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A method for performing size K?K max pooling with stride 
S at a max pooling layer of a convolutional neural network 
to downsample input data includes receiving input data , 
buffering the input data , applying a cascade of size 2x2 max 
pooling stages to the buffered input data to generate down 
sampled output data , wherein a stride value of each size 2x2 
max pooling stage is determined dynamically in accordance 
with pooling parameters associated with the size 2x2 max 
pooling stage . 
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SYSTEM AND METHOD FOR CASCADED 
DYNAMIC MAX POOLING IN NEURAL 

NETWORKS 

TECHNICAL FIELD 

[ 0001 ] The present disclosure relates generally to a system 
and method for data processing , and , in particular embodi 
ments , to a system and method for cascaded dynamic max 
pooling in neural networks . 

BACKGROUND 

[ 0002 ] Neural networks ( NNs ) are computing systems that 
are inspired by how biological brains operate . NNs can learn 
to perform tasks , such as object detection , image recogni 
tion , voice recognition , or pattern recognition , by consider 
ing examples . NNs typically do not need to be programmed 
with any task - specific rules . Instead , NNs learn identifying 
characteristics from the examples they process . 
[ 0003 ] Convolutional neural networks ( CNNs ) are a sub 
class of feed forward NNs that have distinct logical repre 
sentations of computational layers optimized for tasks such 
as image classification . When used for image classification , 
CNNs can learn to identify features of an image , such as 
visual objects . The learning step is formally known as 
training where a given neural network is input a reference 
input dataset comprising input data representative of images 
which are known to contain some desired visual objects of 
interest . Once training is complete , the NN can be deployed 
to detect the visual objects of interest from images input to 
the trained CNN . This phase formerly referred to as infer 
ence . 

[ 0008 ] Optionally , in any of the preceding aspects , the 
overlap between the neighboring windows of the size 2x2 
max pooling stage is determined in accordance with the size 
of the input data at the size 2x2 max pooling stage , and the 
window size of the size 2x2 max pooling stage . 
[ 0009 ] Optionally , in any of the preceding aspects , apply 
ing the cascade of size 2x2 max pooling stages includes 
determining , by the max pooling layer , a size of the buffered 
input data and a final size of the downsampled output , 
determining , by the max pooling layer , an overlap between 
neighboring windows of input data of a first size 2x2 max 
pooling stage in the cascade of size 2x2 max pooling stages , 
and a window size of the input data of the first size 2x2 max 
pooling stage , determining , by the max pooling layer , a 
stride S of the first size 2x2 max pooling stage in accordance 
with the overlap , and the window size , applying , by the max 
pooling layer , the size 2x2 max pooling with the stride S 
kernel to the input data of the first size 2x2 max pooling 
stage to generate intermediate downsampled output data , 
saving , by the max pooling layer , the intermediate down 
sampled output data , and adjusting , by the max pooling 
layer , the size of input data at the first size 2x2 max pooling 
stage , the window size of the first size 2x2 max pooling 
stage , and the overlap between neighboring windows of the 
first size 2x2 max pooling stage . 
[ 0010 ] Optionally , in any of the preceding aspects , deter 
mining the stride S of the first size 2x2 max pooling stage 
includes determining , by the max pooling layer , that the 
overlap between neighboring windows of the input data at 
the first size 2x2 max pooling stage is equal to zero , and 
based thereon setting , by the max pooling layer , the stride S 
to two , determining , by the max pooling layer , that the 
overlap between neighboring windows of the input data at 
the first size 2x2 max pooling stage is a first even value and 
the window size of the first size 2x2 max pooling stage is a 
second even value , and based thereon setting , by the max 
pooling layer , the stride S to two , and setting , by the max 
pooling layer , the stride S to one for any other possible 
values of the overlap between neighboring windows of the 
input data at the first size 2x2 max pooling stage and the 
window size of the first size 2x2 max pooling stage . 
[ 0011 ] Optionally , in any of the preceding aspects , the 
computer - implemented method further includes determining 
that the overlap between neighboring windows of the input 
data at the first size 2x2 max pooling stage is equal to zero 
and the window size is an odd value , and based thereon 
adding , by the max pooling layer , a padding element to each 
window sized segment of the input data at the first size 2x2 
max pooling stage , and adjusting , by the max pooling layer , 
the window size and the size of the input data at the first size 
2x2 max pooling stage . 
[ 0012 ] Optionally , in any of the preceding aspects , adjust 
ing the window size and the size of the input data at the first 
size 2x2 max pooling stage includes incrementing , by the 
max pooling layer , the window size , and adjusting , by the 
max pooling layer , the size of the input data at the first size 
2x2 max pooling stage in accordance with expression 
size = size + ( size / the window size ) . 
[ 0013 ] Optionally , in any of the preceding aspects , adjust 
ing the size of the input data at the first size 2x2 max pooling 
stage , the window size , and the overlap includes adjusting , 
by the max pooling layer , the window size in accordance 
with expression window size = ( window size - 2 ) / stride S + 1 , 
adjusting , by the max pooling layer , the size of the input data 

[ 0004 ] CNNs may have significant resource ( e.g. , compute 
resources and memory resources ) requirements , especially 
during training . Therefore , there is a need for a system and 
method for reducing resource requirements in NNs , and 
particularly , CNNs . 

SUMMARY 

[ 0005 ] Example embodiments provide a system and 
method for cascaded dynamic max pooling in neural net 
works . 
[ 0006 ] In accordance with an aspect of the present disclo 
sure , a computer - implemented method is provided for per 
forming size K?K max pooling with stride S at a max 
pooling layer of a convolutional neural network to down 
sample input data . The computer - implemented method 
includes receiving , at the max pooling layer , input data , 
buffering , at the max pooling layer , the input data , applying , 
at the max pooling layer , a cascade of size 2x2 max pooling 
stages to the buffered input data to generate downsampled 
output data , wherein a stride value of each size 2x2 max 
pooling stage is determined dynamically in accordance with 
pooling parameters associated with the size 2x2 max pool 
ing stage , and outputting , by the max pooling layer , the 
downsampled output data to another layer of the convolution 
neural network for further processing . 
[ 0007 ] Optionally , in any of the preceding aspects , the 
pooling parameters associated with the size 2x2 max pool 
ing stage comprises at least one of a size of input data at the 
size 2x2 max pooling stage , a window size of the size 2x2 
max pooling stage , or an overlap between neighboring 
windows of the size 2x2 max pooling stage . 
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at the first size 2x2 max pooling stage in accordance with 
expression size = ( size - 2 ) / stride S + 1 , and adjusting , by the 
max pooling layer , the overlap in accordance with expres 
sion overlap = ( overlap - 2 ) / 2 + 1 . 
[ 0014 ] Optionally , in any of the preceding aspects , the 
computer - implemented method comprising repeating , by the 
max pooling layer , the determining the stride S , the apply 
ing , the saving , and the adjusting until a size of input data at 
remaining size 2x2 max pooling stages is equal to the final 
size . 
[ 0015 ] In accordance with another aspect of the present 
disclosure , a device for performing size K?K max pooling 
with stride S at a max pooling layer of a convolutional neural 
network to downsample input data is provided . The device 
includes a non - transitory memory storage comprising 
instructions , and one or more processors in communication 
with the memory storage . Therein the one or more proces 
sors execute the instructions to receive input data , buffer the 
input data , apply a cascade of size 2x2 max pooling stages 
to the buffered input data to generate downsampled output 
data , wherein a stride value of each size 2x2 max pooling 
stage is determined dynamically in accordance with pooling 
parameters associated with the size 2x2 max pooling stage , 
and output the downsampled output data to another layer of 
the convolution neural network for further processing . 
[ 0016 ] Optionally , in any of the preceding aspects , the 
pooling parameters associated with the size 2x2 max pool 
ing stage comprises at least one of a size of input data at the 
size 2x2 max pooling stage , a window size of the size 2x2 
max pooling stage , or an overlap between neighboring 
windows of the size 2x2 max pooling stage . 
[ 0017 ] Optionally , in any of the preceding aspects , the 
overlap between the neighboring windows of the size 2x2 
max pooling stage is determined in accordance with the size 
of the input data at the size 2x2 max pooling stage , and the 
window size of the size 2x2 max pooling stage . 
[ 0018 ] Optionally , in any of the preceding aspects , the one 
or more processors further execute instructions to determine 
a size of the buffered input data and a final size of the 
downsampled output , determine an overlap between neigh 
boring windows of input data of a first size 2x2 max pooling 
stage in the cascade of size 2x2 max pooling stages , and a 
window size of the input data of the first size 2x2 max 
pooling stage , determine a stride S of the first size 2x2 max 
pooling stage in accordance with the overlap , and the 
window size , apply the size 2x2 max pooling with stride S 
kernel to the input data of the first size 2x2 max pooling 
stage to generate intermediate downsampled output data , 
save the intermediate downsampled output data , and adjust 
the size of the input data at the first size 2x2 max pooling 
stage , the window size of the first size 2x2 max pooling 
stage , and the overlap between neighboring windows of the 
first size 2x2 max pooling stage . 
[ 0019 ] Optionally , in any of the preceding aspects , the one 
or more processors further execute instructions to determine 
that the overlap between neighboring windows of the input 
data at the first size 2x2 max pooling stage is equal to zero , 
and based thereon set the stride S to two , determine that the 
overlap between neighboring windows of the input data at 
the first size 2x2 max pooling stage is a first even value and 
the window size of the first size 2x2 max pooling stage is a 
second even value , and based thereon set the stride S to two , 
and set the stride S to one for any other possible values of 
the overlap between neighboring windows of the input data 

at the first size 2x2 max pooling stage and the window size 
of the first size 2x2 max pooling stage . 
[ 0020 ] Optionally , in any of the preceding aspects , the one 
or more processors further execute instructions to determine 
that the overlap between neighboring windows of the input 
data at the first size 2x2 max pooling stage is equal to zero 
and the window size is an odd value , and based thereon add 
a padding element to each window sized segment of the 
input data at the first size 2x2 max pooling stage , and adjust 
the window size and the size of the input data at the first size 
2x2 max pooling stage . 
[ 0021 ] Optionally , in any of the preceding aspects , the one 
or more processors further execute instructions to increment 
the window size , and adjust the size of the input data at the 
first size 2x2 max pooling stage in accordance with expres 
sion size = size + ( size / the window size ) . 
[ 0022 ] Optionally , in any of the preceding aspects , the one 
or more processor further execute instructions to adjust the 
window size in accordance with expression window size = 
( window size - 2 ) / stride S + 1 , adjust the size of the input data 
at the first size 2x2 max pooling stage in accordance with 
expression size = ( size - 2 ) / stride S + 1 , and adjust the overlap 
in accordance with expression overlap = ( overlap - 2 ) / 2 + 1 . 
[ 0023 ] Optionally , in any of the preceding aspects , the one 
or more processors further execute instructions to repeat the 
determining the stride S , the applying , the saving , and the 
adjusting until a size of input data at remaining size 2x2 max 
pooling stages is equal to the final size . 
[ 0024 ] Optionally , in any of the preceding aspects , the 
device comprises a convolutional neural network ( CNN ) . 
[ 0025 ] Optionally , in any of the preceding aspects , the 
device comprises a graphics processing unit with a CNN . 
[ 0026 ] In accordance with another aspect of the present 
disclosure , a non - transitory computer - readable media stor 
ing computer instructions for performing size K?K max 
pooling with stride S at a max pooling layer of a convolu 
tional neural network to downsample input data is provided . 
When executed by one or more processors , cause the one or 
more processors to perform the steps of receive input data , 
buffer the input data , apply a cascade of size 2x2 max 
pooling stages to the buffered input data to generate down 
sampled output data , wherein a stride value of each size 2x2 
max pooling stage is determined dynamically in accordance 
with pooling parameters associated with the size 2x2 max 
pooling stage , and output the downsampled output data to 
another layer of the convolution neural network for further 
processing . 
[ 0027 ] Optionally , in any of the preceding aspects , the 
pooling parameters associated with the size 2x2 max pool 
ing stage comprises at least one of a size of input data at the 
size 2x2 max pooling stage , a window size of the size 2x2 
max pooling stage , or an overlap between neighboring 
windows of the size 2x2 max pooling stage . 
[ 0028 ] Optionally , in any of the preceding aspects , the one 
or more processors further execute instructions to determine 
a size of the buffered input data and a final size of the 
downsampled output , determine an overlap between neigh 
boring windows of input data of a first size 2x2 max pooling 
stage in the cascade of size 2x2 max pooling stages , and a 
window size of the input data of the first size 2x2 max 
pooling stage , determine a stride S of the first size 2x2 max 
pooling stage in accordance with the overlap , and the 
window size , apply the size 2x2 max pooling with stride S 
kernel to the input data of the first size 2x2 max pooling 
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stage to generate intermediate downsampled output data , 
save the intermediate downsampled output data , and adjust 
the size of the input data at the first size 2x2 max pooling 
stage , the window size of the first size 2x2 max pooling 
stage , and the overlap between neighboring windows of the 
first size 2x2 max pooling stage . 
[ 0029 ] Optionally , in any of the preceding aspects , the one 
or more processors further execute instructions to determine 
that the overlap between neighboring windows of the input 
data at the first size 2x2 max pooling stage is equal to zero , 
and based thereon set the stride S to two , determine that the 
overlap between neighboring windows of the input data at 
the first size 2x2 max pooling stage is a first even value and 
the window size of the first size 2x2 max pooling stage is a 
second even value , and based thereon set the stride S to two , 
and set the stride S to one for any other possible values of 
the overlap between neighboring windows of the input data 
at the first size 2x2 max pooling stage and the window size 
of the first size 2x2 max pooling stage . 
[ 0030 ] Optionally , in any of the preceding aspects , the one 
or more processors further execute instructions to determine 
that the overlap between neighboring windows of the input 
data at the first size 2x2 max pooling stage is equal to zero 
and the window size is an odd value , and based thereon add 
a padding element to each window sized segment of the 
input data at the first size 2x2 max pooling stage , and adjust 
the window size and the size of the input data at the first size 
2x2 max pooling stage . 
[ 0031 ] Optionally , in any of the preceding aspects , the one 
or more processors further execute instructions to increment 
the window size , and adjust the size of the input data at the 
first size 2x2 max pooling stage in accordance with expres 
sion size = size + ( size / the window size ) . 
[ 0032 ] Optionally , in any of the preceding aspects , the one 
or more processors further execute instructions to adjust the 
window size in accordance with expression window size = 
( window size - 2 ) / stride S + 1 , adjust the size of the input data 
at the first size 2x2 max pooling stage in accordance with 
expression size = ( size - 2 ) / stride S + 1 , and adjust the overlap 
in accordance with expression overlap = ( overlap - 2 ) / 2 + 1 . 
[ 0033 ] Optionally , in any of the preceding aspects , the one 
or more processors further execute instructions to repeat the 
determining the stride S , the applying , the saving , and the 
adjusting until a size of input data at remaining size 2x2 max 
pooling stages is equal to the final size . 
[ 0034 ] Practice of the foregoing aspects enables a reduc 
tion in resource requirements in a neural network by imple 
menting a size K?K max pooling with stride S layer as a 
cascade of size 2x2 max pooling layers . The use of small 
size max pooling layers reduces the computational and 
memory resources required when compared with large size 
max pooling layers . 

[ 0039 ] FIG . 4 illustrates an example data buffer supporting 
NxN input data with a size K?K max pooling kernel ; 
[ 0040 ] FIG . 5 illustrates an example reduction tree of 
comparators ; 
[ 0041 ] FIG . 6 illustrates a diagram demonstrating a deter 
mining of a maximum of a size 3x3 window of input data 
using a size 2x2 max pooling kernel ; 
[ 0042 ] FIG . 7 illustrates the partitioning of a size K?K 
max pooling with stride S kernel into a cascade of K - 1 size 
2x2 max pooling stages ; 
[ 0043 ] FIG . 8 illustrates a diagram of the correspondence 
between two - dimensional max pooling and one - dimensional 
max pooling according to example embodiments described 
herein ; 
[ 0044 ] FIGS . 9A and 9B illustrate example size of the 
input at a max pooling stage and window size according to 
example embodiments presented herein ; 
[ 0045 ] FIGS . 10A and 10B illustrate example size of the 
input of a max pooling stage , window size , and overlap 
values of a max pooling stage according to example embodi 
ments presented herein ; 
[ 0046 ] FIG . 11 illustrates a flow diagram of example 
operations occurring in a device performing dynamic max 
pooling according to example embodiments presented 
herein ; 
[ 0047 ] FIG . 12 illustrates a diagram of the application of 
a size 5 max pooling with stride 2 kernel realized with 
dynamic max pooling to a size 9 input data according to 
example embodiments presented herein ; 
[ 0048 ] FIG . 13 illustrates a diagram of the application of 
a size 6 max pooling with stride 6 kernel realized with 
dynamic max pooling to a size 12 input data according to 
example embodiments presented herein ; 
[ 0049 ] FIG . 14 illustrates a hardware implementation of a 
size 2x2 max pooling stage according to example embodi 
ments presented herein ; and 
[ 0050 ] FIG . 15 is a block diagram of a computing system 
that may be used for implementing the devices and methods 
disclosed herein . 

DETAILED DESCRIPTION OF ILLUSTRATIVE 
EMBODIMENTS 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0051 ] The making and using of the disclosed embodi 
ments are discussed in detail below . It should be appreciated , 
however , that the present disclosure provides many appli 
cable inventive concepts that can be embodied in a wide 
variety of specific contexts . The specific embodiments dis 
cussed are merely illustrative of specific ways to make and 
use the embodiments , and do not limit the scope of the 
disclosure . 
[ 0052 ] As discussed previously , convolutional neural net 
works ( CNNs ) are a sub - class of neural networks ( NNs ) that 
have a distinct logical representation of computational layers 
optimized for tasks such as image classification . A CNN may 
learn to identify features of an image through training where 
the CNN is provided a controlled reference input dataset that 
is known to include data representative of some images 
containing visual objects of interest . Once training is com 
plete , the CNN begins an inference phase , where the CNN 
may be deployed to detect visual objects of interest from 
images input to the trained CNN . Overall , CNNs may 
require significant compute and memory resources , espe 
cially during training . 

[ 0035 ] For a more complete understanding of the present 
disclosure , and the advantages thereof , reference is now 
made to the following descriptions taken in conjunction with 
the accompanying drawings , in which : 
[ 0036 ] FIG . 1 illustrates a diagram of an example CNN ; 
[ 0037 ] FIG . 2 illustrates a diagram highlighting an 
example max pooling operation performed by a pooling 
layer of a CNN ; 
[ 0038 ] FIG . 3 illustrates an example arrangement of image 
data and an ordering of data elements at a max pooling layer ; 
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[ 0053 ] FIG . 1 illustrates a diagram of an example CNN 
100. Each CNN comprises several layers that are combined 
together and represented logically as a network of compute 
elements . As shown in FIG . 1 , CNN 100 includes layers , 
including a convolution layer ( such as convolution layer 
105 ) , a rectified linear unit ( ReLU ) layer ( such as ReLU 
layer 107 ) that applies an activation function to the data , a 
pooling layer ( such as pooling layer 109 ) that downsamples 
the data , a fully connected layer ( such as fully connected 
layer 111 ) , a dropout layer ( such as dropout layer 113 ) that 
activates or deactivates neurons , a softmax layer ( such as 
softmax layer 115 ) that implements a loss function , a cost 
layer ( such as cost layer 117 ) that implements a cost function 
for the neurons , and a normalization layer ( such as normal 
ization layer 119 ) that adjusts neuron responses . CNN 100 , 
and the arrangement of the layers and the flow of the data 
therein , is presented as an example for discussion purposes . 
Therefore , CNN 100 is not intended to be limiting to the 
scope or the spirit of the example embodiments . 
[ 0054 ] The pooling layer is a data processing layer of a 
CNN and may appear multiple times in the CNN . The 
pooling layer downsamples or spatially shrinks data at its 
input , and reduces the data volume at its output . The pooling 
layer reduces memory and compute requirements of subse 
quent layers . The pooling layer partitions its input data into 
windows and determines a single value from the values in 
each window . Different schemes may be implemented at a 
pooling layer , including : 
[ 0055 ] Max pooling — the maximum value from the values 
in a window is selected as the single value ; 
[ 0056 ] Average pooling an average of the values in a 
window is determined as the single value ; and 
[ 0057 ] Weighted average pooling — a weighted average of 
the values in a window is determined as the single value . 
[ 0058 ] FIG . 2 illustrates a diagram 200 highlighting an 
example max pooling operation performed by a pooling 
layer of a CNN . As shown in FIG . 2 , a 4x4 matrix 205 is 
input to a size 2x2 max pooling with stride 2 layer 206 , 
which is hereinafter referred to as max pooling layer 206 . 
The size of a max pooling layer specifies the size of the 
windows of the input data ( e.g. , the 4x4 matrix 205 ) , and the 
stride specifies an offset position where a next window of the 
input data begins . Therefore , a size 2x2 max pooling layer 
operates on a size 2x2 window of input data and produces 
a single output value per size 2x2 window of input data . 
Output of max pooling layer 206 is a size 2x2 matrix 207 . 
Because the size of max pooling layer 206 is 2 , each 
individual window of input data processed by max pooling 
layer 206 is a 2x2 sub - matrix . In the example shown in FIG . 
2 , the input data ( e.g. , the 4x4 matrix 205 ) is partitioned into 
windows 210 , 215 , 220 , 225 , where each window is a 2x2 
sub - matrix . As discussed previously , a max pooling layer 
will determine the maximum value from the values of each 
window and output the single value . As an example , for 
window 210 , the maximum value is 75 , for window 215 , the 
maximum value is 81 , for window 220 , the maximum value 
is 62 , and for window 225 , the maximum value is 99. Matrix 
207 contains the single value output for each of the indi 
vidual windows . As an example , element 212 holds value 
75 , which corresponds to the maximum value for window 
210 , element 217 holds value 81 , which corresponds to the 
maximum value for window 215 , element 219 holds value 
62 , which corresponds to the maximum value for window 

220 , and element 221 holds value 99 , which corresponds to 
the maximum value for window 225 
[ 0059 ] The partitioning of the input data may be described 
as follows : 
[ 0060 ] Start from the top left corner of the input data 
matrix and form a sub - matrix of the same size as the size of 
the max pooling stage , which is commonly referred to as a 
pooling kernel . Find the maximum value in the sub - matrix . 
The maximum value is the single value representing the 
particular sub - matrix . 
[ 0061 ] Move to the right by the stride amount and form 
another sub - matrix of the same size as the pooling kernel . 
Find the maximum value in the sub - matrix . The maximum 
value is the single value representing the particular sub 
matrix . 
[ 0062 ] Repeat until the end of the input data in the 
horizontal direction is reached . 
[ 0063 ] Move back to the left side of the input data matrix . 
Move down by the stride amount and form another sub 
matrix with the same size as the pooling kernel . Find the 
maximum value in the sub - matrix . The maximum value is 
the single value representing the particular sub - matrix . 
[ 0064 ] Repeat moving to the right and down until all data 
from the input data matrix is covered . 
[ 0065 ] In hardware device architectures , in many situa 
tions it is optimal to implement a streaming architecture . A 
streaming architecture refers to a data execution model 
where compute operations can be fully pipelined so that in 
optimal conditions for every clock cycle of execution , a 
result is produced . In general , this is optimal for systems in 
which an input stream of data can be provided to the 
hardware device to sustain the pipelined execution . In the 
case of image processing , graphic processors implement 
architectures to concurrently buffer input images while 
executing compute units . 
[ 0066 ] FIG . 3 illustrates an example arrangement 300 of 
image data and an ordering of data elements at a max 
pooling layer . When processing image data in a CNN , the 
order of the data elements as they arrive at a max pooling 
layer is also a concern . Image data is typically organized into 
two - dimensional arrays of pixels , where each pixel is asso 
ciated with a Cartesian coordinate of where the image 
appears on a display . As shown in FIG . 3 , image data is 
arranged in a two - dimensional array 305. Furthermore , 
when performing max pooling ( or other forms of image 
processing ) image data is provided in raster - order , where the 
first data element to arrive is the element from the first row 
and first column of the two - dimensional array , followed by 
data elements to its right and then starting again at the left 
most data element of the second row , etc. As an example , a 
first data element 310 of two - dimensional array 305 is the 
first to arrive at a max pooling layer , followed by a second 
data element 312 , and so on . A last data element 314 of the 
first row is followed by the first data element 316 of the 
second row , etc. 
[ 0067 ] In a streaming architecture implementation of a 
max pooling layer , compute operations should be fully 
pipelined in order to achieve maximum compute perfor 
mance . If the image data arrives in raster order , then some 
execution clock cycles are spent loading data elements into 
memory until a full max pooling window is available , which 
negatively impacts performance and increases memory 
requirements . This is a problem to be addressed in the 
streaming architecture of the max pooling layer . 
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[ 0068 ] A typical streaming architecture implementation of 
a max pooling layer includes : 
[ 0069 ] A buffer to store data for overlapping windows 
provided to the max pooling layer ; and 
[ 0070 ] A plurality of comparators to compute the maxi 
mum value . FIG . 4 illustrates an example data buffer 400 
supporting NxN input data with a size K?K max pooling 
kernel . For NxN input data with a size K?K max pooling 
kernel , a minimum size of a data buffer for streaming input 
data arriving in raster - scan order is expressible as : 

Buffer_size = N ( K - 1 ) + K . 

[ 0071 ] As shown in FIG . 4 , data buffer 400 supports 
12x12 input data with a size 3x3 max pooling kernel . 
[ 0072 ] In order to support pipelined computation of the 
maximum value of an individual window , a reduction tree of 
comparators may be used . FIG . 5 illustrates an example 
reduction tree of comparators 500. Reduction tree of com 
parators 500 comprises a plurality of two - input comparators . 
A number of two - input comparators of a reduction tree of 
comparators supporting the computation of the maximum 
value of a window of input data with size K?K is expressible 
as : 

Comparators_required = K * K - 1 . 

[ 0073 ] As shown in FIG . 5 , reduction tree of comparators 
500 comprises 8 two - input comparators and supports the 
computation of the maximum value of a window of input 
data with size 3x3 . 
[ 0074 ] As shown above , the amount of buffer storage and 
the number of comparators grow as a function of : 
[ 0075 ] Size of the max pooling kernel . The buffer storage 
and number of comparators grow in proportion to the size of 
the max pooling kernel for a fully parallel max pooling 
implementation . The buffer storage and number of compara 
tors growth is compounded if the input data is multi 
channeled . As an example , a typical image file has multiple 
channels for different colors ( such as Red - Green - Blue ) , and 
max pooling is to be performed on each channel . 
[ 0076 ] Number of max pooling layers in a particular CNN 
implementation . A CNN may have multiple max pooling 
layers . 
[ 0077 ] As an example of the buffer storage and compara 
tor needs of a streaming architecture implementation of a 
CNN , an example CNN with three max pooling layers is 
considered . The example CNN includes a first max pooling 
layer that supports size 3x3 max pooling with stride 2 on 96 
channels , a second max pooling layer that supports size 3x3 
max pooling with stride 2 on 256 channels , and a third max 
pooling layer that supports size 3x3 max pooling with stride 
2 on 256 channels . In order to achieve streaming perfor 
mance , at total of 96 + 256 + 256 = 608 instances of max pool 
ing logic is needed to implement the example CNN directly 
in fully pipelined hardware . 
[ 0078 ] In addition to the substantial hardware require 
ments , an attempt to map the computations of the example 
CNN onto smaller footprint devices , such as mobile hand 
sets , user equipments ( UEs ) , digital cameras , etc. , would 
require more resources than typically available on these 
smaller footprint devices . 
[ 0079 ] It is possible to determine a maximum of a large 
window of input data using a max pooling kernel with a size 
that is smaller than the size of the large window of input 
data . FIG . 6 illustrates a diagram 600 demonstrating a 
determining of a maximum of a size 3x3 window of input 

data using a size 2x2 max pooling kernel . As shown in FIG . 
6 , input data 605 is a size 6x4 matrix of data values and it 
is desired to determine a maximum value in a size 3x3 
window 607 of input data 605. As an example , the maximum 
value of input data 605 may be determined by determine the 
maximum value in individual 3x3 sized windows of input 
data 605 spanning the entirety of input data 605 . 
[ 0080 ] In order to determine the maximum value of size 
3x3 window 607 using a size 2x2 max pooling kernel , size 
3x3 window 607 is partitioned into size 2x2 windows 612 , 
614 , 616 , and 618. There is some overlap in the size 2x2 
windows that is due to the size difference between size 3x3 
window 607 and the size 2x2 max pooling kernel . Size 2x2 
matrices 632,634 , 636 , and 638 display the input data in size 
2x2 windows 612 , 614 , 616 , and 618. A maximum value of 
each size 2x2 window 612 , 614 , 616 , and 618 is determined 
using the size 2x2 max pooling kernel . A size 2x2 window 
650 displays the output of the size 2x2 max pooling kernel 
after the size 2x2 max pooling kernel is applied to size 2x2 
windows 612 , 614 , 616 , and 618. Size 2x2 window 650 is 
then provided to the size 2x2 max pooling kernel to deter 
mine a maximum value 660 of size 2x2 window 650 , which 
is also the maximum value of size 3x3 window 607 . 
[ 0081 ] In co - assigned patent application entitled “ System 
and Method for Cascaded Max Pooling in Neural Net 
works ” , U.S. application Ser . No. 16 / 131,780 , attorney 
docket number HW 85789681USO1 , filed Sep. 14 , 2018 , 
which is hereby incorporated herein by reference , it is shown 
that any size K?K max pooling with stride S kernel is 
realizable as a cascade of size 2x2 max pooling stages . The 
output produced by the first max pooling stage ( and inter 
mediate max pooling stages ) in the cascade of size 2x2 max 
pooling stages becomes input for next max pooling stage , 
with exception of the last max pooling stage in the cascade 
of size 2x2 max pooling stages . The output of the last max 
pooling stage is the output of the size K?K max pooling with 
stride S kernel . The size K?K max pooling with stride S 
kernel is realizable as a cascade of K - 2 size 2x2 max 
pooling with stride 1 stages and one size 2x2 max pooling 
with stride S stage . Each stage of the cascade ( except for the 
last stage of the cascade ) applies max pooling operations to 
the entirety of its input , with the output of one stage 
becoming the input of a subsequent stage . The last stage of 
the cascade applies the max pooling operations to the 
entirety of its input , with the output being the output of the 
size K?K max pooling with stride S kernel . 
[ 0082 ] FIG . 7 illustrates the partitioning 800 of a size K?K 
max pooling with stride S kernel into a cascade of K - 1 size 
2x2 max pooling stages . As shown in FIG . 7 , a size K?K 
max pooling with stride S kernel 705 is partitioned into a 
cascade of K - 1 size 2x2 max pooling stages 710. The size 
2x2 max pooling stages of cascade of K - 1 size 2x2 max 
pooling stages 710 are arranged in a linear sequence , with 
the output of one stage being the input to the next stage . 
Cascade of K - 1 size 2x2 max pooling stages 710 comprises 
K - 2 size 2x2 max pooling with stride 1 stages 715 and one 
size 2x2 max pooling with stride S stage 720 . 
[ 0083 ] Cascaded max pooling achieves the same result of 
a size K?K max pooling with stride S kernel by applying a 
cascade of size 2x2 max pooling stages to the input data . 
During this process , output of one size 2x2 max pooling 
stage becomes the input of the subsequent size 2x2 max 
pooling stage . It is important to ensure that the values in 
different size K?K windows do not get mixed with each 
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other at any stage of the cascaded size 2x2 max pooling 
stages . Otherwise it is possible to take the maximum of some 
values which would not have been compared in the first 
place had the original size K?K max pooling with stride S 
kernel been applied . In the examples that follow , values in 
each window of input data of the cascaded size 2x2 max 
pooling stages are analyzed to ensure that right comparisons 
are made . To simplify the figures , examples that follow are 
given with one - dimensional max pooling instead of two 
dimensional max pooling . For the purpose of this discussion , 
one - dimensional max pooling and two - dimensional max 
pooling produce similar results . 
[ 0084 ] FIG . 8 illustrates a diagram 800 of the correspon 
dence between two - dimensional max pooling and one - di 
mensional max pooling . As shown in FIG . 8 ( and also in 
FIGS . 9A , 9B , 10A , 10B , 12 and 13 ) , the windows of values 
in one - dimensional max pooling indicate the values for 
which the maximum should be calculated . These windows 
of values in one dimension correspond to the windows of 
values in two dimensions . A first sequence of data values 
805 represents two - dimensional data , such as image data . 
First sequence of data values 805 comprises a 2x9 array , but 
the example embodiments presented herein are operable 
with arrays of other dimensions . A size 2x2 max pooling 
with stride 1 kernel is applied to first sequence of data values 
805. In a first application of the size 2x2 max pooling with 
stride 1 kernel , data values in window 807 are processed , 
and in a second application of the size 2x2 max pooling with 
stride 1 kernel , data values in window 809 are processed , 
and so on . A second sequence of data values 820 represents 
one - dimensional data , such as image data . Second sequence 
of data values 820 comprises a 1x9 array , but the example 
embodiments presented herein are operable with arrays of 
other dimensions . A size 2 max pooling with stride 1 kernel 
is applied to second sequence of data values 820. In a first 
application of the size 2 max pooling with stride 1 kernel , 
data values in window 822 are processed , and in a second 
application of the size 3 max pooling with stride 1 kernel , 
data values in window 824 are processed . 
[ 0085 ] The application of the max pooling kernel shown in 
FIG . 8 occurs in the horizontal direction . However , the 
application of the max pooling kernel in the vertical direc 
tion is also similar . Therefore , it is possible to simplify the 
illustration of the application of the max pooling kernel by 
showing the process in one dimension . 
[ 0086 ] According to an example embodiment , any size 
K?K max pooling with stride S kernel is partitioned into a 
cascade of size 2x2 max pooling stages . The size 2x2 max 
pooling stages are arranged into a linear sequence of size 
2x2 max pooling stages , with the output produced by the 
first max pooling stage ( and intermediate max pooling 
stages ) in the cascade of size 2x2 max pooling stages 
becomes input for next max pooling stage , with exception of 
the last max pooling stage in the cascade of size 2x2 max 
pooling stages . The output of the last max pooling stage is 
the output of the size K?K max pooling with stride S kernel . 
[ 0087 ] According to an example embodiment , a size KxK 
max pooling with stride S kernel is implemented using a 
cascade of size 2x2 max pooling stages with the stride of 
each of the size 2x2 max pooling stages being dynamically 
determined . In an embodiment , the stride of each of the size 
2x2 max pooling stages is determined dynamically , based 
upon pooling parameters of the size 2x2 max pooling stage . 
Examples of pooling parameters that have an impact on the 

stride of the size 2x2 max pooling stages include : a size of 
input at the size 2x2 max pooling stage , a window size of the 
size 2x2 max pooling stage , an overlap between neighboring 
windows of the size 2x2 max pooling stage , and so on . As 
an example , the stride of any of the size 2x2 max pooling 
stages is either 1 or 2 , determined in accordance with the 
pooling parameters of the size 2x2 max pooling stage . 
[ 0088 ] According to an example embodiment , a size K?K 
max pooling with stride S kernel is implemented using a 
cascade of size 2x2 max pooling stages with the number of 
size 2x2 max pooling stages being dynamically determined . 
As an example , there are J size 2x2 max pooling stages in 
the cascade of size 2x2 max pooling stages , where the output 
size of the J - th size 2x2 max pooling stage is equal to a final 
output size . The final output size is determined in accor 
dance with initial pooling parameters , such as the initial size 
of the input N at the 2x2 max pooling stage , the max pooling 
kernel size K?K , and stride S. 
[ 0089 ] As discussed previously , pooling parameters 
include a size of the input at a max pooling stage , window 
size at a max pooling stage , overlap between neighboring 
windows at a max pooling stage , and so on . In a situation 
where the original size of the input at a max pooling state is 
NxN , max pooling kernel size is KxK , and stride is S , the 
pooling parameters may be defined as follows : 
[ 0090 ] Size ( of a stage ) : The total size of the input in either 
dimension . Initially , the size is equal to the original size of 
the input . The size generally shrinks after each max pooling 
stage , with the size ending up being equal to a final output 
size that would be obtained by the original max pooling 
kernel . 
[ 0091 ] Window size ( of a stage ) : The number of data 
values in a window at a particular max pooling stage . The 
window size is initially equal to the original max pooling 
kernel size . The window size shrinks after each max pooling 
stage , with the window size ending up being equal to one . 
[ 0092 ] Overlap ( of a stage ) : The number of data values 
that two neighboring windows have in common . The overlap 
reduces after each max pooling stage , with the overlap 
ending up being equal to zero . 
[ 0093 ] FIGS . 9A and 9B illustrate example size of the 
input at a max pooling stage and window size . As shown in 
FIG . 9A , sequence of data values 900 includes seven data 
values , such as data values 907 , 909 , 911 , 917 , and 919 . 
Hence , size ( denoted as SIZE ) is equal to seven . The data 
values are partitioned into groups of three data values each , 
such as window groups 905 and 915. Therefore , the window 
size ( denoted as WINDOW SIZE ) is equal to three . As 
shown in FIG . 9B , sequence of data values 950 includes six 
data values , such as data values 957 , 959 , 967 , and 969 . 
Hence , size is equal to six . The data values are partitioned 
into groups of two data values each , such as window groups 
955 and 965. Therefore , the window size is equal to two . 
[ 0094 ] FIGS . 10A and 10B illustrate example size of the 
input of a max pooling stage , window size , and overlap 
values of a max pooling stage . As shown in FIG . 10A , 
sequence of data values 100 includes seven data values , such 
as data values 1007 , 1009 , 1011 , 1017 , and 1019. Hence , 
size is equal to seven . The data values are partitioned into 
groups of five data values each , such as window groups 1005 
and 1015. Therefore , the window size is equal to five . 
Furthermore , each window shares three data values , thus the 
overlap ( denoted OVERLAP ) is equal to three . As shown in 
FIG . 10B , sequence of data values 1050 includes six data 
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size W data values ( block 1117 ) . In other words , the device 
adds the padding element to make the number of data values 
in each window even , enabling the max pooling operation to 
be performed on a fixed hardware implementation of a size 
2x2 max pooling kernel . The padding element may be a zero 
value to have no impact on the max pooling operation , for 
example . The device also updates the window size W and 
the input size SIZE values ( block 1119 ) . As an example , the 
window size W is incremented by one ( due to the addition 
of the one padding element per group of W data values ) , 
while the input size SIZE is updated using expression : 

values , such as data values 1057 , 1059 , 1061 , and 1063 . 
Hence , size is equal to six . The data values are partitioned 
into groups of four data values each , such as window groups 
1055 and 1065. Therefore , the window size is equal to four . 
The two window groups 1055 and 1065 share two data 
values ( thus , overlap is equal to two ) . 
[ 0095 ] FIG . 11 illustrates a flow diagram of example 
operations 1100 occurring in a device performing dynamic 
max pooling . Operations 1100 may be indicative of opera 
tions occurring in a device as the device performs dynamic 
max pooling to downsample input data . As discussed pre 
viously , dynamic max pooling realizes a size KxK max 
pooling with stride S kernel with an input of size N as a 
cascade of size 2x2 max pooling stages , where the stride of 
each size 2x2 max pooling stage is dynamically determined . 
Furthermore , the total number of size 2x2 max pooling 
stages is also dynamically determined . 
[ 0096 ] Operations 1100 begin with the device initializing 
values ( block 1105 ) . In a situation where it is given that the 
input data is an NxN matrix and that the max pooling kernel 
to realize is a size K?K max pooling with stride S kernel , the 
following values are set initially : 
[ 0097 ] Input size ( SIZE ) : Initialize SIZE to input size , 

SIZE = SIZE + ( SIZE / W ) . 

[ 0104 ] If the overlap of the size 2x2 max pooling stage is 
not equal to zero ( block 1111 ) , the device performs a check 
to determine if both the overlap of the size 2x2 max pooling 
stage is even and the window size W is even ( block 1121 ) . 
If the device determines that both the overlap of the size 2x2 
max pooling stage is even and the window size W is even , 
then the device sets the stride S to two ( block 1123 ) . In all 
other cases , the device sets the stride S to one ( block 1125 ) . 
[ 0105 ] The device applies the size 2x2 max pooling with 
stride S kernel to the input of the size 2x2 max pooling stage 
( block 1127 ) . The device adjusts the window size W , the 
overlap OVERLAP , and the input size SIZE values ( block 
1129 ) . Examples of the adjusting of the values include : 

SIZE = N ; 

W = ( W - 2 ) / S + 1 ; 
[ 0098 ] Window size ( W ) : Initialize W to kernel size , 

W = kernel size = K ; 

[ 0099 ] Overlap ( OVERLAP ) : Initialize OVERLAP to dif 
ference of kernel size and stride , 

OVERLAP = ( OVERLAP - 2 ) / S + 1 ; 

OVERLAP = kernel size - stride = K - S ; SIZE = ( SIZE - 2 ) / S + 1 . 

[ 0100 ] Final size ( FINALSIZE ) : FINALSIZE is the size of 
the output if the original size K?K max pooling with stride 
S kernel is applied to the input data . FINALSIZE is the stop 
condition , and the operations stop whenever SIZE is equal 
to FINALSIZE , 

FINALSIZE = ( input size - kernel size ) / stride + 1 = ( N 
K ) / S + 1 . 

[ 0101 ] The device performs a check to determine if the 
stop condition is met ( block 1107 ) . As discussed previously , 
the stop condition is when the size of the input to a size 2x2 
max pooling stage is equal to the final size ( e.g. , SIZE is 
equal to FINALSIZE ) . If the stop condition is met , opera 
tions 1100 ends and the input is the output of the dynamic 
max pooling realization of the size K?K max pooling with 
stride S kernel . 
[ 0102 ] If the stop condition is not met , the device deter 
mines the stride to be used for the size 2x2 max pooling 
stage ( blocks 1109 ) . The determination of the stride of the 
size 2x2 max pooling stage is in accordance with the pooling 
parameters of the size 2x2 max pooling stage . Examples of 
the pooling parameters include the input size of the size 2x2 
max pooling stage , the window size of the size 2x2 max 
pooling stage , and the overlap of the size 2x2 max pooling 
stage . 
[ 0103 ] An example determination of the stride of the size 
2x2 max pooling stage includes the device performing a 
check to determine if the overlap of the size 2x2 max 
pooling stage is equal to zero ( block 1111 ) . If the overlap is 
equal to zero , the stride S is set to two ( block 1113 ) . The 
device also performs a check to determine if the window size 
W is odd ( block 1115 ) . If the window size W is odd , the 
device adds a padding element to each grouping of window 

The device returns to block 1107 to repeat the determination 
if the stop condition is been met . 
[ 0106 ] FIG . 12 illustrates a diagram 1200 of the applica 
tion of a size 5 max pooling with stride 2 kernel realized with 
dynamic max pooling to a size 9 input data . The max pooling 
shown in FIG . 12 is one - dimensional max pooling and is 
presented as an analog to two - dimensional max pooling in 
order to simplify the figure . The example embodiments 
presented herein are operable with one - dimensional or two 
dimensional max pooling . The presentation of one - dimen 
sional max pooling is not intended to be limiting to either the 
scope or spirit of the example embodiments . As described 
previously , the size 5 max pooling with stride 2 kernel is 
realized as a cascade of size 2 max pooling stages with 
dynamically configured stride . Following operations 1100 of 
FIG . 11 , for example , the initial values as determined in 
block 1105 are SIZE = 9 , W = 5 , OVERLAP = 3 , and FINAL 
SIZE = 3 . Because , SIZE is not equal to FINALSIZE , a first 
size 2 max pooling stage with stride S = 1 is performed 
( because OVERLAP is not equal to zero and is not even ) . A 
first sequence of 9 data values 1205 illustrate the application 
of the size 2 max pooling with stride 1 operation . Adjusted 
values as determined in block 1129 are SIZE = 8 , W = 4 , and 
OVERLAP = 2 . Because SIZE is not equal to FINALSIZE , a 
second size 2 max pooling stage with stride S = 2 is per 
formed ( because OVERLAP is not equal to zero , but OVER 
LAP is even and W is even ) . A second sequence of 8 data 
values 1215 illustrate the application of the size 2 max 
pooling with stride 2 operation . Adjusted values as deter 
mined in block 1129 are SIZE = 4 , W = 2 , and OVERLAP = 1 . 
[ 0107 ] Because SIZE is not equal to FINALSIZE , a third 
size 2 max pooling stage with stride S = 1 is performed 
( because OVERLAP is not equal to zero and is not even ) . A 
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third sequence of 4 data values 1225 illustrate the applica 
tion of the size 2 max pooling with stride 1 operation . 
Adjusted values as determined in block 1129 are SIZE = 3 , 
W = 1 , and OVERLAP = 1 . Because SIZE is equal to FINAL 
SIZE , the stop condition ( block 1107 of FIG . 11 , for 
example ) is met and the realization of the size 5 max pooling 
with stride 2 kernel using dynamic max pooling is complete . 
[ 0108 ] FIG . 13 illustrates a diagram 1300 of the applica 
tion of a size 6 max pooling with stride 6 kernel realized with 
dynamic max pooling to a size 12 input data . The max 
pooling shown in FIG . 13 is one - dimensional max pooling 
and is presented as an analog to two - dimensional max 
pooling in order to simplify the figure . The example embodi 
ments presented herein are operable with one - dimensional 
or two - dimensional max pooling . The presentation of one 
dimensional max pooling is not intended to be limiting to 
either the scope or spirit of the example embodiments . As 
described previously , the size 6 max pooling with stride 6 
kernel is realized as a cascade of size 2 max pooling stages 
with dynamically configured stride . Following operations 
1100 of FIG . 11 , for example , the initial values as deter 
mined in block 1105 are SIZE = 12 , W = 6 , OVERLAP = 0 , and 
FINALSIZE = 2 . Because SIZE is not equal to FINALSIZE , 
a first size 2 max pooling stage with stride S = 2 is performed 
( because OVERLAP is equal to zero and W is even ) . A first 
sequence of 12 data values 1305 illustrates the application of 
the size 2 max pooling with stride 2 operation . Adjusted 
values as determined in block 1129 are SIZE = 6 , W = 3 , and 
OVERLAP = 0 . 

[ 0109 ] A second sequence of 6 data values 1315 illustrates 
the output of the first size 2 max pooling stage . Because 
SIZE is not equal to FINALSIZE , a second size 2 max 
pooling stage with stride S = 2 is performed ( because OVER 
LAP is equal to zero and W is odd ) . However , because W is 
odd , a padding element is added to each grouping of W data 
values . A third sequence of 8 data values 1325 illustrates the 
output of the first size 2 max pooling stage after padding 
elements have been added . As an example , padding element 
1327 is added to grouping 1329. Third sequence of 8 data 
values 1325 illustrates the application of the second size 2 
max pooling stage with stride 2. Adjusted values as deter 
mined in block 1129 are SIZE = 4 , W = 2 , and OVERLAP = 0 . 
[ 0110 ] A fourth sequence of 4 data values 1335 illustrates 
the output of the second size 2 max pooling stage . Because 
SIZE is not equal to FINALSIZE , a third size 2 max pooling 
stage with stride S = 2 is performed ( because OVERLAP is 
equal to zero and W is even ) . Fourth sequence of 4 data 
values 1335 illustrates the application of the size 2 max 
pooling with stride 2 operation . Adjusted values as deter 
mined in block 1129 are SIZE = 2 , W = 1 , and OVERLAP = 0 . 
A fifth sequence of 2 data values 1345 illustrates the output 
of the third size 2 max pooling stage . Because SIZE is equal 
to FINALSIZE , the stop condition ( block 1107 of FIG . 11 , 
for example ) is met and the realization of the size 6 max 
pooling with stride 6 kernel using dynamic max pooling is 
complete . 
[ 0111 ] FIG . 14 illustrates a hardware implementation of a 
size 2x2 max pooling stage 1400. Size 2x2 max pooling 
stage 1400 is capable of implementing a size 2x2 max 
pooling stage with any stride , and may be used in the 
realization of a size K?K max pooling with stride S kernel 
as a cascade of size 2x2 max pooling stages with dynami 
cally determined stride S as discussed previously . Size 2x2 

max pooling stage 1400 allows for the sequential execution 
( with fully pipelined operation of each pooling layer of a 
CNN . 
[ 0112 ] Size 2x2 max pooling stage 1400 includes a data 
first in first out ( FIFO ) buffer 1405 that stores the partial 
results of the size K?K max pooling with stride S kernel , as 
well as a mask FIFO buffer 1410 that removes temporary 
junk values produced when the size 2x2 max pooling stage 
1400 processes data values that span adjacent windows . 
According to an embodiment , a size of data FIFO buffer 
1405 is at least equal to the size of the intermediate output 
at each size 2x2 max pooling stage . 
[ 0113 ] Size 2x2 max pooling stage 1400 also includes a 
first comparator 1415 having a first input coupled to a data 
input and a second input coupled to a delayed version of the 
data input , wherein the delayed version of the data input is 
provided by a delay unit 1420. First comparator 1415 is 
configured to compare a data input value with a delayed data 
input value and output the larger of the two . Size 2x2 max 
pooling stage 1400 also includes a second comparator 1425 
having a first input coupled to an output of data FIFO buffer 
1405 and a second input coupled to an output of first 
comparator 1415. Second comparator 1425 is configured to 
compare a data value from data FIFO buffer 1405 with an 
output of first comparator 1415 and output the larger of the 
two . The output of second comparator 1425 is either the 
output of an intermediate size 2x2 max pooling stage or the 
output of the size K?K max pooling with stride S kernel . 
[ 0114 ) Size 2x2 max pooling stage 1400 also includes a 
controller 1430 coupled to data FIFO buffer 1405 , and a 
stride value input . Controller 1415 is configured to control 
data FIFO buffer 1405 to store or output data values in 
accordance with a stride value determined in accordance 
with an initial stride value on the stride value input . The 
stride value may be determined by controller 1430 in 
accordance with the pooling parameter of the size 2x2 max pooling stage being implemented . Examples of the pooling 
parameters include the size of the input of the size 2x2 max 
pooling stage , the window size of the size 2x2 max pooling 
stage , and the overlap of the size 2x2 max pooling stage . 
Depending on the stride value , controller 1415 uses a write 
control line and a read control line to have data FIFO buffer 
1405 store or output data values from first comparator 1415 . 
Alternatively , a processor coupled to size 2x2 max pooling 
stage 1400 may determine the stride value ( based on the 
pooling parameters , for example ) and provide the stride 
value to controller 1415. The processor may be a part of a 
graphics processing unit that includes size 2x2 max pooling 
stage 1400 or the processor may be a part of a computing 
system that includes the graphics processing unit that 
includes size 2x2 max pooling stage 1400. The processor 
may also control a padding input that results in size 2x2 max 
pooling stage 1400 adding padding elements to the input 
data . 
[ 0115 ] Size 2x2 max pooling stage 1400 also includes a 
multiplexor 1435 having a first input coupled to an output of 
mask FIFO 1410 , a second input coupled to the output of 
first comparator 1415 , and a control input coupled to the 
output of second comparator 1425. Depending on the con 
trol input , multiplexor 1435 outputs junk values or the 
output of first comparator 1415 . 
[ 0116 ] FIG . 15 is a block diagram of a computing system 
1500 that may be used for implementing the devices and 
methods disclosed herein . For example , the computing sys 
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tem can be any entity of hand - held computing device , 
wireless handset , touchpad tablet , touchpad PC , digital 
camera , video camera , surveillance camera , and so on . 
Specific devices may utilize all of the components shown or 
only a subset of the components , and levels of integration 
may vary from device to device . Furthermore , a device may 
contain multiple instances of a component , such as multiple 
processing units , processors , memories , transmitters , receiv 
ers , etc. The computing system 1500 includes a central 
processing unit ( CPU ) 1514 , memory 1508 , and may further 
include a mass storage device 1504 , a video adapter 1510 , an 
I / O interface 1512 , and a graphics processing unit ( GPU ) 
1520 connected to a bus 1524 . 
[ 0117 ] The bus 1524 may be one or more of any type of 
several bus architectures including a memory bus or 
memory controller , a peripheral bus , or a video bus . The 
CPU 1514 may comprise any type of electronic data pro 
cessor . The memory 1508 may comprise any type of non 
transitory system memory such as static random access 
memory ( SRAM ) , dynamic random access memory 
( DRAM ) , synchronous DRAM ( SDRAM ) , read - only 
memory ( ROM ) , or a combination thereof . In an embodi 
ment , the memory 1508 may include ROM for use at 
boot - up , and DRAM for program and data storage for use 
while executing programs . 
[ 0118 ] The mass storage 1504 may comprise any type of 
non - transitory storage device configured to store data , pro 
grams , and other information and to make the data , pro 
grams , and other information accessible via the bus 1524 . 
The mass storage 1504 may comprise , for example , one or 
more of a solid state drive , hard disk drive , a magnetic disk 
drive , or an optical disk drive . 
[ 0119 ] The video adapter 1510 and the I / O interface 1512 
provide interfaces to couple external input and output 
devices to the processing unit 1502. As illustrated , examples 
of input and output devices include a display 1518 coupled 
to the video adapter 1510 and a mouse , keyboard , printer , or 
camera 1516 coupled to the 1/0 interface 1512. Other 
devices may be coupled to the processing unit 1502 , and 
additional or fewer interface cards may be utilized . For 
example , a serial interface such as Universal Serial Bus 
( USB ) ( not shown ) may be used to provide an interface for 
an external device . 
[ 0120 ] The GPU 1520 processes graphical data , such as 
images captured by the mouse , keyboard , printer , or camera 
1516. The GPU 1520 makes use of computation techniques 
to process large amounts of data , to perform image detec 
tion , speech recognition , and so on . As an example , the GPU 
1520 includes an implementation of a neural network , such 
as a CNN . The CNN includes a variety of processing layers , 
including one or more pooling layers to downsample the 
large amounts of data . The GPU 1520 also processes other 
types of data with efficient algorithms , to perform crypto 
currency mining , for example . The GPU 1520 can be the 
device that performs dynamic max pooling . 
[ 0121 ] The computing system 1500 also includes one or 
more network interfaces 1506 , which may comprise wired 
links , such as an Ethernet cable , or wireless links to access 
nodes or different networks . The network interfaces 1506 
allow the computing system to communicate with other 
computing systems , such as servers , mobile devices , etc. , via 
the networks . For example , the network interfaces 1506 may 
provide wireless communication via one or more transmit 
ters / transmit antennas and one or more receivers / receive 

antennas . In an embodiment , the computing system 1500 is 
coupled to a local - area network 1522 or a wide - area network 
for data processing and communications with remote 
devices , such as other processing units , the Internet , or 
remote storage facilities . 
[ 0122 ] It should be appreciated that one or more steps of 
the embodiment methods provided herein may be performed 
by corresponding units or modules . For example , a signal 
may be transmitted by a transmitting unit or a transmitting 
module . A signal may be received by a receiving unit or a 
receiving module . A signal may be processed by a process 
ing unit or a processing module . Other steps may be per 
formed by a buffering unit or module , a determining unit or 
module , an adjusting unit or module , a saving unit or 
module , an outputting unit or module , a setting unit or 
module , an adding unit or module , or an applying unit or 
module . The respective units or modules may be hardware , 
software , or a combination thereof . For instance , one or 
more of the units or modules may be an integrated circuit , 
such as field programmable gate arrays ( FPGAs ) or appli 
cation - specific integrated circuits ( ASICs ) . 
[ 0123 ] Although the present disclosure and its advantages 
have been described in detail , it should be understood that 
various changes , substitutions and alterations can be made 
herein without departing from the spirit and scope of the 
disclosure as defined by the appended claims . 
What is claimed is : 
1. A computer - implemented method for performing size 

K?K max pooling with stride S at a max pooling layer of a 
convolutional neural network to downsample input data , the 
computer - implemented method comprising : 

receiving , at the max pooling layer , input data ; 
buffering , at the max pooling layer , the input data ; 
applying , at the max pooling layer , a cascade of size 2x2 
max pooling stages to the buffered input data to gen 
erate downsampled output data , wherein a stride value 
of each size 2x2 max pooling stage is determined 
dynamically in accordance with pooling parameters 
associated with the size 2x2 max pooling stage ; and 

outputting , by the max pooling layer , the downsampled 
output data to another layer of the convolution neural 
network for further processing . 

2. The computer - implemented method of claim 1 , 
wherein the pooling parameters associated with the size 2x2 
max pooling stage comprises at least one of a size of input 
data at the size 2x2 max pooling stage , a window size of the 
size 2x2 max pooling stage , or an overlap between neigh 
boring windows of the size 2x2 max pooling stage . 

3. The computer - implemented method of claim 2 , 
wherein the overlap between the neighboring windows of 
the size 2x2 max pooling stage is determined in accordance 
with the size of the input data at the size 2x2 max pooling 
stage , and the window size of the size 2x2 max pooling 
stage . 

4. The computer - implemented method of claim 1 , 
wherein applying the cascade of size 2x2 max pooling 
stages comprises : 

determining , by the max pooling layer , a size of the 
buffered input data and a final size of the downsampled 
output ; 

determining , by the max pooling layer , an overlap 
between neighboring windows of input data of a first 
size 2x2 max pooling stage in the cascade of size 2x2 



US 2020/0090046 A1 Mar. 19 , 2020 
10 

max pooling stages , and a window size of the input data 
of the first size 2x2 max pooling stage ; 

determining , by the max pooling layer , a stride S of the 
first size 2x2 max pooling stage in accordance with the 
overlap , and the window size ; 

applying , by the max pooling layer , the size 2x2 max 
pooling with the stride S kernel to the input data of the 
first size 2x2 max pooling stage to generate interme 
diate downsampled output data ; 

saving , by the max pooling layer , the intermediate down 
sampled output data ; and 

adjusting , by the max pooling layer , the size of input data 
at the first size 2x2 max pooling stage , the window size 
of the first size 2x2 max pooling stage , and the overlap 
between neighboring windows of the first size 2x2 max 
pooling stage . 

5. The computer - implemented method of claim 4 , 
wherein determining the stride S of the first size 2x2 max 
pooling stage comprises : 

determining , by the max pooling layer , that the overlap 
between neighboring windows of the input data at the 
first size 2x2 max pooling stage is equal to zero , and 
based on the determination that the overlap between 
neighboring windows of the input data at the first size 
2x2 max pooling stage is equal to zero , setting , by the 
max pooling layer , the stride S to two ; 

determining , by the max pooling layer , that the overlap 
between neighboring windows of the input data at the 
first size 2x2 max pooling stage is a first even value and 
the window size of the first size 2x2 max pooling stage 
is a second even value , and based on the determination 
that the overlap between neighboring windows of the 
input data at the first size 2x2 max pooling stage is a 
first even value and the window size of the first size 2x2 
max pooling stage is a second even value , setting , by 
the max pooling layer , the stride S to two ; and 

setting , by the max pooling layer , the stride S to one for 
any other possible values of the overlap between neigh 
boring windows of the input data at the first size 2x2 
max pooling stage and the window size of the first size 
2x2 max pooling stage . 

6. The computer - implemented method of claim 5 , further 
comprising : 

determining that the overlap between neighboring win 
dows of the input data at the first size 2x2 max pooling 
stage is equal to zero and the window size is an odd 
value , and based on the determination that the overlap 
between neighboring windows of the input data at the 
first size 2x2 max pooling stage is equal to zero and the 
window size is an odd value : 
adding , by the max pooling layer , a padding element to 

each window sized segment of the input data at the 
first size 2x2 max pooling stage ; and 

adjusting , by the max pooling layer , the window size 
and the size of the input data at the first size 2x2 max 
pooling stage . 

7. The computer - implemented method of claim 6 , 
wherein adjusting the window size and the size of the input 
data at the first size 2x2 max pooling stage comprises : 

incrementing , by the max pooling layer , the window size ; 
and 

adjusting , by the max pooling layer , the size of the input 
data at the first size 2x2 max pooling stage in accor 
dance with expression 

8. The computer - implemented method of claim 4 , 
wherein adjusting the size of the input data at the first size 
2x2 max pooling stage , the window size , and the overlap 
comprises : 

adjusting , by the max pooling layer , the window size in 
accordance with expression 
window size = ( window size - 2 ) / stride S + 1 ; 

adjusting , by the max pooling layer , the size of the input 
data at the first size 2x2 max pooling stage in accor 
dance with expression 
size = ( size - 2 ) / stride S + 1 ; and 

adjusting , by the max pooling layer , the overlap in accor 
dance with expression 
overlap = ( overlap - 2 ) / 2 + 1 . 

9. The computer - implemented method of claim 4 , further 
comprising repeating , by the max pooling layer , the deter 
mining the stride S , the applying , the saving , and the 
adjusting until a size of input data at remaining size 2x2 max 
pooling stages is equal to the final size . 

10. A device for performing size K?K max pooling with 
stride S at a max pooling layer of a convolutional neural 
network to downsample input data , the device comprising : 

a non - transitory memory storage comprising instructions ; 
and 

one or more processors in communication with the 
memory storage , wherein the one or more processors 
execute the instructions to : 
receive input data , 
buffer the input data , 
apply a cascade of size 2x2 max pooling stages to the 

buffered input data to generate downsampled output 
data , wherein a stride value of each size 2x2 max 
pooling stage is determined dynamically in accor 
dance with pooling parameters associated with the 
size 2x2 max pooling stage , and 

output the downsampled output data to another layer of 
the convolution neural network for further process 
ing . 

11. The device of claim 10 , wherein the pooling param 
eters associated with the size 2x2 max pooling stage com 
prises at least one of a size of input data at the size 2x2 max 
pooling stage , a window size of the size 2x2 max pooling 
stage , or an overlap between neighboring windows of the 
size 2x2 max pooling stage . 

12. The device of claim 11 , wherein the overlap between 
the neighboring windows of the size 2x2 max pooling stage 
is determined in accordance with the size of the input data 
at the size 2x2 max pooling stage , and the window size of 
the size 2x2 max pooling stage . 

13. The device of claim 10 , wherein the one or more 
processors further execute instructions to determine a size of 
the buffered input data and a final size of the downsampled 
output , determine an overlap between neighboring windows 
of input data of a first size 2x2 max pooling stage in the 
cascade of size 2x2 max pooling stages , and a window size 
of the input data of the first size 2x2 max pooling stage , 
determine a stride S of the first size 2x2 max pooling stage 
in accordance with the overlap , and the window size , apply 
the size 2x2 max pooling with stride S kernel to the input 
data of the first size 2x2 max pooling stage to generate size = size + ( size / the window size ) . 
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intermediate downsampled output data , save the intermedi 
ate downsampled output data , and adjust the size of the input 
data at the first size 2x2 max pooling stage , the window size 
of the first size 2x2 max pooling stage , and the overlap 
between neighboring windows of the first size 2x2 max 
pooling stage . 

14. The device of claim 13 , wherein the one or more 
processors further execute instructions to determine that the 
overlap between neighboring windows of the input data at 
the first size 2x2 max pooling stage is equal to zero , and 
based on the determination that the overlap between neigh 
boring windows of the input data at the first size 2x2 max 
pooling stage is equal to zero , set the stride S to two , 
determine that the overlap between neighboring windows of 
the input data at the first size 2x2 max pooling stage is a first 
even value and the window size of the first size 2x2 max 
pooling stage is a second even value , and based on the 
determination that the overlap between neighboring win 
dows of the input data at the first size 2x2 max pooling stage 
is a first even value and the window size of the first size 2x2 
max pooling stage is a second even value , set the stride S to 
two , and set the stride S to one for any other possible values 
of the overlap between neighboring windows of the input 
data at the first size 2x2 max pooling stage and the window 
size of the first size 2x2 max pooling stage . 

15. The device of claim 14 , wherein the one or more 
processors further execute instructions to determine that the 
overlap between neighboring windows of the input data at 
the first size 2x2 max pooling stage is equal to zero and the 
window size is an odd value , and based on the determination 
that the overlap between neighboring windows of the input 
data at the first size 2x2 max pooling stage is equal to zero 
and the window size is an odd value , add a padding element 
to each window sized segment of the input data at the first 
size 2x2 max pooling stage , and adjust the window size and 
the size of the input data at the first size 2x2 max pooling 
stage . 

16. The device of claim 15 , wherein the one or more 
processors further execute instructions to increment the 
window size , and adjust the size of the input data at the first 
size 2x2 max pooling stage in accordance with expression 
size = size + ( size / the window size ) . 

17. The device of claim 13 , wherein the one or more 
processors further execute instructions to adjust the window 
size in accordance with expression window size = ( window 
size - 2 ) / stride S + 1 , adjust the size of the input data at the first 
size 2x2 max pooling stage in accordance with expression 
size = ( size - 2 ) / stride S + 1 , and adjust the overlap in accor 
dance with expression overlap = ( overlap - 2 ) / 2 + 1 . 

18. The device of claim 13 , wherein the one or more 
processors further execute instructions to repeat the deter 
mining the stride S , the applying , the saving , and the 
adjusting until a size of input data at remaining size 2x2 max 
pooling stages is equal to the final size . 

19. The device of claim 10 , wherein the device comprises 
one of a convolutional neural network ( CNN ) and a graphics processing unit implementing a CNN . 

20. A non - transitory computer - readable media storing 
computer instructions for performing size K?K max pooling 
with stride S at a max pooling layer of a convolutional neural 
network to downsample input data , that when executed by 
one or more processors , cause the one or more processors to 
perform the steps of : 

receive input data , 
buffer the input data , 
apply a cascade of size 2x2 max pooling stages to the 

buffered input data to generate downsampled output 
data , wherein a stride value of each size 2x2 max 
pooling stage is determined dynamically in accordance 
with pooling parameters associated with the size 2x2 
max pooling stage , and 

output the downsampled output data to another layer of 
the convolution neural network for further processing . 


