US 20140176573A1
a9 United States

a2y Patent Application Publication o) Pub. No.: US 2014/0176573 A1l

Vembu et al. 43) Pub. Date: Jun. 26, 2014
(54) OFFLOADING TOUCH PROCESSING TO A Publication Classification
GRAPHICS PROCESSOR
(51) Imt.CL
(71) Applicants: Balaji Vembu, Folsom, CA (US); David GO6T 120 (2006.01)
L. Poisner, Carmichael, CA (US); (52) US.CL
Arvind Kumar, Beaverton, OR (US); CPC oo GO6T 1/20 (2013.01)
Chaitanya R. Gandra, El Dorado Hills, USPC oo 345/502
CA (US)
(72) Inventors: Balaji Vembu, Folsom, CA (US); David (57) ABSTRACT

L. Poisner, Carmichael, CA (US);

Arvind Kumar, Beaverton, OR (US);
Chaitanya R. Gandra, El Dorado Hills, In an embodiment, a processor includes a graphics domain
CA (US) including a graphics engines each having at least one execu-
. tion unit. The graphics domain is to schedule a touch appli-
(21) Appl. No.: 13/785,098 cation offloaded from a core domain to at least one of the
(22) Filed: Mar. 5, 2013 plurality of graphics engines. The touch application is to
s execute responsive to an update to a doorbell location in a
Related U.S. Application Data system memory coupled to the processor, where the doorbell

(63) Continuation of application No. 13/724,291, filed on location is written responsive to a user input to the touch input
Dec. 21, 2012. device. Other embodiments are described and claimed.
10

Time >

Host Processor

Core Domain
24

N

Graphics Domain 20
A 26

EU Kernels

Memory 35
30 35

62 65

Data INT INT INT
70 75

PCH v

60/ INT

Touch Sensor Device
50

US 2014/0176573 Al

Jun. 26,2014 Sheet 1 of 7

Patent Application Publication

0%
39IA8(] JOSUag Yyono|
1IN 99
v
or v
7 3
HOd
c/ 0L
INI INI AINI eleq
59 29
_ i3
56 Klowsy
s|BuIsy N3
ﬂ A
0z urewoq solydels
i 74
urewo(o9
10Ss200.d 1SOH
A awl]

US 2014/0176573 Al

Jun. 26,2014 Sheet 2 of 7

Patent Application Publication

crl vl
Bojeuy
orl
Gyl
/
el A TZT
IdS 1s|pueH YINC HSI
&| prd) Bcl
4" 21607 o160
YINg Il2gi00g Odl 1soH
ot
Is|jonuo) [esaydusd
Vel
lajing
eleq
paleys =T ST
18414 BT Sl o cll
I uonealiddy vl urewoq
ocr yono | urewoq 810D
layng solydes
Eleq
psieys oLt
pucosg Jossaoold
€L o
l1sqio0g Jswisy N3

AIOWS| WB1SAS

[=]

—

Patent Application Publication Jun. 26, 2014 Sheet 3 of 7

N
(@)

Initialize Touch Input Device And
Initialize Touch Application To Execute
On At Least One Graphics Processor

Receive Indication Of Raw Touch
Data In Integrated Sensor Hub

Store Raw Touch Data In First Shared
Data Buffer And Indicate Presence Via
First Doorbell Location

Process Raw Touch Data In Graphics
Processor And Store Processed
Touch Data In Second Shared Data
Buffer

Indicate Completion Of Touch
Processing Via Second Doorbell
Location

Communicate Interrupt To Operating
System To Process Data In Second
Shared Data Buffer

FIG. 3

210

220

230

240

250

260

US 2014/0176573 Al

Patent Application Publication Jun. 26, 2014 Sheet 4 of 7 US 2014/0176573 A1
300
\‘ 310
A
Thread Dispatch
320 l
A
325
322 e 0 324
Z
EU EU EU EU
Tex$
I$. 325, +
Sampler
EU EU EU EU
330
I Z
Shared Cache
340
I A

Interface

FIG. 4

US 2014/0176573 Al

Jun. 26,2014 Sheet 5 of 7

Patent Application Publication

G Old

11

09y

Aows|y
walsAs

SS% UM [01UCD Jamog —
uoSh eosy | | ovF -
e 4l 4 OWI «—'>
ulewioq Gy
aJooun
oty
mrﬁ ayoen paleys
[)5% uoLy S[0)%7 B01h r4%7 Cr %7
ulewoq 8103 ai0D 8i0D Nndo || Ndo
9409
k457

ulewoq solydelo

/

00v

Patent Application Publication Jun. 26, 2014 Sheet 6 of 7 US 2014/0176573 A1

500
PCH
590
IF IF
580, 580,
PCU
555
System
Display Controller Agent IMC
552 230 570
__-530
(" Core LLC
5109 540,
Core LLC
510 <
Core LLC
Core LLC
510n 540n
-
Graphics Engine
520

FIG.6

US 2014/0176573 Al

Jun. 26,2014 Sheet 7 of 7

Patent Application Publication

3000 N
__ ™~ ogo 575 5
gco
JOVHOLS VIVA S3IADIATA ININOD JSNOIN / AHIVYOIATA
029
-¢ F A\ H -
¥Z9 719 819
o/l olanv S391A3A O/ 39d14g Sng
— ' . —
9l9 969 Z69
41 41 6€9
\ B89
869 060 760 SOIHdVYYD
d-d 13SdIHD d-d H443d-HOIH
ree /» L 4 [4e2 /: k
889 880 [> 379 9/9
d-d dd | N d-d d-d
059
[l erss _
c89 %75
. — ndo Ndo _ _—
7€o 780 | 9g9 . ZIo FAS)
AHOW3AN HOW o5 5.9 HOW AHOWIN
B7Z0
3400
"00¥d
089 079
\\ HOSSIOONd HOSSIOONd
009 A /
argg ar.9

US 2014/0176573 Al

OFFLOADING TOUCH PROCESSING TO A
GRAPHICS PROCESSOR

[0001] This application is a continuation of U.S. patent
application Ser. No. 13/724,291, filed Dec. 21, 2012, the
content of which is hereby incorporated by reference.

BACKGROUND

[0002] As more users adopt smartphones, tablet computers
and other touch screen enabled devices, the importance of
user interaction with a computing device via a touchpad,
touch screen or other human input device (HID) increases.
Commonly, a touch input device for smartphone, tablet or
other device is implemented via an array of sensors to which
analog circuitry is coupled to determine a user touch and
provide this information to a touch controller, which typically
is implemented using digital circuitry in a separate integrated
circuit. In general, this touch controller operates to receive
inputs from one or more analog circuits that connect to the
touch array and determine touch locations, filter false
touches, and provide an HID packet for output to other cir-
cuitry of the computing device such as a host processor.
[0003] Touch processing typically involves analyzing a
capacitance or equivalent data from a touch sensor array and
then identifying data points that resemble a fingertip, palm,
etc. Once a cluster of such data points is identified, additional
processing is performed to compute the characteristics of the
touch such as location coordinates, width/height of the digit,
pressure and so forth. While an embedded touch controller
typically performs these computations, as compute complex-
ity increases with advances in touch input devices, the rela-
tively basic signal processing afforded by such a controller
may be insufficient.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG.1is a block diagram of the overall components
involved in performing touch processing in an architecture in
accordance with an embodiment of the present invention.
[0005] FIG. 2 is a more detailed block diagram of a system
in accordance with an embodiment of the present invention.
[0006] FIG. 3 is a flow diagram of a method for processing
touch data in accordance with an embodiment of the present
invention.

[0007] FIG. 4 is a block diagram of a graphics domain of a
processor in accordance with an embodiment of the present
invention.

[0008] FIG. 5 is a block diagram of a processor in accor-
dance with an embodiment of the present invention.

[0009] FIG. 6 is a block diagram of a multi-domain proces-
sor in accordance with another embodiment of the present
invention.

[0010] FIG. 7 is a block diagram of a system in accordance
with an embodiment of the present invention.

DETAILED DESCRIPTION

[0011] In various embodiments, touch processing for an
associated touch input device may be implemented in a gen-
eral-purpose processor of a computer system such as smart-
phone, tablet computer, laptop, Ultrabook™ or other such
device. As will be described further, in particular embodi-
ments the touch processing may be implemented within one
or more graphics engines of a graphics domain of a multi-
domain processor. As such, the massive parallel compute

Jun. 26, 2014

capabilities inherent in such graphics processors can be used
to accelerate touch processing. Furthermore, the need for the
complexity, real estate consumption and additional expense
of discrete logic circuits outside of the general purpose pro-
cessor to handle touch processing can be avoided.

[0012] Referring now to FIG. 1, shown is a block diagram
of'the overall components involved in performing touch pro-
cessing in an architecture in accordance with an embodiment
of the present invention. As further detailed in FIG. 1, a flow
of communications to handle a touch event is also described.
[0013] System 10, which may be any type of computing
device incorporating a touch input device, includes a host
processor 20 which in an embodiment may be a multi-domain
processor including a core domain 24 including one or more
processor cores and a graphics domain 26 including one or
more graphics engines. In turn, this processor is coupled to a
system memory 30 which in an embodiment may be a
dynamic random access memory (DRAM). As will be dis-
cussed, a memory region 35 may be allocated for storing and
performing the touch processing described herein. In turn,
memory 30 may further couple to a peripheral controller hub
(PCH) 40 that provides an interface between host processor
20 and various peripheral devices including a touch sensor
device 50.

[0014] In this logical flow of communications for touch
processing system memory 30 is shown interposed between
host processor 20 and PCH 30. However understand that in
many implementations, memory 30 may be directly coupled
to host processor 20, and more specifically to a memory
controller integrated within the host processor. And in turn,
PCH 40 may directly couple to host processor 20, e.g., by way
of so-called system agent circuitry of the host processor,
which includes various interface circuitry to enable commu-
nication between the host processor and PCH 40.

[0015] As further illustrated in FIG. 1, a touch processing
sequence begins by receipt of a first interrupt 60 in PCH 40
from touch sensor device 50 indicating the availability of raw
touch data. Note that this touch sensor device may be imple-
mented solely with analog circuitry such that minimal digital
processing of the raw touch data is performed in touch sensor
50 (although a basic digital controller may be present to
control sample rates and other features of the touch device).
For example, different sample rates may be used by the touch
input device depending on whether the input device is a user’s
finger or a stylus. This determination may be made by the
touch application responsive to analysis of initial user input
that indicates whether the input is touch-like (e.g., having a
relatively large number of data touch points) or a stylus (hav-
ing a relatively small number of data touch points).

[0016] Responsive to receipt of this interrupt in PCH 40,
raw touch data 62 may be written into memory region 35 of
memory 30. And in turn, an interrupt 65 may be communi-
cated from PCH 40 to host processor block 20, and more
specifically in the embodiment shown to graphics domain 26.
Then, a touch application executing within graphics domain
26 by way of code stored in memory region 35, also referred
to herein as so-called execution unit (EU) kernel code, may
access the data. This touch application may process the raw
touch data to perform various signal processing resulting in
processed touch data, which may include identification of
coordinate information, a touch sequence, a swipe or other
gesture, signature recognition or so forth.

[0017] When graphics domain 26 has completed the touch
processing on the raw data, an interrupt 70 may be commu-

US 2014/0176573 Al

nicated to PCH 40 to allow the PCH to return any touch
characteristics to touch sensor device 50 (e.g., to indicate that
the touch point resembled a finger or stylus). The completion
of the touch processing by graphics domain 25 also causes
generation of yet another interrupt 75, directed to core
domain 24 on which an OS or other software that is to receive
the processed touch data is operating. Although shown at this
high level in the embodiment of FIG. 1 and with the particular
flow of operations and communications, understand the scope
of the present invention is not limited in this regard. For
example, in another embodiment instead of issuing an inter-
rupt from graphics domain 26 to PCH 40 (namely interrupt
70) an interrupt to inform core domain 24 of the availability of
processed touch data may directly issue from graphics
domain 26 to core domain 24.

[0018] Various implementations of touch applications are
possible. For example, touch algorithms can be implemented
in an appropriate high level language such as object constraint
language (OCL), C for media or so forth. This application
may be embedded in a host application that is offloaded from
the host domain to the graphics domain. In turn, one or more
graphics execution units of one or more graphics engines of
the graphics domain can execute the touch application. The
nature of processing performed on the graphics domain can
range from simply determining touch points and characteris-
tics (width, height) to more complex functions like recogniz-
ing gestures (swipes, signatures, handwriting recognition,
etc.). To allow the touch processing to be performed in a
responsive manner, execution of the touch application may be
responsive to a graphics scheduler, which may provide a
relatively high priority for scheduling execution of this touch
processing workload within the graphics domain. In an
embodiment, the graphics scheduler can receive notification
of a new workload via a memory location-based doorbell
mechanism, as will be described further.

[0019] In an embodiment, several doorbell mechanisms
may be provided for inter-device notification. First, a touch
10 interface (which may be included within a sensor inter-
face) may communicate via a first doorbell to indicate to the
graphics engine that raw touch data is ready for processing.
The first doorbell has the ability to invoke the graphics engine
for touch processing without waking up the core domain to
minimize power. In turn, a second doorbell may indicate to
the touch IO interface that processed touch data is ready and
to request interrupt processing to a host.

[0020] Upon initialization of a system including a touch
architecture as described herein, after the system is booted,
the touch application is launched which in turn sets up a
graphics context to be executed whenever touch processing is
needed. In general, the touch application provides to one or
more graphics processors EU kernels that execute within EUs
of'the graphics processors when the touch graphics context is
scheduled for execution. As mentioned above, the touch
application requests a graphics doorbell (namely a memory
location in main memory) and a touch 1O interface doorbell
(which in an embodiment may be a memory mapped 10
(MMIO) register location or a memory-based doorbell). In
addition, the touch application requests an allocation of
shared buffer space within the system memory. This shared
buffer space may include an input buffer for raw touch data
and an output buffer for processed touch characteristics. In
turn, this doorbell information and the shared buffer location
may be communicated to both endpoints, namely the graphics
domain and a touch 10 interface. The graphics commands

Jun. 26, 2014

that invoke the EU kernels to process data use the shared
buffer as input and write the final computed result into the
output butfer. In an embodiment this touch 1O interface can be
implemented in an integrated sensor hub (ISH) that may be
within a peripheral controller, a standalone ISH device or
another system location. At this point the touch application is
set up and ready for execution on an indication of incoming
raw touch data.

[0021] Then during runtime operation, the touch IO inter-
face receives an interrupt from the touch sensor device to
indicate that raw data is available. In turn, this touch 10
interface enables transfer of the raw data into the shared input
buffer and writes an indication of the presence of this data to
the graphics doorbell. In turn, a graphics scheduler may
schedule this touch graphics context at the next available
opportunity. In an embodiment, this scheduling may be
treated as high priority. In turn, one or more EUs of one or
more graphics engines may execute graphics kernels to oper-
ate on the raw data and write the touch characteristics into the
shared output buffer. In turn, the graphics domain sends a
doorbell notification to the touch IO interface to indicate that
this data is ready for communication to the host. In turn, the
touch IO interface issues an interrupt to the host OS that
enables the host OS to obtain and process the data as desired.
[0022] Furthermore, by offloading touch processing to one
or more graphics processors as described herein, reduced
power consumption can be realized, in that the parallel com-
pute capacity of the graphics domain may be at a lower power
consumption level than performing touch processing either in
a core domain or in a standalone touch controller (which as
described herein can be entirely avoided in various embodi-
ments). The processing of the raw data to convert touch
samples to touch points is highly parallelizable by breaking
the touch sample array into regions on which multiple threads
of computation can be launched in parallel. For example, raw
data can be divided into regions that can be provided in
parallel to determine touch points.

[0023] Note that the offloading of the touch application
from host processor to the graphics domain can be a one-time
operation (per reset event of the system). That is, once the
touch application is offloaded to the graphics domain, the host
processor does not need to perform any interaction on a given
execution of the touch application responsive to user input.
Instead, the only interaction that occurs is after touch pro-
cessing is completed, an interrupt or other indication to the
core domain may be made to enable an OS or other software
executing on the core domain to access and use the processed
touch data.

[0024] Referring now to FIG. 2, shown is a more detailed
block diagram of a system in accordance with an embodiment
of the present invention. As shown in FIG. 2, system 100
includes a processor 110 that is coupled both to a system
memory 130 and a peripheral controller 120. In turn, periph-
eral controller 120 is in communication with a touch input
device 140 via an interconnect 145. In an embodiment, touch
sensor device 140 may be coupled to peripheral controller
120 via a serial peripheral interface (SPI), an embedded dis-
play port (eDP) or another interconnect. By way of the archi-
tecture in FIG. 2, the need for a dedicated touch controller
such as a separate integrated circuit within the system can be
avoided and instead, analog circuitry 144 coupled to a touch
array 142 of touch input device 140 is configured to directly
provide raw sensed touch data to a integrated sensor hub
(ISH) 125 within peripheral controller 120. Although

US 2014/0176573 Al

described herein as using a capacitance touch array to obtain
touch input, understand that other touch input devices using a
different technology such as via light emitting cameras or
other image based touch or gesture capture can be used. Of
course, other types of touch input technologies may also be
used. Also, while embodiments described herein utilize an
ISH for receiving touch data from a touch sensor device, other
arrangements are possible. For example, other controllers
such as microcontrollers in the peripheral controller or else-
where could be used, such as a manageability engine (ME) or
converged security engine (CSE). Such controllers execute
firmware and have direct control over the SPI interface and
DMA operations. It is also possible to include a dedicated
microcontroller to manage SPI ports and the associated direct
memory access or a dedicated state machine may be provided
to control the SPI interface and DMA operations (without use
of'a microcontroller).

[0025] As seen in FIG. 2, processor 110 includes a core
domain 112 which can include a plurality of processor cores
and a graphics domain 114 which may include multiple
graphics engines such as a plurality of graphics processing
units (GPUs) each including one or more execution units
(EUs). On this hardware a touch application 115 may be
executed. As also seen in FIG. 2, an integrated memory con-
troller 118 may act as an interface between the hardware of
processor 110 and system memory 130.

[0026] As to system memory 130, it is configured to com-
municate directly with peripheral controller 120 as well as
with processor 110. As seen, system memory 130 includes a
first shared data buffer 134 to receive raw data from touch
input device 140 and a second shared data buffer 136 to store
the processed touch data received from graphics domain 114.
In addition, a doorbell location 132 may be written when raw
touch data is stored into shared data buffer 134. Note that
further present in system memory is a EU kernel 138, which
may be a touch application workload to execute on one or
more graphics processors within graphics domain 114.
[0027] In an embodiment, at least one graphics processor
may be dedicated for touch processing, at least for certain
portions of a runtime of a computing device. To that end,
when no active touch inputs are being received, this dedicated
graphics processor may be placed into a low power state and
a monitor mechanism may be set up, e.g., via memory con-
troller 118 to monitor doorbell location 132 such that upon an
update to this location indicating presence of new raw touch
data, the corresponding dedicated graphics processor may be
powered up to perform the touch application processing for
this new raw data. Similar monitoring can be used to deter-
mine presence of the raw touch data, which may cause EUs to
pre-empt a currently running workload on the graphics
engines and run the touch algorithm and then resume the
original workload.

[0028] Withreferenceto peripheral controller 120, ISH 125
includes a SPI interface 122 to receive raw data from touch
device 140 and provide it via a direct memory access (DMA)
engine 124 to system memory 130. Note that communication
with touch input device 140 may be bidirectional, in that
certain command information can be sent to the touch input
device. For example, depending on whether a touch applica-
tion determines a user is inputting a selection or providing a
signature, different sampling rates of the touch input device
may be controlled. In an embodiment, DM A engine 124 may
execute according to a DMA handler 125. DMA engine 124
may be used to transfer raw touch data received via SPI

Jun. 26, 2014

interface 122 into first shared data buffer 134 within main
memory 130. More specifically, this raw data stored in first
data buffer 134 may be raw touch data written into a graphics
input surface within the data buffer. When a graphics engine
has completed touch processing on a given amount of raw
touch data, an interrupt may be communicated to doorbell
logic 127 of the ISH that in turn causes a host inter-processor
communication (IPC) logic 129 to issue an interrupt to core
domain 112 to indicate to the host OS the presence of pro-
cessed touch data in shared data buffer 136. In another
embodiment, the data received via SPI interface 122 may be
stored into an internal memory such as a static random access
memory (SRAM) and then separately communicated via a
DMA operation to the system memory.

[0029] Although shown at this high level in the embodi-
ment of FIG. 2, understand that various alternatives are pos-
sible. For example, while processor 110 and peripheral con-
troller 120 are shown as separate integrated circuits formed in
different packages, understand that in other implementations
a single package including both processor 110 and peripheral
controller 120 instead may be provided. And further under-
stand that touch data may be received in a processor via
another interface, such as a graphics interface or via a periph-
eral component interconnect such as a PCle™ interface or a
PCle™ interface adapted for mobile communication, e.g., via
a MIPI M-PHY physical unit, or another bus that supports bus
mastering. Although shown at this high level in the embodi-
ment of FIG. 2, understand the scope of the present invention
is not limited in this regard.

[0030] Referring now to FIG. 3, shown is a flow diagram of
a method for processing touch data in accordance with an
embodiment of the present invention. As shown in FIG. 3,
method 200 may be performed by various components of a
system, including graphics processors, an integrated sensor
hub, and a touch input device. As seen, method 200 begins by
initializing a touch input device and the touch application to
execute on at least one graphics processor (block 210). Next,
during runtime an indication of raw touch data may be
received in the integrated sensor hub (block 220). Responsive
to this indication, the raw touch data may be stored in a shared
data buffer and the presence of this information may be indi-
cated via a write to a first doorbell location, which in an
embodiment may be a graphics doorbell stored in system
memory (block 230). Next, the raw touch data may be pro-
cessed in the at least one graphics processor, and processed
touch data can be stored in a second shared data buffer (block
240). Next, completion of touch processing can be indicated
via a write to a second doorbell location, which in an embodi-
ment may be a ISH doorbell present within the integrated
sensor hub (block 250). Finally, an interrupt can be commu-
nicated to the OS to enable further processing of this data
stored in the second shared data butfer (block 260). Although
shown at this high level in FIG. 3, understand the scope of the
present invention is not limited in this regard.

[0031] Referring now to FIG. 4, shown is a block diagram
of a graphics domain of a processor in accordance with an
embodiment of the present invention. As shown in FIG. 4,
domain 300 includes a thread dispatch unit 310 that receives
incoming threads and dispatches them to a compute cluster
320 that includes a plurality of individual execution units
325,-325,,. Although the scope of the present invention is not
limited in this regard in some embodiments between 4 and 16
EUs may be present. One or more of EUs 325 may be con-
trolled to execute a touch application (or at least one or more

US 2014/0176573 Al

touch processing algorithms of the application) as scheduled
by a scheduler executing on thread dispatch unit 310. As
further seen, these EUs may share an instruction cache 322
and a texture cache and sampler 324. In turn, compute cluster
320 couples to a shared cache memory 330 which in an
embodiment may be a level 3 cache that in turn couples
through an interface 340 to other components of a processor
such as a ring interconnect that couples the graphics domain
with a core domain and a system agent. In addition, the ring
interconnect further couples the graphics domain to a larger
shared cache structure such as a last level cache that in turn
couples to further portions of a memory hierarchy such as a
system memory.

[0032] Referring now to FIG. 5, shown is a block diagram
of a processor in accordance with an embodiment of the
present invention. As shown in FIG. 5, processor 400 may be
amulticore processor including a plurality of cores 410 -410,,
in a core domain 410. In one embodiment, each such core may
be of an independent power domain and can be configured to
operate at an independent voltage and/or frequency. As fur-
ther shown in FIG. 5, one or more GPUs 412,-412, may be
present in a graphics domain 412. Each of these independent
graphics engines also may be configured to operate at inde-
pendent voltage and/or frequency or may be controlled
together as a single domain. One or more of GPUs 412 of the
graphics domain may be configured to execute a touch appli-
cation as described herein, offloaded by an OS or other entity
executing within core domain 410.

[0033] These various compute elements may be coupled
via an interconnect 415 to a system agent or uncore 420 that
includes various components. As seen, the uncore 420 may
include a shared cache 430 which may be a last level cache. In
addition, the uncore may include an integrated memory con-
troller 440, various interfaces 450 and a power control unit
455 to control power consumption by the components of the
processor.

[0034] With further reference to FIG. 5, processor 400 may
communicate with a system memory 460, e.g., via a memory
bus. In addition, by interfaces 450, connection can be made to
various off-chip components such as peripheral devices, mass
storage and so forth. While shown with this particular imple-
mentation in the embodiment of FIG. 5, the scope of the
present invention is not limited in this regard.

[0035] Note that processor 400 may be an out-of-order
machine such as ofa so-called x86 instruction set architecture
(ISA) architecture, an in-order processor, a reduced instruc-
tion set computing (RISC) processor such as an ARM-based
processor, or a processor of another type of ISA that can
emulate instructions and operations of a different ISA via an
emulation engine and associated logic circuitry.

[0036] That is, in other embodiments, a processor architec-
ture may include emulation features such that the processor
can execute instructions of a first ISA, referred to as a source
ISA, where the architecture is according to a second ISA,
referred to as a target ISA. In general, software, including
both the OS and application programs, is compiled to the
source ISA, and hardware implements the target ISA
designed specifically for a given hardware implementation
with special performance and/or energy efficiency features.
[0037] Referring now to FIG. 6, shown is a block diagram
of a multi-domain processor in accordance with another
embodiment of the present invention. As shown in the
embodiment of FIG. 6, processor 500 includes multiple
domains. Specifically, a core domain 510 can include a plu-

Jun. 26, 2014

rality of cores 510,-510,,, a graphics domain 520 can include
one or more graphics engines to execute an offloaded touch
application, and a system agent domain 550 may further be
present. In various embodiments, system agent domain 550
may remain powered on at all times to handle power control
events and power management such that domains 510 and
520 can be controlled to dynamically enter into and exit low
power states.

[0038] Note that while only shown with three domains,
understand the scope of the present invention is not limited in
this regard and additional domains can be present in other
embodiments. For example, multiple core domains may be
present each including at least one core. In this way, finer
grained control of the amount of processor cores that can be
executing at a given frequency can be realized.

[0039] In general, each core 510 may further include low
level caches in addition to various execution units and addi-
tional processing elements. In turn, the various cores may be
coupled to each other and to a shared cache memory formed
of'a plurality of units of a last level cache (LL.C) 540,-540,,. In
various embodiments, LL.C 540 may be shared amongst the
cores and the graphics engine, as well as various media pro-
cessing circuitry. As seen, a ring interconnect 530 thus
couples the cores together, and provides interconnection
between the cores, graphics domain 520 and system agent
circuitry 550.

[0040] Inthe embodiment of FIG. 6, system agent domain
550 may include display controller 552 which may provide
control of and an interface to an associated display. As further
seen, system agent domain 550 may include a power control
unit 555.

[0041] As further seen in FIG. 6, processor 500 can further
include an integrated memory controller (IMC) 570 that can
provide for an interface to a system memory, such as a
dynamic random access memory (DRAM). Multiple inter-
faces 580,-580,, may be present to enable interconnection
between the processor and other circuitry. For example, in
one embodiment at least one direct media interface (DMI)
interface may be provided as well as one or more Peripheral
Component Interconnect Express (PCI Express™ (PCle™))
interfaces. Still further, to provide for communications
between other agents such as additional processors or other
circuitry, one or more interfaces in accordance with a Intel®
Quick Path Interconnect (QPI) protocol may also be pro-
vided. As further seen, a PCH 590 may also be present within
the processor, and can be implemented in a processor package
with the remainder of the processor on the same semiconduc-
tor die or a separate semiconductor die. This peripheral con-
troller may include an integrated sensor hub to enable com-
munication with various system sensors including a touch
input device integrated into a system without a separate touch
controller. Although shown at this high level in the embodi-
ment of FIG. 6, understand the scope of the present invention
is not limited in this regard.

[0042] Embodiments may be implemented in many difter-
ent system types. Referring now to FIG. 7, shown is a block
diagram of a system in accordance with an embodiment of the
present invention. As shown in FIG. 7, multiprocessor system
600 is a point-to-point interconnect system, and includes a
first processor 670 and a second processor 680 coupled via a
point-to-point interconnect 650. As shown in FIG. 7, each of
processors 670 and 680 may be multicore processors, includ-
ing first and second processor cores (i.e., processor cores
674a and 6745 and processor cores 684a and 6845), although

US 2014/0176573 Al

potentially many more cores may be present in the proces-
sors. Each of the processors can include a graphics domain
including a plurality of GPUs (e.g., GPUs 6754 and 6756 and
GPUs 685a and 6855) to which a touch application can be
offloaded from one or more of the processor cores.

[0043] Still referring to FIG. 7, first processor 670 further
includes a memory controller hub (MCH) 672 and point-to-
point (P-P) interfaces 676 and 678. Similarly, second proces-
sor 680 includes a MCH 682 and P-P interfaces 686 and 688.
As shown in FIG. 7, MCH’s 672 and 682 couple the proces-
sors to respective memories, namely a memory 632 and a
memory 634, which may be portions of system memory (e.g.,
DRAM) locally attached to the respective processors. First
processor 670 and second processor 680 may be coupled to a
chipset 690 via P-P interconnects 652 and 654, respectively.
As shown in FIG. 7, chipset 690 includes P-P interfaces 694
and 698.

[0044] Furthermore, chipset 690 includes an interface 692
to couple chipset 690 with a high performance graphics
engine 638, by a P-P interconnect 639. In turn, chipset 690
may be coupled to a first bus 616 via an interface 696. As
shown in FIG. 7, various input/output (I/O) devices 614 may
be coupled to first bus 616, along with a bus bridge 618 which
couples first bus 616 to a second bus 620. Various devices may
be coupled to second bus 620 including, for example, a key-
board/mouse 622, communication devices 626 and a data
storage unit 628 such as a disk drive or other mass storage
device which may include code 630, in one embodiment.
Further, an audio /O 624 may be coupled to second bus 620.
Embodiments can be incorporated into other types of systems
including mobile devices such as a smart cellular telephone,
Ultrabook™, tablet computer, netbook, or so forth.

[0045] Embodiments may be used in many different types
of systems. For example, in one embodiment a communica-
tion device can be arranged to perform the various methods
and techniques described herein. Of course, the scope of the
present invention is not limited to a communication device,
and instead other embodiments can be directed to other types
of apparatus for processing instructions, or one or more
machine readable media including instructions that in
response to being executed on a computing device, cause the
device to carry out one or more of the methods and techniques
described herein.

[0046] Embodiments may be implemented in code and may
be stored on a non-transitory storage medium having stored
thereon instructions which can be used to program a system to
perform the instructions. The storage medium may include,
but is not limited to, any type of disk including floppy disks,
optical disks, solid state drives (SSDs), compact disk read-
only memories (CD-ROMs), compact disk rewritables (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), magnetic or optical cards, or any
other type of media suitable for storing electronic instruc-
tions.

[0047] While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It is intended that the appended claims cover all

Jun. 26, 2014

such modifications and variations as fall within the true spirit
and scope of this present invention.

1. A processor comprising:

a core domain including at least one core to execute

instructions; and

a graphics domain including a plurality of graphics engines

each having a thread dispatcher, at least one execution
unit, a shared cache memory, and an interface, the graph-
ics domain to schedule a touch application to perform
processing of raw touch data, the touch application to
execute one or more of the plurality of graphics engines
responsive to an update to a doorbell location in a system
memory coupled to the processor, the doorbell location
written responsive to a user input to a touch input device.

2. The processor of claim 1, further comprising a peripheral
controller coupled to the touch input device, the peripheral
controller including a direct memory access (DMA) engine to
receive the raw touch data from the touch input device and
store the raw touch data in a first shared data buffer of the
system memory.

3. The processor of claim 2, wherein the peripheral con-
troller further comprises a doorbell interface to receive an
interrupt from the touch application responsive to completion
of the touch processing on the raw touch data.

4. The processor of claim 3, wherein the touch application
is to store processed touch data in a second shared data buffer
of the system memory.

5. The process processor of claim 4, wherein the core
domain is to access the second shared data buffer to obtain the
processed touch data responsive to an interrupt from a sensor
hub.

6. The processor of claim 5, wherein the peripheral con-
troller and the processor are integrated in a processor pack-
age, the peripheral controller including the sensor hub.

7. The processor of claim 3, wherein the peripheral con-
troller further comprises an inter-processor communication
logic to communicate a second interrupt to the core domain of
the processor to indicate the completion of the touch process-
ing.

8. The processor of claim 2, wherein the touch input device
is directly coupled to the peripheral controller without a touch
controller.

9. The processor of claim 1, wherein the at least one graph-
ics engine comprises a compute cluster coupled to the thread
dispatcher including a plurality of execution units and at least
one shared cache, and wherein the shared cache memory is
coupled to the compute cluster.

10. The processor of claim 1, wherein the processor further
comprises a memory controller and wherein the graphics
domain is to exit a low power state responsive to detection by
the memory controller of the write to the doorbell location.

11. The processor of claim 1, further comprising a state
machine to control a first link interface of the processor
coupled to the touch input device and to cause raw touch data
received from the touch input device to be sent to a first shared
data buffer of the system memory via a direct memory access
operation.

12. The processor of claim 1, further comprising a periph-
eral controller coupled to the touch input device, the periph-
eral controller to cause raw touch data received from the touch
input device to be stored in a first storage of the processor and
to thereafter cause the raw touch data to be stored in the
system memory.

US 2014/0176573 Al

13. A method comprising:

receiving, in a sensor hub of a multicore processor, an
indication of availability of raw touch data in a touch
input device coupled to the sensor hub;

storing, via the sensor hub, the raw touch data in a first
shared data buffer of a system memory and writing a
presence indicator to a first doorbell location; and

responsive to the presence indicator in the first doorbell
location, processing the raw touch data in a graphics
processor of the multicore processor and storing pro-
cessed touch data in a second shared data buffer.

14. The method of claim 13, further comprising indicating
completion of the touch processing by writing a presence
indicator to a second doorbell location.

15. The method of claim 14, further comprising commu-
nicating an interrupt to an operating system responsive to the
presence indicator in the second doorbell location, to enable
access by a core of the multicore processor to the processed
touch data in the second shared data buffer.

16. The method of claim 13, further comprising initializing
the touch application to execute on the graphics processor,
including setting the first doorbell location, allocating the first
shared data buffer to store the raw touch data, and allocating
the second shared data buffer to store the processed touch
data.

17. A system comprising:

a multicore processor including a core domain having a
plurality of cores and a graphics domain having a plu-
rality of graphics processors, the graphics domain to
execute a touch application offloaded from the core
domain to the graphics domain on a reset event of the
system, the touch application to execute to process raw

Jun. 26, 2014

touch data of a user input responsive to the user input to
a touch input device and without interaction with the
core domain;

a sensor hub coupled to the multicore processor to receive
inputs from a plurality of sensors including the touch
input device;

the touch input device directly coupled to the sensor hub
without a touch controller and to communicate the raw
touch data of the user input to the sensor hub; and

a system memory coupled to the multicore processor, the
system memory including a first shared buffer to store
the raw touch data and a second shared buffer to store
processed touch data generated by the touch application
from the raw touch data.

18. The system of claim 17, wherein the sensor hub com-
prises a direct memory access (DMA) engine to receive the
raw touch data and store the raw touch data in the first shared
buffer.

19. The system of claim 18, wherein the sensor hub further
comprises an inter-processor communication logic to com-
municate an interrupt to the core domain to indicate storage of
the processed touch data, and wherein the core domain is to
access the second shared buffer to obtain the processed touch
data responsive to the interrupt.

20. The system of claim 17, wherein the multicore proces-
sor further comprises a memory controller, and wherein at
least one of the plurality of graphics processors is to exita low
power state responsive to detection by the memory controller
of'a write to a doorbell location in the system memory and to
access the raw touch data in the first shared buffer.

#* #* #* #* #*

