steps above from ‘preparation’ to
‘setup of a cipher’; then verify the authentication tag h
with k,. M, and m,,,,, by reconstituting the transposi-
tion sequence using the corresponding segment of K
used to transpose from h and r,, to ¢ originally, then by
permutating bits in inverse order to recover these two
concatenated sequences along with M,, then verify h;
if it succeeds, segment M, in symbols of length b; if it
fails, stop decrypting; otherwise,

[0129] Deduct M, from M, using the generated logic
sequence ED by recovering each intermediary (r,
xor K,) symbol from the former sequence by recur-
sively applying the R, (rng, M, [n.], E[n,]) (M,[l¢
-nJ; (rng_ . xor K[n.])) inverse bijective resolution
logic function pair to each (r, s) pair of M,, starting
from the recovered r,, and the last symbol s of M; to the
first symbol s, of M, for 1=n,=1(M). Then, in turn,
recover the preceding r for the next s symbol by
applying the inverse resolution function S L,l‘l(K[ng],
(r, _; xor K[ns]),XOR); then,

[0135] Transpose M back to M back by reconstituting
the transposition sequence using the corresponding
segment of K used to transpose to M originally, then
perform the permutations in inverse order to recover
M;; then

[0131] Reconstruct my; from the restructuration
sequence “M;” according to a context A,, by generat-
ing using K the sequence of symbols M ~Z,, _,"* 1sid)
AA, (K ny)4+n,), with accompanying selection
function M,[n,]; then reconstituting my starting with
from the last symbol in My, recovering m with T (A,
M n -Mn~1]; Mg[n,]) mgz [n,]; then combine
symbols of my in pairs to recover the message m.

[0132] The invention allows for a much-increased level of
security compared to existing cipher, allowing for the dif-
fusion of an authenticated encryption tag without the danger
of exposing any information of the underlying message and
providing quantum-computer driven cryptanalysis resis-
tance using Shor’s or Glover’s algorithms.

[0133] General Principles
[0134] Logic and Indeterminacy of Statements
[0135] The mathematical building blocks used in modern

cryptography are mostly based on mathematical problems
which are difficult to solve—i.e. there ought to be no known
algorithms usable to find the answer to said problem with a
computing machine within a practical time span. A practical
rule of thumb if that any known resolution algorithm’s time
approaches the number of time necessary to enumerate all
possible cipher keys, to attack it with “brute force”, then it
is judged to be a good cipher.

[0136] Ciphers have historically been built using difficult
numeric or polynomial problems, which usually lent them-
selves well to transformation into simple reliable linear
mechanical, electromechanical or electronic circuits. Logic
has generally been applied used in applying only the most
basic Boolean logic algebra functions of binary addition (i.e.
ADD) and exclusive disjunction (i.e. XOR) to sequences of
bits, which it maps directly to basic electronic logic gates.
Algorithms using that reduced logic can be implemented in
relatively simple chips, and compact die sizes.

Dec. 1, 2022

[0137] Logic is an interpretative tool of reason. Until
recently, with computing power being scarce, in addition to
expensive transmission bandwidth and chip engineer time,
no logic more advanced has been used in cryptology. Any
computing tool using logic could implementing logic rea-
soning concepts: inference, induction, deduction, amongst
many others. Such logic concepts cannot however be trivi-
ally implemented with logic gates in simple circuits with no
memory or use of recursion, but require a complete Turing
machine. Advanced uses of logic have thus been eschewed
by cryptology researchers.

[0138] Moreover, logic is a tool for understanding. With
the work of Godel, a century ago, new dimensions of
thought had to be included to the logician’s toolbox,
amongst which the decidability, indeterminacy and comput-
ability of statements. His incompleteness theorem states a
consistent formal logical or axiomatic system cannot be
complete, and that the consistency of axioms cannot be
proved within their own system. Many new logic frame-
works have been constructed afterwards, with amongst other
goals to study logic systems, and how to solve statements
within such systems. Such concepts are of chief importance
in computer science, and should be even more so in cryp-
tology, which could be said to be the science of selective
misunderstanding.

[0139] First Order Logic

[0140] First order logic, also known as first order predicate
logic or first-order predicate calculus, has as sixteen different
canonically inference rules in its “propositional calculus
subset. Such rules, also called “logic operators”, or “logic
connectives” are formalised in Boolean algebra. Boolean
algebra is well adapted to application as binary logic in
electronic hardware, whereas a value of True for a predicate
is represented as a “1” and the False value of a predicate is
represented as “0”.

[0141] Amongst such operators, implemented as Boolean
functions, are for example are TRUE (affirmation), FALSE
(contradiction), NEITHER OR (non-disjunction), etc. All
such operators can be decomposed combinations of the most
basic AND, OR, and NOT functions, expressible as the
simplest digital logic gates in electronic hardware.

[0142] The result of the application of such operators to
two given predicates pl and p2 can be found using a
so-called “truth table”, which can be technically imple-
mented as a lookup table, accessed with an application
function s(pl(n), p2 (n), L (W))=T (w, n) accessing said
lookup table. FIG. 2 shows the canonical truth table for first
order predicate logic.

[0143] For example, for a given pl predicate which is
True, and a given p2 predicate which is false, to which a
non-implication is applied, n=2,u=5, using the lookup func-
tion s(p1(2), p2(2), L(5))=T(5,2) to access the lookup table
at the(w,n) coordinates of the truth table, giving a value of
T, which equals True.

[0144] For a given logic function L(w), a given proposi-
tion pl(n), and a Truth value T (w, n), one can find the
correct truth value of p2 with inverse resolution function of
the form sL,z"l(pl(n), T (n), L (w)=Q (n), in which one
looks up the table the same way as above. Similarly, for a
given logic function [(w), proposition p2(n), and Truth
value T(w, n), one can find the p1 truth value with an inverse
resolution function of the form s, , ' (p2(n), T(n), L(w))=pl
(n), by looking up the correct value.

US 2022/0382521 Al

[0145] For each such function, embodiments store a list of
possible result depending on the two sets of input bits in the
system’s processing unit registers or in memory locations as
lookup tables, outputting the results in a third either pro-
cessing unit register or memory location, which are either
“0” bits corresponding to the “false” values, or “1” bits
corresponding to “true” values, or, in some embodiments, as
a numeric value unique corresponding to the binary value of
each result for each such function.

[0146] In embodiments, such functions are represented in
memory either as sequences of microcode instructions for
the invention’s system’s processor, or as sequences and
combinations of the most basic logic functions or the
minimum set of logic gates (AND, OR, NOT), operating
over two central processing unit registers, providing the
result in a third register.

[0147] Generating a Logic System

[0148] Cryptanalysis techniques are by definition deduc-
tive processes. With this invention, we aim to generate a
logic system using the cipher key characterizable as a
tautology. This logic system is then applying it to the
message using the methods of the invention to create a
construction which is not logically decidable in polynomial
time using traditional cryptanalysis techniques.

[0149] Without the cipher key the ciphertext, as a tautol-
ogy constructed using both the message and logic system, is
incomplete and fully undecidable. Even when inferring logic
systems, without having the key, and performing known
plaintext attacks, the attacker must to generate all possible of
logic systems which can explain a given ciphertext or
portion thereof. This requires memory which grows more
than exponentially with both the possible number of per-
mutations and substitutions. The coherence of each system
must be checked against the known plaintext, consequently
making even differential and known plaintext attacks very
difficult in polynomial time.

[0150] As generated by the methods of this invention,
such systems can only be completed and become by defi-
nition complete, coherent, consistent and congruent when
using the cipher key with the methods of this invention to
complete the system implicitly defined by the ciphertext.
Moreover, if the basis for the construction of the logic
system is not numeric, there are no systems of equations,
linear or affine maps constructible, precluding the use of
Shor’s algorithm. If the “hidden” variable in the case of
Grover’s algorithm has the same length as the message, and
has no classical numeric basis, then neither is that latter
algorithm applicable. The only remaining method available
to is thus a brute force enumeration of all possible keys.

[0151] To achieve these goals, using the methods of this
invention, we create a sequence of a length greater than the
message derived from the cipher key. The technique is the
technique of symbolic factoring, also invented by the
authors of this invention to derive a stream from the cipher
key (see further below). The result is to create a pseudo-
random sequence of symbols. Each symbol is then used only
once in the cipher and used as parameter either on a first
order logic operator, a transposition function or a structuring
substitution function, as applied each symbol of a message
or smaller.

[0152] In effect, a single sentence in a logic language and
system generated by key, i.e. tautology, is created, and has
the same size or greater than the length of the message. That

Dec. 1, 2022

sentence is used to both encrypt and decrypt said message,
as defined by the methods of this invention.

[0153] As the methods of this system are executable in
fixed deterministic number of steps, the logic systems cre-
ated by the methods of this invention can be used as a
standalone cipher, or, alternatively as a counter mode for any
existing cipher, such as AES or ChaCha20.

[0154] Symbolic Factoring

[0155] Given two symbols from a given alphabet, not
taken as numbers, but as a combination within a given
coherent logic system, the goal of symbolic factoring is to
compute, given a valid statement in a given logic system
using said alphabet, a sequence of symbols which can, when
combined with said logic statement and the two starting
symbols, form a coherent, congruent and consistent logic
system, with each symbol representing a given predicate
within said system.

[0156] Inmore practical terms, for any two given symbols,
this signifies the goal is to find the suite of symbols which,
when used in conjunction with a sequence of logic connec-
tive, combine to the two above-mentioned symbols when
following said connectives.

[0157] Symbolic factoring takes numbers (or binary
sequences as bytes), not by their numeric value, to which a
classical factoring algorithm is applied resulting in the
smallest possible factors, but as symbol conjunctions. By
that logic, in a simplistic example, one could factor the
symbol combination “17” as the list of symbols within its
“alphabet” of definition, the Arabic numerals, displayed in
standard increasing or decreasing order of their numeric
value, which would be the conjunction logic, in which case
the factors would be {2,3,4,5,6}, or for the symbolic factor
84 the result would be {7,6,5}.

[0158] This factoring algorithm is not numeric either, i.e.
as the inverse of multiplication, instead purely semiotic as an
“inverse” of symbol combinations rules, which are based on
first order logic. Consequently, to factor a symbol pair s' and
s", taken both as symbols represented by binary sequences
of the same length, the goal has to find the sequences of
symbols, each of which, in turn, according to given sequence
of logic connectives, given a sL,z"l(n), T(m), L(w))=p2(n),
and applied a given number of times equal to the number of
logic connectives—hereafter called the “expansion factor”.
One can also choose to perform a fixed additional symbolic
factorisation between each selected factor, but not record
such factors, the amount of which is called the “implicit
factor”.

[0159] The logic sequence is called the logic context of the
symbolic factoring. FIG. 3 illustrates a sequence of a sym-
bolic factoring of two symbols with an expansion factor of
4 and an implicit factor of O, with a logic connective
sequence of (NAND, CIP, XOR, AND), using the function
$,.," (). Starting from s' as p1(), s" as T(), symbolic factor
f, instead of p2(), one applies the sL,z"l() recursively
substituting £, to T(), f5 to p2(), and so on and so forth until
f, is finally computed for the full factor sequence with
expansion factor 4. One can check the correctness of the
symbolic factoring by directly applying the chain of logical
operators/connectors in the opposite order until s" is finally
computed.

[0160] Expanded Key Derivation by Symbolic Factoring
[0161] As for practical purposes, the length of any cipher
key ought to be kept short, between 256 and 512 bits, so it
can be agreed upon over communication mediums with

US 2022/0382521 Al

limited frame size. We have to derive a stream of symbols
from the cipher key. The invention described herein does
however not use traditional key derivation methods such as
Berypt, Scrypt, HKDF, or even ChaCha20, if used in such a
fashion. ChaCha20 can generate a number of streams equal
to 2 at the 64th power, with each stream cycling with the
counter, 2 at the 32nd times 512 equalling 256 Gigabytes, as
used in TLS, depending on implementations.

[0162] The methods of the invention use as the method for
deriving an expanded sequence, hereafter called “K”, from
a short relatively short key the method of “symbolic factor-
ing”, as outlined above, and previously developed by the
authors of this invention. Its use is completely novel in
cryptography. The authors believe is has very good charac-
teristics for use in modern cryptography, amongst which a
much longer cycle before repetition than for example Cha-
Cha20.

[0163] Depending on the embodiments of this invention,
the number of streams is the power of two equal to the
number of bits of the key, and the cycle is larger by several
orders of magnitude. Key derivation function based on
hashes “lose” information; most other functions create what
in effect are polynomials structures which have an intrinsic
structure—an implicit information in and of itself. Symbolic
factoring generates a sequence of symbols as a non-contex-
tual language, built for all practical purposes as an aperiodic
semantic combination set of rules. As the factoring rules are
not numeric, they are directly indeterminate for any given
symbol sequence as per both Gddel and Kolmogorov, in
relation to the generalized word problem for abstract alge-
bras.

[0164] To preserve the security of the cipher, each symbol
of this derived sequence is used only once for each
encrypted message. Once all symbols are within an
expanded sequence are used, and if the message encryption
process is not finished, said sequence ought to be symboli-
cally factored in its entirety again to generate a new
sequence, preferably not using symbols within a distance in
the sequence smaller than the expansion factor.

[0165] Generative Logic Application

[0166] Within the methods of this invention, logic systems
are constructed by symbolically factoring a sequence of
symbols contained in the cipher key into an expanded
sequence K, then by mapping said symbols to actual logic
connectives using a secret “logic alphabet”, whereas each
unique symbol of the alphabet points to a given unique logic
connective. The result is a sequence w,, w,, . . ., W,,, with
each w,, pointing to a given logic connective L(w), which
depending on the embodiments, is part of the invention’s
cipher key, or a logic function/connective sequence also
contained within the cipher key, or interpreted using rules
contained in the cipher key, according to either given
expansion and implicit factors, or expansion and implicit
factors contained in the key. Each symbol of this expanded,
“derived sequence”, is then used only once within each
execution of cipher for a given message, as outlined above.
[0167] The generative logic system sequence is then
applied in sequence to each symbol of message with the
already last computed symbol of sequence already trans-
formed with logic connective sequence. This is achieved,
with the application function to groups of truth values, as
binary encodings of symbols according to a given secret
alphabet, for a given symbol sequence indexed by i, for
pl=T,_,, and p2, the symbol of the current symbol being

Dec. 1, 2022

encoded, and u selected by a pseudo-random number
sequence, preferably the result of symbolic factoring: '*(T,_
1(n),p2,(n), L(w))=T,(w,n). The result of the ciphertext is the
sequence {T,, T,, ..., T, }, with 1, being the length of the
sequence to be transformed by generative logic.

[0168] In this invention, to be able to be decoded in
reverse, i.e. decrypted, an additional information is neces-
sary and thus computed, as the symbol (i.e. predicate)
resulting from the application of logic connectives loses
information. As such, it is not possible to deduct from the
last Ti:zf symbol alone in the sequence encoded by the
generative logic the exact combination of original predi-
cates. As such, a given “residual” truth value r,, whose truth
table is given in FIG. 10, for a given secret logic alphabet as
given in FIGS. 6 and 10. Consequently, for a given message
symbol m,, and both an expanded application function
r(r,_, (n),m,(n), L(w))=(sli(w,n); r,), resulting in a symbols
sequence s;.S,, . . . , 8,0y, as exemplified in figure, as well
as an inverse resolution function R, ~(r,_,,s,, L(w,)), which
for a given symbol s, function L(w,), and residual r,,
provides the original m, and r,_,, which applied through the
application function r(), would give said r, and s,.

[0169] Decryption is thus achieved by applying R,~!()
recursively starting with the last recorded r and s, until
needed.

[0170] Non-Ordinal Symbol Transposition

[0171] Transposition with the methods of the invention is
done by means of a transposition function, which determin-
istically selects symbols in a message and rearranges said
symbols from positions poles according to a non-repeating
sequence of symbols, here the expanded sequence K. Classic
numbering system are built over totally ordered set which
arranged number, such ordinal numbers sets (for example
integers { ... -1, 0, 1, 2, 3}, real numbers { . .. -0.4, 0.0,
3.14}), algebraic groups, rings or lattices build thereupon,
etc. Number systems are, amongst other things elements,
built with a so-called successor function, which with integer
positive numbers for example gives the evolution from 0 to
1,1 to 2, etc.

[0172] The methods of the invention generate based on
cipher key and the expanded sequence K a unique totally
ordered set T. The set is ordered as a topology which at a
minimum specifies that there must be at least two, or more,
successors elements for elements in the set, as shown in FIG.
4, showing the affinity matrix and succession graph for the
successor function. The successor function is also accom-
panied with a counting rule indicating that from a given
element, the same successor, out of the minimum of two,
cannot be “counted” twice in a row, and the operation of
“counting” gets a new definition.

[0173] As an example, this signifies in the example of
FIG. 4, that starting from 1, and counting 5 from it, one goes
first to two through the first successor of 1, which is 2, then
5, then 7, then 2 again. However, following the rule that a
given successor for an element may not be used twice in a
row, we choose the second successor, which in this case is
6. Then, if one wants then to count 4 starting from 6, one
goes from 6 to 4, 4 to 3, 3 to 2, and this time to 5 again. So,
in the totally ordered set given in the example of FIG. 4,
which is in effect also a non-commutative group, counting 9
from 1 gives 5.

[0174] Counting thus needs an initial state for the succes-
sors in a given ordered set T, a starting element, and a
“distance” to count over the topology of the set’s ordering.

US 2022/0382521 Al

[0175] Constituting a successor function T can be done in
using the binary representation of the symbols of K, with
one (or more) bits representing the initial ordering state of
the successors from a given elements, represented here in
FIG. 4 with on bit with + for the first and — for the second.
Several other bits are used depending on the number of
symbols to represent the symbols being counted upon. In the
example of FIG. 5 corresponding to the example of FIG. 4,
one can see with 4 bits from a given example segment of a
K sequence how the affinity matrix above is constituted. The
totally ordered set of n elements are constituted by reading
(n—1) bit symbols from K at a minimum of (nl2) times,
ignoring any self-reference (i.e. a number succeeding to
itself), as can be seen in the example of FIG. 5.

[0176] Symbols to be transposed are switched with sym-
bols which are selected in traditional numeric ordinal order
along the plaintext. The position is calculated by adding to
the ordinal numeric index position of the preceding symbol
transposed a value which is a binary value chosen by a
selection function. The selection function counts over the
totally ordered set “T” using the successor function. The
symbol at end of the count then gives an index position
within a given alphabet. The index value is the value added
to the position. and choses within a secret alphabet. Within
a round of transposition, any symbol of the plaintext may
only be selected once.

[0177] The transposition of symbols is done relative to
index positions within the plaintext which are themselves
generative, herein called “attraction poles”. The position of
the poles is calculated by taking a fixed number of symbols
from K, at a minimum performing a multiplication of their
binary value. Several poles may be chosen, each position for
each pole is being computed relatively to the ordinal
numeric index position of the preceding pole.

[0178] Enough poles are generated up until all symbols of
the original message are transposed once. The preferable
maximum number of poles in embodiments ought to be

Poax = fo(K, pu1)V (1 <n< (quot(f)—m6)><4)).

Each time a pole is needed, three new symbols of K, smaller
are chosen as factors of a number to which the numeric value
of the binary representation of the symbol is added, which
gives the position of the fourth pole.

[0179] Given K {8, 3, 4. ...}, starting from 8, counting
3over T: 8to 4, 4 to 3, 3 to 2. For a given pole p; at index
position 5, the symbol to be transposed is located at index 7.
Given a message {1,a,5,c,f4,9,8,3 . . . }, this signifies
switching the symbol 1 at index 1 and 9 at index 7 (see
FIGS. 4 and 6).

[0180] The conjunction of a non-repetitive ordinality,
which is non numeric and the function of the selection posed
on the same base, doubled by poles also generatively chosen
using K gives a very efficient diffusion parameter.

[0181] Combination of Above-Mentioned Principles and
Techniques into a Cipher

[0182] The methods of this invention thus generates logic
systems to restructure the messages from sequences of
symbols-as-signifiers to symbols-as-transformations, and
then transform the resulting symbols sequences into another
symbol sequence this time devoid of signification, by apply-
ing recursively a pseudo-random sequence of logic functions

Dec. 1, 2022

forming a contextual language thus also generated by the
logic system and the underlying message being encrypted.
[0183] The latter operation however has created additional
information in the form of two residual symbol at the
ciphertext’s extremities, in addition to the authentication tag.
These are indices to regenerate both the logic system and the
contextual logic language, and must be subsumed into the
ciphertext, which is why shorter another set of permutation
is performed.

[0184] As the permutation functions are themselves recur-
sive and driven by the symbolically derived sequence, and
because start of the recursion is hidden within the number of
permutations of symbols, driven by the same, the attacker
must first enumerate all possible permutations of the sym-
bols of the ciphertext, and then only be able to attack directly
the cipher. Without the key, any attacker only has an abstract
representation of an arbitrary logic system, with no extra-
neous information allowing said attacker to decode the
system.

[0185] Due to the methods of this invention such enu-
merations are longer than brute-force cryptanalysis. As per
Godel’s incompleteness theorem, the attacker has a no
system, only a tautology which cannot “explain” itself
without the key, which is thus fully undecidable.

Description of the System of the Invention

[0186] As part of the system and method of the embodi-
ments of the invention, there is a central processing unit chip
(which in embodiments can be a general purpose micropro-
cessor, or a general purpose microcontroller, or a field
programmable gate array, or any other kind of electronic,
optic, or quantum electronic instruction execution unit), a
random access memory electronic chip, or any equivalent
direct memory access chip (such as cache memory, static
random access memory, “flash” memory, and any other kind
of electronic, electrostatic, magnetic, or optical direct access
memory system), as well as a cipher algorithm recorded
either in the random access algorithm in the form of a list of
instructions in a format receivable by the central processing
unit, or in a computer machine language which can be either
compiled or translated to such a list of instructions which
can be directly interpreted by the central processing unit.
[0187] In embodiments, such an algorithm may be any
symmetric algorithm such as but not limited to block
ciphers, stream ciphers, chained block ciphers, chained
block ciphers with authentication tags, chained block
ciphers with authentication and integrity check tags. In
embodiments, the invention is then implemented as either a
source code library of named or unnamed software func-
tions, a library of named or unnamed software functions
compiled into object code which can be interpreted by the
central processing unit, or a software program simulating a
central processing unit with a reduced instruction set but
sufficient to implement the invention, or as a physical circuit
embedded on an external chip directly physically connected
to at least the computing system’s central processing unit.
The system may or may not have an external physical
memory storage system.

[0188] Pre-Requisites for the Methods

[0189] The system must have recorded in random access
or permanent memory of the invention’s central processing
unit:

[0190] A message or plaintext “m” to be encrypted, stored
as a finite sequence of bits, whereas me {0,1}*. The length

US 2022/0382521 Al

of the message ought preferably for practical purposes be
larger than 1(m)=1,,=768 bits, however, in case the authen-
tication tag is omitted, it must be at a minimum of 1, >128
bits.

[0191] A key “k” for the symmetric cipher, stored as a
finite sequence of bits, whereas k={0,1}*. The length of the
key sequence ought for practical purposes be larger than
1,=128 bits to provide for sufficient levels of entropy, in this
embodiment, 1,=256 bits.

[0192] A base semiotic set “A,” such as Az={a, , a,,, .
.., 8,5, whereas a,,€{0,1}*, each a sequence of binary
symbols of length b, indexed by u starting with 1, and
ordered according the order of the numeric values of each
symbol interpreted as a binary numeral. The minimal length
b for each symbol ought preferably for practical purposes to
be b>6, although it must be at a minimum of bz4, as
exemplified in this embodiment and in FIG. 7.

[0193] A reference logic index containing all 16 first order
logic functions, expressed at a minimum as a composition of
the basic logic functions AND, OR, NOT. In embodiments,
such functions are represented in memory either as
sequences of microcode instructions for the invention’s
system’s processor, or as sequences and combinations of the
most basic logic functions or the minimum set of logic gates
(AND, OR, NOT), operating over two central processing
unit registers, providing the result in a third register.
[0194] A base logic set “Lz” of 16 memory pointers
addresses to functions of the reference logic index, ordered
and indexed by “v” starting with 1, arranged in standard
order of the values in binary base numerals of the represen-
tation of each such function’s it’s truth table. L is accom-
panied by a selection function L4(v), returning instructions
of the first order logic function located at the memory
address pointed by the pointer indexed by v, as exemplified
in this embodiment and in FIG. 8.

[0195] A keyed authentication function for the message m
resulting in the authentication tag HMAC(m,k,)=h, repre-
sented as a binary sequence, or any other function using at
least the m and k, as parameters, but in all cases represented
as a sequence of microcode instructions for the invention’s
system’s processor. For practical purposes, keyed authenti-
cation function ought to be either a standard recent function
such as SHA3-256, or a symbolic conjunction of the mes-
sage using the logic context of the key (see further below).

[0196] An authentication key “k,”, for use in a keyed
authentication function (i.e. HMAC), stored as a finite
sequence of bits, whereas k,&{0,1}*. The length of the key
sequence ought for practical purposes be larger than 1, 2256
bits to provide for sufficient levels of security aéainst
quantum attacks (corresponding to collision resistance of
128 bits of entropy).

[0197] Transformation of the Inputs and Preparation of the
Generative Logic Ruleset

[0198] The key k is not in the general form of a binary
sequence representing one or two random large numbers
used in various algebraic calculations, as is done in tradi-
tional ciphers designs or newer quantum resistance ciphers.
In the methods of this invention, the key k is in effect a
composite data structure containing sequentially several
different types of information.

[0199] The k binary sequence can thus be segmented into
the parameters necessary for the setup of the ciphers. Each
parameter is in itself a data structure, which is after seg-

23

Dec. 1, 2022

mentation stored in random access memory or permanent
memory of the invention’s system.

[0200] A secret semiotic set “A,”. A, is encoded as a
binary sequence of length bx2°=A,, and itself segmented in
2% binary symbols, each representing a unique binary value
between 1 and 2” randomly arranged. For b=4, the length of
1(A,)=64, in which case bits no 1 to no 64 are copied to the
system’s random-access memory or in its permanent
memory as the set A,. In all cases, A, is itself indexed by “d”.
Each value of A, corresponds to an index u of Agz. A, is
accompanied by a selection function A,(a)=u, as well as an
inverse resolution function A,~'(s)=a, which for a given
symbol s€EA; returns said symbol’s index a within A,, so
that Az(uw)=A;'(s).

[0201] A secret logic set “L.,” L, is encoded as a binary
sequence of a length of 64 bits, and itself segmented as 16
elements of 4 bits long, each element representing unique
value between 1 and 16, in an order randomly arranged
within L.

[0202] L, is itself indexed by w, each corresponding to a
unique element index v of. L, is accompanied by a selection
function L, (w)=v, as well as an inverse resolution function
L,~'(f)=w, which for a given function within L returns the
index value within L, for said function.

[0203] A set of secret residual indexes “R,” R, encoded as
a binary sequence of a length of 128 bits, and itself seg-
mented as 16 elements of 4 bits long. The elements of R are
indices of functions in [, used to compute “residual” truth
values for corresponding “k” index in L.

[0204] Each symbol in R, thus refers to a bijective func-
tion pair for any given truth value and associated residual
truth value for the first order logic functions of Lz, in
addition to the truth values computed by each function, thus
allowing us to define an inverse isomorphic function over k
for each one, making decryption possible for any symbol
sequence encrypted with generative logic.

[0205] R, is itself indexed by r, each corresponding to a
value indexed by w. by an accompanying selection function
such as L, (1) DR (r)¥Vr=], as well as an inverse resolution
function R,7!(t,s, f)=(p,,p,), which in mathematical terms,
given a first order logic function, a resulting truth value and
a residual truth value, deduces the two original predicate
logic proposals used to compute said resulting truth value
and residual truth value for a given function L,(1) returns the
index value within L, for said function.

[0206] The logic connectors NQ, XOR, XNOR, RCM
residual truth value encodings corresponding to the tradi-
tional t truth values may be randomly selected from the set
{1100,0011}. The logic connectors NIP, NAND, AND, 1P
residual truth value encodings corresponding to the tradi-
tional t truth values first two may be randomly selected from
the set {00,01,10,11}, while the next two pay be selected
randomly from the set {01,10}. The logic connectors NOR,
CNI, CIP, OR residual truth value encodings corresponding
to the traditional t truth values first two may be randomly
selected from the set {01,10}, while the next two pay be
selected randomly from the set {00,01,10,11}. The logic
connectors FAL, NP, LCM, TRU residual truth value encod-
ings corresponding to the traditional t truth values may be
randomly selected from the set {1010,1001,0110,0101}.
FIG. 12 shows an example of such an R, set with the
correspondences within [,. These residual values sets for

US 2022/0382521 Al

each first order logic function can alternatively be expressed
as the result of a first order logic functions from Lz whose
truth table is equivalent.

[0207] A secret logic context “C,”. C, is encoded as a
binary sequence for which 1(C,)=48 bits for b>4, and larger
for larger values of b. The generative context contains a list
of selectors for logic function selectors within I, used for to
generate logic models, as well as perform symbolic factor-
ing and logic synthesis.

[0208] C, is indexed by c, and is accompanied by a
selection function C,(c)=w, each element thus selection a
logic function pointer within [,. Each element in C, is a
sequence of random non-unique values between 1 and 16,
coded over 4 bits; C, ought preferably to have more than
twelve elements, whereas the minimum is three within for
the methods of this invention.

[0209] A semantic generation root “G”. G is encoded as
a binary sequence of a length of minimum 2° elements,
which, depending on the current context within a symbolic
sequence, to select the semantic composition rule over C,,
which within the embodiments of the invention is done
using index ¢ as a cursor over C,, and providing each
implicit inference between two symbols (see f, further
below). In its simplest form, G, is a matrix, which, as applied
as applied in FIG. 19, has each column o corresponding to
a given symbol within [,, while each successive row p
provides an advancement over ¢ within C,.

[0210] G, as a matrix, has 2® columns and f, rows, and is
indexed respectively by o and p. G, is also accompanied by
a selection function G,(0,p)=c—C,(c,_,+G.(0, p))=c,,, thus
providing an offset to apply to a given context for the
selection of the next inference/logic function to apply or
infer, for example, in performing a symbolic factoring. The
column o is selected, for a context defined by a preceding
symbol s in a sequence of symbols by A,~!(s)=o.

[0211] A symbolic selection factor “f,)”. f, gives the
number of symbolic factors which have to be conjugated to
produce a given symbolic composition, for example if to
produce two symbols given two by two, in sequence. It is
used for example as a parameter for symbolic factoring.
Other interpretations and usages are possible, depending on
the composition rules, implicit or explicit, for example to
produce triplets of symbols.

[0212] The minimum value for £, is of two bits for f_=3,
while for the practical purposes of this invention it ought to
have a value 3=f_,=16 coded over 4 bits.

[0213] A symbolic implicit inference factor “f,”. f, gives
the number of signifiers or symbols which can be implicitly
and recursively inferred, between two or more symbol
depending on the interpretation rules (see f,), in using the
language generated by the semantic context and generation
roots within a coherent sequence of symbols generated by a
conjugation of said symbols logic functions within said
language and generating context.

[0214] The minimum value for f, is of 1 bit, while for the
practical purposes of this invention it ought to have a value
of f,>6, so that 1=f,216 coded over 4 bits.

[0215] An initialisation word “IW,”. IW, is an initialisa-
tion as a random sequence of bits, segmented as a sequence
of symbols (thus an initialisation word, not a numeric
initialisation vector) IW, has a minimal length of 76 bits of
length, for the practical purposes of this invention a prefer-
able length for sufficient entropy is 132 bits (see diagram
14).

Dec. 1, 2022

[0216] Setup for the Generative Logic Synthesis Cipher
[0217] Segment m in short bit sequences of length b; then
map each one to its symbol index in Az using the function
B(m; Ag)=mjg, applying Az to each segmented bit
sequence. my is indexed by n, and is accompanied by a
selection function mg[n,]; then,

[0218] Derive a pseudo-random symbol sequence “K”. K
is derived from I by symbolic factoring. As the latter might
not provide a sufficiently long stream sequence to encrypt
longer m messages, as such, a pseudo-random sequence of
required length is, shall, for the methods of this invention, be
derived from I.

[0219] Within the methods of this invention, derivation is
performed by symbolic factoring of pairs of symbols within
15, whereas the conjunction logic corresponds to searching
by inference a symbol sequence which, conjugated by
applying logic functions a according to a given secret logic
context and semantic root, result in the symbol sequence 5.
In other words, which sequence of symbols and logic actions
results in the two given symbols. Each symbol pair is thus
the result of a coherent conjugation, within the linguistic
context and logic sequence defined by I, and f,, of a given
set of f symbols. Implicit sequences of f, symbols and logic
actions are also calculated between two encoded symbols
(i.e. implicit predicates, as the basic elements of the lan-
guage are first order logic functions).

[0220] !'.°(15 [ng]; I3[n+1])=K is an algorithm which is
applied in n, V[(I(mg)/f)+n,]=n,=l; iterations, starting with
symbol sequence I, and then recursively to all resulting
intermediary sequences until the requisite sequence length is
achieved. The algorithm recursively searches, starting from
the second symbol Iz[n,+1], the preceding symbol in the
sequence, using a logic function selected depending on said
symbol by an inverse resolution to the function a() as
defined right above, similar in principle to R,7!(), defined
earlier.

[0221] The aL,z"l(Lk"l[K,Hl], 1z[n,],15[n,+1]) function
deduces from each successive bit of the two given symbols,
and from the truth table of selected function pointed over L,
on L the successive bits of p2. The function is applied
recursively. This latter function is applied recursively in
F.x(f +1) iterations (i.e. colloquially, “applied x times over
the result over the result of the preceding application) with
only each “F,”* symbol encoded in the factor sequence, the
rest being implicit.

[0222] The K sequence is indexed by n, with a selection
function K[n,]; then,

[0223] Conjugate an “m,,,” initialization symbol
sequence such as m,,,~(my ;, My, . . ., m,,)V[(m, ,EAz)
A(1zn,zl(m,)], with preferably l(ml.m.t)<27’ by applying
the application function init(L,[C,[n,]], Iz [2xc], Iz [(2xc)+
1]) using logic operators from L selected by L (LIk(Clk
(n,))) to successive pairs of elements of IW, segmented in
symbols of length b as I, which will result in a sequence
with half the number of elements. Record the resulting
sequence as m,,, continue recursively applying init()
preferably in embodiments, only 16 symbols and record the
sequence as m,,;,. Continue then applying init() to the
intermediary symbol sequences until only two symbols m,
and m, , remain, which are also t be recorded;

[0224] Compute a generative logic function sequence
“ED,”. The sequence of logic actions to be applied to the
ciphertext is constituted by mapping each element of n,,
interpreted as a pointer to the corresponding index repre-

US 2022/0382521 Al

sented by said symbol of K as its numeric value w indexing
L,, and then associated the truth values within the corre-
sponding residual index within R, with K[n |=w=r. Each

element of EDy, thus takes the form of a pair (f,€L ; F.€

£) with each f, and f pointing to a given function within
L through L,.

[0225] The resulting suite ED,, indexed with n,, and a
selection function E(n,) is thus computed with the so that the
resulting suite ED=%, _," (L, (K[n,]); Ru(L; ' (K[n,]);
Ry(L, Kin,));

[0226] Encryption by Generative Logic

[0227] Transform mg into a restructuration sequence “M;”
my is not used directly in the encryption, rather, what is
being encrypted is a sequence which allows, given a secret
alphabet A,, and a computed expanded sequence K, to
reconstruct mg.

[0228] Mathematically, we do not encrypt direct signifiers,
but rather a sequence of morphisms as a sequence of relative
functional and operative references. The structuration is
recursive, each new coded symbol pointing to a functional
operand which depends on the preceding operands as well as
to the current element of m; whose reconstruction needs to
be encoded.

[0229] The structuration can either be done in relation to
a fixed artificial language, for example the set of first order
logic functions, if there is a sufficient number of coding bits
b>5. The evolution can also be encoded with regard to a
simpler evolution over a set of binary symbols, as exempli-
fied in the embodiment described hereunder using the algo-
rithm T ,(mg, A, K) to construct the symbol sequence My,
here as signifiers are encoded as being part of a context L,
M; being indexed by n,,, and accompanied by a selection
function Mg¢[n,,[;

[0230] Whereas a function T(A,; a;; a,) returns the edit
distance within a given L, of between two symbols a, and a,,
the particular form of that function used in embodiments is
T(A,,mz+m,, [n-1], mz+m, [n], K[n]). As a consequence,
m,,;, and my are concatenated before as My[n,]. The result-
ing recursive sequence 2, _,"71T(A,, A, Mg[n,]) is com-
puted with 1:=1(m,,,,)+1(mp); only the last 1(my) elements in
the sequence are recorded in M;. My is indexed by ng, and
accompanied by a selection function M¢[n;]; then,

[0231] A more involved version providing for higher
levels of undecidability while maintaining good encryption
performance can be encoded with a list of first order logic
functions within L, to be recursively applied to pairs of
symbols from mg[n,-2] and My to get mz[n,], also starting
with the symbol m,.

[0232] Transpose the elements of M; into a sequence
“M;” The transposition is done using a symbol selection
function mapped over M, by a totally ordered set T, gener-
ated from k, and contextually evolving over K. The algo-
rithm is shown in FIG. 15.

[0233] The symbols positional index in My are sequen-
tially permuted (i.e. the symbols are “swapped” with each
other starting with a set of attractor poles “P,” whose relative
position over M; is generated by K, using the attractor
function P(p(M[n; ~1]), M[n;], K[ng]). My is indexed by
n, and accompanied by a selection function M,[n,].

[0234] Infer a symbol sequence M, using the generated
logic sequence ED. The message itself is not encrypted,
rather what is being encrypted is the restructuration
sequence, which applies the logic function sequence ED,-
recursively to M. The resulting symbol sequence M, how-

Dec. 1, 2022

ever only retaining the symbol encodings starting with the
symbols of M, as what precedes is implicitly encoded from
My

[0235] S_, indexed by n, and accompanied by a selection
function S[n, is computed using an application function
(K, M,, B, n)) such as r ((r,,_; XOR K[n]), M, ED[n,])=(s,;;
r,). r(K, M,, E.n,), selects a first order logic function within
EDy, the residual value of the preceding symbol ED, being
encoded, as well as the current symbol within M/{n.], and
returns as a result an encoding symbol s, , and a residual
value r,, to be used to compute s(n+1). ’

[0236] The resulting sequence M,=r(K, M,, E, n,), indexed
by n, and accompanied by a selection function S[n_], is thus
computed recursively by M=%, _ IR, M, B, n)\/R(k,
M,, E,N,_,)], discarding all r,, symbols but recording the last
1;. in memory. Symbols of M, and r,, may be substituted by
equivalents in A;

[0237] FIG. 17 shows an example of the recursive trans-
formation from the logic function message M{n] (third row
of FIG. 17) to the transformed logic function message M, [n]
(fifth row here indicated as S[n]), where n indicates the
symbols of the corresponding messages and the respective
recursion steps (columns of FIG. 17). The first row shows
the pseudo-random symbol K of the respective recursion
step. The third row shows first order logic function of the
logic function sequence of the current recursion step. The
fifth row shows a residual symbol of the respective recursion
step. The second row shows the XOR combination of the
residual symbol of the preceding recursion step and the
pseudo-random symbol of the respective recursion step. The
symbol of the transformed logic function message of the
current recursion step (e.g. n=2) is obtained by applying the
first order logic function of the current recursion step
(NAND) to the two input symbols of the current recursion
step (second and third row of column n=2) and reading out
the truth values. The first order logic function NAND is
applied bitwise to the two symbols. The first bit of the first
input symbol (0011) is O and the first bit of the second input
symbol (1100) is 1 for the current recursion step. Using now
the first order logic function NAND as shown in FIG. 12
results that the combination of 0 as first proposition and 1 as
second proposition is given in the 3rd line of NAND, so that
the 3rd line of the truth value tn gives the resulting first bit
value 1 of the transformed logic function message symbol of
the current recursion step. Analogously, the 3rd line of the
residual truth value Rk gives the resulting first bit value 1 of
the residual symbol of the current recursion step. Since the
second bit of the first and second input symbol are equal to
the first bit, the second bit of the transformed logic function
message symbol of the current recursion step is also 1 and
the second bit of the residual symbol of the current recursion
step is also 1. The third bit of the first input symbol (0011)
is 1 and the third bit of the second input symbol (1100) is O
for the current recursion step. Using now the first order logic
function NAND as shown in FIG. 12 results that the
combination of 1 as first proposition and O as second
proposition is given in the 2nd line of NAND, so that the 2nd
line of the truth value tn gives the resulting third bit value 1
of the transformed logic function message symbol of the
current recursion step. Analogously, the 2nd line of the
residual truth value Rk gives the resulting third bit value 0
of the residual symbol of the current recursion step. Since
the fourth bit of the first and second input symbol are equal
to the third bit, the fourth bit of the transformed logic

US 2022/0382521 Al

function message symbol of the current recursion step is also
1 and the second bit of the residual symbol of the current
recursion step is also 0. So, the first output symbol yields
1111 (transformed logic function message symbol of the
current recursion step) and the second output symbol (1100)
(residual symbol of the current recursion step). The second
output symbol (1100) is combined via XOR with the
pseudo-random symbol K (1010) of the next recursion step
(n=3) resulting in the first input symbol of the next recursion
step (1011). Then, the described recursion process is
repeated. This example transforms the logic function mes-
sage symbol-wise. It is however also possible to do this
bit-wise.

[0238] Compute the authentication tag h for mz using the
given function h(mg, Iz) or any other given value of k,
instead of I, or any given function keyed message authen-
tication function which can be substituted in its stead, using
the given recorded instruction sequence and parameters
required by such a function, as long as said sequence
resulting tag length is greater than 40 bits and shorter than
120 bits for b>4; then,

[0239] Transpose the concatenation of the h authentication
tag and r,, into M,, using the same transposition as for M-
above, except in this case transposing bits of the concatena-
tion (h\/r,) within M,, thus forming the final ciphertext
sequence ¢, which can be then recorded as bytes ready for
storage or transmission.

[0240] Decryption by Generative Logic Synthesis

[0241] Perform all the steps above up to 4.4; then verify
the authentication tag h with k,, M, and m,,,,,, by reconsti-
tuting the transposition sequence using the corresponding
segment of K used to transpose from h and r,, to ¢ originally,
then by permutating bits in inverse order to recover these
two concatenated sequences along with M, then verify h; if
it succeeds, segment M, in symbols of length b; if it fails,
stop decrypting; otherwise,

[0242] Deduct M, from M using the generated logic
sequence ED by recovering each intermediary (r,, _, xorK,,)
symbol from the former sequence by recursively applyingg
theR,™* (t,,, n,, B[n.) M1y -n]; (r, _, xor K[])) inverse
bijective resolution function pair to edach (t, s) pair of M,
starting from the r,, and the first symbol s of M to the last
symbol s, of M, for 1=n,<1(M,,). then, recover the next r for
the next s symbol by applying the inverse resolution func-
tion sL,l"l(K[ng], (r,qg_1 xor K[n.]), XOR).

[0243] FIG. 18 shows the example of the recursive trans-
formation from FIG. 17 but for decryption. For decryption,
the transformed logic function message symbols S (fifth
row) and the last residual symbol (sixth-row and last col-
umn) are received as inputs. The recursive process starts
now from the end (e.g. n=5). Now, the first order function (in
the fourth direction) of the current recursion step (here
XNOR) is used. The transformed logic function message
symbol of the current recursion step (1011) is used as first
input representing the truth values and the residual symbol
of the current recursion step (1101) is used as the second
input representing the residual truth value (0010). The first
order logic function XNOR is applied bitwise to the two
input symbols. The first bit of the first input symbol (1101)
is 1 and the first bit of the second input symbol (0010) is 1
for the current recursion step. Using now the first order logic
function XNOR as shown in FIG. 12 results that the com-
bination of 0 as truth value and 1 as residual truth value is
given in the 3rd line of XNOR, so that the 3rd line of the first

Dec. 1, 2022

proposition pl gives the resulting first bit value 0 of the first
output symbol of the current recursion step. Analogously,
the 3rd line of the second proposition gives the resulting first
bit value 1 of the second output symbol of the current
recursion step. The same procedure is applied to the other
bits of the two input symbols to obtain the remaining bits of
the two output symbols. The second output symbol of the
current recursion step corresponds to the logic function
message symbol of the current recursion step. The first
output symbol is combined with the pseudo-random symbol
of the current recursion step via an inverse XOR to obtain
the second input symbol of the next recursion step (n=4).
Then, the described recursion process is repeated. This
example transforms the logic function message symbol-
wise. It is however also possible to do this bit-wise.
[0244] Transpose M,; back to M, back by reconstituting
the transposition sequence using the corresponding segment
of K used to transpose to M originally, then perform the
permutations in inverse order to recover My; then

[0245] Reconstruct my from the restructuration sequence
“M;” according to a context A,, by generating using K the
sequence of symbols M=%, _ " 1SIDA (A, (K][n])+n,
1), with accompanying selection function M_[n,]; then
reconstituting m starting with from the last symbol in My,
recovering m, with T'(A, M [n -Mn~1]; Msn,])
mg[n,]; then combine symbols of my in pairs to recover the
message m.

[0246] The described example was for a symmetric cipher,
i.e. the same symmetric key is used for encryption and
decryption. However, also an asymmetric cipher can be
created with the present invention.

1. Method decrypting and/or encrypting an input mes-
sage:

providing five, six, or more of sixteen first order logic

functions;

decrypting and/or encrypting the input message based on

the at least six first order logic functions.

2. Method according to claim 1, wherein at least two of
said first order function are chosen from LCM, RCM, XOR,
XNOR, NQ, NR.

3. Method according to claim 1, wherein a residual truth
value is associated to each of the at least six first order logic
functions, or as equivalents to one of the first order logic
functions so as to form a bijective function combination pair.

4. Method according to claim 1, wherein a generative
logic ruleset is defined, wherein the generative logic ruleset
comprises a logic set (Lk) comprising the at least five first
order functions and a semiotic set (Ak) comprising a number
of symbols in a certain order, wherein the decryption and/or
encryption of the input message (m) is based on generative
logic ruleset.

5. Method according to claim 4, wherein the generative
logic ruleset, the logic set (Lk) and/or the semiotic set (Ak)
depends on the cipher key (k).

6. Method according to claim 1, wherein a pseudo-
random symbol sequence (K) is determined based on the
cipher key (k).

7. Method according to claim 6, wherein an initialisation
word (IWk) is derived from the cipher key (k) and the
pseudo-random symbol sequence (K) is derived from the
initialisation word (IWk) by an expansion function which
increases the length of the pseudo-random symbol sequence
(K) compared to the initialisation word (IWk),

US 2022/0382521 Al

wherein symbolic factoring is used as an expansion
function, wherein symbolic factoring uses the logic set
(Lk) and the semiotic set (Ak) to derive the pseudo-
random symbol sequence (K) from the initialisation
word (IWk),
wherein an input symbol sequence is based on the ini-
tialisation word (IWk), wherein symbolic factoring
combines a first input symbol and a second input
symbol of the input symbol sequence by a first order
logic function selected for the combination of the two
symbols to derive at least one output symbol, wherein
an output symbol sequence is based on the at least one
output symbol, wherein the pseudo-random symbol
sequence (K) is based on the output symbol sequence.
8. Method according to claim 1, wherein decrypting
and/or encrypting the input message comprises at least one
processing step including processing an intermediate input
message to obtain an intermediate output message, wherein
the intermediate input message is based on the input mes-
sage, wherein an output message of the decryption or
encryption is based on the intermediate output message.
9. Method according to claim 8, wherein the at least one
processing step comprises a structuring step, wherein
either the structuring step comprises for encrypting the
input message the following steps:
provide an initialisation symbol sequence (minit);
combine, preferably concatenate the initialisation sym-
bol sequence (minit) with an intermediate input
message of the structuring step to obtain a combined
symbol sequence;
transform the symbols of the combined symbol
sequence based on the semiotic set (Ak) and/or the
logic context and based on the pseudo-random sym-
bol sequence (K) into a transformed symbol
sequence, wherein an intermediate output message
of the structuring step depends on the transformed
symbol sequence or the structuring step comprises
for decrypting the input message the following steps:
provide an initialisation symbol sequence (minit);
determine a part of a retransformed symbol sequence
based on the initialisation symbol sequence;
retransform the symbols of the intermediate input mes-
sage into the retransformed symbol sequence based
on the semiotic set (Ak) and/or the logic context and
based on the pseudo-random symbol sequence (K),
wherein an

intermediate output message of the structuring step
depends on the retransformed symbol sequence.
10. Method according to claim 8, wherein the at least one
processing step comprises a transposition step, wherein
either the transposition step comprises for encrypting the
input message the step of transposing symbols or bits of
an intermediate input message of the transposition step
based on the pseudo-random symbol sequence (K) to
obtain a transposed sequence, wherein an intermediate
output message of the transposition step depends on the
transposed sequence;
or the transposition step comprises for decrypting the
input message the step of re-transposing symbols or
bits of an intermediate input message of the transposi-
tion step based on the pseudo-random symbol sequence
(K) to obtain an intermediate output message of the
transposition step.

20

Dec. 1, 2022

11. Method according to claim 10, wherein a succession
function for counting is defined with at least two different
successors for an element and with a successor rule for
deciding under which condition which successor is applied,
wherein the symbols or bits are transposed or re-transposed
based on the succession function.

12. Method according to claim 8, wherein the at least one
processing step comprises a logic function step, wherein

either the logic function step comprises for encrypting the

input message the following steps:

providing a logic function series (EDk);

transforming a logic function message based on the
logic function series (EDk) into a transformed logic
function message, wherein an intermediate output
message of the logic function step for encryption
depends on the transformed logic function message,
wherein the logic function message depends on an
intermediate input message of the logic function step
for encryption;

or the logic function step comprises for decrypting the

input message the following steps:

providing a logic function series (EDk);

re-transforming a transformed logic function message
based on the logic function series (EDk) into a logic
function message, wherein an intermediate output
message of the logic function step for decryption
depends on the logic function message, wherein the
transformed logic function message depends on an
intermediate input message of the logic function step
for decryption.

13. Method according to claim 8, wherein the at least one
processing step comprises either

for encryption the following steps:

the structuring step, wherein an intermediate input
message of the structuring step depends on the input
message;

the first transposition step, wherein an intermediate
input message of the first transposition step depends
on the intermediate output message of the structuring
step;

the logic function step, wherein an intermediate input
message of the logic function step depends on the
intermediate output message of the first transposition
step;

the second transposition step, wherein an intermediate
input message of the second transposition step
depends on the intermediate output message of the
logic function step and on a hash resulting from one
of the previous intermediate input messages or one
of the previous intermediate output messages and/or
on an further decryption initialization value output
from the logic function step;

for decryption the following steps:

the second transposition step, wherein an intermediate
input message of the second transposition step
depends on the input message, wherein an interme-
diate output message of the second transposition step
and a decryption initialisation value and/or a hash is
given out from the second transposition step;

the logic function step, wherein an intermediate input
message of the logic function step depends on the
intermediate output message of the second transpo-
sition step and the decryption initialisation value;

US 2022/0382521 Al Dec. 1, 2022
21

the first transposition step, wherein an intermediate
input message of the first transposition step depends
on the intermediate output message of the logic
function step;
the structuring step, wherein an intermediate input
message of the structuring step depends on the
intermediate output message of the first
transposition step, wherein the output message depends on
the intermediate output message of the structuring step.
14. Apparatus configured to perform the steps of the
method of claim 1.
15. Computer program configured to perform the steps of
the method of claim 1 when executed on a processor.

#* #* #* #* #*

	Page 1 - Bibliography/Abstract
	Page 2 - Drawings
	Page 3 - Drawings
	Page 4 - Drawings
	Page 5 - Drawings
	Page 6 - Drawings
	Page 7 - Drawings
	Page 8 - Drawings
	Page 9 - Drawings
	Page 10 - Drawings
	Page 11 - Drawings
	Page 12 - Description
	Page 13 - Description
	Page 14 - Description
	Page 15 - Description
	Page 16 - Description
	Page 17 - Description
	Page 18 - Description
	Page 19 - Description
	Page 20 - Description
	Page 21 - Description
	Page 22 - Description
	Page 23 - Description
	Page 24 - Description
	Page 25 - Description
	Page 26 - Description
	Page 27 - Description
	Page 28 - Description
	Page 29 - Description
	Page 30 - Description/Claims
	Page 31 - Claims
	Page 32 - Claims

