US 20210097024A1

a2y Patent Application Publication (o) Pub. No.: US 2021/0097024 A1l

a9y United States

Miller et al.

43) Pub. Date: Apr. 11,2021

(54) DATA ACCESS CONTROL SYSTEM FOR
OBJECT STORAGE SERVICE BASED ON
OWNER-DEFINED CODE

(71) Applicant: Amazon Technologies, Inc., Seattle,
WA (US)

(72) Inventors: Kevin C. Miller, Bainbridge Island,
WA (US); Timothy Lawrence Harris,
Cambridge (GB); Ramyanshu Datta,
Seattle, WA (US)

(21) Appl. No.: 16/586,647
(22) Filed: Sep. 27, 2019

Publication Classification
(51) Int. CL

(52) US.CL
CPC ... GOGF 16/144 (2019.01); GOGF 21/6218
(2013.01); GOGF 16/1824 (2019.01); GO6F
16/156 (2019.01)

(57) ABSTRACT

Systems and methods are described for modifying input and
output (I/O) to an object storage service by implementing
one or more owner-specified functions to 1/O requests. A
function can implement data access control, such as con-
trolling which users are provided access to which portions of
an object collection maintained by the object storage ser-
vice. For example, data access control functions can be
applied prior to implementing a request method (e.g., GET
or PUT) specified within the /O request, and may grant or
deny access based on a variety of factors such as user
identity, time window, prior access, keywords, geographical

GO6F 16/14 (2006.01) region, etc. In this manner, owners of the object collection
GO6F 16/182 (2006.01) are provided with greater control over how the object
GO6F 21/62 (2006.01) collection is accessed.
BJECT STORAGE SERVICE 16
1) AUTHOR DATA OBJECT STORAG CE10
ACCESS CONTROL
(CODE 4) STORE [
o/ INSERTION OF
RONTENIHS R [
CLIENT 4 FRONIENDES | CODETO - "JOPATH
DPEVICE 1024 Vs 162 OBJECT IO - MODIFICATION |
‘ Ve ! PATH | DATA STORE 164
/ // T ‘\\ e
2) SUBMIT DATA
CODE INTERFACE %) STORE
166 CODE e
3) REQUEST CODE S~ O
INSERT INTO OBJECT ~al OB JECT D 4‘,};‘;
VO PATH OBJECT MANIPULATION | STORE(S) 166
ENGINE 178
DATA ACCESS CONTROL
ENGINE 172
CODE EXECUTION CONTROL
ENGINE 174

US 2021/0097024 A1

Sheet 1 of 17

Apr. 1,2021

Patent Application Publication

m —

S m———— oo oo ooo oo _ vzt

e LT FNIONT
w EQ IS Vi m\m WA | NOLLVINdINVIV
m T mwEn w - 123190
m H75T 1 : =
i FA0D ONIOVIS FAOI ONIOVIS g 50T (S)4401S o
! hlw VIVA 1030 HOVIUALIN
| | | 9991 3000 wasn voETagooywasn | {1 | g b TINIT-TTI
R —— 1) o o D
m G IWEENTTY VECTIWLINDY | [| N o
| i § o S TN
| §7%1 50 VIET S0 1 B FOT 3MOIS VIV |
U oot aonviasng i voet aonvisni e |17 NOLLVOLIdOW | ot
| el AESILEL HIVdOA (SYANTINOYF
m §F1 100d JALLDV | C D

: TFL (SYUTDVNYIN HTIIOM 39T 9014 IS TOVHOLS 10390
BTT WALSAS NOLLNDIXT 300 ANVINIA-NO
7T WALSAS HITIACU TDIANIS

Vr/’mﬁw

O0LSIOIAZA

@ , . al\\\ ANFITD

=
: Z S
=
~
(=)
[l
>
5
m o] AHOWTIW AYVANOIIS
-
467"
=
7 v T e
s LINIANVId VIVA S FOVINAINT IDIATA INAINO/LNANT
o
b %mm.\ .\\.
m 967
_ JIND ANV TOYINOD
g — el TARNA WRIGTIN 3T9VAVTY YIINJNOD
- 987
R o _/
2 rore s P67
z WAISAS ONIIVIIJO
o
= r8e SR FOVINLINI YHOMIIN
(=]
= LIND ZOVINAINI HAST 7
= 767
m 2er-" AMOWTIN AIVINDI
= . S TINTI ONISSIDOUd
4=
S \\
_Im {67
M HIAYTS GNFINOYHT
=
[-P]
= 00z~

£ S

US 2021/0097024 A1

Sheet 3 of 17

Apr. 1,2021

e T T T WN..W;
N ANIDONT
| S9L(S)THOLS ZQ‘M,.W wwmwwz@ﬁ
VIV L2340 = S
~— B AN 597
mmmwm . AOVAYAINI
e T TIATT-T1 o
\ HIvd O/

I23fd0 OINI
THASNT IGO0 1sIn0Iy
NV

e B Y 1]

o T : FAOD NOIIVINdINYIN
POLIACIS VIVA | Hivd WVYINIS IINGRS (7
- NOLLVDHIAQOW | O/T 10390 VT AT T

-

;

| HIvdoA4 Y o1rzaoo (SANTINONL | N
- D 40 NOLL¥ASNI N
I T JHOILS (€ - VZOT 401Add
INFITO
S®

<

0T 4DIANTS FOVHOLS 103E0

Patent Application Publication

FAOI NOIEIVINdINVIV
WVINIS HOHINV (I

p 8L

US 2021/0097024 A1

~

v

S

=

4 S

3 i

=

— S Gk —_—

5 - oy 70F

3 AOHIIW = LA, INOLIIDIXT [viva
8 | qoHLIN NOILINIL NOLLNOIN 1= LNANI
: \ TV N AT TN \ V4a00

< , , N A

Patent Application Publication

V//! it

US 2021/0097024 A1

Sheet 5 of 17

Apr. 1,2021

Patent Application Publication

VS 8Ly

SUOEIIADISIA
14 Indino
o 5 - ANV INdNI
FUE ININo| | 30 INANI v AT v CWVAMLS HIIM
| | INIWNOYIANT
R ANIST A A NV T . NOISIAQYd (9
208 INTIWNOYIANT NOLINOIXY INTINNGYIANT
g ;
5T WILSAS NOLINDIXT 30003 ONVINIG-NO ~._ NOLNo3Ixd
. ALVMINID (8
N
VIVA INdNI
I =5 | ISNIVOVMSVI
T o iudw,/" INIONG ‘ 0 ZQMMNMUMM.M
BOL(S)340AS | NOLLVININYIV 04 TIVO (¥
VIVG 10380 123[80
PSS o 997
L — FOVIHIINI /
| FO9T 79OIS VIVA HHATTITH Ve
| NOLLVDIHIGOW Vi HIVd m—
| HLVdOA N = O/I NI NOLLONI veor Linaa
C BIN _ b MISIADIIIA(E o
e T o1 \ o
SNOLLVOIIGOW (SIANIINOYS |~
HIVd O/ IATIHLIH € D R VIV INNT HIIM TTV)
09T 321A¥7S 39VHOLS 12340 I03FO Ind LINGnS (1

US 2021/0097024 A1

Sheet 6 of 17

Apr. 1,2021

Patent Application Publication

Yool 3DIA3A
ANITED

ANIVA NMNIAY
§SHO0NS NIVIFO 6
VIVd INdIno
................... SV IIANVH
50 gt S 4 . .
TTGNVE TIANVE 765 \ ATH INdENO O1
Fud INdino| | amdnan | | IOV AIDIM NIVIEO 8
—l JAOD
) S MSVIFINoOIX3 ¢
T8 INFWNOWIANT NOILND3X3
0TI WAESAS NOLINDIXT 3300 ANVIWIA-NO B
g HMMWW!W/ //
~ N 01 TVIVA NSILLIY
BOL()IUOLS | ANIONF SSTIONS ANV VIV
VAVA LDAa0 NOILVINdINVIV AoAIIIES LNV VLY
T e NUW»«MMMQ JSRAIN0O SSvd Qw A
T = .,_,/ - \\,
ID3fg0 sy B %m \
T T VIVAINGING ,mw«m%wmm y
FOLIMOUS VIVA | FUOLS (T AT L
| NOLLYDHIJOW | .
- HIVAOA » .
v ™) e
e 55T MOIVIIAnT
(SIANTINOHA $$30015
.......................... _ NMINLIF¥H (I
9T IDIAYAS IDVHOLS L23Ha0

US 2021/0097024 A1

Sheet 7 of 17

Apr. 1,2021

Patent Application Publication

V9 ‘314

VIVQ 12390
TIANVH FTANVH saoo wsvy | | o TIVAELS LM
TiH INdING| | F1H INdNI | | o INIWNOUIANT
/ NOISIAQHd (9
. e 7 INTWNOYIANI
T INFWNOUIANA NOLLNDAXA NOLLITANT
OFL HADVNYIN ¥DIHOM T JIVANIO (9
é .
\\\ /
/ N
124190
= | GINOIS ISNIVOV
10340 INIONA | NOLLNDZ
IATDILTN (9~ §IL(SHAAOLS | NOLLYININVIN [dISIHAOITIVO ¢
VIVA IDIdO 123{g0
o T / /
e " @WM _\
P — ERIZNENIN)
| FIL IOLS VIVA | TAIT-T1H S/
| NOILYDHIIOW /! HIVd —
_HIvdos k . O/ININOLIONDI | VORI
PN e F MASN IDHALAA (€ y o
HIVJ O/f IATDIIFA (C SIANIINOIL |~ |
12340 ISNIVDVY
09T 4DIANAS ADVHOLS 12340 TIVD 139 IINENS (1

US 2021/0097024 A1

Sheet 8 of 17

Apr. 1,2021

Patent Application Publication

Vaii I3IA3A
INIFID

INTVA NUILITY
§53201S NIVIFO 6
VAV INdINo
TIGNYVH FIANVH 140D NSV \ I1H MdLN0 OL
UL ANAINO| | 3T LNdNI =AY) AIDMNIVISO (8
—— 3000
- | S MSVL AINDAXA (£
205 INFWNOMIANG NOLINDIX3
FT MIDOVNVIV YTHHOM T
a3 T A AT T
INIONT | HTIVA NEILLI A
NOLLVINdINVIN $52I015 ANV VIV
340 INdLNO §5Vd (01
991 /
B ADVEMAINI /
T TIAFT-TTE \
FIT FHOUS VIVA |
| NOLLVIHIIOW | e
 HIVAOA A
\/\ - \ 5T I2340 5V
T (S)ANIINOYI VIVa Indino
‘‘‘‘‘‘‘‘ . N¥ILIT¥ (1
09T 4DIAMAS IDVHOLS IDA[0

Patent Application Publication Apr. 1,2021 Sheet 9 of 17 US 2021/0097024 A1

760

/O PATH IMPLEMENTATION
ROUTINE
702 L

OBTAIN REQUEST FOR APPLYING
O METHOD TO INPUT DATA

704 ;

S DETERMINE MANIPULATIONS IN
/0 PATH
206 PASS INPUT DATA TO INITIAL
N DATA MANIPULATION OF I/O
PATH
YES MORE

MANIPULATIONS? NO

l

PASS OUTPUT OF

PRIOR
MANIPULATION TO 712 At et
NEXT MANIPULATION N APPLY CALLED /O

METHOD TO oUurrur
OF PRIOR
MANIPULATION

714

~

(END ROHHNE}«

Fig. 7

Patent Application Publication Apr. 1,2021 Sheet 10 of 17 US 2021/0097024 A1

800

FILE MANIPULATION TASK
IMPLEMENTATION ROUTINE

8062 é

OBTAIN CALL TO IMPLEMENT FILE
MANIPULATION TASK

804 é
N

GENERATE EXECUTION
ENVIRONMENTFOR FILE
MANIPULATION TASK

806 £

N STAGE ENVIRONMENT WITH IO
STREAM OF INPUT DATA AND AN
OQUIPUT IO STREAM

‘

8 (2*5;”\ EXECUTE TASK WITHIN
ENVIRONMENT
310 RETURN DATA WRITTEN TO
] OUTPUT STREAM AS OUTPUT
DATA
812 RETURN EXECUTION RETURN
N VALUE

s '
\‘/\(END ROHHNE)

Fig. 8§

US 2021/0097024 A1

Sheet 11 of 17

Apr. 1,2021

Patent Application Publication

6 Bl

PLLANIONA
TOUINGD NOLLNDIXT 3000

TLLIANIDNG
TOYINGD §53030V VIVA

4L ANIONA

99 (5)TUOIS NOLIVINJINVIV 10340

ViVA 10340 e
r \ \M) ,///,,// L
o S 9]
Mmm%% ?, ADVINTINI
JHOLS & TINTT-TTIE
/.,/
/,//
FOTIACLS VAVA | HIVd
| NOLLVDIAIQOW é O/ 10380 9L
o HIvdoA Tt 01300 (SHANIINGUL
< D 0 NOILYISNI
e FUOIS (&

G971 ADIANIS FOVHOLS 13380

CHIVd O/
I2390 OINT IMISNI
340D ISINOITA €

4400
TOHINQO 55300V
VIVQ 1IWans @

_M
\4
VZ0T 401A30
INAITD
S

M,
Ele(on)]
TOMINOD 55330V
VIVAJOHINY (1

US 2021/0097024 A1

Sheet 12 of 17

Apr. 1,2021

Patent Application Publication

VoI Sul

FAOD TOUINOD §SI30V VIVA p N INANWNOHIANT
 NOLINOIXd
o JIVHANTD (€
700 INTWNOYIANT NOLINDIXT T
OFL ¥IDVNVIV SDTIOM é
/,/,t/,,,,
FLT ANIONA N
TOYINOGD NOLLNDIXT 3300
10u1L zwmwmmwww VIV | 4400 T0MINOD
ST (S)THOLS | L - | §SADDOV VIVA TIVD (F
viva Io3ao | 07T INTONT
T NOLIVINdINVIV 13390
~— S - /
e 991
e e FOVINAINT TIATT-TT 4
FIT OIS Viva | \
NOLLYOIIIQOW | 7 HIVd O/I NTIAOD —

) \ SRl k. E . I - o -
 HIVAOA R | aominoossapoy) AN IIAIA
) DR | F T VIV IOIIIa«)
— T T 751 \ \\

N TETA S N 7
HIVd O/ JATTLLTY (¢ GIANLINOY®L [o— |

G9T ADIA IS IDVHOLS 13340

I23{90 ISNIVOY
TIVD 129 11Ngns (1

US 2021/0097024 A1

Sheet 13 of 17

Apr. 1,2021

Patent Application Publication

g01 ‘514

7 4
FGO2 TOUINGS S§I20V VIV
N S
SO ENFWNOMIANT NOLIRDIXF
DFL WADVNVIN ¥TIMOM | T

JNIVA NHILLFH
SSIDDNS NIVIFO U

/ FAOD T0YINGCD §STI0V
VIVA IIN33XI (9

907 (S)FHOIS
Viva 10340

P ™
POLJHOIS VIVA |
| NOILV2IJIGOW
CHIVL O

FILANIONT
TOMINOD NOIINJFXT 3600

LT ANIONT
TOHINQGD §5302Y ViV

JMIVANIDLIY
SSID0NS sSvd (8

G071 INIONT
NOLIVINJINVIN I03E0

991
FOVIUIINI TE3AT -1

(SIANTINOHT

09T 42IANIS IDVHOLS L03g0

\ﬁQ
~

HBl JOIAGA
ANIFID

1afgo
SV VIVA INJINO

— SIID3dSINITTD

NI¥nI3d 6

Patent Application Publication Apr. 1,2021 Sheet 14 of 17 US 2021/0097024 A1

1180

ACCESS-SPECIFIC DATA
PROVISION ROUTINE

kﬂ<

RECEIVE DATA ACCESS CONTROL
CODE

1164 £

My STORE INDICATION TO EXECUTE
DATA ACCESS CONTROL CODEIN
CONNECTION WITH I/O PATH

|

11& RECEIVE DATA ACCESS REQUEST
FROM USER

L

1108 | EXECUTE DATA ACCESS CONTROL
N\ CODE AGAINST DATA ACCESS
REQUEST AND REQUESTED OBJECT

i

11& RETURN DATA ACCESS DECISION
VALUE

1112 $
\/\(E’ND ROUTINE)

Fig. 11

Patent Application Publication Apr. 1,2021 Sheet 15 0f 17 US 2021/0097024 A1

1200
.. DATA ACCESS REQUEST
PROCESSING ROUTINE

L

1202
Mo OBTAIN REQUEST TO
ACCESS DATA
1204 FXFCUTE DATA
"~ ACCESS CONTROL
CODE

FULL NO
B N
ACCESS ACCESS TYPE: ACCESS
RETURN 1208 mopreiep 1210 RN BT T
REQUESTED DATA | 1ODIFY ‘| DENYREQUEST
21 FXECUIE DATA

N MANIPULATION CODE
ONREQUESTED DATA

;

12& RETURN OUTPUT OF
DATA MANIPULATION

1216

/

»{ END R{)HHNE}«

Fig. 12

US 2021/0097024 A1

Sheet 16 of 17

Apr. 1,2021

Patent Application Publication

£1 8Ly

PLL ANFONA
TOMINOD NOILNDIXd 3300

oL ANFONA
TOUINOD SSHIDV VAV

99T (S)FHOIS

OZTINIOND
NOLLVIdINVIV 10380

VIVA 10390 =
i ///,/,,
e e T ~ WWMM.
STINA AIVAHLINT
INIWNOYIANT TIATT-F T
NOLINDIXI
4d00 TAQIS (€
- ™
| PO ANOLS VIV |
NOLIVOHIGOW | VT

09T 4DIAHAS IOVHOLS 10340

(SMINFINQHT

/
{
i
/

)i
/

/

/

i
\
y
§
\ |

OVL AADVNYIN 43NH0M

STINA INIWNOYHIANT
NOLIROIXA
00 O DNIGHO30V
JA0D ¥ISN 1INO0IXI &

STINYE INTWNOHIANT
NOILRoIXd
FAOD 1IWans @

e \
s \

VabiL JDIAFA
ANIIS
%

\

STTNE INTWNOYIANT
NOLINSIXd
FAOD IIVIINID (I

Patent Application Publication Apr. 1,2021 Sheet 17 of 17 US 2021/0097024 A1

1400

USER CODE EXECUTION
CUSTOMIZATION ROUTINE

1402 i

M RECEIVE RULES FOR
CONTROLLING USER CODE
EXECUTION ENVIRONMENT

1404

RECEIVE REQUESTTO APPLY /O
METHOD TO SPECIFIC DATA

1406
M EXECUTE ONE OR MORE USER
CODES ACCORDING TO THE RULES

1408
S APPLY I/O METHOD TO RESULT OF
THE CODE EXECUTION

1416

\/\(END ROUHNE)

Fig. 14

US 2021/0097024 Al

DATA ACCESS CONTROL SYSTEM FOR
OBJECT STORAGE SERVICE BASED ON
OWNER-DEFINED CODE

RELATED APPLICATIONS

[0001] The present application’s Applicant is concurrently
filing the following U.S. patent applications on Sep. 27,
2019:

Apr. 1,2021

single physical computing device can create, maintain,
delete, or otherwise manage virtual machines in a dynamic
manner. In turn, users can request computer resources from
a data center, including single computing devices or a
configuration of networked computing devices, and be pro-
vided with varying numbers of virtual machine resources.

[0005] In addition to computational resources, data centers
provide a number of beneficial other services to client

uUs.

application ~ ATTORNEY

No. DOCKET NO. TITLE

TBD SEAZN.1633A1 EXECUTION OF OWNER-SPECIFIED CODE DURING
INPUT/OUTPUT PATH TO OBJECT STORAGE SERVICE

TBD SEAZN.1633A2 INSERTING OWNER-SPECIFIED DATA PROCESSING
PIPELINES INTO INPUT/OUTPUT PATH OF OBJECT
STORAGE SERVICE

TBD SEAZN.1634A INSERTING EXECUTIONS OF OWNER-SPECIFIED CODE
INTO INPUT/OUTPUT PATH OF OBJECT STORAGE
SERVICE

TBD SEAZN.1636A ON-DEMAND EXECUTION OF OBJECT COMBINATION
CODE IN OUTPUT PATH OF OBJECT STORAGE SERVICE

TBD SEAZN.1637A ON-DEMAND EXECUTION OF OBJECT TRANSFORMATION
CODE IN OUTPUT PATH OF OBJECT STORAGE SERVICE

TBD SEAZN.1638A ON-DEMAND EXECUTION OF OBJECT FILTER CODE IN
OUTPUT PATH OF OBJECT STORAGE SERVICE

TBD SEAZN.1639A ON-DEMAND CODE EXECUTION IN INPUT PATH OF DATA
UPLOADED TO STORAGE SERVICE IN MULTIPLE DATA
PORTIONS

TBD SEAZN.1640A ON-DEMAND CODE OBFUSCATION OF DATA IN INPUT
PATH OF OBJECT STORAGE SERVICE

TBD SEAZN.1641A ON-DEMAND INDEXING OF DATA IN INPUT PATH OF
OBJECT STORAGE SERVICE

TBD SEAZN.1643A USER-SPECIFIC DATA MANIPULATION SYSTEM FOR
OBJECT STORAGE SERVICE BASED ON USER-SUBMITTED
CODE

TBD SEAZN.1644A CODE EXECUTION ENVIRONMENT CUSTOMIZATION
SYSTEM FOR OBJECT STORAGE SERVICE

TBD SEAZN.1645A EXECUTION OF USER-SUBMITTED CODE ON A STREAM
OF DATA

TBD SEAZN.1646A SEQUENTIAL EXECUTION OF USER-SUBMITTED CODE
AND NATIVE FUNCTIONS

[0002] The disclosures of the above-referenced applica-

tions are hereby incorporated by reference in their entirety.

BACKGROUND

[0003] Computing devices can utilize communication net-
works to exchange data. Companies and organizations oper-
ate computer networks that interconnect a number of com-
puting devices to support operations or to provide services
to third parties. The computing systems can be located in a
single geographic location or located in multiple, distinct
geographic locations (e.g., interconnected via private or
public communication networks). Specifically, data centers
or data processing centers, herein generally referred to as a
“data center,” may include a number of interconnected
computing systems to provide computing resources to users
of the data center. The data centers may be private data
centers operated on behalf of an organization or public data
centers operated on behalf, or for the benefit of, the general
public.

[0004] To facilitate increased utilization of data center
resources, virtualization technologies allow a single physical
computing device to host one or more instances of virtual
machines that appear and operate as independent computing
devices to users of a data center. With virtualization, the

devices. For example, data centers may provide data storage
services configured to store data submitted by client devices,
and enabling retrieval of that data over a network. A variety
of types of data storage services can be provided, often
varying according to their input/output (I/O) mechanisms.
For example, database services may allow 1/O based on a
database query language, such as the Structured Query
Language (SQL). Block storage services may allow 1/O
based on modification to one or more defined-length blocks,
in a manner similar to how an operating system interacts
with local storage, and may thus facilitate virtualized disk
drives usable, for example, to store an operating system of
a virtual machine. Object storage services may allow /O at
the level of individual objects or resources, such as indi-
vidual files, which may vary in content and length. For
example, an object storage service may provide an interface
compliant with the Representational State Transfer (REST)
architectural style, such as by allowing I/O based on calls
designating input data and a hypertext transport protocol
request methods (e.g., GET, PUT, POST, DELETE, etc.) to
be applied to that data. By transmitting a call designating
input data and a request method, a client can thus retrieve the
data from an object storage service, write the data to the
object storage service as a new object, modify an existing
object, etc.

US 2021/0097024 Al

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 is a block diagram depicting an illustrative
environment in which an object storage service can operate
in conjunction with an on-demand code execution system to
implement functions in connection with input/output (/O)
requests to the object storage service;

[0007] FIG. 2 depicts a general architecture of a comput-
ing device providing a frontend of the object storage service
of FIG. 1;

[0008] FIG. 3 is a flow diagram depicting illustrative
interactions for enabling a client device to modify an I[/O
path for the object storage service by insertion of a function
implemented by execution of a task on the on-demand code
execution system;

[0009] FIG. 4 is an illustrative visualization of a pipeline
of functions to be applied to an I/O path for the object
storage service of FIG. 1;

[0010] FIGS. 5A-5B show a flow diagram depicting illus-
trative interactions for handling a request to store input data
as an object on the object storage service of FIG. 1,
including execution of an owner-specified task to the input
data and storage of output of the task as the object;

[0011] FIGS. 6A-6B show a flow diagram depicting illus-
trative interactions for handling a request to retrieve data of
an object on the object storage service of FIG. 1, including
execution of an owner-specified task to the object and
transmission of an output of the task to a requesting device
as the object;

[0012] FIG. 7 is a flow chart depicting an illustrative
routine for implementing owner-defined functions in con-
nection with an 1/O request obtained at the object storage
service of FIG. 1 over an /O path;

[0013] FIG. 8 is a flow chart depicting an illustrative
routine for executing a task on the on-demand code execu-
tion system of FIG. 1 to enable data manipulations during
implementation of an owner-defined function;

[0014] FIG. 9 shows a flow diagram depicting illustrative
interactions for enabling a client device to modify an I[/O
path for the object storage service of FIG. 1 to include
execution of user-submitted data access control code;

[0015] FIGS. 10A-10B show a flow diagram depicting
illustrative interactions for handling a request to retrieve
data of an object on the object storage service of FIG. 1,
including execution of an owner-specified data access con-
trol code to provide client-specific data access;

[0016] FIG. 11 is a flow chart depicting an illustrative
routine for handling a request to retrieve data of an object on
the object storage service of FIG. 1 using the data access
control code provided by the client;

[0017] FIG. 12 is a flow chart depicting an illustrative
routine for implementing access-level-based data manipu-
lation in connection with an I/O request obtained at the
object storage service of FIG. 1;

[0018] FIG. 13 shows a flow diagram depicting illustrative
interactions for allowing user-specification of code execu-
tion environment rules and executing owner-submitted code
according to the code execution environment rules; and

[0019] FIG. 14 is a flow chart depicting an illustrative
routine for implementing user code execution customization
in connection with an I/O request obtained at the object
storage service of FIG. 1.

Apr. 1,2021

DETAILED DESCRIPTION

[0020] Generally described, aspects of the present disclo-
sure relate to handling requests to read or write to data
objects on an object storage system. More specifically,
aspects of the present disclosure relate to modification of an
input/output (I/0) path for an object storage service, such
that one or more data manipulations can be inserted into the
1/0O path to modify the data to which a called request method
is applied, without requiring a calling client device to
specify such data manipulations. In one embodiment, data
manipulations occur through execution of user-submitted
code, which may be provided for example by an owner of a
collection of data objects on an object storage system in
order to control interactions with that data object. For
example, in cases where an owner of an object collection
wishes to ensure that end users do not submit objects to the
collection including any personally identifying information
(to ensure end user’s privacy), the owner may submit code
executable to strip such information from a data input. The
owner may further specify that such code should be
executed during each write of a data object to the collection.
Accordingly, when an end user attempts to write input data
to the collection as a data object (e.g., via an HTTP PUT
method), the code may be first executed against the input
data, and resulting output data may be written to the col-
lection as the data object. Notably, this may result in the
operation requested by the end user—such as a write opera-
tion—being applied not to the end user’s input data, but
instead to the data output by the data manipulation (e.g.,
owner-submitted) code. In this way, owners of data collec-
tions control I/O to those collections without relying on end
users to comply with owner requirements. Indeed, end users
(or any other client device) may be unaware that modifica-
tions to /O are occurring. As such, embodiments of the
present disclosure enable modification of 1/O to an object
storage service without modification of an interface to the
service, ensuring inter-compatibility with other pre-existing
software utilizing the service.

[0021] In some embodiments of the present disclosure,
data manipulations may occur on an on-demand code execu-
tion system, sometimes referred to as a serverless execution
system. Generally described, on-demand code execution
systems enable execution of arbitrary user-designated code,
without requiring the user to create, maintain, or configure
an execution environment (e.g., a physical or virtual
machine) in which the code is executed. For example,
whereas conventional computing services often require a
user to provision a specific device (virtual or physical),
install an operating system on the device, configure appli-
cation, define network interfaces, and the like, an on-
demand code execution system may enable a user to submit
code and may provide to the user an application program-
ming interface (API) that, when used, enables the user to
request execution of the code. On receiving a call through
the API, the on-demand code execution system may gener-
ate an execution environment for the code, provision the
environment with the code, execute the code, and provide a
result. Thus, an on-demand code execution system can
remove a need for a user to handle configuration and
management of environments for code execution. Example
techniques for implementing an on-demand code execution
system are disclosed, for example, within U.S. Pat. No.
9,323,556, entitled “PROGRAMMATIC EVENT DETEC-
TION AND MESSAGE GENERATION FOR REQUESTS

US 2021/0097024 Al

TO EXECUTE PROGRAM CODE,” and filed Sep. 30,
2014 (the “’556 Patent”), the entirety of which is hereby
incorporated by reference.

[0022] Due to the flexibility of on-demand code execution
system to execute arbitrary code, such a system can be used
to create a variety of network services. For example, such a
system could be used to create a “micro-service,” a network
service that implements a small number of functions (or only
one function), and that interacts with other services to
provide an application. In the context of on-demand code
execution systems, the code executed to create such a
service is often referred to as a “function” or a “task,” which
can be executed to implement the service. Accordingly, one
technique for performing data manipulations within the I/O
path of an object storage service may be to create a task on
an on-demand code execution system that, when executed,
performs the required data manipulation. Illustratively, the
task could provide an interface similar or identical to that of
the object storage service, and be operable to obtain input
data in response to a request method call (e.g., HTTP PUT
or GET calls), execute the code of the task against the input
data, and perform a call to the object storage service for
implementation of the request method on resulting output
data. A downside of this technique is a complexity. For
example, end users might be required under this scenario to
submit I/O requests to the on-demand code execution sys-
tem, rather than the object storage service, to ensure execu-
tion of the task. Should an end user submit a call directly to
the object storage service, task execution may not occur, and
thus an owner would not be enabled to enforce a desired data
manipulation for an object collection. In addition, this
technique may require that code of a task be authored to both
provide an interface to end users that enables handling of
calls to implement request methods on input data, and an
interface that enables performance of calls from the task
execution to the object storage service. Implementation of
these network interfaces may significantly increase the com-
plexity of the required code, thus disincentivizing owners of
data collections from using this technique. Moreover, where
user-submitted code directly implements network commu-
nication, that code may need to be varied according to the
request method handled. For example, a first set of code may
be required to support GET operations, a second set of code
may be required to support PUT operations, etc. Because
embodiments of the present disclosure relieve the user-
submitted code of the requirement of handling network
communications, one set of code may in some cases be
enabled to handle multiple request methods.

[0023] To address the above-noted problems, embodi-
ments of the present disclosure can enable strong integration
of serverless task executions with interfaces of an object
storage service, such that the service itself is configured to
invoke a task execution on receiving an I/O request to a data
collection. Moreover, generation of code to perform data
manipulations may be simplified by configuring the object
storage service to facilitate data input and output from a task
execution, without requiring the task execution to itself
implement network communications for 1/O operations.
Specifically, an object storage service and on-demand code
execution system can be configured in one embodiment to
“stage” input data to a task execution in the form of a handle
(e.g., a POSIX-compliant descriptor) to an operating-sys-
tem-level input/output stream, such that code of a task can
manipulate the input data via defined-stream operations

Apr. 1,2021

(e.g., as if the data existed within a local file system). This
stream-level access to input data can be contrasted, for
example, with network-level access of input data, which
generally requires that code implement network communi-
cation to retrieve the input data. Similarly, the object storage
service and on-demand code execution system can be con-
figured to provide an output stream handle representing an
output stream to which a task execution may write output.
On detecting writes to the output stream, the object storage
service and on-demand code execution system may handle
such writes as output data of the task execution, and apply
a called request method to the output data. By enabling a
task to manipulate data based on input and output streams
passed to the task, as opposed to requiring the code to handle
data communications over a network, the code of the task
can be greatly simplified.

[0024] Another benefit of enabling a task to manipulate
data based on input and output handles is increased security.
A general-use on-demand code execution system may oper-
ate permissively with respect to network communications
from a task execution, enabling any network communication
from the execution unless such communication is explicitly
denied. This permissive model is reflective of the use of task
executions as micro-services, which often require interac-
tion with a variety of other network services. However, this
permissive model also decreases security of the function,
since potentially malicious network communications can
also reach the execution. In contrast to a permissive model,
task executions used to perform data manipulations on an
object storage system’s /O path can utilize a restrictive
model, whereby only explicitly-allowed network communi-
cations can occur from an environment executing a task.
Tlustratively, because data manipulation can occur via input
and output handles, it is envisioned that many or most tasks
used to perform data manipulation in embodiments of the
present disclosure would require no network communica-
tions to occur at all, greatly increasing security of such an
execution. Where a task execution does require some net-
work communications, such as to contact an external service
to assist with a data manipulation, such communications can
be explicitly allowed, or “whitelisted,” thus exposing the
execution in only a strictly limited manner.

[0025] Insomeembodiments, a data collection owner may
require only a single data manipulation to occur with respect
to 1/O to the collection. Accordingly, the object storage
service may detect 1/O to the collection, implement the data
manipulation (e.g., by executing a serverless task within an
environment provisioned with input and output handles),
and apply the called request method to the resulting output
data. In other embodiments, an owner may request multiple
data manipulations occur with respect to an /O path. For
example, to increase portability and reusability, an owner
may author multiple serverless tasks, which may be com-
bined in different manners on different 1/O paths. Thus, for
each path, the owner may define a series of serverless tasks
to be executed on I/O to the path. Moreover, in some
configurations, an object storage system may natively pro-
vide one or more data manipulations. For example, an object
storage system may natively accept requests for only por-
tions of an object (e.g., of a defined byte range), or may
natively enable execution of queries against data of an object
(e.g., SQL queries). In some embodiments, any combination
of various native manipulations and serverless task-based
manipulations may be specified for a given /O path. For

US 2021/0097024 Al

example, an owner may specify that, for a particular request
to read an object, a given SQL query be executed against the
object, the output of which is processed via a first task
execution, the output of which is processed via a second task
execution, etc. The collection of data manipulations (e.g.,
native manipulations, serverless task-based manipulations,
or a combination thereof) applied to an I/O path is generally
referred to herein as a data processing “pipeline” applied to
the I/O path.

[0026] In accordance with aspects of the present disclo-
sure, a particular path modification (e.g., the addition of a
pipeline) applied to an /O path may vary according to
attributes of the path, such as a client device from which an
1/0O request originates or an object or collection of objects
within the request. For example, pipelines may be applied to
individual objects, such that the pipeline is applied to all I/O
requests for the object, or a pipeline may be selectively
applied only when certain client devices access the object. In
some instances, an object storage service may provide
multiple /O paths for an object or collection. For example,
the same object or collection may be associated with mul-
tiple resource identifiers on the object storage service, such
that the object or collection can be accessed through the
multiple identifiers (e.g., uniform resource identifiers, or
URIs), which illustratively correspond to different network-
accessible endpoints. In one embodiment, different pipelines
may be applied to each I/O path for a given object. For
example, a first [/O path may be associated with unprivi-
leged access to a data set, and thus be subject to data
manipulations that remove confidential information from the
data set prior during retrieval. A second 1/O path may be
associated with privileged access, and thus not be subject to
those data manipulations. In some instances, pipelines may
be selectively applied based on other criteria. For example,
whether a pipeline is applied may be based on time of day,
a number or rate of accesses to an object or collection, etc.

[0027] Another limitation of existing object storage ser-
vices is the inability to dynamically control access to the
data provided by the object storage services. While such
object storage services may provide a way for the data
owner/provider to configure user-specific permissions and
credentials (e.g., within the object storage services or with
an external token broker that facilitates data access control)
such that different users have access to different portions
(e.g., directors, sub-directories, paths, buckets, volumes,
containers, etc.) of the data, such configurations are typically
done manually, and having to change the configurations
every time user access rights need to be modified would be
very burdensome to the owner/provider of the data. Also,
since static permissions and credentials often only rely on
the identity of the user accessing the data, it may not be
possible or feasible to implement other methods of deter-
mining access such as providing access based on a time
window, prior access, keywords, and the like.

[0028] In accordance with aspects of the present disclo-
sure, data access control code may be written by the data
owner/provider and placed in the I/O path such that when a
request to access the data is received (e.g., via a GET call),
the data access control code can be executed and provide a
more robust user-specific access to the data. For example,
the data access control code may provide access based on a
time window (e.g., for a user who has signed up for a 7-day
access to the data maintained by the object storage service,
access may be denied after 7 days), provide access based on

Apr. 1,2021

prior access by the same user (e.g., for a user whose access
is set to expire after accessing the data 5 times, access may
be denied after the user accesses the data 5 times), provide
access based on keywords (e.g., for a user who is allowed to
access the portion of the data that relates to “automobiles,”
access requests that do not specify the keyword “automo-
biles” may be denied), and the like. Thus, the techniques of
the present disclosure allow the data owner/provider to be
able to provide dynamically controlled access to the data
maintained by the object storage service.

[0029] Similarly, existing object storage services may not
provide the ability for the data owner/provider to specify
different types of data manipulations to be performed for
different access requests. For example, existing object stor-
age services may allow the data owner/provider to specify
that User A is allowed to access Data Buckets X and Y and
User B is allowed to access Data Bucket X but not Data
Bucket Y. However, such binary permission settings (e.g., a
user either has access to a data object or does not have access
to the data object) may not allow the data owner/provider to
specify more complex permission information such as that
User A is (i) given full access to Data Bucket X in its entirety
without modification and (ii) given preview access to Data
Bucket Y such that User A can only access the first page of
each document in Data Bucket Y, and that User B is () not
allowed to access any data in Data Bucket X and (ii) is given
archival access to Data Bucket Y such that User B can only
access data in Bucket Y that are more than 1 year old.
[0030] In accordance with aspects of the present disclo-
sure, data access control code may be combined (e.g.,
executed in series or combined into the same code) with one
or more data manipulation codes to provide the data owner/
provider with the ability to perform user-access-level-spe-
cific data manipulations (e.g., data removal, modification,
redaction, processing, etc.). For example, when an /O
request is received (e.g., via a GET call or a PUT call), the
data access control code in the I/O path may be executed,
and either provide full access to the requested data, cause
additional user code to be executed (e.g., data manipulation
code), or deny the request based on the user’s access level.
Advantageously, the techniques of the present disclosure not
only allow the data owner/provider to specify user-specific
permissions but also allow the data owner/provider to cause
user-specific modification, filtering, or processing to be
performed prior to returning the requested data to the
requesting user. Thus, these techniques allow the data
owner/provider to be able to specify user-specific and
access-level-specific manipulations of the data maintained
by the object storage service.

[0031] Additionally, existing object storage services, due
to the lack of integration with an external serverless code
execution system as discussed above, may not provide a
mechanism for the data owner/provider to control the execu-
tion environment of the various code (e.g., owner-submit-
ted) executions performed in connection with the provision
of the services provided by the object storage service.
Without the ability to customize the execution environment
for these code executions, such existing object storage
services may be limited to having the same execution
environment for all users and for all user codes.

[0032] In accordance with aspects of the present disclo-
sure, the object storage service can allow a data owner/
provider to customize the code execution environment by
specifying code execution environment rules. Such code

US 2021/0097024 Al

execution environment rules may indicate the identity of one
or more owner-submitted codes that have been placed in the
1/0 request path and the corresponding privileges given to
(or restrictions placed on) the execution of the one or more
owner-submitted codes. For example, the code execution
environment rules can specify that a data access control code
should have access to an external database that contains
sensitive user authorization information, whereas a data
manipulation code configured to be executed after the data
access control code grants access should not have access to
such an external database that contains sensitive user autho-
rization information. Similarly, such code execution envi-
ronment rules may indicate the identity of one or more data
owners/providers (e.g., a user who has stored certain data
object on the service 160 and made the data object accessible
by other users) or requesting users (e.g., users who requests
to read or write to the data objects stored by the service 160)
and the corresponding privileges given to (or restrictions
placed on) the execution of one or more codes associated
with the data owners/providers or requesting users. For
example, for Users A and B, the code execution environment
rules may specify that code executions performed on behalf
of User A should have access to User A’s private resources
(e.g., database services, logging services, storage services,
or other network-accessible services that may be accessed
using User A’s credentials), whereas code executions per-
formed on behalf of User B should not have access to
external resources or establish network connections with an
external service (e.g., not allowed to access User B’s private
resources or other external resources). In some cases, Users
A and B are data owners/providers in this example. In other
cases, Users A and B are requesting users who wish to read
the data owner’s data or write to the data owner’s storage on
the service 160.

[0033] As will be appreciated by one of skill in the art in
light of the present disclosure, the embodiments disclosed
herein improve the ability of computing systems, such as
object storage systems, to provide and enforce data manipu-
lation functions against data objects. Whereas prior tech-
niques generally depend on external enforcement of data
manipulation functions (e.g., requesting that users strip
personal information before uploading it), embodiments of
the present disclosure enable direct insertion of data manipu-
lation into an I/O path for the object storage system. More-
over, embodiments of the present disclosure provide a
secure mechanism for implementing data manipulations, by
providing for serverless execution of manipulation functions
within an isolated execution environment. Embodiments of
the present disclosure further improve operation of server-
less functions, by enabling such functions to operate on the
basis of local stream (e.g., “file”) handles, rather than
requiring that functions act as network-accessible services.
The presently disclosed embodiments therefore address
technical problems inherent within computing systems, such
as the difficulty of enforcing data manipulations at storage
systems and the complexity of creating external services to
enforce such data manipulations. These technical problems
are addressed by the various technical solutions described
herein, including the insertion of data processing pipelines
into an I/O path for an object or object collection, potentially
without knowledge of a requesting user, the use of serverless
functions to perform aspects of such pipelines, and the use
of local stream handles to enable simplified creation of
serverless functions. Thus, the present disclosure represents

Apr. 1,2021

an improvement on existing data processing systems and
computing systems in general.

[0034] The general execution of tasks on the on-demand
code execution system will now be discussed. As described
in detail herein, the on-demand code execution system may
provide a network-accessible service enabling users to sub-
mit or designate computer-executable source code to be
executed by virtual machine instances on the on-demand
code execution system. Each set of code on the on-demand
code execution system may define a “task,” and implement
specific functionality corresponding to that task when
executed on a virtual machine instance of the on-demand
code execution system. Individual implementations of the
task on the on-demand code execution system may be
referred to as an “execution” of the task (or a “task execu-
tion”). In some cases, the on-demand code execution system
may enable users to directly trigger execution of a task based
on a variety of potential events, such as transmission of an
application programming interface (“API”) call to the on-
demand code execution system, or transmission of a spe-
cially formatted hypertext transport protocol (“HTTP”)
packet to the on-demand code execution system. In accor-
dance with embodiments of the present disclosure, the
on-demand code execution system may further interact with
an object storage system, in order to execute tasks during
application of a data manipulation pipeline to an I/O path.
The on-demand code execution system can therefore
execute any specified executable code “on-demand,” with-
out requiring configuration or maintenance of the underlying
hardware or infrastructure on which the code is executed.
Further, the on-demand code execution system may be
configured to execute tasks in a rapid manner (e.g., in under
100 milliseconds [ms]), thus enabling execution of tasks in
“real-time” (e.g., with little or no perceptible delay to an end
user). To enable this rapid execution, the on-demand code
execution system can include one or more virtual machine
instances that are “pre-warmed” or pre-initialized (e.g.,
booted into an operating system and executing a complete or
substantially complete runtime environment) and configured
to enable execution of user-defined code, such that the code
may be rapidly executed in response to a request to execute
the code, without delay caused by initializing the virtual
machine instance. Thus, when an execution of a task is
triggered, the code corresponding to that task can be
executed within a pre-initialized virtual machine in a very
short amount of time.

[0035] Specifically, to execute tasks, the on-demand code
execution system described herein may maintain a pool of
executing virtual machine instances that are ready for use as
soon as a request to execute a task is received. Due to the
pre-initialized nature of these virtual machines, delay (some-
times referred to as latency) associated with executing the
task code (e.g., instance and language runtime startup time)
can be significantly reduced, often to sub-100 millisecond
levels. Illustratively, the on-demand code execution system
may maintain a pool of virtual machine instances on one or
more physical computing devices, where each virtual
machine instance has one or more software components
(e.g., operating systems, language runtimes, libraries, etc.)
loaded thereon. When the on-demand code execution system
receives a request to execute program code (a “task™), the
on-demand code execution system may select a virtual
machine instance for executing the program code of the user
based on the one or more computing constraints related to

US 2021/0097024 Al

the task (e.g., a required operating system or runtime) and
cause the task to be executed on the selected virtual machine
instance. The tasks can be executed in isolated containers
that are created on the virtual machine instances, or may be
executed within a virtual machine instance isolated from
other virtual machine instances acting as environments for
other tasks. Since the virtual machine instances in the pool
have already been booted and loaded with particular oper-
ating systems and language runtimes by the time the
requests are received, the delay associated with finding
compute capacity that can handle the requests (e.g., by
executing the user code in one or more containers created on
the virtual machine instances) can be significantly reduced.

[0036] As used herein, the term “virtual machine instance”
is intended to refer to an execution of software or other
executable code that emulates hardware to provide an envi-
ronment or platform on which software may execute (an
example “execution environment”). Virtual machine
instances are generally executed by hardware devices, which
may differ from the physical hardware emulated by the
virtual machine instance. For example, a virtual machine
may emulate a first type of processor and memory while
being executed on a second type of processor and memory.
Thus, virtual machines can be utilized to execute software
intended for a first execution environment (e.g., a first
operating system) on a physical device that is executing a
second execution environment (e.g., a second operating
system). In some instances, hardware emulated by a virtual
machine instance may be the same or similar to hardware of
an underlying device. For example, a device with a first type
of processor may implement a plurality of virtual machine
instances, each emulating an instance of that first type of
processor. Thus, virtual machine instances can be used to
divide a device into a number of logical sub-devices (each
referred to as a “virtual machine instance”). While virtual
machine instances can generally provide a level of abstrac-
tion away from the hardware of an underlying physical
device, this abstraction is not required. For example, assume
a device implements a plurality of virtual machine instances,
each of which emulate hardware identical to that provided
by the device. Under such a scenario, each virtual machine
instance may allow a software application to execute code
on the underlying hardware without translation, while main-
taining a logical separation between software applications
running on other virtual machine instances. This process,
which is generally referred to as “native execution,” may be
utilized to increase the speed or performance of virtual
machine instances. Other techniques that allow direct utili-
zation of underlying hardware, such as hardware pass-
through techniques, may be used, as well.

[0037] While a virtual machine executing an operating
system is described herein as one example of an execution
environment, other execution environments are also pos-
sible. For example, tasks or other processes may be executed
within a software “container,” which provides a runtime
environment without itself providing virtualization of hard-
ware. Containers may be implemented within virtual
machines to provide additional security, or may be run
outside of a virtual machine instance.

[0038] The foregoing aspects and many of the attendant
advantages of this disclosure will become more readily
appreciated as the same become better understood by ref-
erence to the following description, when taken in conjunc-
tion with the accompanying drawings.

Apr. 1,2021

[0039] FIG. 1 is a block diagram of an illustrative oper-
ating environment 100 in which a service provider system
110 operates to enable client devices 102 to perform 1/O
operations on objects stored within an object storage service
160 and to apply path modifications to such 1/O operations,
which modifications may include execution of user-defined
code on an on-demand code execution system 120.

[0040] By way of illustration, various example client
devices 102 are shown in communication with the service
provider system 110, including a desktop computer, laptop,
and a mobile phone. In general, the client devices 102 can
be any computing device such as a desktop, laptop or tablet
computer, personal computer, wearable computer, server,
personal digital assistant (PDA), hybrid PDA/mobile phone,
mobile phone, electronic book reader, set-top box, voice
command device, camera, digital media player, and the like.
[0041] Generally described, the object storage service 160
can operate to enable clients to read, write, modify, and
delete data objects, each of which represents a set of data
associated with an identifier (an “object identifier” or
“resource identifier”) that can be interacted with as an
individual resource. For example, an object may represent a
single file submitted by a client device 102 (though the
object storage service 160 may or may not store such an
object as a single file). This object-level interaction can be
contrasted with other types of storage services, such as
block-based storage services providing data manipulation at
the level of individual blocks or database storage services
providing data manipulation at the level of tables (or parts
thereof) or the like.

[0042] The object storage service 160 illustratively
includes one or more frontends 162, which provide an
interface (a command-line interface (CLlIs), application pro-
graming interface (APIs), or other programmatic interface)
through which client devices 102 can interface with the
service 160 to configure the service 160 on their behalf and
to perform I/O operations on the service 160. For example,
aclient device 102 may interact with a frontend 162 to create
a collection of data objects on the service 160 (e.g., a
“bucket” of objects) and to configure permissions for that
collection. Client devices 102 may thereafter create, read,
update, or delete objects within the collection based on the
interfaces of the frontends 162. In one embodiment, the
frontend 162 provides a REST-compliant HTTP interface
supporting a variety of request methods, each of which
corresponds to a requested I/O operation on the service 160.
By way of non-limiting example, request methods may
include:

[0043] a GET operation requesting retrieval of an object
stored on the service 160 by reference to an identifier
of the object;

[0044] a PUT operation requesting storage of an object
to be stored on the service 160, including an identifier
of the object and input data to be stored as the object;

[0045] a DELETE operation requesting deletion of an
object stored on the service 160 by reference to an
identifier of the object; and

[0046] a LIST operation requesting listing of objects
within an object collection stored on the service 160 by
reference to an identifier of the collection.

A variety of other operations may also be supported. For
example, the service 160 may provide a POST operation
similar to a PUT operation but associated with a different
upload mechanism (e.g., a browser-based HTML upload), or

US 2021/0097024 Al

a HEAD operation enabling retrieval of metadata for an
object without retrieving the object itself. In some embodi-
ments, the service 160 may enable operations that combine
one or more of the above operations, or combining an
operation with a native data manipulation. For example, the
service 160 may provide a COPY operation enabling copy-
ing of an object stored on the service 160 to another object,
which operation combines a GET operation with a PUT
operation. As another example, the service 160 may provide
a SELECT operation enabling specification of an SQL query
to be applied to an object prior to returning the contents of
that object, which combines an application of an SQL query
to a data object (a native data manipulation) with a GET
operation. As yet another example, the service 160 may
provide a “byte range” GET, which enables a GET operation
on only a portion of a data object. In some instances, the
operation requested by a client device 102 on the service 160
may be transmitted to the service via an HTTP request,
which itself may include an HTTP method. In some cases,
such as in the case of a GET operation, the HT'TP method
specified within the request may match the operation
requested at the service 160. However, in other cases, the
HTTP method of a request may not match the operation
requested at the service 160. For example, a request may
utilize an HTTP POST method to transmit a request to
implement a SELECT operation at the service 160.

[0047] During general operation, frontends 162 may be
configured to obtain a call to a request method, and apply
that request method to input data for the method. For
example, a frontend 162 can respond to a request to PUT
input data into the service 160 as an object by storing that
input data as the object on the service 160. Objects may be
stored, for example, on object data stores 168, which cor-
respond to any persistent or substantially persistent storage
(including hard disk drives (HDDs), solid state drives
(SSDs), network accessible storage (NAS), storage area
networks (SANSs), non-volatile random access memory
(NVRAM), or any of a variety of storage devices known in
the art). As a further example, the frontend 162 can respond
to a request to GET an object from the service 160 by
retrieving the object from the stores 168 (the object repre-
senting input data to the GET resource request), and return-
ing the object to a requesting client device 102.

[0048] In some cases, calls to a request method may
invoke one or more native data manipulations provided by
the service 160. For example, a SELECT operation may
provide an SQL-formatted query to be applied to an object
(also identified within the request), or a GET operation may
provide a specific range of bytes of an object to be returned.
The service 160 illustratively includes an object manipula-
tion engine 170 configured to perform native data manipu-
lations, which illustratively corresponds to a device config-
ured with software executable to implement native data
manipulations on the service 160 (e.g., by stripping non-
selected bytes from an object for a byte-range GET, by
applying an SQL query to an object and returning results of
the query, etc.).

[0049] In accordance with embodiments of the present
disclosure, the service 160 can further be configured to
enable modification of an I/O path for a given object or
collection of objects, such that a called request method is
applied to an output of a data manipulation function, rather
than the resource identified within the call. For example, the
service 160 may enable a client device 102 to specify that

Apr. 1,2021

GET operations for a given object should be subject to
execution of a user-defined task on the on-demand code
execution system 120, such that the data returned in
response to the operation is the output of a task execution
rather than the requested object. Similarly, the service 160
may enable a client device 102 to specify that PUT opera-
tions to store a given object should be subject to execution
of a user-defined task on the on-demand code execution
system 120, such that the data stored in response to the
operation is the output of a task execution rather than the
data provided for storage by a client device 102. As will be
discussed in more detail below, path modifications may
include specification of a pipeline of data manipulations,
including native data manipulations, task-based manipula-
tions, or combinations thereof. [llustratively, a client device
102 may specify a pipeline or other data manipulation for an
object or object collection through the frontend 162, which
may store a record of the pipeline or manipulation in the I/O
path modification data store 164, which store 164, like the
object data stores 168, can represent any persistent or
substantially persistent storage. While shown as distinct in
FIG. 1, in some instances the data stores 164 and 168 may
represent a single collection of data stores. For example,
data modifications to objects or collections may themselves
be stored as objects on the service 160.

[0050] To enable data manipulation via execution of user-
defined code, the system further includes an on-demand
code execution system 120. In one embodiment, the system
120 is solely usable by the object storage service 160 in
connection with data manipulations of an I/O path. In
another embodiment, the system 120 is additionally acces-
sible by client devices 102 to directly implement serverless
task executions. For example, the on-demand code execu-
tion system 120 may provide the service 160 (and poten-
tially client devices 102) with one or more user interfaces,
command-line interfaces (CLIs), application programing
interfaces (APIs), or other programmatic interfaces for gen-
erating and uploading user-executable code (e.g., including
metadata identifying dependency code objects for the
uploaded code), invoking the user-provided code (e.g., sub-
mitting a request to execute the user codes on the on-demand
code execution system 120), scheduling event-based jobs or
timed jobs, tracking the user-provided code, or viewing
other logging or monitoring information related to their
requests or user codes. Although one or more embodiments
may be described herein as using a user interface, it should
be appreciated that such embodiments may, additionally or
alternatively, use any CLIs, APIs, or other programmatic
interfaces.

[0051] In addition, as shown in FIG. 1, the service 160
may include a data access control engine 172 configured to
perform native data access control (e.g., using a default data
access control code), which illustratively corresponds to a
device configured with software executable to implement
data access control on the service 160 (e.g., by setting
permissions for individual users and specifying the portions
of the data accessible by the individual users). Additionally,
the data access control engine 172 may facilitate data access
control performed based on executing one or more addi-
tional data access control codes (e.g., submitted by the data
ownet/provider). Although illustrated as a separate compo-
nent, the data access control engine 172 may in some cases
be integrated into the frontend(s) 162 or another component
of the service 160.

US 2021/0097024 Al

[0052] The service 160 may further include a code execu-
tion control engine 174 configured to perform code execu-
tion control, which illustratively corresponds to a device
configured with software executable to facilitate execution
of native or user-submitted code (e.g., program code sub-
mitted by the owner of the data objects stored by the service
160) either internally on the service 160 or externally on the
on-demand code execution system 120 (e.g., by specifying
code execution environment rules that can be used to
provide certain privileges to, or place restrictions on, the
code being executed). Although illustrated as a separate
component, the code execution control engine 174 may in
some cases be integrated into the frontend(s) 162 or another
component of the service 160.

[0053] The client devices 102, object storage service 160,
and on-demand code execution system 120 may communi-
cate via a network 104, which may include any wired
network, wireless network, or combination thereof. For
example, the network 104 may be a personal area network,
local area network, wide area network, over-the-air broad-
cast network (e.g., for radio or television), cable network,
satellite network, cellular telephone network, or combina-
tion thereof. As a further example, the network 104 may be
a publicly accessible network of linked networks, possibly
operated by various distinct parties, such as the Internet. In
some embodiments, the network 104 may be a private or
semi-private network, such as a corporate or university
intranet. The network 104 may include one or more wireless
networks, such as a Global System for Mobile Communi-
cations (GSM) network, a Code Division Multiple Access
(CDMA) network, a Long Term Evolution (LTE) network,
or any other type of wireless network. The network 104 can
use protocols and components for communicating via the
Internet or any of the other aforementioned types of net-
works. For example, the protocols used by the network 104
may include Hypertext Transfer Protocol (HTTP), HTTP
Secure (HTTPS), Message Queue Telemetry Transport
(MQTT), Constrained Application Protocol (CoAP), and the
like. Protocols and components for communicating via the
Internet or any of the other aforementioned types of com-
munication networks are well known to those skilled in the
art and, thus, are not described in more detail herein.

[0054] To enable interaction with the on-demand code
execution system 120, the system 120 includes one or more
frontends 130, which enable interaction with the on-demand
code execution system 120. In an illustrative embodiment,
the frontends 130 serve as a “front door” to the other
services provided by the on-demand code execution system
120, enabling users (via client devices 102) or the service
160 to provide, request execution of, and view results of
computer executable code. The frontends 130 include a
variety of components to enable interaction between the
on-demand code execution system 120 and other computing
devices. For example, each frontend 130 may include a
request interface providing client devices 102 and the ser-
vice 160 with the ability to upload or otherwise communi-
cation user-specified code to the on-demand code execution
system 120 and to thereafter request execution of that code.
In one embodiment, the request interface communicates
with external computing devices (e.g., client devices 102,
frontend 162, etc.) via a graphical user interface (GUI), CLIL,
or API. The frontends 130 process the requests and make
sure that the requests are properly authorized. For example,

Apr. 1,2021

the frontends 130 may determine whether the user associ-
ated with the request is authorized to access the user code
specified in the request.

[0055] References to user code as used herein may refer to
any program code (e.g., a program, routine, subroutine,
thread, etc.) written in a specific program language. In the
present disclosure, the terms “code,” “user code,” and “pro-
gram code,” may be used interchangeably. Such user code
may be executed to achieve a specific function, for example,
in connection with a particular data transformation devel-
oped by the user. As noted above, individual collections of
user code (e.g., to achieve a specific function) are referred to
herein as “tasks,” while specific executions of that code
(including, e.g., compiling code, interpreting code, or oth-
erwise making the code executable) are referred to as “task
executions” or simply “executions.” Tasks may be written,
by way of non-limiting example, in JavaScript (e.g., node.
js), Java, Python, or Ruby (or another programming lan-
guage).

[0056] To manage requests for code execution, the fron-
tend 130 can include an execution queue, which can main-
tain a record of requested task executions. Illustratively, the
number of simultaneous task executions by the on-demand
code execution system 120 is limited, and as such, new task
executions initiated at the on-demand code execution system
120 (e.g., via an API call, via a call from an executed or
executing task, etc.) may be placed on the execution queue
and processed, e.g., in a first-in-first-out order. In some
embodiments, the on-demand code execution system 120
may include multiple execution queues, such as individual
execution queues for each user account. For example, users
of the service provider system 110 may desire to limit the
rate of task executions on the on-demand code execution
system 120 (e.g., for cost reasons). Thus, the on-demand
code execution system 120 may utilize an account-specific
execution queue to throttle the rate of simultaneous task
executions by a specific user account. In some instances, the
on-demand code execution system 120 may prioritize task
executions, such that task executions of specific accounts or
of specified priorities bypass or are prioritized within the
execution queue. In other instances, the on-demand code
execution system 120 may execute tasks immediately or
substantially immediately after receiving a call for that task,
and thus, the execution queue may be omitted.

[0057] The frontend 130 can further include an output
interface configured to output information regarding the
execution of tasks on the on-demand code execution system
120. Tlustratively, the output interface may transmit data
regarding task executions (e.g., results of a task, errors
related to the task execution, or details of the task execution,
such as total time required to complete the execution, total
data processed via the execution, etc.) to the client devices
102 or the object storage service 160.

[0058] In some embodiments, the on-demand code execu-
tion system 120 may include multiple frontends 130. In such
embodiments, a load balancer may be provided to distribute
the incoming calls to the multiple frontends 130, for
example, in a round-robin fashion. In some embodiments,
the manner in which the load balancer distributes incoming
calls to the multiple frontends 130 may be based on the
location or state of other components of the on-demand code
execution system 120. For example, a load balancer may
distribute calls to a geographically nearby frontend 130, or
to a frontend with capacity to service the call. In instances

US 2021/0097024 Al

where each frontend 130 corresponds to an individual
instance of another component of the on-demand code
execution system 120, such as the active pool 148 described
below, the load balancer may distribute calls according to
the capacities or loads on those other components. Calls may
in some instances be distributed between frontends 130
deterministically, such that a given call to execute a task will
always (or almost always) be routed to the same frontend
130. This may, for example, assist in maintaining an accu-
rate execution record for a task, to ensure that the task
executes only a desired number of times. For example, calls
may be distributed to load balance between frontends 130.
Other distribution techniques, such as anycast routing, will
be apparent to those of skill in the art.

[0059] The on-demand code execution system 120 further
includes one or more worker managers 140 that manage the
execution environments, such as virtual machine instances
150 (shown as VM instance 150A and 150B, generally
referred to as a “VM?”), used for servicing incoming calls to
execute tasks. While the following will be described with
reference to virtual machine instances 150 as examples of
such environments, embodiments of the present disclosure
may utilize other environments, such as software containers.
In the example illustrated in FIG. 1, each worker manager
140 manages an active pool 148, which is a group (some-
times referred to as a pool) of virtual machine instances 150
executing on one or more physical host computing devices
that are initialized to execute a given task (e.g., by having the
code of the task and any dependency data objects loaded into
the instance).

[0060] Although the virtual machine instances 150 are
described here as being assigned to a particular task, in some
embodiments, the instances may be assigned to a group of
tasks, such that the instance is tied to the group of tasks and
any tasks of the group can be executed within the instance.
For example, the tasks in the same group may belong to the
same security group (e.g., based on their security creden-
tials) such that executing one task in a container on a
particular instance 150 after another task has been executed
in another container on the same instance does not pose
security risks. As discussed below, a task may be associated
with permissions encompassing a variety of aspects control-
ling how a task may execute. For example, permissions of a
task may define what network connections (if any) can be
initiated by an execution environment of the task. As another
example, permissions of a task may define what authenti-
cation information is passed to a task, controlling what
network-accessible resources are accessible to execution of
a task (e.g., objects on the service 160). In one embodiment,
a security group of a task is based on one or more such
permissions. For example, a security group may be defined
based on a combination of permissions to initiate network
connections and permissions to access network resources.
As another example, the tasks of the group may share
common dependencies, such that an environment used to
execute one task of the group can be rapidly modified to
support execution of another task within the group.

[0061] Once a triggering event to execute a task has been
successfully processed by a frontend 130, the frontend 130
passes a request to a worker manager 140 to execute the task.
In one embodiment, each frontend 130 may be associated
with a corresponding worker manager 140 (e.g., a worker
manager 140 co-located or geographically nearby to the
frontend 130) and thus, the frontend 130 may pass most or

Apr. 1,2021

all requests to that worker manager 140. In another embodi-
ment, a frontend 130 may include a location selector con-
figured to determine a worker manager 140 to which to pass
the execution request. In one embodiment, the location
selector may determine the worker manager 140 to receive
a call based on hashing the call, and distributing the call to
a worker manager 140 selected based on the hashed value
(e.g., via a hash ring). Various other mechanisms for dis-
tributing calls between worker managers 140 will be appar-
ent to one of skill in the art.

[0062] Thereafter, the worker manager 140 may modify a
virtual machine instance 150 (if necessary) and execute the
code of the task within the instance 150. As shown in FIG.
1, respective instances 150 may have operating systems
(OS) 152 (shown as OS 152A and 152B), language runtimes
154 (shown as runtime 154 A and 154B), and user code 156
(shown as user code 156A and 156B). The OS 152, runtime
154, and user code 156 may collectively enable execution of
the user code to implement the task. Thus, via operation of
the on-demand code execution system 120, tasks may be
rapidly executed within an execution environment.

[0063] In accordance with aspects of the present disclo-
sure, each VM 150 additionally includes staging code 157
executable to facilitate staging of input data on the VM 150
and handling of output data written on the VM 150, as well
as a VM data store 158 accessible through a local file system
of the VM 150. Illustratively, the staging code 157 repre-
sents a process executing on the VM 150 (or potentially a
host device of the VM 150) and configured to obtain data
from the object storage service 160 and place that data into
the VM data store 158. The staging code 157 can further be
configured to obtain data written to a file within the VM data
store 158, and to transmit that data to the object storage
service 160. Because such data is available at the VM data
store 158, user code 156 is not required to obtain data over
a network, simplifying user code 156 and enabling further
restriction of network communications by the user code 156,
thus increasing security. Rather, as discussed above, user
code 156 may interact with input data and output data as files
on the VM data store 158, by use of file handles passed to
the code 156 during an execution. In some embodiments,
input and output data may be stored as files within a
kernel-space file system of the data store 158. In other
instances, the staging code 157 may provide a virtual file
system, such as a filesystem in userspace (FUSE) interface,
which provides an isolated file system accessible to the user
code 156, such that the user code’s access to the VM data
store 158 is restricted.

[0064] As used herein, the term “local file system™ gen-
erally refers to a file system as maintained within an execu-
tion environment, such that software executing within the
environment can access data as file, rather than via a
network connection. In accordance with aspects of the
present disclosure, the data storage accessible via a local file
system may itself be local (e.g., local physical storage), or
may be remote (e.g., accessed via a network protocol, like
NFS, or represented as a virtualized block device provided
by a network-accessible service). Thus, the term “local file
system” is intended to describe a mechanism for software to
access data, rather than physical location of the data.

[0065] The VM data store 158 can include any persistent
or non-persistent data storage device. In one embodiment,
the VM data store 158 is physical storage of the host device,
or a virtual disk drive hosted on physical storage of the host

US 2021/0097024 Al

device. In another embodiment, the VM data store 158 is
represented as local storage, but is in fact a virtualized
storage device provided by a network accessible service. For
example, the VM data store 158 may be a virtualized disk
drive provided by a network-accessible block storage ser-
vice. In some embodiments, the object storage service 160
may be configured to provide file-level access to objects
stored on the data stores 168, thus enabling the VM data
store 158 to be virtualized based on communications
between the staging code 157 and the service 160. For
example, the object storage service 160 can include a
file-level interface 166 providing network access to objects
within the data stores 168 as files. The file-level interface
166 may, for example, represent a network-based file system
server (e.g., a network file system (NFS)) providing access
to objects as files, and the staging code 157 may implement
a client of that server, thus providing file-level access to
objects of the service 160.

[0066] In some instances, the VM data store 158 may
represent virtualized access to another data store executing
on the same host device of a VM instance 150. For example,
an active pool 148 may include one or more data staging VM
instances (not shown in FIG. 1), which may be co-tenanted
with VM instances 150 on the same host device. A data
staging VM instance may be configured to support retrieval
and storage of data from the service 160 (e.g., data objects
or portions thereof, input data passed by client devices 102,
etc.), and storage of that data on a data store of the data
staging VM instance. The data staging VM instance may, for
example, be designated as unavailable to support execution
of user code 156, and thus be associated with elevated
permissions relative to instances 150 supporting execution
of user code. The data staging VM instance may make this
data accessible to other VM instances 150 within its host
device (or, potentially, on nearby host devices), such as by
use of a network-based file protocol, like NFS. Other VM
instances 150 may then act as clients to the data staging VM
instance, enabling creation of virtualized VM data stores 158
that, from the point of view of user code 156A, appear as
local data stores. Beneficially, network-based access to data
stored at a data staging VM can be expected to occur very
quickly, given the co-location of a data staging VM and a
VM instance 150 within a host device or on nearby host
devices.

[0067] While some examples are provided herein with
respect to use of 10 stream handles to read from or write to
a VM data store 158, 10 streams may additionally be used
to read from or write to other interfaces of a VM instance
150 (while still removing a need for user code 156 to
conduct operations other than stream-level operations, such
as creating network connections). For example, staging code
157 may “pipe” input data to an execution of user code 156
as an input stream, the output of which may be “piped” to
the staging code 157 as an output stream. As another
example, a staging VM instance or a hypervisor to a VM
instance 150 may pass input data to a network port of the
VM instance 150, which may be read-from by staging code
157 and passed as an input stream to the user code 157.
Similarly, data written to an output stream by the task code
156 may be written to a second network port of the instance
150A for retrieval by the staging VM instance or hypervisor.
In yet another example, a hypervisor to the instance 150 may
pass input data as data written to a virtualized hardware
input device (e.g., a keyboard) and staging code 157 may

Apr. 1,2021

pass to the user code 156 a handle to the 1O stream
corresponding to that input device. The hypervisor may
similarly pass to the user code 156 a handle for an 10 stream
corresponding to an virtualized hardware output device, and
read data written to that stream as output data. Thus, the
examples provided herein with respect to file streams may
generally be modified to relate to any IO stream.

[0068] The object storage service 160 and on-demand
code execution system 120 are depicted in FIG. 1 as
operating in a distributed computing environment including
several computer systems that are interconnected using one
or more computer networks (not shown in FIG. 1). The
object storage service 160 and on-demand code execution
system 120 could also operate within a computing environ-
ment having a fewer or greater number of devices than are
illustrated in FIG. 1. Thus, the depiction of the object storage
service 160 and on-demand code execution system 120 in
FIG. 1 should be taken as illustrative and not limiting to the
present disclosure. For example, the on-demand code execu-
tion system 120 or various constituents thereof could imple-
ment various Web services components, hosted or “cloud”
computing environments, or peer to peer network configu-
rations to implement at least a portion of the processes
described herein. In some instances, the object storage
service 160 and on-demand code execution system 120 may
be combined into a single service. Further, the object storage
service 160 and on-demand code execution system 120 may
be implemented directly in hardware or software executed
by hardware devices and may, for instance, include one or
more physical or virtual servers implemented on physical
computer hardware configured to execute computer execut-
able instructions for performing various features that will be
described herein. The one or more servers may be geo-
graphically dispersed or geographically co-located, for
instance, in one or more data centers. In some instances, the
one or more servers may operate as part of a system of
rapidly provisioned and released computing resources, often
referred to as a “cloud computing environment.”

[0069] In the example of FIG. 1, the object storage service
160 and on-demand code execution system 120 are illus-
trated as connected to the network 104. In some embodi-
ments, any of the components within the object storage
service 160 and on-demand code execution system 120 can
communicate with other components of the on-demand code
execution system 120 via the network 104. In other embodi-
ments, not all components of the object storage service 160
and on-demand code execution system 120 are capable of
communicating with other components of the virtual envi-
ronment 100. In one example, only the frontends 130 and
162 (which may in some instances represent multiple fron-
tends) may be connected to the network 104, and other
components of the object storage service 160 and on-
demand code execution system 120 may communicate with
other components of the environment 100 via the respective
frontends 130 and 162.

[0070] While some functionalities are generally described
herein with reference to an individual component of the
object storage service 160 and on-demand code execution
system 120, other components or a combination of compo-
nents may additionally or alternatively implement such
functionalities. For example, while the object storage service
160 is depicted in FIG. 1 as including an object manipulation
engine 170, functions of that engine 170 may additionally or
alternatively be implemented as tasks on the on-demand

US 2021/0097024 Al

code execution system 120. Moreover, while the on-demand
code execution system 120 is described as an example
system to apply data manipulation tasks, other compute
systems may be used to execute user-defined tasks, which
compute systems may include more, fewer or different
components than depicted as part of the on-demand code
execution system 120. In a simplified example, the object
storage service 160 may include a physical computing
device configured to execute user-defined tasks on demand,
thus representing a compute system usable in accordance
with embodiments of the present disclosure. Thus, the
specific configuration of elements within FIG. 1 is intended
to be illustrative.

[0071] FIG. 2 depicts a general architecture of a frontend
server 200 computing device implementing a frontend 162
of FIG. 1. The general architecture of the frontend server
200 depicted in FIG. 2 includes an arrangement of computer
hardware and software that may be used to implement
aspects of the present disclosure. The hardware may be
implemented on physical electronic devices, as discussed in
greater detail below. The frontend server 200 may include
many more (or fewer) elements than those shown in FIG. 2.
It is not necessary, however, that all of these generally
conventional elements be shown in order to provide an
enabling disclosure. Additionally, the general architecture
illustrated in FIG. 2 may be used to implement one or more
of the other components illustrated in FIG. 1.

[0072] As illustrated, the frontend server 200 includes a
processing unit 290, a network interface 292, a computer
readable medium drive 294, and an input/output device
interface 296, all of which may communicate with one
another by way of a communication bus. The network
interface 292 may provide connectivity to one or more
networks or computing systems. The processing unit 290
may thus receive information and instructions from other
computing systems or services via the network 104. The
processing unit 290 may also communicate to and from
primary memory 280 or secondary memory 298 and further
provide output information for an optional display (not
shown) via the input/output device interface 296. The input/
output device interface 296 may also accept input from an
optional input device (not shown).

[0073] The primary memory 280 or secondary memory
298 may contain computer program instructions (grouped as
units in some embodiments) that the processing unit 290
executes in order to implement one or more aspects of the
present disclosure. These program instructions are shown in
FIG. 2 as included within the primary memory 280, but may
additionally or alternatively be stored within secondary
memory 298. The primary memory 280 and secondary
memory 298 correspond to one or more tiers of memory
devices, including (but not limited to) RAM, 3D XPOINT
memory, flash memory, magnetic storage, and the like. The
primary memory 280 is assumed for the purposes of descrip-
tion to represent a main working memory of the worker
manager 140, with a higher speed but lower total capacity
than secondary memory 298.

[0074] The primary memory 280 may store an operating
system 284 that provides computer program instructions for
use by the processing unit 290 in the general administration
and operation of the frontend server 200. The memory 280
may further include computer program instructions and
other information for implementing aspects of the present
disclosure. For example, in one embodiment, the memory

Apr. 1,2021

280 includes a user interface unit 282 that generates user
interfaces (or instructions therefor) for display upon a com-
puting device, e.g., via a navigation or browsing interface
such as a browser or application installed on the computing
device.

[0075] In addition to or in combination with the user
interface unit 282, the memory 280 may include a control
plane unit 286 and data plane unit 288 each executable to
implement aspects of the present disclosure. Illustratively,
the control plane unit 286 may include code executable to
enable owners of data objects or collections of objects to
attach manipulations, serverless functions, or data process-
ing pipelines to an I/O path, in accordance with embodi-
ments of the present disclosure. For example, the control
plane unit 286 may enable the frontend 162 to implement the
interactions of FIG. 3. The data plane unit 288 may illus-
tratively include code enabling handling of I/O operations
on the object storage service 160, including implementation
of manipulations, serverless functions, or data processing
pipelines attached to an I/O path (e.g., via the interactions of
FIGS. 5A-6B, implementation of the routines of FIGS. 7-8,
etc.).

[0076] The frontend server 200 of FIG. 2 is one illustrative
configuration of such a device, of which others are possible.
For example, while shown as a single device, a frontend
server 200 may in some embodiments be implemented as
multiple physical host devices. [llustratively, a first device of
such a frontend server 200 may implement the control plane
unit 286, while a second device may implement the data
plane unit 288.

[0077] While described in FIG. 2 as a frontend server 200,
similar components may be utilized in some embodiments to
implement other devices shown in the environment 100 of
FIG. 1. For example, a similar device may implement a
worker manager 140, as described in more detail in U.S. Pat.
No. 9,323,556, entitled “PROGRAMMATIC EVENT
DETECTION AND MESSAGE GENERATION FOR
REQUESTS TO EXECUTE PROGRAM CODE,” and filed
Sep. 30, 2014 (the “’556 Patent”), the entirety of which is
hereby incorporated by reference.

[0078] With reference to FIG. 3, illustrative interactions
are depicted for enabling a client device 102A to modify an
1/0O path for one or more objects on an object storage service
160 by inserting a data manipulation into the I/O path, which
manipulation is implemented within a task executable on the
on-demand code execution system 120.

[0079] The interactions of FIG. 3 begin at (1), where the
client device 102A authors the stream manipulation code.
The code can illustratively function to access an input file
handle provided on execution of the program (which may,
for example, be represented by the standard input stream for
a program, commonly “stdin”), perform manipulations on
data obtained from that file handle, and write data to an
output file handle provided on execution of the program
(which may, for example, by represented by the standard
output stream for a program, commonly “stdout™).

[0080] While examples are discussed herein with respect
to a “file” handle, embodiments of the present disclosure
may utilize handles providing access to any operating-
system-level input/output (I0) stream, examples of which
include byte streams, character streams, file streams, and the
like. As used herein, the term operating-system-level input/
output stream (or simply an “IO stream™) is intended to refer
to a stream of data for which an operating system provides

US 2021/0097024 Al

a defined set of functions, such as seeking within the stream,
reading from a stream, and writing to a stream. Streams may
be created in various manners. For example, a programming
language may generate a stream by use of a function library
to open a file on a local operating system, or a stream may
be created by use of a “pipe” operator (e.g., within an
operating system shell command language). As will be
appreciated by one skilled in the art, most general purpose
programming languages include, as basic functionality of
the code, the ability to interact with streams.

[0081] In accordance with embodiments of the present
disclosure, task code may be authored to accept, as a
parameter of the code, an input handle and an output handle,
both representing 1O streams (e.g., an input stream and an
output stream, respectively). The code may then manipulate
data of the input stream, and write an output to the output
stream. Given use of a general purpose programming lan-
guage, any of a variety of functions may be implemented
according to the desires of the user. For example, a function
may search for and remove confidential information from
the input stream. While some code may utilize only input
and output handles, other code may implement additional
interfaces, such as network communication interfaces. How-
ever, by providing the code with access to input and output
streams (via respective handles) created outside of the code,
the need for the code to create such streams is removed.
Moreover, because streams may be created outside of the
code, and potentially outside of an execution environment of
the code, stream manipulation code need not necessarily be
trusted to conduct certain operations that may be necessary
to create a stream. For example, a stream may represent
information transmitted over a network connection, without
the code being provided with access to that network con-
nection. Thus, use of 10 streams to pass data into and out of
code executions can simplify code while increasing security.
[0082] As noted above, the code may be authored in a
variety of programming languages. Authoring tools for such
languages are known in the art and thus will not be described
herein. While authoring is described in FIG. 3 as occurring
on the client device 102A, the service 160 may in some
instances provide interfaces (e.g., web GUIs) through which
to author or select code.

[0083] At (2), the client device 102A submits the stream
manipulation code to the frontend 162 of the service 160,
and requests that an execution of the code be inserted into an
1/0O path for one or more objects. [llustratively, the frontends
162 may provide one or more interfaces to the device 102A
enabling submission of the code (e.g., as a compressed file).
The frontends 162 may further provide interfaces enabling
designation of one or more I/O paths to which an execution
of the code should be applied. Each 1/O path may corre-
spond, for example, to an object or collection of objects
(e.g., a “bucket” of objects). In some instances, an I/O path
may further corresponding to a given way of accessing such
object or collection (e.g., a URI through which the object is
created), to one or more accounts attempting to access the
object or collection, or to other path criteria. Designation of
the path modification is then stored in the /O path modifi-
cation data store 164, at (3). Additionally, the stream
manipulation code is stored within the object data stores 166
at (4).

[0084] As such, when an I/O request is received via the
specified /O path, the service 160 is configured to execute
the stream manipulation code against input data for the

Apr. 1,2021

request (e.g., data provided by the client device 102A or an
object of the service 160, depending on the /O request),
before then applying the request to the output of the code
execution. In this manner, a client device 102A (which in
FIG. 3 illustratively represents an owner of an object or
object collection) can obtain greater control over data stored
on and retrieved from the object storage service 160.

[0085] The interactions of FIG. 3 generally relate to inser-
tion of a single data manipulation into the 1/O path of an
object or collection on the service 160. However, in some
embodiments of the present disclosure an owner of an object
or collection is enabled to insert multiple data manipulations
into such an I/O path. Each data manipulation may corre-
spond, for example, to a serverless code-based manipulation
or a native manipulation of the service 160. For example,
assume an owner has submitted a data set to the service 160
as an object, and that the owner wishes to provide an end
user with a filtered view of a portion of that data set. While
the owner could store that filtered view of the portion as a
separate object and provide the end user with access to that
separate object, this results in data duplication on the service
160. In the case that the owner wishes to provide multiple
end users with different portions of the data set, potentially
with customized filters, that data duplication grows, result-
ing in significant inefficiencies. In accordance with the
present disclosure, another option may be for the owner to
author or obtain custom code to implement different filters
on different portions of the object, and to insert that code into
the 1/O path for the object. However, this approach may
require the owner to duplicate some native functionality of
the service 160 (e.g., an ability to retrieve a portion of a data
set). Moreover, this approach would inhibit modularity and
reusability of code, since a single set of code would be
required to conduct two functions (e.g., selecting a portion
of the data and filtering that portion).

[0086] To address these shortcomings, embodiments of
the present disclosure enable an owner to create a pipeline
of data manipulations to be applied to an 1/O path, linking
together multiple data manipulations, each of which may
also be inserted into other I/O paths. An illustrative visual-
ization of such a pipeline is shown in FIG. 4 as pipeline 400.
Specifically, the pipeline 400 illustrates a series of data
manipulations that an owner specifies are to occur on calling
of'a request method against an object or object collection. As
shown in FIG. 4, the pipeline begins with input data,
specified within the call according to a called request
method. For example, a PUT call may generally include the
input data as the data to be stored, while a GET call may
generally include the input data by reference to a stored
object. A LIST call may specify a directory, a manifest of
which is the input data to the LIST request method.

[0087] Contrary to typical implementations of request
methods, in the illustrative pipeline 400, the called request
method is not initially applied to the input data. Rather, the
input data is initially passed to an execution of “code A” 404,
where code A represents a first set of user-authored code.
The output of that execution is then passed to “native
function A” 406, which illustratively represents a native
function of the service 160, such as a “SELECT” or byte-
range function implemented by the object manipulation
engine 170. The output of that native function 406 is then
passed to an execution of “code B” 408, which represents a
second set of user-authored code. Thereafter, the output of
that execution 408 is passed to the called request method 410

US 2021/0097024 Al

(e.g., GET, PUT, LIST, etc.). Accordingly, rather than the
request method being applied to the input data as in con-
ventional techniques, in the illustration of FIG. 4, the request
method is applied to the output of the execution 408, which
illustratively represents a transformation of the input data
according to one or more owner-specified manipulations
412. Notably, implementation of the pipeline 400 may not
require any action or imply any knowledge of the pipeline
400 on the part of a calling client device 102. As such,
implementation of pipelines can be expected not to impact
existing mechanisms of interacting with the service 160
(other than altering the data stored on or retrieved from the
service 160 in accordance with the pipeline). For example,
implementation of a pipeline can be expected not to require
reconfiguration of existing programs utilizing an API of the
service 160.

[0088] While the pipeline 400 of FIG. 4 is linear, in some
embodiments the service 160 may enable an owner to
configure non-linear pipelines, such as by include condi-
tional or branching nodes within the pipeline. Illustratively,
as described in more detail below, data manipulations (e.g.,
serverless-based functions) can be configured to include a
return value, such as an indication of successful execution,
encountering an error, etc. In one example, the return value
of a data manipulation may be used to select a conditional
branch within a branched pipeline, such that a first return
value causes the pipeline to proceed on a first branch, while
a second return value causes the pipeline to proceed on a
second branch. In some instances, pipelines may include
parallel branches, such that data is copied or divided to
multiple data manipulations, the outputs of which are passed
to a single data manipulation for merging prior to executing
the called method. The service 160 may illustratively pro-
vide a graphical user interface through which owners can
create pipelines, such as by specifying nodes within the
pipeline and linking those nodes together via logical con-
nections. A variety of flow-based development interfaces are
known and may be utilized in conjunction with aspects of
the present disclosure.

[0089] Furthermore, in some embodiments, a pipeline
applied to a particular /O path may be generated on-the-fly,
at the time of a request, based on data manipulations applied
to the path according to different criteria. For example, an
owner of a data collection may apply a first data manipu-
lation to all interactions with objects within a collection, and
a second data manipulation to all interactions obtained via a
given URI. Thus, when a request is received to interact with
an object within the collection and via the given URI, the
service 160 may generate a pipeline combining the first and
second data manipulations. The service 160 may illustra-
tively implement a hierarchy of criteria, such that manipu-
lations applied to objects are placed within the pipeline prior
to manipulations applied to a URI, etc.

[0090] In some embodiments, client devices 102 may be
enabled to request inclusion of a data manipulation within a
pipeline. For example, within parameters of a GET request,
a client device 102 may specify a particular data manipu-
lation to be included within a pipeline applied in connection
with the request. Illustratively, a collection owner may
specify one or more data manipulations allowed for the
collection, and further specify identifiers for those manipu-
lations (e.g., function names). Thus, when requesting to
interact with the collection, a client device 102 may specify
the identifier to cause the manipulation to be included within

Apr. 1,2021

a pipeline applied to the /O path. In one embodiment,
client-requested manipulations are appended to the end of a
pipeline subsequent to owner-specified data manipulations
and prior to implementing the requested request method. For
example, where a client device 102 requests to GET a data
set, and requests that a search function by applied to the data
set before the GET method is implemented, the search
function can receive as input data the output of an owner-
specified data manipulations for the data set (e.g., manipu-
lations to remove confidential information from the data
set). In addition, requests may in some embodiments specify
parameters to be passed to one or more data manipulations
(whether specified within the request or not). Accordingly,
while embodiments of the present disclosure can enable data
manipulations without knowledge of those manipulations on
the part of client devices 102, other embodiments may
enable client devices 102 to pass information within an /O
request for use in implementing data manipulations.

[0091] Moreover, while example embodiments of the
present disclosure are discussed with respect to manipula-
tion of input data to a called method, embodiments of the
present disclosure may further be utilized to modify aspects
of a request, including a called method. For example, a
serverless task execution may be passed the content of a
request (including, e.g., a called method and parameters) and
be configured to modify and return, as a return value to a
frontend 162, a modified version of the method or param-
eters. [llustratively, where a client device 102 is authenti-
cated as a user with access to only a portion of a data object,
a serverless task execution may be passed a call to “GET”
that data object, and may transform parameters of the GET
request such that it applies only to a specific byte range of
the data object corresponding to the portion that the user
may access. As a further example, tasks may be utilized to
implement customized parsing or restrictions on called
methods, such as by limiting the methods a user may call,
the parameters to those methods, or the like. In some
instances, application of one or more functions to a request
(e.g., to modify the method called or method parameters)
may be viewed as a “pre-data processing” pipeline, and may
thus be implemented prior to obtaining the input data within
the pipeline 400 (which input data may change due to
changes in the request), or may be implemented indepen-
dently of a data manipulation pipeline 400.

[0092] Similarly, while example embodiments of the pres-
ent disclosure are discussed with respect to application of a
called method to output data of one or more data manipu-
lations, in some embodiments manipulations can addition-
ally or alternatively occur after application of a called
method. For example, a data object may contain sensitive
data that a data owner desires to remove prior to providing
the data to a client. The owner may further enable a client to
specify native manipulations to the data set, such as con-
ducting a database query on the dataset (e.g., via a SELECT
resource method). While the owner may specify a pipeline
for the data set to cause filtering of sensitive data to be
conducted prior to application of the SELECT method, such
an order of operations may be undesirable, as filtering may
occur with respect to the entire data object rather than solely
the portion returned by the SELECT query. Accordingly,
additionally or alternatively to specifying manipulations that
occur prior to satistying a request method, embodiments of
the present disclosure can enable an owner to specify
manipulations to occur subsequent to application of a called

US 2021/0097024 Al

method but prior to conducting a final operation to satisty a
request. For example, in the case of a SELECT operation,
the service 160 may first conduct the SELECT operation
against specified input data (e.g., a data object), and then
pass the output of that SELECT operation to a data manipu-
lation, such as a serverless task execution. The output of that
execution can then be returned to a client device 102 to
satisfy the request.

[0093] While FIG. 3 and FIG. 4 are generally described
with reference to serverless tasks authored by an owner of an
object or collection, in some instances the service 160 may
enable code authors to share their tasks with other users of
the service 160, such that code of a first user is executed in
the I/O path of an object owned by a second user. The
service 160 may also provide a library of tasks for use by
each user. In some cases, the code of a shared task may be
provided to other users. In other cases, the code of the shared
task may be hidden from other users, such that the other
users can execute the task but not view code of the task. In
these cases, other users may illustratively be enabled to
modify specific aspects of code execution, such as the
permissions under which the code will execute.

[0094] With reference to FIGS. 5A and 5B, illustrative
interactions will be discussed for applying a modification to
an [/O path for a request to store an object on the service 160,
which request is referred to in connection with these figures
as a “PUT” request or “PUT object call.” While shown in
two figures, numbering of interactions is maintained across
FIGS. 5A and 5B.

[0095] The interactions begin at (1), where a client device
102A submits a PUT object call to the storage service 160,
corresponding to a request to store input data (e.g., included
or specified within the call) on the service 160. The input
data may correspond, for example, to a file stored on the
client device 102A. As shown in FIG. 5A, the call is directed
to a frontend 162 of the service 162 that, at (2), retrieves
from the I/O path modification data store 164 an indication
of modifications to the /O path for the call. The indication
may reflect, for example, a pipeline to be applied to calls
received on the 1/O path. The I/O path for a call may
generally be specified with respect to a request method
included within a call, an object or collection of objects
indicated within the call, a specific mechanism of reaching
the service 160 (e.g., protocol, URI used, etc.), an identity or
authentication status of the client device 102A, or a com-
bination thereof. For example, in FIG. 5A, the /O path used
can correspond to use of a PUT request method directed to
a particular URI (e.g., associated with the frontend 162) to
store an object in a particular logical location on the service
160 (e.g., a specific bucket). In FIGS. 5A and 5B, it is
assumed that an owner of that logical location has previ-
ously specified a modification to the I/O path, and specifi-
cally, has specified that a serverless function should be
applied to the input data before a result of that function is
stored in the service 160.

[0096] Accordingly, at (3), the frontend 162 detects within
the modifications for the I/O path inclusion of a serverless
task execution. Thus, at (4), the frontend 162 submits a call
to the on-demand code execution system 120 to execute the
task specified within the modifications against the input data
specified within the call.

[0097] The on-demand code execution system 120, at (5),
therefore generates an execution environment 502 in which
to execute code corresponding to the task. Illustratively, the

Apr. 1,2021

call may be directed to a frontend 130 of the system, which
may distribute instructions to a worker manager 140 to
select or generate a VM instance 150 in which to execute the
task, which VM instance 150 illustratively represents the
execution environment 502. During generation of the execu-
tion environment 502, the system 120 further provisions the
environment with code 504 of the task indicated within the
1/0O path modification (which may be retrieved, for example,
from the object data stores 166). While not shown in FIG.
5A, the environment 502 further includes other dependen-
cies of the code, such as access to an operating system, a
runtime required to execute the code, etc.

[0098] In some embodiments, generation of the execution
environment 502 can include configuring the environment
502 with security constraints limiting access to network
resources. [llustratively, where a task is intended to conduct
data manipulation without reference to network resources,
the environment 502 can be configured with no ability to
send or receive information via a network. Where a task is
intended to utilize network resources, access to such
resources can be provided on a “whitelist” basis, such that
network communications from the environment 502 are
allowed only for specified domains, network addresses, or
the like. Network restrictions may be implemented, for
example, by a host device hosting the environment 502 (e.g.,
by a hypervisor or host operating system). In some
instances, network access requirements may be utilized to
assist in placement of the environment 502, either logically
or physically. For example, where a task requires no access
to network resources, the environment 502 for the task may
be placed on a host device that is distant from other
network-accessible services of the service provider system
110, such as an “edge” device with a lower-quality commu-
nication channel to those services. Where a task requires
access to otherwise private network services, such as ser-
vices implemented within a virtual private cloud (e.g., a
local-area-network-like environment implemented on the
service 160 on behalf of a given user), the environment 502
may be created to exist logically within that cloud, such that
a task execution 502 accesses resources within the cloud. In
some instances, a task may be configured to execute within
a private cloud of a client device 102 that submits an /O
request. In other instances, a task may be configured to
execute within a private cloud of an owner of the object or
collection referenced within the request.

[0099] In addition to generating the environment 502, at
(6), the system 120 provisions the environment with stream-
level access to an input file handle 506 and an output file
handle 508, usable to read from and write to the input data
and output data of the task execution, respectively. In one
embodiment, files handle 506 and 508 may point to a
(physical or virtual) block storage device (e.g., disk drive)
attached to the environment 502, such that the task can
interact with a local file system to read input data and write
output data. For example, the environment 502 may repre-
sent a virtual machine with a virtual disk drive, and the
system 120 may obtain the input data from the service 160
and store the input data on the virtual disk drive. Thereafter,
on execution of the code, the system 120 may pass to the
code a handle of the input data as stored on the virtual disk
drive, and a handle of a file on the drive to which to write
output data. In another embodiment, files handle 506 and
508 may point to a network file system, such as an NFS-
compatible file system, on which the input data has been

US 2021/0097024 Al

stored. For example, the frontend 162 during processing of
the call may store the input data as an object on the object
data stores 166, and the file-level interface 166 may provide
file-level access to the input data and to a file representing
output data. In some cases, the file handles 506 and 508 may
point to files on a virtual file system, such as a file system
in user space. By providing handles 506 and 508, the task
code 504 is enabled to read the input data and write output
data using stream manipulations, as opposed to being
required to implement network transmissions. Creation of
the handles 506 and 508 (or streams corresponding to the
handles) may illustratively be achieved by execution of
staging code 157 within or associated with the environment
502.

[0100] The interactions of FIG. 5A are continued in FIG.
5B, where the system 120 executes the task code 504. As the
task code 504 may be user-authored, any number of func-
tionalities may be implemented within the code 504. How-
ever, for the purposes of description of FIGS. 5A and 5B, it
will be assumed that the code 504, when executed, reads
input data from the input file handle 506 (which may be
passed as a commonly used input stream, such as stdin),
manipulates the input data, and writes output data to the
output file handle 508 (which may be passed as a commonly
used output stream, such as stdout). Accordingly, at (8), the
system 120 obtains data written to the output file (e.g., the
file referenced in the output file handle) as output data of the
execution. In addition, at (9), the system 120 obtains a return
value of the code execution (e.g., a value passed in a final
call of the function). For the purposes of description of
FIGS. 5A and 5B, it will be assumed that the return value
indicates success of the execution. At (10), the output data
and the success return value are then passed to the frontend
162.

[0101] While shown as a single interaction in FIG. 5B, in
some embodiments output data of a task execution and a
return value of that execution may be returned separately.
For example, during execution, task code 504 may write to
an output file through the handle 508, and this data may be
periodically or iteratively returned to the service 160. Illus-
tratively, where the output file exists on a file system in user
space implemented by staging code, the staging code may
detect and forward each write to the output file to the
frontend 162. Where the output file exists on a network file
system, writes to the file may directly cause the written data
to be transmitted to the interface 166 and thus the service
160. In some instances, transmitting written data iteratively
may reduce the amount of storage required locally to the
environment 502, since written data can, according to some
embodiments, be deleted from local storage of the environ-
ment 502.

[0102] Inaddition, while a success return value is assumed
in FIGS. 5A and 5B, other types of return value are possible
and contemplated. For example, an error return value may
be used to indicate to the frontend 162 that an error occurred
during execution of task code 504. As another example,
user-defined return values may be used to control how
conditional branching within a pipeline proceeds. In some
cases, the return value may indicate to the frontend 162 a
request for further processing. For example, a task execution
may return to the frontend 162 a call to execute another
serverless task (potentially not specified within a path modi-
fication for the current /O path). Moreover, return values
may specify to the frontend 162 what return value is to be

Apr. 1,2021

returned to the client device 102A. For example, a typical
PUT request method called at the service 160 may be
expected to return an HTTP 200 code (“OK”). As such, a
success return value from the task code may further indicate
that the frontend 162 should return an HTTP 200 code to the
client device 102A. An error return value may, for example,
indicate that the frontend 162 should return a 3XX HTTP
redirection or 4XX HTTP error code to the client device
102A. Still further, in some cases, return values may specity
to the frontend 162 content of a return message to the client
device 102A other than a return value. For example, the
frontend 162 may be configured to return a given HTTP
code (e.g., 200) for any request from the client device 102A
that is successfully retrieved at the frontend 162 and invokes
a data processing pipeline. A task execution may then be
configured to specify, within its return value, data to be
passed to the client device 102A in addition to that HTTP
code. Such data may illustratively include structured data
(e.g., extensible markup language (XML) data) providing
information generated by the task execution, such as data
indicating success or failure of the task. This approach may
beneficially enable the frontend 162 to quickly respond to
requests (e.g., without awaiting execution of a task) while
still enabling a task execution to pass information to the
client device 102.

[0103] For purposes of the present illustration, it will be
assumed that the success return value of the task indicates
that an HTTP 2XX success response should be passed to the
device 102A. Accordingly, on receiving output data, the
frontend 162 stores the output data as an object within the
object data stores 166, (11). Interaction (11) illustratively
corresponds to implementation of the PUT request method,
initially called for by the client device 102A, albeit by
storing the output of the task execution rather than the
provided input data. After implementing the called PUT
request method, the frontend 162, at (12), returns to the
client device 102A the success indicator indicated by the
success return value of the task (e.g., an HT'TP 200 response
code). Thus, from the perspective of the client device 102A,
a call to PUT an object on the storage service 160 resulted
in creation of that object on the service 160. However, rather
than storing the input data provided by the device 102A, the
object stored on the service 160 corresponds to output data
of an owner-specified task, thus enabling the owner of the
object greater control over the contents of that object. In
some use cases, the service 160 may additionally store the
input data as an object (e.g., where the owner-specified task
corresponds to code executable to provide output data usable
in conjunction with the input data, such as checksum gen-
erated from the input data).

[0104] With reference to FIGS. 6A and 6B, illustrative
interactions will be discussed for applying a modification to
an 1/O path for a request to retrieve an object on the service
160, which request is referred to in connection with these
figures as a “GET” request or “GET call.” While shown in
two figures, numbering of interactions is maintained across
FIGS. 6A and 6B.

[0105] The interactions begin at (1), where a client device
102A submits a GET call to the storage service 160, corre-
sponding to a request to obtain data of an object (identified
within the call) stored on the service 160. As shown in FIG.
6A, the call is directed to a frontend 162 of the service 160
that, at (2), retrieves from the /O path modification data
store 164 an indication of modifications to the I/O path for

US 2021/0097024 Al

the call. For example, in FIG. 6A, the /O path used can
correspond to use of a GET request method directed to a
particular URI (e.g., associated with the frontend 162) to
retrieve an object in a particular logical location on the
service 160 (e.g., a specific bucket). In FIGS. 6A and 6B, it
is assumed that an owner of that logical location has
previously specified a modification to the /O path, and
specifically, has specified that a serverless function should
be applied to the object before a result of that function is
returned to the device 102A as the requested object.

[0106] Accordingly, at (3), the frontend 162 detects within
the modifications for the I/O path inclusion of a serverless
task execution. Thus, at (4), the frontend 162 submits a call
to the on-demand code execution system 120 to execute the
task specified within the modifications against the object
specified within the call. The on-demand code execution
system 120, at (5), therefore generates an execution envi-
ronment 502 in which to execute code corresponding to the
task. Illustratively, the call may be directed to a frontend 130
of the system, which may distribute instructions to a worker
manager 140 to select or generate a VM instance 150 in
which to execute the task, which VM instance 150 illustra-
tively represents the execution environment 502. During
generation of the execution environment 502, the system
120 further provisions the environment with code 504 of the
task indicated within the /O path modification (which may
be retrieved, for example, from the object data stores 166).
While not shown in FIG. 6A, the environment 502 further
includes other dependencies of the code, such as access to an
operating system, a runtime required to execute the code,
etc.

[0107] In addition, at (6), the system 120 provisions the
environment with file-level access to an input file handle 506
and an output file handle 508, usable to read from and write
to the input data (the object) and output data of the task
execution, respectively. As discussed above, files handle 506
and 508 may point to a (physical or virtual) block storage
device (e.g., disk drive) attached to the environment 502,
such that the task can interact with a local file system to read
input data and write output data. For example, the environ-
ment 502 may represent a virtual machine with a virtual disk
drive, and the system 120 may obtain the object referenced
within the call from the service 160, at (6'), and store the
object on the virtual disk drive. Thereafter, on execution of
the code, the system 120 may pass to the code a handle of
the object as stored on the virtual disk drive, and a handle of
a file on the drive to which to write output data. In another
embodiment, files handle 506 and 508 may point to a
network file system, such as an NFS-compatible file system,
on which the object has been stored. For example, the
file-level interface 166 may provide file-level access to the
object as stored within the object data stores, as well as to
a file representing output data. By providing handles 506 and
508, the task code 504 is enabled to read the input data and
write output data using stream manipulations, as opposed to
being required to implement network transmissions. Cre-
ation of the handles 506 and 508 may illustratively be
achieved by execution of staging code 157 within or asso-
ciated with the environment 502.

[0108] The interactions of FIG. 6A are continued in FIG.
6B, where the system 120 executes the task code 504 at (7).
As the task code 504 may be user-authored, any number of
functionalities may be implemented within the code 504.
However, for the purposes of description of FIGS. 6A and

Apr. 1,2021

6B, it will be assumed that the code 504, when executed,
reads input data (corresponding to the object identified
within the call) from the input file handle 506 (which may
be passed as a commonly used input stream, such as stdin),
manipulates the input data, and writes output data to the
output file handle 508 (which may be passed as a commonly
used output stream, such as stdout). Accordingly, at (8), the
system 120 obtains data written to the output file (e.g., the
file referenced in the output file handle) as output data of the
execution. In addition, at (9), the system 120 obtains a return
value of the code execution (e.g., a value passed in a final
call of the function). For the purposes of description of
FIGS. 6A and 6B, it will be assumed that the return value
indicates success of the execution. At (10), the output data
and the success return value are then passed to the frontend
162.

[0109] On receiving output data and the return value, the
frontend 162 returns the output data of the task execution as
the requested object. Interaction (11) thus illustratively cor-
responds to implementation of the GET request method,
initially called for by the client device 102A, albeit by
returning the output of the task execution rather than the
object specified within the call. From the perspective of the
client device 102A, a call to GET an object from the storage
service 160 therefore results in return of data to the client
device 102A as the object. However, rather than returning
the object as stored on the service 160, the data provided to
the client device 102A corresponds to output data of an
owner-specified task, thus enabling the owner of the object
greater control over the data returned to the client device
102A.

[0110] Similarly to as discussed above with respect to
FIGS. 5A and 5B, while shown as a single interaction in
FIG. 6B, in some embodiments output data of a task
execution and a return value of that execution may be
returned separately. In addition, while a success return value
is assumed in FIGS. 6A and 6B, other types of return value
are possible and contemplated, such as error values, pipe-
line-control values, or calls to execute other data manipu-
lations. Moreover, return values may indicate what return
value is to be returned to the client device 102A (e.g., as an
HTTP status code). In some instances, where output data is
iteratively returned from a task execution, the output data
may also be iteratively provided by the frontend 162 to the
client device 102A. Where output data is large (e.g., on the
order of hundreds of megabytes, gigabytes, etc.), iteratively
returning output data to the client device 102A can enable
that data to be provided as a stream, thus speeding delivery
of the content to the device 102A relative to delaying return
of the data until execution of the task completes.

[0111] While illustrative interactions are described above
with reference to FIGS. 5A-6B, various modifications to
these interactions are possible and contemplated herein. For
example, while the interactions described above relate to
manipulation of input data, in some embodiments a server-
less task may be inserted into the /O path of the service 160
to perform functions other than data manipulation. [llustra-
tively, a serverless task may be utilized to perform validation
or authorization with respect to a called request method, to
verify that a client device 102A is authorized to perform the
method. Task-based validation or authorization may enable
functions not provided natively by the service 160. For
example, consider a collection owner who wishes to limit
certain client devices 102 to accessing only objects in the

US 2021/0097024 Al

collection created during a certain time range (e.g., the last
30 days, any time excluding the last 30 days, etc.). While the
service 160 may natively provide authorization on a per-
object or per-collection basis, the service 160 may in some
cases not natively provide authorization on a duration-since-
creation basis. Accordingly, embodiments of the present
disclosure enable the owner to insert into an /O path to the
collection (e.g., a GET path using a given URI to the
collection) a serverless task that determines whether the
client is authorized to retrieve a requested object based on a
creation time of that object. [llustratively, the return value
provided by an execution of the task may correspond to an
“authorized” or “unauthorized” response. In instances where
a task does not perform data manipulation, it may be
unnecessary to provision an environment of the task execu-
tion with input and output stream handles. Accordingly, the
service 160 and system 120 can be configured to forego
provisioning the environment with such handles in these
cases. Whether a task implements data manipulation may be
specified, for example, on creation of the task and stored as
metadata for the task (e.g., within the object data stores 166).
The service 160 may thus determine from that metadata
whether data manipulation within the task should be sup-
ported by provisioning of appropriate stream handles.

[0112] While some embodiments may utilize return values
without use of stream handles, other embodiments may
instead utilize stream handles without use of return values.
For example, while the interactions described above relate to
providing a return value of a task execution to the storage
service 160, in some instances the system 120 may be
configured to detect completion of a function based on
interaction with an output stream handle. Illustratively,
staging code within an environment (e.g., providing a file
system in user space or network-based file system) may
detect a call to deallocate the stream handle (e.g., by calling
a “file.close()” function or the like). The staging code may
interpret such a call as successful completion of the function,
and notify the service 160 of successful completion without
requiring the task execution to explicitly provide return
value.

[0113] While the interactions described above generally
relate to passing of input data to a task execution, additional
or alternative information may be passed to the execution.
By way of non-limiting example, such information may
include the content of the request from the client device 102
(e.g., the HTTP data transmitted), metadata regarding the
request (e.g., a network address from which the request was
received or a time of the request), metadata regarding the
client device 102 (e.g., an authentication status of the device,
account time, or request history), or metadata regarding the
requested object or collection (e.g., size, storage location,
permissions, or time created, modified, or accessed). More-
over, in addition or as an alternative to manipulation of input
data, task executions may be configured to modify metadata
regarding input data, which may be stored together with the
input data (e.g., within the object) and thus written by way
of an output stream handle, or which may be separately
stored and thus modified by way of a metadata stream
handle, inclusion of metadata in a return value, or separate
network transmission to the service 160.

[0114] With reference to FIG. 7, an illustrative routine 700
for implementing owner-defined functions in connection
with an I/O request obtained at the object storage service of
FIG. 1 over an I/O path will be described. The routine 700

Apr. 1,2021

may illustratively be implemented subsequent to association
of an 1/O path (e.g., defined in terms of an object or
collection, a mechanism of access to the object or collection,
such as a URI, an account transmitting an 10 request, etc.)
with a pipeline of data manipulations. For example, the
routine 700 may be implemented prior to the interactions of
FIG. 3, discussed above. The routine 700 is illustratively
implemented by a frontend 162.

[0115] The routine 700 begins at block 702, where the
frontend 162 obtains a request to apply an I/O method to
input data. The request illustratively corresponds to a client
device (e.g., an end user device). The /O method may
correspond, for example, to an HTTP request method, such
as GET, PUT, LIST, DELETE, etc. The input data may be
included within the request (e.g., within a PUT request), or
referenced in the request (e.g., as an existing object on the
object storage service 160.

[0116] At block 704, the frontend 162 determines one or
more data manipulations in the /O path for the request. As
noted above, the I/O path may be defined based on a variety
of criteria (or combinations thereof), such as the object or
collection referenced in the request, a URI through which
the request was transmitted, an account associated with the
request, etc. Manipulations for each defined /O path may
illustratively be stored at the object storage service 160.
Accordingly, at block 704, the frontend 162 may compare
parameters of the /O path for the request to stored data
manipulations at the object storage service 160 to determine
data manipulations inserted into the I/O path. In one embodi-
ment, the manipulations form a pipeline, such as the pipeline
400 of FIG. 4, which may be previously stored or con-
structed by the frontend 162 at block 704 (e.g., by combin-
ing multiple manipulations that apply to the I/O path). In
some instances, an additional data manipulation may be
specified within the request, which data manipulation may
be inserted, for example, prior to pre-specified data manipu-
lations (e.g., not specified within the request). In other
instances, the request may exclude reference to any data
manipulation.

[0117] At block 706, the frontend 162 passes input data of
the I/O request to an initial data manipulation for the I/O
path. The initial data manipulation may include, for
example, a native manipulation of the object storage service
160 or a serverless task defined by an owner of the object or
collection referenced in the call. Illustratively, where the
initial data manipulation is a native manipulation, the fron-
tend 162 may pass the input to the object manipulation
engine 170 of FIG. 1. Where the initial data manipulation is
a serverless task, the frontend 162 can pass the input to the
on-demand code execution system 120 of FIG. 1 for pro-
cessing via an execution of the task. An illustrative routine
for implementing a serverless task is described below with
reference to FIG. 8.

[0118] While FIG. 7 illustratively describes data manipu-
lations, in some instances other processing may be applied
to an I/O path by an owner. For example, an owner may
insert into an I/O path for an object or collection a serverless
task that provides authentication independent of data
manipulation. Accordingly, in some embodiments block 706
may be modified such that other data, such as metadata
regarding a request or an object specified in the request, is
passed to an authentication function or other path manipu-
lation.

US 2021/0097024 Al

[0119] Thereafter, the routine 700 proceeds to block 708,
where the implementation of the routine 700 varies accord-
ing to whether additional data manipulations have been
associated with the I/O path. If so, the routine 700 proceeds
to block 710, where an output of a prior manipulation is
passed to a next manipulation associated with the /O path
(e.g., a subsequent stage of a pipeline).

[0120] Subsequent to block 710, the routine 700 then
returns to block 708, until no additional manipulations exist
to be implemented. The routine 700 then proceeds to block
712, where the frontend 162 applies the called /O method
(e.g., GET, PUT, POST, LIST, DELETE, etc.) to the output
of the prior manipulation. For example, the frontend 162
may provide the output as a result of a GET or LIST request,
or may store the output as a new object as a result of a PUT
or POST request. The frontend 162 may further provide a
response to the request to a requesting device, such as an
indication of success of the routine 700 (or, in cases of
failure, failure of the routine). In one embodiment, the
response may be determined by a return value provided by
a data manipulation implemented at blocks 706 or 710 (e.g.,
the final manipulation implemented before error or success).
For example, a manipulation that indicates an error (e.g.,
lack of authorization) may specify an HTTP code indicating
that error, while a manipulation that proceeds successfully
may instruct the frontend 162 to return an HTTP code
indicating success, or may instruct the frontend 162 to return
a code otherwise associated with application of the I/O
method (e.g., in the absence of data manipulations). The
routine 700 thereafter ends at block 714.

[0121] Notably, application of the called method to that
output, as opposed to input specified in an initial request,
may alter data stored in or retrieved from the object storage
service 160. For example, data stored on the service 160 as
an object may differ from the data submitted within a request
to store such data. Similarly, data retrieved from the system
as an object may not match the object as stored on the
system. Accordingly, implementation of routine 700 enables
an owner of data objects to assert greater control over I/O to
an object or collection stored on the object storage service
160 on behalf of the owner.

[0122] In some instances, additional or alternative blocks
may be included within the routine 700, or implementation
of such blocks may include additional or alternative opera-
tions. For example, as discussed above, in addition to or as
an alternative to providing output data, serverless task
executions may provide a return value. In some instances,
this return value may instruct a frontend 162 as to further
actions to take in implementing the manipulation. For
example, an error return value may instruct the frontend 162
to halt implementation of manipulations, and provide a
specified error value (e.g., an HTTP error code) to a request-
ing device. Another return value may instruct the frontend
162 to implement an additional serverless task or manipu-
lation. Thus, the routine 700 may in some cases be modified
to include, subsequent to blocks 706 and 710 for example,
handling of the return value of a prior manipulation (or block
708 may be modified to include handling of such a value).
Thus, the routine 700 is intended to be illustrative in nature.

[0123] With reference to FIG. 8, an illustrative routine 800
will be described for executing a task on the on-demand
code execution system of FIG. 1 to enable data manipula-
tions during implementation of an owner-defined function.

Apr. 1,2021

The routine 800 is illustratively implemented by the on-
demand code execution system 120 of FIG. 1.

[0124] The routine 800 begins at block 802, where the
system 120 obtains a call to implement a stream manipula-
tion task (e.g., a task that manipulations data provided as an
input 10 stream handle). The call may be obtained, for
example, in conjunction with blocks 706 or 710 of the
routine 700 of FIG. 7. The call may include input data for the
task, as well as other metadata, such as metadata of a request
that preceded the call, metadata of an object referenced
within the call, or the like.

[0125] At block 804, the system 120 generates an execu-
tion environment for the task. Generation of an environment
may include, for example, generation of a container or
virtual machine instance in which the task may execute and
provisioning of the environment with code of the task, as
well as any dependencies of the code (e.g., runtimes, librar-
ies, etc.). In one embodiment, the environment is generated
with network permissions corresponding to permissions
specified for the task. As discussed above, such permissions
may be restrictively (as opposed to permissively) set,
according to a whitelist for example. As such, absent speci-
fication of permissions by an owner of an I/O path, the
environment may lack network access. Because the task
operates to manipulate streams, rather than network data,
this restrictive model can increase security without detri-
mental effect on functionality. In some embodiments, the
environment may be generated at a logical network location
providing access to otherwise restricted network resources.
For example, the environment may be generated within a
virtual private local area network (e.g., a virtual private
cloud environment) associated with a calling device.
[0126] At block 806, the system 120 stages the environ-
ment with an 1O stream representing to input data. [llustra-
tively, the system 120 may configure the environment with
a file system that includes the input data, and pass to the task
code a handle enabling access of the input data as a file
stream. For example, the system 120 may configure the
environment with a network file system, providing network-
based access to the input data (e.g., as stored on the object
storage system). In another example, the system 120 may
configure the environment with a “local” file system (e.g.,
from the point of view of an operating system providing the
file system), and copy the input data to the local file system.
The local file system may, for example, be a filesystem in
user space (FUSE). In some instances, the local file system
may be implemented on a virtualized disk drive, provided by
the host device of the environment or by a network-based
device (e.g., as a network-accessible block storage device).
In other embodiments, the system 120 may provide the 10
stream by “piping” the input data to the execution environ-
ment, by writing the input data to a network socket of the
environment (which may not provide access to an external
network), etc. The system 120 further configures the envi-
ronment with stream-level access to an output stream, such
as by creating a file on the file system for the output data,
enabling an execution of the task to create such a file, piping
a handle of the environment (e.g., stdout) to a location on
another VM instance colocated with the environment or a
hypervisor of the environment, etc.

[0127] At block 808, the task is executed within the
environment. Execution of the task may include executing
code of the task, and passing to the execution handles or
handles of the input stream and output stream. For example,

US 2021/0097024 Al

the system 120 may pass to the execution a handle for the
input data, as stored on the file system, as a “stdin” variable.
The system may further pass to the execution a handle for
the output data stream, e.g., as a “stdout” variable. In
addition, the system 120 may pass other information, such as
metadata of the request or an object or collection specified
within the request, as parameters to the execution. The code
of the task may thus execute to conduct stream manipula-
tions on the input data according to functions of the code,
and to write an output of the execution to the output stream
using OS-level stream operations.

[0128] The routine 800 then proceeds to block 810, where
the system 120 returns data written to the output stream as
output data of the task (e.g., to the frontend 162 of the object
storage system). In one embodiment, block 810 may occur
subsequent to the execution of the task completing, and as
such, the system 120 may return the data written as the
complete output data of the task. In other instances, block
810 may occur during execution of the task. For example,
the system 120 may detect new data written to the output
stream and return that data immediately, without awaiting
execution of the task. [llustratively, where the output stream
is written to an output file, the system 120 may delete data
of the output file after writing, such that sending of new data
immediately obviates a need for the file system to maintain
sufficient storage to store all output data of the task execu-
tion. Still further, in some embodiments, block 810 may
occur on detecting a close of the output stream handle
describing the output stream.

[0129] In addition, at block 812, subsequent to the execu-
tion completing, the system 120 returns a return value
provided by the execution (e.g., to the frontend 162 of the
object storage system). The return value may specify an
outcome of the execution, such as success or failure. In some
instances, the return value may specify a next action to be
undertaken, such as implementation an additional data
manipulation. Moreover, the return value may specify data
to be provided to a calling device requesting an 1/O opera-
tion on a data object, such as an HTTP code to be returned.
As discussed above, the frontend 162 may obtain such return
value and undertake appropriate action, such as returning an
error or HT'TP code to a calling device, implementing an
additional data manipulation, performing an I/O operation
on output data, etc. In some instances, a return value may be
explicitly specified within code of the task. In other
instances, such as where no return value is specified within
the code, a default return value may be returned (e.g., a ‘1’
indicating success). The routine 800 then ends at block 814.
[0130] With reference to FIG. 9, illustrative interactions
are depicted for enabling a client device 102A to modify an
1/0O path for one or more objects on an object storage service
160 by inserting data access control code (or function) into
the I/O path, where the data access control code is execut-
able on the on-demand code execution system 120.

[0131] The interactions of FIG. 9 begin at (1), where the
client device 102A authors the data access control code (or
function). As described herein, the data access control code
may be a set of computer-executable instructions written or
provided by the owner of the requested data object to
provide customized access to the data object. The data
access control code may be similar to other user codes
described in the present disclosure (e.g., with reference to
FIG. 1). The data access control code can process an
incoming request to access a data object stored on the

Apr. 1,2021

service 160 (i.e., “data request”), determine metadata asso-
ciated with the data request (i.e., “request metadata™), iden-
tify metadata associated with the requested data object (i.e.,
“data metadata”), and determine whether the user submitting
the data request (i.e., “requesting user”) should be granted
access to the requested data object, and if so, to which
portions of the data object the requesting user should be
given access.

[0132] For example, the data access control code may
determine, based on the identity of the requesting user (e.g.,
indicated by the incoming data request), that the requesting
user does not have access to the requested data object and
deny the data request. Alternatively, the data access control
code may determine, based on the identity of the requesting
user, that the requesting user does have access to the
requested data object and return the requested data object to
the requesting user. In some cases, the data access control
code contains the information needed to make the decision
to grant or deny access. In other cases, the data access
control code retrieves such information at an external data-
base (e.g., with or without the data owner/provider’s cre-
dentials) and makes the decision based on the retrieved
information. For example, the data access control code may
access a user access table indicating, for each respective user
of a plurality of users of the object storage service (or those
associated with or identified by the owner of the data object),
one or more portions of the data object accessible by the
respective user. As noted above, the data access control code
may be authored in a variety of programming languages.
Authoring tools for such languages are known in the art and
thus will not be described herein. While authoring of the data
access control code is described in FIG. 9 as occurring on the
client device 102A, the service 160 may in some instances
provide interfaces (e.g., web GUIs) through which to author
or select the data access control code.

[0133] At (2), the client device 102A submits the data
access control code to the frontend 162 of the service 160,
and at (3), requests that an execution of the data access
control code be inserted into an I/O path for one or more data
objects stored by the service 160. Illustratively, the frontend
162 may provide one or more interfaces to the client device
102A enabling submission of the data access control code
(e.g., as a compressed file). The frontend 162 may further
provide interfaces enabling designation of one or more I/O
paths to which an execution of the data access control code
should be applied. Each /O path may correspond, for
example, to an object or collection of objects (e.g., a
“bucket” of objects). In some instances, an 1/O path may
further correspond to a given way of accessing such object
or collection (e.g., a URI through which the object is
accessed), to one or more accounts attempting to access the
object or collection (e.g., the user account of a requesting
user who has submitted the request to access the object or
collection), or to other path criteria. For example, in some
cases, the data access control code may be inserted into only
some of the 1/O paths. In other cases, the data access control
code is inserted into all of the /O paths. For example, an
authorization check different from that performed by the
data access control code may be performed outside the 1/O
paths (e.g., for requests that do not relate to the I/O paths),
and the data access control code may be executed in
response to receiving a request for one of the I/O paths (e.g.,
in addition to the authorization check or instead of the
authorization check). As another example, the indication to

US 2021/0097024 Al

execute the data access control code stored by the service
160 may indicate that the data access control code is to be
executed as part of an authorization path and may not
contain a reference to any specific I/O path. In yet other
cases, different data access control codes are inserted into
different I/O paths (e.g., a default data access control code is
inserted into some of the I/O paths, and a stricter data access
control code is inserted into the other 1/O paths). Designa-
tion of the I/O path modification (e.g., from a default I/O
path that does not include execution of any owner-submitted
code to a modified I/O path that includes the execution of the
data access control code) is then stored in the 1/O path
modification data store 164, at (4). Additionally, the data
access control code is stored within the object data stores
166 at (5). Although the example of FIG. 9 illustrates the
data access control code being stored in the object data store
166 in response to a request to insert the data access control
code into the I/O path, in other embodiments, the data access
control code may have been previously stored in either the
object data store 166 or another storage device in commu-
nication with the object storage service 160 or the on-
demand code execution system 120, and the data access
control code may be identified by its identifier in the request
sent to the object storage service 160 at (2)/(3).

[0134] As such, when a data request is received via the
specified /O path that was modified at (4), the service 160
executes the data access control code against the data
request and the input data for the data request (e.g., data
provided by the client device 102A or an object of the
service 160, depending on the nature of the I/O request). The
data access control code then determines, based on the data
request (or metadata thereof) and the input data, whether the
data request should be granted as is, granted with modifi-
cation, or denied. For example, based on determining that
the data request should be granted as is, the data access
control code may cause the requested data object to be
returned to the requesting user. As another example, based
on determining that the data request should be granted with
modification, the data access control code may cause a
modified version of the requested data object to be returned
to the requesting user (e.g., by first performing data removal,
data redaction, or data aggregation on the data object, and
returning the result of the data removal, data redaction, or
data aggregation to the requesting user). As yet another
example, based on determining that the data request should
be denied, the data access control code may return an error
message to the requesting user (e.g., indicating that the
requesting user does not have permission to access the
requested data object). In this manner, a client device 102A
(which in FIG. 9 illustratively represents the computing
device of an owner or provider of the requested data object
or object collection) can obtain greater control over data
stored on and retrieved from the object storage service 160.
[0135] With reference to FIGS. 10A and 10B, illustrative
interactions will be discussed for processing a data request
received by the service 160 via an I/O path that has been
modified to include execution of a data access control code,
using a “GET” call as an example. While shown in two
figures, numbering of interactions is maintained across
FIGS. 10A and 10B.

[0136] The interactions begin at (1), where a client device
102B (e.g., a client device of a requesting user different from
the client device 102A of FIG. 9 used by the data owner/
provider) submits a GET call to the object storage service

Apr. 1,2021

160, which corresponds to a request to obtain data of an
object (identified within the call) stored on the service 160.
As shown in FIG. 10A, the call is directed to a frontend 162
of the service 160 that, at (2), retrieves from the /O path
modification data store 164 an indication of modifications to
the I/O path for the call. For example, in FIG. 10A, the I/O
path used can correspond to the use of a GET request method
directed to a particular URI (e.g., associated with the fron-
tend 162) to retrieve an object in a particular logical location
on the service 160 (e.g., a specific data bucket). In FIGS.
10A and 10B, it is assumed that an owner of that logical
location has previously specified a modification to the /O
path (e.g., as illustrated in FIG. 9), and specifically, has
specified that a data access control code submitted or
selected by the owner should be executed (e.g., on the
service 160 or on the on-demand code execution system
120) to determine the level of access associated with the
requesting user and to process the data request according to
the determined level of access. In some embodiments, the
GET call specifies one or more additional data manipulation
codes that need to be executed on the output data before the
output data is returned to the client device 102B. Upon
detecting such additional data manipulation codes, the fron-
tend 162 cause the additional data manipulation codes to be
executed on the on-demand code execution system 120 on
top of the user codes already configured (e.g., before the
GET call is received from the client device 102B) to be
executed in connection with the requested /O path. The one
or more additional data manipulation codes may belong to
the owner or provider of the requested data object, to the
user submitting the GET call, to a third party other than the
data owner/provider or the user, or any combination thereof.

[0137] Accordingly, at (3), the frontend 162 determines
that the modification data retrieved from the /O path
modification data store 164 includes an execution of the data
access control code. As described herein, the data access
control code may be a set of computer-executable instruc-
tions written or provided by the owner of the requested data
object to provide customized access to the data object. The
data access control code may be similar to other user codes
described in the present disclosure (e.g., with reference to
FIG. 1). In some cases, the data access control code is the
only owner-submitted code in the I/O path, and the data
access control code returns a value indicative of whether the
requesting user is allowed to access the requested data object
(or in cases where more than two levels of access exist, the
specific level of access associated with the requesting user
with respect to the requested data object) without perform-
ing additional tasks on the requested data object such as
manipulating the requested data object in some way (e.g.,
filter, redact, process, aggregate, encrypt, summarize, or
obfuscate the requested data object). In other cases, such a
data access control code is present in the I/O path along with
one or more other owner-submitted codes that are each
configured to accomplish a different task (e.g., a task other
than data access control, such as data modification, analytics
data generation, data access log generation, etc.). By having
the data access control code focus solely on the data access
decision and not on other data manipulation tasks, the data
access control code can be executed in a much more
light-weight manner, which may speed up the processing of
the data access decision and may allow more efficient re-use
of the outcome of the data access decision (e.g., by caching
the data access decision or sending the data access decision

US 2021/0097024 Al

to multiple data manipulation tasks in parallel). In yet other
cases, the data access control code present in the I/O path
determines whether the requesting user is allowed to access
the requested data object (or in cases where more than two
levels of access exist, the specific level of access associated
with the requesting user with respect to the requested data
object), and based on the determination, performs one or
more additional data manipulation tasks corresponding to
the determined level of access (e.g., as illustrated in FIGS.
6A and 6B). Thus, at (4), the frontend 162 submits a call to
the on-demand code execution system 120 to execute the
data access control code specified within the modification
data. For example, a code execution request may be gener-
ated and transmitted to the on-demand code execution
system 120, where the code execution request includes (or
identifies) the data access control code along with any
information to be used by the data access control code to
determine whether and how the requesting user should be
given access to the requested data object. Such information
may include the identity of the requesting user, identity of
the requested data object, content of the requested data
object, timestamp associated with the data request, identity
of the owner of the requested data object, or any other data
or metadata associated with the data request or the requested
data object. The on-demand code execution system 120, at
(5), therefore generates an execution environment 502 in
which to execute the data access control code (e.g., indicated
by the code execution request received by the on-demand
code execution system 120. For example, the code execution
request may be sent to a frontend 130 of the system 120,
which may distribute instructions to a worker manager 140
of the system 120 to select or generate a VM instance 150
in which to execute the data access control code, in which
case the VM instance 150 would represent the execution
environment 502 illustrated in FIG. 10A. During generation
of the execution environment 502, the system 120 further
provisions the execution environment 502 with the data
access control code 504 indicated by the I/O path modifi-
cation data. The data access control code 504 may be
retrieved, for example, from the object data stores 166.
While not shown in FIG. 10A, the execution environment
502 further includes other dependencies of the data access
control code 504, such as access to an operating system, a
runtime required to execute the data access control code 504,
etc.

[0138] The interactions of FIG. 10A are continued in FIG.
10B, where the on-demand code execution system 120
executes the data access control code 504 at (6). As the data
access control code 504 may be user-authored (e.g.,
authored by the owner of the requested data object), any
number of functionalities may be implemented within the
data access control code 504. However, for the purposes of
description of FIGS. 10A and 10B, it will be assumed that
the data access control code 504, when executed, determine
data or metadata associated with the data request, determine
data or metadata associated with the requested data object,
and determine whether the user submitting the data request
(i.e., “requesting user”) should be granted access to the
requested data object. Additionally, the data access control
code 504 may, when executed, determine which portions of
the requested data object should be returned to the request-
ing user. Although not illustrated in FIGS. 10A and 10B, in
some embodiments, the execution environment 502 includes
the file descriptors 506 and 508 described above with

Apr. 1,2021

reference to FIGS. 6A and 6B, and the data access control
code 504, when executed, writes output data to the output
file (e.g., indicated by the output file descriptor 508) using
the input data (e.g., indicated by the input file descriptor
506) such that the output data is commensurate with the
requesting user’s level of access. For example, based on the
requesting user having full access to the requested data
object, the entire data object may be written to the output
file. As another example, based on the requesting user
having access to only a subset of the requested data object,
the subset of the requested data object may be written to the
output file. As yet another example, based on the requesting
user having access to only a modified version of the
requested data object (e.g., an encrypted version that does
not include the underlying data object in its unencrypted
form, an aggregated version that does not include the
underlying data object in its raw form, etc.), the modified
version of the requested data object may be written to the
output file. Alternatively, in some embodiments, the execu-
tion of the data access control code 504 returns an indication
of the requesting user’s level of access, and the service 160
(or another code execution) handles the reading from or
writing to such file descriptors to return the requested data
object (or a modified version thereof) to the requesting user.

[0139] Accordingly, at (7), the system 120 obtains a return
value of the execution of the data access control code 504
(e.g., a value passed in a final call of the function within the
data access control code 504). For the purposes of descrip-
tion of FIGS. 10A and 10B, it will be assumed that the return
value indicates that the data access control code 504 was
successfully executed. At (8), the success return value is
then passed to the frontend 162. The success return value
may be indicative of whether the requesting user is allowed
to access the requested data object (or in cases where more
than two levels of access exist, the specific level of access
associated with the requesting user with respect to the
requested data object). This value may be cached or pro-
vided to other processes or tasks for re-use. For example, if
the value indicates that User A is allowed to access Data
Object X, the value can be cached, and when the service 160
receives another request to access Data Object X (or another
data object associated with the same access level as Data
Object X) from User A (or another user whose access level
is configured to be the same as User A’s access level or more
inclusive than User A’s access level), the service 160 can
return the requested data object based on the cached value
without having to execute the data access control code.
Additionally, such re-use of the data access decision can also
provide a defense against a malicious requestor trying to
overload the service 160 or the on-demand code execution
system 120 with a large number of data requests. The cached
value can be specific to requesting users (e.g., data requests
from Users A and B may see and re-use the cached value, but
data requests from User C may not), requested data object
(e.g., data requests for Data Objects X and Y may see and
re-use the cached value, but data requests for Data Object Z
may not), level of access (e.g., data requests for a data object
having Security Level S1 may see and re-use the cached
value, but data requests for a data object having Security
Level S2 may not), geographical regions (e.g., data requests
associated with Data Center A may see and re-use the cached
value, but data requests associated with Data Center B may
not), and any combination thereof.

US 2021/0097024 Al

[0140] On receiving the return value, the frontend 162
generates client-specific output data based on the return
value and returns the client-specific output data as the
requested data object at (9). For example, based on the return
value indicating that the requesting user has full access to the
requested data object, the entire data object may be included
in the client-specific output data. As another example, based
on the return value indicating that the requesting user has
access to only a subset of the requested data object, the
subset of the requested data object may be included in the
client-specific output data. As yet another example, based on
the return value indicating that the requesting user has
access to only a modified version of the requested data
object (e.g., an encrypted version that does not include the
underlying data object in its unencrypted form, an aggre-
gated version that does not include the underlying data
object in its raw form, etc.), the modified version of the
requested data object may be included in the client-specific
output data. Interaction (9) thus illustratively corresponds to
an implementation of the GET request method, initially
called for by the client device 102B, albeit by returning
output data that may differ from the actual data object
specified within the call. From the perspective of the client
device 102B, a call to GET a data object from the object
storage service 160 therefore results in return of data to the
client device 102B as the object. However, rather than
returning the data object as stored on the service 160, the
data provided to the client device 102B corresponds to
client-specific output data generated based at least in part on
the execution of the data access control code 504, thus
enabling the owner of the data object greater control over the
data returned to the client device 102B. Other details of
FIGS. 10A-10B may be identical or similar to those
described above with reference to FIGS. 6A-6B.

[0141] With reference to FIG. 11, an illustrative routine
1100 will be described for executing an owner-submitted (or
owner-specified) data access control code on the on-demand
code execution system 120 of FIG. 1 to enable user-specific
(e.g., specific to the requesting user), access-level-specific
(e.g., specific to the level of access associated with the
requesting user) data provision in response to an /O request
to the object storage service 160. The routine 1100 is
illustratively implemented by the object storage service 160
of FIG. 1. Although some embodiments of the present
disclosure are described with reference to owner-submitted
codes, such embodiments may also be extended to include
owner-specified codes (e.g., specification of one or more
codes provided by the service 160 or another user of the
service 160).

[0142] The routine 1100 begins at block 1102, where the
service 160 receives data access control code, for example,
from the client device 102A shown in FIG. 9. The data
access control code may be a custom control code generated
or selected by the owner of a data object stored on the
service 160. The service 160 may provide one or more APIs
for registering or selecting custom control code that can be
inserted into the 1/O paths. In some embodiments, an actual
copy of the data access control code is received from the
client device 102A.. In other embodiments, instead of receiv-
ing an actual copy of the data access control code from the
client device 102A, the service 160 receives an identifier
associated with the data access control code from the client
device 102A, where the identifier can be used to identify or
retrieve an actual copy of the data access control code from

Apr. 1,2021

within the service 160 or in another storage device acces-
sible by the service 160. In yet other embodiments, the
service 160 receives an identifier associated with the data
access control code from the client device 102A, and the
identifier is used to cause execution of the data access
control code (e.g., on the on-demand code execution system
120) but the service 160 does not retrieve or store an actual
copy of the data access control code.

[0143] At block 1104, the service 160 stores the data
access control code into one or more /O paths (e.g., by
storing an indication that the data access control code is
associated with the one or more I/O paths). As discussed
above, once the data access control code is stored into an I/O
path, the service 106, upon receiving a call to the 1/O path,
causes the data access control code to be executed.

[0144] At block 1106, the service 160 receives a data
request from a requesting user, where the data request
indicates the data object that the requesting user wishes to
access and the identity of the requesting user providing the
data request. In some embodiments, each user may be
assigned a different portal via which the user can access the
data objects in the object storage service 160. For example,
the portal may be a unique network path into the buckets,
folders, volumes, etc. of data stored by the object storage
service 160. Each portal may be associated with one or more
authorized users and indicate which owner-submitted code
(s) or series of owner-submitted code(s) is placed in the 1/O
path for which operations through the portal (e.g., GET,
PUT, LIST, etc.). For example, for Portal A to a data object,
authorized users may include User A and User B, and the
owner-submitted code(s) placed in a GET path to the data
object may include a data access control code that checks
whether the requesting authorized user is permitted to access
the requested data object and a data processing code that
converts the data object into another format having a smaller
file size. Yet further for Portal A, the owner-submitted
code(s) placed in a PUT path to the data object may include
avirus scanning code that checks for malware before writing
the requested data to the data object. Any other combinations
of authorized users, 1/O operations, and code placement can
be implemented using the techniques described herein. In
some embodiments, each portal is assigned a different
identifier (e.g., DNS name), and the service 160 uses the
identifier identify the specific portal via which a given data
object is requested.

[0145] At block 1108, the service 160 executes the data
access control code using the data request (or metadata
thereof), the requested data object (or metadata thereof), or
both. The data access control code can access the metadata
associated with the data request and the metadata associated
the requested data object, and grant or deny the data request
(or take additional steps before doing so such as perform
data manipulations) based on the accessed metadata. For
example, the data access control code may look up the
requesting user in a permissions table to determine whether
the requesting user has permission to access the requested
data object. As another example, the data access control
code may determine whether the requesting user has the
required security clearance by accessing a government clear-
ance database, determine whether the data request includes
any prohibited keywords, and determine whether the time-
stamp on the requested data object is within the time window
by accessing the metadata associated with the requested data
object as well as accessing a subscriptions database indicat-

US 2021/0097024 Al

ing the subscription time window for the requesting user
(e.g., allowed to access documents less than 1 month old,
allowed to access images more than 5 years old, allowed to
write to or modify data less than 1 week old, and so on).
Based on these determinations, the data access control code
can determine whether the requesting user is allowed to
access the requested data object.

[0146] As another example, the data access control code
can determine that the requested data object is 35 days old
(e.g., by accessing the metadata associated with the
requested data object), and that the user requesting access to
the data object has access to all data objects older than 30
days (e.g., by looking up the identity of the requesting user
indicated in the data request in a data access table), and
based in turn on that determination, grant access to the
requested data object. As another example, User A may be
given a 30-day window to access any data stored by the
service 160 (and owned by the data owner), and User B may
be given archival access to data that more than 1 year old.
Upon receiving a request for a data object from User A, the
data access control code placed in the /O path to the data
object can be executed, and the data access control code can
deny User A’s request based on the requested data object
being 3 months old. Similarly, upon receiving a request for
a data object from User B, the data access control code
placed in the I/O path to the data object can be executed, and
the data access control code can deny User B’s request based
on the requested data object being 3 months old. As another
example, the data access control code may determine that
User A only has access to a portion of the requested data
object (e.g., a portion that relates to specific keywords such
as “legal” or “automobiles™), and return only the portion of
the requested data object to the requesting user (e.g., all data
tagged with keywords “legal” and “automobiles™). As
another example, the data access control code may access a
user access table and determine, based on the user access
table, that User A has access to all columns of the requested
data object and return all of the columns in the data object.
As another example, the data access control code may access
the user access table and determine, based on the user access
table, that User B has access to only the first three columns
of' the five columns included in the data object and return the
first three columns of the data object.

[0147] Although granting or denying access based on a
time window is described as an example, the decision to
grant or deny access can be made on any other criteria such
as prior access by the requesting user (e.g., where the user
can only access the data 3 times, and after the user has
accessed the data three times, subsequent requests for the
data by the same user would be denied), keywords (e.g.,
where the user can only access data relating to the keyword
“books”, and the user’s request would be granted only if the
request is limited to data relating to the keyword “books”),
geographic region associated with the requesting user (e.g.,
where only users from the U.S. can access the data and a
request provided by a user outside the U.S. would be
denied), account status of the user (e.g., where only pre-
mium or VIP users can access the data, and a request
provided by a user who does not have a premium or VIP
account would be denied), a security level associated with
the requested data object (e.g., where the requesting user is
allowed to access data objects that are associated with
Security Level 3, 4, or 5 but not allowed to access data
objects that are associated with Security Level 1 or 2),

Apr. 1,2021

content of the requested data object (e.g., where the request-
ing user is not allowed to access data objects that contain the
word “confidential”), and the like. Although not illustrated
in FIG. 11, the service 160 may cause a default data access
control code to be executed in addition to or instead of a
custom data access control code described above. In some
embodiments, such a default data access control code is
executed before the execution of the custom data access
control code. In other embodiments, such a default data
access control code is executed after the execution of the
custom data access control code.

[0148] In some embodiments, the data access control code
may provide different levels of access depending on the
specific I/O request method called. For example, the data
access control code may determine that the requesting user
has permission to LIST the contents of a given bucket of data
objects even though the requesting user does not have
permission to GET the individual data objects in the given
bucket. As another example, the data access control code
may determine that the requesting user has permission to
LIST the contents of a given bucket of data objects, and that
while the requesting user does not have permission to GET
the individual data objects in their raw format, the requesting
user has permission to GET portions of the individual data
objects or modified (e.g., redacted) versions of the indi-
vidual data objects in the given bucket. In other embodi-
ments, the data access control code provides the same level
of access regardless of the specific I/O request method
called. For example, the data access control code may
determine that the requesting user has permission to LIST
the contents of a bucket of data objects only if the requesting
user also has permission to GET the individual data objects
in the bucket. As another example, the data access control
code may determine that the requesting user has permission
to LIST the contents of a bucket of data objects only if the
requesting user at least has permission to GET portions of
the data objects or modified (e.g., redacted) versions of the
data objects in the bucket. As another example, the data
access control code may determine that the requesting user
has permission to LIST only part of the contents in the
bucket of data objects (e.g., Data Objects 1-4 of Data
Objects 1-6 contained in the bucket), and that the requesting
user has permission to GET a smaller subset of the data
objects (e.g., Data Objects 1-3 of Data Objects 1-4 that the
requesting user has permission to LIST).

[0149] The routine 1100 then proceeds to block 1110,
where the service 160 returns a data access decision value,
which indicates whether the requesting user is allowed to
access the requested data object (or the level of access
associated with the requesting user). Although not illustrated
in FIG. 11, in some embodiments, the service 160 may
return, based on the data access decision value, a version of
the requested data object that is specific to the type of access
associated with the requesting user. For example, based on
the requesting user having full access to the requested data
object as is, the service 160 returns the requested data object
to the requesting user. Although not shown in FIG. 11, the
same requesting user may request the same data object a
week later, and the service 160 may determine that the
requesting user no longer has access to the requested data
object (e.g., due to a change in the requesting user’s access
rights, due to the requesting user’s access to the data object
having exceeded a threshold count allotted to the requesting
user, due to the timestamp associated with the data object

US 2021/0097024 Al

falling outside the time window during which the requesting
user is allowed access the data object, etc.) and deny the
subsequent data request. Alternatively, the requesting user
may be provided different segments of the data object at
different levels of granularity depending on the context in
which the requesting user submits the data request. Thus, by
allowing the owner of the data object to place the data access
control code in the 1/O paths for the data object, the owner
can dynamically control access to the data object. Doing so
may be particularly advantageous for object storage services
having a large number of users whose permission settings
change frequently. For example, a data owner/provider who
utilizes an object storage service to provide data subscription
services to his or her subscribes would find it burdensome to
have to update the permission settings for the individual
subscribers as new subscribers sign up, the existing sub-
scribers change their subscription levels (e.g., basic access to
premium access, or from paid access to free access), and the
context in which the data requests are received from the
individual subscribers change (e.g., the time at which the
data requests are received, the count of prior access, key-
words limiting the data requests, etc.). Instead, the tech-
niques described herein allow such a data owner/provider to
write a data access control code and place it in the /O path,
and have the data access control code dynamically deter-
mine, based on the changing access levels and context,
whether to grant or deny the data requests. The routine 1100
then ends at block 1112.

[0150] With reference to FIG. 12, an illustrative routine
1200 will be described for another embodiment of executing
an owner-submitted (or owner-specified) data access control
code in which additional data manipulation is performed
based on the access level associated with the requesting user.
The routine 1200 is illustratively implemented by the object
storage service 160 of FIG. 1.

[0151] The routine 1200 begins at block 1202, where the
service 160 obtains a request to access a data object stored
by the service 160 from a requesting user, and at block 1204,
the service 160 executes data access control code inserted
into the I/O path associated with the request, in a manner
similar to those described with reference to FIG. 11.

[0152] At block 1206, the service 160 determines the level
of access associated with the requesting user. For example,
the execution of the data access control code may provide an
indication of the level of access associated with the request-
ing user. If the service 160 determines that the requesting
user has full access to the requested data, the service 160, at
block 1208, returns the requested data. If the service 160
determines that the requesting user does not have access to
the requested data, the service 160, at block 1210, denies the
request. Although the example of FIG. 12 illustrates three
levels of access (e.g., full access, modified access, and no
access), any other number of access levels can be utilized to
provide access-level-specific execution of owner-submitted
codes (e.g., to filter, redact, process, aggregate, encrypt,
summarize, or obfuscate the requested data object).

[0153] If the service 160 determines that the requesting
user has modified access (e.g., a level of access different
from full access and no access), the service 160, at block
1212, causes one or more data manipulation task codes to be
executed on the requested data. For example, the service 160
may generate a code execution request and transmit the code
execution request to the on-demand code execution system
120 as illustrated FIGS. 10A-10B. The data manipulation

Apr. 1,2021

task codes may be configured to (i) remove a portion of the
data object (e.g., segments, columns, rows, pages, etc.), (ii)
generate aggregated data by aggregating at least a portion of
the data object such that the user-specific output includes the
aggregated data that is not included in the data object itself
and also does not include at least some data included in the
original data object, or (iii) render a portion of the data
object unintelligible by encryption or redaction of data. In
some cases, the data manipulation is performed only upon
determining that the data request does not satisfy one or
more of a temporal restriction (e.g., the requesting user has
a trial access that has expired, so only the first page of the
documents are provided), geographical restriction (e.g.,
requests from outside the U.S. may be processed to reduce
the file size of the requested image object), keyword restric-
tion (e.g., presence or absence of a specific keyword may
cause the returned data object to be encrypted), restriction on
the number/amount of prior access (e.g., after the requesting
user has used up his or her 1-time unlimited access to the
data object, the subsequent requests for the data object result
in a redacted version of the data object), or other criteria
described with reference to FIG. 11. In other cases, the data
manipulation is performed regardless of whether such
restrictions/criteria are satisfied. Although not illustrated in
FIG. 12, in some embodiments, the data returned to the
requesting user is sent to the user in multiple stages. For
example, in response to determining the requesting user’s
access level with respect to the requested data object at block
1206, the service 160 may send one or more HTTP headers
to the requesting user (first stage) to indicate that a success-
ful access request decision has been made (or that an
authorization failure has occurred), and when the requested
data object is ready to be sent to the requesting user (without
data manipulation at block 1208, or with data manipulation
at block 1214), the service 160 sends the requested data to
the requesting user in one or more HTTP responses (second
stage). In some embodiments, the service 160 sends the one
or more HTTP headers to the requesting user before the
execution of the additional data manipulation codes is
initiated. In other embodiments, the service 160 sends the
one or more HTTP headers to the requesting user after the
execution of the additional data manipulation codes is
initiated but before the execution is completed. In yet other
embodiments, the service 160 sends the one or more HTTP
headers to the requesting user after the execution of the
additional data manipulation codes is completed. By
promptly indicating to the requesting user whether the
access grant decision has been made, the service 160 can
prevent the requesting user from sending additional requests
to try to gain access to the requested data object (e.g., based
on the delay in response from the service 160), thereby
eliminating or reducing the consumption of valuable pro-
cessing and network resources of the service 160 on unnec-
essary requests.

[0154] At block 1214, the service 160 returns the output of
the data manipulation to the requesting user. In some
embodiments, the data manipulation performed on the
requested data object is transparent to the requesting user
such that the requesting user cannot determine whether the
requested data object is returned with or without the data
manipulation. In other embodiments, the requesting user can
determine whether the requested data object is returned with
or without the data manipulation (e.g., based on an indicator
output along with the returned data or a message such as

US 2021/0097024 Al

“here is a preview” or “for a full version, please subscribe
here”). Although data access control code and data manipu-
lation task code are described herein as examples, other
types of user code can be utilized to further customize the
service 160. For example, the data owner/provider may
insert a tracking code in the PUT and GET paths that
monitors the identity of the users uploading data to the
service 160 and downloading data from the service 160 and
generates analytics data (e.g., the number of times User A’s
publication was downloaded by other users, the number of
files User B has downloaded, etc.) that can be stored within
the service 160 or another external logging service. In some
embodiments, a notification, credit, or reward may be pro-
vided to the users based on the analytics data (e.g., a credit
may be provided to a user each time the user’s data is
accessed by another user, or a fee may be charged to a user
each time the user accesses another user’s data). Thus, by
allowing the owner of the data object to place certain codes
(e.g., owner-submitted codes) in the I/O paths for the data
object, the owner can dynamically perform data manipula-
tions to the data object and provide user-specific output data
to the requesting users. Doing so may be particularly advan-
tageous for object storage services having a large number of
users who have different levels of access and different types
of output (e.g., some users having access to the raw data,
some users having access to only a preview version of the
raw data, some users having access to only an aggregate
version of the raw data, some users having access to only a
subset of the raw data, etc.). For example, a data owner/
provider who utilizes an object storage service to provide
data subscription services to his or her subscribes would find
it burdensome to have to configure the object storage service
to provide subscriber-specific types of output to the indi-
vidual subscribers and update the configuration as the indi-
vidual subscribers’ access levels change. Instead, the tech-
niques described herein allow such a data owner/provider to
write a data access control code and one or more data
manipulation codes, and place the codes in the 1/O path, and
have the codes dynamically generate, based on the changing
access levels and context, subscriber-specific versions of the
requested data object (e.g., unmodified, redacted, filtered,
encrypted, etc.) to be returned to the subscribers. The routine
1200 then ends at block 1216.

[0155] With reference to FIG. 13, illustrative interactions
are depicted for enabling a client device 102A to specify
code execution environment rules to control the code execu-
tion environment for the various functions executed on the
on-demand code execution system 120 in response to an [/O
request from a requesting user.

[0156] The interactions of FIG. 13 begin at (1), where the
client device 102A generates code execution environment
rules. The object storage service 160 may provide a user
interface for specifying one or more code execution envi-
ronment rules. For example, the code execution environment
rules may be specified in connection with specific codes
when the codes are provided or specified to the service 160
(e.g., by the author of the codes, by the owner of the codes,
or by the requesting user). At (2), the client device 102A
submits the code execution environment rules to the fron-
tend 162 of the service 160, and the frontend 162 causes the
code execution environment rules to be stored in the object
data store 166, at (3).

[0157] At (4), the frontend 162 causes execution of one or
more owner-submitted codes (e.g., data access control

Apr. 1,2021

codes, data manipulation codes, etc.) on the on-demand code
execution system 120 according to the code execution
environment rules. For example, the worker manager 140
may acquire the compute capacity (e.g., virtual machine
instances or containers created thereon) needed to execute
such owner-submitted codes and configure the compute
capacity according to the code execution environment rules
such that the user code being executed using the compute
capacity is given additional privileges (e.g., access to exter-
nal services or the requesting user’s private resources) or
further restricted in some way (e.g., by disabling establish-
ing network connections with external resources, limiting
the amount of computing resources used by the code,
limiting the amount of time spent on executing the code,
etc.). In some embodiments, two or more templates of code
execution environment rules may have been specified for a
given code execution (e.g., by the author of the code, by the
owner of the code, by the requesting user, or any combina-
tion thereof). In such embodiments, the templates may be
applied according to a specific priority order (e.g., the order
in which the template of rules are applied, and whether a
template of rules is allowed to modify or override another
template of rules). For example, a template of rules specified
by the author of the code or the requesting user may not be
allowed to modify or override the template of rules specified
by the data owner/provider. As another example, the tem-
plate of rules specified by the author is applied first, then the
template of rules specified by the data owner/provider is
applied so long as the template does not modify the template
of rules specified by the author, and then the template of
rules specified by the requesting user is applied so long as
the template does not modify the template of rules specified
by the author or the template of rules specified by the data
owner/provider. Additionally, in some embodiments, the
on-demand code execution system 120 can, as part of its
operations in executing the one or more codes specified to
the system 120, re-use the execution environment config-
ured according to the rules specified at (2), or cache the
results returned to the service 160.

[0158] Additional details of how the code execution envi-
ronment rules are used to control or modify the execution
environment for the one or more owner-submitted functions
are described in greater detail below with reference to FIG.
14.

[0159] With reference to FIG. 14, an illustrative routine
1400 will be described for customizing the execution envi-
ronment for one or more code executions performed in
response to an /O request from a requesting user. The
routine 1400 is illustratively implemented by the object
storage service 160 of FIG. 1.

[0160] The routine 1400 begins at block 1402, where the
service 160 receives code execution environment rules to
control user code execution. For example, the service 160
may provide a user interface or an API for generating or
selecting the code execution environment rules. The user
interface or API may also allow the owner to generate or
select different sets of code execution environment rules for
different owner-submitted codes.

[0161] The code execution environment rules may specify
one or more privileges or restrictions associated with one or
more code executions to be performed in response to the I/O
request from the requesting user. For example, the code
execution environment rules may specify a time limit on a
duration of the execution of the owner-defined code, a

US 2021/0097024 Al

resource limit on an amount of computing resources used by
the execution of the owner-defined code, or the amount of
computing resources to be allocated to the virtual machine
instance on which the owner-defined code is to be executed.
In some cases, the code execution environment rules may
specify one or more services that the code execution can
access or the parameters or credentials (e.g., the data object
owner’s credentials or the requesting user’s credentials)
needed to access such services (e.g., logging service, data-
base service, storage service, etc.). In other cases, the code
execution environment rules may specify one or more
services that the code execution cannot access (e.g., to
prevent the code execution from establishing a connection to
unsecure resources).

[0162] At block 1404, the service 160 receives a request to
apply an /O method (e.g., PUT, GET, LIST, etc.) to specific
data stored by the service 160. In some cases, the code
execution environment rules are received in the request to
apply the /O method. In other cases, the code execution
environment rules are provided separately from this request.
[0163] At block 1406, the service 160 causes one or more
user codes (e.g., owner-submitted codes such as data access
control code, data manipulation code, analytics data genera-
tion code, etc.) that have been inserted into the I/O path
associated with the request to be executed according to the
code execution environment rules. For example, the code
execution may, based on the code execution environment
rules, access an external logging service and store analytics
data associated with the code execution to the logging
service. As another example, the code execution may, based
on the code execution environment rules, access an external
permissions database and determine whether the requesting
user has access to the requested data object. As yet another
example, the code execution may, based on the code execu-
tion environment rules, refrain from accessing any external
resources. At block 1408, the service 160 applies the
requested I/O method to the result of the code execution. The
routine 1400 then ends at block 1410.

OTHER CONSIDERATIONS

[0164] All of the methods and processes described above
may be embodied in, and fully automated via, software code
modules executed by one or more computers or processors.
The code modules may be stored in any type of non-
transitory computer-readable medium or other computer
storage device. Some or all of the methods may alternatively
be embodied in specialized computer hardware.

[0165] Conditional language such as, among others,
“can,” “could,” “might” or “may,” unless specifically stated
otherwise, are otherwise understood within the context as
used in general to present that certain embodiments include,
while other embodiments do not include, certain features,
elements or steps. Thus, such conditional language is not
generally intended to imply that features, elements or steps
are in any way required for one or more embodiments or that
one or more embodiments necessarily include logic for
deciding, with or without user input or prompting, whether
these features, elements or steps are included or are to be
performed in any particular embodiment.

[0166] Disjunctive language such as the phrase “at least
one of X, Y, or Z,” unless specifically stated otherwise, is
otherwise understood with the context as used in general to
present that an item, term, etc., may be either X, Y, or Z, or
any combination thereof (e.g., X, Y, or Z). Thus, such

Apr. 1,2021

disjunctive language is not generally intended to, and should
not, imply that certain embodiments require at least one of
X, at least one of Y or at least one of Z to each be present.
[0167] Unless otherwise explicitly stated, articles such as
‘a’ or ‘an’ should generally be interpreted to include one or
more described items. Accordingly, phrases such as “a
device configured to” are intended to include one or more
recited devices. Such one or more recited devices can also
be collectively configured to carry out the stated recitations.
For example, “a processor configured to carry out recitations
A, B, and C” can include a first processor configured to carry
out recitation A working in conjunction with a second
processor configured to carry out recitations B and C.
[0168] The term “or” should generally be understood to be
inclusive, rather than exclusive. Accordingly, a set contain-
ing “a, b, or ¢” should be construed to encompass a set
including a combination of a, b, and c.

[0169] Any routine descriptions, elements or blocks in the
flow diagrams described herein or depicted in the attached
figures should be understood as potentially representing
modules, segments, or portions of code which include one or
more executable instructions for implementing specific logi-
cal functions or elements in the routine. Alternate imple-
mentations are included within the scope of the embodi-
ments described herein in which elements or functions may
be deleted, or executed out of order from that shown or
discussed, including substantially synchronously or in
reverse order, depending on the functionality involved as
would be understood by those skilled in the art.

[0170] It should be emphasized that many variations and
modifications may be made to the above-described embodi-
ments, the elements of which are to be understood as being
among other acceptable examples. All such modifications
and variations are intended to be included herein within the
scope of this disclosure and protected by the following
claims.

What is claimed is:

1. A system for providing customized access to a data
object stored on an object storage service, the system
comprising:

one or more data stores including:

the data object; and

information designating a modification to input/output
(IO) operations to include execution of owner-de-
fined data access control code prior to providing
responses to requests to perform the 10 operations;

one or more processors configured with computer-execut-

able instructions to:

obtain from a client device a data request to retrieve the
data object, wherein the data request indicates the
data object and a requesting user associated with the
data request;

determine metadata based at least on one or both of the
data request the data object;

implement, on an on-demand code execution system,
an execution of the owner-defined data access con-
trol code based at least on the determined metadata;

obtain, from the execution of the owner-defined data
access control code, an indication that the requesting
user is allowed to access the data object;

generate, based at least on the indication obtained from
the execution of the owner-defined data access con-

US 2021/0097024 Al

trol code, user-specific output data representing a
version of the data object accessible by the request-
ing user; and

return to the client device the user-specific output data
as the data object.

2. The system of claim 1, wherein implementing the
execution of the owner-defined data access control code
comprises determining that the data request satisfies a tem-
poral restriction placed on the requesting user’s access to the
data object, and generating the user-specific output data that
includes the data object in its entirety.

3. The system of claim 1, wherein implementing the
execution of the owner-defined data access control code
comprises determining that the requesting user has access to
a first portion of the data object but does not have access to
a second portion of the data object, and generating the
user-specific output data that includes the first portion of the
data object but not the second portion of the data object.

4. The system of claim 1, wherein implementing the
execution of the owner-defined data access control code
comprises determining that the requesting user is associated
with a geographical region from which the requesting user
is allowed to access the data object, and generating the
user-specific output data that includes the data object in its
entirety.

5. The system of claim 1, wherein the owner-defined data
access control code is configured to access a user access
table indicating, for each respective user of a plurality of
users of the object storage service, one or more portions of
the data object accessible by the respective user.

6. A computer-implemented method, comprising:

storing a data object and an indication to execute a data

access control code in connection with one or more
input/output (IO) operations associated with the data
object;

obtaining from a client device a data request to retrieve

the data object, wherein the data request indicates the
data object and a requesting user associated with the
data request;

executing the data access control code based at least on

one or both of data associated with the data request and
data associated with the data object;

obtaining, from the execution of the data access control

code, an indication that the requesting user is allowed
to access the data object;

generating, based at least on the indication obtained from

the execution of the data access control code, user-
specific output data; and

returning to the client device the user-specific output data

as the data object.

7. The computer-implemented method of claim 6, further
comprising caching the indication such that a subsequent
data request to retrieve the data object from the client device
does not trigger execution of the data access control code.

8. The computer-implemented method of claim 6,
wherein the indication to execute the data access control
code indicates that the data access control code is to be
executed as part of an authorization path and does not
contain a reference to any specific 1O path.

9. The computer-implemented method of claim 6,
wherein the generated user-specific output data includes the
data object in its entirety.

10. The computer-implemented method of claim 6,
wherein executing the data access control code comprises

27

Apr. 1,2021

determining that the data request satisfies a temporal restric-
tion placed on the requesting user’s access to the data object,
and wherein the generated user-specific output data includes
the data object in its entirety.

11. The computer-implemented method of claim 6,
wherein executing the data access control code comprises
determining that the requesting user has access to a first
portion of the data object but does not have access to a
second portion of the data object, and wherein the generated
user-specific output data includes the first portion of the data
object but not the second portion of the data object.

12. The computer-implemented method of claim 6,
wherein executing the data access control code comprises
determining that the requesting user is associated with a
geographical region from which the requesting user is
allowed to access the data object, and wherein the generated
user-specific output data includes the data object in its
entirety.

13. The computer-implemented method of claim 6, fur-
ther comprising: obtaining the data request via a first portal;
determining that data requests received via the first portal
are associated with the data access control code; and execut-
ing the data access control code.

14. The computer-implemented method of claim 13, fur-
ther comprising: receiving a second data request from a
second client device via a second portal different from the
first portal; determining that data requests received via the
second portal are not associated with the data access control
code; and returning to the second client device, in response
to the second data request, user-specific output data based at
least on executing a default data access control code and
without executing the data access control code.

15. A non-transitory computer-readable medium storing
instructions that, when executed by a computing system,
cause the computing system to perform operations compris-
ing:

storing a data object and an indication to execute a data

access control code in connection with one or more
input/output (IO) operations associated with the data
object;

obtaining from a client device a data request to retrieve

the data object, wherein the data request indicates the
data object and a requesting user associated with the
data request;

executing the data access control code based at least on

one or both of data associated with the data request and
data associated with the data object;

obtaining, from the execution of the data access control

code, an indication that the requesting user is allowed
to access the data object;

generating, based at least on the indication obtained from

the execution of the data access control code, user-
specific output data; and

returning to the client device the user-specific output data

as the data object.

16. The non-transitory computer-readable medium of
claim 15, wherein executing the data access control code
comprises determining that the data request satisfies a tem-
poral restriction placed on the requesting user’s access to the
data object.

17. The non-transitory computer-readable medium of
claim 15, wherein executing the data access control code
comprises determining that the requesting user has access to
a first portion of the data object but does not have access to

US 2021/0097024 Al Apr. 1, 2021
28

a second portion of the data object, and wherein the gener-
ated user-specific output data includes the first portion of the
data object but not the second portion of the data object.

18. The non-transitory computer-readable medium of
claim 15, wherein executing the data access control code
comprises determining that the requesting user is associated
with a geographical region from which the requesting user
is allowed to access the data object.

19. The non-transitory computer-readable medium of
claim 15, wherein the operations further comprise: obtaining
the data request via a first portal; determining that data
requests received via the first portal are associated with the
data access control code; and executing the data access
control code.

20. The non-transitory computer-readable medium of
claim 19, wherein the operations further comprise: receiving
a second data request from a second client device via a
second portal different from the first portal; determining that
data requests received via the second portal are not associ-
ated with the data access control code; and returning to the
second client device user-specific output data without
executing the data access control code in response to the
second data request.

