
INI
US 20200090046A1

(19) United States
(12) Patent Application Publication

Sozubek et al .
(10) Pub . No .: US 2020/0090046 A1
(43) Pub . Date : Mar. 19 , 2020

(54) SYSTEM AND METHOD FOR CASCADED
DYNAMIC MAX POOLING IN NEURAL
NETWORKS

(52) U.S. CI .
CPC GO6N 37084 (2013.01) ; G06F 17/16

(2013.01) ; G06N 3/04 (2013.01)
(71) Applicant : Huawei Technologies Co. , Ltd. ,

Shenzhen (CN) (57) ABSTRACT
(72) Inventors : Serdar Sozubek , North York (CA) ;

John Joseph , Shenzhen (CN)
(21) Appl . No .: 16 / 131,826
(22) Filed : Sep. 14 , 2018

Publication Classification

(51) Int . Cl .
G06N 3/08 (2006.01)
GOON 3/04 (2006.01)
G06F 17/16 (2006.01)

A method for performing size K?K max pooling with stride
S at a max pooling layer of a convolutional neural network
to downsample input data includes receiving input data ,
buffering the input data , applying a cascade of size 2x2 max
pooling stages to the buffered input data to generate down
sampled output data , wherein a stride value of each size 2x2
max pooling stage is determined dynamically in accordance
with pooling parameters associated with the size 2x2 max
pooling stage .

100
INPUT
DATA

OUTPUT
ERROR

FEED
FORWARD CONVOLUTION

ReLU
NORMALIZATION

POOLING BACK
PROPAGATION

119

CONVOLUTION
RELU

NORMALIZATION
POOLING

CONVOLUTION
Relu

105
107

CONVOLUTION
ReLu

LAYERS

CONVOLUTION
ReLU

POOLING 109

111 FULLY CONN .
ReLU

DROPOUT 113

FULLY CONN .
ReLU

DROPOUT

115
117 SOFTMAX

COST

Patent Application Publication Mar. 19 , 2020 Sheet 1 of 9 US 2020/0090046 A1

100
INPUT
DATA

OUTPUT
ERROR

FEED
FORWARD CONVOLUTION

ReLU
NORMALIZATION

POOLING BACK
PROPAGATION

119

CONVOLUTION
ReLU

NORMALIZATION
POOLING

CONVOLUTION
ReLU

105
107

CONVOLUTION
RELU

LAYERS

CONVOLUTION
RELU

POOLING
109

111 FULLY CONN .
ReLU

DROPOUT 113

FULLY CONN .
RELU

DROPOUT

115
117

SOFTMAX
COST

Fig . 1

Patent Application Publication Mar.19 , 2020 Sheet 2 of 9 US 2020/0090046 Al

200
205

STRIDE - 2

210 215 207
55 75 81 3

212 217

STRIDE - 2 47 15 13 17 75 81

33 62 5 23 62 99 D = 2
? = 2

219 221
220 10 39 99 43 225 2x2

206
4x4 Fig . 2

300
305 312

310 .
2D INPUTS

-314 ? ???? 316 - Boo00000
????????
????? ???

330
310 . -oo95 MAX POOLING

LAYER + oooo
Fig . 3

Patent Application Publication Mar. 19 , 2020 Sheet 3 of 9 US 2020/0090046 A1

400

N = 12

ABCD L
K - 3 MINTOIP W

?????

K - 3 Fig . 4

500

3x3-9 INPUTS Fig . 5

800
809 807

805 OOOOOO
??????

TWO
DIMENSIONAL

820 822

90,000000 ONE
DIMENSIONAL

824

Fig . 8

Patent Application Publication Mar. 19 , 2020 Sheet 4 of 9 US 2020/0090046 A1

600

605 607

632 634 607 612 614
650

G
A B C D E F
GHIJKL
MNOPOR

S T U V W X

H
? | BBC

HII
636 638

ALB.C.
GHI ABGH BCHI

GHMN | HINO
MN G HII H

MIN 616 618 NO
660

MAX

Fig . 6

700

K - 1 2x2 POOLS 710

705

KXK POOL
STRIDE - S 2X2 POOL 2X2 POOL NI 2X2 POOL 2X2 POOL

Fig . 7

Patent Application Publication Mar. 19 , 2020 Sheet 5 of 9 US 2020/0090046 A1

915
900

909 911 917 919

907

??
SIZE = 7

WINDOW SIZE = 3
OVERLAP = 1

905

Fig . 9A

965
950

959 967 969

957 58 so SIZE = 6
WINDOW SIZE = 2

OVERLAP = 0
955

Fig . 9B

1015
1009

1000
1011 1017 1019

" ?? 000000 SIZE = 7
WINDOW SIZE - 5

OVERLAP - 3
1005

Fig . 10A

1065
1059

1050
1061 1063

1057 ?????? SIZE = 6
WINDOW SIZE = 4

OVERLAP - 2
1055

Fig . 10B

Patent Application Publication Mar. 19 , 2020 Sheet 6 of 9 US 2020/0090046 A1

1100

START

1105
INITIALIZE VALUES :

W - K ; OVERLAP - K - S ;
FINALSIZE - IN - K / S + 1 ; SIZE = N ;

1107
Y SIZE = END FINALSIZE ?

N -1109
Street 1121
semanas seven

1111
N

OVERLAP = 0 ?
1123 www .

Y
wand

OVERLAP EVEN
& W EVEN ? S = 2

sweet movement
ovement verwenden

Y 1113 1125
www . werede

NL
S = 1 S = 2

wesen
eneral 1
wareness 1115
wanne N

W ODD ?
1127

APPLY SIZE 2X2 WITH
STRIDE S POOLING

movement

***** nement

Y 1117 1129 roma
mwanam
neurons

www .

newesen wy
ADD 1 ELEMENT PADDING
TO EACH SEGMENT OF

LENGTH W

W = (W - 2) / S + 1 ;
OVERLAP - COVERLAP - 2) / 2 + 1 ;

SIZE = { SIZE - 2) / S + 1 ;
aan

wanne
seven

wanne
wewno

1119
SIZE - SIZE + (SIZE / W) ;

INC W ;
merama 1

moment

Fig . 11

Patent Application Publication Mar. 19 , 2020 Sheet 7 of 9 US 2020/0090046 A1

1200

1205 ????????? SIZE - 9 ; W - 5 ;
OVERLAP = 3

ITERATION 1 : APPLY
2X2 POOLING WITH

STRIDE 1
1215 SIZE - 8 ; W - 4 ;

OVERLAP = 2

ITERATION 2 : APPLY
2X2 POOLING WITH

STRIDE 2
1225 ?? SIZE - 4 ; W - 2 ;

OVERLAP = 1

ITERATION 3 : APPLY
2X2 POOLING WITH

STRIDE 1
1235 EO SIZE = 3 ; W = 1 ;

OVERLAP = 0 O

Fig . 12
STRIDE PADDING 1400

+ 1430
CONTROLLER

1420
WRITE READ

DELAY

1415 1405 1425 INPUT
ACTIVATION
STREAM

OUTPUT
ACTIVATION
STREAM DATA FIFO

DATA
1410

DATA
1435 MASK (1)

MASK FIFO
MASKO)

Fig . 14

Patent Application Publication Mar. 19 , 2020 Sheet 8 of 9 US 2020/0090046 A1

1300

SIZE = 12 ; W = 6 ;
OVERLAP = 0

1305

????????????
ITERATION 1 : APPLY
2X2 POOLING WITH

STRIDE 2
1315 OO ?? SIZE = 6 ; W - 3 ;

OVERLAP = 0

ITERATION 2 : ADD
ONE PADDING TO
EACH WINDOW

1327 1325 ?? 00 OO SIZE = 8 ; W = 4 ;
OVERLAP = 0

329 -1329 ITERATION 2 : APPLY
2X2 POOLING WITH

STRIDE 2
1335

O SIZE = 4 ; W = 2 ;
OVERLAP = 0

ITERATION 3 : APPLY
2X2 POOLING WITH

STRIDE 2
1345
OO SIZE = 2 ; W = 1 ;

OVERLAP = 0

Fig . 13

Patent Application Publication Mar. 19 , 2020 Sheet 9 of 9 US 2020/0090046 A1

PROCESSING
UNIT
1502

1500 1508
1514

MEMORY

CPU

GPU 1504

MASS
STORAGE

1520
VIDEO

ADAPTER DISPLAY

NETWORK
INTERFACES

1510 NETWORKS 1518

7 I / O
INTERFACE 1506

MOUSE !
KEYBOARD
PRINTER
CAMERA

1522
15241

1512
1516

Fig . 15

US 2020/0090046 A1 Mar. 19 , 2020
1

SYSTEM AND METHOD FOR CASCADED
DYNAMIC MAX POOLING IN NEURAL

NETWORKS

TECHNICAL FIELD

[0001] The present disclosure relates generally to a system
and method for data processing , and , in particular embodi
ments , to a system and method for cascaded dynamic max
pooling in neural networks .

BACKGROUND

[0002] Neural networks (NNs) are computing systems that
are inspired by how biological brains operate . NNs can learn
to perform tasks , such as object detection , image recogni
tion , voice recognition , or pattern recognition , by consider
ing examples . NNs typically do not need to be programmed
with any task - specific rules . Instead , NNs learn identifying
characteristics from the examples they process .
[0003] Convolutional neural networks (CNNs) are a sub
class of feed forward NNs that have distinct logical repre
sentations of computational layers optimized for tasks such
as image classification . When used for image classification ,
CNNs can learn to identify features of an image , such as
visual objects . The learning step is formally known as
training where a given neural network is input a reference
input dataset comprising input data representative of images
which are known to contain some desired visual objects of
interest . Once training is complete , the NN can be deployed
to detect the visual objects of interest from images input to
the trained CNN . This phase formerly referred to as infer
ence .

[0008] Optionally , in any of the preceding aspects , the
overlap between the neighboring windows of the size 2x2
max pooling stage is determined in accordance with the size
of the input data at the size 2x2 max pooling stage , and the
window size of the size 2x2 max pooling stage .
[0009] Optionally , in any of the preceding aspects , apply
ing the cascade of size 2x2 max pooling stages includes
determining , by the max pooling layer , a size of the buffered
input data and a final size of the downsampled output ,
determining , by the max pooling layer , an overlap between
neighboring windows of input data of a first size 2x2 max
pooling stage in the cascade of size 2x2 max pooling stages ,
and a window size of the input data of the first size 2x2 max
pooling stage , determining , by the max pooling layer , a
stride S of the first size 2x2 max pooling stage in accordance
with the overlap , and the window size , applying , by the max
pooling layer , the size 2x2 max pooling with the stride S
kernel to the input data of the first size 2x2 max pooling
stage to generate intermediate downsampled output data ,
saving , by the max pooling layer , the intermediate down
sampled output data , and adjusting , by the max pooling
layer , the size of input data at the first size 2x2 max pooling
stage , the window size of the first size 2x2 max pooling
stage , and the overlap between neighboring windows of the
first size 2x2 max pooling stage .
[0010] Optionally , in any of the preceding aspects , deter
mining the stride S of the first size 2x2 max pooling stage
includes determining , by the max pooling layer , that the
overlap between neighboring windows of the input data at
the first size 2x2 max pooling stage is equal to zero , and
based thereon setting , by the max pooling layer , the stride S
to two , determining , by the max pooling layer , that the
overlap between neighboring windows of the input data at
the first size 2x2 max pooling stage is a first even value and
the window size of the first size 2x2 max pooling stage is a
second even value , and based thereon setting , by the max
pooling layer , the stride S to two , and setting , by the max
pooling layer , the stride S to one for any other possible
values of the overlap between neighboring windows of the
input data at the first size 2x2 max pooling stage and the
window size of the first size 2x2 max pooling stage .
[0011] Optionally , in any of the preceding aspects , the
computer - implemented method further includes determining
that the overlap between neighboring windows of the input
data at the first size 2x2 max pooling stage is equal to zero
and the window size is an odd value , and based thereon
adding , by the max pooling layer , a padding element to each
window sized segment of the input data at the first size 2x2
max pooling stage , and adjusting , by the max pooling layer ,
the window size and the size of the input data at the first size
2x2 max pooling stage .
[0012] Optionally , in any of the preceding aspects , adjust
ing the window size and the size of the input data at the first
size 2x2 max pooling stage includes incrementing , by the
max pooling layer , the window size , and adjusting , by the
max pooling layer , the size of the input data at the first size
2x2 max pooling stage in accordance with expression
size = size + (size / the window size) .
[0013] Optionally , in any of the preceding aspects , adjust
ing the size of the input data at the first size 2x2 max pooling
stage , the window size , and the overlap includes adjusting ,
by the max pooling layer , the window size in accordance
with expression window size = (window size - 2) / stride S + 1 ,
adjusting , by the max pooling layer , the size of the input data

[0004] CNNs may have significant resource (e.g. , compute
resources and memory resources) requirements , especially
during training . Therefore , there is a need for a system and
method for reducing resource requirements in NNs , and
particularly , CNNs .

SUMMARY

[0005] Example embodiments provide a system and
method for cascaded dynamic max pooling in neural net
works .
[0006] In accordance with an aspect of the present disclo
sure , a computer - implemented method is provided for per
forming size K?K max pooling with stride S at a max
pooling layer of a convolutional neural network to down
sample input data . The computer - implemented method
includes receiving , at the max pooling layer , input data ,
buffering , at the max pooling layer , the input data , applying ,
at the max pooling layer , a cascade of size 2x2 max pooling
stages to the buffered input data to generate downsampled
output data , wherein a stride value of each size 2x2 max
pooling stage is determined dynamically in accordance with
pooling parameters associated with the size 2x2 max pool
ing stage , and outputting , by the max pooling layer , the
downsampled output data to another layer of the convolution
neural network for further processing .
[0007] Optionally , in any of the preceding aspects , the
pooling parameters associated with the size 2x2 max pool
ing stage comprises at least one of a size of input data at the
size 2x2 max pooling stage , a window size of the size 2x2
max pooling stage , or an overlap between neighboring
windows of the size 2x2 max pooling stage .

US 2020/0090046 A1 Mar. 19 , 2020
2

at the first size 2x2 max pooling stage in accordance with
expression size = (size - 2) / stride S + 1 , and adjusting , by the
max pooling layer , the overlap in accordance with expres
sion overlap = (overlap - 2) / 2 + 1 .
[0014] Optionally , in any of the preceding aspects , the
computer - implemented method comprising repeating , by the
max pooling layer , the determining the stride S , the apply
ing , the saving , and the adjusting until a size of input data at
remaining size 2x2 max pooling stages is equal to the final
size .
[0015] In accordance with another aspect of the present
disclosure , a device for performing size K?K max pooling
with stride S at a max pooling layer of a convolutional neural
network to downsample input data is provided . The device
includes a non - transitory memory storage comprising
instructions , and one or more processors in communication
with the memory storage . Therein the one or more proces
sors execute the instructions to receive input data , buffer the
input data , apply a cascade of size 2x2 max pooling stages
to the buffered input data to generate downsampled output
data , wherein a stride value of each size 2x2 max pooling
stage is determined dynamically in accordance with pooling
parameters associated with the size 2x2 max pooling stage ,
and output the downsampled output data to another layer of
the convolution neural network for further processing .
[0016] Optionally , in any of the preceding aspects , the
pooling parameters associated with the size 2x2 max pool
ing stage comprises at least one of a size of input data at the
size 2x2 max pooling stage , a window size of the size 2x2
max pooling stage , or an overlap between neighboring
windows of the size 2x2 max pooling stage .
[0017] Optionally , in any of the preceding aspects , the
overlap between the neighboring windows of the size 2x2
max pooling stage is determined in accordance with the size
of the input data at the size 2x2 max pooling stage , and the
window size of the size 2x2 max pooling stage .
[0018] Optionally , in any of the preceding aspects , the one
or more processors further execute instructions to determine
a size of the buffered input data and a final size of the
downsampled output , determine an overlap between neigh
boring windows of input data of a first size 2x2 max pooling
stage in the cascade of size 2x2 max pooling stages , and a
window size of the input data of the first size 2x2 max
pooling stage , determine a stride S of the first size 2x2 max
pooling stage in accordance with the overlap , and the
window size , apply the size 2x2 max pooling with stride S
kernel to the input data of the first size 2x2 max pooling
stage to generate intermediate downsampled output data ,
save the intermediate downsampled output data , and adjust
the size of the input data at the first size 2x2 max pooling
stage , the window size of the first size 2x2 max pooling
stage , and the overlap between neighboring windows of the
first size 2x2 max pooling stage .
[0019] Optionally , in any of the preceding aspects , the one
or more processors further execute instructions to determine
that the overlap between neighboring windows of the input
data at the first size 2x2 max pooling stage is equal to zero ,
and based thereon set the stride S to two , determine that the
overlap between neighboring windows of the input data at
the first size 2x2 max pooling stage is a first even value and
the window size of the first size 2x2 max pooling stage is a
second even value , and based thereon set the stride S to two ,
and set the stride S to one for any other possible values of
the overlap between neighboring windows of the input data

at the first size 2x2 max pooling stage and the window size
of the first size 2x2 max pooling stage .
[0020] Optionally , in any of the preceding aspects , the one
or more processors further execute instructions to determine
that the overlap between neighboring windows of the input
data at the first size 2x2 max pooling stage is equal to zero
and the window size is an odd value , and based thereon add
a padding element to each window sized segment of the
input data at the first size 2x2 max pooling stage , and adjust
the window size and the size of the input data at the first size
2x2 max pooling stage .
[0021] Optionally , in any of the preceding aspects , the one
or more processors further execute instructions to increment
the window size , and adjust the size of the input data at the
first size 2x2 max pooling stage in accordance with expres
sion size = size + (size / the window size) .
[0022] Optionally , in any of the preceding aspects , the one
or more processor further execute instructions to adjust the
window size in accordance with expression window size =
(window size - 2) / stride S + 1 , adjust the size of the input data
at the first size 2x2 max pooling stage in accordance with
expression size = (size - 2) / stride S + 1 , and adjust the overlap
in accordance with expression overlap = (overlap - 2) / 2 + 1 .
[0023] Optionally , in any of the preceding aspects , the one
or more processors further execute instructions to repeat the
determining the stride S , the applying , the saving , and the
adjusting until a size of input data at remaining size 2x2 max
pooling stages is equal to the final size .
[0024] Optionally , in any of the preceding aspects , the
device comprises a convolutional neural network (CNN) .
[0025] Optionally , in any of the preceding aspects , the
device comprises a graphics processing unit with a CNN .
[0026] In accordance with another aspect of the present
disclosure , a non - transitory computer - readable media stor
ing computer instructions for performing size K?K max
pooling with stride S at a max pooling layer of a convolu
tional neural network to downsample input data is provided .
When executed by one or more processors , cause the one or
more processors to perform the steps of receive input data ,
buffer the input data , apply a cascade of size 2x2 max
pooling stages to the buffered input data to generate down
sampled output data , wherein a stride value of each size 2x2
max pooling stage is determined dynamically in accordance
with pooling parameters associated with the size 2x2 max
pooling stage , and output the downsampled output data to
another layer of the convolution neural network for further
processing .
[0027] Optionally , in any of the preceding aspects , the
pooling parameters associated with the size 2x2 max pool
ing stage comprises at least one of a size of input data at the
size 2x2 max pooling stage , a window size of the size 2x2
max pooling stage , or an overlap between neighboring
windows of the size 2x2 max pooling stage .
[0028] Optionally , in any of the preceding aspects , the one
or more processors further execute instructions to determine
a size of the buffered input data and a final size of the
downsampled output , determine an overlap between neigh
boring windows of input data of a first size 2x2 max pooling
stage in the cascade of size 2x2 max pooling stages , and a
window size of the input data of the first size 2x2 max
pooling stage , determine a stride S of the first size 2x2 max
pooling stage in accordance with the overlap , and the
window size , apply the size 2x2 max pooling with stride S
kernel to the input data of the first size 2x2 max pooling

US 2020/0090046 A1 Mar. 19 , 2020
3

stage to generate intermediate downsampled output data ,
save the intermediate downsampled output data , and adjust
the size of the input data at the first size 2x2 max pooling
stage , the window size of the first size 2x2 max pooling
stage , and the overlap between neighboring windows of the
first size 2x2 max pooling stage .
[0029] Optionally , in any of the preceding aspects , the one
or more processors further execute instructions to determine
that the overlap between neighboring windows of the input
data at the first size 2x2 max pooling stage is equal to zero ,
and based thereon set the stride S to two , determine that the
overlap between neighboring windows of the input data at
the first size 2x2 max pooling stage is a first even value and
the window size of the first size 2x2 max pooling stage is a
second even value , and based thereon set the stride S to two ,
and set the stride S to one for any other possible values of
the overlap between neighboring windows of the input data
at the first size 2x2 max pooling stage and the window size
of the first size 2x2 max pooling stage .
[0030] Optionally , in any of the preceding aspects , the one
or more processors further execute instructions to determine
that the overlap between neighboring windows of the input
data at the first size 2x2 max pooling stage is equal to zero
and the window size is an odd value , and based thereon add
a padding element to each window sized segment of the
input data at the first size 2x2 max pooling stage , and adjust
the window size and the size of the input data at the first size
2x2 max pooling stage .
[0031] Optionally , in any of the preceding aspects , the one
or more processors further execute instructions to increment
the window size , and adjust the size of the input data at the
first size 2x2 max pooling stage in accordance with expres
sion size = size + (size / the window size) .
[0032] Optionally , in any of the preceding aspects , the one
or more processors further execute instructions to adjust the
window size in accordance with expression window size =
(window size - 2) / stride S + 1 , adjust the size of the input data
at the first size 2x2 max pooling stage in accordance with
expression size = (size - 2) / stride S + 1 , and adjust the overlap
in accordance with expression overlap = (overlap - 2) / 2 + 1 .
[0033] Optionally , in any of the preceding aspects , the one
or more processors further execute instructions to repeat the
determining the stride S , the applying , the saving , and the
adjusting until a size of input data at remaining size 2x2 max
pooling stages is equal to the final size .
[0034] Practice of the foregoing aspects enables a reduc
tion in resource requirements in a neural network by imple
menting a size K?K max pooling with stride S layer as a
cascade of size 2x2 max pooling layers . The use of small
size max pooling layers reduces the computational and
memory resources required when compared with large size
max pooling layers .

[0039] FIG . 4 illustrates an example data buffer supporting
NxN input data with a size K?K max pooling kernel ;
[0040] FIG . 5 illustrates an example reduction tree of
comparators ;
[0041] FIG . 6 illustrates a diagram demonstrating a deter
mining of a maximum of a size 3x3 window of input data
using a size 2x2 max pooling kernel ;
[0042] FIG . 7 illustrates the partitioning of a size K?K
max pooling with stride S kernel into a cascade of K - 1 size
2x2 max pooling stages ;
[0043] FIG . 8 illustrates a diagram of the correspondence
between two - dimensional max pooling and one - dimensional
max pooling according to example embodiments described
herein ;
[0044] FIGS . 9A and 9B illustrate example size of the
input at a max pooling stage and window size according to
example embodiments presented herein ;
[0045] FIGS . 10A and 10B illustrate example size of the
input of a max pooling stage , window size , and overlap
values of a max pooling stage according to example embodi
ments presented herein ;
[0046] FIG . 11 illustrates a flow diagram of example
operations occurring in a device performing dynamic max
pooling according to example embodiments presented
herein ;
[0047] FIG . 12 illustrates a diagram of the application of
a size 5 max pooling with stride 2 kernel realized with
dynamic max pooling to a size 9 input data according to
example embodiments presented herein ;
[0048] FIG . 13 illustrates a diagram of the application of
a size 6 max pooling with stride 6 kernel realized with
dynamic max pooling to a size 12 input data according to
example embodiments presented herein ;
[0049] FIG . 14 illustrates a hardware implementation of a
size 2x2 max pooling stage according to example embodi
ments presented herein ; and
[0050] FIG . 15 is a block diagram of a computing system
that may be used for implementing the devices and methods
disclosed herein .

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

BRIEF DESCRIPTION OF THE DRAWINGS

[0051] The making and using of the disclosed embodi
ments are discussed in detail below . It should be appreciated ,
however , that the present disclosure provides many appli
cable inventive concepts that can be embodied in a wide
variety of specific contexts . The specific embodiments dis
cussed are merely illustrative of specific ways to make and
use the embodiments , and do not limit the scope of the
disclosure .
[0052] As discussed previously , convolutional neural net
works (CNNs) are a sub - class of neural networks (NNs) that
have a distinct logical representation of computational layers
optimized for tasks such as image classification . A CNN may
learn to identify features of an image through training where
the CNN is provided a controlled reference input dataset that
is known to include data representative of some images
containing visual objects of interest . Once training is com
plete , the CNN begins an inference phase , where the CNN
may be deployed to detect visual objects of interest from
images input to the trained CNN . Overall , CNNs may
require significant compute and memory resources , espe
cially during training .

[0035] For a more complete understanding of the present
disclosure , and the advantages thereof , reference is now
made to the following descriptions taken in conjunction with
the accompanying drawings , in which :
[0036] FIG . 1 illustrates a diagram of an example CNN ;
[0037] FIG . 2 illustrates a diagram highlighting an
example max pooling operation performed by a pooling
layer of a CNN ;
[0038] FIG . 3 illustrates an example arrangement of image
data and an ordering of data elements at a max pooling layer ;

US 2020/0090046 A1 Mar. 19 , 2020
4

[0053] FIG . 1 illustrates a diagram of an example CNN
100. Each CNN comprises several layers that are combined
together and represented logically as a network of compute
elements . As shown in FIG . 1 , CNN 100 includes layers ,
including a convolution layer (such as convolution layer
105) , a rectified linear unit (ReLU) layer (such as ReLU
layer 107) that applies an activation function to the data , a
pooling layer (such as pooling layer 109) that downsamples
the data , a fully connected layer (such as fully connected
layer 111) , a dropout layer (such as dropout layer 113) that
activates or deactivates neurons , a softmax layer (such as
softmax layer 115) that implements a loss function , a cost
layer (such as cost layer 117) that implements a cost function
for the neurons , and a normalization layer (such as normal
ization layer 119) that adjusts neuron responses . CNN 100 ,
and the arrangement of the layers and the flow of the data
therein , is presented as an example for discussion purposes .
Therefore , CNN 100 is not intended to be limiting to the
scope or the spirit of the example embodiments .
[0054] The pooling layer is a data processing layer of a
CNN and may appear multiple times in the CNN . The
pooling layer downsamples or spatially shrinks data at its
input , and reduces the data volume at its output . The pooling
layer reduces memory and compute requirements of subse
quent layers . The pooling layer partitions its input data into
windows and determines a single value from the values in
each window . Different schemes may be implemented at a
pooling layer , including :
[0055] Max pooling — the maximum value from the values
in a window is selected as the single value ;
[0056] Average pooling an average of the values in a
window is determined as the single value ; and
[0057] Weighted average pooling — a weighted average of
the values in a window is determined as the single value .
[0058] FIG . 2 illustrates a diagram 200 highlighting an
example max pooling operation performed by a pooling
layer of a CNN . As shown in FIG . 2 , a 4x4 matrix 205 is
input to a size 2x2 max pooling with stride 2 layer 206 ,
which is hereinafter referred to as max pooling layer 206 .
The size of a max pooling layer specifies the size of the
windows of the input data (e.g. , the 4x4 matrix 205) , and the
stride specifies an offset position where a next window of the
input data begins . Therefore , a size 2x2 max pooling layer
operates on a size 2x2 window of input data and produces
a single output value per size 2x2 window of input data .
Output of max pooling layer 206 is a size 2x2 matrix 207 .
Because the size of max pooling layer 206 is 2 , each
individual window of input data processed by max pooling
layer 206 is a 2x2 sub - matrix . In the example shown in FIG .
2 , the input data (e.g. , the 4x4 matrix 205) is partitioned into
windows 210 , 215 , 220 , 225 , where each window is a 2x2
sub - matrix . As discussed previously , a max pooling layer
will determine the maximum value from the values of each
window and output the single value . As an example , for
window 210 , the maximum value is 75 , for window 215 , the
maximum value is 81 , for window 220 , the maximum value
is 62 , and for window 225 , the maximum value is 99. Matrix
207 contains the single value output for each of the indi
vidual windows . As an example , element 212 holds value
75 , which corresponds to the maximum value for window
210 , element 217 holds value 81 , which corresponds to the
maximum value for window 215 , element 219 holds value
62 , which corresponds to the maximum value for window

220 , and element 221 holds value 99 , which corresponds to
the maximum value for window 225
[0059] The partitioning of the input data may be described
as follows :
[0060] Start from the top left corner of the input data
matrix and form a sub - matrix of the same size as the size of
the max pooling stage , which is commonly referred to as a
pooling kernel . Find the maximum value in the sub - matrix .
The maximum value is the single value representing the
particular sub - matrix .
[0061] Move to the right by the stride amount and form
another sub - matrix of the same size as the pooling kernel .
Find the maximum value in the sub - matrix . The maximum
value is the single value representing the particular sub
matrix .
[0062] Repeat until the end of the input data in the
horizontal direction is reached .
[0063] Move back to the left side of the input data matrix .
Move down by the stride amount and form another sub
matrix with the same size as the pooling kernel . Find the
maximum value in the sub - matrix . The maximum value is
the single value representing the particular sub - matrix .
[0064] Repeat moving to the right and down until all data
from the input data matrix is covered .
[0065] In hardware device architectures , in many situa
tions it is optimal to implement a streaming architecture . A
streaming architecture refers to a data execution model
where compute operations can be fully pipelined so that in
optimal conditions for every clock cycle of execution , a
result is produced . In general , this is optimal for systems in
which an input stream of data can be provided to the
hardware device to sustain the pipelined execution . In the
case of image processing , graphic processors implement
architectures to concurrently buffer input images while
executing compute units .
[0066] FIG . 3 illustrates an example arrangement 300 of
image data and an ordering of data elements at a max
pooling layer . When processing image data in a CNN , the
order of the data elements as they arrive at a max pooling
layer is also a concern . Image data is typically organized into
two - dimensional arrays of pixels , where each pixel is asso
ciated with a Cartesian coordinate of where the image
appears on a display . As shown in FIG . 3 , image data is
arranged in a two - dimensional array 305. Furthermore ,
when performing max pooling (or other forms of image
processing) image data is provided in raster - order , where the
first data element to arrive is the element from the first row
and first column of the two - dimensional array , followed by
data elements to its right and then starting again at the left
most data element of the second row , etc. As an example , a
first data element 310 of two - dimensional array 305 is the
first to arrive at a max pooling layer , followed by a second
data element 312 , and so on . A last data element 314 of the
first row is followed by the first data element 316 of the
second row , etc.
[0067] In a streaming architecture implementation of a
max pooling layer , compute operations should be fully
pipelined in order to achieve maximum compute perfor
mance . If the image data arrives in raster order , then some
execution clock cycles are spent loading data elements into
memory until a full max pooling window is available , which
negatively impacts performance and increases memory
requirements . This is a problem to be addressed in the
streaming architecture of the max pooling layer .

US 2020/0090046 A1 Mar. 19 , 2020
5

[0068] A typical streaming architecture implementation of
a max pooling layer includes :
[0069] A buffer to store data for overlapping windows
provided to the max pooling layer ; and
[0070] A plurality of comparators to compute the maxi
mum value . FIG . 4 illustrates an example data buffer 400
supporting NxN input data with a size K?K max pooling
kernel . For NxN input data with a size K?K max pooling
kernel , a minimum size of a data buffer for streaming input
data arriving in raster - scan order is expressible as :

Buffer_size = N (K - 1) + K .

[0071] As shown in FIG . 4 , data buffer 400 supports
12x12 input data with a size 3x3 max pooling kernel .
[0072] In order to support pipelined computation of the
maximum value of an individual window , a reduction tree of
comparators may be used . FIG . 5 illustrates an example
reduction tree of comparators 500. Reduction tree of com
parators 500 comprises a plurality of two - input comparators .
A number of two - input comparators of a reduction tree of
comparators supporting the computation of the maximum
value of a window of input data with size K?K is expressible
as :

Comparators_required = K * K - 1 .

[0073] As shown in FIG . 5 , reduction tree of comparators
500 comprises 8 two - input comparators and supports the
computation of the maximum value of a window of input
data with size 3x3 .
[0074] As shown above , the amount of buffer storage and
the number of comparators grow as a function of :
[0075] Size of the max pooling kernel . The buffer storage
and number of comparators grow in proportion to the size of
the max pooling kernel for a fully parallel max pooling
implementation . The buffer storage and number of compara
tors growth is compounded if the input data is multi
channeled . As an example , a typical image file has multiple
channels for different colors (such as Red - Green - Blue) , and
max pooling is to be performed on each channel .
[0076] Number of max pooling layers in a particular CNN
implementation . A CNN may have multiple max pooling
layers .
[0077] As an example of the buffer storage and compara
tor needs of a streaming architecture implementation of a
CNN , an example CNN with three max pooling layers is
considered . The example CNN includes a first max pooling
layer that supports size 3x3 max pooling with stride 2 on 96
channels , a second max pooling layer that supports size 3x3
max pooling with stride 2 on 256 channels , and a third max
pooling layer that supports size 3x3 max pooling with stride
2 on 256 channels . In order to achieve streaming perfor
mance , at total of 96 + 256 + 256 = 608 instances of max pool
ing logic is needed to implement the example CNN directly
in fully pipelined hardware .
[0078] In addition to the substantial hardware require
ments , an attempt to map the computations of the example
CNN onto smaller footprint devices , such as mobile hand
sets , user equipments (UEs) , digital cameras , etc. , would
require more resources than typically available on these
smaller footprint devices .
[0079] It is possible to determine a maximum of a large
window of input data using a max pooling kernel with a size
that is smaller than the size of the large window of input
data . FIG . 6 illustrates a diagram 600 demonstrating a
determining of a maximum of a size 3x3 window of input

data using a size 2x2 max pooling kernel . As shown in FIG .
6 , input data 605 is a size 6x4 matrix of data values and it
is desired to determine a maximum value in a size 3x3
window 607 of input data 605. As an example , the maximum
value of input data 605 may be determined by determine the
maximum value in individual 3x3 sized windows of input
data 605 spanning the entirety of input data 605 .
[0080] In order to determine the maximum value of size
3x3 window 607 using a size 2x2 max pooling kernel , size
3x3 window 607 is partitioned into size 2x2 windows 612 ,
614 , 616 , and 618. There is some overlap in the size 2x2
windows that is due to the size difference between size 3x3
window 607 and the size 2x2 max pooling kernel . Size 2x2
matrices 632,634 , 636 , and 638 display the input data in size
2x2 windows 612 , 614 , 616 , and 618. A maximum value of
each size 2x2 window 612 , 614 , 616 , and 618 is determined
using the size 2x2 max pooling kernel . A size 2x2 window
650 displays the output of the size 2x2 max pooling kernel
after the size 2x2 max pooling kernel is applied to size 2x2
windows 612 , 614 , 616 , and 618. Size 2x2 window 650 is
then provided to the size 2x2 max pooling kernel to deter
mine a maximum value 660 of size 2x2 window 650 , which
is also the maximum value of size 3x3 window 607 .
[0081] In co - assigned patent application entitled “ System
and Method for Cascaded Max Pooling in Neural Net
works ” , U.S. application Ser . No. 16 / 131,780 , attorney
docket number HW 85789681USO1 , filed Sep. 14 , 2018 ,
which is hereby incorporated herein by reference , it is shown
that any size K?K max pooling with stride S kernel is
realizable as a cascade of size 2x2 max pooling stages . The
output produced by the first max pooling stage (and inter
mediate max pooling stages) in the cascade of size 2x2 max
pooling stages becomes input for next max pooling stage ,
with exception of the last max pooling stage in the cascade
of size 2x2 max pooling stages . The output of the last max
pooling stage is the output of the size K?K max pooling with
stride S kernel . The size K?K max pooling with stride S
kernel is realizable as a cascade of K - 2 size 2x2 max
pooling with stride 1 stages and one size 2x2 max pooling
with stride S stage . Each stage of the cascade (except for the
last stage of the cascade) applies max pooling operations to
the entirety of its input , with the output of one stage
becoming the input of a subsequent stage . The last stage of
the cascade applies the max pooling operations to the
entirety of its input , with the output being the output of the
size K?K max pooling with stride S kernel .
[0082] FIG . 7 illustrates the partitioning 800 of a size K?K
max pooling with stride S kernel into a cascade of K - 1 size
2x2 max pooling stages . As shown in FIG . 7 , a size K?K
max pooling with stride S kernel 705 is partitioned into a
cascade of K - 1 size 2x2 max pooling stages 710. The size
2x2 max pooling stages of cascade of K - 1 size 2x2 max
pooling stages 710 are arranged in a linear sequence , with
the output of one stage being the input to the next stage .
Cascade of K - 1 size 2x2 max pooling stages 710 comprises
K - 2 size 2x2 max pooling with stride 1 stages 715 and one
size 2x2 max pooling with stride S stage 720 .
[0083] Cascaded max pooling achieves the same result of
a size K?K max pooling with stride S kernel by applying a
cascade of size 2x2 max pooling stages to the input data .
During this process , output of one size 2x2 max pooling
stage becomes the input of the subsequent size 2x2 max
pooling stage . It is important to ensure that the values in
different size K?K windows do not get mixed with each

US 2020/0090046 A1 Mar. 19 , 2020
6

other at any stage of the cascaded size 2x2 max pooling
stages . Otherwise it is possible to take the maximum of some
values which would not have been compared in the first
place had the original size K?K max pooling with stride S
kernel been applied . In the examples that follow , values in
each window of input data of the cascaded size 2x2 max
pooling stages are analyzed to ensure that right comparisons
are made . To simplify the figures , examples that follow are
given with one - dimensional max pooling instead of two
dimensional max pooling . For the purpose of this discussion ,
one - dimensional max pooling and two - dimensional max
pooling produce similar results .
[0084] FIG . 8 illustrates a diagram 800 of the correspon
dence between two - dimensional max pooling and one - di
mensional max pooling . As shown in FIG . 8 (and also in
FIGS . 9A , 9B , 10A , 10B , 12 and 13) , the windows of values
in one - dimensional max pooling indicate the values for
which the maximum should be calculated . These windows
of values in one dimension correspond to the windows of
values in two dimensions . A first sequence of data values
805 represents two - dimensional data , such as image data .
First sequence of data values 805 comprises a 2x9 array , but
the example embodiments presented herein are operable
with arrays of other dimensions . A size 2x2 max pooling
with stride 1 kernel is applied to first sequence of data values
805. In a first application of the size 2x2 max pooling with
stride 1 kernel , data values in window 807 are processed ,
and in a second application of the size 2x2 max pooling with
stride 1 kernel , data values in window 809 are processed ,
and so on . A second sequence of data values 820 represents
one - dimensional data , such as image data . Second sequence
of data values 820 comprises a 1x9 array , but the example
embodiments presented herein are operable with arrays of
other dimensions . A size 2 max pooling with stride 1 kernel
is applied to second sequence of data values 820. In a first
application of the size 2 max pooling with stride 1 kernel ,
data values in window 822 are processed , and in a second
application of the size 3 max pooling with stride 1 kernel ,
data values in window 824 are processed .
[0085] The application of the max pooling kernel shown in
FIG . 8 occurs in the horizontal direction . However , the
application of the max pooling kernel in the vertical direc
tion is also similar . Therefore , it is possible to simplify the
illustration of the application of the max pooling kernel by
showing the process in one dimension .
[0086] According to an example embodiment , any size
K?K max pooling with stride S kernel is partitioned into a
cascade of size 2x2 max pooling stages . The size 2x2 max
pooling stages are arranged into a linear sequence of size
2x2 max pooling stages , with the output produced by the
first max pooling stage (and intermediate max pooling
stages) in the cascade of size 2x2 max pooling stages
becomes input for next max pooling stage , with exception of
the last max pooling stage in the cascade of size 2x2 max
pooling stages . The output of the last max pooling stage is
the output of the size K?K max pooling with stride S kernel .
[0087] According to an example embodiment , a size KxK
max pooling with stride S kernel is implemented using a
cascade of size 2x2 max pooling stages with the stride of
each of the size 2x2 max pooling stages being dynamically
determined . In an embodiment , the stride of each of the size
2x2 max pooling stages is determined dynamically , based
upon pooling parameters of the size 2x2 max pooling stage .
Examples of pooling parameters that have an impact on the

stride of the size 2x2 max pooling stages include : a size of
input at the size 2x2 max pooling stage , a window size of the
size 2x2 max pooling stage , an overlap between neighboring
windows of the size 2x2 max pooling stage , and so on . As
an example , the stride of any of the size 2x2 max pooling
stages is either 1 or 2 , determined in accordance with the
pooling parameters of the size 2x2 max pooling stage .
[0088] According to an example embodiment , a size K?K
max pooling with stride S kernel is implemented using a
cascade of size 2x2 max pooling stages with the number of
size 2x2 max pooling stages being dynamically determined .
As an example , there are J size 2x2 max pooling stages in
the cascade of size 2x2 max pooling stages , where the output
size of the J - th size 2x2 max pooling stage is equal to a final
output size . The final output size is determined in accor
dance with initial pooling parameters , such as the initial size
of the input N at the 2x2 max pooling stage , the max pooling
kernel size K?K , and stride S.
[0089] As discussed previously , pooling parameters
include a size of the input at a max pooling stage , window
size at a max pooling stage , overlap between neighboring
windows at a max pooling stage , and so on . In a situation
where the original size of the input at a max pooling state is
NxN , max pooling kernel size is KxK , and stride is S , the
pooling parameters may be defined as follows :
[0090] Size (of a stage) : The total size of the input in either
dimension . Initially , the size is equal to the original size of
the input . The size generally shrinks after each max pooling
stage , with the size ending up being equal to a final output
size that would be obtained by the original max pooling
kernel .
[0091] Window size (of a stage) : The number of data
values in a window at a particular max pooling stage . The
window size is initially equal to the original max pooling
kernel size . The window size shrinks after each max pooling
stage , with the window size ending up being equal to one .
[0092] Overlap (of a stage) : The number of data values
that two neighboring windows have in common . The overlap
reduces after each max pooling stage , with the overlap
ending up being equal to zero .
[0093] FIGS . 9A and 9B illustrate example size of the
input at a max pooling stage and window size . As shown in
FIG . 9A , sequence of data values 900 includes seven data
values , such as data values 907 , 909 , 911 , 917 , and 919 .
Hence , size (denoted as SIZE) is equal to seven . The data
values are partitioned into groups of three data values each ,
such as window groups 905 and 915. Therefore , the window
size (denoted as WINDOW SIZE) is equal to three . As
shown in FIG . 9B , sequence of data values 950 includes six
data values , such as data values 957 , 959 , 967 , and 969 .
Hence , size is equal to six . The data values are partitioned
into groups of two data values each , such as window groups
955 and 965. Therefore , the window size is equal to two .
[0094] FIGS . 10A and 10B illustrate example size of the
input of a max pooling stage , window size , and overlap
values of a max pooling stage . As shown in FIG . 10A ,
sequence of data values 100 includes seven data values , such
as data values 1007 , 1009 , 1011 , 1017 , and 1019. Hence ,
size is equal to seven . The data values are partitioned into
groups of five data values each , such as window groups 1005
and 1015. Therefore , the window size is equal to five .
Furthermore , each window shares three data values , thus the
overlap (denoted OVERLAP) is equal to three . As shown in
FIG . 10B , sequence of data values 1050 includes six data

US 2020/0090046 A1 Mar. 19 , 2020
7

size W data values (block 1117) . In other words , the device
adds the padding element to make the number of data values
in each window even , enabling the max pooling operation to
be performed on a fixed hardware implementation of a size
2x2 max pooling kernel . The padding element may be a zero
value to have no impact on the max pooling operation , for
example . The device also updates the window size W and
the input size SIZE values (block 1119) . As an example , the
window size W is incremented by one (due to the addition
of the one padding element per group of W data values) ,
while the input size SIZE is updated using expression :

values , such as data values 1057 , 1059 , 1061 , and 1063 .
Hence , size is equal to six . The data values are partitioned
into groups of four data values each , such as window groups
1055 and 1065. Therefore , the window size is equal to four .
The two window groups 1055 and 1065 share two data
values (thus , overlap is equal to two) .
[0095] FIG . 11 illustrates a flow diagram of example
operations 1100 occurring in a device performing dynamic
max pooling . Operations 1100 may be indicative of opera
tions occurring in a device as the device performs dynamic
max pooling to downsample input data . As discussed pre
viously , dynamic max pooling realizes a size KxK max
pooling with stride S kernel with an input of size N as a
cascade of size 2x2 max pooling stages , where the stride of
each size 2x2 max pooling stage is dynamically determined .
Furthermore , the total number of size 2x2 max pooling
stages is also dynamically determined .
[0096] Operations 1100 begin with the device initializing
values (block 1105) . In a situation where it is given that the
input data is an NxN matrix and that the max pooling kernel
to realize is a size K?K max pooling with stride S kernel , the
following values are set initially :
[0097] Input size (SIZE) : Initialize SIZE to input size ,

SIZE = SIZE + (SIZE / W) .

[0104] If the overlap of the size 2x2 max pooling stage is
not equal to zero (block 1111) , the device performs a check
to determine if both the overlap of the size 2x2 max pooling
stage is even and the window size W is even (block 1121) .
If the device determines that both the overlap of the size 2x2
max pooling stage is even and the window size W is even ,
then the device sets the stride S to two (block 1123) . In all
other cases , the device sets the stride S to one (block 1125) .
[0105] The device applies the size 2x2 max pooling with
stride S kernel to the input of the size 2x2 max pooling stage
(block 1127) . The device adjusts the window size W , the
overlap OVERLAP , and the input size SIZE values (block
1129) . Examples of the adjusting of the values include :

SIZE = N ;

W = (W - 2) / S + 1 ;
[0098] Window size (W) : Initialize W to kernel size ,

W = kernel size = K ;

[0099] Overlap (OVERLAP) : Initialize OVERLAP to dif
ference of kernel size and stride ,

OVERLAP = (OVERLAP - 2) / S + 1 ;

OVERLAP = kernel size - stride = K - S ; SIZE = (SIZE - 2) / S + 1 .

[0100] Final size (FINALSIZE) : FINALSIZE is the size of
the output if the original size K?K max pooling with stride
S kernel is applied to the input data . FINALSIZE is the stop
condition , and the operations stop whenever SIZE is equal
to FINALSIZE ,

FINALSIZE = (input size - kernel size) / stride + 1 = (N
K) / S + 1 .

[0101] The device performs a check to determine if the
stop condition is met (block 1107) . As discussed previously ,
the stop condition is when the size of the input to a size 2x2
max pooling stage is equal to the final size (e.g. , SIZE is
equal to FINALSIZE) . If the stop condition is met , opera
tions 1100 ends and the input is the output of the dynamic
max pooling realization of the size K?K max pooling with
stride S kernel .
[0102] If the stop condition is not met , the device deter
mines the stride to be used for the size 2x2 max pooling
stage (blocks 1109) . The determination of the stride of the
size 2x2 max pooling stage is in accordance with the pooling
parameters of the size 2x2 max pooling stage . Examples of
the pooling parameters include the input size of the size 2x2
max pooling stage , the window size of the size 2x2 max
pooling stage , and the overlap of the size 2x2 max pooling
stage .
[0103] An example determination of the stride of the size
2x2 max pooling stage includes the device performing a
check to determine if the overlap of the size 2x2 max
pooling stage is equal to zero (block 1111) . If the overlap is
equal to zero , the stride S is set to two (block 1113) . The
device also performs a check to determine if the window size
W is odd (block 1115) . If the window size W is odd , the
device adds a padding element to each grouping of window

The device returns to block 1107 to repeat the determination
if the stop condition is been met .
[0106] FIG . 12 illustrates a diagram 1200 of the applica
tion of a size 5 max pooling with stride 2 kernel realized with
dynamic max pooling to a size 9 input data . The max pooling
shown in FIG . 12 is one - dimensional max pooling and is
presented as an analog to two - dimensional max pooling in
order to simplify the figure . The example embodiments
presented herein are operable with one - dimensional or two
dimensional max pooling . The presentation of one - dimen
sional max pooling is not intended to be limiting to either the
scope or spirit of the example embodiments . As described
previously , the size 5 max pooling with stride 2 kernel is
realized as a cascade of size 2 max pooling stages with
dynamically configured stride . Following operations 1100 of
FIG . 11 , for example , the initial values as determined in
block 1105 are SIZE = 9 , W = 5 , OVERLAP = 3 , and FINAL
SIZE = 3 . Because , SIZE is not equal to FINALSIZE , a first
size 2 max pooling stage with stride S = 1 is performed
(because OVERLAP is not equal to zero and is not even) . A
first sequence of 9 data values 1205 illustrate the application
of the size 2 max pooling with stride 1 operation . Adjusted
values as determined in block 1129 are SIZE = 8 , W = 4 , and
OVERLAP = 2 . Because SIZE is not equal to FINALSIZE , a
second size 2 max pooling stage with stride S = 2 is per
formed (because OVERLAP is not equal to zero , but OVER
LAP is even and W is even) . A second sequence of 8 data
values 1215 illustrate the application of the size 2 max
pooling with stride 2 operation . Adjusted values as deter
mined in block 1129 are SIZE = 4 , W = 2 , and OVERLAP = 1 .
[0107] Because SIZE is not equal to FINALSIZE , a third
size 2 max pooling stage with stride S = 1 is performed
(because OVERLAP is not equal to zero and is not even) . A

US 2020/0090046 A1 Mar. 19 , 2020
8

third sequence of 4 data values 1225 illustrate the applica
tion of the size 2 max pooling with stride 1 operation .
Adjusted values as determined in block 1129 are SIZE = 3 ,
W = 1 , and OVERLAP = 1 . Because SIZE is equal to FINAL
SIZE , the stop condition (block 1107 of FIG . 11 , for
example) is met and the realization of the size 5 max pooling
with stride 2 kernel using dynamic max pooling is complete .
[0108] FIG . 13 illustrates a diagram 1300 of the applica
tion of a size 6 max pooling with stride 6 kernel realized with
dynamic max pooling to a size 12 input data . The max
pooling shown in FIG . 13 is one - dimensional max pooling
and is presented as an analog to two - dimensional max
pooling in order to simplify the figure . The example embodi
ments presented herein are operable with one - dimensional
or two - dimensional max pooling . The presentation of one
dimensional max pooling is not intended to be limiting to
either the scope or spirit of the example embodiments . As
described previously , the size 6 max pooling with stride 6
kernel is realized as a cascade of size 2 max pooling stages
with dynamically configured stride . Following operations
1100 of FIG . 11 , for example , the initial values as deter
mined in block 1105 are SIZE = 12 , W = 6 , OVERLAP = 0 , and
FINALSIZE = 2 . Because SIZE is not equal to FINALSIZE ,
a first size 2 max pooling stage with stride S = 2 is performed
(because OVERLAP is equal to zero and W is even) . A first
sequence of 12 data values 1305 illustrates the application of
the size 2 max pooling with stride 2 operation . Adjusted
values as determined in block 1129 are SIZE = 6 , W = 3 , and
OVERLAP = 0 .

[0109] A second sequence of 6 data values 1315 illustrates
the output of the first size 2 max pooling stage . Because
SIZE is not equal to FINALSIZE , a second size 2 max
pooling stage with stride S = 2 is performed (because OVER
LAP is equal to zero and W is odd) . However , because W is
odd , a padding element is added to each grouping of W data
values . A third sequence of 8 data values 1325 illustrates the
output of the first size 2 max pooling stage after padding
elements have been added . As an example , padding element
1327 is added to grouping 1329. Third sequence of 8 data
values 1325 illustrates the application of the second size 2
max pooling stage with stride 2. Adjusted values as deter
mined in block 1129 are SIZE = 4 , W = 2 , and OVERLAP = 0 .
[0110] A fourth sequence of 4 data values 1335 illustrates
the output of the second size 2 max pooling stage . Because
SIZE is not equal to FINALSIZE , a third size 2 max pooling
stage with stride S = 2 is performed (because OVERLAP is
equal to zero and W is even) . Fourth sequence of 4 data
values 1335 illustrates the application of the size 2 max
pooling with stride 2 operation . Adjusted values as deter
mined in block 1129 are SIZE = 2 , W = 1 , and OVERLAP = 0 .
A fifth sequence of 2 data values 1345 illustrates the output
of the third size 2 max pooling stage . Because SIZE is equal
to FINALSIZE , the stop condition (block 1107 of FIG . 11 ,
for example) is met and the realization of the size 6 max
pooling with stride 6 kernel using dynamic max pooling is
complete .
[0111] FIG . 14 illustrates a hardware implementation of a
size 2x2 max pooling stage 1400. Size 2x2 max pooling
stage 1400 is capable of implementing a size 2x2 max
pooling stage with any stride , and may be used in the
realization of a size K?K max pooling with stride S kernel
as a cascade of size 2x2 max pooling stages with dynami
cally determined stride S as discussed previously . Size 2x2

max pooling stage 1400 allows for the sequential execution
(with fully pipelined operation of each pooling layer of a
CNN .
[0112] Size 2x2 max pooling stage 1400 includes a data
first in first out (FIFO) buffer 1405 that stores the partial
results of the size K?K max pooling with stride S kernel , as
well as a mask FIFO buffer 1410 that removes temporary
junk values produced when the size 2x2 max pooling stage
1400 processes data values that span adjacent windows .
According to an embodiment , a size of data FIFO buffer
1405 is at least equal to the size of the intermediate output
at each size 2x2 max pooling stage .
[0113] Size 2x2 max pooling stage 1400 also includes a
first comparator 1415 having a first input coupled to a data
input and a second input coupled to a delayed version of the
data input , wherein the delayed version of the data input is
provided by a delay unit 1420. First comparator 1415 is
configured to compare a data input value with a delayed data
input value and output the larger of the two . Size 2x2 max
pooling stage 1400 also includes a second comparator 1425
having a first input coupled to an output of data FIFO buffer
1405 and a second input coupled to an output of first
comparator 1415. Second comparator 1425 is configured to
compare a data value from data FIFO buffer 1405 with an
output of first comparator 1415 and output the larger of the
two . The output of second comparator 1425 is either the
output of an intermediate size 2x2 max pooling stage or the
output of the size K?K max pooling with stride S kernel .
[0114) Size 2x2 max pooling stage 1400 also includes a
controller 1430 coupled to data FIFO buffer 1405 , and a
stride value input . Controller 1415 is configured to control
data FIFO buffer 1405 to store or output data values in
accordance with a stride value determined in accordance
with an initial stride value on the stride value input . The
stride value may be determined by controller 1430 in
accordance with the pooling parameter of the size 2x2 max pooling stage being implemented . Examples of the pooling
parameters include the size of the input of the size 2x2 max
pooling stage , the window size of the size 2x2 max pooling
stage , and the overlap of the size 2x2 max pooling stage .
Depending on the stride value , controller 1415 uses a write
control line and a read control line to have data FIFO buffer
1405 store or output data values from first comparator 1415 .
Alternatively , a processor coupled to size 2x2 max pooling
stage 1400 may determine the stride value (based on the
pooling parameters , for example) and provide the stride
value to controller 1415. The processor may be a part of a
graphics processing unit that includes size 2x2 max pooling
stage 1400 or the processor may be a part of a computing
system that includes the graphics processing unit that
includes size 2x2 max pooling stage 1400. The processor
may also control a padding input that results in size 2x2 max
pooling stage 1400 adding padding elements to the input
data .
[0115] Size 2x2 max pooling stage 1400 also includes a
multiplexor 1435 having a first input coupled to an output of
mask FIFO 1410 , a second input coupled to the output of
first comparator 1415 , and a control input coupled to the
output of second comparator 1425. Depending on the con
trol input , multiplexor 1435 outputs junk values or the
output of first comparator 1415 .
[0116] FIG . 15 is a block diagram of a computing system
1500 that may be used for implementing the devices and
methods disclosed herein . For example , the computing sys

US 2020/0090046 A1 Mar. 19 , 2020
9

tem can be any entity of hand - held computing device ,
wireless handset , touchpad tablet , touchpad PC , digital
camera , video camera , surveillance camera , and so on .
Specific devices may utilize all of the components shown or
only a subset of the components , and levels of integration
may vary from device to device . Furthermore , a device may
contain multiple instances of a component , such as multiple
processing units , processors , memories , transmitters , receiv
ers , etc. The computing system 1500 includes a central
processing unit (CPU) 1514 , memory 1508 , and may further
include a mass storage device 1504 , a video adapter 1510 , an
I / O interface 1512 , and a graphics processing unit (GPU)
1520 connected to a bus 1524 .
[0117] The bus 1524 may be one or more of any type of
several bus architectures including a memory bus or
memory controller , a peripheral bus , or a video bus . The
CPU 1514 may comprise any type of electronic data pro
cessor . The memory 1508 may comprise any type of non
transitory system memory such as static random access
memory (SRAM) , dynamic random access memory
(DRAM) , synchronous DRAM (SDRAM) , read - only
memory (ROM) , or a combination thereof . In an embodi
ment , the memory 1508 may include ROM for use at
boot - up , and DRAM for program and data storage for use
while executing programs .
[0118] The mass storage 1504 may comprise any type of
non - transitory storage device configured to store data , pro
grams , and other information and to make the data , pro
grams , and other information accessible via the bus 1524 .
The mass storage 1504 may comprise , for example , one or
more of a solid state drive , hard disk drive , a magnetic disk
drive , or an optical disk drive .
[0119] The video adapter 1510 and the I / O interface 1512
provide interfaces to couple external input and output
devices to the processing unit 1502. As illustrated , examples
of input and output devices include a display 1518 coupled
to the video adapter 1510 and a mouse , keyboard , printer , or
camera 1516 coupled to the 1/0 interface 1512. Other
devices may be coupled to the processing unit 1502 , and
additional or fewer interface cards may be utilized . For
example , a serial interface such as Universal Serial Bus
(USB) (not shown) may be used to provide an interface for
an external device .
[0120] The GPU 1520 processes graphical data , such as
images captured by the mouse , keyboard , printer , or camera
1516. The GPU 1520 makes use of computation techniques
to process large amounts of data , to perform image detec
tion , speech recognition , and so on . As an example , the GPU
1520 includes an implementation of a neural network , such
as a CNN . The CNN includes a variety of processing layers ,
including one or more pooling layers to downsample the
large amounts of data . The GPU 1520 also processes other
types of data with efficient algorithms , to perform crypto
currency mining , for example . The GPU 1520 can be the
device that performs dynamic max pooling .
[0121] The computing system 1500 also includes one or
more network interfaces 1506 , which may comprise wired
links , such as an Ethernet cable , or wireless links to access
nodes or different networks . The network interfaces 1506
allow the computing system to communicate with other
computing systems , such as servers , mobile devices , etc. , via
the networks . For example , the network interfaces 1506 may
provide wireless communication via one or more transmit
ters / transmit antennas and one or more receivers / receive

antennas . In an embodiment , the computing system 1500 is
coupled to a local - area network 1522 or a wide - area network
for data processing and communications with remote
devices , such as other processing units , the Internet , or
remote storage facilities .
[0122] It should be appreciated that one or more steps of
the embodiment methods provided herein may be performed
by corresponding units or modules . For example , a signal
may be transmitted by a transmitting unit or a transmitting
module . A signal may be received by a receiving unit or a
receiving module . A signal may be processed by a process
ing unit or a processing module . Other steps may be per
formed by a buffering unit or module , a determining unit or
module , an adjusting unit or module , a saving unit or
module , an outputting unit or module , a setting unit or
module , an adding unit or module , or an applying unit or
module . The respective units or modules may be hardware ,
software , or a combination thereof . For instance , one or
more of the units or modules may be an integrated circuit ,
such as field programmable gate arrays (FPGAs) or appli
cation - specific integrated circuits (ASICs) .
[0123] Although the present disclosure and its advantages
have been described in detail , it should be understood that
various changes , substitutions and alterations can be made
herein without departing from the spirit and scope of the
disclosure as defined by the appended claims .
What is claimed is :
1. A computer - implemented method for performing size

K?K max pooling with stride S at a max pooling layer of a
convolutional neural network to downsample input data , the
computer - implemented method comprising :

receiving , at the max pooling layer , input data ;
buffering , at the max pooling layer , the input data ;
applying , at the max pooling layer , a cascade of size 2x2
max pooling stages to the buffered input data to gen
erate downsampled output data , wherein a stride value
of each size 2x2 max pooling stage is determined
dynamically in accordance with pooling parameters
associated with the size 2x2 max pooling stage ; and

outputting , by the max pooling layer , the downsampled
output data to another layer of the convolution neural
network for further processing .

2. The computer - implemented method of claim 1 ,
wherein the pooling parameters associated with the size 2x2
max pooling stage comprises at least one of a size of input
data at the size 2x2 max pooling stage , a window size of the
size 2x2 max pooling stage , or an overlap between neigh
boring windows of the size 2x2 max pooling stage .

3. The computer - implemented method of claim 2 ,
wherein the overlap between the neighboring windows of
the size 2x2 max pooling stage is determined in accordance
with the size of the input data at the size 2x2 max pooling
stage , and the window size of the size 2x2 max pooling
stage .

4. The computer - implemented method of claim 1 ,
wherein applying the cascade of size 2x2 max pooling
stages comprises :

determining , by the max pooling layer , a size of the
buffered input data and a final size of the downsampled
output ;

determining , by the max pooling layer , an overlap
between neighboring windows of input data of a first
size 2x2 max pooling stage in the cascade of size 2x2

US 2020/0090046 A1 Mar. 19 , 2020
10

max pooling stages , and a window size of the input data
of the first size 2x2 max pooling stage ;

determining , by the max pooling layer , a stride S of the
first size 2x2 max pooling stage in accordance with the
overlap , and the window size ;

applying , by the max pooling layer , the size 2x2 max
pooling with the stride S kernel to the input data of the
first size 2x2 max pooling stage to generate interme
diate downsampled output data ;

saving , by the max pooling layer , the intermediate down
sampled output data ; and

adjusting , by the max pooling layer , the size of input data
at the first size 2x2 max pooling stage , the window size
of the first size 2x2 max pooling stage , and the overlap
between neighboring windows of the first size 2x2 max
pooling stage .

5. The computer - implemented method of claim 4 ,
wherein determining the stride S of the first size 2x2 max
pooling stage comprises :

determining , by the max pooling layer , that the overlap
between neighboring windows of the input data at the
first size 2x2 max pooling stage is equal to zero , and
based on the determination that the overlap between
neighboring windows of the input data at the first size
2x2 max pooling stage is equal to zero , setting , by the
max pooling layer , the stride S to two ;

determining , by the max pooling layer , that the overlap
between neighboring windows of the input data at the
first size 2x2 max pooling stage is a first even value and
the window size of the first size 2x2 max pooling stage
is a second even value , and based on the determination
that the overlap between neighboring windows of the
input data at the first size 2x2 max pooling stage is a
first even value and the window size of the first size 2x2
max pooling stage is a second even value , setting , by
the max pooling layer , the stride S to two ; and

setting , by the max pooling layer , the stride S to one for
any other possible values of the overlap between neigh
boring windows of the input data at the first size 2x2
max pooling stage and the window size of the first size
2x2 max pooling stage .

6. The computer - implemented method of claim 5 , further
comprising :

determining that the overlap between neighboring win
dows of the input data at the first size 2x2 max pooling
stage is equal to zero and the window size is an odd
value , and based on the determination that the overlap
between neighboring windows of the input data at the
first size 2x2 max pooling stage is equal to zero and the
window size is an odd value :
adding , by the max pooling layer , a padding element to

each window sized segment of the input data at the
first size 2x2 max pooling stage ; and

adjusting , by the max pooling layer , the window size
and the size of the input data at the first size 2x2 max
pooling stage .

7. The computer - implemented method of claim 6 ,
wherein adjusting the window size and the size of the input
data at the first size 2x2 max pooling stage comprises :

incrementing , by the max pooling layer , the window size ;
and

adjusting , by the max pooling layer , the size of the input
data at the first size 2x2 max pooling stage in accor
dance with expression

8. The computer - implemented method of claim 4 ,
wherein adjusting the size of the input data at the first size
2x2 max pooling stage , the window size , and the overlap
comprises :

adjusting , by the max pooling layer , the window size in
accordance with expression
window size = (window size - 2) / stride S + 1 ;

adjusting , by the max pooling layer , the size of the input
data at the first size 2x2 max pooling stage in accor
dance with expression
size = (size - 2) / stride S + 1 ; and

adjusting , by the max pooling layer , the overlap in accor
dance with expression
overlap = (overlap - 2) / 2 + 1 .

9. The computer - implemented method of claim 4 , further
comprising repeating , by the max pooling layer , the deter
mining the stride S , the applying , the saving , and the
adjusting until a size of input data at remaining size 2x2 max
pooling stages is equal to the final size .

10. A device for performing size K?K max pooling with
stride S at a max pooling layer of a convolutional neural
network to downsample input data , the device comprising :

a non - transitory memory storage comprising instructions ;
and

one or more processors in communication with the
memory storage , wherein the one or more processors
execute the instructions to :
receive input data ,
buffer the input data ,
apply a cascade of size 2x2 max pooling stages to the

buffered input data to generate downsampled output
data , wherein a stride value of each size 2x2 max
pooling stage is determined dynamically in accor
dance with pooling parameters associated with the
size 2x2 max pooling stage , and

output the downsampled output data to another layer of
the convolution neural network for further process
ing .

11. The device of claim 10 , wherein the pooling param
eters associated with the size 2x2 max pooling stage com
prises at least one of a size of input data at the size 2x2 max
pooling stage , a window size of the size 2x2 max pooling
stage , or an overlap between neighboring windows of the
size 2x2 max pooling stage .

12. The device of claim 11 , wherein the overlap between
the neighboring windows of the size 2x2 max pooling stage
is determined in accordance with the size of the input data
at the size 2x2 max pooling stage , and the window size of
the size 2x2 max pooling stage .

13. The device of claim 10 , wherein the one or more
processors further execute instructions to determine a size of
the buffered input data and a final size of the downsampled
output , determine an overlap between neighboring windows
of input data of a first size 2x2 max pooling stage in the
cascade of size 2x2 max pooling stages , and a window size
of the input data of the first size 2x2 max pooling stage ,
determine a stride S of the first size 2x2 max pooling stage
in accordance with the overlap , and the window size , apply
the size 2x2 max pooling with stride S kernel to the input
data of the first size 2x2 max pooling stage to generate size = size + (size / the window size) .

US 2020/0090046 A1 Mar. 19 , 2020
11

intermediate downsampled output data , save the intermedi
ate downsampled output data , and adjust the size of the input
data at the first size 2x2 max pooling stage , the window size
of the first size 2x2 max pooling stage , and the overlap
between neighboring windows of the first size 2x2 max
pooling stage .

14. The device of claim 13 , wherein the one or more
processors further execute instructions to determine that the
overlap between neighboring windows of the input data at
the first size 2x2 max pooling stage is equal to zero , and
based on the determination that the overlap between neigh
boring windows of the input data at the first size 2x2 max
pooling stage is equal to zero , set the stride S to two ,
determine that the overlap between neighboring windows of
the input data at the first size 2x2 max pooling stage is a first
even value and the window size of the first size 2x2 max
pooling stage is a second even value , and based on the
determination that the overlap between neighboring win
dows of the input data at the first size 2x2 max pooling stage
is a first even value and the window size of the first size 2x2
max pooling stage is a second even value , set the stride S to
two , and set the stride S to one for any other possible values
of the overlap between neighboring windows of the input
data at the first size 2x2 max pooling stage and the window
size of the first size 2x2 max pooling stage .

15. The device of claim 14 , wherein the one or more
processors further execute instructions to determine that the
overlap between neighboring windows of the input data at
the first size 2x2 max pooling stage is equal to zero and the
window size is an odd value , and based on the determination
that the overlap between neighboring windows of the input
data at the first size 2x2 max pooling stage is equal to zero
and the window size is an odd value , add a padding element
to each window sized segment of the input data at the first
size 2x2 max pooling stage , and adjust the window size and
the size of the input data at the first size 2x2 max pooling
stage .

16. The device of claim 15 , wherein the one or more
processors further execute instructions to increment the
window size , and adjust the size of the input data at the first
size 2x2 max pooling stage in accordance with expression
size = size + (size / the window size) .

17. The device of claim 13 , wherein the one or more
processors further execute instructions to adjust the window
size in accordance with expression window size = (window
size - 2) / stride S + 1 , adjust the size of the input data at the first
size 2x2 max pooling stage in accordance with expression
size = (size - 2) / stride S + 1 , and adjust the overlap in accor
dance with expression overlap = (overlap - 2) / 2 + 1 .

18. The device of claim 13 , wherein the one or more
processors further execute instructions to repeat the deter
mining the stride S , the applying , the saving , and the
adjusting until a size of input data at remaining size 2x2 max
pooling stages is equal to the final size .

19. The device of claim 10 , wherein the device comprises
one of a convolutional neural network (CNN) and a graphics processing unit implementing a CNN .

20. A non - transitory computer - readable media storing
computer instructions for performing size K?K max pooling
with stride S at a max pooling layer of a convolutional neural
network to downsample input data , that when executed by
one or more processors , cause the one or more processors to
perform the steps of :

receive input data ,
buffer the input data ,
apply a cascade of size 2x2 max pooling stages to the

buffered input data to generate downsampled output
data , wherein a stride value of each size 2x2 max
pooling stage is determined dynamically in accordance
with pooling parameters associated with the size 2x2
max pooling stage , and

output the downsampled output data to another layer of
the convolution neural network for further processing .

