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(57) ABSTRACT

Systems and methods for predicting system device failure
are provided. The method includes representing device
failure related data associated with the devices from a
predetermined domain by temporal graphs for each of the
devices. The method also includes extracting vector repre-
sentations based on temporal graph features from the tem-
poral graphs that capture both temporal and structural cor-
relation in the device failure related data. The method further
includes predicting, based on the vector representations and
device failure related metrics in the predetermined domain,
one or more of the devices that is expected to fail within a
predetermined time.

Hidden
104

104



Patent Application Publication = Mar. 19, 2020 Sheet 1 of 10 US 2020/0090025 A1




Patent Application Publication = Mar. 19, 2020 Sheet 2 of 10 US 2020/0090025 A1




US 2020/0090025 A1

Mar. 19, 2020 Sheet 3 of 10

Patent Application Publication

06t
SLINSIY NOLLDIOZd

i

(i
WHLSAS 19d48

4o
NOILLOIGZed Funiv4d 30IA30

11729
ONINIVHL TH00N

]

i

0i%
NOLLOVHLXE FxN1v3d
HdVHO TVHOdWEL ONILS3L

0gt
NOLLOVHL(Z FuWNiv3d
Hd V1D TYHOAWNI L ONINIVRL

[

i

gge
NOILONHLISNOO
HdVHO TYHOHNEL DNILSEL

hr4s
NOLLOMMLISNGD
Hd VO TV OdNZ.L DNINIVELL

i

i

0se

o
ham
0
q—
S
(o

&4

=

£
3
-
%

0
o
o
=¥
e
AR

0Le




US 2020/0090025 A1

0t
NOLLOVHLX3
FeNLY3d HdVHD TVHOJWEL ONINIVHL

-y

Mar. 19, 2020 Sheet 4 of 10

%7
HAYHD TWHOdWNIL
FIVOS1LINW
Jv 0Z¢
4437 S
HdVHD
QIASYE-VYLVA 140U
NV NOLLYDINNWINOD

-y

gig

3
S
5
o
a8

e
-
o
=¥
g
&

Patent Application Publication



US 2020/0090025 A1

Mar. 19, 2020 Sheet S of 10

Patent Application Publication

0%t
ONINIVYL T300W

&

N7
NOLLOVHLIXE FdNiv3d
FENLONHLS J0ON TWHOLWEL

1

0%y
NOILOVHIXE
FLNLYIL JGON TVHOAINDL

A

0ze

NOILLONMISNOD
Hd Ve O TV OdNGL DNINIVRL

gee



US 2020/0090025 A1

Mar. 19, 2020 Sheet 6 of 10

Patent Application Publication

gst
NOILDIOZ3Hd 3HMTVA 30IA30

&

7
NOLLOZTES
0NV ONINIVHL T300N

&

24
NOLLVHYdHRd
V.IVA ONINIVEL

&

././ ove

gce
NOLLOVRLXE
F2NLVEd HdVHD TV OdNE L DNINIYYL




US 2020/0090025 A1

Mar. 19, 2020 Sheet 7 of 10

Patent Application Publication

FAUNLY A HdVHO TVHOdWNEL ONILSEL

0%

NOLLOVHIXZ

&

]2
Hd VO TYHOdWZL
FIVIS-LLINA
1 09¢
cos I
HdVHO
d3sve-vivd 3140ud
ONY NOLLOVSNYYHL
&
clk gIE 0ge
I
gt 175



US 2020/0090025 A1

Mar. 19, 2020 Sheet 8 of 10

Patent Application Publication

08t
NOLLOIGEHd J36Wnivd 30IAd0

&

§j54
NOLLOVHLXE 2HNLVEd
AHNIONELE 3A0N TYHOHNDL

4

0T%
NGLLOYHLXE
FHNLYES AA0ON TWHOdN3L

&

g9t
NOLLONYISNOD
HdVHO TVHOAWAL ONLLS3L

0LE



US 2020/0090025 A1

Mar. 19, 2020 Sheet 9 of 10

Patent Application Publication

ast

06t
SLINST NOLLOIG S

i

088
NOCILOIGTHd T30 0ONW JaNIVAL

o¥s
NOLIVEYdDddHd YIVO ONILSTL

(425
DNINIVHL
1AAON

i

0t
NOLLOVHIXTE
FANLIV3d HdVHD TV OdNI L ONILSTL




US 2020/0090025 A1

Mar. 19, 2020 Sheet 10 of 10

Patent Application Publication

099
sjinssl gonotpaxd mdino pur nonoipeid SIN[TE] S0IASD TIIOMS]

1

059
sseyd Sunsoy w gonornxe smesy ydeid eiodm wIopsg

1

%9
aseyd Surise; oy w vononasuos ydeid [eioduis) WLICHS]

&

0t9
S|apOoW uled}

1

0¢o
sseud Sunmnen e v vonoenxs omyeoy gdusd wiodumy wIolng

1

018
sseyd Funney e ur vononnsuoco ydesd jesoduwsy wi0LIog

009




US 2020/0090025 Al

PERFORMANCE PREDICTION FROM
COMMUNICATION DATA

RELATED APPLICATION INFORMATION

[0001] This application claims priority to U.S. Provisional
Patent Application No. 62/732,624, filed on Sep. 18, 2018,
incorporated herein by reference herein its entirety.

BACKGROUND

Technical Field

[0002] The present invention relates to deep learning and
more particularly to applying deep learning for predicting
the performance of devices.

Description of the Related Art

[0003] Deep learning is a machine learning method based
on artificial neural networks. Deep learning architectures
can be applied to fields including computer vision, speech
recognition, natural language processing, audio recognition,
social network filtering, machine translation, bioinformatics,
drug design, medical image analysis, material inspection and
board game programs, etc. Deep learning can be supervised,
semi-supervised or unsupervised.

SUMMARY

[0004] According to an aspect of the present invention, a
method is provided for predicting the performance of a
plurality of devices. The method includes representing
device failure related data associated with multiple devices
from a predetermined domain by temporal graphs for each
of the devices. The method also includes extracting vector
representations based on temporal graph features from the
temporal graphs that capture both temporal and structural
correlation in the device failure related data. The method
further includes predicting, based on the vector representa-
tions and the performance metrics in the predetermined
domain, one more of the devices expected to fail within a
predetermined time.

[0005] According to another aspect of the present inven-
tion, a system is provided for predicting the performance of
a plurality of devices. The system includes a processor
device operatively coupled to a memory device, the proces-
sor device being configured to represent device failure
related data associated with multiple devices from a prede-
termined domain by temporal graphs for each of the devices.
The processor device also extracts vector representations
based on temporal graph features from the temporal graphs
that capture both temporal and structural correlation in the
device failure related data. The processor device also pre-
dicts, based on the vector representations and the perfor-
mance metrics in the in the predetermined domain, one more
of the devices expected to fail within a predetermined time.
[0006] These and other features and advantages will
become apparent from the following detailed description of
illustrative embodiments thereof, which is to be read in
connection with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

[0007] The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein:
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[0008] FIG. 1 is a generalized diagram of a neural net-
work, in accordance with an embodiment of the present
invention;

[0009] FIG. 2 is a diagram of an artificial neural network
(ANN) architecture, in accordance with an embodiment of
the present invention;

[0010] FIG. 3 is a block diagram illustrating a system that
implements a process of system failure prediction via graph
learning (SFPGL), in accordance with an embodiment of the
present invention;

[0011] FIG. 4 is a block diagram illustrating a process of
temporal graph construction, in accordance with an embodi-
ment of the present invention;

[0012] FIG. 5 is a block diagram illustrating a process of
temporal graph feature extraction, in accordance with an
embodiment of the present invention;

[0013] FIG. 6 is a block diagram illustrating model train-
ing, in accordance with an embodiment of the present
invention;

[0014] FIG. 7 is a block diagram illustrating a process of
temporal graph construction in a testing phase, in accor-
dance with an embodiment of the present invention;
[0015] FIG. 8 is a block diagram illustrating a process of
temporal graph feature extraction in a testing phase, in
accordance with an embodiment of the present invention;
[0016] FIG. 9 is a block diagram illustrating a process of
device failure prediction, in accordance with an embodiment
of the present invention; and

[0017] FIG. 10 is a flow diagram illustrating a method of
implementing SFPGL for device failure prediction, in accor-
dance with an embodiment of the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

[0018] In accordance with embodiments of the present
invention, systems and methods are provided for implement-
ing device failure prediction from communication and pro-
file data. In example embodiments, system failure prediction
via graph learning (SFPGL) including, for example, an
associated (for example, machine learning) framework) is
applied to determine device failure prediction from commu-
nication and profile data.

[0019] Inan example embodiment, to reduce time delay in
decision process, SFPGL analyzes device’s communication
data (which are generated in real time) and profile data,
instead of regular hardware report, to extract meaningful
features for timely decision making. SFPGL then imple-
ments processes (for example, machine learning methods) to
automatically model a decision process and address the
scalability problems from associated with human decision
makers (for example, human experts). SFPGL provides a
general framework that is applicable to a class of prediction
problems in system device management. The SFPGL based
framework can include training and testing phases.

[0020] In an example embodiment, the processes can
include feature interpretation in particular domains (for
example, a system management domain, a financial domain,
etc.) and can fully utilize multi-dimensional node and edge
attributes to extract temporal and structural features simul-
taneously.

[0021] Embodiments described herein may be entirely
hardware, entirely software or including both hardware and
software elements. In a preferred embodiment, the present
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invention is implemented in software, which includes but is
not limited to firmware, resident software, microcode, etc.
[0022] Embodiments may include a computer program
product accessible from a computer-usable or computer-
readable medium providing program code for use by or in
connection with a computer or any instruction execution
system. A computer-usable or computer readable medium
may include any apparatus that stores, communicates,
propagates, or transports the program for use by or in
connection with the instruction execution system, apparatus,
or device. The medium can be magnetic, optical, electronic,
electromagnetic, infrared, or semiconductor system (or
apparatus or device) or a propagation medium. The medium
may include a computer-readable storage medium such as a
semiconductor or solid-state memory, magnetic tape, a
removable computer diskette, a random-access memory
(RAM), a read-only memory (ROM), a rigid magnetic disk
and an optical disk, etc.

[0023] Each computer program may be tangibly stored in
a machine-readable storage media or device (e.g., program
memory or magnetic disk) readable by a general or special
purpose programmable computer, for configuring and con-
trolling operation of a computer when the storage media or
device is read by the computer to perform the procedures
described herein. The inventive system may also be consid-
ered to be embodied in a computer-readable storage
medium, configured with a computer program, where the
storage medium so configured causes a computer to operate
in a specific and predefined manner to perform the functions
described herein.

[0024] A data processing system suitable for storing and/
or executing program code may include at least one proces-
sor coupled directly or indirectly to memory elements
through a system bus. The memory elements can include
local memory employed during actual execution of the
program code, bulk storage, and cache memories which
provide temporary storage of at least some program code to
reduce the number of times code is retrieved from bulk
storage during execution. Input/output or 1/O devices (in-
cluding but not limited to keyboards, displays, pointing
devices, etc.) may be coupled to the system either directly or
through intervening /O controllers.

[0025] Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers
or storage devices through intervening private or public
networks. Modems, cable modem and Ethernet cards are just
a few of the currently available types of network adapters.
[0026] Referring now to the drawings in which like
numerals represent the same or similar elements and initially
to FIG. 1, a generalized diagram of a neural network that can
implement device failure prediction from communication
data is shown, according to an example embodiment.
[0027] An artificial neural network (ANN) is an informa-
tion processing system that is inspired by biological nervous
systems, such as the brain. The key element of ANNSs is the
structure of the information processing system, which
includes many highly interconnected processing elements
(called “neurons”) working in parallel to solve specific
problems. ANNs are furthermore trained in-use, with learn-
ing that involves adjustments to weights that exist between
the neurons. An ANN is configured for a specific applica-
tion, such as pattern recognition or data classification,
through such a learning process.
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[0028] ANNSs demonstrate an ability to derive meaning
from complicated or imprecise data and can be used to
extract patterns and detect trends that are too complex to be
detected by humans or other computer-based systems. The
structure of a neural network generally has input neurons
102 that provide information to one or more “hidden”
neurons 104. Connections 108 between the input neurons
102 and hidden neurons 104 are weighted and these
weighted inputs are then processed by the hidden neurons
104 according to some function in the hidden neurons 104,
with weighted connections 108 between the layers. There
can be any number of layers of hidden neurons 104, and as
well as neurons that perform different functions. There exist
different neural network structures as well, such as convo-
Iutional neural network, maxout network, etc. Finally, a set
of output neurons 106 accepts and processes weighted input
from the last set of hidden neurons 104.

[0029] This represents a “feed-forward” computation,
where information propagates from input neurons 102 to the
output neurons 106. The training data can include commu-
nication and profile data collected from agents installed in
servers (for example, stored in a database). Upon completion
of a feed-forward computation, the output is compared to a
desired output available from training data. The error rela-
tive to the training data is then processed in “feed-back”
computation, where the hidden neurons 104 and input neu-
rons 102 receive information regarding the error propagating
backward from the output neurons 106. Once the backward
error propagation has been completed, weight updates are
performed, with the weighted connections 108 being
updated to account for the received error. This represents
just one variety of ANN.

[0030] Referring now to FIG. 2, an artificial neural net-
work (ANN) architecture 200 is shown. It should be under-
stood that the present architecture is purely exemplary and
that other architectures or types of neural network may be
used instead. The ANN embodiment described herein is
included with the intent of illustrating general principles of
neural network computation at a high level of generality and
should not be construed as limiting in any way.

[0031] Furthermore, the layers of neurons described below
and the weights connecting them are described in a general
manner and can be replaced by any type of neural network
layers with any appropriate degree or type of interconnec-
tivity. For example, layers can include convolutional layers,
pooling layers, fully connected layers, stopmax layers, or
any other appropriate type of neural network layer. Further-
more, layers can be added or removed as needed and the
weights can be omitted for more complicated forms of
interconnection.

[0032] During feed-forward operation, a set of input neu-
rons 202 each provide an input signal in parallel to a
respective row of weights 204. In the hardware embodiment
described herein, the weights 204 each have a respective
settable value, such that a weight output passes from the
weight 204 to a respective hidden neuron 206 to represent
the weighted input to the hidden neuron 206. In software
embodiments, the weights 204 may simply be represented as
coeflicient values that are multiplied against the relevant
signals. The signals from each weight adds column-wise and
flows to a hidden neuron 206.

[0033] The hidden neurons 206 use the signals from the
array of weights 204 to perform some calculation. The
hidden neurons 206 then output a signal of their own to



US 2020/0090025 Al

another array of weights 204. This array performs in the
same way, with a column of weights 204 receiving a signal
from their respective hidden neuron 206 to produce a
weighted signal output that adds row-wise and is provided to
the output neuron 208.

[0034] It should be understood that any number of these
stages may be implemented, by interposing additional layers
of arrays and hidden neurons 206. It should also be noted
that some neurons may be constant neurons 209, which
provide a constant output to the array. The constant neurons
209 can be present among the input neurons 202 and/or
hidden neurons 206 and are only used during feed-forward
operation.

[0035] During back propagation, the output neurons 208
provide a signal back across the array of weights 204. The
output layer compares the generated network response to
training data and computes an error. The error signal can be
made proportional to the error value. In this example, a row
of weights 204 receives a signal from a respective output
neuron 208 in parallel and produces an output which adds
column-wise to provide an input to hidden neurons 206. The
hidden neurons 206 combine the weighted feedback signal
with a derivative of its feed-forward calculation and stores
an error value before outputting a feedback signal to its
respective column of weights 204. This back-propagation
travels through the entire network 200 until all hidden
neurons 206 and the input neurons 202 have stored an error
value.

[0036] During weight updates, the stored error values are
used to update the settable values of the weights 204. In this
manner the weights 204 can be trained to adapt the neural
network 200 to errors in its processing. It should be noted
that the three modes of operation, feed forward, back
propagation, and weight update, do not overlap with one
another.

[0037] A convolutional neural networks (CNN) is a sub-
class of ANNs which has at least one convolution layer. A
CNN consists of an input and an output layer, as well as
multiple hidden layers. The hidden layers of a CNN consist
of convolutional layers, rectified linear unit (RELU) layer
(e.g., activation function), pooling layers, fully connected
layers and normalization layers. Convolutional layers apply
a convolution operation to the input and pass the result to the
next layer. The convolution emulates the response of an
individual neuron to visual stimuli.

[0038] CNNs can be applied to analyzing visual imagery.
CNNs can capture local information (e.g., neighbor pixels in
an image or surrounding words in a text) as well as reduce
the complexity of a model (to allow, for example, faster
training, requirement of fewer samples, and reduction of the
chance of overfitting).

[0039] CNNs use a variation of multilayer perceptrons
designed to require minimal preprocessing. CNNs are also
known as shift invariant or space invariant artificial neural
networks (SIANN), based on their shared-weights architec-
ture and translation invariance characteristics. CNNs can be
used for applications in image and video recognition, rec-
ommender systems, image classification, medical image
analysis, and natural language processing.

[0040] Referring now to FIG. 3, a block diagram illustrat-
ing a system 300 for implementing a process of system
failure prediction via graph learning (SFPGL) for system
device failure prediction, in accordance with example
embodiments.
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[0041] System device failure prediction is a critical prob-
lem in the domain of complex system management. For
system administrators, one of the most important tasks is to
decide whether a device could fail in near future and replace
it before the failure happens. Usually, such decisions hinge
on the evaluation of a device’s hardware status, but it is
usually costly to perform massive hardware investigation
and the timing of hardware investigation may not meet the
failure time of a device. In general, the problem can be
defined as follows: Given system devices’ historical records,
the goal is to predict whether a system device could fail in
near future (e.g., in one week).

[0042] SFPGL system 300 implements processes that per-
form server failure prediction in a distributed compute
system as described herein below with respect to FIGS. 4 to
9. SFPGL system 300 can significantly reduce time delay in
decision making and is able to scale with many devices and
a large amount of complex system management related data.

[0043] As shown in FIG. 3, SFPGL system 300 includes
a data training component 310, a training (or first) temporal
graph construction component 320, a training (or first)
temporal graph feature extraction component 330, a model
training component 340, a data testing component 350, a
testing (or second) temporal graph construction component
360, a testing (or second) temporal graph feature extraction
component 370, a device failure prediction component 380
and a prediction results component 390.

[0044] Data training component 310 includes (or provides
access to) training data 312. Training data 312 includes data
used for model training for SFPGL. Training data 312 can
include (for example, mainly) communication data 314
(among or between devices), device profile data 316, and a
ground truth 318 of target device failure for devices in the
training data. Data training component 310 can be imple-
mented to provide data during a training phase of the SFPGL
system 300.

[0045] Communication data 314 can include historical
information indicating at which time one device (for
example, device A) conducts communication with another
device (for example, device B). Additionally, communica-
tion data 314 can include additional and/or supplementary
(for example, side) information that describes communica-
tion details, such as the amount of data transfer during this
communication, purpose of this communication, etc.

[0046] Device profile data 316 contains information
related to individual devices, such as device type, device
failure history, device age, etc. In some example embodi-
ments, device profile data 316 can also include also evolve
over time. For example, device failure history could (be
dynamically updated to) include new failure incident.

[0047] Ground truth of target device failure 318 is
obtained from device failure history record. For example, in
instances in which the analysis is directed to server disk
failure in one week, ground truth of this failure 318 will be
derived from historical records aligned with communication
data 314 and profile data 316.

[0048] Training temporal graph construction component
320 builds temporal graphs that encode both communication
data 314 and device profile data 316. The temporal graph can
be stored (or manipulated/sent/received/etc.) as a data struc-
ture used to represent data, such as the encoded communi-
cation and device profile data, as described herein in detail
below with respect to FIG. 4.
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[0049] Training temporal graph feature extraction compo-
nent 330 performs temporal graph feature extraction. Train-
ing temporal graph feature extraction component 330
extracts temporal graph features from the graph built by
training temporal graph construction component 320 and
represents each device by a feature vector, as described
herein in detail below with respect to FIG. 5.

[0050] Model training component 340 trains models to
predict device failure. Model training component 340 first
prepares training data, learns prediction models based on the
training data, and then performs model selection to find the
best model, as described herein in detail below with respect
to FIG. 6. For example, given a devices’ particular historical
records, model training component 340 can select a model
to predict the value of a predefined performance metric.
[0051] Data testing component 350 determines testing
data. For example, data testing component 350 can select
any communication data 314 (from among communication
data provided by devices) along with their device profile
data 316 can serve as testing data in this framework.
[0052] Testing (or second) temporal graph construction
component 360 also perform temporal graph construction
(using a similar approach as training (or first) temporal
graph construction component 320). Testing temporal graph
construction component 360 builds temporal graphs that
encode both communication data 314 and device profile data
316 to build a temporal graph for testing data.

[0053] Testing temporal graph feature extraction compo-
nent 370 performs temporal graph feature extraction (using
a similar approach as first temporal graph feature extraction
component 330). Testing temporal graph feature extraction
component 370 extracts the same set of temporal graph
features as training temporal graph feature extraction com-
ponent 330. After testing temporal graph feature extraction
component 370 performs temporal graph feature extraction,
each device in the testing data is represented as a feature
vector.

[0054] Device failure prediction component 380 imple-
ments device failure prediction. At this stage, device failure
prediction component 380 feeds devices’ feature vectors
into the model trained by model training component 340 and
obtains prediction to the device failure for each device.
[0055] Prediction results component 390 outputs predic-
tion results for device performance.

[0056] FIG. 4 is a block diagram illustrating a process of
temporal graph construction as implemented by training
temporal graph construction component 320, in accordance
with example embodiments.

[0057] As shown in FIG. 4, training temporal graph con-
struction component 320 receives training data 312 (includ-
ing communication data 314, device profile data 316 and
ground truth of target device failure metric 318) from data
training component 310. Training temporal graph construc-
tion component 320 includes communication and profile
data-based graph (component, device or module) 405 and
multi-scale temporal graph (component, device or module)
410.

[0058] Communication and profile data-based graph 405
builds (constructs or converts) the communication 314 and
(device) profile data 316 to a graph(s) (format). Communi-
cation and profile data-based graph 405 represents a tem-
poral graph as a stream of graphs <G, G, . . ., >, where G,
is a graph, referred to as a snapshot, recording communica-
tion and profile data for devices at time t,. In each graph G,
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nodes are devices, and one edge between node A and B
indicates A and B communicated at time t,. Moreover, nodes
and edges are associated with attributes, where node attri-
butes include all the information only relevant to itself at
time t;, and edge attributes suggest all the information
relevant to the corresponding communication. In this way,
communication and profile data-based graph 405 encodes all
the side (supplementary or complementary) information in
device profile data 316 by node attributes, and all the side
information in communication data 314 by edge attributes.
[0059] Multi-scale temporal graph 410 generates a multi-
scale temporal graph(s) based on the graphs constructed by
communication and profile data-based graph 405. Time
stamps in communications usually can record time at dif-
ferent temporal granularities (for example, the granularity of
second). However, at the finest (for example, smallest units)
granularities, global temporal evolution can be missed (for
example, based on incremental changes over a small time)
in instances in which the output is constrained to fine
granularity. Multi-scale temporal graph 410 provides vary-
ing time perspective views of the evolution of a device’s
performance and failure, given communication and profile
data, by building multiple temporal graphs, each of which is
generated at a specific time granularity. For example, given
one year of communication and profile data, multi-scale
temporal graph 410 can generate multiple (for example,
three) temporal graphs, where the first is at the granularity
of a minute, the second is at the granularity of an hour, and
the third is at the granularity of half-day, etc. Given a time
granularity, communication 314 and device profile data 316
are aggregated into each graph snapshot.

[0060] After multi-scale temporal graph 410 is imple-
mented, training temporal graph construction component
320 obtains a set of temporal graphs for given communica-
tion data 314 and profile data 316.

[0061] FIG. 5 is a block diagram illustrating a process of
temporal graph feature extraction as implemented by train-
ing temporal graph feature extraction component 330, in
accordance with example embodiments.

[0062] As shown in FIG. 5, training temporal graph fea-
ture extraction component 330 implements temporal graph
feature extraction, given a set of temporal graphs from
training temporal graph construction component 320, using
temporal node feature extraction (component, device or
module) 420 and temporal structure feature extraction (com-
ponent, device or module) 430.

[0063] Temporal node feature extraction 420 performs
temporal node feature extraction based on input from train-
ing temporal graph construction component 320. Temporal
node feature extraction 420 derives node features from node
attributes in temporal graphs. Particularly, for each node
attribute of a specific node, temporal node feature extraction
420 (for example, essentially) forms a time series. To this
end, given a time series of a node attribute, temporal node
feature extraction 420 provides a feature vector that profiles
this time series. According to example embodiments, tem-
poral node feature extraction 420 can profile a time series
from the angle (or perspective, view, etc.) of raw value,
statistic measurement, and/or temporal differential measure-
ment, etc.

[0064] Temporal node feature extraction 420 can include
the raw value of a time series into a feature vector of the time
series. Temporal node feature extraction 420 can include
static measurement, such as mean, median, variance, etc., to
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characterize the shape of the time series. Temporal node
feature extraction 420 can also include a temporal differen-
tial measurement(s). Given a time series (for example, time
series a) and a time difference At, temporal node feature
extraction 420 can derive another time series (for example,
time series b) by differential comparison such as b[t]=a[t]-
a[t-At]. Given time series b, temporal node feature extrac-
tion 420 can further attach a raw value and statistical
measure of time series b into the feature vector.

[0065] Temporal structure feature extraction 430 performs
temporal structure feature extraction. Temporal structure
feature extraction 430 derives structure features from one-
hop and multi-hop structure metric. One-hop structure met-
rics can include node in-degree, node out-degree, and node
total degree. In directed graphs, the number of edges going
into a node is referred to as the in-degree of the correspond-
ing node and the number of edges coming out of a node is
referred to as the out-degree of the corresponding node.
Multi-hop structure metrics can be diverse, including ran-
dom walk-based metric (e.g., page rank, egocentric social
network data (for example, Ego-Net™ metrics), clustering
analysis metrics, etc.).

[0066] Given a temporal graph, a structure metric with
respect to a specific node (for example, from a particular
perspective, essentially, etc.) forms a time series. In a similar
manner as implemented by temporal node feature extraction
420, temporal structure feature extraction 430 derives a
feature vector to describe this time series from angles
including raw value, statistical measurement, and temporal
differential measurement. Note that given a set of temporal
graphs, temporal node feature extraction 420 and temporal
structure feature extraction 430 will go through (for
example, process, analyze, extract, etc.) each temporal graph
and generate a node and structure feature vectors of each
temporal graph.

[0067] For each node, training temporal graph feature
extraction component 330 concatenates all node feature
vectors and structure feature vectors of the node into a long
feature vector, which can be used by model training com-
ponent 340 for model training.

[0068] FIG. 6 is a block diagram illustrating model train-
ing as implemented by model training component 340, in
accordance with example embodiments.

[0069] As shown in FIG. 6, model training component 340
includes training data preparation (component, device or
module) 440 and model training and selection (component,
device or module) 450.

[0070] Training data preparation 440 implements training
data preparation. Particularly, training data preparation 440
can prepare a set of training samples. For example, after
training temporal graph feature extraction component 330
concatenates all node feature vectors and structure feature
vectors of a node into a long feature vector, training data
preparation 440 can obtain a feature vector for node k (e.g.,
a specific device K) x,. From ground truth of target device
failure metric 318, training data preparation 440 can obtain
the corresponding performance metric value of node k, y,. In
this way, training data preparation 440 forms a training
sample (X,, y;). Therefore, given feature vectors and ground
truth of target device failure metric 318, training data
preparation 440 can prepare a set of training samples {(x,
n}

[0071] Model training and selection 450 implements
model training and selection. Given a candidate pool of
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models and training data 312, model training and selection
(component, device or module) 450 learns (for example,
analyzes and implements trial runs to determine the accu-
racy of) multiple models and selects a best model (from
among the multiple models) for testing phase. Model train-
ing and selection 450 can determine a candidate pool (of
models) based on machine learning techniques (including
predetermined (or user defined) machine learning tech-
niques and off-the-shelf machine learning techniques, such
as support vector machines, linear regression, logistic
regression, multilayer neural network, decision trees, and
ensemble methods, etc.). Model training and selection 450
then selects a model. For example, given a set of trained
models, model training and selection 450 use k-fold cross
validation to select the model that has the best validation
accuracy. Cross-validation is a statistical method used to
estimate the skill (for example, accuracy) of machine learn-
ing models.

[0072] FIG. 7 is a block diagram illustrating a process of
temporal graph construction in a testing phase as imple-
mented by testing temporal graph construction component
360, in accordance with example embodiments.

[0073] As shown in FIG. 7, testing temporal graph con-
struction component 360 includes communication and pro-
file data-based graph (component, device or module) 505
and multi-scale temporal graph (component, device or mod-
ule) 510.

[0074] Communication and profile data-based graph 505
given communication data 314 and device profile data 316,
builds temporal graphs in a similar manner as discussed with
respect to communication and profile data-based graph 405
and FIG. 4 herein above.

[0075] Multi-scale temporal graph 510, in the testing
phase, generates multiple temporal graphs using the time
granularities applied by multi-scale temporal graph 410 in
the training phase as described with respect to FIG. 4 herein
above. The output of multi-scale temporal graph 510 is a set
of temporal graphs that encodes communication data 314
and device profile data 316 at the granularities defined in the
training phase.

[0076] FIG. 8 is a block diagram illustrating a process of
temporal graph feature extraction as implemented by testing
temporal graph feature extraction component 370, in accor-
dance with example embodiments.

[0077] As shown in FIG. 8, testing temporal graph feature
extraction component 370 performs temporal graph feature
extraction, given a set of temporal graphs from testing
temporal graph construction component 360. Testing tem-
poral graph feature extraction component 370 includes tem-
poral node feature extraction 520 and temporal structure
feature extraction 530.

[0078] Temporal node feature extraction 520, for each
node in testing data, builds node feature vectors in a similar
manner as implemented by temporal node feature extraction
420 as described herein above with respect to FIG. 5.
[0079] Temporal structure feature extraction 530, for each
node in testing data, builds structure feature vectors in a
similar manner as implemented by temporal node feature
extraction 420 as described herein above with respect to
FIG. 5.

[0080] Note that given a set of temporal graphs, temporal
node feature extraction 520 and temporal structure feature
extraction 530 can go through each temporal graph and
generate node and structure feature vectors as implemented
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by temporal graph feature extraction component 330. For
each node, testing temporal graph feature extraction com-
ponent 370 can concatenate all node feature vectors and
structure feature vectors of the node into a long feature
vector, which can be used by device failure prediction
component 380 for prediction of a device’s performance.
[0081] FIG.9 is a block diagram illustrating a process of
device failure prediction as implemented by device failure
prediction component 380, in accordance with example
embodiments.

[0082] As shown in FIG. 9, device failure prediction
component 380 implements a procedure of device failure
prediction using inputs from (for example, models and
features of graphs from/provided by) model training com-
ponent 340 and testing temporal graph feature extraction
370. Device failure prediction component 380 includes
testing data preparation (component, device or module) 540
and trained model prediction (component, device or module)
550.

[0083] Testing data preparation 540 performs testing data
preparation. At this stage, feature vectors of devices from
testing temporal graph feature extraction 370 naturally form
a set of testing samples. For example, for a node k, a feature
vector of the node is x,, from testing temporal graph feature
extraction 370, and x, is a testing sample. Testing data
preparation 540 performs accesses the data from testing
temporal graph feature extraction 370.

[0084] Trained model prediction 550 makes predictions
using a trained model. For example, trained model predic-
tion 550 can select and use a best model trained by model
training component 340 and devices’ feature vectors.
Trained model prediction 550 can apply SFPGL to perform
predictions of the target performance metric for each device.
[0085] The example embodiments of processes described
with respect to FIGS. 3 to 9 herein above represent data from
system management domain (or a device failure related
domain) by multi-scale temporal graphs. With respect to
temporal node feature extraction 420/520 in the training and
testing phases, that the example embodiments can extract
temporal graph features that capture both temporal and
structural correlation in system device performance. With
respect to model training component 340 and device failure
prediction component 380, the example embodiments pro-
vide processes that automate the decision process from
vector representations of devices to target performance
metrics in a system device management domain.

[0086] FIG. 10 is a flow diagram illustrating a method 600
for implementing SFPGL for device failure prediction, in
accordance with the present invention.

[0087] Atblock 610, system 300 performs temporal graph
construction in training phase using device failure related
data. For example, system 300 can construct graphs of a
device’s performance using training data 312 that includes
communication data 314, device profile data 316, and
ground truth of target device failure metric 318 for devices.
[0088] At block 620, system 300 performs temporal graph
feature extraction in a training phase. For example, system
300 can derive node features from node attributes in tem-
poral graphs determined at block 610. System 300 can form
a time series for each node attribute of a specific node as
described herein above with respect to FIG. 5.

[0089] Atblock 630, system 300 performs model training,
for example, in a similar manner as described with respect
to FIG. 6, herein above. System 300 can train models from
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a candidate pool of models with training data 312 to identify
a best model (from among the multiple models) for testing
phase.
[0090] Atblock 640, system 300 performs temporal graph
construction in the testing phase. Training data and testing
data share identical format or schema, except that there are
ground truth or label information in training data, while
there are no ground truth or label information in testing data.
For example, system 300 can construct graphs of a device’s
performance using training data 312 that includes commu-
nication data 314, device profile data 316, and ground truth
of target device failure metric 318 for devices. System 300
can use historical data to determine the temporal graphs.
[0091] Atblock 650, system 300 performs temporal graph
feature extraction in testing phase. For example, system 300
can derive node features from node attributes in temporal
graphs determined at block 640. System 300 can form a time
series for each node attribute of a specific node as described
herein above with respect to FIG. 5.
[0092] At block 660, system 300 performs device failure
prediction. For example, system 300 can predict, based on
vector representations of devices, one or more of the devices
to target for replacement or repair based on device failure
predictions. System 300 can output prediction results 390
based on the trained model and data. The prediction results
can be output on an interface (for example a graphical user
interface (GUI)) of a device, such as a mobile device,
personal computer, etc. The prediction results can include
predicted metrics of device failure over an upcoming time
span. In some embodiments, system 300 can initiate pro-
phylactic measures based on the prediction results, such as
re-routing communications through other devices, adjusting
load balancing, etc. System 300 can compare predicted
results to actual results and adjust the models or data based
on feedback from actual results.
[0093] The foregoing is to be understood as being in every
respect illustrative and exemplary, but not restrictive, and
the scope of the invention disclosed herein is not to be
determined from the Detailed Description, but rather from
the claims as interpreted according to the full breadth
permitted by the patent laws. It is to be understood that the
embodiments shown and described herein are only illustra-
tive of the present invention and that those skilled in the art
may implement various modifications without departing
from the scope and spirit of the invention. Those skilled in
the art could implement various other feature combinations
without departing from the scope and spirit of the invention.
Having thus described aspects of the invention, with the
details and particularity required by the patent laws, what is
claimed and desired protected by Letters Patent is set forth
in the appended claims.
What is claimed is:
1. A method for predicting system device failure, com-
prising:
representing device failure related data associated with
the plurality of devices from a predetermined domain
by at least one temporal graph for each of the plurality
of devices;
extracting, by a processor device, vector representations
based on temporal graph features from the at least one
temporal graph that capture both temporal and struc-
tural correlation in the device failure related data;
predicting, based on the vector representations and at least
one device failure related metric in the predetermined
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domain, at least one of the plurality of devices that is
expected to fail within a predetermined time; and

outputting the at least one of the plurality of devices with
a predicted device failure metric.

2. The method as recited in claim 1, wherein representing
the device failure related data further comprises:

performing, by the processor device, temporal graph

construction using training data for at least one entity in
a training phase to determine at least one first temporal
graph; and

performing temporal graph feature extraction from the at

least one first temporal graph in the training phase to
derive at least first feature vector.

3. The method as recited in claim 1, further comprising:

training, by the processor device, a plurality of models for

system failure prediction via graph learning (SFPGL)
for device failure prediction based on the at least one
temporal graph.

4. The method as recited in claim 3, wherein training the
plurality of models further comprises:

preparing training data;

learning prediction models from the plurality of models

based on the training data; and

performing model selection to find a best model of the

plurality of models.

5. The method as recited in claim 1, further comprising:

performing, by the processor device, temporal graph

construction in a testing phase to determine at least one
second temporal graph;

performing temporal graph feature extraction from the at

least one second temporal graph in the testing phase to
derive at least second feature vector; and

performing device failure prediction based on the at least

one second feature vector and outputting at least one
prediction result.

6. The method as recited in claim 5, wherein the device
failure related data includes communication data and device
profile data and performing temporal graph construction in
the testing phase further comprises:

encoding the communication data and the device profile

data.

7. The method as recited in claim 5, wherein performing
temporal graph construction further comprises:

generating at least one multi-scale temporal graph at

multiple time granularities.

8. The method as recited in claim 5, wherein performing
temporal graph feature extraction from the at least one
second temporal graph further comprises

profiling a time series based on at least one of a raw value,

a statistic measurement and a temporal differential
measurement.

9. The method as recited in claim 5, wherein performing
temporal graph feature extraction from the at least one
second temporal graph further comprises:

deriving structure features from a one-hop metric.

10. The method as recited in claim 5, wherein performing
temporal graph feature extraction from the at least one
second temporal graph further comprises:

deriving structure features from a multi-hop metric.

11. The method as recited in claim 1, wherein each at least
one temporal graph is represented as a stream of graphs <G,
to G >, where G; is a graph that records communication data
and profile data for devices at time t,.
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12. The method as recited in claim 1, wherein nodes and
edges of each at least one temporal graph is associated with
attributes, where node attributes include all information only
relevant to a node at time t,, and edge attributes include
information relevant to a corresponding communication.
13. A computer system for predicting system device
failure, comprising:
a processor device operatively coupled to a memory
device, the processor device being configured to:

represent device failure related data associated with the
plurality of devices from a predetermined domain by at
least one temporal graph for each of the plurality of
devices;

extract representations based on temporal graph features

from the at least one temporal graph that capture both
temporal and structural correlation in the device failure
related data; and

predict, based on the vector representations and at least

one device failure related metric in the predetermined
domain, at least one of the plurality of devices that is
expected to fail within a predetermined time.

14. The system as recited in claim 13, wherein, when
representing the device failure related data, the processor
device is further configured to:

perform temporal graph construction using training data

for at least one entity in a training phase to determine
at least one first temporal graph; and

perform temporal graph feature extraction from the at

least one first temporal graph in the training phase to
derive at least first feature vector.

15. The system as recited in claim 13, wherein the
processor device is further configured to:

train a plurality of models for system failure prediction

via graph learning (SFPGL) for device failure predic-
tion based on the at least one temporal graph.

16. The system as recited in claim 13, wherein, when
training the plurality of models, the processor device is
further configured to:

prepare training data;

learn prediction models from the plurality of models

based on the training data; and

perform model selection to find a best model of the

plurality of models.

17. The system as recited in claim 16, wherein the
processor device is further configured to:

perform device failure prediction by feeding the vector

representations into the best model.

18. The system as recited in claim 13, wherein each at
least one temporal graph is represented as a stream of graphs
<@, to G >, where G; is a graph that records communication
data and profile data for devices at time t,.

19. The system as recited in claim 13, wherein nodes and
edges of each at least one temporal graph are associated with
attributes, where node attributes include all information only
relevant to a node at time t,, and edge attributes include
information relevant to a corresponding communication.

20. A computer program product for predicting perfor-
mance of a plurality of devices, the computer program
product comprising a non-transitory computer readable stor-
age medium having program instructions embodied there-
with, the program instructions executable by a computing
device to cause the computing device to perform the method
comprising:
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representing device failure related data associated with
the plurality of devices from a predetermined domain
by at least one temporal graph for each of the plurality
of devices;

extracting vector representations based on temporal graph
features from the at least one temporal graph that
capture both temporal and structural correlation in the
device failure related data; and

predicting, based on the vector representations and at least
one performance metric in the predetermined domain,
at least one of the plurality of devices that is expected
to fail within a predetermined time.
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